HYPERGEOMETRIC EXPANSIONS OF HEUN POLYNOMIALS*
E.G. KALNINst AND W. MILLER, JR.}

1. Introduction. Any Fuchsian equation of second order with four singularities
can be reduced to the form

d?w ¥ N 0 € .dw afxr —q

(1.1) T + w=0

T —e $—€2+$—63% (x —e1)(x—ez)(x — e3)

where o+ 3 —-v—-50—€e+1=0.

The singularities are located at x = eq, €3, e3 and co and have indices depending
upon «,...€. The constant ¢ is known as the accessory parameter. This is Heun’s
equation [1] and solutions may be characterised by the P symbol [2].

€1 €2 €3 0
(1.2) P 0 0 0 a T
11—y 1-0 1—€¢ p

Power series expansions for the solutions of Heun’s equation have been studied
by Heun for various arguments [1], [3]. There turn out to be 96 distinct types of
power series. Alternatively, solutions of Heun’s equations can be expanded in series
of hypergeometric functions. Such expansions were studied by Svartholm [4] and
Erdelyi [5]. Typically such expansions have the form

(1.3)
el €9 es [o%) 00 0 1 a
P 0 0 0 a x :ZAmP 0 0 Ad+m x
1-v 1-60 1—¢ 0 mco 11—y 1-6 pu—m

where A\ +yu=v+d6d —1=a+ §—e. Two types of expansion were given;

(i) Series of type I for which A = a, u = 3 — €. These series converge outside
an ellipse with foci at e;, e5 and which passes through e3. There are three
distinct expansions of this type.

(ii) Series of type II for which u=0,y—1,6 —1or v+ 6 — 2.

In all these expansions the coefficients A,, satisfy three term recurrence relations

(1.4) boAO + C1A1 =0
arA,_1+ b A, + Cr—i—lAr—i—l =0, r=12,...
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where a,, b,, ¢, are known expressions in r and ¢, # 0. If ¢ is chosen from a number
of characteristic values then expansions of this type converge. In this article we de-
rive some of these expansions for the case of Heun polynomials from considerations
based on group theory and its connection with separation of variables solutions
of the Laplace-Beltrami eigenvalue equation on the n-sphere. The method used
makes a judicious choice of coordinates on the n-sphere. The expansions that are
first derived are for products of Heun polynomials as sums of products of Jacobi
polynomials. The coefficients in the expansions obey three term recurrence rela-
tions. The corresponding single variable expansions are then obtained by allowing
one of the variables to take a fixed value. This paper is an extension of [8] in which
the motivation and background can be found.

Earlier writers on Heun functions who take a somewhat similar point of view
are Sleeman [15] and Schmidt and Wolf [14]. These authors use the simultaneous
separability of a generalized Schrodinger equation in several cooordinate systems to
derive integral relations for Heun functions. In [8] and in the present paper we are
making clearer the geometrical setting of these results: polynomial orthogonal bases
on the n-sphere characterized as eigenfunctions of commuting sets of self-adjoint
symmetry operators.

2. Derivation of the expansion formula. The graphical calculus of separable
coordinates for the Laplace-Beltrami eigenvalue equation on the n-sphere has been
completely worked out by Kalnins and Miller [6], [7]. To derive an expansion for
Heun polynomials we consider coordinate systems corresponding to graphs of the

type

on the n sphere, n = ni + no + n3 + 2. A suitable choice of coordinates is

(21) S; = U1Ww;, 7::1,...,TL1—|—1
Sj+n1+1ZUQtj, jzl,...,n2+1

Sk+ni+ns+2 = U3Rk, k= 17"'7n3+1
where

ni+1 na+1 n3+1

2 _ 2 _ 2 _

)RR SE TSN S T

and

(2.2) u? = , 1=1,2,3, 1,j,k pairwise distinct.
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The metric on the n sphere is

(2.3)
2 (z—y) dz? _ dy?
= hx—mﬂx—wﬂx—@) @—euw—ea@—e@]
ni+1 na—+1
é"”:? DI i e DO

(x—e e3) "
—e3)(y — e3)
E dz3.
(62—63 er — e3) 1

The coordinate systems chosen for wj;,t;, 2z, can be taken to be, say, spherical
coordinates in each case, corresponding to the graph [6].

0]1] '

n; boxes

We then seek eigenfunctions i of the Laplacian satisfying
(2.4) A =—J(J +n1+n2+ns+ 1)y,

where J is a non-negative integer. In the coordinates we have chosen, this equation
has the form

(2.5)
4 ni + 1 N9 + 1 ns + 1 0
A¢—_( )[(x—el)(l‘—ez T —e3) [ [x—elex—eszx—eJ%
[t )
(e1 —e2)(e1 —e3) (e2 —e1)(e2 — e3) (e3 —e1)(es — e2)
e T e —@>A2+<x—%xy—%>A4w

:—J(J+n1+n2+n3+1)1/1,

where Ay is the Laplacian on the sphere .S, .
If we seek eigenfunctions such that

where the /; are non-negative integers, then writing

3

(2.7) v =[]l ey —e]/?9,

i=1
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we find (2.5) has the form

(2.8)
= 4 - {(x o) — o)z — e3) (aa; i {el +j Enelf D, b +j Enjj )
NG +j E": 1)} a%) 6+ Az
— (y—e1)(y — e2)(y — e3) <§:2 + [61 +y%£n€11+ DI +y%£n622+ 1)
e E CSL O AR R
where

1
A:Z(L—f-N—Fl)L, szl—f-fz—f-fg, N:n1+n2+n3.

The corresponding separable solutions have the form

(2.9) Y = Ul uF U Yy, 1,000 (F) 270, 0,0, (1) Ot 305 (W £, 2)
where a complete set of functions Oy, ¢,¢, (W, t,2) can be taken as
(2.10) Ot,0,05, (W, t,2) = Oy, (W)Oy, (t)Oy, (2)

and typically,
M Am—ie1)4K :

(211) O (w) = ] CZ 7L 7" (cos (Bny—;)) (sin O, ;) K51 eF im0,
j=0

fOI‘él :KO ZKI Z "'ZKnl—l ZO, and

(2.12) A(k)@gl (W) = —Kk(Kk +ny—k— 1)@@1 (W)

where C};(z) is a Gegenbauer polynomial. The coordinates on S, are

(2.13) wy = sinfb,, ...sinfysin by

wg =sinf,, ...sinfy cos by

Wy, = sinf,, cosb,, _1

Wy, +1 = COS Oy,

and the operator Ay is given by

4 0
(214)  Aw= >, Iy Ie=wge—wegs k=0,m — 1.
r<<n, 41—k Owy dw,
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(The A(y) are the second order symmetry operators for A; whose eigenvalue equa-
tions (2.12) characterize the separable coordinates (2.13), see [6], [7].) The corre-
sponding separation equations are

(2.15)

[—4()\ - 61)()\ - 62)()\ - 63) |:

+£3+ %(n3+1)
/\—63

d? n €1+%(n1+1)+€2+%(n2+1)
d)\2 /\—61 /\—62

d

where A = x,y according as € = 1,2, respectively. This is Heun’s equation of
the form (1.1) with vy = ¢4 + 1(ny + 1), 6§ = lo+ (na + 1), e = {3 + 2(ng + 1),
a=31(L-J),8=2L1(L+J+N+1). The solutions for the functions DG 1,0.4(N) are
Heun polynomials which for fixed J will form a complete set of basis functions once
the eigenvalues ¢ have been calculated. To calculate the eigenvalues it is convenient
to observe that in the coordinate system (2.1) the operator M whose eigenvalue x
is

(2.16)
X = (61 —f-€2 +63)[£%+£%+£§+£1n1 +E2n2+ﬁgn3 — J(J—I—N—f—l)]
+ 2515263 + 2616362 + 2525361 — 6161 — 6262 - 5363

+ €1n263 + £1n3€2 + 6272,163 + 6271361 + £3n1€2 + £3n2€1 — 4q

is given by [6], [7]

(2.17) M=(e1+e)d > Lo+ (e2ates)d > I7,

pEP qeQ gEQTER

+(e1 +e3) Z Z Iﬁr

peEPreR
P:{1,...,n1+1},Q:{n1+2,...,n1+n2+2},
R:{n1+n2+3,...,n1+n2+n3+3}

That is, M is the second order symmetry operator for the Laplacian ([M,A] =
0) which corresponds to the separable coordinates x,y. (The separable solutions
(2.9) are eigenfunctions of M with eigenvalues x.) Expression (2.16) gives the
relationship between the eigenvalues x and ¢. (The terms involving the ¢; result

from consideration of the factor u{lus?ug.)

The basis functions on the sphere S,, corresponding to coordinates of the graph
can also be expanded in terms of the basis functions of the coordinate system
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corresponding to the graph [6],

0]1]

Shn, Shns
i.e., the coordinates (2.1) with
(2.18) u; =sinfcos¢, wuy =sinfsing, wuz = cosé
and the infinitesimal distance
n1+1
(2.19) ds® = df® + sin® 0d¢® + sin®f cos® ¢ »  dw}
i=1
na+1 n3+1
+ sin? @ sin? ¢ Z dtjz» + cos? f Z dz3.
j=1 k=1

Eigenfunction solutions of (2.4) in these coordinates are

(2.20) Y = (sin B)M (cos 0)* (sin ¢)*2 (cos ¢)
< BT 0 (cos 20)
lo+Li(na—1), t14+L(n;—1
X P(]TJ—F—ZZE —252)/)2 v )(COS 2¢) @€1£2f3 (W7 t, Z)
= Y MO, 01,

where PP (z) are Jacobi polynomials. Here J = L + 2j and M = L + 2m where

j=0,1,... =0,1,...5 —1,5. The eigenfunctions satisfy
(221) Alw = —M(M +ny + ’ng)w,
where

_ 2
(2.22) A =>"T17

1>7

and ¢, j range from 1 to ny + ny + 2.
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Note that in terms of the Cartesian coordinates uy, us,us on the 2-sphere (u? +
u3 + u2 = 1) these eigenfunctions take the form

(2.23) Vi = u'{lugz e (u? 4 u )(M ti—t2)/2
M+ (n1+mn2), £ —i—%(n —1) 2 2
X Py b—t3))2 ’ (1 - 2uf - 2u3)
lo+1(na—1), L1+1(ni-1) 2“%
x P 2 2 -1
(M=t —t5)/2 (u% >

by, €2, b3 7 .
= Uy Uy U3’ ®jm,

i.e., the form ufuf?uf ®(u?, u?) where @ is a polynomial.

Thls remark leads to another way of viewing the Heun and Jacobi bases. In the
equation Ay = —J(J + N + 1)y with Ay given by (2.5) and Ay replaced by the
values —{y, ((x +1p — 1), k = 1,2,3 we set ¢ = ubu?ui ®(z1, x2) and introduce the
new coordinates x; = u?, zo = u3. The eigenvalue equation for ® reads

(2.24) H®=—-jj+G—-1)®
where

0? 2 9
(2.25) H = ;1 — x;xj) G20, + ;(% — ze)a—ml

Here G = 71 + 72 + 3 and in this particular case
1
1
= i(J_L) =0,1,2,....

This coincides with equation (1.4) in [8]. In particular H maps polynomials of
maximum degree m; in x; to polynomials of the same type. Furthermore, it is easy
to see that the polynomial eigenfunctions of H form a basis for the space of all
polynomials f(x1,x3) and that the spectrum of H acting on this space is exactly
{-j(Gj+G—-1):j=0,1,...}. It is also shown in [8] that H = Ay + Ay where Ay
is the Laplace Beltrami operator on Ss and

(2.27) Ao =Y hi— 5+~ Gl

Moreover, H is self-adjoint with respect to the inner product

(2.28) (f1, f2) = // f1(x) fo(x)dw

z1,22>0,1—21—x2>0

where

(2.29) dw =z~ 1ng 1(1 — 1 — x2)" tdryday

(H f1, f2) = (f1, Hf2).
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Here f1, fo are polynomials in x = (21, x3). For fixed j the polynomials

(2.30)
D (w1, T2) = (1 + wo) PRI (9 4 27, — 1)
2.171

Y2—1, y1—1
x P2~h Bt
L1 + T2

—1), m=0,1,...,j

form an orthogonal basis for the eigenspace corresponding to eigenvalue —j(j +
G —1). (This is the orthogonal basis of Proriol [9] and of Karlin and McGregor
[10]). Similarly the Heun polynomials ®}, , , q(x)iﬁzl t20,4(y) Where ¢ runs over
the possible eigenvalues, form an alternate orthogonal basis for this same space.
Moreover as pointed out in [11] these bases correspond to spherical and ellipsoidal
coordinates on the 2-sphere and are the only coordinates in which A, separates.

With this point of view we are operating on the sphere S5 rather than S, and our
two distinguished orthogonal bases are the only ones possible rather than two out
of a multiplicity of separable systems on .5, for large n. The principal advantage of
this new point of view is that the eigenfunctions are obviously polynomials in z1, x5
and that the only requirement on the constants 71,72, 7vs to ensure orthogonality
is that they be strictly positive. Thus the ¢; and n; need not be integers; it is only
required that 2¢; + n; +1 > 0.

In the following our expansion formulas are valid for all real «; > 0. In the
special case 71 = 73 = y3 = % we have H = A,, the Laplace-Beltrami operator on
Ss. In this case the eigenvalue equation Ay® = —j(j + 3)® admits the Lie algebra
so(3) as a symmetry algebra. A basis for so(3) is {u104, — u20y,,u30u,, u30y, }
where uz = +(1 — u? — u2)2. This extra symmetry is associated with the fact
that there are additional polynomial solutions of the eigenvalue equation (see §3 of
reference [8]). In particular the equation admits polynomial solutions of the form
f(u1,uz) and the spectrum of A, acting on the space of all such polynomials is
—j(j + 3) where now 2j = 0,1,2.... Furthermore there exist solutions of the form
usg(u1,uz) with ¢ a polynomial and with the same eigenvalues. The dimension
of each eigenspace is 2j + 1 rather than j + 1 for the general case. In this special
case the eigenfunctions corresponding to spherical coordinates are just the spherical
harmonics whereas those corresponding to ellipsoidal coordinates are products of
Lamé polynomials. For the group theoretic solution of the problem of expanding
the Lamé basis in terms of a spherical harmonic basis see [11], [12], [13].

Returning to the case of general ¢;, n; we consider the problem of expanding the
Heun basis (2.9) in terms of the Jacobi polynomial basis (2.20), (2.23), (2.30):

£y, b2 £
(2'3]‘) ¢ = ull u22 u33(Pljzlzzzgq(m)(ﬁgzlfzﬁgq(y)
J
- §m¢J€1£2€3M(97 ¢)

m=0

Three term recurrence relations for the expansion coefficients &, (where M =
¢1 4 €3 + 2m) can be deduced by requiring that

(2.32) My = xip.
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To obtain the recurrence relations we need the action of the various pieces of M on
the Jacobi bases ¥y, 0,0,01 (6, ¢). Since M commutes with H there must exist an
expansion of the form M, =Y X, 9 m+r. Indeed, we have

+1

(2.33) Mo, 60, (0,8) = > Xoth,055, 1420 (0, )
r=—1

where

Xl(maj)

(2.34)

dler—e)m+rt+trtm+ti-z—m+ji-—m+1)(n+r+m-1)
(71 + 72 +2m — 1) (71 + 72 + 2m)

de(n%j)

_Hea—e)mtrtmt+i-N(Em+i+ 1) -1)0n—1)
(71 +792+2m —1)(y1 + 792 +2m — 2)

Y

Xb(”%j)“x
C2er—e)mPAmyi+ e —1) -2 — i+t DI+ —2)(1—12)

N (71 + 72 +2m = 2) (71 + 72 + 2m)

(e1 — ea)mys(y1 — v2)(m + 72)
(71 + 792 +2m —2) (71 + 72 + 2m)

+2(e1 +e2)[-m® —m(y1i +7y2 — 1)+ 2+ (v + 72+ 73— 1)]
+ dez[m? + m(y1 + v2 — 1)] + 4q.

Keys to deriving this result are the following recurrence formulas for Jacobi poly-
nomials P24 (x)

(2.35) zPP = AP + BP*P + CP
_ snra)n+h) . (B-a)Bta)
2n+a+B+1)(2n+a+p)’ Cn+a+B+2)2n+a+p)

2(n+1)(n+a+p+1)
C2n+a+B+2)2n+a+B+1)’

d
(1—a%) P = APYP + BPP 4+ CPYY)
T

n+1
2t Bntatsil) o nfa—fntat])
C 2nta+B8+1)02n+a+p) ] C 2nta+B+2)2n+a+p)

2n(n+1)(n+a+ B +1)
2n+a+B8+2)2n+a+pB+1)

(To prove (2.33) it is enough to use relations (2.35) to evaluate both sides of (2.33)
for a fixed choice of the variable #. Thus a one-variable expansion in ¢ leads to a
two-variable expansion in 6§ and ¢.) Now substituting the expansion (2.31) into the
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eigenvalue equation M1 = x9 and using (2.33) we find the three term recurrence
relation

(236) Xl(m - lv.j)gm—l + (XO(maj) - X)gm + X—l(m + lv.j)gm—{—l =0

where m = 0,1, ...7. Consequently the j 4+ 1 independent eigenvalues ¢ are calcu-
lated from the determinant
(2.37)
XO(j,j)_X Xl(j_l,.])
X—l(jaj) XO(j_l,j)_X Xl(.]_2,.7)

X—l(lv.j) XO(Oaj) - X

To obtain the expansions in terms of one variable from (2.31) we proceed as follows.
For the two choices of u;, i = 1,2,3 given by (2.2) and (2.18) take y = e3, 0 = 7.
Then the expression has the form

J
(2.38) O () = Ppy0,0() = > Am P " (cos 29)
m=0
where
cos2¢ = 2 (z—e) —1.
(e2 —e1)

This is an expansion of type 2 with u = 0. A different type of expansion can be
obtained by taking ¢ = m/2 and y = e;. The resulting expression has the form

J
(2.39) o) (z) = Z Am (sin 9)2ij2T7:71+72_1’ 7371 (cos 26)
m=0
where
cos 20 = —27(:6 —e2) — 1.
(e2 — e3)

In both these examples the dependence of the 4,, and 7,, coefficients on the indices
lq,05,03,q has been suppressed.

This second type of expansion of a Heun polynomial appears to be new, at least
in this explicit form. Everything that was done in the derivation of expansions
(except the limits of summation on r) could be extended to the representation
of Heun functions when J, {1, {5, {3 are complex. Consequently representations of
such functions in terms of expansions whose coefficients obey three term recurrence
relations can be derived. The convergence of series of this type will be discussed
elsewhere.
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