

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Supporting Interactive System Testing with Interaction Sequences

A thesis

submitted in fulfilment

of the requirements for the degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

JESSICA DAWN TURNER

2019

Abstract

Despite extensive research into the modelling and testing of interactive sys-

tems, existing strategies do not adequately cover all parts of an interactive

system. These existing strategies model and test either the functional or in-

teractive components of an interactive system separately, however, issues may

arise where these components intersect. Therefore, further investigation into

the modelling and testing of this intersection is required.

Interaction sequences are a series of steps a user can take to complete a spe-

cific task or to arbitrarily explore an interactive system. In this research inter-

action sequences are used as an abstraction of the interactive system to inform

a model-based testing approach using lightweight formal methods. Interaction

sequences provide an abstract view of the point at which the functional and

interactive components intersect, and as a result also provide a good starting

point for investigation into the modelling and testing of this area. Interac-

tion sequences are applicable to all types of interactive systems irrespective of

the type of interaction, therefore modelling and testing approaches using this

abstraction are also applicable to all types of interactive systems.

In this thesis the findings of our investigation into modelling and testing

using interaction sequences are presented. We describe formalisation of inter-

action sequences and modelling of these sequences using Finite State Automata

(FSA). We introduce the self-containment property and show how this is used

i

to control the size and state space of FSA. We demonstrate simulating inter-

action sequences and discuss how these models can be applied within both

model checking and testing techniques. Lastly, we present a new approach for

generating tests from interaction sequences and their associated models.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisors Professor Steve

Reeves and Doctor Judy Bowen for their continued support, patience, and

enthusiasm. Your guidance throughout this time of research and writing of

this thesis has been invaluable. I am exceedingly grateful for your care, under-

standing and mentorship during my degree while I managed di�cult personal

circumstances.

In addition to my supervisors, I would like to thank my friends and col-

leagues at the University of Waikato. I have appreciated your friendship and

learning from your expertise.

I am also grateful to the University of Waikato, the Waikato Graduate Wo-

men Educational Trust, the University of Waikato Computer Science depart-

ment, the New Horizons for Women Trust in partnership with the Association

for Women in the Sciences for providing essential financial support, without

which I would not have been able to undertake or continue doctoral study.

A thank you to Trevor and Dawn Harrison, Glenda Harrison and Mark

Hollands, and Owen and Leanne Lucas who have supported me throughout

this degree. A special thank you to Chris McNeil whose lifelong mentorship

and friendship has been integral to my academic success.

Lastly, I would like to take this opportunity to thank my family for endur-

ing the high and low points of this research with me. To Dad, thank you for

iii

always being ready with a “solution” for problems you did not always fully

comprehend. To Callan, thank you for always being so understanding, patient

and kind. To Mum, thank you for late night calls, afternoon drives, and for

your perseverance, despite the circumstances we did it.

Soli Deo Gloria.

iv

Publications

Some of the research presented in this thesis is published in the following:

• J. Turner, J. Bowen, and S. Reeves. Supporting Interactive System Test-

ing with Interaction Sequences. In Proceedings of the ACM SIGCHI Sym-

posium on Engineering Interactive Computing Systems, EICS ’17, pages

129–132, New York, NY, USA, 2017. ACM.

• J. Turner, J. Bowen, and S. Reeves. Simulating Interaction Sequences. In

Proceedings of the ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, EICS ’18, pages 8:1–8:7, New York, NY, USA, 2018.

ACM. Discussed in chapters 2 and 6.

• J. Turner, J. Bowen, and S. Reeves. Interactive System Testing using

Interaction Sequences. In Proceedings of the ACM SIGCHI Symposium

on Engineering Interactive Computing Systems, EICS ’18, pages 16:1–

16:5, New York, NY, USA, 2018. ACM.

• J. Turner, J. Bowen, and S. Reeves. Using Abstraction with Interac-

tion Sequences for Interactive System Modelling. To appear in Software

Technologies: Applications and Foundations 2018 - Workshop, STAFW

’18. Discussed in chapters 4 and 5.

As primary author for these publications the technical contributions come

from my research, the other authors on these papers are my supervisors.

v

Contents

1 Introduction 1

1.1 Problem Statement . 8

1.2 Research Questions . 8

1.3 Contributions . 10

1.4 Structure of Thesis . 11

1.5 Summary . 12

2 Background and Related Work 14

2.1 Introduction . 14

2.2 Research Area . 14

2.3 Types of Interactive Systems . 16

2.4 Models . 18

2.5 Modelling and Testing Interactive Systems 20

2.5.1 Existing Modelling Techniques 21

2.5.2 Existing Testing Techniques 24

2.6 Testing Interactive Systems . 27

2.6.1 Concepts . 27

2.6.2 Testing Strategies . 29

2.7 Summary . 34

vii

3 Formalising Interaction Sequences 37

3.1 Introduction . 37

3.2 Interaction Sequences as an Abstraction 38

3.2.1 Why Interaction Sequences? 38

3.2.2 Formalisation of Interaction Sequences 40

3.3 Generating Interaction Sequences 44

3.3.1 Alaris GP Pump . 44

3.3.2 An Interaction Sequence for the Alaris GP Pump 51

3.4 Types of Interaction Sequences 54

3.4.1 Requirements . 55

3.4.2 Building and Constraining Interaction Sequences Based

on Type . 56

3.5 Summary . 59

4 Modelling Interaction Sequences as FSA 60

4.1 Introduction . 60

4.2 Modelling Interaction Sequences as FSA 61

4.2.1 Formal Definition of a Finite State Automaton 61

4.2.2 Formalised Sequences as FSA 63

4.2.3 Setting up and Starting an Infusion using the Alaris GP

Pump . 65

4.3 Using FSA Theory to Constrain Sequences 68

4.3.1 Removing Non-determinism and Minimisation 68

4.3.2 Task Ordering . 73

4.4 Summary . 79

5 Constraining Interaction Sequences 80

5.1 Introduction . 80

viii

5.2 Problems with Existing FSA Theory 80

5.3 The Self-containment Property 84

5.3.1 Definitions . 84

5.3.2 Results . 88

5.4 Controlling the State Space . 97

5.4.1 A Short Example for an Interaction Sequence 97

5.4.2 Task Ordering and Self-Containment 102

5.4.3 Self-Containment and Strongly Connected 107

5.4.4 Limitations . 110

5.5 Self-Containment and the Alaris GP Pump 112

5.6 Summary . 116

6 Simulating Interaction Sequences 118

6.1 Introduction . 118

6.2 Model Checking vs. Testing . 118

6.3 Modelling the Di↵erent Components of an Interactive System . 120

6.4 The Sequence Simulator Proof-of-Concept Tool 128

6.4.1 Building FSA from Interaction Sequences in the Sequence

Simulator . 130

6.4.2 Interaction Sequence Generation and Simulation 131

6.4.3 Self-containment Property and Interaction Sequence Sim-

ulation . 132

6.5 Interaction Sequence Simulation 132

6.5.1 Complete Sequence Simulation 133

6.5.2 An Abstract Sequence Simulation 137

6.6 Discussion . 143

6.7 Summary . 145

ix

7 Testing Interactive Systems using Interaction Sequences 147

7.1 Introduction . 147

7.2 Interactive System Testing and Interaction Sequences 148

7.2.1 Motivations . 148

7.2.2 Testing Strategies applicable to Interaction Sequences . . 149

7.2.3 Summary of Testing Strategies 151

7.3 Generating Abstract Tests with Interaction Sequences 152

7.3.1 Abstract vs. Concrete Tests 152

7.3.2 Generating Abstract Tests 153

7.3.3 Step tests . 154

7.3.4 Mapping Tests . 156

7.3.5 Assumption Tests . 157

7.3.6 Values Testing . 158

7.3.7 Testing with the Self-containment Property 159

7.3.8 Summary . 162

7.4 Extending the Sequence Simulator to Generate Abstract Tests . 162

7.5 Testing the Alaris GP Pump . 163

7.5.1 The Interaction Sequence Model 163

7.5.2 Abstract Tests for the Alaris GP Pump 165

7.5.3 Creating Concrete Tests for the Alaris GP Pump from

Abstract Tests . 170

7.5.4 Summary . 177

7.6 Discussion . 178

7.7 Summary . 181

8 Conclusions 182

8.1 Introduction . 182

8.2 Research Questions . 182

x

8.3 Contributions . 183

8.4 Limitations . 185

8.5 Future work . 187

8.6 Concluding Remarks . 191

Bibliography 192

xi

List of Figures

1.1 Abstract view of the Components of an Interactive System . . . 4

1.2 3 Digit Display Interactive System 5

3.1 Alaris GP Pump with Guardrails 44

3.2 Alaris GP Pump’s Widgets . 49

4.1 Directed Graph of Automaton A 63

4.2 Directed Graph of Automaton C 67

4.3 Automaton E . 69

4.4 Deterministic Automaton E 0 . 70

4.5 Deterministic Automaton E 00 . 71

4.6 Minimal Deterministic Automaton Emin 72

4.7 An Example of Tasking Ordering for the Alaris GP Pump . . . 74

4.8 Automaton F . 75

4.9 Automaton Msetup . 76

4.10 Automaton Mstart . 77

4.11 Automaton MSetupStart . 77

4.12 Automaton MO↵ . 77

4.13 Automaton MStartO↵ . 78

5.1 Directed Graph of Automaton A 85

5.2 Abstract Automaton Ma without Abstract State 87

xii

5.3 Original Automaton M with Self-containment Property 91

5.4 Self-contained Automaton Ms 91

5.5 Abstract Automaton Ma . 91

5.6 Expanded Automaton Mb . 91

5.7 Automaton K . 98

5.8 Automaton L . 99

5.9 Automaton N . 100

5.10 Expanding Ingoing Transitions of State “⌦3” 101

5.11 Expanding Outgoing Transitions of State “⌦3” 101

5.12 Automaton O . 101

5.13 Automaton P . 104

5.14 Automaton Q . 105

5.15 Automaton R . 107

5.16 Automaton H . 109

5.17 Automaton I . 109

5.18 Automaton MVTBI/Time . 113

5.20 Automaton Mcomplete . 115

5.19 Automaton MButton1S . 115

5.21 Automaton MVTBI/TIMES . 116

6.1 Select a Step from an Interaction Sequence 123

6.2 Select Behaviour(s) for the Current Widget 124

6.3 Simulating I Behaviours . 125

6.4 Simulating S Behaviours . 126

6.5 Selecting Operation Schema from A Specification 126

6.6 The Sequence Simulator . 129

6.7 Convert a Sequence to an Automaton 131

6.8 Automaton T . 134

xiii

6.9 Abstract Sequence Model for View Pump Details Task 138

6.10 Abstract Automaton with Multiple Self-contained Automata

Abstracted . 139

7.1 Automaton V . 167

xiv

List of Tables

3.1 Widgets and Available Interactions 53

4.1 Calculation of Equivalent States for Automaton E 00 71

xv

Glossary

Alaris GP Pump Alaris General Purpose Volumetric Infusion

Pump.

CIS Complete Interaction Sequences.

CPModel Component Presentation Model.

CTT Concur Task Trees.

CTTE Concur Task Tree Environment.

DFA Deterministic Finite Automata.

EFG Event Flow Graph.

EFSM Extended Finite State Machine.

FDA United States Food and Drug Administration.

FSA Finite State Automata.

FSM Finite State Machine.

GIP The Generic Infusion Pump.

GUI Graphical User Interface.

GUITAR GUI Testing frAmewoRk.

xvi

HAMSTERS Human-centered Assessment and Modelling to

Support Task Engineering for Resilient Sys-

tems.

ISTQB International Software Testing Qualifications

Board.

MVC Model View Controller.

NFA Non-deterministic Finite Automata.

PCA Patient-controlled Analgesia.

PIM Presentation Interaction Model.

PModel Presentation Model.

PMR Presentation Model Relation.

SF Start Final.

SUT System Under Test.

UI User Interface.

VDM Vienna Development Method.

VTBI Volume to be Infused.

WIMP Windows, Icons, Menus and Pointers.

xvii

Chapter 1

Introduction

Interactive systems are used to support humans in their everyday tasks, often

to make us more productive, to increase safety and to reduce time costs [48].

Interactive systems come in several di↵erent forms and the nature of interaction

continues to evolve (speech, touch, etc.). In this research, an interactive system

is defined as software or a hardware device with a user interface that requires

human input.

Conceptually, interactive systems consist of two main components, the in-

teractive and the functional. The interactive component is the user interface

of the system, this acts as a “gateway” to the functional component. The user

interface is made up of interactive elements, for example a visual button on a

screen or a voice input mechanism, which we refer to as widgets. Each wid-

get has associated behaviours which manipulate the interactive and functional

components of the system. The functional component performs appropriate

calculations and instructions based on the information it receives and gives to

the interactive component.

Interactive systems are used in safety-critical domains to assist in complex

domain-specific tasks. For example, infusion pumps are used in hospitals to

dispense medicine to patients. These types of pumps are commonly used in

1

place of gravity drips in order to provide better safety to patients. These types

of pumps solved common faults associated with gravity drips, such as monit-

oring of medication flow to identify air bubbles, and administering medication

in more accurate volumes, therefore increasing patient safety. Systems which

are used in a safety-critical context are referred to as safety-critical interactive

systems.

A safety-critical interactive system is an interactive system in which error

could lead to the injury or death of end user(s), where an end user is a human

or humans interacting with the user interface. For example, an end user of an

infusion pump could be the patient receiving an infusion or a nurse inputting

an infusion to be delivered. If the nurse inputs an infusion incorrectly he or she

could endanger the patient connected to the pump. Safety-critical interactive

systems were created for a number of reasons, such as to improve task safety,

reduce the time costs associated with a task or to solve some issue that could

not be solved with a manual process. For example, an infusion pump system

may allow a human end user (in this instance a nurse) to make calculations

related to an infusion more reliably than “by hand”. As a result of the safety-

critical nature of these systems it is necessary to ensure they work as intended.

Interactive system testing is the process of following some testing strategy

to demonstrate systems will behave as expected. We use interactive system

testing to identify errors, either before the system is in use or regularly as

the system is updated. This allows us to fix errors to ensure that the system

continues to behave in an expected way.

As stated by Dijkstra, “Program testing can be used to show the presence

of bugs, but never their absence” [21]. This means that despite extensive

research into the testing of safety-critical interactive systems and interactive

systems in general, no testing strategy can show that a system will be “perfect”.

2

Perfect meaning a system which is guaranteed to be completely free of error.

Therefore, we extensively test interactive systems in order to remove as many

errors as possible, to ensure that systems are as reliable and safe as possible.

This is particularly important in interactive systems as the addition of a

human user can introduce new errors (either accidentally or intentionally),

even when we are satisfied all identified errors have been removed from the

system. This is because we cannot be sure that the user will interact with

the system as intended. Therefore, in addition to removing as many errors as

possible, we must also test for and remove interactions that a human could

perform which have the potential for error.

As human users can be unpredictable, instead of focussing on the user

and their interactions we instead focus on the possible interactions available

in the interactive system. This is so we can explore the many possibilities of

interaction from the perspective of the system. By doing this we can capture

unpredictable human behaviours without having to formalise or model the

human end user.

In interactive system testing, the interactive and functional components of

a system are often tested separately. This is evidenced by the many modelling

and testing strategies which focus on one of these two components (we present

some of these strategies in chapter 2). That is, there are individual strategies

tailored to test the functionality and interactivity individually, resulting in

two di↵erent sets of tests. We refer to these sets as a testing suite, which

consists of a group of tests for a particular system. This approach is useful

in development as di↵erent skill sets are required to build the functional and

interactive components, and as a result these are often designed and created by

di↵erent teams of people. Testing each of these components separately allows

us to investigate that each part of the system will behave in a way that is

3

Figure 1.1: Abstract view of the Components of an Interactive System

expected.

Furthermore, when testing the di↵erent components, the types of errors

we search for can be di↵erent. For example, in the functional component we

can test for logical correctness, code coverage, back-end connectivity and so

on. In the interactive component we may consider task satisfaction, usability,

learnability in addition to code aspects. Therefore, it is essential to test each

area of an interactive system to find errors and demonstrate the system works

as expected.

However, while each component of an interactive system can be tested indi-

vidually, errors can still arise when each of these components intersect, we refer

to this intersection as the overlap component. That is, when the interactive

component sends instructions to the functional component, these instructions

may not be sent correctly, and vice versa (see figure 1.1). Therefore, to remove

as many errors as possible, not only do we need ways to test the interactive

and functional components of an interactive system, but to test this overlap

component. Furthermore, we must make this intersection resilient to arbitrary

4

Figure 1.2: 3 Digit Display Interactive System

interactions from the user, as due to their unpredictably they may cause errors

to occur in the system by interacting in ways which are not expected. Adding

resiliency to the system in this way will increase system reliability and safety.

Consider the Model View Controller (MVC) framework which consists sim-

ilarly of three di↵erent components (see [36, 60]). In the abstract view de-

scribed above the model component is the functional component of the system,

the view component the interactive component, and the controller component

the overlap component. It is perhaps obvious that if the controller component

of this framework does not behave as expected neither the model or the view

can behave as expected, as the controller ensures that these components work

together correctly. Similarly for the overlap component, if instructions are

lost or communicated incorrectly between the functional and the interactive

components, the consequences could have a serious e↵ect on the end users,

particularly in safety-critical contexts.

For example, consider the three digit display interactive system shown in

figure 1.2. In this system a user can increase or decrease the value of the

display by interacting with either the up or down buttons respectively. We

can test separately to show that the interactive and functional components

work as expected, however, we must also demonstrate that the relationship

between the display and the stored value remains intact (part of the overlap

component). For instance, if the display shows 999 and the user selects the

5

increase option there are several possibilities: the display may remain at 999,

the display may roll-over to 000, or an error may be displayed and so on. In

contrast, in the functional component the increase function may allow a value

of 1000 to be stored, resulting in a mismatch between the display and value

being stored internally. This error may seem trivial, however safety-critical

medical devices often have similarly limited segmented numeric displays, and

errors with such systems may have serious, life-threatening consequences (see

[72] for examples).

While this is a simple example, the context in which this system is used

could lead to unexpected consequences. For example, if the three digit display

was used to input an infusion rate, the user could end up inputting a dose

of a significantly higher amount than what they believe was specified (due to

the mismatch between the internal value and the value displayed), this could

result in serious injury or even death to the patient connected to the machine

(such errors are commonly seen, see [26, 66, 15, 59, 18, 50] for some examples).

While we cannot control what context the system is used in, we can test the

overlap component to determine that it works as expected.

Design artefacts are created to define the di↵erent aspects of an interactive

system. For example, a model may be used to specify the way in which a

system transitions between di↵erent modes or windows. Formal specifications

are one type of design artefact which are used to specify the behaviour of

the interactive system. For example, the expected behaviour of a function

such as addition, subtraction and so on. Throughout the interactive system

development process we ensure that the system adheres to the design artefacts,

to ensure we have created the intended system.

In general, formal methods are a collection of techniques which allow us to

reason about systems, using formal logic and mathematics. They are used to

6

inform modelling and testing processes of systems to confirm desirable prop-

erties, such as safety or reliability. We can use formal methods to determine

that a system works as expected.

In this research we take a “light-weight” approach to formal methods, in

that we specify parts of an interactive system instead of the system in its en-

tirety (see [81]). This is in order to reduce the complexity and scope of the

models we create (models being one form of a system specification) and to in-

crease likelihood of industry adoption. For example, formal methods are used

in the Generic Infusion Pump (GIP) project1 in order to improve safety, se-

curity and usability of medical systems. In this work we will use specifications

of the functional and interactive components of an interactive system (which

we assume will exist as part of a robust software engineering approach). In

addition to this, we will specify the overlap component using interaction se-

quences. The specifications we use will be in various forms, including formal

models.

Model-based testing is a testing strategy which incorporates models of the

system under test (SUT) to inform the testing approach. These models are

used as the basis for generating tests. Models are created from abstractions of

the SUT and often have a defined focus. For example, task models are used to

model the tasks of an interactive system, categorised by di↵ering levels of user

interaction. Abstraction is a useful technique used in the creation of models,

as it allows us to focus on specific parts of the SUT while providing a way to

hide unnecessary details.

Interaction sequences are the steps that a user can take to complete a pre-

defined task or to arbitrarily explore an interactive system. They encapsulate

both the interactive and functional component behaviours of the system and as

1See https://rtg.cis.upenn.edu/gip/

7

a result provides us with a view of the overlap component. Therefore, they are

a useful abstraction for informing a new testing approach for this component.

In this research, we define a technique for using interaction sequences as an

abstraction of interactive systems to support interactive system testing. This

abstraction will be used to generate models of the SUT, which can be used

to inform the testing process. This testing strategy can be used in addition

to functional and interactive component testing as another way of potentially

identifying errors for removal, in order to improve system safety and reliability.

1.1 Problem Statement

Testing interactive systems is a necessary part of the development process.

Myers et al. state, “Whereas low-level impacts of bugs may only inconvenience

the end user, the worst impacts can result in large financial losses, or even cause

harm to people” [48]. In interactive system testing, the separate components of

the system, the interactive and functional, are commonly tested individually

ignoring the overlap component. However, errors can arise in the overlap

component. Furthermore, we cannot guarantee that end users will interact

with systems as expected, or that the context in which the system is used

is appropriate, both of which can lead to new errors. Therefore, we must

investigate ways in which to improve the interactive system testing process

with a specific focus on the overlap component, to identify as many errors as

possible for removal in order to increase system reliability and safety, and to

help make systems more resilient to di↵ering interactions and environments.

1.2 Research Questions

To address the problem statement we propose the use of interaction sequences.

8

This leads to the following research questions:

1. How can we generate and simulate interaction sequences automatically

to ensure reproducibility?

2. Can the state space of interaction sequences be controlled while pre-

serving the properties of the interaction sequence, so that we do not lose

information?

3. How can we use interaction sequences as an abstraction so that they may

be used to inform a testing suite to enhance interactive system testing?

One of the main issues with using testing strategies is the considerable time

cost of the various existing testing approaches. As a result, many approaches

include ways to add automation and structure to reduce the human e↵ort re-

quired to follow the approach and to ensure reproducibility (we will discuss

this in more detail later). Therefore, we must find ways to generate and simu-

late interaction sequences automatically to ensure reproducibility, so that we

may reduce the human e↵ort required to create sequences.

In modelling, the state space explosion problem occurs when a model has a

state space which is too large to remain tractable. The state space of a model

consists of all possible combinations of the states and transitions within the

model. Conceptually, interaction sequences have the possibility to be never

ending, with never ending combinations of these never ending sequences, this

leads to the state space explosion problem. Therefore to address research ques-

tion two, we must find ways in which to constrain interaction sequence length

and consequently the state space, to ensure that models remain tractable.

In addition, existing techniques which reduce the state space are not su�-

cient, as important information is lost when the technique is applied (we will

9

discuss this in more detail later). Therefore, we must find ways to control the

state space by hiding information, so that it is retrievable when required.

Interaction sequences as an abstraction of interactive systems provide us

with a view of the intersection between the interactive and functional com-

ponent, however it is not clear how we will utilise this abstraction to inform

the testing process. Therefore to address research question three, we must in-

vestigate ways in which we can use this abstraction for modelling and testing

purposes.

1.3 Contributions

In answering the research questions, this thesis makes the following contribu-

tions:

1. A technique for formalising and generating interaction se-

quences. This contribution addresses research question one. We will demon-

strate how to formalise interaction sequences to ensure reproducibility based

on given assumptions, and how we can generate these formalised sequences

from formal models of the interactive system.

2. A technique for modelling interaction sequences as Finite State

Automata (FSA). This contribution addresses research question one. We

will demonstrate how we can convert a formalised interaction sequence to a

finite state automaton to allow for the generation of varying forms of that

interaction sequence. We will describe the benefits of this conversion.

3. A technique to control the state space of interaction sequences

using the self-containment property. This contribution addresses re-

search question two. We will discuss why the existing formal theory of FSA is

not enough to address the state space explosion problem. We will introduce

the self-containment property and show how we can use this to reduce and

10

expand the state space as required. We will demonstrate how this property

gives control over the state space to ensure that our models remain tractable

for testing purposes.

4. Simulation of interaction sequences as an aid to testing. This

contribution addresses research question one and three. We will demonstrate a

“proof-of-concept” tool to illustrate the use of interaction sequences for testing.

In addition we will demonstrate the use of the self-containment property to

enhance this process. Finally we will discuss the generation of abstract tests

and ways in which these can be converted to concrete tests for implementations

of the SUT.

1.4 Structure of Thesis

This thesis is structured as follows: in chapter two we discuss background ma-

terial that relates to our work, with a particular focus on relevant literature

which seeks to address similar research questions to our own. We will sum-

marise existing approaches to explain how our work relates to these and how

it di↵ers from these.

This will be followed in chapter three by a discussion on formalising the

interaction sequences. This will include defining the interaction sequences as

an abstraction, generation of the interaction sequences based on formal models

of the SUT, and a discussion of the di↵erent types of interaction sequences.

In chapter four we demonstrate how formalised interaction sequences can

be used to build FSA, to enable the exploration of sequences of varying lengths

for specific tasks. A discussion of the existing techniques in FSA theory will

demonstrate the need for abstraction and as a result we introduce the self-

containment property. In addition we will demonstrate the use of tasks and

task ordering to constrain interaction sequences in order to build tractable

11

models of the SUT.

In chapter five constraining interaction sequences will be discussed in depth,

with an emphasis on controlling the interaction sequence model state space.

We will formally define the self-containment property and the useful aspects

of using this property to control the state space. Finally, we will finish with an

example of this technique on a specific safety-critical interactive system, the

Alaris General Purpose Volumetric Infusion Pump (Alaris GP Pump).

In chapter six we introduce a “proof-of-concept” tool to demonstrate the

simulation of interaction sequences using interaction sequence models as well as

a formal specification of the functional component and models of the interactive

component. We will also demonstrate the self-containment property functions

included in this tool.

In chapter seven we describe how we can generate abstract tests from inter-

action sequences and how these can be used to explore di↵erent testing types

for interactive systems. We explore the concept of abstract tests and demon-

strate how these can be converted to concrete tests for implementations of the

SUT. We will follow with some examples to illustrate the overall technique.

In chapter eight we finish with concluding remarks and a discussion for future

work.

1.5 Summary

In this chapter we introduced interactive systems and the subset of safety-

critical interactive systems. We discussed interactive system testing and its

importance. We discussed how interactive system testing cannot prove systems

are error free, but that we can use it to identify as many errors as possible for

removal, to improve safety and reliability. We introduced interaction sequences

and briefly discussed how they can be used as an abstraction of interactive

12

systems. This was followed by a discussion on formal methods and model-based

testing. Lastly, we introduced the research questions and the contributions of

this thesis.

13

Chapter 2

Background and Related Work

2.1 Introduction

In this chapter we introduce the relevant literature related to this work. We

start with an introduction to the research area, followed by a discussion of the

di↵erent types of interactive systems. This is followed by an overview of the

necessary theory to understand this work. Next, we cover testing concepts and

strategies that are applicable to interaction sequences. Finally, we conclude

with a discussion of model-based testing methods for interactive systems.

2.2 Research Area

The focus of this research spans two significant areas of software engineering:

formal methods and human computer interaction. In particular we look at

how these areas are used together, with a specific focus on interactive system

testing.

Formal methods are used in human computer interaction in many di↵erent

ways, one example being to help support and improve testing techniques [78].

Specifically, model-based testing techniques have been developed to ensure that

14

systems behave as we expect, based on specifications in the form of models [76]

(as stated previously in chapter 1, a specification formally defines the behaviour

of a system). The use of formal methods allows us to specify several di↵erent

aspects of interactive systems, some examples include models of interaction,

tasks, or even relations between the functional and interactive components of

a system [67, 57, 7]. We will discuss relevant techniques in detail later.

Traditional formal methods are not widely used in industry, as they are

considered too complex, time consuming and not cost e↵ective [17, 82, 33].

Therefore, to encourage formal methods use in industry the area of lightweight

formal methods was created [33]. In this research we use a lightweight approach

to formal methods to make our methods more accessible.

In human computer interaction, the study of how humans interact with

computer systems, our objective is to enhance the interaction in some way.

For example, we may wish to improve accessibility, usability or design (see

[8, 52, 2] for examples). In this research techniques which are used to observe

and/or test the interface are relevant.

As defined by the International Software Testing Qualifications Board

(ISTQB) testing is “the process of all lifecycle activities both static and dy-

namic, concerned with planning, preparation and evaluation of software produ-

cts and related work products to determine that they satisfy specified require-

ments, to demonstrate that they are fit for purpose and to detect defects”

[31]. The purpose of interactive system testing is not only to identify defects

but to ensure that the system does what it is expected to. Defects are often

referred to as “issues”, “problems”, “faults” or “errors” within the system. In

particular, errors can refer to human or machine errors while faults are specific

to the system and its design. The resolution of these problems will help to

“demonstrate that they [interactive systems] are fit for purpose” [31] and help

15

to avoid future incidents.

In this research we draw on examples based on safety-critical medical

devices, such as infusion pumps. These devices are used in hospitals to dis-

pense medicine to patients, an example of this type of system is the Alaris GP

Pump. Infusion pumps are used as an alternative to administering infusions

with a gravity drip. These systems improve infusion safety in that they allow

calculated medication delivery rates for a user automatically (instead of hav-

ing to do this manually), in addition to providing alarms if there is an issue

with the feed line, such as the presence of an air bubble. While these systems

helped to improve the safety of infusions in regard to these two issues, there

are a growing number of injuries and deaths associated with these types of

medical devices [26, 47]. This highlights the need for better interactive system

testing practices.

2.3 Types of Interactive Systems

WIMP-based systems, systems which include windows, icons, menus and point-

ers, are still one of the most common types of interactive systems. However,

these are only one example of an interactive system. Interactive systems can

include a wide variety of interactions which go beyond WIMP-based systems

(often referred to as post-WIMP), for example touch-based systems on smart-

phones, voice-based recognition systems such as voice-identification used in

banking, or even airplane cockpit display systems [19] which allow end users

to interact with a system using physical buttons and other widgets as opposed

to a digital display. That is, the widgets that the user interface is made up of

is not limited to WIMP interaction.

Di↵erent types of interactive systems have di↵ering types of interaction

methods. Many interactive systems support multiple interaction techniques,

16

such as clicking on widgets or observing the information in a display. However,

some systems only allow for a single interaction, that is, there is a singular

interaction technique in use. An example of this was given in [22] which

describes an adaptive tra�c control system. This system consists of a tra�c

light which changes the light signals depending on the tra�c approaching it,

in order to avoid long wait times. The users only interact with this system

via sight, and multiple users can interact with this system at the same time.

However, the user also unintentionally interacts with this system via their

presence, this is called a low-intention interaction (see [78, p. 185-190]) and we

do not consider these types of interactions further here.

Whilst the adaptive tra�c light is a simple version of a safety-critical ex-

ample in terms of its singular interaction technique, there are more complex

safety-critical systems which exist that a user also interacts with via single

interaction. An example of this is one use of the Apple Watch, where blind-

deaf people navigate from the haptic feedback that the watch provides [35].

This has allowed target users more freedom to explore with the knowledge that

they can find their way easily. Obviously, extensive testing of this system is

required in order to prevent people from being lost or injured and is another

good example of why interactive system testing is so important.

While systems can have di↵ering types of interaction, the way in which

the system responds to those interactions can also change, depending on the

state the system is in. These systems are defined as modal interactive systems,

that is the mode of the system determines the system’s behaviour. The Alaris

GP Pump is one such example of a modal device, in which key presses trigger

behaviours based on the state the system is in. As a result of their modality,

these types of devices often have less widgets, as the functionality of those

widgets may change with the mode.

17

The converse of a modal system is a non-modal or rather multi-modal

interactive system (WIMP-based systems are often multi-modal). In a multi-

modal interactive system the mode of the system is not closely linked to the

system behaviour. For example, a simple standard calculator performs the

functions of addition, multiply, division, and subtraction when the appropriate

keys are pressed. These behaviours do not change depending on the mode the

calculator is in. In contrast, many calculators now have additional functions

which do rely on modes, highlighting how modes can be used to increase the

number of functions available in a specific system.

Safety-critical interactive systems, as defined previously, are systems in

which error can lead to injury or fatalities. Many of these kinds of system can

be found in medical settings, for example the Alaris GP Pump. The serious

harm or death that the failure of safety-critical systems can cause (and con-

tinues to cause see [66, 59, 18, 15, 47]) to end users highlights the importance

of interactive system testing and good software engineering practices.

2.4 Models

In this research we use FSA as representations of the interaction sequences,

therefore the theory of FSA is relevant here. We refer to Hopcroft et al.’s

Introduction to Automata Theory, Languages, and Computation as the basis

for this theory. Concepts which are of interest include FSA definitions [29,

p. 13-22], removal of non-determinism in FSA [29, p. 19-28], equivalence of

FSA and regular expressions [29, p. 28-35], FSA equivalence [29, p. 64-65],

and minimisation of FSA [29, p. 68-71]. We describe briefly how we use each

of these techniques.

The formal definitions of FSA are given in [29] and we use these as the

basis for our FSA which we will discuss in detail later in chapters 4 and 5.

18

Furthermore, we will discuss the removal of non-determinism and minimisation

of FSA and demonstrate that these techniques were not enough to address the

state space explosion problem, as defined in chapter 1 (FSA equivalence is

a required concept to understand how these techniques work). In addition

to this, we demonstrate how the equivalence of FSA and regular expressions

(a regular expression defines a sequence of characters) can be used to take

advantage of task ordering in order to build more complete interaction sequence

models (complete here meaning a model with higher task coverage, that is the

number of tasks specified in the model is increased).

FSA are commonly visualised as a directed graph. Throughout this re-

search we use directed graphs to more easily demonstrate changes made to

FSA. For each graph, each node is a circle containing a widget name from the

interactive system and every transition is labelled with an interaction corres-

ponding to the next state. We use green states to represent start states and

red states for final or accepting states. We will see how this is used to visualise

FSA in chapter 4.

For interaction sequence simulation we take advantage of existing mod-

els for the interactive and functional components of an interactive system.

Presentation Models (PModel), Presentation Model Relations (PMRs), and

Presentation Interaction Models (PIMs) as described in [7] allow us to model

the interaction component of a system. The PModels model the system beha-

viour via each state, describing the name, type, and behaviour of each widget.

There are two types of behaviours, an interaction behaviour (I Behaviour)

and a system behaviour (S Behaviour). An I behaviour is a behaviour of the

interface while an S behaviour is a behaviour of the underlying functionality.

The PMR allows us to relate the names of the S behaviours to operations in a

functional specification (in this case Z specification). The PIM shows the nav-

19

igation between windows or modes of a system with each state representing a

PModel. We use these models to allow us to simulate the interactive compon-

ent of an interactive system by triggering the I Behaviours and S Behaviours .

The functionality of the SUT is specified using the Z language [34]. We

use this in conjunction with the ProZ plugin of the ProB tool1, which enables

animation of the model for the simulation of interaction sequences. The Z

specification describes all possible operations of the SUT in terms of changes

to observations of the state space. The values of these observations provide the

basis for the assumptions we need for simulation. We will discuss this further

in chapter 6.

Note that the models we have selected for simulation are chosen as they

provide flexibility and have libraries which are easily integrated, however, the

simulation and consequent testing technique we present is not limited to these

models. For example, the PVSio-web toolkit2 could be used to model the

interactive component, while a Vienna Development Method (VDM) specific-

ation (see [10]) could be used to model the functional component. Therefore,

the interaction sequence models presented in this thesis are intended to be

integrable with several other pre-existing formal models.

2.5 Modelling and Testing Interactive Systems

In this section we will discuss the relevant techniques for modelling and test-

ing interactive systems. This includes discussion of where particular types of

models lend themselves to tractability and therefore help avoid state space

explosion. This is not intended as an exhaustive list of these techniques, as

we only discuss those relevant to this work (for a comprehensive overview of

1See https://www3.hhu.de/stups/prob/index.php/Main_Page.
2See http://www.pvsioweb.org/

20

formal methods in human computer interaction see [78]).

2.5.1 Existing Modelling Techniques

Task modelling is used to model user tasks and has been adapted to model

tasks for an interactive system, for example CTT [58] and HAMSTERS [3]

(see [42] for an interesting comparison in terms of system coverage and scalab-

ility between these two methods). The CTT and HAMSTERS task models

focus on the set of steps a user will take to complete a certain task, hierarchic-

ally decomposing tasks into smaller and smaller steps. These approaches rely

heavily on following a specific framework in order to use them for modelling

and testing, for example The Concur Tree Task Environment (CTTE) has

been developed to help make CTT more accessible [57]. A heavy reliance on

frameworks in this way provides one way to address the state space explosion

problem, as we can expect models to be in a certain form (however, intractable

models are still possible for large state spaces).

Most frameworks require a specific programming or testing language used

within the framework. For example, Dwyer et al. present an approach for Java

Swing applications in [23], Campos et al. present the GUISurfer tool in [13],

Paiva et al. describe an approach using Spec# in [56], and lastly Masci et al.

describe an approach for Patient-controlled Analgesia (PCA) infusion pumps

and United States Food and Drug Administration (FDA) regulations in [44].

Using techniques such as these ensures the model is created e�ciently, however

there is the potential that the use of these techniques could be impossible due

to an application model with an intractable state space, or lack of access to the

software implemented. As the frameworks and tools used force these techniques

to follow a strict process, often these approaches are adapted for only one

type of interactive system (e.g. WIMP, web-based, etc.). The technique we

21

demonstrate is intended to be applicable to all types of interactive systems.

There is considerable research into interaction sequence mining, in which

actual end user sequences are recorded and then analysed depending on certain

criteria, see [37, 39] for two such examples. This largely avoids the state space

explosion problem as sequence data is gathered, from actual use, which con-

sequently limits their length, and thus the models. Sequences can be recorded

in “real world” or from artificial environments. In real world environments,

particularly for safety-critical interactive systems, it is perhaps not appropri-

ate to use this post-implementation approach for testing, as if errors do exist

they could lead to serious harm or injury to the user [66, 59]. On the other

hand, in artificial environments the sequences gathered may be simpler as it is

impossible to re-create the real world context perfectly. This led us to explore

the idea of modelling and generating the sequences by focussing on the system

itself and the interaction it allows a user to perform, as opposed to focusing

on context.

Petri nets are another abstraction of interactive systems used in formal

methods. They are described in [20] as, “an alternative to automata that would

put the local interaction of components at the center of modelling.” Some work

on the use of Petri nets to describe interaction sequences has been given in

[14] but with a focus on HCI evaluation rather than on the development of a

behavioural model.

Thimbleby suggests abstracting interactive systems using matrix algebra

[67]. In this algebra a matrix represents a MxN rectangular array of number

data, where M is the number of rows and N is the number of columns in that

array. In his work Thimbleby suggests representing each widget and action

as a matrix. This allows him to draw on matrix algebra to manipulate the

widgets and actions by using matrix multiplication. A combination of matrices

22

by matrix multiplication can represent an interaction sequence, and the final

matrix represents the context change in the system from that sequence. Due

to the types of examples (small fixed UIs such as mobile phones) it is not clear

that this approach is easily adaptable for more complex systems. In addition,

the approach has not been developed beyond this since its original proposal.

In [73], bu↵er automata are used as an abstraction of the interactive sys-

tem, as an alternative to other formalisms. The benefit of this approach is

that it can represent large numbers of states as automata with fewer bu↵ers

than states, thus reducing the time complexity of processing. This is used for

human-computer interaction purposes to, “define a layer between the physical

user interface and the application etc.”[73]. These focus singularly on states or

modes of the interactive system. Note that this di↵ers from the overlap com-

ponent as they attempt to model the intersection between the end user and

interactive component, rather than the interactive component and functional

component.

The symmetry property is introduced in [54, 32] by Ip and Dill and can be

applied to directed graphs in order to simplify them. They argue that if a series

of states results in the same output, it does not matter which path is taken,

as the result will be the same. The author’s claim the use of symmetry could,

therefore, help to reduce even “infinitely” long graphs, and as a consequence

reduce the overall sequence length. Complete Interaction Sequences (CIS) are

a way to model the responsibilities (what the system should allow the user

to perform) of an interface rather than the user actions [79, 80]. In order to

reduce the number of states, strongly connected components, or symmetric

components, are identified and abstracted into a ‘super’ state. This gives a

significant reduction in the number of sequences, as well as their length. While

these interaction sequences di↵er from those we present in this thesis (they

23

consider sequences at a higher level of abstraction) we found the identification

of specific components as the basis for abstraction was relevant for our work

and adapted this in our own approach.

Harrison et al. carried out an investigation into the similarities of the

models of two di↵erent safety-critical interactive systems in [28]. The purpose

of this investigation is to see how much a model of a system can be re-used for

a similar system. This concept could be adapted to address the state space

explosion problem, as we could re-use models for sequences which are similar

for di↵erent systems. However, as tasks can be completed in a large variety of

ways, devices which perform the same tasks may have very di↵erent interaction

sequences.

2.5.2 Existing Testing Techniques

Campos et al. present an approach for test case manipulation using task mod-

els based on the HAMSTERS notation [11]. They discuss ways of generating

test cases to ensure good coverage with a smaller number of tests. The tests

developed from the work in [11] ensure the system allows users to be able to

complete tasks. This di↵ers from the work we describe in later sections as we

wish to use interaction sequences to demonstrate the system responds as ex-

pected on a given sequence during the completion of a task, in order to check

ability and correctness.

Some testing approaches which utilise interaction sequences simply use

well-known traversal algorithms or variations of these to explore their models.

This kind of approach focuses on restricting the sequence length to those gener-

ated by specific traversal algorithms. For example, Salem presents an approach

using Finite State Machines (FSM) where complex traversal algorithms are

used for testing purposes [62]. In [30] Huang et al. use weight-based methods

24

to calculate paths of certain length to traverse through the models. Essentially

these approaches, and others like them, allow the traversal algorithm to “trim”

the model. For example, a weighted strategy only traverses sequences which are

more likely to occur based on probability metrics. This type of strategy only

works under certain conditions for specific types of software (such as graphical

user interface (GUI) based applications as in [30]) and further abstraction is

often used to reduce the model’s complexity.

Many existing interactive system models are represented visually via the

use of transition graphs. We can explore these systematically to test each

di↵erent area of system interaction. We can also generate the complement of

this type of graph (as proposed by [5]) which describes all the transitions that

a user should not be able to perform. The combination of these provides a

good overall coverage of the system.

There are di↵erent ways in which state space explosion in directed graphs

can be managed. One approach is to limit by sequence length, which is util-

ised by Nguyen et al. in the creation of their testing tool GUITAR [51].

They utilise interaction sequences to describe systems using Event-flow graphs

(EFGs). All sequences of a given length (such as two) are then generated and

they systematically explore these sequences in a breadth-first search approach.

Constraining sequences to a defined length gives control over the state space

size, however, it does also potentially hide behaviours that could be exposed

by longer sequences, or combinations of longer sequences. It is important to

explore sequences of varying lengths and combinations in order to expose such

behaviours and find alternatives to constrain them rather than by pre-defined

lengths.

FSA, or more specifically Mealy machines, can also be used to model sys-

tems for testing purposes by making certain assumptions about the SUT, and

25

then modelling the system based on input/output pairs [75]. To address the

state space explosion problem an extended finite state machine (EFSM) is used

which has variables to store important information. For example, a timeout

counter variable can be used instead of three duplicated timeout states. This

reduces the number of states required to model the SUT and thus restricts

the length of the sequences. However, it is possible to have lengthy sequences

with no duplication and thus using an EFSM does not guarantee constraining

models to a tractable size.

Thimbleby et al. focus on infusion pumps and their number entry systems

[72, 71, 68, 55]. They discuss the many di↵erent number entry systems and

show how even systems which look the same can perform di↵erently. This

draws attention to the multiple possibilities of both the implementation of,

and interactions with, these types of devices. Hence the need to find new ways

of constraining interaction sequences and consequently addressing the state

space explosion problem.

In this section we have covered several di↵erent testing techniques. In

the work we have covered, interaction sequences are used in di↵erent ways

as an abstraction (as in the task models). Several of these approaches are

post-implementation, which leaves room for the possibility of causing harm

or fatalities in safety-critical settings. It is important to ensure testing is

carried out at di↵erent points of the software development approach to try and

remove as many errors as possible, to improve system reliability and safety.

In addition to this, a common problem is to constrain the state space of the

models, to ensure models are tractable. Di↵erent approaches are taken to this

depending on the type of approach, such as constraining sequence length or

removing duplication in the model. These all have the potential to hide or

ignore sequences that may lead to error.

26

2.6 Testing Interactive Systems

In this section we introduce some related testing strategies and concepts. We

refer to di↵erent types of testing as testing strategies, for example unit testing,

model-based testing and so on. We will only address testing concepts relevant

to this work.

2.6.1 Concepts

In coverage testing, unit testing etc. every test we define must have an “oracle”.

The oracle is specified as an input output pair, where given a certain input we

expect a certain output. If the test shows the oracle pair matches the system

has passed the test and if it shows it does not match the system has failed

the test (if we ignore the possibility of false positives and negatives). It is

essential that oracles are included in tests, as using oracles in tests keeps us

accountable, because we have a defined point of pass or failure. Oracles allow

us to reason about the specifics of the behaviours as opposed to crash testing.

This allows for a di↵erent kind of testing, in that it adds detail to the tests we

can create and consequently increases the comprehensiveness of the test suite.

Error is something that occurs within the system that was not expected or

should not have happened, thus it is incorrect (we use oracles to identify error).

As stated previously, “Program testing can be used to show the presence of

bugs, but never to show their absence” [21]. Thus, although we can do our

best to discover as many bugs as possible, it is impossible to learn we have

discovered them all. Therefore, we need to design better systems which, when

faults occur, do not result in catastrophic failure of the entire system. Testing

of interactive systems to find areas where errors occur is necessary to achieve

this goal.

Safety and liveness are two properties of interactive systems that testers

27

would like to ensure. Safety means that “nothing bad will happen”, while live-

ness means that “eventually something good will happen” [41]. Note that we

do not consider time issues or time-critical systems here where this definition

of liveness is not adequate because we may have a system which requires a

safety-critical operation to occur every five seconds. If we can prove both of

these properties for a system it is considered to be safe, as we can guarantee

that it guards against hazardous events, and proving liveness allows us to guar-

antee that despite potential delays we will eventually get a positive result. In

terms of safety-critical interactive systems these properties are very important,

because if proved it is highly unlikely for that system to cause death or injury

to the end users. This is not impossible however, because as Dijkstra said er-

rors may still exist that we have not found. Proving that these properties hold

in an interactive system is highly complex, and thus a deterrent for testers to

complete due to the significant financial and time cost.

In addition to this, specifying exactly what these properties mean can

quickly become complex. For example, given the definitions above what do we

define to be “bad” or “good” and how do we ascertain this. This is also high-

lighted by the fact that the liveness definition provided here is not adequate for

time-critical systems. While we have a simple starting point in terms of these

definitions this emphasises the complexity of testing, in that we cannot eas-

ily define tests for these properties with the definitions as described. Further

decisions are required around what the terms bad and good actually mean in

order to prove that a system has these properties, and this can be dependent

on the type of SUT.

A ‘Hazard’ is defined in interaction system testing as a behaviour in the

system that has the potential to cause harm to end users. If a widget or

sequence is described as hazardous it means that there is the high potential

28

for a fault to occur when interacting with that widget or completing that

sequence. Reliable systems minimise these hazards.

A common concept in interactive system testing is the idea of end user or

human error. This is when an error occurs that has been caused by the end

user of the system, that is they have performed an incorrect action based on

their desired goal. The opposite of this is machine error, when an error occurs

that has been caused by the hardware the system is running on. However,

neither of these classifications is quite correct, as they are often used to mask

poor system design.

This view has changed [38], as in many cases we now consider the error

as the result of poor system design or the “programmer’s fault” that the user

or machine error has exposed. Therefore, to prevent either human error or

machine error we need to engineer better systems which are more fault tolerant

(prevent errors or respond safely when errors occur) and provide better training

to end users to prevent mistakes in interaction because we can never control

what the user will do or fully predict their behaviour.

In coverage analysis we analyse a test suite for the coverage of some metric

on the SUT. For example, we can analyse how many lines of code are called

and executed by a test suite. This allows us to identify gaps in the test suite,

with the overall goal to reach complete coverage. However, this is not always

achievable as the state space of a SUT could be large.

2.6.2 Testing Strategies

In our work we are interested in formal modelling and model-based testing (see

[63]). In formal modelling the system is abstracted in the form of a model,

either from the requirements, prototypes or the system itself. This allows us

to hide any unnecessary detail of the interface that is not relevant to testing,

29

such as font types or button positions. While these can have an impact on

usability we consider this best identified by usability evaluation techniques

as a complimentary measure. From these models we can then learn about

the system as well as generate tests in order to verify that the system meets

its specifications. Modelling is a powerful technique as it allows us to focus

directly on a certain aspect of the system via abstraction, whether that be the

functional or interactive components of the SUT. We will use formal modelling

in this research using FSA as a representation of interactive sequences.

There are several di↵erent types of software testing techniques (see [49]

for a complete list) that have been used with the di↵erent formal modelling

techniques. The most common of these is white-box testing, which is defined

as testing with a knowledge of the internal structure of the system. In the case

of interactive systems this means testing the functionality of the interactive

system. Functionality testing is a mature field and as a result there is no

need to explore this further with interaction sequences. It is expected that

an appropriate existing technique will suit to test the functional component.

However, this is not necessarily the case, and it is essential that all areas of

the system are tested to ensure adequate coverage of the state space.

Black-box testing is defined as treating the system as a black-box, that is

the tester has no knowledge of the internal structure of the system. By using

the exterior of the system, in this instance the user interface, and defining tests

based on this interface, a tester can use the implementation to check that the

system meets its specifications.

An approach which recognises the need to test both the interactive and

functional parts of an interactive system is defined in [1], in which the authors

adapt a grey-box testing approach. This is where the user has knowledge of the

interface and some knowledge of the functionality. The approach presented in

30

[1] is inappropriate for generating interaction sequences, however, it is useful

to learn more about grey-box testing specific to interactive systems in general.

GUI testing is used to test interactive systems by interacting with the GUI.

This is a black-box testing strategy and can be used in a variety of ways to test

the SUT. Capture-replay techniques are one example of this type of testing.

However, as the GUI can change as the system is improved and consequently

updated, these types of tests can be fragile (fragile is defined as easy to crash

as the system updates). Therefore, testing only via the GUI is not always the

best choice.

The most commonly applied testing strategy for interactive systems is ro-

bustness testing. This is testing the robustness of a system, meaning that we

inspect the way the system handles unknown faults during execution (unknown

faults referring to crash points in the system). While this type of testing allows

us to find these fault points easily, these tests lack comprehensiveness (which

can only be included in the form of oracles). The reason this type of testing

lacks this comprehensiveness is because we systematically explore the system

in some pre-defined way looking for crash points, oracles are not used to inform

this process. Therefore, it is not a complete approach to testing interactive

systems because it lacks this comprehensiveness.

Fault prevention is exactly that, preventing faults before they occur. There

are five di↵erent types of fault prevention. These are: fault avoidance; fault

removal; fault mitigation; fault forecasting; and fault tolerance. Each focuses

on a di↵erent technique to help prevent faults from appearing in the system.

It is important for the dependability of software for fault prevention to occur,

particularly in safety-critical devices. Some examples of fault prevention in

use are given in [24] and [53], which also describe the importance of making

the system resilient so that when humans inevitably make a mistake during

31

interaction it does not result in catastrophe. By exploring possible user paths

using interaction sequences, some of which could be erroneous, we can use

sequences to increase resiliency in a similar way.

Safety testing is the process of creating a test suite to determine the sys-

tem’s level of safety. This involves proving that a system has true safety and

liveness properties. We could use interaction sequences to perform safety test-

ing by searching for, and identifying, hazardous sequences, providing statistics

on hazardous combinations as sequence exploration continues. However, we

do not explore this technique further here.

Mutation testing involves taking an existing test case and “mutating” it

using some pre-defined technique to generate a new test case. These mutations

allow us to explore variations of tests that we would not otherwise consider or

define. We could mutate interaction sequences to explore several di↵erent vari-

ations. However, given that modal devices change the system behaviour based

on modes, we would get unexpected outputs on these mutations. Furthermore,

we cannot define an oracle for these types of tests, as we cannot know what to

expect based on the mutation, therefore, mutation testing has the same issues

as robustness testing. However, this type of testing would allow us to see what

interaction sequences are possible and what e↵ects they have, such as leading

to an error or hazard.

Random testing is another black-box testing strategy which allows us to

interact with elements of a system based on a pseudo-random algorithm. In

terms of interaction sequence testing, we could use this to execute several

di↵erent types of random sequences. Random sequences are generated based

on random selection of steps in tasks. We could then use these sequences to

generate abstract tests which ensure nothing hazardous happens. This would

allow us to show the reliability of the interactive system.

32

Top-down and bottom-up testing are two di↵erent testing strategies with an

incremental approach to integration testing. Integration testing involves test-

ing parts of a computer system in integration to see where faults lie. Top-down

testing involves testing components from the highest level of some predefined

hierarchy and moving down through the components, while bottom-up testing

starts at the bottom level of the hierarchy and moves up through the compon-

ents. We could envision using these within di↵erent hierarchies of interaction

sequences.

Acceptance testing is a formal testing method where a system is tested to

ensure it meets some set of requirements, that is whether a system is acceptable

or not based on those requirements. For example, the FDA has a set of safety

requirements for infusion pumps, we could use acceptance testing to show that

a given pump meets these requirements. Acceptance testing could be used

with interaction sequences.

Hazard analysis is the process of analysing a system identifying particu-

larly hazardous areas. In order to perform hazard analysis the analyser needs

access to significant data of actual users interacting with the system [46, 43].

Furthermore, ignoring the potential hazards is defined as “heedless program-

ming”, meaning that the programmer has not taken care to avoid detectable

hazards [69]. In order to avoid heedless programming and reduce the hazards

in a system it is important to detect these during the testing phase of devel-

opment. However, without the data required for the hazard analysis this can

be quite di�cult to do, this means that hazards have the potential to occur

before being detected. By using interaction sequences and being able to gen-

erate di↵erent interaction sequences we could be able to build a history of the

system without the need for gathering user data which will allow us to perform

hazard analysis. However, as our focus is on creating comprehensive tests we

33

do not explore this idea further here.

Path testing is a test strategy where paths of execution (whether for the

functionality or interaction) for a system are specified and used to design test

cases. Obviously this is applicable to interaction sequences, as a sequence is a

path through the interactive system. We can use these sequence paths to help

us define test cases for the interactive system.

Invalid testing is a test strategy where incorrect input values are used to

ensure that systems fail as expected by ignoring bad input or failing safely. We

could use this technique in combination with interaction sequences to input

known hazardous sequences, with the expectation that the system will prevent

this sequence from occurring or handle this appropriately. If the system is

designed well it should prevent error from occurring.

2.7 Summary

In this chapter we discussed formal methods and human computer interaction

and described how our work relates to this field. In particular we discussed

the di↵erent types of interactive systems, models, model-based testing, and

testing of interactive systems.

In this research it is intended that the di↵erent types of interactive systems

will have no e↵ect on the strategy presented here. We assume as interaction

sequences are an abstraction of the system, they will be able to be used to

abstract any form of interactive system. That is, we are not simply limited to

GUI-based systems or WIMP interfaces.

We discussed FSA, PModels, PIMs, PMRs, and Z specifications and stated

how we use these to model interactive systems in addition to the relevant con-

cepts required to understand our techniques. This was followed by a discussion

on the existing modelling and testing interactive system techniques relevant to

34

this work.

In particular, our models di↵er from task models, as the point of a task

model as used in software design is to specifically ensure that the system

allows the end user to carry out some task. We simply use tasks as a grouping

mechanism for the interactions, our tests will take a di↵erent approach in that

we ensure that tasks performed using specific interaction sequences can be

completed as expected. Frameworks are often used to support the techniques

we discussed, it is our intention that testing with interaction sequences will be

able to be used to support existing testing processes instead of introducing a

completely new framework. This is done to ensure that the testing strategy

is adaptable to di↵erent types of interactive systems. Furthermore, we want

our testing approach to be more comprehensive than in robustness testing and

traversal algorithm approaches. Therefore, we require access to knowledge of

the SUT, which we assume is available as part of a good software engineering

approach. This is important as we will be defining a test suite which is more

comprehensive than one which follows (sometimes arbitrary) pre-defined paths

(as in robustness testing).

We highlighted common issues with sequence mining, in particular with

safety-critical devices. It is not always safe to gather sequences from a device

in use, in addition to the ethical considerations behind gathering this data.

Therefore, we must find ways to generate interaction sequences, to avoid these

issues, in particular to avoid unnecessary harm to end users.

Interaction sequences are an abstraction of the SUT, however, some tech-

niques discussed also use abstraction within models to simplify them. This is

an interesting concept and we will explore this idea further in later chapters to

show how we can use the self-containment property to control the state space

of our models.

35

Despite extensive testing of interactive systems, errors can still occur. It is

our intention that interaction sequences will allow us to inspect the interactive

system behaviour with a focus on the overlap component, providing better

coverage of that behaviour and consequently an improved testing strategy.

To ensure we create a more comprehensive testing approach than those

discussed above we must incorporate oracles. This will keep us accountable

when looking for errors. We will search for several di↵erent types of error,

with a focus on fault prevention. We will utilise model-based testing and path

testing to create and design our tests. This will be discussed later in chapter

7.

Interaction sequences are applicable to several of the di↵erent testing strate-

gies discussed above, in addition to being used in some of the existing tech-

niques. This demonstrates interaction sequences suitability as an abstraction

of an interactive system to support interactive system testing. This further

supports their use as a suitable model of the interactive system.

36

Chapter 3

Formalising Interaction

Sequences

3.1 Introduction

In this chapter we discuss interaction sequences and how they are used as an

abstraction of an interactive system for modelling (with a focus on creating a

model-based testing approach). We explore the benefits of using interaction

sequences and discuss reasons for formalisation. This is followed by a descrip-

tion of how we formalise the interaction sequences with appropriate examples.

We introduce the Alaris GP Pump to use as an example of an “in use” system.

This pump will be used as the basis for our examples throughout this work.

We discuss generating interaction sequences, more specifically how we can

vary the length of sequences using assumptions based on observations from

a functional specification. We discuss where these assumptions originate and

provide examples using the Alaris GP Pump. We also discuss the Z specifica-

tion and how this allows us to specify the values of these assumptions.

Lastly, we discuss the di↵erent “types” of interaction sequences, that is the

37

di↵erent contexts in which we can view the SUT. We discuss why task-widget

based sequences were chosen to be explored throughout the remainder of this

work. We demonstrate how these allow us to constrain sequences and again

give examples using the Alaris GP Pump. In the final section we conclude

with a summary of this chapter.

3.2 Interaction Sequences as an Abstraction

In this work we use interaction sequences as an abstraction of the interactive

system. In this section we discuss why we chose interaction sequences, and

why and how we formalise these sequences, we conclude with a discussion on

this formalisation.

3.2.1 Why Interaction Sequences?

Interaction sequences provide a view of the overlap component in terms of

the sequence being executed or simulated on the interactive component, in

combination with the responses received from the functional component. The

sequence itself is the series of steps to be simulated or executed on the user

interface, while we make use of assumptions to describe the expected behaviour

of the functional component. We explore this in more detail in the following

section.

As interaction sequences provide us with this view of the overlap component

they are applicable as an abstraction of the interactive system to specifically

inspect the overlap behaviour. We use these abstractions of interaction se-

quences in a lightweight formal methods approach to create and build models

of the interactive system which we will then use to inform a model-based test-

ing strategy. Therefore, interaction sequences allow us to investigate ways to

38

test this overlap using a simple abstraction. In addition to this, while test-

ing the functional and interactive components separately is an important and

necessary part of the testing process, issues may still arise in the overlap com-

ponent. Therefore, to ensure system reliability and safety we must investigate

ways to also test this overlap.

As defined previously, an interaction sequence is the steps a user can take

to complete a task or arbitrarily explore a system. In general, a sequence is

something which specifies an order of items. Within the interaction sequence,

we are specifying steps of user interaction one after another (that we determine

from the system itself, system requirements, prototypes or so on). A step is

some interaction that a user may have with the interactive system, specifically

with the interactive component or rather user interface of the system. For

example, a user may press a button or observe a display. The interaction

sequence consists of a series of these steps, that is we can build a sequence

from these steps. There are two ways to do this, either by creating a sequence

for a specific purpose, such as a task, or to arbitrarily explore the system.

When we create a sequence for a specific purpose this means there is some

goal for the sequence, that is the end user is trying to complete some task.

In an interactive system there are several di↵erent types of tasks a user can

complete, each task has some pre-defined goal or state that the user wants the

system to be in. For example, in the task of switching o↵ a device the user

has finished interacting with the device and as a result wants to put it in the

o↵ state. The goal of the task is to put the system into the o↵ state, while the

task itself is switching o↵ the system. We can specify an interaction sequence

which allows us to achieve this. Tasks and goals are often more complex than

this example, as the user may wish to specify certain values, or the system

may not be in the correct state for the user to complete the task and so on.

39

Therefore, there are several considerations required in creating an interaction

sequence for a specific task.

The second way we can create interaction sequences is to arbitrarily explore

a system. Instead of having a specific task for the end user to complete we

can simply select arbitrary steps to build a sequence. This is defined as a

“random sequence” in that an end user is “randomly” selecting steps to create

an interaction sequence. This type of sequence also has several considerations,

for example an arbitrary sequence may not have any e↵ect on the system or in

a safety-critical setting the end user may inadvertently cause harm or death to

themselves or to others. To avoid these issues we can generate both arbitrary

and/or specific sequences during a testing phase.

Therefore, while interaction sequences on the surface appear to be a simple

abstraction to inspect the overlap component behaviour and consequently test

that behaviour, there are several considerations for these sequences which must

be explored before they can be defined and used. These include specifying

values for input, the state of the system and e↵ect of state changes, possible

harm to the end user, and lastly length of a sequence and constraining that

length. One of the main contributions of this work is to define ways to formalise

and model interaction sequences and explore the di↵erent ways in which this

abstraction can be used to support interactive system modelling and testing.

We begin by formalising the interaction sequences to simplify and “solve” the

considerations as listed above.

3.2.2 Formalisation of Interaction Sequences

In order to simplify the interaction sequences and their associated consider-

ations as discussed in the previous section we need to specify an approach

for defining the sequences in a structured way. Several di↵erent interaction

40

sequences were inspected from previous research and experimentation and a

common form in which to specify the steps was identified. Arbitrary and

specific sequences can be built using these structured steps, however further

formalisation is required for task-specific sequences.

For a task-specific sequence, or more generally a sequence that has a specific

goal, we need to formally define a way in which to specify this goal. Certain

assumptions for each interaction sequence were specified. It became clear

from investigating several di↵erent sequences that certain internal values (the

observations from the functional component) were needed to ensure the same

result occurred after every simulation or execution of a given sequence. This

included the state the sequence started and ended in, and the internal values

specified for the starting and ending state.

Therefore, to formalise an interaction sequence it must be built of steps of

a given form, we must know the starting and ending states of the system and

the values or rather observations for a sequence in those starting and ending

states. We demonstrate this technique with a small example.

Interaction sequence steps are of the form: “(Interaction) (Widget) (Num-

ber of Interactions)”. Note that we use the parentheses simply to group each

part of the step, they do not appear in the actual step. For example, following

on from the previous example of switching o↵ a device we can assume the final

step of the sequence would involve interacting with some ‘o↵’ button widget.

A button is normally something we click or press to interact with, therefore

the step might be: “Press O↵Button 1”. This indicates that the user should

press the o↵ button once to complete the task of turning o↵ the device.

The reason widgets and interactions are used is because this allows us to

easily divide the sequence steps into small manageable parts. This allows

us to easily build up lengthy sequences using a simple three part format as

41

given above. Furthermore, this building of sequences can be automated using

PModels and widget interaction knowledge.

In addition, the interaction part of the interaction sequence step is an

abstraction of the interaction itself. For example, for a user to “Press” a

physical button they must first locate the button, ensure it is the correct

selection, then physically press the button. In a WIMP-based system this

would further require the user to navigate to the button position on the screen

using the mouse and pointer. In a touch-based system, such as a smartphone

application, the user would have to locate the correct area of the screen to tap

with either their finger or a stylus. By abstracting the interaction, we are able

to use interaction sequences to model interactive systems with a wide variety

of interactions.

PModels provide us with an abstract view of the interactive compon-

ent of an interactive system with widgets described as triples of the form:

“((WidgetName,WidgetCategory , (Behaviour(s))”. To build sequences we be-

gin by modelling the PModels of the SUT, taking into account the widgets

and their related actions, for example “Button1” has the action “Press”. In

order to be able to build these models and their respective sequences, we must

have a thorough understanding of the system. It is expected that in a good en-

gineering design process this knowledge is readily available from task models,

user-centred design artefacts, specifications and so on. We make assumptions

about the sequence based on internal values of the system (for example, we

may want to generate a sequence where a counter variable is 10) and generate

steps in the appropriate form.

It is typical in interaction sequences to focus mainly on either direct (see

[4, 70]) or response (see [42, 64]) actions. Direct actions are the literal actions

performed by the user, for example “Press Ok 1”. Response actions are the

42

actions that the user will perform in response to a change in the system, for

example “Observe Display 1”. In this work we use both direct and response

actions to create a complete set of actions for sequences.

Lastly, we must specify assumptions for the internal values or observations.

In a good software engineering approach we expect that there will exist some

formal specification or model of the functional component, from this we can

gather the internal values of a system. We can also gather the interaction

state from some formal specification of the interaction component states (in

this case we have used PIMs). For example, in the sequence of setting a device

to the “o↵ state”, we have an internal value which specifies whether “power”

is true or false. The start and end assumptions would be as follows:

Start Assumptions:

state: On

power: true

End Assumptions:

state: O↵

power: false

Using this technique allows us to define an interaction sequence using a

structured format. We use this format to build sequences for di↵erent types

of interaction sequence abstractions. Using this structure also ensures repro-

ducibility in the sequences we create.

While these assumptions ensure reproducibility of the sequences, these

sequences can be of varying lengths and still have the same assumptions.

Therefore, we introduce direct and indirect sequences. A direct interaction

sequence’s length is restricted to the smallest number of steps required to sat-

isfy the assumptions. In contrast, an indirect sequence may still satisfy the

assumptions, but in a larger number of steps, allowing for more variation. The

importance of this concept will become clearer as we explore FSA in chapter

4.

43

3.3 Generating Interaction Sequences

In this section we introduce the Alaris GP Pump which is used to demonstrate

the generation of interaction sequences. We follow this with a short example

on generating an interaction sequence for a specific task.

3.3.1 Alaris GP Pump

The Alaris GP Pump (see figure 3.1) is used in hospitals to dispense medicine to

patients. It is one example of a safety-critical interactive system. Throughout

this work we will use this example to illustrate our ideas on a device which is

already “in use”. In this section we will describe the parts of the device which

are relevant to our work.

Figure 3.1: Alaris GP Pump with Guardrails

The Alaris GP Pump is a modal interactive system, that is, it has several

di↵erent modes which change the functionality of the interactive system. There

are 30 di↵erent modes which specifically relate to the examples we discuss in

44

this work, these are: o↵, clear setup, power down, confirm profile, rate on hold,

rate infusing, profile, select drug category, select drug, confirm rate, volume,

volume to be infused (VTBI), set not fitted, prime, options, pressure level,

VTBI Bags, attention, dosing, VTBI/TIME, adjust alarm volume, event log,

pump details, profile filter, standby, set VTBI, bolus, titrate, titrate dose not

permitted, and door open.

The o↵ mode represents the behaviour of the device when the system is

turned o↵. That is, the majority of the widgets have no behaviour in this

mode as the device is “o↵”. However, some widgets are still accessible, the

most important of these is the on/o↵ button which allows us to turn the device

on, the system usually begins in the clear setup mode, or it begins by selecting

a profile for an infusion.

The clear setup mode displays to the end user the settings from the last

infusion. The end user can observe these settings and make a decision whether

or not to clear the settings or continue with the previous infusion values. If

the user clears the settings they begin the process of setting up a new infusion,

otherwise if they use the previous settings they go to the rate on hold mode.

In the power down mode the system begins to switch o↵, the end user

must hold down the on/o↵ button until the bar on the screen is full before the

system will switch o↵. If the end user lets go of the on/o↵ button before the

bar is full the system will return to the previous mode that it was in.

The profile mode allows the user to select which profile they would like to

use. The confirm profile mode allows the end user to confirm which profile they

would like to use the system in. The profile is based on pre-defined settings for

di↵erent areas of the hospital. We have used the system in the default ANZ

demo configuration, as a result the set of profiles available are: critical care,

medical ward, pediatrics, surgical ward, training adult, and training pediatrics.

45

The end user can select a profile and then certain drugs are available with

default values based on that profile.

Default drug categories are stored in the Alaris GP Pump, they are con-

tained under the alphabetical categories for the di↵erent drugs available. These

are: ml/h, ABCDE, FGHIJ, KLMNO, PQRST, UVWXYZ. The first category,

ml/h, allows an end user to specify a drug in millilitres per hour, while the

other categories simply filter the drugs available alphabetically.

Once the end user has selected a drug category they may select a drug

based on the options available. The default drugs available are: adrenaline,

amiodarone bolus, amiodarone inf, dobutamine, fluids and bloods, gentamicin,

morhpine, noradrenaline, and propofol. Once they have selected a drug the

user can then confirm the rate in the confirm rate mode. Di↵erent drugs have

di↵erent default settings based on the profile and drug selected.

After the user has confirmed the rate they are then in the rate on hold

mode. In this mode they can check the settings before starting the medication

to infuse. However, before they can begin an infusion they must set up the

VTBI in the VTBI mode, this is triggered by an alarm which sets the system

to the set VTBI mode.

The VTBI allows an end user to specify the size of the bag of medication

that is going to be dispensed. They can pick from a range of pre-defined values

in the VTBI Bags mode. Once this selection is made the user can select from a

menu of options what action to perform when a bag is empty, they can either

stop the infusion, keep the vein of the patient open, or continue an infusion

after replacing the bag.

The rate on hold and rate infusing modes are similar except that the rate

on hold mode provides the user with all the details of the infusion while the

pump is not infusing. In the rate infusing mode the same details are provided

46

except that the pump is now administering an infusion to a patient.

The volume mode allows an end user to see what volume has currently been

administered to a patient. It is simply an informative mode to provide the end

user with information. There are several modes like this in the device. The

options mode provides the user with a list of options so that they can make

modifications to the system set up. The event log displays a list of history

of the di↵erent actions performed on the device including timestamps. The

pump details displays the configuration of the device. The dosing mode allows

the end user to inspect the dosage. The standby mode allows the device to

standby to reduce energy usage.

There is also a set of modes directly related to the alarm and prompting the

end user to perform some action. The set not fitted mode (the set is connected

to the patient to administer the fluids) alerts the end user that the set is not

fitted correctly or perhaps not fitted at all. The attention mode informs the

end user that they were in the middle of setting up some infusion but that

this is not complete, or that the infusion was set up correctly but not infusing

or device is left unattended. The titrate dose not permitted mode informs the

end user that they have hit the maximum level titrate for the selected drug.

Lastly, the door open mode triggers the alarm and alerts the end user that the

door to the set has been opened.

There are also modes which allow the user to modify the pump’s setup.

The prime mode allows us to prime the infusion before it begins. The pressure

level mode allows the end user to make changes to the pressure and alarm

level. VTBI/TIME mode allows the end user to set up the VTBI with respect

to time instead of the bag size. The adjust alarm volume mode allows the

user to adjust the alarm volume. The profile filter mode allows the user to set

active and inactive profiles which an end user can select in the profile mode.

47

The bolus mode allows an end user to administer a drug via a quicker rate.

The titrate allows the user to adjust the current infusion rate.

In each of these device modes the widgets of the system execute di↵erent

behaviours. For example, in the bolus mode interacting with button 1 triggers

an alarm beep while in the rate infusing mode the same widget changes the

system to the volume mode. The Alaris GP Pump has 23 di↵erent widgets,

these are: button 1, button 2, button 3, double up, up, down, double down,

run, hold, prime, mute, options, level, on/o↵, alarm light, alarm, timer, door,

battery light, on hold light, run light, display and plug light widgets (see figure

3.2). Note that these are the labels we give the widgets for convenience. An

end user can both press and press and hold buttons, while they can observe

displays, alarms and lights. The timer usually triggers a state change and thus

the user observes the display to see these changes.

We have focussed on a subset of the tasks an end user can complete using

this device. These 15 tasks are: set up an infusion, starting an infusion, stop-

ping an infusion, pausing an infusion, prime infusion, view summary, set VTBI

over time, view pressure volume, adjust alarm volume, view event log, view

pump details, modify profile, standby device, set bolus, and modify infusion

setup.

The task of setting up an infusion involves specifying all the values for

some given infusion. We can then confirm the values that we have input to

ensure the rate is calculated correctly. If an end user has completed this task

correctly all the correct values will be entered and the system will be in the

rate on hold mode.

To pause an infusion the user must transition the system from the rate

infusing state to the rate on hold state. This stops the pump from dispensing

medicine to a patient. Once a user has paused an infusion they may stop the

48

Figure 3.2: Alaris GP Pump’s Widgets

infusion altogether if necessary.

Stopping an infusion begins in the rate infusing state, that is there is an

infusion which has been set up and started. The user must first pause the

infusion and then proceed to stop the infusion. The end user can modify the

infusion if required.

To prime the infusion the end user must already have an infusion set up.

They then navigate to the prime mode of the system. In this mode they can

use the appropriate controls to prime the infusion. The system then returns

to the rate on hold mode.

Several of these tasks are related to the options menu of the interactive

49

system. The view summary allows the user to see a summary of the device

and infusion currently set up. The set VTBI over time allows the user to set

the VTBI rate over some given time and replaces the current VTBI value.

The view pressure volume allows the user to check the pressure volume and

modify it accordingly. The adjust alarm volume task allows a user to increase

or decrease the volume of the alarms as required. The view event log allows

a user to interact with the history of actions logged on the device, which is

useful for looking up issues or incorrectly input infusions.

In addition to these tasks viewing the pump details shows the set up of

the device and software configurations. The modify profile task allows users

to modify the active profiles for the system. Standby device allows the user to

specify whether the device should go into standby mode or not, after a certain

time period. The set bolus task allows the user to modify the bolus value so

that drugs can be administered at this new rate. The modify infusion setup

task allows the user to make changes to the current infusion. This will pause

and stop the current infusion from running.

We can create interaction sequences for each of these tasks separately or

together according to task ordering information. This allows us to create a

more complete model, in terms of the tasks covered, of the overlap component

using interaction sequences, as we can explore sequences which we expect the

end users to execute on the actual interactive system.

Furthermore, we can explore this concept of the common mistakes users

may make around di↵erent tasks using this task knowledge. This means that

in addition to exploring the sequences we expect, we can explore varying se-

quences for each task, ensuring the system guards against commonly known

mistakes, based on the sequences we explore and task knowledge.

By defining and constraining ourselves to the tasks we have a domain or

50

group of things we can model and consequently test. This means conversely

we have a group of tests not in our domain, that is the opposite of these tasks

could also be included in a testing approach. This would allow us to also test

the things we do not expect, in comparison to the tasks.

3.3.2 An Interaction Sequence for the Alaris GP Pump

Now that we have introduced the Alaris GP Pump we give a short example of

an interaction sequence for this device, in particular a sequence which allows

an end user to set up and start an infusion. In this sequence we begin with

the device switched o↵, we select pediatrics as our infusion profile, the drug

dobutamine and set a rate of 60. By the end of the sequence the system

should be in the rate infusing state and the device should be infusing. The

assumptions are as follows:

Start Assumptions:

State: O↵

Profile: Pediatrics

Drug category: ABCDE

Drug: Dobutamine

Rate: 60

VTBI: 1000

VTBI Bag Size: 1000

End Rate: Stop

Battery status: Charging

Bolus: Disabled

Dose Rate Soft Min: 1

Dose Rate Soft Max: 61

Dose Rate Hard Max: 100

Infusing: No

End Assumptions:

State: RateInfusing

Profile: Pediatrics

Drug category: ABCDE

Drug: Dobutamine

Rate: 60

VTBI: 1000

VTBI Bag Size: 1000

End Rate: Stop

Battery status: Charging

51

Bolus: Disabled

Dose Rate Soft Min: 1

Dose Rate Soft Max: 61

Dose Rate Hard Max: 100

Infusing: Yes

The starting assumptions here may not be as expected since the system

remembers the values from the previous infusion, hence why values are stored

in the o↵ mode. From the PModel of the interactive system we can gather a

list of all the widgets of the system and derive the associated interactions. For

this example we simply describe the widgets and interactions relevant to this

sequence in table 3.3.2.

Note in this table and in the following sections we have changed the widget

names to simplify, such as “On/O↵” to “OnO↵”. With these assumptions

and interaction knowledge we could simply generate an arbitrary sequence.

For example:

1. Press OnO↵ 1.

2. Observe Alarm 2.

3. Press Button1 3.

4. PressHold Up 10.

5. Press Down 2.

6. Observe RunLight 1.

7. PressHold OnO↵ 2.

However, this sequence essentially makes no useful changes to the inter-

active system. A useful change means something that a user might wish to

achieve. In this instance the system will not set up and start an infusion,

thus our ending assumptions will not be correct. Therefore, task knowledge

52

is required to ensure a meaningful sequence is generated. That is, a sequence

which we would expect an end user to perform. It is assumed that in a good

software engineering approach task knowledge such as this would be readily

available from design artefacts.

Widget Name Interaction

OnO↵ Press, PressHold

Alarm Observe

AlarmLight Observe

Display Observe

Button1 Press, PressHold

Button2 Press, PressHold

Button3 Press, PressHold

Down Press, PressHold

Up Press, PressHold

Run Press, PressHold

RunLight Observe

Table 3.1: Widgets and Available Interactions

However, this does not mean that arbitrary sequences are not a useful

abstraction of the interactive system. They could be used in a robustness

testing approach to search for crash or failure points within the system to help

ensure good system reliability. This is a commonly used approach as discussed

in chapter 2. In this work we wish to create sequences which allow us to explore

testing strategies beyond robustness testing, this is one reason why we require

task knowledge.

Therefore, using task knowledge in conjunction with the PModel we can

generate the interaction sequence as follows:

53

1. Press OnO↵ 1.

2. Observe Alarm 1.

3. Observe AlarmLight 2.

4. Observe Display 1.

5. Press Button1 1.

6. Press Button3 1.

7. Press Down 2.

8. Press Button1 2.

9. Press Down 1.

10. Press Button1 1.

11. Press Down 2.

12. Press Button1 1.

13. Press Button2 3.

14. Press Up 1.

15. Press Button1 2.

16. Press Up 1.

17. Press Button1 1.

18. Press Run 1.

19. Observe Display 1.

20. Observe RunLight 1.

This type of sequence is what we categorise as a task-widget based sequence.

The reason for this is it is generated based on task knowledge using widgets

and their interactions. In the next section we will discuss di↵erent types of

interaction sequences.

3.4 Types of Interaction Sequences

In this section we discuss the di↵erent views of the interactive system and how

this relates to the di↵erent types of interaction sequences. We discuss each

di↵erent type of sequence and describe why task-widget based sequences are

used. We discuss how this choice allows us to constrain interaction sequences.

Specifically, we discuss the di↵erent tasks for the Alaris GP Pump and how

these tasks allow us to constrain the sequences we generate for this interactive

54

system.

3.4.1 Requirements

The larger goal for formalising and modelling interaction sequences is to adapt

them for interactive system testing purposes. Taking into account limitations

of existing techniques in addition to our research questions this leads to the

following requirements for sequences:

1. We must be able to automatically generate sequences of varying lengths

so that the testing process is adaptable and usable.

2. We must be able to constrain the sequence length in order to avoid the

state space explosion problem.

3. The sequences must allow us to clearly identify why the system did not

behave as expected, for example by producing counter-examples.

These requirements allow us to define interaction sequences which are more

meaningful, that is interaction sequences which inform more comprehensive

testing strategies (than robustness testing). The point of formalising interac-

tion sequences is to, in part, address requirements one and two.

By addressing requirement one we will be able to generate sequences auto-

matically. This is important as it allows us to generate sequences easily in

addition to reducing the human e↵ort required to follow the testing process.

In general, testing is often neglected or incomplete due to the time and finan-

cial costs associated with this process. Therefore, some automation is essential

when creating a new testing strategy to ensure adaptability and usability.

For automation to occur we must follow a defined process, as a result we

must have some formalised structure to follow, hence the need to formalise

interaction sequences. Furthermore, by formalising interaction sequences we

55

can generate sequences of varying lengths. This is important as the longer

an end user interacts with a system there is a higher potential for an error

to occur. Therefore, to capture this behaviour we must be able to generate

sequences of varying lengths.

In addition to this, an end user does not always follow a pre-defined process

and can make “mistakes” along the way. In order to ensure we capture this

type of behaviour we need to be able to generate sequences which allow for

di↵ering lengths to capture these “mistakes”, hence the need for sequences of

varying lengths.

Our second requirement is to constrain the sequence length in order to

avoid the state space explosion problem as described in chapter 1. We do this

in part by using task knowledge, assumptions, and using widget interaction

knowledge. We will discuss this further in the following sections and highlight

how these are the best option to constrain sequences.

The last requirement focuses on testing, and thus is not relevant in this

chapter. We will come back to this requirement when we discuss testing

strategies in chapter 7. However, this requirement underpins our work and

helps to drive some of the decisions behind automating and constraining the

interaction sequences.

3.4.2 Building and Constraining Interaction Sequences

Based on Type

We typically consider three di↵erent ways to define interaction sequences:

state-based; task-based; widget-based. Each of these describes the system

from a di↵erent perspective. They can be used individually, or in combination

with each other to model sequences.

State-based sequences are created by looking at the di↵erent states available

56

in the system. For example, the Alaris GP Pump can be in the ‘infusing’ or ‘not

infusing’ state. In these sequences we model the di↵erent states and actions

the user could select to move between the di↵erent states of the system. A

state change in the Alaris GP Pump would be caused by pressing the run

button to begin an infusion (assuming a correctly set up infusion) or pressing

the hold button to pause or stop an infusion. One issue with this type of

sequence is that they have the potential to unintentionally hide widgets of the

system which do not have an observable e↵ect on state. This can result in

poor coverage of the system behaviour as it limits all sequences to a restricted

set of widgets.

For example, in the Alaris GP Pump the pump is either infusing or not

infusing. However, there are several other widgets in the system which we

could interact with that change the status of the infusion pump, such as quickly

administering the drug via bolus. We cannot capture this kind of behaviour in

states, nor determine how much was administered. This issue can be resolved

using task-widget based sequences.

Task-based sequences are created by taking a goal the user wishes to achieve

and then listing the steps it takes to achieve that goal. In terms of the infusion

example, the Alaris GP Pump can be infusing or not, we can specify the

necessary steps to complete this task. They are very specific, as they model

only the tasks we expect the user to want to achieve. In order to have a high

coverage of the system behaviour we should also be able to investigate beyond

expected user behaviours, particularly if we want to eventually find hazards

which are typically hidden in these unexpected behaviours.

The third type of interaction sequence is the widget-based sequence. We

create these by looking at the di↵erent widgets that are available and the

properties of those widgets. Rather than have a state for ‘infusing’ or ‘not

57

infusing’ as we saw in the state-based sequence for the Alaris GP Pump, there

are two widgets which have the actions ‘startInfusion’ and ‘pauseInfusion’ or

‘stopInfusion’. We can then use these to build sequences of actions based on

the knowledge we have of each widget irrespective of state or task.

Task-based sequences alone are informal as they are arbitrarily described by

informal steps. In order to introduce formalisation we have used the widgets

to create steps of a pre-defined form which allows for automation. Widget-

based sequences on their own are too free, as they have no pre-defined end

point. This allows us to generate sequences of all di↵erent lengths without

restriction. Therefore, the combination of both the tasks and widgets resolves

the informality of the task-based sequences and freedom of the widget-based

sequences.

State-based sequences have not been considered in this research as they

have the potential to hide widgets of the system, resulting in poor system

coverage. Therefore, they do not allow us to easily explore all the state space of

an interactive system. If used in combination with the other types of sequences

this problem would still occur, hence they are also not suitable for combination

(based on our requirements).

For example, using the Alaris GP Pump a state-widget based sequence for

setting up an infusion would allow us to specify which widgets to interact with

in order to transition through di↵erent states (e.g. ConfirmRate to RateOn-

Hold etc.). This would hide the necessary interactions required to input the

correct values for the infusion into the system. This could result in an infusion

which is either not valid or could cause harm or death to a user. Therefore,

we cannot use state-based sequences even in combination with other types.

Keeping in mind our requirements, we chose to use task-widget based se-

quences. This combination is e↵ective because tasks allow us to constrain the

58

sequence length as they have a defined “end point”, while widgets allow us to

easily generate sequences of varying lengths for those tasks. This is because

they allow us to create steps of the interaction sequence for easily describable

components of the system.

3.5 Summary

In this chapter we discussed formalising interaction sequences. We introduced

interaction sequences and discussed why they are useful as an abstraction of

interactive systems. This was followed by a discussion on the syntax of these

sequences. We introduced the Alaris GP Pump which will be used throughout

this research to create an illustrative example of our techniques. We gave

an example of setting up and starting an infusion as an interaction sequence

based on a task-widget based sequence approach. Finally, we finished with a

discussion of our requirements for creating a testing strategy using interaction

sequences and considered possibilities for constraining interaction sequences

via tasks and widgets. This allows us to address requirements one and two in

part. We described the relevant tasks for the Alaris GP Pump which we will

explore in this work.

59

Chapter 4

Modelling Interaction Sequences

as FSA

4.1 Introduction

In this chapter we demonstrate the process of using a formalised interaction

sequence to create a finite state automaton for a given interaction sequence.

This allows us to explore sequences of varying lengths and to take advantage

of existing theory (see [29], we discuss this in more detail in the following

sections).

We begin with a formal definition of an automaton. We also demonstrate

how we display these automata visually as a directed graph. We follow this

with a description of the process of modelling a formalised interaction sequence

as an automaton.

In the next section we demonstrate how this use of FSA allows for ma-

nipulation and constraining the length of interaction sequences. We discuss

the relevant existing properties of FSA which can be used to manipulate the

sequences and discuss how this allowed for simplification, but was not su�-

60

cient for our purposes. We discuss the benefits of non-determinism and the

simplicity of FSA, in addition to ways in which we can use task ordering to our

advantage and how it is used to create a more complete model of the system

behaviour in terms of task coverage. Lastly, we demonstrate this task ordering

process with a short example based on the Alaris GP Pump.

4.2 Modelling Interaction Sequences as FSA

In this section we discuss the use of FSA to model interaction sequences. We

first give the formal definition of a finite state automaton, followed by the

process of converting a formalised sequence to an automaton. We finish with

an example using the Alaris GP Pump for the tasks of setting up and starting

an infusion.

4.2.1 Formal Definition of a Finite State Automaton

We start by introducing the formal definition of a finite state automaton,

followed by the appropriate supporting definitions. We use these definitions

to define interaction sequences as FSA and refer back to these throughout this

work. We begin with the definition of an automaton (definition 1) based on

existing automata theory (see [29, p. 13-22]). Then we give definitions for

a path through the automaton (definition 2), as well as for of a connected

automaton (definition 3).

Definition 1 A finite state automaton is of the form M
def
= (Q ,⌃, �, S ,F)

where:

1. Q is a finite set of states,

2. ⌃ is a finite set of symbols, the alphabet accepted by M ,

61

3. � is a finite set of triples which defines the transitions of automaton M ,

i.e. given states q , q 0 2 Q, input x 2 ⌃, we can denote each transition

as (q , x , q 0),

4. S is the set of start states and S ✓ Q,

5. F is the set of final (accepting) states and F ✓ Q.

Definition 2 Given a finite state automaton M = (Q ,⌃, �, S ,F), a path ⇢

from q 2 Q to q 0 2 Q is a sequence of transitions from � such that ⇢ is the

empty sequence < >, or ⇢ has first element (q , x , q 00) 2 � and the remainder

of ⇢ is a path from q 00 to q 0.

If a path exists between two states q , q 0 2 Q we say that q 0 is reachable

from q.

Definition 3 A finite state automaton is connected i↵ every state is reachable

from a start state as per definition 2.

For example, using definition 1 we can define an automatonA = (QA,⌃A, �A,

SA,FA) as follows:

QA = {State0, State1, State2}

⌃A = {0}

�A = {(State0, 0, State1), (State0, 0, State2), (State1, 0, State0), (State2, 0, State1)}

SA = {State0}

FA = {State2}

In finite state automaton A a path exists between states “State0” and

“State2”, as there is a path from “State0” to “State2” with alphabet symbol “0”.

Therefore, “State2” is reachable from “State0”. Note that we could extend this

path to state “State0” is reachable from “State2” if we process an additional

two “0” symbols via “State1” (this also implies “State1” is reachable from

62

“State2” as it is part of the path to “State0”). As every state in automaton A

is reachable from the start state it is also a connected finite state automaton.

Figure 4.1: Directed Graph of Automaton A

Every finite state automaton can be displayed visually as a directed graph.

States are represented by labelled ovals and we denote transitions between

states using arrows with the alphabet symbol on the line of the arrow. Start

states are denoted by a green coloured state, while final states are denoted by

a red coloured state. Figure 4.1 shows automaton A as a directed graph.

4.2.2 Formalised Sequences as FSA

In this section we describe how we can use interaction sequence steps to build

a finite state automaton for a given interaction sequence. As previously de-

scribed in chapter 3, an interaction sequence is built of a series of steps in the

form: “(Interaction) (Widget) (Number of Interactions)”. Therefore, we can

“generalise” a sequence to the following form:

1.(Interaction)1 (Widget)1 (Number of Interactions)1

2.(Interaction)2 (Widget)2 (Number of Interactions)2

...

N .(Interaction)N (Widget)N (Number of Interactions)N

Where N is the number of the last step in the sequence, and the ellipsis is

used to denote several more possible steps between step 2 and N. Note that

we have numbered the steps here for convenience, and that such numbering is

not required. In addition, we have included subscripts on each di↵erent part

63

of each step to illustrate that they may not necessarily be identical.

Method 1 We build a finite state automaton B = (QB ,⌃B , �B , SB ,FB) for

any given interaction sequence where:

• QB is the set of all widgets in the sequence,

• ⌃B is the set of all interactions in the sequence,

• �B is a set of triples (q , x , q 0) where q , q 0 2 QB and x 2 ⌃B such that q

is the widget of the previous step, x is the interaction of the current step,

and q 0 is the widget of the current step. Note that in �B the first step of

the interaction sequence is a special case as it has no previous step, we

solve this by simply using a place-holder state called “Initialise”,

• SB is a singleton set containing the place-holder state “Initialise”. This

ensures that any sequence we generate from the automaton begins with

the first step of the given sequence,

• FB is a singleton set containing the widget of the last step in the sequence.

We can use the process in method 1 to automatically convert interaction

sequences to FSA via a computer program. This is particularly useful for

lengthy sequences and assists in producing sequences automatically (which is

one of our requirements as in chapter 3).

Note that as the states in the FSA are the set of all widgets in the in-

teraction sequence this creates a one-to-one relationship between states and

widgets. That is, a widget from the interaction sequence maps directly to a

single state of the FSA, we will see in later sections why this relationship is

significant. Next we demonstrate this process using the example of the Alaris

GP Pump for the tasks set up an infusion and start an infusion.

64

4.2.3 Setting up and Starting an Infusion using the Alaris

GP Pump

In section 3.3.2 we gave an example of an interaction sequence for the tasks of

setting up and starting an infusion as follows:

1. Press OnO↵ 1.

2. Observe Alarm 1.

3. Observe AlarmLight 2.

4. Observe Display 1.

5. Press Button1 1.

6. Press Button3 1.

7. Press Down 2.

8. Press Button1 2.

9. Press Down 1.

10. Press Button1 1.

11. Press Down 2.

12. Press Button1 1.

13. Press Button2 3.

14. Press Up 1.

15. Press Button1 2.

16. Press Up 1.

17. Press Button1 1.

18. Press Run 1.

19. Observe Display 1.

20. Observe RunLight 1.

We demonstrate the process of converting this sequence to a finite state

automaton C = (QC ,⌃C , �C , SC ,FC) using method 1:

• QC is the set of widgets in the interaction sequence, therefore QC =

{OnO↵ ,Alarm,AlarmLight ,Display ,Button1,Button3,Down,

Button2,Up,Run,RunLight}.

• ⌃C is the set of interactions in the interaction sequence, therefore ⌃C =

{Press ,Observe}.

65

• �C is a set of transitions as defined above.

– For the first step, q is the “Initialise” place holder widget, x is the

“Press” interaction, and q 0 is the “OnO↵” widget, therefore, the

transition is (Initialise, Press, OnO↵).

– For the second step, q is the “OnO↵” widget, x is the “Observe”

interaction, and q 0 is the “Alarm” widget, therefore, the transition

is (OnO↵, Observe, Alarm).

– For the third step, this action is performed twice, therefore we

must include a “loop” to ensure that this is possible, this results in

the following transitions: (Alarm,Observe,AlarmLight) and (Alarm-

Light,Observe,AlarmLight).

– Continuing this pattern we create the set:

�C = {(Initialise,Press ,OnO↵), (OnO↵ ,Observe,Alarm),

(Alarm,Observe,AlarmLight), (AlarmLight ,Observe,

AlarmLight), (AlarmLight ,Observe,Display), (Display ,Press ,

Button1), (Button1,Press ,Button3), (Button3,Press ,Down),

(Down,Press ,Down), (Down,Press ,Button1), (Button1,Press ,

Button1), (Button1,Press ,Down), (Button1,Press ,Button2),

(Button2,Press ,Button2), (Button2,Press ,UpButton),

(UpButton,Press ,Button1), (Button1,Press ,UpButton),

(Button1,Press ,Run), (Run,Observe,Display), (Display ,

Observe,RunLight)}.

• SC is a set containing the place holder widget “Initialise”, therefore SC =

{Initialise}.

• FC is a set containing the widget on the final step, therefore FC =

{RunLight}.

66

Note that as �C is a set, duplicates are removed, therefore we end up

with the minimal number of transitions required for this interaction sequence.

Furthermore, actions which are performed more than once produce a “loop”.

A loop is simply a transition in which q = q 0. The addition of this loop allows

us to capture the ability to perform this particular interaction several times.

It also allows for generation of a larger set of sequences of varying lengths for

the same task, we will discuss the benefits of this later in chapters 6 and 7.

Using definition 1 and automaton C , we automatically generate a directed

graph for this automaton as a visualisation (see figure 4.2) via a computer pro-

gram. This allows us to visually inspect the automaton, providing an alternate

way to reason about and understand the FSA.

Figure 4.2: Directed Graph of Automaton C

67

4.3 Using FSA Theory to Constrain Sequences

In this section we explore existing FSA techniques as mentioned in chapter 2.

In particular, we demonstrate and discuss the removal of non-determinism and

minimisation. We also demonstrate how we take advantage of task ordering

to build a more complete model of the system behaviour (in terms of task

coverage).

4.3.1 Removing Non-determinism and Minimisation

We first explored ways to constrain the sequences using pre-existing techniques

such as the removal of non-determinism and minimisation. Our primary con-

cern was the issue of sequence length and the potential for sequences to be

never-ending, with never ending combinations. Therefore, our first investig-

ations were into techniques which would allow us to reduce and control the

state space of FSA.

The first technique we investigated was the removal of non-determinism

as defined by Hopcroft et al. in [29, p. 19-28]. Of particular interest was

the section on “The equivalence of DFA’s and NFA’s” (where DFA stands for

Deterministic Finite Automata and NFA stands for Non-deterministic Finite

Automata) [29, p. 22-24], and “Finite Automata with ✏-moves” [29, p. 24-28].

Here we discuss how we use these techniques for interaction sequences and

discuss why they did not constrain sequences su�ciently.

Hopcroft et al. prove in “The equivalence of DFA’s and NFA’s” (see [29,

p. 22-24]) that we can create a DFA which accepts the same language as

some given NFA, that is, they are equivalent. Using this technique we can

convert a non-deterministic automaton for any given interaction sequence to a

deterministic automaton. While this increases the state space of the automaton

constructed, it allows us to deterministically make decisions about the steps

68

Figure 4.3: Automaton E

of a sequence we are generating.

However, to achieve determinism states are collected together in sets to

create new states for the deterministic automaton. This meant that “widgets”

which had similar actions were collected together into one “super-widget”.

This, of course, had implications when generating sequences, such as which

widget was actually selected on a given step, and did this matter? Could we

select both widgets at the same step, and what e↵ect would this have on the

overall sequence?

Consider automaton E in figure 4.3 and the following associated interaction

sequence (we ignore assumptions for simplicity):

1. One B 1.

2. One C 1.

3. One B 1.

4. One D 1.

5. One B 1.

In this interaction sequence “One” is the interaction while “B”, “C”, and

“D” are the widgets and “A” is used as the place-holder state. Note for

simplicity in figure 4.3 we have used the associated number for the interaction

“One”. This sequence is reproducible in the non-deterministic version of this

69

Figure 4.4: Deterministic Automaton E 0

automaton, and we can see a clear association between the sequence and the

automaton (using method 1). However, if we consider the deterministic version

of the automaton as shown in figure 4.4 this is not as obvious.

Taking into consideration the same sequence, we follow this sequence through

the automaton (or rather process the word which represents this sequence).

Step one is the same as in automaton E , however step 2 has changed. The

only way to complete step two is to transition to the state labelled “{C,D}”.

There is a C in this state, but if we follow the singular mapping of one state

to one widget, we have instead processed a “One” action to widget “{C,D}”

(which does not exist). Instead we could select either widget “C” or widget

“D”.

While we have ignored assumptions in this example, assumptions are re-

quired for interaction sequences. When using assumptions with a model such

as deterministic automaton E 0, we cannot guarantee which widget would be

the correct selection in order to ensure the ending assumptions remain correct.

Therefore, removing non-determinism adds a layer of complexity to the model

which did not exist in the non-deterministic version.

This occurs because in the existing theory equivalence is defined simply as

two automata accepting the same language. Therefore, the non-deterministic

E and deterministic E 0 automata are equivalent, in that they accept the same

language. However, because we are using automata in this specific way, map-

ping of a state per widget name, we are unable to use this technique to help

control the state space of the model and consequently the interaction sequence.

70

Figure 4.5: Deterministic Automaton E 00

B X
C X

A B

Table 4.1: Calculation of Equivalent States for Automaton E 00

As a direct result of this mapping the level of equivalence required for interac-

tion sequence FSA goes beyond the simple definition of equivalent languages,

we also require equivalent states (even if widget names vary slightly e.g. “but-

ton1” and “buttonOne”).

Using minimisation as described by Hopcroft et al. in the section “A min-

imization algorithm” (see [29, p. 68-71]) we can further reduce the state space

of automata. In deterministic automaton E 0 we first rename the states for sim-

plicity of as shown in figure 4.5, we call this automaton E 00. This is because

the two automaton still accept the same language and are therefore equivalent.

Minimisation depends upon whether there are states which are non-distinct,

that is, there are identical states which we can combine to reduce the number

of states in the automaton. Two states are identical if they have the same

transitions (see [29, p. 68-71] for more detail). To achieve this we construct

a table to determine which states are distinct and which are not, as shown in

Table 4.3.1, where an “X” between a pair of states indicates they are distinct

and “ ” indicates they are identical.

For example, to determine if state B and state A are distinct we must

inspect their transitions. On input symbol “1” state A transitions to state

B while state B transitions to state C. Therefore, we must determine if state

71

Figure 4.6: Minimal Deterministic Automaton Emin

A and state C are distinct. Both state A and state C transition to state B

on input symbol “1”, therefore these states are non-distinct. However, as per

the algorithm, a non-accepting and accepting state is distinct (regardless of

transitions), thus states B and A are distinct as are states B and C. These

calculations result in the minimal automaton Emin as depicted in figure 4.6.

Note that in the renaming process shown in figure 4.5 state “C” represents

state “{C,D}”, this again is done to simplify the state names. Therefore, in

our minimal automaton Emin we have a state which groups more than one of

the possible widgets for this particular sequence into a single state. Similar

to the problem with the removal of non-determinism, we now cannot be sure

which widget to select in this state. Furthermore, if we select all widgets at

once we invalidate the ending assumptions on the sequence execution.

For example, let widget “C” increase a value by one and widget “D” de-

crease a value by one. If we interact with both of these widgets at the exactly

the same time there will be no observable e↵ect on the interactive system. In

particular, if our original intention was to increase the value by 1 we have ef-

fectively “un-done” the desired interaction. In addition, in minimal automaton

Emin the place-holder state A has been combined with state C (which repres-

ents both widgets C and D from the original automaton). This is problematic

as state A is not a widget and as such we cannot process an interaction “1”

to a widget A. As a direct result of the application of this method we have

introduced a widget which does not exist. Therefore, for these reasons we are

unable to use the removal of non-determinism or minimisation techniques to

72

control and reduce the state space of the models.

While minimisation and removal of non-determinism were not applicable

to the FSA used for interaction sequences we decided to investigate further.

We found we could build upon other parts of the theory to help control the

state space, in addition we were able to use equivalence techniques to ensure

that two automata of the same sequence were equivalent. This allows us to

show that our new properties are sound. We discuss these new techniques in

chapter 5.

4.3.2 Task Ordering

The task-widget based interaction sequences only describe a small part of the

interaction, as this interaction is tied to the specific task and the widgets used

for that task. However, this use of abstraction of the system behaviour by tasks

gives another added benefit, in that the di↵erent tasks may be abstracted into

individual states. We can use these states to take advantage of task ordering

and build more lengthy sequences by combining tasks in specific ways.

Hopcroft et al. describe how regular expressions are equivalent to finite

automata [29, p .29-26]. In particular they define constructions for union,

concatenation and closure. We can use these constructions to combine the

FSA for a particular interactive system in meaningful ways taking advantage

of task ordering. We demonstrate this with an example using the Alaris GP

Pump.

Consider the tasks ‘set up an infusion’, ‘start an infusion’, ‘pause an infu-

sion’ and ‘turn o↵ device’ for the Alaris GP Pump. The Alaris GP Pump only

allows an end-user to set up an infusion and start that infusion before they

may pause that infusion (this is perhaps obvious), that is there is a pre-defined

ordering to the tasks that the user may perform. However, there is nothing

73

Figure 4.7: An Example of Tasking Ordering for the Alaris GP Pump

in place to prevent the end user from turning o↵ the device, which could have

unexpected consequences depending on the state the system is in. This is sim-

plified into a directed graph as shown in figure 4.7, where each state represents

a task of the interactive system.

In figure 4.7 it is clear that the tasks of ‘set up an infusion’, ‘start an infu-

sion’, and ‘pause an infusion’ are ordered and therefore can be concatenated.

We also have a concatenation between ‘pause an infusion’ and ‘start an in-

fusion’ which creates a loop between these two tasks. Furthermore, after we

have completed any task we may switch o↵ the device. This is a simplific-

ation of the actual system as a result of the abstraction to tasks, in reality

an end user can switch the device o↵ at any time, whether during or after a

task is completed. The task of turning o↵ the device, is also in union with

the other tasks, as an end user may begin with switching the device o↵ or

setting up an infusion. Therefore, using this information we can build a more

complete model of this subset of tasks by using these constructions to build

an automaton which allows us to generate the interaction sequences in these

specific orderings (see figure 4.8), essentially expanding each task state with

the corresponding interaction sequence automaton.

Figure 4.8 is the complete automaton F with task ordering observed (visu-

alised as a directed graph). We use individual examples of the concatena-

tion and union to demonstrate how automaton F was constructed. Firstly,

74

Figure 4.8: Automaton F

as defined by Hopcroft et al. a concatenation can be constructed by adding

an ✏ transition from the final states of the previous automaton to the start

states of the next automaton (see [29, p. 31]). An ✏ transition represents a

path in the automaton which does not process an alphabet symbol, that is it

represents the “empty” symbol. Therefore, given the automaton for set up a

task Msetup (figure 4.9) and Mstart (figure 4.10) we can concatenate Msetup to

Mstart using their final and start states respectively. That is, we create a new

automata MSetupStart (figure 4.11 which has all the states, transitions, alpha-

bet, start states, and final states of Msetup and Mstart). We add the transition

(Button1, ✏, InitStart) to concatenate.

Secondly, as defined by Hopcroft et al. a union can be constructed by

adding a new start state and final state with outgoing and ingoing ✏ transitions,

to the start states and final states of the automata respectively [29, p. 31].

Therefore, given the automata for ‘start an infusion’ Mstart and ‘turn device

75

Figure 4.9: Automaton Msetup

o↵’ Mo↵ (figure 4.12), we apply the union construction by building a third

automaton MStartO↵ . Automaton MStartO↵ has all the states, alphabet, and

transitions from Mstart and Mo↵ with new states q0 and q1 where q0 is the

start state and q1 is the final state. We add ✏ transitions to the start states of

Mstart and Mo↵ as follows: “(q0, ✏, InitStart), (q0, ✏, InitOnO↵)”. Similarly for

the final states, we add transitions from the final states of Mstart and Mo↵ as

follows: “(RunLight , ✏, q1), (OnO↵ , ✏, q1)”. MStartO↵ is shown in figure 4.13.

To obtain automaton F (shown in figure 4.8) we have applied concatenation

and union as specified by the task ordering. That is, there are the following

concatenations: ‘set up infusion’ to ‘start an infusion’; ‘start an infusion’ to

‘pause an infusion’; ‘pause an infusion’ to ‘start an infusion’; ‘set up infusion’

to ‘turn device o↵’; ‘start an infusion’ to ‘turn device o↵’; and lastly ‘pause an

infusion’ to ‘turn device o↵’. In addition to the concatenation, there are the

following unions: ‘set up infusion’ and ‘turn device o↵’; ‘start an infusion’ and

‘turn device o↵’; and lastly ‘pause an infusion’ and ‘turn device o↵’.

Task orderings can quickly become complex, resulting in intractable mod-

76

Figure 4.10: Automaton Mstart

Figure 4.11: Automaton MSetupStart

Figure 4.12: Automaton MO↵

77

Figure 4.13: Automaton MStartO↵

els. For example, in automaton F we have multiple states which refer to

the display of the device such as “DisplayStart”, “DisplayPause”, and “Dis-

playSetup”, unnecessarily increasing the state space of automaton F . This is

because in order to use concatenation and union the states of each FSA must

be labelled uniquely. Therefore, we needed to investigate ways in which we

could improve these abstractions. It became clear through further investig-

ations and exploration with interaction sequences that certain widgets, and

consequently tasks, could be grouped together in “self-contained” units. A

“self-contained” unit is defined as a group of states with one incoming trans-

ition to the unit and one outgoing transition, with all other transitions going

to some other state within the group. We decided to investigate this idea fur-

ther which led to the development of the self-containment property which we

formally define in chapter 5 where we also demonstrate that is has interesting

and useful properties.

78

4.4 Summary

In this chapter we discussed modelling interaction sequences as FSA. We began

with a discussion on modelling formalised interaction sequences as FSA and

introduced the formal definition of these automata, as we will use them for

interaction sequences. We defined a path within an automaton, reachability,

and connectedness. In addition we demonstrated how FSA can be visualised

as a directed graph. We also described the process of converting an interaction

sequence to a finite state automaton and followed this with a short example

based on the Alaris GP Pump.

This was followed by a discussion on the use of existing automata theory

and the benefits and drawbacks of existing techniques. We demonstrated how

the removal of non-determinism and minimisation led to over-abstraction and

hiding details of widget selection.

Lastly, we explored the idea of task ordering and how this can be used to

build more complete models of the interactive system behaviour using inter-

action sequences and automata constructions. We discussed potential issues

with using the existing constructions, such as scalability. This led to further

exploration and resulted in the development of the self-containment property,

which we present in the next chapter.

79

Chapter 5

Constraining Interaction

Sequences

5.1 Introduction

In this chapter we discuss constraining interaction sequences, with a focus on

the state space of FSA. We review the existing techniques in FSA theory which

were used to attempt to address this issue and the problems with using these

techniques. We discuss how this led to the identification of the self-containment

property and formally introduce definitions for this, followed by proofs which

demonstrate the usefulness and correctness of this property. This is followed

by a discussion on the ways in which this technique can be used with FSA

to model interaction sequences and control the state space. Finally, we finish

with a short example using the Alaris GP Pump.

5.2 Problems with Existing FSA Theory

In chapter 4 we discussed and demonstrated how the removal of non-determinism

and minimisation could be used to constrain interaction sequences. The re-

80

moval of non-determinism allows for deterministic choices when generating

interaction sequences, while minimisation allows for a reduction in the state

space of these models.

However, there were several issues identified when applying this existing

theory. The primary concern was the way in which equivalence was defined

which a↵ected these techniques. As defined by Hopcroft et al. in [29], equi-

valence is defined as two automata which accept the same language. This

equivalence definition is used throughout the removal of non-determinism and

minimisation techniques to demonstrate that the resulting automaton accepted

the same language as the original automaton.

While the two automata were equivalent according to this definition, this

“broke” the relationship between widgets and states in task-widget based inter-

action sequences. This is because of the relationship we had defined between

states and widgets, with one state per widget. Essentially the “collecting”

of states in these techniques made this relationship false. That is, there was

more than one widget per state. Therefore, while the two automata were equi-

valent from a language perspective, they were not equivalent from a widget

perspective. In terms of the interaction sequence, this means that each widget

is assumed to be unique (even if that is not necessarily the case).

This issue would be acceptable if the widgets which were grouped together

were equivalent, in that they executed the same functions and a↵ected the sys-

tem in exactly the same way. However, this was not always the case, with states

sometimes including every widget within a system. Therefore, the removal of

non-determinism and minimisation could not be used to help constrain the

interaction sequences.

While this may suggest reconsidering the use of interaction sequences, as

they are too large or complex to deal with, and that another type of sequence

81

or abstraction may be better used, as stated in chapter 3, the other types

of sequences have limitations which prevent their use here. Furthermore, it

is unclear how to change the type of sequence and abstraction as the most

obvious solution is widgets and their interactions (hence task-widget based)

or user based (user based meaning based on a human end users and their

interactions with the system). Using user based would force us to model the

human component, which can be unpredictable and complex, and cannot be

achieved without assumptions to eliminate this. Therefore, a task-widget based

approach is the best selection based on our requirements, and avoids the issues

associated with other types of sequences as discussed in chapter 3.

As discussed in chapter 3, interaction sequences provide us with a clear

view of the overlap component of an interactive system, and therefore would

allow for a testing approach to be built using this abstraction for the overlap.

In addition to this, as described in chapter 2, interaction sequences are already

used as an abstraction in di↵erent ways by other researchers, therefore they

are already widely accepted as an appropriate abstraction of the system.

However, it is clear that interaction sequences must be constrained some-

how. In the existing research in this area this issue is prominent in addition to

the conceptual issue where sequences can be never ending, with never ending

combinations of these never ending sequences. Furthermore, as we investig-

ated more interactive systems it was evident that the number of widgets could

be quite large, resulting in a large state space due to the one widget to state

relationship. For example, in a WIMP system there is often more than one

widget which performs the same function, such as a save icon and save menu

item, both of which allow an end user to save a document. Therefore, it is

necessary to find other ways in which to constrain the interaction sequences,

as existing FSA theory is not su�cient.

82

As investigation continued into applying interaction sequences to di↵erent

types of interactive systems, and in particular larger interactive systems, it be-

came evident that certain groups of widgets could be “collected” together. For

example, in a software system that has a “print preview” as part of its func-

tionality there is a set of widgets associated with printing the document and

then another set associated with formatting that document (often in di↵erent

windows), as a result these widgets are distinct. We expect that it is likely an

end user will finish formatting a document before printing that document, as

a result these widgets are essentially contained to their own individual groups.

Further investigation suggested that we could take advantage of these

groupings to define which areas of the interactive system to model and con-

sequently test. This would provide greater control over the state space of the

models to a tester, in that these groupings could be utilised to constrain the

test coverage to specific areas of the system. We will discuss this idea in further

detail later.

Therefore, to constrain interaction sequences we explored the idea of group-

ing these widgets together into self-contained units. These self-contained units

could be used as an abstraction within the models. That is, we could group

a set of widgets together into one state, e↵ectively “hiding” these states, and

could return to them later if required. This led to the creation of the self-

containment property.

This type of abstraction is not new and has been used previously for

strongly connected components within a directed graph as an abstraction (as

discussed in chapter 2). That is, the idea of using a property or rather compon-

ent to abstract inside FSA is not new. We build on this approach and use it

in a new way to allow abstraction on the self-containment property. The new

material described here is the definition and proofs for the self-containment

83

property which we can use to abstract and expand our interaction sequence

automata. This self-containment property allows us to abstract a larger subset

of automata than strongly connected components, we will discuss this in more

detail later.

5.3 The Self-containment Property

Here we introduce the self-containment property. In what follows we define:

the self-containment property (definition 4); abstraction (definition 7); and

expansion of these automata (definition 8) also supporting definitions for: al-

phabet function (definition 5) and override function (definition 6). We follow

this with lemmas (and their proofs) to show that these definitions have the

useful properties we expect.

5.3.1 Definitions

Definition 4 Given automaton M = (Q ,⌃, �, S ,F) we define an automaton

Ms
def
= (Qs ,⌃s , �s , Ss ,Fs) which is self-contained with respect to M i↵:

1. Qs ✓ Q, ⌃s ✓ ⌃, �s ✓ �,

2. Ms is closed with respect to M , which means that if any transition in �

starts and ends in Qs then it is in �s too: �s = {(qs , x , q 0s) | (qs , x , q 0s) 2

� ^ qs , q 0s 2 Qs},

3. The only transitions of M that start outside Ms and end inside Ms are

those that end in start states of Ms : for all (q , x , q 0) 2 �, if q 2 Q \ Qs

and q 0 2 Qs then q 0 2 Ss ,

4. The only transitions of M that start inside Ms and end outside Ms are

those that start in final states of Ms : for all (q , x , q 0) 2 �, if q 2 Qs and

84

q 0 2 Q \Qs then q 2 Fs .

The automaton A (see figure 5.1) has six automata which have the self-

containment property. Note that by this definition we could have each indi-

vidual state as a self-contained automaton, however this is not useful in terms

of abstraction as it does not allow us to reduce the state space. Furthermore,

as we will prove later in lemma 2 every automaton is self-contained with re-

spect to itself. This means we could reduce the state space down to a single

state with no transitions using the self-containment property, again this is not

useful as while we reduce the state space we hide any interesting information

about the automaton.

Figure 5.1: Directed Graph of Automaton A

Definition 5 There is an alphabet function such that, for any automaton

M = (Q ,⌃, �, S ,F) we have ↵(�)
def
= {x | (q , x , q 0) 2 �}.

Definition 6 For any automaton M = (Q ,⌃, �, S ,F) we can override its set

of transitions � as follows with the override function:

P
p0�

Q
q 0

def
=

8
><

>:

(p 0x , r 0), if r 2 P

(r , x , r 0), otherwise
| (r , x , r 0) 2 �0

9
>=

>;
where

�0
def
=

8
><

>:

(r , x , q 0), if r 0 2 Q

(r , x , r 0), otherwise
| (r , x , r 0) 2 �

9
>=

>;

The alphabet function defined in definition 5 allows us to retrieve the sym-

bols from an automaton based on its transitions, this will become useful in the

85

following definitions as we modify transitions. The override function defined

in definition 6 is what allows us to modify the transitions in order to perform

abstraction.

Note: In what follows, we are dealing specifically with interaction sequences,

thus FSA will always be connected, however, the proofs do not rely on this.

We also assume that an automaton’s alphabet is exactly the set of symbols

that label its transitions, i.e. for all FSAs (Q ,⌃, �, S ,F) we have ↵(�)
def
= ⌃.

End note.

Definition 7 Given automaton M = (Q ,⌃, �, S ,F) where S 6= ; and F 6= ;

(we call M the automaton to be abstracted on), automaton Ms = (Qs ,⌃s , �s ,

Ss ,Fs) where Ms is self-contained with respect to M , and an abstract state ⌦

where ⌦ /2 Q ,Qs there exists an abstract automaton Ma
def
= (Qa ,⌃a , �a , Sa ,Fa)

where:

1. Qa = (Q\Qs) [{⌦},

2. ⌃a ✓ ⌃,

3. �a = F
⌦(� \ �s)S⌦,

4. (S \Qs = ;) Sa = S) ^ (S \Qs 6= ;) Sa = {⌦}),

5. (F \Qs = ;) Fa = F) ^ (F \Qs 6= ;) Fa = {⌦}).

The abstract automaton is essentially the original automaton we started

with except with the self-contained automaton hidden. In contrast to hiding

the self-contained automaton, removing it would result in an automaton which

is not connected, indicating a non-connected interaction sequence. This would

be an incorrect model of a sequence as it would be unclear how to process a

path through the states which were originally connected to the self-contained

automaton. For example, if we abstract the first two states of A (figure 5.1),

86

without the addition of a final state we have an automaton as seen in figure

5.2. Therefore, we introduce the abstract state to indicate that an abstraction

has taken place and at which point this has occurred. The transitions that

originally included the self-contained automaton states are then overridden to

reflect this change. Note that visually we represent abstract states as rectangles

as opposed to circles to further indicate this di↵erence between the types of

states. In the definitions we refer to abstract states using the omega symbol

⌦, in practice we label states beginning with an ⌦ symbol to denote that they

are abstract.

Figure 5.2: Abstract Automaton Ma without Abstract State

Definition 8 Given abstract automaton Ma = (Qa ,⌃a , �a , Sa ,Fa) with ab-

stract state ⌦ 2 Qa and any automaton M = (Q ,⌃, �, S ,F) with ⌦ /2 Q (auto-

maton M is represented by abstract state ⌦), there is an automaton Mb, which

we call the expansion of Ma with respect to M, and Mb
def
= (Qb ,⌃b , �b , Sb ,Fb)

where:

1. ⌃b = ⌃a [⌃,

2. Qb = (Qa\{⌦}) [Q,

3. �b = �
S

s2S ,f 2F (
{⌦}
f (�a)

{⌦}
s), which is to say ⌦ as a “from” state in a

transition is replaced by the final states of M , and ⌦ as the “to” state in

any transition is replaced by the start states of M ,

4. If Sa contains only ⌦ then Sb contains only s. Otherwise Sb = Sa ,

5. If Fa contains only ⌦ then Fb contains only f . Otherwise Fb = Fa .

87

At some point we may wish to explore the sequence in the self-contained

automaton, therefore we needed a way to expand the abstract state. Definition

8 shows how we can correctly expand this state, allowing us to reconstruct the

original automaton. As a result we can reduce and expand the number of

states in the automaton.

5.3.2 Results

In this section we will prove some results that give some evidence that our

definitions correctly capture our intuitions.

Lemma 1 For any automaton M = (Q ,⌃, �, S ,F) with s , f /2 Q and kSk >

1 ^ kFk > 1, there is an equivalent automaton Mc
def
= (Qc,⌃c, �c, Sc,Fc)

where:

1. S is not a singleton set and

(a) Qc = Q [{s},

(b) ⌃c = ⌃ [{✏} where ✏ is the blank symbol,

(c) �c = � and for all (q , x , q 0) 2 �c, if q 2 S then �c = �c [(s , ✏, q),

(d) Sc = {s},

(e) Fc = F.

2. F is not a singleton set and

(a) Qc = Q [{f },

(b) ⌃c = ⌃ [{✏},

(c) �c = � and for all (q , x , q 0) 2 �c, if q 0 2 F then �c = �c [(q 0, ✏, f),

(d) Sc = S,

(e) Fc = {f }.

88

Proof: Section 2.2 [29, p. 26] states that a string w with which contains ✏ (✏

representing the blank symbol) is equivalent to w. Therefore, by theorem 3.8

from [29, p. 65] the new automaton is equivalent to M as it accepts the same

language.

⇤

Task-widget based interaction sequences have a defined single start and end

point to the sequence due to the nature of tasks, and thus have singleton start

and final state sets. However, we could have automata which do not. Lemma 1

shows that for any automaton there is an equivalent automaton with singleton

start and final state sets, thus we do not have to include this as a restriction.

Note that in addition to this the original definition of equivalent from Hopcroft

et al. is su�cient as we are comparing two FSA in this proof, not FSA for

interaction sequences.

Lemma 2 Given an automaton M = (Q ,⌃, �, S ,F), M is self-contained with

respect to itself.

Proof:

1. Immediate.

2. Immediate.

3. There are no states of M outside M, therefore implication is true (since

false implies anything, ex falso quod libet).

4. Similarly to 3.

⇤

Lemma 2 proves that for any given automaton it is self-contained with

respect to itself. This addresses the state space explosion problem in the most

extreme case as we can now take any automaton and reduce the state space to

89

exactly one state, the abstract state. However, this also results in lack of all

information for that automaton as it is hidden inside this abstract state. While

this solves the state space explosion problem, it is not particularly useful or

interesting, especially not in consideration of adapting the sequences and their

consequent models for testing. However, as we will discuss later, it is useful

when building models of large systems from their components.

Our main result is that, under certain circumstances, we can take an auto-

matonM , abstract it with respect to automatonMs (whereMs is self-contained

with respect to M) to get abstract automaton Ma , and then expand Ma with

respect to Ms to get automaton M again. While we have all of the component

parts in the definitions above, there is still a crucial relationship amongst the

various automata that we are missing, and this is that we have, of course, to

be able to re-connect the start and final states as originally intended when

expanding the abstract automaton. The definitions so far, while allowing re-

connection, lose crucial information about the original start and final states.

The property that we require for our main result ensures that this information

can be recovered. The property is that if any state of the self-contained auto-

maton Ms is also a start state of the automaton M it is self-contained with

respect to, then the start states of the self-contained automaton must be the

start states of the original automaton. We therefore use the start and final

states as “markers” to show how the various automata fit together properly

when we do the expansion. This also requires that all the automata involved

have singleton start and final state sets, but we already know (by lemma 1)

that this is not a restriction.

Here we provide an example to demonstrate the information lost if we do

not mark states as we describe, that is, the motivations for the SF property

(definition 9). Figure 5.1 is the original automaton where we will search for

90

Figure 5.3: Original Automaton M with Self-containment Property

Figure 5.4: Self-contained Automaton Ms

the self-containment property as seen in figure 5.3.

Using definition 4 we can build the following automaton Ms as seen in

figure 5.4. Note that “State1” is the start and final state of this automaton.

Given the automata M and Ms we can build a new abstract automaton Ma as

seen in figure 5.5.

Figure 5.5: Abstract Automaton Ma

Figure 5.6: Expanded Automaton Mb

However, when we expand Ma with Ms to construct automaton Mb (see

figure 5.6) as per definition 8 we do not have an equivalent automaton to M .

This is because we did not preserve the start “State0” in the self-contained

automaton Ms , hence the need for this extra restriction on start and final state

sets.

91

All this leads to needing the following:

Definition 9 Given automaton M = (Q ,⌃, �, S ,F) and automaton Ms =

(Qs ,⌃s , �s , Ss ,Fs) which is self-contained with respect to M , then M and Ms

have the Start Final (SF) property i↵: if any state of Ms is also a start state

M , then the start states of Ms must be the start states of M , i.e.

Qs \ S 6= ;) Ss = S

and similarly for final states

Qs \ F 6= ;) Fs = F

Note that in our case where we can assume all automata have singleton start

and final state sets, these conditions simplify to

s 2 Qs) ss = s

and

f 2 Qs) fs = f

because S = {s},F = {f }, Ss = {ss} and Fs = {fs}.

Lemma 3 Let M = (Q ,⌃, �, {s}, {f }) be any automaton for modelling in-

teraction sequences and Ms = (Qs ,⌃s , �s , {ss}, {fs}) be a self-contained auto-

maton with respect to M . We are assuming without loss of generality that

automata M and Ms have singleton start and final sets, by lemma 1. We re-

quire that M and Ms have the SF property (definition 9). Further, let Ma =

(Qa ,⌃a , �a , Sa ,Fa) be an abstract automaton with abstract state ⌦ /2 Q ,Qs ,

92

where Ms is the automaton abstracted on. Finally, we assume an automaton

Mb = (Qb ,⌃b , �b , Sb ,Fb) which is the expansion of Ma with respect to Ms . Then

our result is that automaton Mb is equivalent to automaton M .

Proof

We have

�a = {fs}
⌦ (� \ �s){ss}⌦ from definition 7 (5.1)

and

�b = �s [{⌦}
fs

(�a)
{⌦}
ss from definition 8 (5.2)

= �s [{⌦}
fs

({fs}
⌦ (� \ �s){ss}⌦){⌦}

ss substituting from 5.1 (5.3)

= �s [(� \ �s) over-riding and then reversing (5.4)

= � �s ✓ � from definition 4 and set theory (5.5)

So also

⌃ = ↵(�) by our Note above (5.6)

= ↵(�b) by substitution and (2)-(5) (5.7)

= ⌃b by our Note above (5.8)

Then

Qb = (Qa \ {⌦}) [Qs by definition 8 (5.9)

93

= (((Q \Qs) [{⌦}) \ {⌦}) [Qs by definition 7 Qa = (Q \Qs) [{⌦}

(5.10)

= (Q \Qs) [Qs by definition 7 ⌦ /2 Q ,Qs (5.11)

= Q Qs ✓ Q from definition 4 and set theory (5.12)

Turning to the start states, recall from definition 8 if Sa contains only ⌦ then Sb

contains only ss . Otherwise Sb = Sa . Within those cases each has to consider

whether or not s 2 Qs . We proceed by nested cases.

Assume Sa contains only ⌦, so Sa = {⌦}. (5.13a)

Now we have further cases depending on s 2 Qs .

Assume s 2 Qs (5.13ba)

{s} = {ss} by definition of 9 and 5.13ba (5.13bb)

= Sb by consequence of 5.13a and definition 8 (5.13bc)

Assume s /2 Qs (5.13ca)

{s} = Sa by definition 7, since 5.13ca means S \Qs = ;

(5.13cb)

= {⌦} by 5.13a

(5.13cc)

contradiction definition 7 requires ⌦ /2 Q , but s 2 Q

(5.13cd)

94

Assume Sa 6= {⌦} (5.13d)

Now we have further cases depending on s 2 Qs

Assume s 2 Qs (5.13ea)

Sa = {⌦} by definition 7 and 5.13ea (5.13eb)

contradiction by 5.13d (5.13ec)

Assume s /2 Qs (5.13fa)

{s} = Sa by 5.13fa and definition 7 (5.13fb)

= Sb by 5.13d and definition 8 (5.13fc)

By cases (twice) we conclude that Sb = {s} (5.13g)

Finally to the final states, recall that definition 8 gives if Fa contains only ⌦

then Fb contains only fs . Otherwise Fb = Fa . Within those cases each has to

consider whether or not f 2 Qs . We proceed by nested cases.

Assume Fa contains only ⌦, so Fa = {⌦}. (5.13h)

Now we have further cases depending on f 2 Qs .

Assume f 2 Qs (5.13ia)

{f } = {fs} by definition of 9 and 5.13ia (5.13ib)

= Fb by consequence of 5.13h and definition 8 (5.13ic)

95

Assume f /2 Qs (5.13ja)

{f } = Fa by definition 7, since 5.13ja means F \Qs = ;

(5.13jb)

= {⌦} by 5.13h

(5.13jc)

contradiction definition 7 requires ⌦ /2 Q , but f 2 Q

(5.13jd)

Assume Fa 6= {⌦} (5.13k)

Now we have further cases depending on f 2 Qs

Assume f 2 Qs (5.13la)

Fa = {⌦} by definition 7 and 5.13la (5.13lb)

contradiction by 5.13k (5.13lc)

Assume f /2 Qs (5.13ma)

{f } = Fa by 5.13ma and definition 7 (5.13mb)

= Fb by 5.13k and definition 8 (5.13mc)

By cases (twice) we conclude that Fb = {f } (5.13n)

We have, in 5.2-5.5, 5.6-5.8, 5.9-5.12, 5.13g and 5.13n, that M = Mb as re-

quired.

⇤

96

Lemma 3 demonstrates the ability to reduce and expand FSA using the self-

containment property which provides control over the state space. However, it

is important to note that while this provides control over this space, we cannot

conclusively state whether or not an abstraction will result in a smaller state

space. The reason for this is that the self-contained automata identified may

not have a state space smaller than the abstract state and transitions which

are used to abstract. For example, the trivial case of abstracting a single

state would not result in a smaller number of states or transitions, and as a

result does not reduce the state space. Therefore, we leave it up to human

reasoning to determine if a particular abstraction is useful or not, we discuss

this limitation further in section 5.4.4.

5.4 Controlling the State Space

Using the self-containment property to reduce and expand FSA as required

provides more control over the state space, in that we may reduce or expand

the state space as desired. In addition to this benefit, we can choose which

areas of an interaction sequence to model and which to abstract. This is

particularly useful in using the models for testing techniques as we can more

easily control which parts of the interactive system to test. The test suite

flexibility is increased as a result of this property, as it allows us to make logical

groupings about the tests we create. In particular, we can easily document

which parts of the system are tests and which are not. In this section we

demonstrate potential uses of the self-containment property for this purpose.

5.4.1 A Short Example for an Interaction Sequence

In this section we give a short example of abstraction using the self-containment

97

property. We abstract and expand using this property to construct two di↵er-

ent automata, it will be evident from this example that the two automata are

equivalent, in that they are exactly the same automaton.

We use automaton K = (QK ,⌃K , �K , SK ,FK) (figure 5.7) as follows:

QK = {State0, State1, State2, State3}

⌃K = {0}

�K = {(State0, 0, State0), (State0, 0, State1), (State1, 0, State2), (State1, 0,

State3), (State2, 0, State1), (State2, 0, State2), (State3, 0, State0)}

SK = {State0}

FK = {State3}

Figure 5.7: Automaton K

Automaton K has eight valid self-contained automata (with respect to

automaton K) which we identify using definition 4. We list these automata

by the names of the states which they contain:

• The trivial self-contained automata, consisting of one state: State0,

State1, State2 and State3.

• The self-contained with respect to itself automaton as per Lemma 2:

State0, State1, State2, State3.

• State1, State2.

• State1, State2, State3.

98

• State0, State1, State2.

Note that as long as the self-containment property still holds we could

select more than one of these automata to self-contain. For this property to

hold the states inside each self-contained automaton must not overlap. For

example, we can abstract both automaton State0 and State1, State2 but not

State1 and State1, State2 as State1 is contained within automaton State1 and

automaton State1, State2. This may prove useful in larger more complex FSA.

We construct the self-contained automaton L = (QL,⌃L, �L, SL,FL) (figure

5.8) with respect to automaton K for the states “State1, State2” (which were

randomly selected to best illustrate reduction and expansion) using definition

4 as follows:

QL = {State1, State2}

⌃L = {0}

�L = {(State1, 0, State2), (State2, 0, State1), (State2, 0, State2)}

SL = {State1}

FL = {State1}

Note that automaton L satisfies the self-containment property as:

• QL ✓ QK ,⌃L ✓ ⌃K , �L ✓ �K ,

• L is closed with respect to K is true,

• There is one ingoing transition from K to L: (State0, 0, State1),

• There is one outgoing transition from L to K : (State1, 0, State3).

Figure 5.8: Automaton L

99

Using definition 7 we construct the abstract automaton N = (QN ,⌃N , �N ,

SN ,FN) (figure 5.9) using automata K and L as follows:

• QN = (QK \QL) [{⌦3} = {State3, State0,⌦3}.

• As ⌃N = ↵(�N): ⌃N = {0}.

• �N = FL
⌦3(�K \ �L)SL

⌦3 = {(State0, 0, State0), (State0, 0,⌦3),

(⌦3, 0, State3), (State3, 0, State0)}.

• (SK \ QL = ;) SN = SK) ^ (SK \ QL 6= ;) SN = {⌦3}), therefore:

SN = {State0}.

• (FK \ QL = ;) FN = FK) ^ (FK \ QL 6= ;) FN = {⌦3}), therefore:

FN = {State3}.

Figure 5.9: Automaton N

Note that state “⌦3” represents the automaton L which we have abstracted

from automaton K . At this point we have successfully reduced the state

space of automaton K . Using definition 8 and automata N and L we can

expand state “⌦3” to construct a new automaton O . This is achieved by

“re-connecting” the transitions to and from state “⌦3” as defined, that is the

ingoing transitions of state “⌦3” are the ingoing transitions to the start state

of L (figure 5.10), and the outgoing transitions of state “⌦3” are the outgoing

transitions to the final state of L (figure 5.11). The final step is to remove the

100

abstract state and return “State1” to a non-start and non-final state. This

completes the construction of automaton O .

Figure 5.10: Expanding Ingoing Transitions of State “⌦3”

Figure 5.11: Expanding Outgoing Transitions of State “⌦3”

Figure 5.12: Automaton O

Formally, using definition 8 automaton O = (QO ,⌃O , �O , SO ,FO) is as

follows:

1. QO = (QN\{⌦3}) [QL = {State0, State1, State2, State3},

101

2. ⌃O = ⌃N [⌃L = {0},

3. �O = �L
S

s2SL,f 2FL
({⌦3}
f (�N)

{⌦3}
s) = {(State0, 0, State0), (State0, 0, State

1), (State1, 0, State2), (State1, 0, State3), (State2, 0, State1), (State2, 0,

State2), (State3, 0, State0)},

4. If SN contains only ⌦3 then SO contains only s . Otherwise SO = SN ,

therefore: SO = {State0}.

5. If FN contains only ⌦3 then FO contains only f . Otherwise FO = FN ,

therefore: FO = {State3}.

Note that automaton O (figure 5.12) is equivalent to automaton K by

lemma 3, that is automaton M , in this case automaton K , is equivalent to

automaton Mb , in this case automaton O . This is true of any self-contained

automaton abstracted and expanded on using the self-containment property.

5.4.2 Task Ordering and Self-Containment

In the previous section we demonstrated a short example of using the self-

containment property in a “backward” approach. That is, we started with an

automaton, found the self-contained automata within that automaton, then

abstracted on this property. However, we can also adopt a “forward” approach

using this definition as we have proved in lemma 3 that automaton M and Mb

will always be equivalent, provided they adhere to the definitions given.

Therefore, we can construct an automaton with abstract states, without

knowledge of the information hidden in those abstract states, and expand these

states later if required. That is, we can construct the self-contained automata

after the construction of the abstract automaton or before. This provides

greater flexibility as we need only model the parts of an interaction sequence

(and consequently interactive system) that are of interest.

102

This “forward” approach can be used with task ordering, as we can use the

task as a representation of the abstract state, then create interaction sequences

to satisfy that task as required. As a result we can focus on certain tasks

while ignoring others. This is particularly useful in testing as we can design

test suites which acknowledge that other tasks exist but are not important in

terms of the test suite at the present time.

This also provides greater control over the state space as we abstract the

information not under investigation into a single abstract state to “ignore”.

We can simply expand this state later if required. For example, we may wish

to focus on testing the safety critical aspects of a system and ignore the non-

safety critical aspects. We can use self-containment to contain the non-safety

critical tasks and focus solely on those that are safety-critical (provided that

they are self-contained). If these non-safety critical tasks appear important for

whatever reason we can expand these tasks as required.

It is common that when implementing interactive systems pre-existing lib-

raries from the target programming language or operating system are used

for standardised functions. For example, a ‘save dialog’ provided by a lib-

rary allows an end user to save a document. Testing these standard libraries

is often not performed, as it is assumed the creator of the library will have

done so. Therefore, we can also abstract the tasks associated with pre-existing

libraries into abstract states, assuming that it behaves correctly. This allows

us to define clear boundaries around what is being tested and what is not.

This highlights when abstracting to a single state using the self-containment

property is useful, in that we can either ignore the abstracted information,

model only the parts of the system we are interested in, or combine with other

sub-models.

We demonstrate this “forward” approach using the task ordering example

103

discussed in chapter 4. We refer to the task ordering directed graph depicted

in figure 4.7. In chapter 4 we demonstrated how we could use FSA construc-

tions to create a more complete model of the interactive system behaviour via

task-widget based sequences. The main issue with this technique was that

the constructions of the task ordering can become too complex resulting in

intractable models. We demonstrate how we have solved this issue using the

self-containment property and abstraction.

We can construct finite state automaton P for these task orderings as de-

picted in figure 5.13. All transitions are labelled with the “✏” character to

denote the empty character or rather “blank” transition. This allows us to

define the automaton P = (QP ,⌃P , �P , SP ,FP) (figure 5.13) as follows:

QP = {Set up an Infusion, Start an Infusion,Pause an Infusion,Turn O↵ }

⌃P = {✏}

�P = {(Set up an Infusion, ✏,Turn O↵), (Set up an Infusion, ✏, Start an Infus�

ion), (Start an Infusion, ✏,Pause an Infusion), (Start an Infusion, ✏,Turn O↵),

(Pause an Infusion, ✏, Start an Infusion), (Pause an Infusion, ✏,Turn O↵)}

SP = {Set up an Infusion,Turn O↵ }

FP = {Set up an Infusion, Start an Infusion,Pause an Infusion,Turn O↵ }

Figure 5.13: Automaton P

However, as stated previously, to use the self-containment property to en-

sure correct expansion we must observe definition 9. This means that we must

104

have singleton start and final state sets for automaton P . Therefore, as per

lemma 1 we can construct a new automaton Q = (QQ ,⌃Q , �Q , SQ ,FQ) such

that SQ and FQ are singleton state sets (see figure 5.14).

Figure 5.14: Automaton Q

We treat each state in automatonQ as an abstract state (with the exception

of the singleton start and final sets, as these are a result of construction).

Whether a state is reachable from the start state or the final state is reachable

from a state is dependent on the task ordering. In the Alaris GP Pump, an end

user may start with either the set up an infusion or turn o↵ tasks, however, they

cannot start or pause an infusion until an infusion has been set up correctly

and started. This is why the start an infusion and pause an infusion tasks are

not reachable from state “Start”. However, an end user may end at any point

in the tasks, therefore the final state is reachable from every abstract state.

Firstly, we begin with expanding the “Set up an Infusion” state to demon-

strate how the abstraction works. We refer to the automaton Msetup = (Qsetup ,

⌃setup , �setup , Ssetup ,Fsetup) as depicted in figure 4.9. Following definition 8 we

simply rewrite the transitions and sets to construct automaton R = (QR,⌃R,

�R, SR,FR) (figure 5.15) as follows:

• QR = (QQ \ {Set up an Infusion}) [Qsetup , therefore:

QR = {Start an Infusion,Pause an Infusion,Turn O↵ , InitSetup,OnO↵ ,

Alarm,AlarmLight ,DisplaySetup,Button1,Button3,Down,Button2,Up,

105

Start ,End};

• ⌃R = ⌃P [⌃setup , therefore: ⌃R = {✏,Press ,Observe}.

• �R = �setup
S

s2Ssetup ,f 2Fsetup
({Set up an Infusion}
f (�P)

{Set up an Infusion}
s),

therefore: �R = {(Button1, ✏,Turn O↵), (Button1, ✏, Start an Infusion),

(Start an Infusion, ✏,Pause an Infusion), (Start an Infusion, ✏,Turn O↵),

(Pause an Infusion, ✏, Start an Infusion), (Pause an Infusion, ✏,Turn

O↵), (InitSetup,Press ,OnO↵), (OnO↵ ,Observe,Alarm), (Alarm,

Observe,AlarmLight), (AlarmLight ,Observe,AlarmLight), (AlarmLight ,

Observe,DisplaySetup), (DisplaySetup,Press ,Button1), (Button1,Press ,

Button3), (Button3,Press ,Down), (Down,Press ,Down), (Down,Press ,

Button1), (Button1,Press ,Button1), (Button1,Press ,Down), (Button1,

Press ,Button2), (Button2,Press ,Button2), (Button2,Press ,Up), (Up,

Press ,Button1), (Button1,Press ,Up), (Start , ✏, InitSetup), (Start , ✏,Turn

O↵), (Button1, ✏,End), (Start an Infusion, ✏,End), (Pause an Infusion, ✏,

End), (Turn O↵ , ✏,End)}.

• If SP contains only Set up an Infusion then SR

contains only s . Otherwise SR = SP , therefore: SR = {Start}.

• Similarly, FR = {End}.

The benefit of using the self-containment property in this way over FSA

constructions is that we can expand and abstract states as required. Therefore,

we do not require a complete model to investigate certain areas of the inter-

active system via interaction sequences, that is we can construct the automata

and abstract as necessary. If every state is expanded this automaton R will

be equivalent to automaton F , therefore as stated previously this technique

does not reduce the state space but provides control over the state space as

required.

106

Figure 5.15: Automaton R

This is particularly useful for large complex interactive systems as self-

containment allows us to focus on certain parts of the interactive system only.

In particular, the parts of the interactive system that we wish to test. There-

fore, the self-containment property does not explicitly “solve” the state space

explosion problem, but provides control over the state space, in order to keep

the model tractable.

Note that as discussed in chapter 2 Task Models such as CTT explore a

similar abstraction. The point of di↵erence is that in these techniques tasks

start at a higher level and are decomposed into smaller and smaller compon-

ents. Here we take advantage of the pre-existing groupings within the system

and can either decompose similarly or begin from a low level and simplify into

larger components.

5.4.3 Self-Containment and Strongly Connected

In graph theory a strongly connected component is defined as:“a directed graph

107

G where for each pair of vertices v ,w in G a path exists from v to w and from

w to v”; [65]. White and Almezen demonstrate how strongly connected com-

ponents can be used to construct sub-automata (sub-automata are automata

within a given automaton) from an automaton [79]. Similarly to using the

self-containment property, they demonstrate how a new automaton can be

constructed with the strongly connected components abstracted.

In this section we define the strongly connected property (definition 10 for

well-formed FSA as per definition 1). We demonstrate that self-contained

FSA which are strongly connected are simply one subset of the self-contained

automata we can construct. That is, the self-containment property includes

the strongly connected property and allows us to construct a larger set of

abstract automaton when compared with the strongly connected property.

This highlights that the self-containment property allows us to abstract FSA

in a wider variety of ways, providing more flexibility.

Definition 10 Let M = (Q ,⌃, �, S ,F) be a well-formed finite state auto-

maton as per definition 1. If for each pair of states q , q 0 2 Q, q 0 is reachable

from q and q is reachable from q 0, we can say that the automaton M is strongly

connected.

Lemma 4 As per lemma 2 every automaton is self-contained with respect to

itself, therefore it follows that all strongly connected automata are also self-

contained automata. Conversely, a self-contained automaton is not necessarily

strongly connected. For example, let MC = (QC ,⌃C , �C , SC ,FC) be a self-

contained finite state automaton with respect to itself. Let states a, b 2 QC and

by definition 2 let state a be reachable from state b but b not reachable from

state a. By definition 10, all states must be reachable from every other state,

therefore automaton MC is not strongly connected but self-contained (with re-

spect to itself).

108

The self-containment property includes, and allows us to abstract, self-

contained automata which are not strongly connected as well as those that

are. For example H = (QH ,⌃H , �H , SH ,FH) (figure 5.16) is an automaton as

follows:

QH = {1, 2, 3, 4, 5}

⌃H = {a}

�H = {(1, a, 2), (2, a, 3), (3, a, 4), (4, a, 5), (5, a, 1)}

SH = {1}

FH = {5}

Figure 5.16: Automaton H

We construct self-contained automaton I = (QI ,⌃I , �I , SI ,FI) (figure 5.17),

with respect to H , which is not strongly connected as follows:

QI = {2, 3, 4}

⌃I = {a}

�I = {(2, a, 3), (3, a, 4)}

SI = {2}

FI = {4}

Figure 5.17: Automaton I

Automaton I satisfies the self-containment property as:

• QI ⇢ QH ,⌃I ⇢ ⌃H , and �I ⇢ �H .

• For each transition (q , x , q 0), q , q 0 2 QI and x 2 ⌃I .

109

• Start state “2” has one incoming transition from H : “(1, a, 2)”.

• Final state “4” has one outgoing transition to H : “(4, a, 5)”.

However, this does not satisfy the strongly connected property as:

• While states “3” and “4” are reachable from state “2”, state “2” is not

reachable from states “3” and “4”.

• While state “4” is reachable from state “3”, state “3” is not reachable

from state “4”.

Therefore, H is self-contained but not strongly connected.

We can construct a self-contained automaton J (with respect to H) which

is strongly connected, simply J = H , that is H is self-contained with respect

to itself (as per lemma 2). This allows us to abstract a larger number of

self-contained automata when compared to abstracting only on the strongly

connected property. This allows for more flexibility in these abstractions in

addition to allowing us to focus on di↵erent parts of an interaction sequence.

5.4.4 Limitations

While there are many benefits to using the self-containment property, the main

benefit being the ability to control the state space, we acknowledge that there

are some limitations. The self-containment property provides control over the

state space but does not solve the state space explosion problem. This is

because it is impossible to prove that every automaton will always have a

tractable number of states or self-contained components. However, as we have

demonstrated, we have provided enough control over the state space that an

entire state space could be explored piece by piece (such as in task ordering).

110

It is possible to have an intractable model which does not have the self-

containment property, resulting in no abstraction (beyond the trivial case of

abstracting to a single state or each single state to an abstract state). In this

instance we would not be able to abstract further using this method. It is

possible that this could occur in highly connected systems.

Di↵erent types of systems have di↵erent types of connectedness, for ex-

ample a wizard type system has low connectedness as it prompts end users

to follow a specific path. In contrast, a calculator system has a high level of

connectedness as every button is available at any time for the end user to push.

In a highly connected system it is possible that the self-containment property

is not applicable. Further investigation into this issue is required.

We can generate the sub-automata from interaction sequences either be-

forehand or after we have constructed the abstract automaton. Therefore,

the question can be asked, do we store this information or re-generate the

model using the sequence should we need to revisit it? We have addressed this

limitation with the inclusion of assumptions to ensure that each sequence is

reproducible.

While we can detect the self-containment property and construct the ab-

stract automaton automatically, we cannot detect if this abstraction will be

useful or not (in terms of adapting the sequences for testing purposes). Keeping

in mind that we can abstract an entire automaton to a single abstract state, we

leave it to human reasoning to determine if abstracting a self-contained auto-

maton provides benefits or not. Therefore, our approach is semi-automated.

However, we do not see this semi-automation as a limitation of our work as

human reasoning is always required to create meaningful test suites (that is,

we cannot fully automate this process).

111

5.5 Self-Containment and the Alaris GP Pump

In this section we use the Alaris GP Pump to demonstrate the self-containment

property using the model for the “Set VTBI over time” task. The interaction

sequence assumptions are as follows:

Start Assumptions:

State: RateOnHold

Profile: Pediatrics

Drug category: ABCDE

Drug: Dobutamine

Rate: 100

VTBI: 1000

VTBI Bag Size: 1000

End Rate: Stop

Battery status: Charging

Bolus: Hands On Only

Dose Rate Soft Min: 1

Dose Rate Soft Max: 61

Dose Rate Hard Max: 100

Infusing: No

End Assumptions:

State: RateOnHold

Profile: Pediatrics

Drug category: ABCDE

Drug: Dobutamine

Rate: 3000

VTBI: 3000

VTBI Bag Size: 3000

End Rate: Stop

Battery status: Charging

Bolus: Disabled

Dose Rate Soft Min: 1

Dose Rate Soft Max: 61

Dose Rate Hard Max: 100

Infusing: No

Using these assumptions we build the interaction sequence as follows:

1. Press Options 1.

2. Press DownButton 2.

3. Press Button1 1.

4. Press Button2 1.

5. Press DoubleDown 1.

6. Press Up 5.

112

7. Press Button1 2.

8. Press Up 10.

9. Press Button1 1.

10. Press Up 1.

11. Press Button1 1.

12. Observe Display.

Figure 5.18: Automaton MVTBI/Time

This allows us to construct the following automaton

MVTBI/Time = (QVTBI/Time ,⌃VTBI/Time , �VTBI/Time , SVTBI/Time ,FVTBI/Time)

(figure 5.18):

QVTBI/Time = {Initialise,Options ,DownButton,Button1,Button2,Double

Down,Up,Display}

⌃VTBI/Time = {Press ,Observe}

�VTBI/Time = {(Initialise,Press ,Options), (Options ,Press ,DownButton),

(DownButton,Press ,DownButton), (DownButton,Press ,Button1), (Button1,

Press ,Button2), (Button2,Press ,DoubleDown), (DoubleDown,Press ,Up), (Up,

Press ,Up), (Up,Press ,Button1), (Button1,Press ,Button1), (Button1,Press ,

Up), (Button1,Observe,Display)}

SVTBI/Time = {Initialise}

113

FVTBI/Time = {Display}

Using definition 4 we can automatically detect 20 self-contained automata

with respect to automaton MVTBI/Time . They are as follows:

• The trivial self-contained automata: Display , Up, DoubleDown, Button2,

Button1, DownButton, Options and Initialise.

• The self-contained with respect to itself automaton as per lemma 2:

Initialise,Options ,DownButton,Button1,Button2,DoubleDown,Up,

Display .

• Button2,DoubleDown.

• Button1,Button2,DoubleDown,Up.

• Button1,Button2,DoubleDown,Up,Display .

• DownButton,Button1,Button2,DoubleDown,Up.

• DownButton,Button1,Button2,DoubleDown,Up,Display .

• Options ,DownButton.

• Options ,DownButton,Button1,Button2,DoubleDown,Up.

• Options ,DownButton,Button1,Button2,DoubleDown,Up,Display .

• Initialise,Options ,DownButton.

• Initialise,Options .

• Initialise,Options ,DownButton,Button1,Button2,DoubleDown,Up.

114

Figure 5.20: Automaton Mcomplete

Figure 5.19: Automaton MButton1S

Next we demonstrate a single state abstracted using definition 7. We ab-

stract the “Button1” state into abstract state “⌦5” constructing automaton

MButton1S as shown in figure 5.19. Note that automaton MButton1S is equivalent

to automaton MVTBI/Time .This abstraction does not result in a reduction of

the state space, and as such is not useful for this purpose.

Next we demonstrate the entire state space abstracted to a single state

(again using definition 7). Again in this context this is not useful as we hide

all interesting information about the interaction sequence. However, as shown

in the task ordering section this abstraction may prove useful in forward mod-

elling approaches. See figure 5.20 which depicts Mcomplete .

Lastly, we demonstrate a “useful” abstraction using definition 7. In this

115

Figure 5.21: Automaton MVTBI/TIMES

case we select states “Options ,DownButton,Button1,Button2,DoubleDown,

Up” as these specifically change and confirm the values related to the task

“Set VTBI Over Time”. The automaton MVTBI/TIMES is depicted in figure

5.21. We can expand the state “⌦13” simply by using definition 8. This would

result in an automaton which is equivalent, in that it is exactly the same, as

automaton MVTBI/Time .

5.6 Summary

In this chapter we discussed constraining interaction sequences in particular

with reference to the state space of FSA. We first discussed issues with existing

techniques in FSA theory, specifically how the grouping of states introduces

ambiguity and unnecessary complexity to the models. We described how this

prompted us to investigate other ways to constrain the state space. This led

to the development of the self-containment property.

We followed this with the formal definitions of the self-containment prop-

116

erty (definition 4); abstraction (definition 7); and expansion of these automata

(definition 8) in addition to supporting definitions. We demonstrated that

these definitions had useful properties and had captured our intuitions. Spe-

cifically, our main result showed that we could reduce and expand the state

space of an automaton as required using the self-containment property.

We demonstrated how we could use the self-containment property to con-

strain the state space, beginning with a simple demonstration of reducing and

expanding an automaton. This was followed by a discussion on task ordering

and how the self-containment property could be used as an alternative to FSA

constructions. Lastly, we introduced the strongly connected property (defini-

tion 10) and showed how the self-containment property allows for a larger set

of abstract automata when compared with strongly connected automata.

We gave a short example of the self-containment property using an example

with the Alaris GP Pump, specifically for the task of setting up a VTBI value

over time. This demonstrated that even for a small model there can be several

self-contained automata. We specifically discussed the two cases of abstraction

considered not useful (abstraction to a single abstract state and a single state

abstraction) and a useful abstraction using the self-containment property.

117

Chapter 6

Simulating Interaction

Sequences

6.1 Introduction

In this chapter we explore simulating interaction sequences using FSA as

defined in chapter 4. We begin with a discussion on model checking and a

description of the models required for simulation. This is followed by the in-

troduction of the sequence simulator tool. Interaction sequence simulation is

demonstrated using models of the Alaris GP Pump. In particular we demon-

strate the self-containment property along with supporting functions. Finally,

we finish with a discussion on the benefits and limitations of this approach.

6.2 Model Checking vs. Testing

As stated by Sakib et al. in [61], “Model checking is a formal method for

automatic verification of software systems, which o↵ers distinct advantages

over conventional testing and simulation techniques”. Model checking can be

used in a variety of di↵erent ways to prove that certain properties hold true for

118

a given model [25, 27]. Several di↵erent techniques have been developed for

model checking interactive systems [9, 6, 45, 12]. In particular, these techniques

focus on safety-critical interactive systems in order to prove that certain safety

and liveness properties (as discussed in chapter 2) are apparent within the

models.

As interaction sequences are models of the overlap component of an in-

teractive system we can take advantage of model checking techniques. For

example, we could use the FSA to demonstrate that deadlock does not exist

in the model, deadlock refers to a state in which no further progress can be

made. This situation can be inherently important in safety-critical situations,

particularly if deadlock causes harm to end users [6].

The models of the interaction sequences as FSA allow for exploration of

sequences of varying lengths for specific tasks. This variation could be useful

in a model checking approach to ensure that properties hold despite variation.

It would be interesting to see the e↵ect this variation would have on di↵erent

properties such as safety or liveness (as defined in chapter 2).

Using interaction sequence models for the purposes of model checking is as

feasible as testing using interaction sequences. In the work presented in this

chapter we demonstrate interaction sequence simulation which is a precursor

step to performing either model checking or testing using the interaction se-

quences. This is because it allows for exploration of the interactive sequence

models which provides us with an easy way to visually check that the start

and end assumptions are correct. However, while this simulation allows for un-

derstanding and exploration of the models, it is not a rigorous or necessarily

formal process when compared with testing and model checking, as we simply

allow the end user of the tool to explore sequences as they choose.

In chapter 1 we state that one of the main issues with testing of interactive

119

systems is that the overlap component is often not part of the testing process

and one of the contributions of this thesis is to present a solution to address

this issue. For this reason we focus on a testing approach using interaction

sequences in this thesis rather than model-checking. However we are aware

that model checking is another possible use of interaction sequences and is an

option for future work by extending the interaction sequence simulator tool

described here.

6.3 Modelling the Di↵erent Components of an

Interactive System

In order to simulate each component of an interactive system we must have ap-

propriate models for each of the components. That is, we must have a suitable

model which describes the behaviour for each of the interactive, functional,

and overlap components. In this section we describe the models used for each

of the di↵erent components. In addition we describe how we combine these

in order to simulate the interaction sequences. We also describe how these

models are implemented as part of our proof-of-concept tool.

The user interface represents the interactive component of an interactive

system, specifically the way in which a user can interact with the underlying

functionality of a system. As defined previously in chapter 2, PModels describe

the elements of user interfaces (widgets) grouped within modes or windows of

the system.

In the PModel each widget is described by a triple which associates a widget

name and category to specific behaviours in the following form: “(WidgetName,

WidgetCategory , (Behaviour(s)))”. There are two types of behaviours, I Beh�

aviour and S Behaviour . An I Behaviour describes an interface behaviour,

120

while an S Behaviour describes a system behaviour.

As modes and widgets of the interactive system are described using PMod-

els, this maps directly to the interaction sequence models. There is a one-to-

one relationship between the widgets in the PModels and widgets used in the

interaction sequence models steps (as discussed in chapters 3 and 4). In fact

as discussed PModels can be used to generate task-widget based interaction

sequences with appropriate task knowledge. Using PModels to describe the

interactive component is therefore the obvious choice for simulation.

However, the PModels do not define the I Behaviours and S Behaviours

formally by themselves, that is these behaviours are labelled but not defined

in the PModels. Therefore, these behaviours require further modelling, we

achieve this in the form of a PIM and PMR, where the PIM describes the

transitions between di↵erent modes using I Behaviours and the PMR relates

the S Behaviours to consequent operations from a formal specification.

The PIM describes the transitions between the di↵erent modes of the

PModel using I Behaviours , that is it gives meaning to the I Behaviours .

Each transition specifies the state the system is currently in (where a state

represents the Component Presentation Model (CPModel) used to describe a

mode or window), the associated I Behaviour , and the state the system trans-

itions to. This can be used to create a state transition chart. The PMR relates

the S Behaviours to the corresponding operations described formally within a

specification.

The functional component can be modelled through the use of a formal

specification, in this case we chose to use the Z language (as described in

chapter 2). This allows us to define exactly the expected behaviour of each

function. The Z specification describes all possible operations of the SUT in

terms of changes to observations of the state space. As Z is not an operational

121

language, we made use of the ProB Tool1.

The ProB tool was created to allow the simulation of formal specifications

written in the B language, in addition to other uses. Over time this tool has

been extended to include several di↵erent specification languages, such as the

Z language. Using this tool we can perform model checking in addition to

exploring the state space animation of specifications. Of interest here is the

ability to simulate the specifications and resulting changes to the observations.

The ProZ plugin of the ProB tool allows us to convert a Z specification

to a B specification for simulation. The ProB2 library2 allows us to load

this specification and simulate a trace from this specification, it also enables

animation of the model. Therefore, using the PMR and the associated B

specification, in addition to the PModels and PIM, we have models of the

functional and interactive components necessary for simulation.

Note that these models are not necessarily complete in that they may not

describe every aspect of the system. However, as long as they are complete

enough (include all of the details needed) for the interaction sequences we are

modelling they are su�cient for simulation purposes. Furthermore, there may

be parts of the system not modelled that are not related to the interactive

system, such as parts of the hardware (for example we do not model the

physical battery of the Alaris GP Pump and its associated behaviour). We

use the defined tasks to constrain the PModels, PIM, PMR, and Z models

that we create of the interactive system, similarly to the interaction sequences.

The process for simulation is as follows: a step of the interaction sequence

is chosen, from this we can get the associated widget name. The mode the

system is in is retrieved from the PIM, we use this mode to select the ap-

propriate PModel. Using the PModel we can trigger the behaviours for the

1See https://www3.hhu.de/stups/prob/index.php/Main_Page.
2See https://github.com/bendisposto/prob2.

122

chosen widget, where I Behaviours are passed to the PIM and S Behaviours

are passed to the PMR. The PIM allows us to change the mode of the system

as specified, while the PMR allows us to retrieve the associated schema in the

B specification. Using the ProB2 library we can simulate the S Behaviour

functionality, and the observations are updated accordingly.

Figure 6.1: Select a Step from an Interaction Sequence

We now describe the di↵erent parts of the simulation and the information

retrieved from the various models necessary for this simulation. In figure 6.1

the end user selects a step from the interaction sequence for simulation. The

information we get from this selection is the current widget and therefore its

associated behaviours the end user would like to simulate. Note that the

previous widget is either the last widget interacted with or the place-holder

state “Initialise” for the first step.

In figure 6.2 we depict the process of getting the behaviours for the asso-

ciated selected widget. To achieve this we input the current widget selected

from the interaction sequence and the current mode of the simulation and se-

lect the appropriate CPModel from the set of PModels. For this CPModel we

select the triple which has the same widget name as the current widget. In the

123

Figure 6.2: Select Behaviour(s) for the Current Widget

triple, the behaviours of the widget for this mode are stored, we select these

behaviours for simulation.

As stated previously, I Behaviours are passed to the PIM which take the

current mode of the simulation and the I Behaviour as inputs as seen in figure

6.3. Using this information the appropriate transition which has a matching

current mode and I Behaviour is selected. This transition is then simulated

to change the current mode of the simulation.

There is a two step process to simulate the S Behaviours triggered from the

step selection. In figure 6.4 we depict the process of selecting the appropriate

operation from the PMR. The PMR takes the S Behaviour as an input and we

select the associated relation with matching S Behaviour . From this relation

124

Figure 6.3: Simulating I Behaviours

we can get the name of the operation to simulate for the specification.

In figure 6.5 we depict the simple process of selecting the correct operation

schema from the specification. The specification takes the operation name as

input, which was selected from the PMR and matches this with the appropriate

operation schema. Using the ProB2 library this schema is then simulated.

Once each of the behaviours has been simulated in the corresponding way the

step simulation is complete.

The simulation of the interaction sequences is an informative process which

helps us to better understand the interaction sequence and the modelled beha-

viour. Using the interaction sequence models in this way allows us to clearly

observe the behaviour of the overlap component. The PModels and PIM al-

low us to observe the interactive component for a given step and view the

instructions sent to the PMR and consequently to the B specification (which

represents the functional component).

One could argue that these existing models are already used to observe

the overlap component via the PModels and PMR, as the PMR maps the

S Behaviours to the Z specification. However, this is only one part of the over-

125

Figure 6.4: Simulating S Behaviours

Figure 6.5: Selecting Operation Schema from A Specification

126

lap component. The PModel models the relationship between a widget and

S Behaviour while the PMR models the relationship between that behaviour

and the associated specified behaviour. This is a uni directional relationship

and does not include the instructions or information returned to the inter-

active component from the functional component. That is, the specification

observations are not directly linked to the interactive component models.

Using assumptions for the interaction sequences, we can trace both parts

of this relationship (albeit in an abstract manner). The start and end assump-

tions specify the observations we expect from the specification for a given

sequence. Specifically, the start assumptions define the state the functional

component should be in, while the state from the PIM defines the mode of

the system. The end assumptions specify the expected changes indicating cor-

rectness of the logic as well as associated returned data. In addition to this,

we can assume that the changes to the interactive and functional components

have been carried out successfully, as the end assumptions are correct. This

will be a particularly useful property when adapting the interaction sequences

for the purposes of oracle generation in testing.

Therefore, simulation of the interaction sequences allows us to observe the

bi-directional relationship between the interactive and functional components,

in addition to the changes to these components for a given interaction sequence

step. Note that the individual changes in these components are not considered

here as several strategies exist to test the functional and interactive compon-

ents separately, our focus is singularly on the overlap component. For example,

we are not interested in that the interaction sequence can be simulated using

a model of the interaction component, but that this in combination with the

functional component achieves a desired result (the end assumptions are as ex-

pected). As interaction sequences allow us to observe this relationship directly,

127

they provide us with a more complete view of the overlap component.

6.4 The Sequence Simulator Proof-of-Concept

Tool

The Sequence Simulator tool was created as a proof-of-concept to demonstrate

the ability to automatically identify the self-containment property to abstract

and expand FSA as per our definitions given in chapter 5. This is a proof-of-

concept tool as we have not explicitly proved that the functions implemented

match the definitions, however, while it would be possible to demonstrate this,

it is out of the scope of this research. The tool is used to demonstrate the

applicability of our approach and show one possible way in which it might be

implemented for development use.

In addition to demonstrating the self-containment property and interaction

sequence simulation we added other useful features to this tool, including the

ability to automatically convert a formalised interaction sequence to a finite

state automaton, modify automata, convert and display automata as directed

graphs, input and generate interaction sequences. These features enhance

the tool functionality by providing options to modify the model and generate

sequences of varying lengths.

To build this tool we required access to the ProB2 library in order to

simulate the functional component as a B specification. Therefore, we made

use of the ProB2 Tooling Template3 to allow us to easily access the ProB2

library for sequence simulation. This tool is available as a Java Library and so

we chose to use the Java programming language and Java Swing to create our

tool. In addition to this we used the JUNG library4 which allowed for easy

3See https://github.com/bendisposto/prob2_tooling_template.
4See http://jung.sourceforge.net/.

128

creation of directed graphs in Java using existing functions.

The first step in using the tool is to load each of the required models: a

specification; interaction sequence model; PModels; PIM; and PMR. The tool

processes each of these models so that they may be used for simulation in

addition to functions described above. Note that when we refer to the ‘end

user’ in this context we mean the end user of the tool, rather than the end

user of the SUT.

Figure 6.6: The Sequence Simulator

Once the models are loaded the tool displays elements from each of the

models as shown in figure 6.6. In the sequence simulator an end user may se-

lect the steps of the interaction sequence from the loaded interaction sequence

model and the tool will respond by simulating the responses of the interactive

system using the appropriate models. In figure 6.6 we can see the modes the

PIM has transitioned through, the observation changes from the specification,

129

available behaviours from the functional component, and a history of the func-

tions simulated. For a more in-depth description of the sequence simulator tool

see [74].

6.4.1 Building FSA from Interaction Sequences in the

Sequence Simulator

Figure 6.7 depicts the sequence converter which allows a user to input a form-

alised interaction sequence and automatically convert this to a finite state

automaton. The user may input the formalised sequence either by typing it in

or pasting it from some other source into the appropriate text area. After con-

version the automaton is displayed in the automaton window and visualised

as a directed graph using the JUNG library.

In addition to automatically converting a formalised interaction sequence

to a finite state automaton, a user may build a new automaton, modify an

existing one and load or save an automaton. The user may modify the states,

alphabet, transitions, start and final state sets of the automaton.

When generating interaction sequences we often start with the most direct

sequence (as described previously in chapter 3), that is based on the question

“what is the shortest sequence possible to finish with the correct end assump-

tions?” The ability to modify automaton allows us to add or remove widgets

in order to explore more variations of sequences for the same task.

For example, in a system which allows a user to input positive numeric

values using down and up buttons, a direct sequence would assume that an

end user will not make mistakes when inputting these values. Therefore, only

the ‘up’ button would need to be included in the automaton, as it is assumed

the user will not exceed the value to be input and require the ‘down’ button.

However, this is not a true reflection of typical user behaviour, as we know this

130

Figure 6.7: Convert a Sequence to an Automaton

behaviour is quite likely (hence the inclusion of the down button). Therefore,

we can modify the automaton to include this widget and explore less direct

sequences which may capture this type of user behaviour.

6.4.2 Interaction Sequence Generation and Simulation

The sequence simulator also allows an end user of the tool to input specific

interaction sequences for simulation. Each step of an interaction sequence may

be selected and simulated within the system. A history of simulated sequences

131

is stored and can be saved for future reference. These sequences will become

important for testing purposes as we will use these to help generate abstract

tests.

In addition to inputting specific sequences, an end user may generate a

random sequence. These random sequences are created from the set of next

possible steps based on the interaction sequence model by randomly selecting

the next step from this set. The randomly generated sequences are also added

to the history of simulated sequences.

6.4.3 Self-containment Property and Interaction Sequence

Simulation

The sequence simulator tool has the ability to automatically detect all the

self-contained sub-automata for a given automaton, based on the definitions

given in chapter 5. An end user may select from these automata and the tool

automatically constructs the associated abstract automaton and displays it as

a directed graph. This abstract automaton can then be used for interaction

sequence simulation, and as a result the end user may now explore sequences for

this abstract automaton. The abstract automaton may also be automatically

expanded by selecting the abstract state to expand. Note, an end user may

select more than one self-contained automaton from the list of self-contained

automata, provided that the self-containment property is preserved.

6.5 Interaction Sequence Simulation

In this section we demonstrate two di↵erent sequence simulations. We begin

with a simulation of a complete sequence, that is, a sequence which does not

contain abstract states. The second sequence demonstrates the same task

132

simulated with a self-contained sub-automaton abstracted.

6.5.1 Complete Sequence Simulation

In this section we demonstrate an interaction sequence simulation using the

Alaris GP Pump models. The sequence we use describes the task of the end

user of the Alaris GP Pump to view the pump details after an infusion has

already begun. The assumptions for this sequence are as follows:

Start and End Assumptions:

State: RateInfusing

Profile: Pediatrics

Drug category: ABCDE

Drug: Dobutamine

Rate: 60

VTBI: 1000

VTBI Bag Size: 1000

End Rate: Stop

Battery status: Charging

Bolus: Hands On Only

Dose Rate Soft Min: 1

Dose Rate Soft Max: 61

Dose Rate Hard Max: 100

Infusing: Yes

As this particular sequence does not modify these values we expect the

start and end assumptions to be the same. The sequence is as follows:

1. Press Options 1.

2. Press Button1PumpDetails 1.

3. Observe Display 1.

4. Press Button3RateInfusing 1.

5. Observe Display 1.

From this interaction sequence we generate the following finite state auto-

maton T = {QT ,⌃T , �T , ST ,FT} (using the method described in chapter 4)

133

which is depicted as a directed graph in figure 6.8:

QT = {Options ,Button1PumpDetails ,Display ,Button3RateInfusing ,

Initialise}

⌃T = {Press ,Observe}

�T = {(Initialise,Press ,Options), (Options ,Press ,Button1PumpDetails),

(Button1PumpDetails ,Observe,Display), (Display ,Press ,Button3Rate

Infusing), (Button3RateInfusing ,Observe,Display)}

ST = {Initialise}

FT = {Display}

Note that we have included widgets in this example named “Button1Pump-

Details” as opposed to “Button1” as per figure 3.2. This is an artefact of using

the PModels to model the interactive component of the interactive system.

That is, the PModel is a model of the Alaris GP Pump interactive system, not

a direct re-implementation of that system, therefore some widgets are named

di↵erently. As long as the sequences a↵ect the system in the same way this

has no significant e↵ect on the simulation (that is, the assumptions remain the

same).

Figure 6.8: Automaton T

We use the PIMed tool5 to create the necessary PModels, PIM, and PMR

for this interactive system. This tool allows us to export these models as XML

5See https://sourceforge.net/projects/pims1/.

134

files for ease of loading into the Sequence Simulator tool. We have included

the PModel, PIM, and PMR for the Alaris GP Pump, constrained to the

interaction sequences we explore, in a repository6.

The PModels of the Alaris GP Pump begin by defining a list of each CP-

Model by name. This is followed by a list of all the widgets contained in

the PModels, and similarly for widget categories and behaviours. This is fol-

lowed by the hierarchy of the PModels of the interactive system. Finally, each

CPModel is described in the following format:

“CPModel Name is

(WidgetName, WidgetCategory, (Behaviour(s)))

...

(WidgetName, WidgetCategory, (Behaviour(s)))”

The ellipsis is used to represent extra triples for the widgets. In this ex-

ample some of the widgets’ behaviours are empty, denoted by an empty set of

parentheses. This is because for the given mode those widgets have no beha-

viour. It is important to add these triples to ensure that it is clear we do not

expect interaction with these widgets to trigger functions in the given mode.

The PIM of the Alaris GP Pump defines the transitions between the modes

in the following format: “Current Mode ! I Behaviour ! Next Mode”. Each

mode transition must be defined for each I Behaviour to ensure correct inter-

action sequence simulation.

The PMR of the Alaris GP Pump defines the mapping of the S Behaviours

to the corresponding operation schema in the specification. Each mapping is

denoted in the form: “S Behaviour ! Operation”. It is essential for simula-

tion that these mappings are correct in order to ensure the correct schema is

selected from the specification when the S Behaviour is triggered.

6See https://github.com/jessicaturner11/AlarisModels.

135

Lastly, in the repository7 we include the operation schema for each of the

S Behaviours described in the PMR. Note that this is not a complete spe-

cification of the functional component for the Alaris GP Pump, as we have

restricted the models to those operations that are relevant to the interaction

sequences for the tasks selected. That is, we have only included the function-

ality relevant to the tasks described in chapter 3. For simulation we export

this Z specification as a B specification for use with the ProB2 library to sim-

ulate the behaviour specified. The ProB specification is not included in the

repository as it describes the same functionality as the Z specification.

Note that minor modification to this specification is required due to con-

version format issues with the ProB tool. However, this is not a limitation

on this approach as if the model was initially created in the B specification

language this conversion would not be necessary.

Each of these models can be loaded into the sequence simulator tool in

their various formats. Here we describe the automatic generation of the model

from the sequence using the sequence converter to build the sequence described

above. Finally, we show and describe the output we receive from the simulator.

When the PIM is loaded, the user of the sequence simulator is prompted to

select a start state. This is because for di↵erent interaction sequence models

we may assume a di↵erent start state for the interaction component. In this

case we select the “RateInfusing” state as the start state of the PIM.

When a specification is loaded the values of the observations are not ini-

tialised. Initialisation is the only operation available in order to set up the B

model with valid starting values. Once initialisation has taken place the user

may begin selecting di↵erent available operations.

The user may now either load an interaction sequence model or convert a

7See https://github.com/jessicaturner11/AlarisModels.

136

formalised interaction sequence for simulation. Note that in order to ensure

the system is in the right state according to the start assumptions a user may

make changes to the observations by selecting the appropriate functions to

simulate from the specification. This is to ensure that the system is in the

correct state before simulating any interaction sequences using this model.

Once the appropriate models are selected the user may input sequences for

simulation. The result of this for our example is as follows:

Assumptions After Simulation:

State: RateInfusing

Profile: Pediatrics

Drug category: ABCDE

Drug: Dobutamine

Rate: 60

VTBI: 1000

VTBI Bag Size: 1000

End Rate: Stop

Battery status: Charging

Bolus: Hands On Only

Dose Rate Soft Min: 1

Dose Rate Soft Max: 61

Dose Rate Hard Max: 100

Infusing: Yes

Which tells us the observations after the simulation match our end as-

sumptions as expected. Note that this finite state automaton allows a user to

generate more than just the sequence which was used to create it. We could

also generate several di↵erent random sequences. This allows us to explore

several di↵erent sequences for the same task, and to see what e↵ect this has

on the observations and modes. While the example given here is simplified for

demonstration we describe in the following chapter how this can be useful for

testing purposes.

6.5.2 An Abstract Sequence Simulation

In this section we demonstrate an abstract sequence simulation which relies

137

on the definitions from chapter 5. We continue using the example from the

previous section of a sequence for the task of “View Pump Details”. The user

first opens the “Abstract Sequence Model” window and is presented with a

directed graph of the finite state automaton (see figure 6.9) in addition to a

list of self-contained automata for that particular automaton.

Figure 6.9: Abstract Sequence Model for View Pump Details Task

There are 12 possible self-contained FSA with respect to automaton T

which are named according to the states which are self-contained within them.

• Button3RateInfusing.

• Button1PumpDetails.

• Options.

• Options, Button1PumpDetails.

• Display.

• Display, Button3RateInfusing.

• Display, Button1PumpDetails,

Button3RateInfusing.

• Display, Options,

Button1PumpDetails,

Button3RateInfusing.

• Initialise.

138

• Initialise, Options.

• Initialise, Options,

Button1PumpDetails.

• Initialise, Display, Options,

Button1PumpDetails,

Button3RateInfusing.

As stated previously in chapter 5, a user may select more than one auto-

maton to construct an abstract automaton, provided that the states inside

those automaton do not overlap (to preserve the self-containment property

within the abstract automaton constructed). Figure 6.10 shows the result

of selecting the “Initialise,Options” and “Display, Button1PumpDetails, But-

ton3RateInfusing” self-contained automata. This results in a very simple ab-

stract automaton T1 = (QT1 ,⌃T1 , �T1 , ST1 ,FT1): QT1 = {⌦6,⌦9}

⌃T1 = {Press}

�T1 = {(⌦9,Press ,⌦6}

ST1 = {⌦9}

FT1 = {⌦6}

Figure 6.10: Abstract Automaton with Multiple Self-contained Automata Ab-
stracted

It is important to note that when an abstract automaton is constructed the

assumptions and associated interaction sequences change, as the sequences that

can be generated from that automaton change. In automaton T1 the original

interaction sequence and assumptions are no longer valid, as those states no

longer exist. Therefore, the assumptions and sequence must be modified. It

is possible to generate these assumptions automatically using the simulation,

however we have not included this functionality here in the tool and performed

this step manually.

139

In the case of automaton T1, �T1 has been reduced to a single transition

“(⌦9,Press ,⌦6)” translating to a single interaction sequence step “Press ⌦6”.

This may seem like an odd sequence at first, however as an abstract automaton

is a high level view of the interaction sequence, this is expected. Essentially

this abstract machine has split the interaction sequence into two parts, the

self-contained automaton represented by state ⌦9 changes the mode of the

system to “Options”, while the self-contained automaton represented by state

⌦6 allows the user to view the details and return to the “RateInfusing” state.

In this small example this does not appear very useful, however, as dis-

cussed in chapter 5 we can take advantage of these abstractions to incorporate

task ordering. By abstracting these two self-contained automata for the “View

Pump Details” task we have simply achieved the same e↵ect of task-ordering

on a smaller scale. That is, we have reduced the state space of this task and

captured two separate tasks, as opposed to starting with an abstract auto-

maton with a state per task and expanding as necessary. This abstraction is

helpful when investigating longer more complex task-widget based sequences.

To demonstrate a sequence simulation and the changes to the sequence and

assumptions we focus on a simpler abstraction. In this case we construct auto-

maton T2 = (QT2 ,⌃T2 , �T2 , ST2 ,FT2) by abstracting self-contained automaton

“Initialise,Options” with respect to automaton T . The automaton T2 is as

follows:

QT2 = {Display ,Button1PumpDetails ,Button3RateInfusing ,⌦9}

⌃T2 = {Press ,Observe}

�T2 = {(⌦9,Press ,Button1PumpDetails), (Button1PumpDetails ,Observe,

Display), (Display ,Press ,Button3RateInfusing), (Button3RateInfusing ,

Observe,Display)}

ST2 = {⌦9}

140

FT2 = {Display}

The self-contained automaton TInitialise,Options = (QInitialise,Options ,

⌃Initialise,Options , �Initialise,Options , SInitialise,Options ,FInitialise,Options) is as follows:

QInitialise,Options = {Initialise,Options}

⌃Initialise,Options = {Press}

�Initialise,Options = {(Initialise,Press ,Options)}

SInitialise,Options = {Initialise}

FInitialise,Options = {Options}

Simulating sequences for the self-contained automaton is much the same as

for automaton T , however the start and end assumptions are di↵erent. This

is because the self-contained automaton only represents part of the overall se-

quence, therefore we must define new assumptions for the part of the sequence

that the self-contained automaton represents.

In automaton TInitialise,Options we have only abstracted a single step “Press

Options 1” from the original sequence, which also happens to be the first step in

the sequence. Therefore the start assumptions will remain the same. However,

the end assumptions will be di↵erent for the “State” observation as this part

of the sequence only changes the system into the “Options” mode. Therefore,

the end assumptions for the self-contained automaton TInitialise,Options are as

follows:

End Assumptions:

State: Options

Profile: Pediatrics

Drug category: ABCDE

Drug: Dobutamine

Rate: 60

VTBI: 1000

VTBI Bag Size: 1000

End Rate: Stop

Battery status: Charging

Bolus: Hands On Only

Dose Rate Soft Min: 1

Dose Rate Soft Max: 61

Dose Rate Hard Max: 100

141

Infusing: Yes

Another artefact of abstracting the first step of the sequence is that the end

assumptions of the self-contained automaton becomes the start assumptions

for the abstract machine. This means that automaton T2 and the associated

interaction sequence has the same start assumptions as the end assumptions

of self-contained automaton TInitialise,Options . The Sequence Simulator prompts

the user to select the appropriate start state for the PIM based on the new

abstract automaton.

As the abstract automaton T2 contains the remaining steps, and the first

step has no other modification to the system other than to change the mode

to “Options”, the end assumptions for this automaton remain the same as

automaton T . Therefore, in this instance we do not need to redefine the end

assumptions for the interaction sequence associated with the abstract auto-

maton T2.

Using these new assumptions and the abstract automaton T2 we can manu-

ally “shorten” the original interaction sequence as follows:

1. Press Button1PumpDetails 1.

2. Observe Display 1.

3. Press Button3RateInfusing 1.

4. Observe Display 1.

As expected, the first step of the original sequence is missing as this is

abstracted into the self-contained automaton TInitialise,Options . It is important

to note that as we have abstracted the “Initialise” place holder we now treat

the state “⌦9” as the placeholder in the automaton T2. This “special case”

arises as a side e↵ect of having abstracted the original start state.

142

A user may also generate di↵erent, and random sequences with this new

abstract automaton, we need not only be limited to the sequence which we star-

ted with. However, the assumptions for these sequences would again change

depending on the expected e↵ect they have on the overall system.

With these assumptions and sequence in place, we may input the following

interaction sequence into the Sequence Generator:

(⌦9,Press ,Button1PumpDetails)

(Buttom1PumpDetails ,Observe,Display)

(Display ,Press ,Button3RateInfusing)

(Button3RateInfusing ,Observe,Display)

After this sequence is simulated we can see that “Options: I Options” PIM

transition is no longer present for the abstract automaton. This is as expected,

as we have abstracted the part of the sequence which allows for this PIM state

change. If we were to simulate the self-contained automaton TInitialise,Options it

would only contain this state change in the PIM.

6.6 Discussion

The sequence simulator is a proof-of-concept tool designed to illustrate the

self-containment property functions in addition to sequence simulation. One

side e↵ect of creating a tool which is proof-of-concept is that we only demon-

strate the possible functionalities using one particular set of models. However,

the interactive and functional components could be modelled using di↵erent

formalisms, provided that these formalisms are able to clearly map to the

interaction sequence model in some way. Therefore, the general techniques

described here are not restricted to one particular set of models.

The models used here are highly connected in the sense that for every

widget in the interaction sequence model we require appropriate mappings and

143

access to the corresponding behaviours for those widgets in order to simulate.

We acknowledge that this is a possible weak point of the simulation, in that a

single incorrect mapping could result in an incorrect simulation (incorrect here

meaning that it does not have the intended e↵ect). However, given the start

and end assumptions for the interaction sequences, it is easy to identify if a

simulation is as expected. A user may diagnose where a simulation “failed”

by following the history of mode changes and functions simulated. Changes

may be made to the models as required in the appropriate tools (PIMed, ProB

Model Animator and Checker, or Sequence Simulator).

One of the main benefits of tool implementation is that we may take ad-

vantage of automatic execution of certain functions. This helps to address our

initial requirements stated in chapter 3. This will be particularly useful in

the testing stage, as we will demonstrate in chapter 7, in that we are able to

automatically generate tests from the models we create.

Using the sequence simulator tool allows us to easily generate random se-

quences, in the sense that the next steps are randomly selected from valid

options. This allows us to explore a large number of sequences for any given

task based on a valid model generated from a formalised interaction sequence.

These random sequences could be used to inform a robustness testing strategy.

Using the abstract sequences results in changes to the assumptions of that

sequence. We use these changes to assumptions to specify di↵erent tests for the

task we are testing. However, one limitation of this is that we will not create

tests as comprehensive as those with the fully expanded model. Thus we trade

o↵ flexibility of the tests we create for high comprehensiveness. However, as

stated previously in chapter 5, we could use self-containment and task ordering

to control the parts of the interactive system we wish to test, as a result this

is not a limitation.

144

We acknowledge that the limitations which come with the models we have

chosen are present in the Sequence Simulator. For example, the ProB2 Library

can only expand the state space of the specification to a defined point, as full

expansion is impossible. Therefore, it is essential to ensure that the interaction

sequences are within these boundaries, if we intend to use these for model

checking. However, as the focus is on creating tests from these models, this is

not a limitation of the overall approach.

6.7 Summary

In this chapter we described the necessary models required for interaction se-

quence simulation and discussed possibilities for model checking versus testing.

We discussed the PModels, PIM, PMR, and Z specification and introduced

the process for sequence simulation. In addition we discussed how interac-

tion sequences give a more complete overview of the overlap component of an

interactive system, which will become useful in our testing approach.

We introduced the Sequence Simulator as a proof-of-concept tool to demon-

strate how we use the definitions in chapter 5 to simulate interaction sequences

and automatically identify the self-containment property for abstraction and

expansion. We described the di↵erent functions of this tool, in particular for

sequence generation and simulation in addition to the self-containment prop-

erty functions.

We then demonstrated the sequence simulation using the Alaris GP Pump

as an example of an interactive system. We focussed on two di↵erent sequences,

a complete one and one that uses the self-containment property to abstract the

model, for sequence simulation. The task “View Pump Details” was used to

demonstrate the process for sequence simulation. This was followed by using

an abstract version of the automaton to demonstrate the simulation for the

145

same sequence, showing how this changed the start and end assumptions.

Lastly, we finished with a discussion on the techniques we introduced, fo-

cussing on limitations and benefits of this approach. In the next chapter we

will address some of these limitations and show how we can generate abstract

tests to inform a comprehensive testing approach.

146

Chapter 7

Testing Interactive Systems

using Interaction Sequences

7.1 Introduction

In this chapter we present an approach for testing interactive systems using

interaction sequences. It is intended that this approach will be used within

a comprehensive testing process to support existing testing techniques (such

as testing the interactive and functional components separately) to improve

test coverage of the interactive system in terms of its components. We discuss

the di↵erent types of testing for which interaction sequences are applicable.

This is followed by a description of the types of tests we can generate using

the interaction sequences. We discuss how abstract tests can be generated

automatically from interaction sequences and their assumptions, in addition

to the benefits to this approach. We show how this might be implemented using

the sequence simulator tool. This is followed by an example using the Alaris

GP Pump to demonstrate the generation of specific abstract tests and how they

may be implemented for a specific programming language and associated test

147

libraries. Finally, we finish with a discussion on the benefits and limitations

to this approach and outline further possibilities for testing with interaction

sequences.

7.2 Interactive System Testing and Interac-

tion Sequences

In chapter 2 we introduced several di↵erent types of testing, specifically for

interactive systems. In this section we review some of these testing strategies

and discuss how we could use interaction sequences as part of these for in-

teractive system testing. We also discuss a selection of the testing strategies

which we use to inform the testing approach presented later in this chapter.

7.2.1 Motivations

In chapter 3 we introduced the main motivations for this work and identified

requirements for testing. Requirement three is addressed in this chapter as we

discuss the di↵erent types of testing techniques for interaction sequences, and

how to ensure they provide clear identification of errors (why the SUT did not

behave as expected).

The motivation behind using interaction sequences is to create a more

comprehensive interactive system testing approach which allows testing of the

overlap component of an interactive system. There are extensive techniques

used for testing the interactive and functional components of interactive sys-

tems independently. Therefore, we do not consider using interaction sequences

for testing these components.

In order to test interactive systems comprehensively, we must have specified

ways to define this comprehensiveness. A test oracle, as defined previously in

148

chapter 2, allows us to determine whether a system has failed or passed a

test. The inclusion of oracles therefore, provides us with comprehensiveness

as these oracles can be used to determine at which point the system failed

a set of tests. In this research oracles are used to define how we expect a

system to behave, therefore, a failure indicates that the system behaved in

some unexpected way. Using oracles in this way allows for clear identification

of errors within a system.

Note that we are not considering usability testing in this approach. Sim-

ilarly to testing the interactive and functional components, there is extensive

research in the area of human computer interaction which helps us to better

design systems to help prevent usability issues (in addition to other benefits).

The focus in this testing technique is on the errors identified using interaction

sequences.

Human error can cause significant problems in interactive systems, partic-

ularly for those used in safety-critical contexts. For example, the way in which

the user interacts with the system is highly likely to be unexpected, partic-

ularly if there is plenty of user interaction freedom provided in terms of the

number of actions they can choose. Using interaction sequences we hope to

explore sequences which reflect these types of behaviours and expose potential

errors. In order to do this we can take advantage of using FSA which allow us

to explore interaction sequences of varying lengths for a specified task.

7.2.2 Testing Strategies applicable to Interaction Se-

quences

In this research we rely heavily on the ideas in lightweight formal methods and

model-based testing. In this section we discuss various types of testing which

interaction sequences could be applied to. This helps to demonstrate why we

149

present a model-based testing approach.

As discussed in chapter 2, in white-box testing techniques the tester has

knowledge of the internal structure of the system, while in black-box testing

they do not. As we require knowledge of both the internal and external struc-

ture of the system the approach which we define later in this chapter falls

under grey-box testing.

The most commonly applied testing strategy for interactive systems is ro-

bustness testing, as stated previously in chapter 2. We do not believe that

robustness testing is adequate to test interactive systems as it lacks the com-

prehensiveness which the use of oracles can provide. However, as sequences of

varying lengths can be randomly generated, we could take advantage of this

to also create a robustness testing approach. In this kind of approach random

sequences could be automatically generated and run on the interactive system

to determine failure points. As several strategies exist for this type of testing,

such as [51], we do not explore this idea further.

In chapter 2 we introduced the concept of fault prevention. In particular,

our focus will be on fault removal. By using interaction sequences to inform

a testing approach we intend to identify errors (or faults) for removal before

they occur in use. Therefore, fault prevention is a key element of the testing

approach we present.

Bottom-up testing involves testing components from the lowest level of

some predefined hierarchy and moving up through the components. With

the use of abstraction in the interaction sequence models we could envision a

similar testing strategy, starting at the lowest levels of the abstraction (the self-

contained sub-automata) and moving up to the highest levels of the abstraction

(the abstract automata). However, this would require us to model and test

every sub-automata within an abstract automaton, which removes the benefits

150

provided by abstraction. That is, it removes the control the tester has over

which parts of the interaction sequence to use to design tests, as all parts

must be incorporated explicitly. Therefore, we do not investigate a bottom-up

testing approach further. For this same reason we do not investigate top-down

testing either.

A simple hazard analysis could be included in the approach, in that tasks

could be identified as “hazardous” depending on the number of errors as-

sociated with each task. Tasks which have higher number of errors would be

described as more hazardous while lower numbers would be considered “safer”.

However, as this is a simple form of hazard analysis, there is little benefit to

carrying out this type of analysis using the interaction sequences.

As interaction sequences are used to define designated “paths” through the

interactive system, this approach also falls under path testing. Specifically, we

utilise expected paths to define interaction that is expected of the end user, in

addition to the expected response behaviour from the SUT.

7.2.3 Summary of Testing Strategies

To summarise, in this chapter we will present a model-based testing approach

informed using models constructed in a lightweight formal methods approach.

To ensure comprehensiveness in the testing approach, in that we can clearly

identify that the system either does or does not behave as expected, we include

the use of oracles in defining tests for the interactive system. While we have

described in 7.2.2 how interaction sequences could be used with several existing

testing approaches they do not add any particular benefit to these and so our

focus instead is on describing a new approach. The presented approach is from

a grey-box perspective, incorporating fault prevention concepts and elements

of path testing.

151

7.3 Generating Abstract Tests with Interac-

tion Sequences

In this section we introduce the types of tests which can be automatically

generated from the interaction sequences. We discuss the types of errors each

type of test identifies. In addition to this, we discuss the benefits of abstract

tests and how these are used to implement concrete tests.

7.3.1 Abstract vs. Concrete Tests

In this research we generate abstract tests from interaction sequences. An

abstract test is a general description of a test that can be concretised for any

testing language or framework. The main benefit of this approach is that

we can design tests for the interactive system regardless of the programming

language or testing language used. This prevents the tests generated from

interaction sequences being tied to a specific framework or language.

Conversely, concrete tests do adhere to a specific testing language or frame-

work and are therefore runnable. If concrete tests were generated automatic-

ally from the interaction sequences it would force a specific testing language

or framework to be used. Due to the significant number of di↵erent types of

interactive systems available, as evidenced in chapter 2 by the several di↵erent

types of existing modelling and testing techniques available, this would create

a restrictive testing approach.

This restriction would be a significant limitation of this work, in particular

as interaction sequences are easily applicable to all di↵erent types of interactive

systems, developed on many di↵erent platforms. Therefore, these issues are

avoided by simply generating abstract tests, leaving it up to the tester which

language or framework to use to generate the concrete tests.

152

In later sections we demonstrate the process of converting abstract tests

to a particular set of concrete tests. However, the programming language and

testing libraries used are easily exchangeable for other languages and tools.

This is a significant benefit of combining interaction sequences with abstract

tests, as this ensures the approach is applicable across di↵erent types of in-

teractive systems which are able to be abstracted as interaction sequences on

various platforms.

Bowen et al. describe abstract tests created from PModels, PIMs and

PMRs in [7]. The abstract tests they define have a focus on the interactive

component, however they are relevant here as we describe our abstract tests

in a similar manner. The tests they describe define predicates for widgets of

the interface dependent on the mode of the interactive system, as such they

describe a static view of each widget in each mode. This aims at a component

or unit testing approach rather than the integration testing we will describe

here, as we describe tests with a focus on the overlap component at di↵erent

points of the interaction sequence. Furthermore, they do not provide support

to concretise the abstract tests. We demonstrate the ability to convert our

abstract tests to concrete tests in later sections.

In addition, the abstract tests described in [7] focus on testing singular in-

teractions with di↵erent widgets in specific modes as described by the PModels

and PIMs. We expand on this by creating abstract tests to investigate beha-

viours are as expected in combinations of interactions. This is a direct result

of using interaction sequences as an abstraction of the interactive system.

7.3.2 Generating Abstract Tests

We generate abstract tests from interaction sequences by defining the oracle for

each specific test. That is, the “oracle” is the condition we check before, after,

153

or during the simulation or execution of the interaction sequences specified.

First we discuss the di↵erent types of tests that are possible from the

interaction sequence model. The tests we design have a specific focus on the

overlap component, since the overlap component is often ignored in the testing

process. This is as intended since the interaction sequences are one form of an

abstraction for this component. As a result, they are designed to ensure that

the interactive and functional components can communicate as expected.

There are several ways in which the interaction sequences can be used to

define abstract tests. We discuss the di↵erent types of tests we can generate,

divided into four specific categories: step tests, mapping tests, assumption

tests, and values tests. We define each of these categories next.

7.3.3 Step tests

A step test involves defining an abstract test for a single step of an inter-

action sequence. These tests are defined as follows: “onStep((q , x , q 0)) ^

property((x , q 0))”, where q , q 0 2 Q , x 2 ⌃ and (q , x , q 0) 2 � for a well-formed

finite state automaton M as per definition 1. In this format the property can

be replaced with each of the following, in addition to combinations of these:

isActionValid , isActionActive, isNext , isPrevious , isCurrent . We will explain

each of these properties in detail next.

In a step test an oracle is created to determine if properties for a particular

step are true or false, such as validity, sequencing and availability. Validity

allows us to identify if the step of an interaction sequence is allowed by the

interactive system. A sequence which includes invalid steps is likely to prevent

an end user from being able to complete a task successfully and may even

lead to error. Validity is the primary focus of task models such as CTT or

HAMSTERS (as described in chapter 2), as such we do not explore these

154

further here, but they can similarly be included in our approach.

Sequencing tests can be devised on a step by step basis to ensure that the

current, previous or next step is as expected in the interaction sequence. This is

to ensure that the model allows for this sequence as specified and consequently

the SUT does also. The oracle can be defined to include the current, previous

or next step to check validity or availability.

Availability tests are used to ensure that a step is active and available

(validity is assumed). We define availability as a sequencing test to ensure

that the selected next or previous step was active and available to simulate

or execute. As interaction sequences begin and end at a specific point with

a sequential progression, availability tests for the next step are of particular

interest here.

For example, the availability tests for a next step are defined for each

di↵erent step of the interaction sequence. On each step of the interaction

sequence an oracle is defined to determine if the following step is “active”. This

test is used to ensure that the interaction sequence defined is possible according

to the model. That is, if an end user were to follow this interaction sequence,

each step of the sequence would be active and available at the appropriate

point.

The availability next step tests are defined in abstract tests of the form

“onStep((q , x , q 0)) ^ isNextActionActive((x , q 0))” where q , q 0 2 Q and x 2 ⌃

for a well-formed finite state automaton M as per definition 1. In this oracle

we specify that on a step from a valid triple in � the next expected action

specified by x and q 0 in that triple is one of the next actions active. To check

that this is true a transition must exist in the model from q to q 0 on alphabet

symbol x , that is, there exists a relevant triple (q , x , q 0) 2 � for automaton M .

Oracles are typically described as an input output pair (input , output),

155

where provided a specific input we expect a certain output. In terms of this

type of abstract test the input is the test statement, we expect this statement

to either be true or false as output. For example, an oracle may be as follows

(onStep(Button1,Press ,Button2) ^ isNextActionActive((Press ,Button2)),

False) (we often refer to such oracles as test assertions). This structure is the

same for all the di↵erent types of tests described here.

7.3.4 Mapping Tests

Mapping tests allow us to check that a given step of the interaction sequence

maps to the correct behaviours. This allows us to specify tests which spe-

cifically address the overlap behaviour. For example, we can check to ensure

a widget triggers the correct underlying functionality. In terms of interac-

tion sequences, the focus is to ensure that a specified step triggers the correct

behaviour for the current mode.

The mapping tests adhere to the following format “onStep((q , x , q 0)) ^

behaviourMap((q 0, (behaviour1, ..., behaviourn)))” where q , q 0 2 Q and x 2 ⌃

for well-formed finite state automatonM as per definition 1, and the associated

behaviours are from the PModels (taking into account the expected state for

this step). The step of the interaction sequence is specified first followed by

the behaviours triggered. In the “behaviourMap” a specific widget and the

behaviours that it should trigger in this mode is defined for this sequence and

assumptions. This abstract test is used to build a concrete test to ensure the

correct functions are triggered on each step of the interaction sequence.

The PModel allows us to identify in a specific mode the behaviours a widget

should trigger, in these tests we map this to specific steps of the interaction

sequence. This is particularly important as di↵erent functions may be triggered

depending on the sequence and assumptions. These tests essentially allow us

156

to ensure that the interactive component is sending the correct instructions to

the functional component in the given mode.

7.3.5 Assumption Tests

These tests are a direct result of the way in which the interaction sequences

have been formalised. For reproducibility interaction sequences must be in

some specified form, as discussed in chapters 3 and 4. Therefore, assumptions

are used as part of interaction sequence generation to ensure the sequence

always produces the same result, provided the SUT is in the correct start

state.

These assumptions can be used to generate abstract tests to ensure that

the SUT is in a specific state. That is, we check the observations we have

specified before the first step of the interaction sequence, and after sequence

execution or simulation. As a direct result of using the observations in this

way we can specify exactly what these values are.

The assumption abstract tests are in the following format “beforeStep((q , x ,

q 0)) ^ observation(value)” where (q , x , q 0) 2 �, “observation” is the name of

the observation and “value” is the expected value for that observation (as spe-

cified in the formalised interaction sequence assumptions). Note that values

can be any format, numerical or otherwise. Start assumptions use the format

“beforeStep” while end assumptions use the format “afterStep” as appropri-

ate. In this way we test to ensure that under these specific circumstances the

interaction sequence and consequently the interactive system produces the cor-

rect output. This allows us to ensure that the functional component sends the

correct responses to the interactive component, the inverse of mapping tests.

These assumption tests can be specified at any point in the interaction

sequence. For example, we could specify the values at di↵erent “significant”

157

points of the interaction sequence, such as before and after an abstract state,

to determine that the observation values are as expected. This could be taken

even further to specify an assumption on every step, however, we leave it up

to the tester as to the amount of detail they wish to incorporate.

7.3.6 Values Testing

For each task-widget based interaction sequence, certain observations are chan-

ged throughout that sequence. These values can be specified at di↵erent points

of the interaction sequence to ensure those values are as expected. One type

of values testing we incorporate is boundary case testing.

In boundary case testing a test is designed to ensure that the SUT responds

in an expected way around the boundaries of some value range. These types

of tests can also be automatically generated from the interaction sequence and

observations, provided we have access to the appropriate information about

those boundaries.

For example, in the Alaris GP Pump there are specific boundary values

associated with di↵erent drugs, such as indicating limits for safe amounts of

medication to be infused to a patient. There can be several variables which

factor into this, such as the drug being dispensed, in addition to the gender,

age and weight of a patient. In particular, there are default values set for the

“doseRateSoftMin”, “doseRateSoftMax”, and “doseRateHardMax”. These

values specify the safe values for the rate of an infusion. We can use this

boundary information for the rate observation to specify di↵erent tests for

each of the drugs using interaction sequences. This would allow us to ensure

for specific tasks, such as “set up an infusion”, that harmful doses are not

possible.

This idea can be translated to other types of interactive systems for inter-

158

action sequences, that is for interactive systems which expect certain bound-

aries on values, tests can be designed for those boundaries and values. The

tests are specified on certain subsequences of steps in the following format

“onSequence((q , x , q 0)0, (q , x , q 0)1, ..., (q , x , q)n) ^ (value  observationValue 

value)” where steps (q , x , q 0)0 to (q , x , q 0)n 2 �, we specify a sequence of steps

from step “0” to up to step “n”, while “(value  observationValue  value)”

defines the boundaries for that value. This allows us to specify an interaction

sequence which inputs values by selecting several di↵erent widgets in the in-

teractive system. We specify that on this particular subsequence we expect

this value to remain within certain boundaries.

Note that in addition to being able to specify the boundary range we can

also create tests to check expected behaviour at either side of the boundaries.

Following on from the Alaris GP Pump example, we could specify a test where

the rate is equivalent to “doseRateHardMax + 1”. In this instance, we would

expect the Alaris GP Pump to respond by preventing the rate from being set

to this value. This demonstrates how the values tests can be used to generate

more than one type of abstract or concrete test.

In addition to boundary tests, we can specify tests for specific values by

replacing “(value  observationValue  value)” with “(observationValue =

value)”. The value here is what we expect the observation to be equal to at a

certain point in the interaction sequence.

7.3.7 Testing with the Self-containment Property

As mentioned previously, the self-containment property provides control over

the state space of a finite state automaton. In terms of testing we may use

either the abstract automaton or self-contained automata to generate tests of

the di↵erent types described above.

159

The self-contained automata are useful for testing, in that we can specify

tests specifically for the part of the interaction sequence that is self-contained,

similarly to a fully expanded automaton. We can specify tests for the overall

abstract automaton and the self-contained automata as appropriate. This

provides greater flexibility over the tests which the tester may generate and

use.

Of more interest is the abstract automaton and the steps of the interaction

sequence which include the abstract state, we refer to them as abstract steps.

These represent that some behaviour of the interaction sequence has been

hidden and consequently have an e↵ect on the types of tests we can generate

from this type of automaton.

As behaviour is hidden for an abstract step, no behaviour is expected.

Therefore, we must generate tests similarly to non-abstract step tests to re-

flect this. Mapping tests provide us with a way to specify that the abstract

step maps or rather triggers none of the available behaviours. For example:

“onStep((Button1,Press ,⌦1)) ^ behaviourMap(⌦1, ())”. This type of test

would allow a tester to ensure that no behaviours are triggered from an ab-

stract state. This is to be expected as the behaviours which would be triggered

at that point of the interaction sequence are hidden within the abstract state.

In terms of assumptions tests, as the abstract state has hidden certain

behaviours, the assumptions must update accordingly. Therefore, the assump-

tion tests are specified similarly to non-abstract sequences but must reflect this

change in the assumptions. Lastly, for values testing we could specify that val-

ues do not change on a given abstract step, this would be to again rea�rm

that the abstract state or rather “abstract widget” triggers no behaviours.

While we can generate these abstract tests from the models we cannot con-

vert these directly to concrete tests. The reason for this is that the interactive

160

system itself does not have the abstract state implemented as a widget, there-

fore, we cannot actually test this widget in the same way as the other parts of

the interaction sequence.

One possibility for solving this issue would be to ensure that no behaviours

are triggered at the point of the sequence at which the abstract step takes place.

However, this would involve checking every widget within a system does not

trigger a behaviour and as a result is not feasible in systems which have a large

number of widgets. Therefore, we suggest using the abstract step to represent

exactly that in the testing process, a point where widgets and consequently

behaviours have been hidden and as a result tests cannot be created for those

behaviours as they are also hidden.

While we cannot test the behaviours captured by an abstract state directly,

we can test the sub-sequences before and/or after the abstract state. We can

also test the overall sequence by simply skipping or ignoring the abstract step.

In addition, we can test the sub-sequence represented by the abstract state as

we would a sequence without abstract states. This provides control over what

should or should not be tested, as we may simply abstract parts of the sequence

which are self-contained to define clear boundaries around which parts of the

SUT are of interest for testing purposes.

In summary, generating abstract tests for the abstract steps are possible

but we cannot convert these to concrete tests due to the abstract widget being

unimplemented in the actual interactive system. Therefore, we suggest that

these tests be ignored in order to focus on the parts of the sequence which

have not been abstracted. This provides a clear focus on what should or

should not be tested in an abstract automaton. Furthermore, should testing

be required or necessary on the sub-sequence hidden by the abstract state

in the abstract automaton, this automaton can simply be expanded and the

161

resulting automaton tested or the self-contained automaton may be tested

itself. As a result, testers have control over which parts of the sequence should

or should not be tested when using the self-containment property.

7.3.8 Summary

In this section we discussed testing supported by interaction sequences. In

particular, we discussed the types of tests and test oracles generated from

the interaction sequence models. Furthermore, we defined each of the four

categories of tests that can be generated and defined the format for each of

these. In the next section we demonstrate the abstract test generation for each

of these types of tests followed by implementing these as concrete tests using

a pre-defined test tool suite.

7.4 Extending the Sequence Simulator to Gen-

erate Abstract Tests

The sequence simulator presented in section 6.4 allows us to simulate interac-

tion sequences provided we have the appropriate associated models as presen-

ted in chapter 6. The information from these models can be used to generate

the associated abstract tests automatically with minimal input from the end

user of the sequence simulator, who we refer to from now on as the “tester”.

The tester may use the associated models loaded to generate tests from

a specific interaction sequence. Available, assumptions, values and mapping

tests can be generated as per the examples given in the previous section.

In order to generate boundary tests extra information is required from the

tester in terms of the specific boundaries of values for a given set of interac-

tions and observations. This information is not captured in the interaction

162

sequences, hence the need for further input on the behalf of the tester. This

is true for all values tests as this type of information is not captured in the

interaction sequence model (or other associated models).

Note that in the extension of the sequence simulator we have added only

a subset of the abstract tests we can generate from the interaction sequences

to illustrate the types of tests available. As discussed in the previous section

there are several types of tests that we could generate from the interaction

sequences.

7.5 Testing the Alaris GP Pump

In this section we demonstrate examples of abstract tests using the Alaris GP

Pump. In particular, we demonstrate the abstract tests generated from the

interaction sequence model and give an example for each di↵erent type of test.

This is followed by a demonstration of using the abstract tests to generate

concrete tests.

7.5.1 The Interaction Sequence Model

Using the techniques we described in previous chapters for formalising and

modelling interaction sequences we use the sequence simulator to assist in

modelling the tasks of ‘set up’ and ‘start an infusion’ using the Alaris GP

Pump. We refer back to the example given in section 3.3.2. The assumptions

here will remain the same as that example, however, due to the modelling

process the sequence has changed slightly. This is a direct result of using the

PModel to inform the interaction sequence process as opposed to the Alaris

GP Pump implementation, as the PModel is an abstraction of the SUT.

While using a PModel to inform the interaction sequence has no e↵ect

163

on the abstract tests which we generate, this will have an e↵ect when we

concretise these tests. This is because it is possible that a widget is represented

di↵erently in the PModel compared with the actual implementation, as the

PModel is an abstraction of the SUT. For example, a button widget may

perform di↵erent behaviours on a click and double click. In the PModel this

may be represented by two widgets “ButtonClick” and “ButtonDoubleClick”,

while in the implementation there is only a single “Button”. This simply

creates a pre-cursor step to converting the abstract tests to concrete tests in

that we must have a clear definition of which widgets the model refers to in

the actual implementation.

The sequence is as follows:

1. Press OnO↵ 1.

2. Observe Alarm 1.

3. Observe AlarmLight 2.

4. Observe Display 1.

5. Press Button1 1.

6. Press Button3 1.

7. Press Down 2.

8. Press Button1 2.

9. Press Down 1.

10. Press Button1 1.

11. Press Down 3.

12. Press Button1 1.

13. Press Button2 3.

14. Press Up 1.

15. Press Button1 2.

16. Press Up 1.

17. Press Button1 1.

18. Press Run 1.

19. Observe Display 1.

20. Observe RunLight 1.

This generates the following automaton V = (QV ,⌃V , �V , SV ,FV) (figure

7.1):

164

QV = {Initialise,OnO↵ ,Alarm,AlarmLight ,Display ,Button1,Button3,

Down,Button2,Up,Run,RunLight}

⌃V = {Press ,Observe}

�V = {(Initialise,Press ,OnO↵), (OnO↵ ,Observe,Alarm), (Alarm,Observe,

AlarmLight), (AlarmLight ,Observe,AlarmLight), (AlarmLight ,Observe,

Display), (Display ,Press ,Button1), (Button1,Press ,Button3), (Button3,

Press ,Down), (Down,Press ,Down), (Down,Press ,Button1), (Button1,Press ,

Button1), (Button1,Press ,Down), (Button1,Press ,Button2), (Button2,Press ,

Button2), (Button2,Press ,Up), (Up,Press ,Button1), (Button1,Press ,Up),

(Button1,Press ,Run), (Run,Observe,Display), (Display ,Observe,RunLight)}

SV = {Initialise}

FV = {RunLight}

Using this interaction sequence and associated finite state automaton we

generate the abstract tests as described. The sequence simulator has been

extended to allow for the automatic generation of these abstract tests.

7.5.2 Abstract Tests for the Alaris GP Pump

We explore each of the di↵erent types of abstract tests we can generate for the

Alaris GP Pump example. In this section, we give the details of one example

for each type of the tests described in the previous section. The full set of

these tests are included in the repository1.

First, we discuss the available tests which ensure that on the provided

step the next action is available. This means we must specify a test for each

step of the interaction sequence, this is achieved by using automaton V and

automatically specifying the appropriate triple for each step of the sequence.

The interaction sequence described as triples of automaton V is as follows:

1See https://github.com/jessicaturner11/AlarisModels.

165

1. (Initialise,Press,OnO↵).

2. (OnO↵,Observe,Alarm).

3. (Alarm,Observe,AlarmLight).

4. (AlarmLight,Observe,AlarmLight).

5. (AlarmLight,Observe,Display).

6. (Display,Press,Button1).

7. (Button1,Press,Button3).

8. (Button3,Press,Down).

9. (Down,Press,Down).

10. (Down,Press,Button1).

11. (Button1,Press,Button1).

12. (Button1,Press,Down).

13. (Down,Press,Button1).

14. (Button1,Press,Down).

15. (Down,Press,Down).

16. (Down,Press,Down).

17. (Down,Press,Button1).

18. (Button1,Press,Button2).

19. (Button2,Press,Button2).

20. (Button2,Press,Button2).

21. (Button2,Press,Up).

22. (Up,Press,Button1).

23. (Button1,Press,Button1).

24. (Button1,Press,Up).

25. (Up,Press,Button1).

26. (Button1,Press,Run).

27. (Run,Observe,Display).

28. (Display,Observe,RunLight).

Note that in this interaction sequence the number of steps has increased

from 20 to 28 due to the repeated steps being expressed explicitly as opposed to

by the number of steps being modelled as in the formalised sequence. For each

step of this interaction sequence we specify tests as shown in the repository2.

A short example follows:

onStep((Initialise,Press ,OnO↵)) ^ isNextActionActive(Press ,OnO↵)

onStep((OnO↵ ,Observe,Alarm)) ^ isNextActionActive(Observe,Alarm)

2See https://github.com/jessicaturner11/AlarisModels.

166

...

onStep((Display ,Observe,RunLight)) ^ isNextActionActive(Observe,Run

Light)

Figure 7.1: Automaton V

For the system to pass these tests on execution of this interaction sequence

we must be able to ensure in some way that each step is active. For a step to

be active the widget which performs that step must be enabled and/or visible.

This is dependent on the widget category, for example a button widget must

be able to be interacted with requiring it to be visible and enabled, while a

display needs only to visible (assuming it is a non-touch interface).

The assumptions tests, as described previously, can be automatically gener-

ated from the interaction sequence assumptions. For this particular interaction

sequence an important assumption to check is that the system has changed

the infusing value from “no” at the start of the sequence to “yes” at the end

of the sequence. This can be specified by the following pair of oracles:

167

beforeStep((Initialise,Press ,OnO↵)) ^ infusingIs(No)

afterStep((Display ,Observe,RunLight)) ^ infusingIs(Yes)

Note that the steps are specified as before or after the first and last step

of the interaction sequence respectively and the value of infusing is specified.

These abstract test oracles could be used to specify all the start assumptions

as one test, before execution or simulation of the interaction sequence, followed

by all the end assumptions as a single test after execution or simulation. This

ensures that the functional component responds as expected before and after

the interaction sequence is executed (see the repository3 for full descriptions).

As defined previously, the mapping tests are used to ensure that on a given

interaction step the widgets map to the correct behaviours. These are cre-

ated using the interaction sequence in combination with knowledge from the

presentation models, and therefore cannot be generated from the interaction

sequence FSA alone. We generate these automatically in the sequence simu-

lator:

onStep((Initialise,Press ,OnO↵)) ^ behaviourMap(OnO↵ , (S SwitchOn,

I ClearSetup))

onStep((OnO↵ ,Observe,Alarm)) ^ behaviourMap(Alarm, ())

...

onStep((Button2,Press ,Button2)) ^ behaviourMap(Button2, (I VTBIBags))

...

onStep((Display ,Observe,RunLight)) ^ behaviourMap(RunLight , (S Infusing))

The full set of abstract test oracles generated can be found in the repos-

itory4. In the oracles included above we see the various possible mappings.

The widget of the step is selected from the presentation model for the current

mode of the interactive system. As seen in the example above a widget can

3See https://github.com/jessicaturner11/AlarisModels.
4See https://github.com/jessicaturner11/AlarisModels.

168

map to S Behaviours and/or I Behaviours in addition to no behaviours. It

is important to check that these mappings are valid as they ensure the cor-

rect instructions are sent from the interactive component to the functional

component on a given step of an interaction sequence.

The last set of abstract tests which can be automatically generated from the

interaction sequences are boundary tests, which are one form of value tests. In

this section we include an example for the rate observation values. Remember

that the end user must specify these boundaries and a sub-sequence. This

sub-sequence may be the entire sequence or stop at a specific point within the

sequence to capture the changes to the observation we are testing. However,

with this extra information the boundary tests can be generated using the

provided information. For example:

onSequence((Initialise,Press ,OnO↵), (OnO↵ ,Observe,Alarm), (Alarm,

Observe,AlarmLight), (AlarmLight ,Observe,AlarmLight), (AlarmLight ,

Observe,Display), (Display ,Press ,Button1), (Button,Press ,Button3),

(Button3,Press ,Down), (Down,Press ,Down), (Down,Press ,Button1),

(Button1,Press ,Button1), (Button1,Press ,Down), (Down,Press ,

Button1), (Button1,Press ,Down), (Down,Press ,Down), (Down,Press ,

Down), (Down,Press ,Button1))

^ (doseRateSoftMin  Rate  doseRateHardMax) ^ (0  doseRateSoftMin 

doseRateSoftMax) ^ (doseRateSoftMin  doseRateSoftMax  doseRateHard

Max) ^ (doseRateSoftMax  doseRateHardMax  infusionRateMax)

The sequence which is specified by the tester is a subsequence of the ori-

ginal interaction sequence, and it is not necessarily self-contained. The point

of specifying this sub-sequence is to identify at which point in the interaction

sequence we expect the Rate, doseRateSoftMin, doseRateSoftMax, doseRate-

HardMax, and infusionRateMax values to be set. The range for these values is

169

then specified as appropriate. See the repository5 for the remaining boundary

test examples using the Alaris GP Pump for this interaction sequence.

Note that in boundary testing the use of data tables and random generation

of values is typically used (see [16] and [75, p .123-127]). As we do not have

access to appropriate information for the Alaris GP Pump to create these

tables we have not included this in the abstract tests. However, with access to

appropriate information the sequence simulator and these examples could be

extended to include these techniques.

It is important to mention that while we have described the above abstract

tests using the Alaris GP Pump and a non-abstract automaton we can specify

tests for abstract automaton in exactly the same way (with the exception of

the abstract step which is simply ignored). As a result of this we have not

included these examples here.

7.5.3 Creating Concrete Tests for the Alaris GP Pump

from Abstract Tests

To demonstrate that the abstract tests can be converted into concrete tests

we implemented a pseudo Alaris GP Pump6 using Java and the Swing UI

library (as we do not have access to the source code for the Alaris GP Pump).

Essentially, the models specified in chapter 6 were used to create this “pseudo

infusion pump” which allowed conversion of the abstract tests into concrete

tests for a specified programming language.

In order to specify the abstract tests we must be able to “execute” the

interaction sequence on the pseudo infusion pump system. To do this for Java

Swing we selected a testing tool which would allow us to programmatically

5See https://github.com/jessicaturner11/AlarisModels.
6See https://github.com/jessicaturner11/AlarisJava

170

specify the interaction sequence and consequently “run” it on the application.

The testing library AssertJ7 allows a tester to do this, as it is a dedicated tool

for designing assertions and unit tests for Java Swing applications and their

interfaces.

AssertJ was built as an extension to the pre-existing JUnit 48 testing tool

for Java. For this type of testing JUnit 4 is used to design unit tests for the

functional component while AssertJ is used for the interactive component. In

order to test the overlap component it was essential that the tools selected

allowed tests for both the interactive and the functional components to be

specified.

In the repository9 the relevant concrete tests created from the abstract tests

given in the previous subsection are included. Note that these are only the

tests generated from the ‘set up’ and ‘start infusion’ interaction sequence as

specified. Several tests can be generated for sequences using di↵erent assump-

tions, random sequences, and obviously for di↵erent tasks. In this section we

briefly explain the tests in order to explain how the abstract tests have been

converted to this specific programming language and testing libraries. Note

that there is “set up” work involved in using the AssertJ and JUnit 4 libraries

in order to create these tests, details can be found at the appropriate websites.

The first set of concrete tests are converted from the available abstract

tests. An excerpt of this test follows:

@Test

public void ava i l ab l eTe s t 1 () {

// onStep ((I n i t i a l i s e , Press , OnOff)) ^ i sNex tAc t ionAct i ve (

Press , OnOff)

7See http://joel-costigliola.github.io/assertj/
8See https://junit.org/junit4/
9See https://github.com/jessicaturner11/AlarisModels.

171

window . button (‘ ‘ OnOff ’ ’) . r equ i reEnabled () ;

window . button (‘ ‘ OnOff ’ ’) . r e q u i r eV i s i b l e () ;

//Perform next i n t e r a c t i o n

window . button (‘ ‘ OnOff ’ ’) . c l i c k () ;

// onStep ((OnOff , Observe , Alarm)) ^ i sNex tAc t ionAct i ve (

Observe , Alarm)

window . radioButton (”Alarm”) . r e q u i r eV i s i b l e () ; . . .

Listing 7.1: Concrete Available Test Excerpt

The first part of the abstract test specifies that the next action active must

be “Press” for the “OnO↵” widget on the selected step. To translate this

to Java, we must ensure that the OnO↵ button widget in the application is

enabled and visible before we can execute this interaction. The “requireEn-

abled()” and “requireVisible()” methods from the AssertJ library ensure that

both of these requirements are true. The interaction is then executed by spe-

cifying the method “click()” for this widget. On an “observe” interaction the

widget which allows this interaction must simply be visible, hence a call to

“requireVisible()”, to be considered available. We continue to specify the tests

in this manner for each of the abstract available tests generated.

The next set of concrete tests are converted from the start and end assump-

tions abstract tests. As the assumptions are specified using observations from

the formal specification, we can simply use JUnit 4 to specify these abstract

tests as assertions. For example:

@Test

public void startAssumptionsTest () {

// be f o r eS t ep ((I n i t i a l i s e , Press , OnOff)) ^

bo lu sDoseDe fau l t I s (0)

a s s e r tEqua l s (0 , frame . getBolusDoseDefault ()) ;

172

// be f o r eS t ep ((I n i t i a l i s e , Press , OnOff)) ^ v a l u e s I s

([1 ,10 ,100 ,1000])

Assert . a s se r tArrayEqua l s (new int []{1 , 10 , 100 , 1000} , frame .

getValues ()) ; . . .

Listing 7.2: Concrete Start Assumptions Test Excerpt

For each abstract test we simply need to add a call to the static “assertEquals”

method. This method takes two arguments, the expected value followed by

the actual value. If this method returns true for each of the assumptions the

system has passed this test. For the end assumptions we must first execute

the interaction sequence itself to ensure each step is performed correctly. This

simply involves using AssertJ to access the appropriate widgets and trigger the

interactions. We simplify our tests by writing a method “executeSetUpStart()”

which performs these interactions using AssertJ, we can call this method each

time we wish to execute the full interaction sequence as specified.

@Test

public void endAssumptionsTest () {

//Execute the s e t up and s t a r t i n f u s i on i n t e r a c t i o n

sequence

executeSetUpStart () ;

// a f t e r S t e p ((Display , Observe , RunLight)) ^

bo lu sDoseDe fau l t I s (0)

a s s e r tEqua l s (0 , frame . getBolusDoseDefault ()) ; . . .

Listing 7.3: Concrete End Assumptions Test Excerpt

Converting the mapping tests to concrete tests proved impossible for this

example as tools or libraries implemented in Java which would allow us to

trace the order of method execution at run time from the test suite did not

173

exist. That is, we could not find an “out of the box” way in which to inspect

that the correct behaviours were being triggered for particular widgets. This

highlights the fact that the overlap component is often ignored in the testing

of interactive systems.

Various techniques for reverse engineering were explored to discover ways in

which we could trace the methods executed as they were triggered by widgets.

In particular, Walkinshaw et al. describe di↵erent types of system dependen-

cies graphs and how they have adapted these for Java [77]. In addition, Lin

describes an overview of these types of graphs and how they can be used for

program slicing [40]. It is possible that these types of graphs could be utilised

to create a dependency graph which uses reverse engineering techniques to

identify the widgets and their associated dependent methods. We could then

use these graphs to determine the dependent behaviours are as expected based

on the abstract mapping tests generated.

In addition to this, investigation into reverse engineering tools for Java

provides some examples of using method traces for debugging purposes. Tools

such as MaintainJ10, ObjectAid11, and Diver12 use reverse engineering tech-

niques to generate run-time method traces. It is feasible that tools such as

these could be modified in order to provide us with a way of comparing widget

execution to the method calls.

For example, consider the following assertion in JUnit:

// onStep ((I n i t i a l i s e , Press , OnOff)) ^ behaviourMap (OnOff

, (S SwitchOn , I C learSe tup))

OnOff . c l i c k () ;

10See www.maintainj.com
11See www.objectaid.com/sequence-diagram
12See eclipsediver.wordpress.com/docs

174

a s s e r tEqua l s (‘ ‘ SwitchOn () ’ ’ , frame . getFunct ion ()) ;

Listing 7.4: Potential Concrete Mapping Test Assertion

To create this kind of mapping test we could use AssertJ to execute the

interaction step and use a method trace to get the latest executed func-

tion filtered to methods triggered by the user interface, represented here by

“frame.getFunction()”. We could then use an assertion to determine if this

function was as expected, this would allow us to implement the abstract map-

ping tests as concrete tests. However, we leave the implementation of a reverse

engineering technique to capture these method calls for future work.

Despite being unable to convert the abstract mapping tests to concrete

tests, we are able to observe the e↵ect which indicates that mappings are

correct. This is reflected in the assumptions tests, in that we can assume each

function has been executed in the correct order such that the end assumptions

are the same as we expect. Obviously, this assumption may be incorrect,

highlighting the need for further investigation into converting the mapping

tests to concrete tests.

Lastly, we specify two separate boundary tests, one for the rate boundaries

and subsequence, and another for the VTBI boundaries and associated sub-

sequence. We discuss the concrete test for the rate boundaries. The concrete

test is as follows:

@Test

public void boundaryTestRate () {

//onSequence ((I n i t i a l i s e , Press , OnOff) , (OnOff , Observe ,

Alarm) ,(Alarm , Observe , AlarmLight) , (AlarmLight , Observe

, AlarmLight) , (AlarmLight , Observe , Disp lay) , (Display ,

Press , Button1) , (Button , Press , Button3) , (Button3 , Press ,

Down) , (Down, Press ,Down) ,(Down, Press , Button1) , (Button1

175

, Press , Button1) , (Button1 , Press ,Down) ,(Down, Press ,

Button1) , (Button1 , Press ,Down) , (Down, Press ,Down) ,(Down

, Press ,Down) , (Down, Press , Button1))

RateSubSequence () ;

//^ (doseRateSoftMin<=Rate<=doseRateHardMax)

asser tThat (frame . getDoseRateSoftMax () <= frame . getRate ()

) ;

as ser tThat (frame . getRate () <= frame . getDoseRateHardMax ()

) ;

//^ (0 <= doseRateSoftMin <= doseRateSoftMax)

asser tThat (0 <= frame . getDoseRateSoftMin ()) ;

asser tThat (frame . getDoseRateSoftMin () <= frame .

getDoseRateSoftMax ()) ;

//^ (doseRateSoftMin <= doseRateSoftMax <=

doseRateHardMax)

asser tThat (frame . getDoseRateSoftMin () <=

frame . getDoseRateSoftMax ()) ;

asser tThat (frame . getDoseRateSoftMax () <= frame .

getDoseRateHardMax ()) ;

//^ (doseRateSoftMax <= doseRateHardMax <=

infusionRateMax)

asser tThat (frame . getDoseRateSoftMax () <= frame .

getDoseRateHardMax ()) ;

asser tThat (frame . getDoseRateHardMax () <= frame .

getInfusionRateMax ()) ;

}

Listing 7.5: Concrete Boundary Tests Excerpt

176

Similarly to the assumption tests we create a method which allows us to

execute the subsequence using methods from the AssertJ library. We then use

the “assertThat” static method to ensure that the boundaries for the di↵erent

values are correct. Provided that each of these assertions is true the system

will have passed this boundary test.

Using these tests we were able to discover that the pseudo Alaris GP Pump

did not adhere to the PModels. In particular, simple mode transitions were

not behaving as expected on the given interaction sequence. We were able to

use the history of the I Behaviours simulated for this sequence provided by

the sequence simulator to help pinpoint which part of the program was failing.

We were then able to diagnose which mode changes were incorrect and fix

these as appropriate.

Furthermore, certain observations values were not as expected. This was

another side e↵ect of the pseudo implementation being created from the PMod-

els manually, as certain behaviours had not been implemented correctly. Using

the assumption tests we were able to identify which functions failed using the

feedback from the testing tool and correct these functions as appropriate.

In addition to these errors, errors were seeded to demonstrate that the

availability tests did correctly identify when widgets were not available as ex-

pected. This was done simply by disabling certain widgets of the user interface.

As expected, the availability tests identified these seeded errors.

7.5.4 Summary

In this section we gave an example of using interaction sequences to auto-

matically generate abstract tests for the Alaris GP Pump, specifically for the

task-widget based sequence of setting up and starting an infusion. We began

by introducing the interaction sequence and associated finite state automaton.

177

This was followed by a discussion on the di↵erent abstract tests generated

for this specific task-widget based sequence. We used Java Swing to create a

pseudo infusion pump based on the Alaris GP Pump in order to demonstrate

how we create concrete tests from the abstract tests.

7.6 Discussion

In this chapter we have discussed the di↵erent types of tests we can generate

from the interaction sequences and provided a detailed example using the

Alaris GP Pump for one task-widget based interaction sequence. However, it

is clear that generating abstract tests from a single interaction sequence is not

enough for adequate testing coverage of the SUT. Therefore, we now describe

the ways in which these tests can be applied to provide a better coverage of

the SUT with a specific focus on the di↵erent tasks available.

We have deliberately made this technique adaptable to several di↵erent

types of interactive systems, that is, those which are able to be abstracted into

interaction sequences. As a result of this we have several di↵erent ways in which

to use the interaction sequences to generate tests. This is intended to give

the tester freedom to use human reasoning to decide what should and should

not be tested. However, to make the adaptability of this technique clearer

we now describe (in a general sense) di↵erent ways in which the interaction

sequences can be used for testing purposes, incorporating the techniques we

have mentioned throughout this thesis.

The formalised interaction sequences we introduced in chapter 3 provided

us with a fixed technique in which to generate reproducible interaction se-

quences. That is, given the same assumptions and task knowledge the task-

widget based sequence is able to be re-created. This allowed us to define

“direct” sequences in which the system behaved as expected. However, errors

178

are more likely to occur in the sequences which we do not expect, therefore,

in chapter 4 we defined a technique to convert the formalised interaction se-

quences to FSA to give us a controlled way in which to explore sequences of

varying lengths for the same task. Furthermore, we were able to randomly

explore these FSA by selecting “randomised” steps and finding new paths

through automata.

It is perhaps obvious that the assumptions for these random interaction

sequences will no longer match the original assumptions. Therefore, we propose

two di↵erent options for using these for testing purposes. The first is to use the

sequence simulator to simulate these sequences and discover the assumptions,

enabling assumption tests to be created.

In contrast, we could instead create boundary tests for specific observation

values which are known to be modified by the sequence, knowledge we can

gain easily from the original interaction sequence assumptions. These random

sequences are then automatically generated and executed to see if the values

are ever outside the boundaries. This would be to take a robustness testing

approach using abstract tests including boundary oracles, and thus falls under

the original requirements from chapter 3. In addition to this step mapping,

and values testing is still applicable to random sequences in the same way as

it is for the direct sequences, provided we have a set of correct start and end

assumptions.

In chapter 4 we mention task ordering and how this is used to create a

“more complete” model of the interactive system by creating interaction se-

quences for every task of the SUT. In chapter 5 we go on to describe how this

can be more easily achieved using the self-containment property. Following

the approach using self-containment it is possible to incrementally build an

interaction sequence model for each task as the tester requires (that is not all

179

tasks need to be expanded or all parts of the interaction sequences). Assump-

tions can be specified for each di↵erent task and task sub-automata in order

to explore even more interaction sequences and consequently generate more

abstract tests.

In particular, using the self-containment property with task ordering would

be particularly useful when there is criteria to categorise tasks. For example,

we could focus on testing only the safety-critical tasks of an interactive system,

or easily assign tasks to di↵erent members of a testing team. This allows us to

create a comprehensive test suite using interaction sequences for all di↵erent

tasks.

It is expected that this approach is used primarily by experienced testers

in order to provide comprehensive testing of the overlap component. However,

as interaction sequences are a simple abstraction of the interactive system we

expect this approach can be easily understood by less experienced testers. It is

clear from the Sequence Simulator presented in chapter 6 that the appropriate

tools could be easily created to support these types of testers.

While we have presented a testing approach in this chapter using inter-

action sequences we have not discussed how to resolve issues once they are

identified. If a general purpose tool was created for this approach we expect

standard techniques could be used to identify issues, such as identifying ex-

ceptions, providing execution traces, line numbers in code, assertions and so

on. In the current version of our proof-of-concept tool only the history of the

interactions is stored, this could be used as a starting point to aid in clear

error identification.

When concrete tests are created in a specific programming language it

is expected that issues will be clearly identified by the testing tool used to

implement the concrete tests, in addition to tester knowledge and experience.

180

As stated previously, we provide a semi-automated approach to assist with

interactive system testing with a specific focus on the overlap component.

If this approach is used, we highly recommend, and expect, that testing of

functional and interactive components individually also take place in addition

to interaction sequence testing. That is, this approach is intended to support

existing testing techniques, not to replace them.

7.7 Summary

In this chapter we have presented an approach for using the interaction se-

quences and their associated models as described in chapter 6 to demonstrate

a testing process for creating a test suite from interaction sequences using

FSA. We identified the motivations for using interaction sequences to inform a

testing approach and described the testing strategies applicable to interactive

system testing with interaction sequences.

This was followed by a discussion of abstract and concrete tests including

the benefits to each di↵erent type. We specified the four categories of tests

that we can define for the interaction sequences and gave examples for each

of these. We also gave a brief overview of how the self-containment property

could be used with these di↵erent types of tests.

We demonstrated how the sequence simulator was extended to include the

automatic generation of the abstract tests. This was followed by an example of

abstract tests being generated using the Alaris GP Pump, for the tasks of set-

ting up and starting an infusion. We converted the abstract tests into concrete

tests where possible using AssertJ and JUnit 4 for Java Swing applications.

Lastly, we finished with a discussion on the adaptability of the interaction

sequences and techniques we have described for further testing purposes.

181

Chapter 8

Conclusions

8.1 Introduction

In this research a new testing approach is presented using interaction sequences

to test the overlap component of an interactive system, as a support to cur-

rent interactive testing best practices. Interaction sequences are used as an

abstraction of interactive systems to inform a model-based testing approach

using lightweight formal methods. Testing of the overlap component is used

to show that this component behaves as expected in order to improve system

reliability.

8.2 Research Questions

We set out to answer the following research questions:

1. How can we generate and simulate interaction sequences automatically

to ensure reproducibility?

2. Can the state space of interaction sequences be controlled while pre-

serving the properties of the interaction sequence, so that we do not lose

182

information?

3. How can we use interaction sequences as an abstraction so that they may

be used to inform a testing suite to enhance interactive system testing?

We present the sequence simulator tool in chapter 6 which allows us to sim-

ulate interaction sequences and generate them automatically. In addition, in

chapter 3 we formalise the sequences to ensure reproducibility. This e↵ectively

addresses research question one.

We address research question two in chapter 5 by presenting an approach

using the self-containment property to provide control over the state space of

formalised interaction sequences modelled as Finite State Automata (FSA).

By using abstraction with the self-containment property we are able to hide

parts of the interaction sequence, as opposed to removing them, in order to

preserve information.

To address research question three we investigated the di↵erent ways in-

teraction sequences had been used as an abstraction in previous techniques

as discussed in chapter 2. From this investigation we identified the need for

interaction sequences to be formalised, as described in chapter 3 and modelled

in a way which allowed us to control sequence length variation, as described

in chapter 4. Lastly, in chapter 7 we present a model-based testing approach

using interaction sequences, addressing the second part of research question

three.

8.3 Contributions

The following contributions are made in this thesis: first a technique is presen-

ted in chapter 3 for the formalisation of interaction sequences. This was intro-

duced to ensure reproducibility, so that the sequences can be generated in a

183

controlled way for testing purposes. Furthermore, with a focus on task-widget

based sequences we demonstrated how these could be created using task know-

ledge and models of the interactive system. This was the first step in being

able to use the interaction sequences as an abstraction of the interactive system

to allow us to inspect the overlap component behaviour.

This led into a technique for modelling interaction sequences as FSA, as

presented in chapter 4. While formalised interaction sequences could be gen-

erated from pre-existing task and widget knowledge of the interactive system,

this could not be done automatically. The conversion of formalised interaction

sequences to FSA provided a structured way in which to explore sequences of

varying lengths for specific tasks automatically. In addition, this allowed us

to explore lengthier interaction sequences in a controlled way as opposed to

specifying pre-defined lengths (a common approach of previous techniques as

discussed in chapter 2).

In previous approaches (as discussed in chapter 2), models of interaction

sequences are prone to the state space explosion problem, as conceptually

they can be never ending. Therefore, a technique to control the state space of

interaction sequences using the self-containment property is defined in chapter

5. While this property is applied specifically to the state space explosion

problem with interaction sequences, as long as the properties of each definition

are preserved, this can be extended to all FSA.

In chapter 6 the simulation of interaction sequences is demonstrated as the

ground work for using these interaction sequences for testing. This is followed

by a discussion on how this simulation can be used for model checking. Follow-

ing this simulation a technique is presented in chapter 7 which allows abstract

tests to be generated directly from FSA and formalised interaction sequences in

order to test the overlap component. The conversion of these tests to concrete

184

tests is demonstrated for a possible implementation of an interactive system

using the Java programming language. Therefore, interaction sequences are

shown to aid the testing process of interactive systems by demonstrating that

the overlap component behaves as expected.

As stated in chapter 1, testing is a necessary part of the development pro-

cess. While techniques exist to test the interactive and functional components

of the interactive system individually, testing of the overlap component is ig-

nored. The model-based testing strategy we present in this thesis specifically

allows for testing of this component using lightweight formal methods. Using

this approach in combination with interactive and functional testing increases

the coverage of the di↵erent components of the interactive system and con-

sequently the likelihood of finding errors. While we cannot ensure that systems

using this approach will be perfect (guaranteed to be completely free of error),

we can state that by increasing the likelihood of finding errors for removal

we improve system reliability and safety, in order to help make systems more

resilient to di↵ering interactions and environments.

In summary, the contributions of this thesis are: a technique for formalising

and generating interaction sequences (chapter 3); a technique for modelling

interaction sequences as FSA (chapter 4); a technique to control the state

space of interaction sequences using the self-containment property (chapter

5); and simulation of interaction sequences as an aid to testing (chapters 6

and 7).

8.4 Limitations

There are some limitations to this work, the first of these being the require-

ments defined in chapter 3. These requirements were as follows:

185

1. We must be able to automatically generate sequences of varying lengths

so that the testing process is faster.

2. We must be able to constrain the sequence length in order to avoid the

state space explosion problem.

3. The sequences must allow us to clearly identify why the system did not

behave as expected, for example by producing counter-examples.

As the modelling and testing approaches described here are created based

on these requirements we have specifically tailored the solution to these require-

ments. Therefore, the presented approach is limited to these requirements and

as such so is the type of tests which we can generate. However, this limitation

is to be expected as due to the complexity of interactive systems and testing

of these systems, it would be impossible to create an approach which covers

all possible requirements and types of tests.

In chapter 4 we discuss existing methods for controlling the state space in

order to constrain the interaction sequences. In chapter 5 we highlight why

these methods are unsuitable for our purposes, the reason for this being that

we have a one-to-one mapping between a state of the automaton and a widget

of the interactive system. This one-to-one mapping is a limitation on this

approach as it prevents us from exploring these methods further. In future

work it may be possible to explore di↵erent ways to map widgets to states of

the FSA.

In chapter 5 we also discuss limitations to the self-containment property,

we summarise these limitations here. The self-containment property allows us

to have control over the state space but does not solve the state space explosion

problem. This is because we cannot be certain that every self-contained auto-

mata we abstract will result in a smaller state space (although it is likely). In

186

addition to this, while lemma 2 proves that every automaton is self-contained

with respect to itself, it is possible that intractable automata exist which can-

not be abstracted beyond the trivial case of a single state abstraction. As

stated in chapter 5, it is possible that this could occur in highly connected

systems.

As we have demonstrated in chapter 6 in the sequence simulator tool, we

can automatically detect self-contained automata for a given finite state auto-

maton. However, we cannot detect if an abstraction of a specific self-contained

automaton will be useful or not, leaving this to human reasoning. Further work

into investigating metrics which help us to detect if an abstraction is useful

or not is possible, however, as human reasoning is always required to create

meaningful test suites this process cannot be fully automated.

We acknowledge that the sequence simulator tool presented in chapter 6

and the concrete tests which we create in chapter 7 also have the limitations

of the models and tools used to create them. However, this is not a limitation

on the overall modelling and testing approach as di↵erent tools and models

can be used depending on the preferences of the end user and the program or

testing languages being used (with the exception of the interaction sequence

models).

As we have chosen FSA to model the formalised interaction sequences this

approach is limited by the amount of information which can be described in this

type of formalism. In future work it would be interesting to explore variations

of FSA which allow us to include further information into these models for

testing purposes as appropriate.

8.5 Future work

There are several unresolved questions as a result of this investigation into

187

using interaction sequences for testing purposes which can be explored in future

work. The use of existing FSA techniques to manipulate and constrain the

interaction sequences is investigated in this work, including minimisation and

the removal of non-determinism in chapter 4. However, due to the one-to-one

mapping between a state in the automaton and a widget in the interactive

system these techniques were not applicable.

Further exploration into why particular widgets are grouped together in

these techniques, and what similarities they have could have interesting con-

sequences. For example, widgets may be combined in order to simplify the

interactive system, the question here would be at which point does this sim-

plification become confusing for the end user and as a result is non-beneficial

to the enhancement of the interface?

In this thesis a technique for generating abstract tests from the interaction

sequence models which use oracles to identify if the system behaves di↵erently

than expected is presented. As a result, the question arises what do we do with

these problems once they have been identified? We discussed briefly in this

thesis about the removal of these errors in order to improve system reliability

and resilience but have not defined the exact ways in which to do this, as

we expect standard procedures to be used. However, this question could be

investigated in more detail for future work.

In chapter 5 limitations on using the self-containment property are con-

sidered. In particular, the di↵ering levels of connectedness of the interac-

tion sequences, and how a high level of connectedness would prevent the self-

containment property from being applicable is discussed. Therefore, further

investigation is required into the self-containment property and the e↵ect of

high levels of connectedness. We hypothesise a high level of connectedness says

something about the interactive system itself, whether it may be too complex

188

or rather provide too much freedom around interaction choice to the end user.

However, further investigation is required into high levels of connectedness

as we cannot definitively say what the cause is. For example consider a stand-

ard non-modal calculator, in a task-widget based interaction sequence model

this calculator would have a high level of connectedness as any of the widgets

are available and able to be interacted with at any time. This type of calculator

is not considered too complex or to provide a user with too much freedom of

interaction, therefore, our intuitions about high connectedness may be wrong.

As a result, this would be an interesting investigation for future work.

In this research, the assumptions capture the expected observations for the

interaction sequence. However, in future work it would be worth investigating

if these observation values could be included in the FSA, possibly by using a

replacement for the FSA (as discussed in section 8.4). This would eliminate the

need for a formalised interaction sequence in combination with an automaton

and allow representation of the interaction sequences using only automata.

This is worthy of further investigation, however, note that this would introduce

complexity into the FSA, eliminating the benefit of simplicity (which is why

FSA were initially selected).

The Alaris General Purpose Volumetric Infusion Pump (Alaris GP Pump)

as the continuing example used throughout this thesis is a safety-critical modal

interactive system. While some investigations into di↵erent types of interactive

systems and the applicability of interaction sequences has taken place, concrete

investigation into the applicability of these models into di↵erent types of inter-

active systems is required. It is intended that these models are applicable to

all interactive systems, but as interactions evolve along with the way in which

end users prefer to interact, the applicability of these models and the nature

of the interaction sequences may change. This would require future work in

189

order to ensure this applicability.

The use of task ordering has been discussed throughout this thesis in order

to build a more complete model (based on task coverage) using the task-widget

based sequences. Further investigation is required into task ordering and the

benefits available in terms of testing and modelling. Depending on the criteria

of the test, it would be interesting to see how task coverage a↵ects the tests

generated from the interaction sequences. That is, is a task-complete model

using the task-widget based sequences required?

In chapter 6 model checking is discussed and how the sequence simulator

could be adapted to prove di↵erent properties about the model and con-

sequently the underlying interactive system. This has not been investigated

further here, as the focus in this work was to create a testing approach using

interaction sequences, this is another possibility for future work.

We expect this testing approach to be applicable to all interactive sys-

tems on the basis that all interactive systems have some form of interaction

sequences. However, we leave it human reasoning on the part of the tester

whether or not this technique will be useful for their particular system. Fur-

ther investigation is possible into the exact types of interactive systems for

which testing the overlap component is most useful, however this is an issue

for future work.

In this research we have not directly compared this technique to existing

testing techniques. As discussed in chapter 2 many existing techniques are

used to test either the interactive or functional components, not the overlap

component. Therefore, as the technique presented here has a focus on the

overlap component it would be irrelevant to compare it to these existing tech-

niques. However, comparisons into any new techniques which also focus on

the overlap component is possible as part of future work.

190

8.6 Concluding Remarks

In the testing of interactive systems, the interactive and functional components

are often tested separately, however, issues can arise where these components

overlap. In this research, this is defined as the overlap component of an in-

teractive system which contains the instructions the interactive and functional

components use to communicate. Should this component fail, neither the in-

teractive or the functional components can behave as expected. Therefore,

the testing of this overlap component is essential, particularly in safety-critical

contexts where error can lead to harm or fatalities to end users.

Interaction sequences are an abstraction of the interactive system which

provide a view of this overlap component. We investigated the formalisation,

modelling, constraining, and simulation of interaction sequences in order to

make use of this abstraction to inform a model-based testing approach. In

particular, test oracles are used in order to generate comprehensive tests for

the overlap component, which allowed for clear identification of where the

overlap component did not behave as expected.

By using this testing approach in combination with other pre-existing test-

ing techniques for the functional and interactive components, it is intended

that this will give a more complete testing suite when compared with simply

testing the functional and interactive components separately. Using this tech-

nique in this way aids in improving test coverage and consequently allows for

more errors to be discovered. The removal of these errors, particularly before

software deployment, will create safer more reliable interactive systems. There-

fore, testing interactive systems using interaction sequences is a necessary and

useful part of the software engineering process.

191

Bibliography

[1] S. Arlt, I. Banerjee, C. Bertolini, A. M. Memon, and M. Schäf. Grey-

box GUI Testing: E�cient Generation of Event Sequences. CoRR,

abs/1205.4928, 2012.

[2] B. Bailey, J. Biehl, D. Cook, and H. Metcalf. Adapting Paper Prototyping

for Designing User Interfaces for Multiple Display Environments. Personal

and Ubiquitous Computing, 12(3):269–277, March 2008.

[3] E. Barboni, J.-F. Ladry, D. Navarre, P. Palanque, and M. Winckler. Bey-

ond Modelling: An Integrated Environment Supporting Co-execution of

Tasks and Systems Models. In Proceedings of the 2Nd ACM SIGCHI Sym-

posium on Engineering Interactive Computing Systems, EICS ’10, pages

165–174, New York, NY, USA, 2010. ACM.

[4] S. Bauersfeld and T. E. J. Vos. GUITest: A Java Library for Fully

Automated GUI Robustness Testing. In 2012 Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineer-

ing, pages 330–333, September 2012.

[5] F. Belli and C. J. Budnik. Minimal Spanning Set for Coverage Testing of

Interactive Systems. In Z. Liu and K. Araki, editors, Theoretical Aspects

of Computing - ICTAC 2004, pages 220–234, Berlin, Heidelberg, 2005.

Springer Berlin Heidelberg.

192

[6] J. Bowen and S. Reeves. Modelling Safety Properties of Interactive Med-

ical Systems. In Proceedings of the 5th ACM SIGCHI Symposium on En-

gineering Interactive Computing Systems, EICS ’13, pages 91–100, New

York, NY, USA, 2013. ACM.

[7] J. Bowen and S. Reeves. UI-design Driven Model-based Testing. Innova-

tions in Systems and Software Engineering, 9(3):201–215, 2013.

[8] M. Burnett, A. Peters, C. Hill, and N. Elarief. Finding Gender-

Inclusiveness Software Issues with GenderMag: A Field Investigation. In

Proceedings of the 2016 CHI Conference on Human Factors in Computing

Systems, CHI ’16, pages 2586–2598, New York, NY, USA, 2016. ACM.

[9] K. A. Butler, E. Mercer, A. Bahrami, and C. Tao. Model Checking for

Verification of Interactive Health IT Systems. AMIA ... Annual Sym-

posium proceedings. AMIA Symposium, 2015:349–358, January 2015.

[10] A. Butterfield and G. E. Ngondi. VDM. Oxford University Press, 7

edition, 2016.

[11] J. C. Campos, C. Fayollas, M. Gonçalves, C. Martinie, D. Navarre, P. Pa-

lanque, and M. Pinto. A More Intelligent Test Case Generation Approach

Through Task Models Manipulation. Proc. ACM Hum.-Comput. Inter-

act., 1(EICS):9:1–9:20, June 2017.

[12] J. C. Campos and M. D. Harrison. Model Checking Interactor Specifica-

tions. Automated Software Engineering, 8(3):275–310, August 2001.

[13] J. C. Campos, J. Saraiva, C. Silva, and J. C. Silva. GUIsurfer: A Reverse

Engineering Framework for User Interface Software. In A.C. Telea, editor,

Reverse Engineering, chapter 2. InTech, Rijeka, 2012.

193

[14] S. Charfi, H. Ezzedine, C. Kolski, and F. Moussa. Towards an Auto-

matic Analysis of Interaction Data for HCI Evaluation Application to a

Transport Network Supervision System. In Human-Computer Interac-

tion. Design and Development Approaches, volume 6761, pages 175–184.

Springer, 2011.

[15] CNBC. Uber Suspends Self-driving Car Program after Ari-

zona Crash. Website, March 2017. Retrieved March 13,

2018 from https://www.cnbc.com/2017/03/26/uber-self-driving-

car-arizona-crash-suspended.html.

[16] L. Copeland. A Practitioner’s Guide to Software Test Design. Artech

House Computing Library: A Practitioner’s Guide to Software Test

Design. Artech House, Boston, Massachusetts; London, 2004.

[17] S. Couix and J.-M. Burkhardt. Task Descriptions using Academic Ori-

ented Modelling Languages: A Survey of Actual Practices across the SIG-

CHI Community. In Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), volume 6948, pages 555–570, 2011.

[18] Daily Mail Reporter. Mother Dies after Nurse makes Error Adminis-

tering Drug. Website, February 2011. Retrieved August 8, 2018 from

http://www.dailymail.co.uk/health/article-1359778/Mother-

dies-nurse-administers-TEN-times-prescribed-drug.html.

[19] A. Degani, I. Barshi, and M. G. Shafto. Information Organization in the

Airline Cockpit Lessons from Flight 236. Journal of Cognitive Engineering

and Decision Making, 7(4):330–352, December 2013.

194

[20] J. Desel and W. Reisig. The Concepts of Petri nets. Software & Systems

Modeling, 14(2):669–683, May 2015.

[21] E. W. Dijkstra. A Discipline of Programming, volume 1 of Prentice-Hall

series in automatic computation. Prentice-Hall, Englewood Cli↵s, N.J.,

1976.

[22] Y. Dujardin, D. Vanderpooten, and F. Boillot. A Multi-objective Interact-

ive System for Adaptive Tra�c Control. European Journal of Operational

Research, 244(2):601–610, July 2015.

[23] M. B. Dwyer, R., O. Tkachuk, and W. Visser. Analyzing Interaction Or-

derings with Model Checking. In Proceedings. 19th International Confer-

ence on Automated Software Engineering, 2004., pages 154–163, Septem-

ber 2004.

[24] C. Fayollas. Addressing Dependability for Interactive Systems: Applica-

tion to Interactive Cockpits. In Proceedings of the 5th ACM SIGCHI Sym-

posium on Engineering Interactive Computing Systems, EICS ’13, pages

163–166, New York, NY, USA, 2013. ACM.

[25] M. Fisher. An Introduction to Practical Formal Methods Using Temporal

Logic, chapter 5, pages 129–183. Wiley, Chichester, West Sussex, U.K.;

Hoboken, N.J., 2011.

[26] United States Food and Drug Administration. Infusion Pumps.

Website, January 2015. Retrieved August 8, 2018 from http:

//www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/

GeneralHospitalDevicesandSupplies/InfusionPumps/.

[27] O. Grumberg and H. Veith. 25 Years of Model Checking: History, Achieve-

ments, Perspectives. In Lecture Notes in Computer Science (including

195

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), volume 5000, 2008.

[28] M. D. Harrison, J. C. Campos, and P. Masci. Reusing Models and Prop-

erties in the Analysis of Similar Interactive Devices. Innovations Systems

Software Engineering, 11(2):95–111, June 2015.

[29] J. E. Hopcroft. Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley series in computer science. Addison-Wesley,

Reading, Mass., 1979.

[30] C.-Y. Huang, J.-R. Chang, and Y.-H. Chang. Design and Analysis of

GUI Test-case prioritization using Weight-based methods. The Journal

of Systems & Software, 83(4):646–659, 2010.

[31] International Software Testing Qualifications Board (ISTQB). Testing

Definition. Website. Retrieved July 30, 2018 from http://glossary.

istqb.org/search/testing.

[32] C. N. Ip and D. L. Dill. E�cient Verification of Symmetric Concurrent

Systems. In Computer Design: VLSI in Computers and Processors, 1993.

ICCD’93. Proceedings., 1993 IEEE International Conference on, pages

230–234. IEEE, October 1993.

[33] D. Jackson. Lightweight Formal Methods. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume 2021. Springer Verlag, 2001.

[34] J. Jacky. The Way of Z: Practical Programming with Formal Methods.

Cambridge University Press, Cambridge ; New York, NY, USA, 1997.

[35] M. Koziol. How Apple Watch changed Molly Watt’s Life.

Website, 5 May 2015. Retrieved August 8, 2018 from http:

196

//www.stuff.co.nz/technology/gadgets/68296129/How-Apple-

Watch-changed-Molly-Watts-life.

[36] Glenn E. Krasner and Stephen T. Pope. A Cookbook for Using the Model-

view Controller User Interface Paradigm in Smalltalk-80. J. Object Ori-

ented Program., 1(3):26–49, August 1988.

[37] P. Lee, F. Thompson, and H. Thimbleby. Analysis of Infusion Pump Error

Logs and their Significance for Health Care. British Journal of Nursing

(Mark Allen Publishing), 21:S12, S14, S16–20, April 2012.

[38] M. Lesk. Safety Risks–Human Error or Mechanical Failure?: Lessons from

Railways. IEEE Security Privacy, 13(2):99–102, March 2015.

[39] F. Lettner, C. Grossauer, and C. Holzmann. Mobile Interaction Analysis:

Towards a Novel Concept for Interaction Sequence Mining. In Proceedings

of the 16th International Conference on Human-computer Interaction with

Mobile Devices & Services, MobileHCI ’14, pages 359–368, New York, NY,

USA, 2014. ACM.

[40] F. Lin. Analysing Reverse Engineering Techniques for Interactive Systems.

Master’s thesis, The University of Waikato, Hamilton, New Zealand, 2012.

[41] J. Magee and J. Kramer. Concurrency: State Models & Java Programs.

John Wiley & Sons, Inc., New York, NY, USA, 1999.

[42] C. Martinie, P. Palanque, and M. Winckler. Structuring and Composition

Mechanisms to Address Scalability Issues in Task Models. In Human-

Computer Interaction–INTERACT 2011, volume 6948, pages 589–609.

Springer, 2011.

[43] P. Masci. A Preliminary Hazard Analysis for the GIP Number Entry

Software, 2014.

197

[44] P. Masci, A. Ayoub, P. Curzon, M. D. Harrison, I. Lee, and H. Thimbleby.

Verification of Interactive Software for Medical Devices: PCA Infusion

Pumps and FDA Regulation as an Example. In Proceedings of the 5th

ACM SIGCHI Symposium on Engineering Interactive Computing Sys-

tems, EICS ’13, pages 81–90, New York, NY, USA, 2013. ACM.

[45] P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby. Using PVSio-web to

Demonstrate Software Issues in Medical User Interfaces. In M. Huhn and

L. Williams, editors, Software Engineering in Health Care, pages 214–221,

Cham, 2017. Springer International Publishing.

[46] P. Masci, Y. Zhang, P. L. Jones, H. Thimbleby, and P. Curzon. A Generic

User Interface Architecture for Analyzing Use Hazards in Infusion Pump

Software. In Proceedings of the 5th Workshop on Medical Cyber-Physical

Systems, pages 1–14, 2014.

[47] A. Matthews-King. Faulty Opiate Injection Pumps used in Gos-

port Scandal to be Reviewed Amid Fears Over Deaths Across NHS,

Hunt says. Website, June 2018. Retrieved July 17, 2018 from

https://www.independent.co.uk/news/health/gosport-scandal-

opiate-painkillers-jane-barton-patient-deaths-a8415916.html.

[48] G. J. Myers. The Art of Software Testing, chapter 1, pages 1–5. John

Wiley & Sons, Hoboken, N.J., 3rd ed.. edition, 2012.

[49] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing.

John Wiley & Sons, Hoboken, N.J., 3rd ed.. edition, 2012.

[50] New Zealand Herald. Elderly Patient’s Cancer goes Unnoticed for Eight

Months due to System Failure. Website, August 2018. Retrieved August

198

9, 2018 from https://www.nzherald.co.nz/nz/news/article.cfm?c_

id=1&objectid=12102251.

[51] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon. GUITAR: An In-

novative Tool for Automated Testing of GUI-driven Software. Automated

Software Engineering, 21(1):65–105, March 2014.

[52] J. Nielsen and R. Molich. Heuristic Evaluation of User Interfaces. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’90, pages 249–256, New York, NY, USA, 1990. ACM.

[53] P. Noble and A. Blandford. You Can’t Touch This: Potential Perils of

Patient Interaction with Clinical Medical Devices. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), volume 8118, pages 395–402,

2013.

[54] C. Norris IP and D. L. Dill. Better Verification through Symmetry. Formal

Methods in System Design, 9(1):41–75, August 1996.

[55] P. Oladimeji, H. Thimbleby, and A. L. Cox. A Performance Review

of Number Entry Interfaces. In P. Kotzé, G. Marsden, G. Lindgaard,

J. Wesson, and M. Winckler, editors, Human-Computer Interaction – IN-

TERACT 2013, pages 365–382, Berlin, Heidelberg, 2013. Springer Berlin

Heidelberg.

[56] A. C. R. Paiva, J. C. P. Faria, and P. M. C. Mendes. Reverse Engineered

Formal Models for GUI Testing. In Proceedings of the 12th International

Conference on Formal Methods for Industrial Critical Systems, FMICS’07,

pages 218–233, Berlin, Heidelberg, 2008. Springer-Verlag.

199

[57] F. Paternò, C. Santoro, and L. D. Spano. Improving Support for Visual

Task Modelling. In Human-Centered Software Engineering, volume 7623,

pages 299–306. Springer, 2012.

[58] F. Paternò and E. Zini. Applying Information Visualization Techniques to

Visual Representations of Task Models. In Proceedings of the 3rd Annual

Conference on Task Models and Diagrams, TAMODIA ’04, pages 105–111,

New York, NY, USA, 2004. ACM.

[59] A. M. Porrello. Death and Denial: The Failure of the THERAC-

25, A Medical Linear Accelerator. Website. Retrieved August

8, 2018 from http://users.csc.calpoly.edu/~jdalbey/SWE/Papers/

THERAC25.html.

[60] C. Romanyk, R. McCallum, and P. Salehi. A Model Based Approach to

Web Application Design for Older Adults using MVC Design Pattern. In

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9752,

pages 348–357. Springer Verlag, 2016.

[61] K. Sakib, Z. Tari, P. Bertok, and A. Mukherjee. Verification of Commu-

nication Protocols in Web Services: Model-checking Service Compositions,

chapter 2, pages 15–26. Wiley Series on Parallel and Distributed Com-

puting; 83. John Wiley & Sons, Incorporated, 2014.

[62] P. Salem. Practical Programming, Validation and Verification with Finite-

state Machines: A Library and its Industrial Application. In Proceedings

of the 38th International Conference on Software Engineering Companion,

ICSE ’16, pages 51–60, New York, NY, USA, 2016. ACM.

200

[63] I. Schieferdecker. Model-Based Testing. IEEE Software, 29(1):14–18,

January 2012.

[64] L. D. Spano and G. Fenu. IceTT: A Responsive Visualization for Task

Models. In Proceedings of the 2014 ACM SIGCHI Symposium on En-

gineering Interactive Computing Systems, EICS ’14, pages 197–200, New

York, NY, USA, 2014. ACM.

[65] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM

Journal on Computing, 1(2), June 1972.

[66] The Economist. When Code can Kill or Cure. Website, June 2012.

Retrieved August 8, 2018 from https://www.economist.com/node/

21556098/all-comments.

[67] H. Thimbleby. User Interface Design with Matrix Algebra. ACM Trans-

actions on Computer-Human Interaction (TOCHI), 11(2):181–236, June

2004.

[68] H. Thimbleby. Contributing to Safety and Due Diligence in Safety-critical

Interactive Systems Development by Generating and Analyzing Finite

State Models. In Proceedings of the 1st ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, EICS ’09, pages 221–230,

New York, NY, USA, 2009. ACM.

[69] H. Thimbleby. Heedless Programming: Ignoring Detectable Error is a

Widespread Hazard. Software: Practice and Experience, 42(11):1393–

1407, November 2012.

[70] H. Thimbleby. Action Graphs and User Performance Analysis. Inter-

national Journal of Human - Computer Studies, 71(3):276–302, March

2013.

201

[71] H. Thimbleby. Reasons to Question Seven Segment Displays. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’13, pages 1431–1440, New York, NY, USA, 2013. ACM.

[72] H. Thimbleby. Safer User Interfaces: A Case Study in Improving Number

Entry. IEEE Transactions on Software Engineering, 41(7):711–729, July

2015.

[73] H. Thimbleby, A. Gimblett, and A. Cauchi. Bu↵er Automata: A UI

Architecture Prioritising HCI Concerns for Interactive Devices. In Pro-

ceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, EICS ’11, pages 73–78, New York, NY, USA, 2011.

ACM.

[74] J. Turner, J. Bowen, and S. Reeves. Simulating Interaction Sequences. In

Proceedings of the ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, EICS ’18, pages 8:1–8:7, New York, NY, USA, 2018.

ACM.

[75] M. Utting and B. Legeard. Practical Model-based Testing : A Tools Ap-

proach. Morgan Kaufmann Publishers, San Francisco, CA, 2007.

[76] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-

based Testing Approaches. Software Testing, Verification and Reliability,

22(5):297–312, 2012.

[77] N. Walkinshaw, M. Roper, and M. Wood. The Java System Dependence

Graph. In Proceedings Third IEEE International Workshop on Source

Code Analysis and Manipulation, pages 55–64, September 2003.

[78] B. Weyers, J. Bowen, A. Dix, and P. Palanque. The Handbook of Formal

202

Methods in Human-Computer Interaction. Human-Computer Interaction

Series. Springer Publishing Company, Incorporated, 2017.

[79] L. White and H. Almezen. Generating Test Cases for GUI Responsibil-

ities Using Complete Interaction Sequences. In Proceedings of the 11th

International Symposium on Software Reliability Engineering, ISSRE ’00,

pages 110–121, Washington, DC, USA, 2000. IEEE Computer Society.

[80] L. White, H. Almezen, and N. Alzeidi. User-Based Testing of GUI Se-

quences and their Interactions. In Proceedings of the 12th International

Symposium on Software Reliability Engineering, ISSRE ’01, pages 54–63,

Washington, DC, USA, 2001. IEEE Computer Society.

[81] J. Wing, D. Jackson, and C. B. Jones. Formal Methods Light. Computer,

29:20–22, April 1996.

[82] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal

Methods: Practice and Experience. ACM Computing Surveys (CSUR),

41(4):1–36, October 2009.

203

