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Abstract—We use deep learning techniques to model compu-
tational fluid dynamics (CFD) simulations of wind flow over
a complex topography. Our motivation is to “speed up” the
optimisation of CFD-based simulations (such as the 3D wind farm
layout optimisation problem) by developing surrogate models
capable of predicting the output of a simulation at any given point
in 3D space, given output from a set of training simulations that
have already been run. Our promising results using TensorFlow
show that deep neural networks can be learned to model CFD
outputs with an error of as low as 2.5 meters per second.

Index Terms—wind farm layout optimisation, deep learning,
computational fluid dynamics, wind flow modelling, complex
topography

I. INTRODUCTION

We consider the problem of predicting the output of compu-
tational fluid dynamics (CFD) simulations using deep learning
techniques. CFD is a branch of fluid mechanics dealing with
the modeling of fluid flows using the Navier-Stokes equations
[1] and has many applications in engineering design (e.g.
[2]–[6]). However, a well-known disadvantage of CFD is the
computation time: high-fidelity simulations often take many
hours or even days of CPU-time to complete. If a CFD
simulation is part of a larger optimisation algorithm (e.g. a
genetic algorithm, requiring thousands of function evaluations)
then the compute time required to run all the required CFD
simulations may be impractical.

Therefore, the use of machine learning and deep learning
techniques for building approximate models of CFD simula-
tions is pertinent. Ideally a neural network model of a CFD
simulation would be faster than running a full CFD simulation
while at the same time retaining as much of the accuracy (for
the purposes of subsequent analysis) as possible.

An illustrative problem domain where this approach could
be useful is the 3D wind farm layout optimisation problem
with complex terrain. In this problem, the aim is to optimise
the positions and properties of wind turbines on a wind
farm site. The wind farm site has a non-flat topography
and therefore the optimiser must take into account the wind
flow dynamics occurring as the wind passes over hills, along
valleys, and through and between turbines at different heights.
A critical factor is the wake interference between wind turbines
which occurs when one turbine stands downwind of another.

The 2D version of the problem with flat topography [7]
has been widely studied for several years. For the interested
reader, Samorani [7] provides an accessible introduction while
[8], [9] and [10] are all comprehensive recent surveys. In
the 2D variant of the problem, simple and fast mathematical
models exist for approximating wind turbine wakes and their
interactions. The classic and still practically useful example is
the Jensen model [7], [10]–[12].

The 3D variant of problem with complex terrain, on the
other hand, has been researched to a much lesser degree.
Herbert-Acero et al., in their 2014 survey [8], state (pp. 6987):
“An important aspect that has been largely neglected is the
topography of the wind farm area.”

Since then, only a small handful of papers concerning the
3D wind farm layout optimisation problem with complex
terrain have been published. These include the work of M.
Song [13]–[15] who developed the “virtual particle” model;
approaches that combine turbine-free CFD wind flow simu-
lations with 2D wake models [16], [17]; and one approach
that models a single turbine in different positions using CFD
and then combines the simulation outputs together so that an
overall estimate of the performance of multiple turbines can
be made [18].

In each approach, performing multiple CFD simulations is
a key part of the method since CFD is the only known method
of accurately modeling wind flows over non-2D terrains.
However, due to the computational complexity of CFD, the
number of simulations that can be run is limited.

Our long term goal behind this research is to solve the 3D
wind farm layout optimisation. However, in this research we
focus on modeling turbine-free wind flows over a complex
topography only. There are two main reasons for excluding
turbines from the present study: (i) some existing methods
for 3D wind farm layout optimisation use only turbine-free
flow models anyway (e.g. the work of Feng [16] and Zheng
[17] mentioned above, so our techniques could speed up their
approaches); and (ii) the turbine-free wind flow prediction
problem is itself difficult to solve and if we can make progress
on this simpler form of the problem, then we can add turbines
and their wakes to the CFD simulations at a later date.

This paper continues our work first started in [19] in which
we used several machine learning methods in additional to



neural networks to model the CFD-generated wake of a wind
turbine in the absence of terrain. The results in that work
showed that such an idea was feasible and that neural networks
performed best out of a range of approaches including random
forests and linear regression.

To evaluate the effectiveness of deep learning for predicting
CFD output, we use simulation-based cross validation and
we record the mean absolute error (MAE) and the Pearson
product-moment correlation coefficients (CC) of each model.
Our results show that deep learning can be effective for
predicting the output of CFD-based wind flow simulations over
complex topographies.

II. BACKGROUND

A. CFD models of wind flow over complex terrain

There is an increasing need to understand wind flows over
complex terrain for land planning purposes, wind farm power
predictions, prediction of sediment erosion and deposition
among others [20]–[24]. Previous simplifications that ignored
topography changes or reduced them to isolated features are
often now not enough. For example, Lange et al [25] found
minor changes in the terrain could have a significant effect
on flow parameters for wind turbines and wind variables were
sensitive to topography details.

Typical methods to do this may include scale wind tunnel
testing, field experiments and numerical simulation [21], [25]–
[27]. Each have associated issues such as scale, resources
or limits to data being measured. CFD simulations of wind
flows over complex terrain is therefore an ambitious prospect.
New surveying techniques permit the development of digital
terrain models, however a stumbling block is the ability of
CFD to emulate the wind flow over such landscapes [26]–
[30]. Issues such as domain size, noise in the terrain model,
computational capacity and resource, limit what is achievable
in a CFD simulation.

B. Neural networks

Neural networks are a type of machine learning model
useful for supervised or unsupervised learning from data. The
main power of a neural network lies in its ability to discover
and represent highly non-linear patterns that may exist in
a large dataset. Figure 1 depicts a neural network. As the
figure shows, neural networks are directed graphs with nodes
representing either inputs, outputs, or function of other nodes
if the node is part of a “hidden” layer. Each arc is weighted
and the learning problem is to find the set of weights that
most closely model the patterns in the data without over- or
under-fitting.

Traditional neural networks consist of one or a few hidden
layers, because the training of such models is easier. In
more recent times however with the advent of deep learning,
effective algorithms have been discovered for training huge
networks with multiple hidden layers. [31] is an excellent
introduction to this field and the interested reader is referred
to that source for more information.
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Fig. 1: An example of supervised neural network with four
inputs, namely the (x, y, z) position of a point in 3D space
and the uniform incoming wind velocity magnitude for the
entire topography v. This network consists of three hidden
layers and one output node v′, that being the predicted wind
velocity at point (x, y, z).

III. APPROACH

In this section, we describe our basic approach which
involves (i) constructing suitable datasets for evaluating and
comparing different models and (ii) the methodology we use
for determining the optimal neural network configuration and
hyper-parameters.

A. Dataset construction

The terrain used in our experiments is part of a coastal dune
system, 66.2m along shore (x direction) and 105.4m in length
(y direction). The computational domain was 78.5m in height
(z direction). The terrain is illustrated in Figure 2. The datasets
were generated with 10,000 streamlines on (y, z) planes at
fixed x values along shore. Samples were concentrated in
regions that had higher mesh near the terrain surface.

The complete output files from four CFD runs are in general
cumbersome to deal with directly and we identified two main
issues with the data. Firstly, each CFD run produces tens of
millions of (x, y, z) samples; to make the data easier to handle,
therefore, we decided to subsample it.

Secondly, the original data was highly imbalanced with
a disproportionate number of samples coming from certain
regions of the terrain near the surface. Imbalanced data is
well known to cause problems when training and evaluating
machine learning models and therefore it must be handled
carefully [32]. Imbalanced training data can lead to poor pre-
dictive models, and imbalanced test data can give misleading
results. Furthermore, while numerous methods exist for han-
dling imbalanced classification problems, there are far fewer
techniques available for dealing with imbalanced regression
problems [32]. We therefore circumvented the problem by
balancing the data at the same time as we sub-sampled it.
In this way, the selected samples became more uniformly
distributed across the 3D volume of each simulation.

The basic approach we took to subsample and balance
the data was as follows: for each simulation’s set of output



Fig. 2: Terrain used in our CFD experiments.

Simulation Samples (before) Samples (after)
10 m/s 84,228,589 846,121
15 m/s 67,023,368 924,088
20 m/s 90,276,605 794,307
25 m/s 89,941,611 782,423

TABLE I: Dataset sizes (i.e. number of 3D examples) before
and after random sampling and balancing.

samples, we divided the 3D volume containing the samples
into 200×200 sub-volumes of equal size. We then began
randomly selecting samples from the original dataset, until
at most 300 samples were selected per sub-volume. This
meant that in theory, at most 200×200×300=12M samples
could be selected, although in practice many fewer samples
were selected because most sub-volumes had fewer than 300
samples while some sub-volumes had an excessive number
of samples. Table I gives the dataset sizes before and after
subsampling/balancing. As can be observed, the resulting
datasets even after this process are still quite large, containing
seven to nine hundred thousand examples each.

B. Hyper-parameter optimisation experiments

Important issues when designing neural networks are the
selection of an appropriate configuration of hidden layers
for the network and a decision about values for the hyper-
parameters used by the learning algorithm. In general, the
answer to these questions are problem dependent. Poor choices
may severely impact on the ability of the model to learn and
generalise.

In this research, we follow the approach for configuring
neural network models outlined by [33]. The idea is to continu-
ously test random network configurations of hyper-parameters
until a near-optimal combination is found. If 240 such trials

are performed, for example, then there is a 1−( 19
20 )240 ≈ 0.999

probability of finding a configuration within the same 5% of
the configuration space as the optimal configuration, and a
1 − ( 99

100 )240 ≈ 0.91 probability of finding a configuration
within the same 1% of the space. In general, this method
outperforms grid-based search because grid-based search is
restricted the configurations that lie on the grid lines, but in
some cases optimal configurations may lie “between” the grid
lines [33]. Furthermore, random search is simple to implement
compared to other grid search methods.

To use random search we also require good bounds on
the hyper-parameters in order to make the search feasible.
To this end, a variety of heuristics that can be used as
constraints have been proposed in the literature. [34], for
example, demonstrates that setting the size of each consecutive
hidden layer in a network to the same number of hidden nodes
(e.g. a network with three hidden layers each of size five, as
shown in Figure 1) works better than the “inverted pyramid”
configuration in which each successive hidden layer is smaller
than the previous one. Similarly, suitable ranges for hyper-
parameters such [0.01, 2] for the learning rate [34] have also
been proposed. We utilise these guidelines wherever possible.

Table II gives the hyper-parameter ranges that we finally
decided on. The first hyper-parameter (number of epochs)
concerns the amount of time to train the network for; the sec-
ond and third hyper-parameters concern the architecture of the
network; and the final hyper-parameters are concerned with the
learning algorithm which was the proximal adagrad optimizer
[35] implemented in TensorFlow r1.4 [36]. We explored two
types of regularisation (L1 and L2) but only allowed one type
at a time. With probability 1

3 , L1 regularisation was chosen;
with probability 1

3 , L2 regularisation was chosen; otherwise



neither regularisation strategy was employed.
The hidden units utilised the rectified linear (RELU) func-

tion and the batch size for training was fixed at 50 exam-
ples. Unless otherwise stated by the table, all other hyper-
parameters and settings are defaults as used in TensorFlow
r1.4.

To evaluate the effectiveness of each random combination
of hyper-parameter values, we performed repeated four-fold
cross validation-by-simulation experiments. In order words,
given the four simulations that we had data for, we trained
the network on data from three of the simulations and then
predicted the output samples of the remaining simulation. We
repeated this procedure three times for each of the four folds of
the cross validation. because neural networks can be sensitive
to their initial random weights In summary, for each neural
network configuration that we tested, we performed 3×4=12
train/test runs in order to assess the performance. The MAE
and CC results for each of the twelve runs were then averaged,
and this whole process was repeated 240 times for different
random hyper-parameter combinations.

IV. RESULTS

In this section we detail the main results from our experi-
ments along with results of some additional analysis performed
following the main experiment.

A. Main experimental results

Summary results of our experiments are shown in Figure
3. For each of the 240 sets of repeated cross-validations, we
computed the mean MAE and mean CC. In the figure, a higher
CC is preferred, with a maximum CC possible being 1.0. A
CC of 0.0 indicates no correlation at all, and negative CC
indicates a negative correlation. For MAE, lower is better with
0.0 indicating perfect predictions. We can observe from the
figure that most of the models we tested have an MAE of
less than 6.0, with a significant cluster of models with MAE
of less than 4.0. CC, however, is much more distributed with
wider range of approximately 0.5-0.8, even for the relatively
low MAE models. Interestingly there are a few models with
high CC but poor MAE, suggesting that these models may be
useful but the scale of the predictions is clearly wrong, even
though the direction is correct. Some networks have plainly
failed to generalise at all as points on the plot appearing on
the right-hand side of the diagram show.

How do these figures compare with a simple baseline
approach that does not involve learning from the training
data? To assess the answer to this question, we evaluated
the simple mean predictor method. This method computes
the mean v̄′ of the target variable v′ in the training data and
then subsequently predicts v̄′ for each test example. Since the
predictions are constant, the CC is always zero, but the testing
MAE depends on the variation of the target variable in the
test data. Table III shows the results of this analysis. Overall,
mean prediction achieves an average MAE of 7.05 m/s with
the worst performance occurring on the 25 m/s data.

Next, we explored two of the models in more detail,
specifically (a) the model with the lowest average MAE of
2.58 m/s and the (b) the model with the highest average CC
of 0.82. The hyper-parameters for these models are shown in
Table IV. Generally speaking, both sets of hyper-parameters
are quite different. For example, the dropout rates vary by an
order of magnitude, and one network uses L2 regularisation
while the other does not. Neither model is small in terms
of size. Model (a) has three hidden layers, each of which is
relatively large with 47 hidden nodes; and (b) has four hidden
layers of size 24.

Detailed performance metrics for both of these optimal
configurations are provided in Table V. The table shows the
specific test results for each of the twelve training/test runs
performed using each configuration. It can be observed that
different runs on the same training/test set often produce quite
different results. For example, configuration (a) achieves a
model with test MAE of 1.57 m/s on the 25 m/s data on
one run, but 3.49 m/s on another run. More extremely, one of
the runs of a model built with configuration (b) on the 10 m/s
data produces a very high error of 12.73 m/s compared to the
other two runs which are both below 0.85 m/s error.

Given that the hyper-parameters are constant for each
model’s runs, this suggests that the random initialisation of the
network weights may be primarily responsible for the variation
in performances when the training and test data is the same.
This warrants further investigation.

As a further comparison, we also ran some non-neural net-
work machine learning approaches. Standard linear regression
achieved an average MAE across four folds of 7.85(1.33)
m/s while random forests for regression (100 trees) achieved
7.69(1.36). Thus we can conclude that neural networks are
a competitive approach outperforming other machine learning
algorithms for this problem.

B. Hyper-parameter/performance correlation

Next, we explored which of the hyper-parameters in the
search space were most responsible for the variation in MAE
and CC. This can be achieved by computing the correlation
between each individual hyper-parameter and the two perfor-
mance metrics for all 240 sets of results. Figure 4 shows the
very interesting results of this analysis. The most important
hyper-parameter is the learning rate, which positively corre-
lates with MAE and negatively correlates with CC. Therefore
a smaller learning rate is preferred. The next most important
parameter is the number of hidden layers, which is correlated
in the same direction as the learning rate, but not to as
great a degree. Therefore it can be concluded that shallower
networks performed better for this problem. Interestingly, the
two regularisation parameters (L1 and L2) have almost zero
correlation with MAE and CC in our results.

To continue our analysis of the best configurations that
the random sampling experiment found, we performed a
smaller number of further experiments using just the two best
configurations.
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Hyper-parameter Range Selection
num. epochs [1, 20] uniform
hidden layer size [4, 64] uniform
num. hidden layers [1, 4] uniform
dropout rate [0.0, 0.5] uniform
learning rate [0.001, 2.0] exponential
L1 reg. constant [3.1× 10−7, 3.1× 10−4] exponential
L2 reg. constant [3.1× 10−7, 3.1× 10−4] exponential

TABLE II: Hyper-parameter optimisation experiment ranges. The “uniform” selection scheme denotes random uniform selection
from the range of possible values; the “exponential” scheme denotes random uniform selection from the logarithm of the range
of values, a scheme suggested in [33].

Testing Sim. Training Sim. MAE CC
25 m/s {10 m/s, 15 m/s, 20 m/s} 9.82 0.00
20 m/s {10 m/s, 15 m/s, 25 m/s} 5.22 0.00
15 m/s {10 m/s, 20 m/s, 25 m/s} 7.24 0.00
10 m/s {15 m/s, 20 m/s, 25 m/s} 5.92 0.00
mean 7.05 0.00

TABLE III: Individual MAE and CC for the mean predictor.

Hyper-parameter sets config. (a) config. (b)
num. epochs 17 9
hidden layer size 47 24
num. hidden layers 3 4
dropout rate 8.56× 10−2 2.99× 10−1

learning rate 2.30× 10−3 5.59× 10−2

L1 reg. constant 0.0 0.0
L2 reg. constant 6.54× 10−5 0.0

TABLE IV: Optimal hyper-parameter values for the network
(a) with minimum MAE, and (b) with maximum CC.

The first of these concerned the amount of computational
time spent training the models. The number of epochs used
for training in our hyper-parameter optimisation experiments
was [1, 20], selected uniformly. We were curious as to whether
or not enough training epochs were given, so we repeated the
twelve train/test runs of both models built from configurations
(a) and (b), but instead of a low number of epochs, we used
20, 40, 80 and 160 epochs for training respectively. This failed
to yield any further improvement in either of our test metrics,
suggesting that the optimised number of epochs is correct.

We were also concerned about the lack of impact of the
regularisation parameters on performance, as it is commonly
assumed that regularisation is essential to prevent the over-
fitting of predictive models. Therefore we re-ran all twelve
runs of model (a) with the L2 hyper-parameter set firstly
to 3.1 × 10−4, which was the top of our range in the
random search optimisation experiment, and on a second run to
3.1×10−3, an order of magnitude larger. Again, we observed
no further improvements in model (a)’s performance. We
therefore can conclude that the parameters selected by the
original 240 repetition experiment are reasonable.

C. Visualisations

Finally, to conclude our results, Figure 5 presents visualisa-
tions of the predictions produced by models (a) and (b). The
figures plot y (distance in wind direction) against z (height)
and average the prediction errors over x. Clearly, model (a)’s
predictions of the 25 m/s data are good, with low MAE across

most of the volume except for the turbulent region between
the dunes. Model (b)’s predictions, however, have an overall
lower MAE (because the the test set is the 10 m/s data) but
the prediction errors are more spread out.

V. CONCLUSION

To conclude, the best results we obtained suggest that an
expected error of around 2.5 m/s is possible, but this figure
likely depends on (i) the topography itself, which may be more
or less complex; and (ii) the amount of simulations performed
from which training data can be obtained. In our experiments,
data from three simulations was used to predict the output of a
fourth simulation. If data from more simulations is available,
the error could likely be driven further down.

With respect to future research, (specifically related to
steps 1 and 2 of the approach described in the introduction),
exploring random weight initialisation strategies would be an
interesting topic, as clearly our experiments have shown that
TensorFlow’s default strategy leads to high variance in test
performance between runs when all hyper-parameters are the
same. Similarly, it would be useful to perform a comprehensive
comparison of different deep learning optimisation algorithms
and assess the differences.

Next, the turbulent regions of higher error (shown in Figure
5) are interesting. Prediction error is not uniformly spread
across the 3D volume of the test simulations. Possibly different
configurations of network are optimal for different regions of
the 3D space, and therefore multiple complementary networks
could be used.

As mentioned, our long term aim is to provide a new
technique for solving the 3D wind farm layout optimisation
problem. However, more work needs to be done to ensure we
have as accurate a model for turbine-free wind flow modeling
first.
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[9] J. González, M. Payán, J. Santos, and F. González-Longatt, “A review
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(a) Aggregated prediction errors on the 25 m/s datasets after training on the {10 m/s, 15 m/s, 20 m/s} datasets, run 3

(b) Aggregated prediction errors on the 10 m/s datasets after training on the {15 m/s, 20 m/s, 25 m/s} datasets, run 3

Fig. 5: Predictions made by models (a) and (b). Please view the colour online version of this figure.


