Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from the thesis.
Mycobacterium tuberculosis strains in New Zealand: phylogeny and structural biology

A thesis
submitted in fulfilment
of the requirements for the degree
of
Doctor of Philosophy in Biological Sciences
at
The University of Waikato
by
Claire Vignette Mulholland

2019
Abstract

Mycobacterium tuberculosis is an obligate human pathogen and is the primary causative agent of tuberculosis. New Zealand has a relatively low incidence of tuberculosis disease, however, Māori (the indigenous people of New Zealand) and Pacific People are disproportionally affected. Molecular typing shows that approximately two-thirds of *M. tuberculosis* isolates from New Zealand-born patients can be assigned to clusters of related strains. The largest *M. tuberculosis* cluster in New Zealand is known as the ‘Rangipo’ cluster and is predominantly found in Māori. This strain has been the source of several tuberculosis outbreaks over the last 30 years and anecdotal evidence suggests it may be particularly virulent. Two other large clusters, known as the ‘Southern Cross’ and ‘Otara’ clusters, most commonly occur in Pacific People.

Here, whole genome sequencing, phylogenetics and structural biology were used to investigate evolutionary origins and functional consequences of genomic diversity in New Zealand *M. tuberculosis* clusters, with a particular focus on the Rangipo strain. Analysis of Rangipo strain non-synonymous single nucleotide polymorphisms (nsSNPs) identified bacterial genetic factors that may contribute to the high transmissibility of this strain. The F$_{420}$-dependent oxidoreductase Rv2893 harbours a Rangipo-specific G72S mutation encoded by a nsSNP. H37Rv and Rangipo Rv2893 structures were solved and show the effect of this G72S mutation. Binding of the F$_{420}$ cofactor was confirmed and characterised. SNP analyses also guided the optimisation of a diagnostic assay for rapid Rangipo strain classification at low cost and with high discriminatory power. Phylogenetic analyses revealed the Rangipo and Otara clusters belong to a larger *M. tuberculosis* clade of French/European origin that is also prevalent in indigenous populations in Canada. Molecular dating indicates dispersal of this clade to the South Pacific was driven by expanding European trade networks in the early 19th century and identifies host factors that have contributed to the dispersal and expansion of the Rangipo and Otara strains.

Overall, these results show that relatively recent changes in host ecology have likely played a crucial role in driving the success of the Rangipo strain in New Zealand and point to bacterial genetic factors that may influence its virulence and thereby also contribute to its prevalence.
Acknowledgements

First and foremost, I would like to thank my primary supervisor Prof Vic Arcus. Your ongoing support, expertise and guidance have been invaluable throughout this work. I admire your intellect and enthusiasm and I am most grateful to have been a student of yours. Thank you to my secondary supervisor Dr Ray Cursons, your encouragement and advice along the way has been greatly appreciated.

To the other members of the Arcus lab; Jo, Erica, Emma S, Emma A, Heng, Vikas, Chelsea, Tiffany, Kirsty, Annmarree, Liz, Mitchell, Brooke and Daniel, thank you. I couldn’t imagine getting through this without you and I am grateful for your support and friendship, it has made the days enjoyable and the challenging times more manageable. A special thank you to Judith for being a wonderful ‘lab Mum’. Your kindness and encouragement are deeply appreciated, and of course your excellent baking too. Jo, Erica and Emma S, thank you for reading chapters of this thesis, you are all researchers I admire and am grateful to have worked with.

To Prof Greg Cook, Dr Htin Lin Aung, Dr Sally Roberts, Dr Noel Karalus and Duncan Thorpe, thank you for collaboration, support and enthusiasm. I have been fortunate to collaborate with such a great range of people; your varying expertise and help has been invaluable. Htin, I have greatly appreciated your encouragement and mentoring throughout my PhD and am grateful to have worked with you. To Caitlin Pepperell at the University of Madison-Wisconsin, thank you for giving me the opportunity to learn from you and your group and for your support. Your involvement and expertise have been instrumental to part of this work.

Thank you to the Maurice Wilkins Centre for my doctoral scholarship and other opportunities provided along the way, and also the Waikato Graduate Women Educational Trust for funding to support me through this research.

Last but not least, to my friends and family, thank you for your continued love and support throughout my studies. Grandma and Grandad, thank you for backing me along this journey and for keeping my freezer well stocked. And especially to my parents, the opportunities in life you’ve provided have enabled me to get here and I cannot express my gratitude enough. Dad, thank you for believing in me and for your unwavering support. Mum, thanks to you I’m always reminded to “just try”, I know you’d be proud.
Table of Contents

Abstract... i
Acknowledgements ... ii
Table of Contents ... iii
List of Figures ... x
List of Tables ... xiii
Abbreviations ... xv

1 Introduction... 1
 1.1 Tuberculosis: The disease .. 1
 1.2 Mycobacterium tuberculosis: The pathogen .. 2
 1.3 Evolution and genetic diversity of the M. tuberculosis complex 4
 1.3.1 The M. tuberculosis complex ... 4
 1.3.2 Emergence of the M. tuberculosis complex ... 6
 1.3.3 Phylogeography of the M. tuberculosis complex ... 7
 1.3.4 Genetic variation within the M. tuberculosis complex ... 8
 1.4 Consequences of genetic variation in M. tuberculosis ... 9
 1.4.1 Impact on infection and disease outcome ... 9
 1.4.2 Molecular determinants of virulence .. 10
 1.5 Genotyping M. tuberculosis .. 12
 1.5.1 Traditional molecular typing methods .. 12
 1.5.2 Large sequence polymorphisms and single nucleotide polymorphisms 15
 1.6 Whole genome sequencing of M. tuberculosis ... 17
 1.7 Tuberculosis in New Zealand .. 18
 1.7.1 The New Zealand population .. 18
 1.1.1 Tuberculosis incidence in New Zealand .. 19
 1.1.2 Molecular typing in New Zealand ... 21
1.1.3 The Rangipo cluster ... 23
1.8 Objectives ... 25

2 Rangipo SNP-based analyses ... 26

2.1 Introduction .. 26
 2.1.1 Objectives ... 28
 2.1 Methods .. 28
 2.1.1 Previous Rangipo strain outbreaks ... 28
 2.1.2 M. tuberculosis genomic DNA ... 28
 2.1.3 Identification of putative Rangipo specific SNPs 29
 2.1.3.1 In silico SNP functional assessment 30
 2.1.4 Validation of SNPs by Sanger sequencing 30
 2.1.4.1 Primers ... 30
 2.1.4.2 Polymerase Chain Reaction .. 30
 2.1.4.3 Agarose Gel Electrophoresis ... 31
 2.1.4.4 ExoISAP treatment and Sanger sequencing of PCR products 31
 2.1.5 Sublineage classification .. 32
 2.1.5.1 MIRU based sublineage classification 32
 2.1.5.2 S lineage PCR-RFLP assay ... 32
 2.1.6 DS6Quebec deletion PCR assays .. 33
 2.1.7 Contig mapping and analysis .. 35
 2.1.8 Rangipo diagnostic assay .. 35
 2.1.8.1 Rangipo PCR-RFLP assay ... 36
 2.1.8.2 Sputum samples ... 37
 2.1.9 Ethical Considerations .. 37
 2.2 Results ... 37
 2.2.1 Previous Rangipo strain outbreaks 37
 2.2.2 Rangipo SNPs ... 38
2.2.2.1 Gene functional categories ... 41
2.2.2.2 SNP functional effect prediction ... 43
2.2.2.3 Rv1631/coaE Y363D SNP .. 45
2.2.2.4 Rv2893 G72S SNP ... 47
2.2.3 Lineage classification .. 49
2.2.3.1 S lineage classification PCR-RFLP assay 49
2.2.4 DS6Quebec deletion .. 50
2.2.5 Rangipo diagnostic ... 54
2.2.5.1 Rangipo PCR-RFLP assay ... 55
2.2.5.2 Evaluation of the Rangipo diagnostic in a clinical setting 57
2.3 Discussion .. 58
2.3.1 Rangipo SNPs ... 59
2.3.2 The S lineage .. 62
2.3.3 DS6Quebec deletion ... 64
2.3.4 Rangipo diagnostic ... 65
2.3.5 Conclusions .. 65

3 Structure of the F\textsubscript{420}-dependent oxidoreductase Rv2893 67

3.1 Introduction ... 67
3.1.1 Cofactor F\textsubscript{420} .. 68
3.1.2 F\textsubscript{420}-dependent enzymes .. 69
3.1.2.1 Rv2893 .. 70
3.1.3 Objectives .. 71
3.2 Methods .. 72
3.2.1 Molecular cloning of Rv2893 ... 72
3.2.2 Protein expression in \textit{M. smegmatis} .. 73
3.2.2.1 Small scale protein expression trails ... 73
3.2.3 Protein purification ... 74
3.2.3.1 Immobilised metal affinity chromatography purification 74
3.2.3.2 Anion exchange chromatography .. 74
3.2.3.3 Buffer exchange .. 75
3.2.3.4 Size exclusion chromatography ... 75
3.2.3.5 Determination of protein concentration by A280 76
3.2.4 Protein characterisation .. 76
3.2.4.2 Molecular weight determination by size exclusion chromatography .. 76
3.2.4.2 Melt temperature determination by differential scanning fluorimetry .. 76
3.2.5 Protein Crystallography ... 77
3.2.5.1 Crystallisation robot screens .. 77
3.2.5.2 Crystallisation fine screens .. 77
3.2.5.3 Heavy atom derivatisation .. 77
3.2.5.4 Ligand soaks ... 78
3.2.6 X-Ray diffraction data collection and structure determination 78
3.2.6.1 Data collection ... 78
3.2.6.2 Structure solution using single-wavelength anomalous dispersion .. 79
3.2.6.3 Structure solution by molecular replacement 79
3.2.6.4 Model Refinement ... 80
3.2.6.5 Structure Analysis ... 80
3.3 Results ... 81
3.3.1 Heterologous expression and purification of Rv2893 81
3.3.1.1 Small scale expression trails ... 81
3.3.2 Large scale expression and protein purification 83
3.3.3 Melt temperature of Rv2893G72S and Rv2893H37Rv 86
3.3.4 Crystallisation of Rv2893 ... 86
3.3.5 Experimental Phasing ... 88
3.3.6 Structure determination by molecular replacement 91
 3.3.6.1 Rv2893 structural models 94
3.4 Analysis of Rv2893 structures ... 96
 3.4.1 β6-α6 loop ... 102
 3.4.2 F420 binding ... 103
 3.4.3 Substrate binding region and active site 105
 3.4.4 The Rangipo specific SNP encoding a G72S mutation 108
3.5 Discussion ... 110
 3.5.1 Conclusions ... 114

4 Evolutionary analysis of the Rangipo and Otara tuberculosis clusters 115

4.1 Introduction ... 115
 4.1.1 Historical and demographic context 116
 4.1.1.1 Early European presence in Polynesia 117
 4.1.1.2 European discovery and early settlement of New Zealand 118
 4.1.1.3 New Zealand and the Pacific Islands 119
 4.1.1.4 A brief history of tuberculosis in New Zealand 120
 4.1.2 Phylodynamics and molecular dating 121
 4.1.3 Objectives ... 122

4.2 Methods ... 122
 4.2.1 Whole genome sequencing of New Zealand M. tuberculosis isolates .. 122
 4.2.1.1 Clinical M. tuberculosis isolates 122
 4.2.1.2 Whole genome sequencing 123
 4.2.2 Lineage assignment .. 123
 4.2.3 Global M. tuberculosis L4.4 dataset 124
 4.2.3.1 Additional Rangipo M. tuberculosis genomes 124
 4.2.3.2 Canadian DS6Quebec lineage M. tuberculosis genomes 124
 4.2.3.3 Publicly available L4.4 genomes 124
4.2.3.4 Datasets for phylogenetic analyses .. 125
4.2.4 Reference guided assembly and variant calling 125
4.2.5 Phylogenetic inference .. 126
 4.2.5.1 Nucleotide Alignments .. 126
 4.2.5.2 Selection of nucleotide substitution model 126
 4.2.5.3 Maximum likelihood phylogenetic analysis 127
4.2.6 Diversity and clustering analyses ... 127
4.2.7 Rangipo SNPs ..·· 127
4.2.8 Bayesian evolutionary analysis ... 128
 4.2.8.1 Assessment of temporal signal in data 128
 4.2.8.2 BEAST analyses .. 128
 4.2.8.3 Model selection .. 130
4.3 Results ... 130
 4.3.1 New Zealand M. tuberculosis cluster isolates 130
 4.3.1.1 Illumina whole genome sequencing 130
 4.3.1.2 Lineage assignment .. 131
 4.3.1.3 Phylogeny, clustering and genetic diversity of the New Zealand isolates ... 131
 4.3.1.4 Phylogenetic analysis of additional Rangipo strain genomes 136
4.3.2 Rangipo strain SNPs .. 137
 4.3.2.1 Common Rangipo SNPs .. 137
 4.3.2.2 Rangipo specific SNPs ... 139
4.3.3 Global phylogeny of L4.4 .. 142
 4.3.3.1 L4.4 dataset ... 142
 4.3.3.2 Maximum likelihood phylogeny of L4.4 143
 4.3.3.3 DS6Quebec deletion ... 145
4.3.4 Molecular dating ... 146
 4.3.4.1 L4.4.1.1/S dataset ... 146
4.3.4.2 Assessment of temporal signal for tip-dating 147
4.3.4.3 Molecular dating in BEAST2 ... 149
4.3.4.4 Model selection ... 152
4.3.4.5 Validity of results .. 154
4.4 Discussion ... 155
4.4.1 The New Zealand *M. tuberculosis* clusters 155
4.4.2 Origins and dispersal of the DS6Q clade in Polynesia 157
 4.4.2.1 History of the Otara cluster ... 159
 4.4.2.2 History of the Rangipo cluster 160
4.4.3 Tuberculosis stigma .. 161
4.4.4 The L4.4 sublineage .. 162
 4.4.4.1 L4.4.1.1/S sublineage substitution rate 163
4.4.5 Study Limitations .. 165
4.4.6 Conclusions ... 165

5 Conclusions and future directions ... 166

6 References .. 169

7 Appendices .. 187
 Appendix A: Appendices relating to Chapter Two 187
 Appendix B: Appendices relating to Chapter Three 189
 Appendix C: Appendices relating to Chapter Four 195
 Appendix D: Publications .. 202
List of Figures

Figure 1.1. Risk factors for tuberculosis infection and progression to active disease ... 2

Figure 1.2. Phylogeny of the MTBC ... 5

Figure 1.3. Schematic showing the principles of traditional molecular typing methods ... 14

Figure 1.4. Phylogeny of the MTBC based on LSPs and SNPs 16

Figure 1.5. Map of New Zealand showing the main islands and geographical regions ... 19

Figure 1.6. New Zealand tuberculosis notification rates by ethnicity (2011–2015) ... 20

Figure 1.7. Proportion of clustered tuberculosis cases in New Zealand (2011–2015) ... 22

Figure 2.1. *M. tuberculosis* Rangipo strain isolates sequenced by Colangeli *et al.* (2014) ... 27

Figure 2.2. Domain structure of *M. tuberculosis* CoaE and position of the Y363D RS-nsSNP ... 45

Figure 2.3. The conserved protein GrpB from *E. faecalis* (2NRK) 46

Figure 2.4. Multiple sequence alignment of F420-dependent of bacterial LLHT family proteins ... 48

Figure 2.5. Corresponding position of the Rangipo G72S SNP site in *M. tuberculosis* FGD (3B47) ... 48

Figure 2.6. S lineage PCR-RFLP assay ... 50

Figure 2.7. Schematic of the DS6\(^{\text{Quebec}}\) and RD152 deletions 51

Figure 2.8. DS6\(^{\text{Quebec}}\) deletion PCR assays ... 52

Figure 2.9. DS6\(^{\text{Quebec}}\) deletion PCR assay typing of New Zealand *M. tuberculosis* cluster isolates ... 54

Figure 2.10. Rangipo strain specific PCR-RFLP diagnostic assay 56

Figure 2.11. Rangipo PCR-RFLP diagnostic screening of clinical sputum samples ... 57

Figure 3.1. Molecular structure of cofactor F420 ... 68
Figure 3.2. Genomic context of Rv2893 in the *M. tuberculosis* H37Rv genome ... 71

Figure 3.3. Small scale protein expression trails and his-tag binding of Rv2893 .. 82

Figure 3.4. Rv2893 protein purification by immobilised metal affinity chromatography (IMAC) and anion exchange chromatography 84

Figure 3.5. Melting temperature (T_m) comparison of Rv2893^{H37Rv} and Rv2893^{G72S} .. 86

Figure 3.6. Typical morphology of Rv2893 crystals .. 87

Figure 3.7. Heavy metal native PAGE gel shift assay to identify heavy atom derivatives for experimental phasing of Rv2893 88

Figure 3.8. Diffraction of Rv2893 heavy metal derivatives 89

Figure 3.9. COOT electron density maps for ligand binding in Rv2893 95

Figure 3.10. Structure of Rv2893 .. 97

Figure 3.11. Dimeric arrangement of Rv2893 .. 98

Figure 3.12. Overall topology of different F_{420}-dependent LLHTs 100

Figure 3.13. Multiple sequence alignment of LLHT proteins 101

Figure 3.14. The \(\beta_6-\alpha_6 \) loop ... 102

Figure 3.15. F_{420} binding to Rv2893 and other LLHTs 104

Figure 3.16. Rv2893 substrate binding cleft ... 106

Figure 3.17. The unidentified ligand bound in the Rv2893 active site 108

Figure 3.18. Rangipo specific G72S SNP ... 108

Figure 3.19. Structural location of the Rangipo specific G72S SNP 109

Figure 4.1. Map of Oceania highlighting the Polynesian sub-region 116

Figure 4.2. Māori and European population in New Zealand, 1840–1901 119

Figure 4.3. Pacific Island Polynesian population in New Zealand, 1916–1976 ... 119

Figure 4.4. New Zealand tuberculosis notification rates for European and Māori, 1945–1978 .. 120

Figure 4.5. Phylogeny of New Zealand *M. tuberculosis* cluster isolates 132

Figure 4.6. WGS-based clustering of New Zealand *M. tuberculosis* isolates... 133
Figure 4.7. Phylogeny of 21 M. tuberculosis Rangipo strain genomes.......... 136

Figure 4.8. STRING protein-protein associations among the largest cluster of proteins harbouring common Rangipo SNPs................................. 138

Figure 4.9. STRING protein-protein associations among proteins harbouring Rangipo specific nsSNPs ... 141

Figure 4.10. Global distribution of 236 L4.4 sublineage genomes included in this study (dataset 1, n = 236) ... 142

Figure 4.11. Global phylogeny of the L4.4 sublineage................................. 143

Figure 4.12. Global phylogeny of the L4.4 sublineage and regional distribution of sublineages.. 144

Figure 4.13. Phyllogenetic placement of the DS6Quebec deletion in the L4.4 sublineage .. 146

Figure 4.14. Global distribution of L4.4.1.1/S sublineage genomes used for molecular dating analyses (dataset 2, n = 117) 147

Figure 4.15. Assessment of temporal signal for tip-dating.............................. 148

Figure 4.16. Bayesian phylogeny of the L4.4.1.1/S sublineage....................... 149

Figure 4.17. Bayesian phylogeny and population dynamics of the L4.4.1.1/S sublineage .. 150

Figure 4.18. Marginal likelihood estimates for replicate path sampling runs in BEAST2... 153

Figure 4.19. Comparison of parameter estimates using differing population size prior specifications .. 154

Figure 4.20. Dated Bayesian phylogeny of the DS6Q clade and historical timeline .. 158

Figure 4.21. Comparison of substitution rate estimated in this study with previously published studies... 164
List of Tables

Table 2.1. Phylogenetically informative S lineage marker SNPs 32
Table 2.2. S lineage PCR-RFLP assay .. 33
Table 2.3. DSG_{Quebec} deletion assays .. 34
Table 2.4. Rangipo specific PCR-RFLP diagnostic assay 36
Table 2.5. Contact tracing of previous Rangipo strain outbreaks.................... 38
Table 2.6. Classification of 247 common Rangipo SNPs 39
Table 2.7. Non-synonymous Rangipo specific SNPs 40
Table 2.8. Functional categories of genes harbouring Rangipo SNPs.............. 42
Table 2.9. SNAP2 functional effect predictions for RS-nsSNPs 44
Table 3.1. Conditions used to grow Rv2893 crystals used for data collection 87
Table 3.2. Data collection statistics for Rv2893 phasing and statistics for the experimentally phased model ... 90
Table 3.3. Data collection statistics for apo and F_{420} bound Rv2893^{G72S} and Rv2893^{H37Rv} .. 92
Table 3.4. Refinement and model statistics for native and F_{420} bound Rv2893^{G72S} and Rv2893^{H37Rv} .. 93
Table 3.5. RMSD in the C\alpha atomic positions between Rv2893 structures 94
Table 3.6. Proteins in the PDB with structural similarity to Rv2893 99
Table 4.1. Summary of Illumina WGS data for New Zealand M. tuberculosis cluster isolates .. 131
Table 4.2. Genetic variation in New Zealand M. tuberculosis cluster isolates .. 133
Table 4.3. Pairwise SNP distances .. 135
Table 4.4. STRING network analysis of proteins harbouring common Rangipo strain nsSNPs ... 137
Table 4.5. Functional enrichment analysis for clusters of \geq 10 proteins harbouring common Rangipo strain nsSNPs 138
Table 4.6. Rangipo specific nsSNPs identified from Illumina WGS data 140
Table 4.7. Gene functional categories of Rangipo specific nsSNPs 141
Table 4.8. Substitution rate and TMRCA estimates for the L4.4.1.1/S sublineage .. 151

Table 4.9. Model evaluation using path sampling ... 153
Abbreviations

SI (Système Internationale d'Unités) abbreviations are used throughout this thesis for units and elements. Further abbreviations are listed below.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>three-dimensional</td>
</tr>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>Adf</td>
<td>F$_{420}$-dependent alcohol dehydrogenase</td>
</tr>
<tr>
<td>AJHR</td>
<td>Appendices to the Journals of the House of Representatives</td>
</tr>
<tr>
<td>ASU</td>
<td>asymmetric unit</td>
</tr>
<tr>
<td>BEAST</td>
<td>Bayesian Evolutionary Analysis by Sampling Trees</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bMer</td>
<td>Methanosarcina barkeri Mer</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSP</td>
<td>Bayesian skyline plot</td>
</tr>
<tr>
<td>C-terminal</td>
<td>carboxy-terminus</td>
</tr>
<tr>
<td>CoA</td>
<td>Coenzyme A</td>
</tr>
<tr>
<td>DHB</td>
<td>district health board</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DR</td>
<td>direct repeat</td>
</tr>
<tr>
<td>DSF</td>
<td>differential scanning fluorometry</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid (disodium salt)</td>
</tr>
<tr>
<td>ENA</td>
<td>European Nucleotide Archive</td>
</tr>
<tr>
<td>ESR</td>
<td>The Institute of Environmental Science and Research</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FDOR</td>
<td>flavin/deazaflavin oxidoreductase</td>
</tr>
<tr>
<td>FGD</td>
<td>F$_{420}$-dependent glucose-6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>FMN</td>
<td>flavin mononucleotide</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast protein liquid chromatography</td>
</tr>
<tr>
<td>F_{ST}</td>
<td>pairwise fixation index</td>
</tr>
<tr>
<td>G6P</td>
<td>glucose-6-phosphate</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
</tr>
<tr>
<td>GTR</td>
<td>general time reversible</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>His-tag</td>
<td>poly-histidine tag</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov model</td>
</tr>
<tr>
<td>HPD</td>
<td>highest posterior density</td>
</tr>
<tr>
<td>IMAC</td>
<td>immobilized metal affinity chromatography</td>
</tr>
<tr>
<td>indel</td>
<td>small insertions and deletions</td>
</tr>
<tr>
<td>IS6110</td>
<td>Insertion sequence 6110</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>KeV</td>
<td>kiloelectron volt</td>
</tr>
<tr>
<td>kMer</td>
<td>Methanopyrus kandleri Mer</td>
</tr>
<tr>
<td>LAM</td>
<td>Latin-American Mediterranean</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>LLHT</td>
<td>luciferase-like hydride transferase</td>
</tr>
<tr>
<td>LSP</td>
<td>large sequence polymorphism</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov chain Monte Carlo</td>
</tr>
<tr>
<td>MELAA</td>
<td>Middle Eastern/Latin American/African</td>
</tr>
<tr>
<td>Mer</td>
<td>methylenetetrahydromethanopterin reductase</td>
</tr>
<tr>
<td>MIRU</td>
<td>mycobacterial interspersed repetitive units</td>
</tr>
<tr>
<td>MRCA</td>
<td>most recent common ancestor</td>
</tr>
<tr>
<td>MTBC</td>
<td>Mycobacterium tuberculosis complex</td>
</tr>
<tr>
<td>mtbFGD</td>
<td>Mycobacterium tuberculosis FGD</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>N-terminal</td>
<td>amino-terminus</td>
</tr>
<tr>
<td>NAD</td>
<td>nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>nsSNP</td>
<td>non-synonymous single nucleotide polymorphism</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>protein data bank</td>
</tr>
<tr>
<td>PDIM</td>
<td>phthiocerol dimycocerosate</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>pI</td>
<td>isoelectric point</td>
</tr>
<tr>
<td>RD</td>
<td>region of difference</td>
</tr>
</tbody>
</table>
RE restriction enzyme
RFLP restriction fragment length polymorphism
rhFGD *Rhodococcus jostii* FGD
RMSD root mean squared deviation
RNA ribonucleic acid
rpm revolutions per minute
RS-SNP Rangipo-specific single nucleotide polymorphism
RS-nsSNP Rangipo-specific non-synonymous single nucleotide polymorphism
s/s/y substitutions per site per year
SAD single-wavelength anomalous diffraction
SDS sodium dodecyl sulfate
SNP single nucleotide polymorphism
SOC super optimal broth with catabolite repression
SRA short read archive
sSNP synonymous single nucleotide polymorphism
TE tris ethylenediaminetetraacetic acid
T_m melting temperature
tMer *Methanobacterium thermoautotrophicum* Mer
TMRCRA time to most recent common ancestor
UV ultra-violet
v/v volume per volume
VCF variant call format
VNTR variable number tandem repeats
w/v weight per volume
WGS whole genome sequencing
x g times the force of gravity
Chapter One

Introduction

1.1 Tuberculosis: The disease

Tuberculosis is primarily a pulmonary disease but can also affect almost every organ of the body. Tuberculosis disease in humans is most commonly caused by the bacterial species *Mycobacterium tuberculosis*, an obligate human pathogen. Infection occurs when a person inhales airborne bacteria aerosolised by an infected individual. Inhaled bacilli are engulfed by alveolar macrophages in the lung and a host immune response is triggered involving immune cell recruitment to the site of infection, and an immune structure called a granuloma is formed. The granuloma is a compact aggregation of immune cells and serves as a host protective response to wall off and eradicate the infection (reviewed in Ramakrishnan 2012). However, in some individuals, eradication and containment fails and infection progresses to active disease. Active tuberculosis occurs when the granuloma structure undergoes caseous necrosis and breaks down, causing localised tissue damage and lung cavitation. This allows bacilli to be released into the airways and infected individuals may transmit the disease to others by coughing or through saliva. Symptoms of the disease include a persistent cough, night sweats, fever and fatigue, and left untreated has around a 70% mortality rate (Tiemersma *et al.* 2011).

The result of *M. tuberculosis* infection is highly variable and comprises a spectrum of responses ranging from clearance, to subclinical latent infection, to the development of active disease (Young *et al.* 2009). The course of the disease is also variable and comprises of a range of clinical presentations, including pulmonary disease and extrapulmonary forms such as lymph node tuberculosis and miliary tuberculosis (widespread dissemination via the blood stream). The outcome of exposure and infection is determined by a complex interplay between the host and pathogen. The virulence of the infecting strain, size of the bacterial inoculum, host
clinical characteristics, and social/environmental factors all contribute to the outcome of infection (Lönnroth et al. 2009; Salgame et al. 2015) (Figure 1.1). For the majority of individuals infected with \textit{M. tuberculosis}, clinical symptoms do not develop and they are not a risk for spreading the disease. Approximately 5–10\% of infected individuals however will progress to active disease in their lifetime, with the majority doing so in the first two years of infection (Salgame et al. 2015). As active pulmonary tuberculosis is required for transmission to occur, progression to active disease and transmission are related in tuberculosis.

![Figure 1.1. Risk factors for tuberculosis infection and progression to active disease.](image)

1.2 \textit{Mycobacterium tuberculosis}: The pathogen

\textit{M. tuberculosis} is a slow growing mycobacterial species with a generation time of around 16–24 hrs. It is a gram-positive acid-fast aerobe and unlike other gram-positive bacteria, it has a thick and highly complex lipid-rich cell wall (reviewed in Brennan 2003; Cook \textit{et al.} 2009). This provides a hydrophobic permeability barrier that plays an important role in intrinsic antimicrobial resistance (Smith \textit{et al.} 2012)
and the array of lipids and glycolipids are also thought to be important for bacterial pathogenicity (Neyrolles and Guilhot 2011).

M. tuberculosis is a highly specialised pathogen and the mechanisms underlying its virulence are complex and multifaceted. *M. tuberculosis* virulence involves the ability of the bacilli to survive extracellularly until a new host is found and then to invade, survive and multiply within host macrophages upon infection. Two central features of *M. tuberculosis* virulence are; (1) its ability to cause active disease leading to cavitation and the expulsion of bacilli allowing transmission, and (2) its capability to persist in a subclinical latent state whilst maintaining the potential to reactivate even decades after infection. In order to achieve this, the pathogen has developed sophisticated strategies and acquired virulence factors to enable it to survive in challenging environments, counteract host antimicrobial responses, persist in a non-replicative state, and facilitate the progression to active disease.

M. tuberculosis lacks classical virulence factors, such as toxins, that are typical of other bacterial pathogens. In *M. tuberculosis*, a virulence factor can generally be considered as a gene whose loss leads to a decrease in pathogenicity but does not impair bacterial growth under standard *in vitro* conditions (Forrellad et al. 2013). Sassetti and Rubin (2003) have identified 194 genes that are essential for growth of *M. tuberculosis* in mice and represent essential virulence determinants, and dozens of additional virulence factors have been identified in experimental studies of individual genes and using comparative approaches. The manually curated virulence factor database PATRIC_VF (Wattam et al. 2014) currently lists over 450 virulence factors for the laboratory reference strain H37Rv. Identifying and understanding the role of virulence factors in *M. tuberculosis* is essential for the development of new drugs and vaccines to combat this important disease.
1.3 Evolution and genetic diversity of the *M. tuberculosis* complex

1.3.1 The *M. tuberculosis* complex

M. tuberculosis is a member of a group of closely related mycobacteria known as the *M. tuberculosis* complex (MTBC). The MTBC comprises seven human adapted lineages, the animal adapted strains, and the smooth tubercle bacilli *Mycobacterium canettii* (Figure 1.2). The human adapted lineages, lineages 1–7 (L1–L7), belong to the species *M. tuberculosis sensu stricto* (L1–L4 and L7) and *Mycobacterium africanum* (L5 and L6). Among these, L2, L3 and L4 are often referred to as the “modern” lineages and the remaining lineages as the “ancient” lineages (Brosch *et al.* 2002). The human adapted lineages show a strong phylogeographical structure, as further discussed further in Section 1.3.3. L4, the ‘Euro-American’ lineage, is the most widely globally dispersed of the human-adapted lineages. This lineage comprises ten separate sublineages (Figure 1.2), which have differing phylogeographic distributions (Stucki *et al.* 2016b). Within the animal adapted strains, different ecotypes are adapted to particular mammalian host species and have distinct species designations. For example, *Mycobacterium bovis* and *Mycobacterium pinnipedii* usually infect cattle and seals, respectively. The last member of the MTBC, *M. canettii*, is found only on the Horn of Africa and is assumed to be an opportunistic pathogen with an environmental reservoir (Koeck *et al.* 2011). In this thesis, the term MTBC is used to refer to all members of the MTBC excluding *M. canettii*.

Over a century after *M. tuberculosis* was originally isolated by Robert Koch in 1882, the first whole genome sequence of a *M. tuberculosis* strain (the laboratory reference strain, H37Rv) was determined, revealing a GC rich genome of 4.4 Mb, containing ~4,000 protein coding genes (Cole *et al.* 1998b). Since this time, the complete genome sequence of *M. africanum* (Zhu *et al.* 2015), *M. bovis* (Garnier *et al.* 2003), *M. canettii* (Supply *et al.* 2013), and numerous additional strains of *M. tuberculosis* have been determined.
Figure 1.2. Phylogeny of the MTBC. The MTBC comprises seven human adapted lineages (L1-L7) and the animal adapted strains. L4 splits into ten major sublineages as shown. Phylogenetic placement of the TbD1 deletion that differentiates between the “modern” (L2, L3, and L4) and ancient lineages (all other lineages) is shown. (Adapted from Stucki et al. (2016b)).
1.3.2 Emergence of the *M. tuberculosis* complex

M. tuberculosis was originally thought to have arisen in humans as a result of a zoonosis linked to animal domestication ~10,000 years ago. Molecular data however, has revealed that the animal adapted strains are nested within the diversity of extant human adapted lineages and have a reduced genome compared to *M. tuberculosis*, refuting the hypothesis that *M. tuberculosis* evolved from *M. bovis* (Brosch *et al.* 2002; Hershberg *et al.* 2008). The ancestor of the MTBC is generally now hypothesised to have evolved from a pool of environmental smooth tubercle bacilli similar to *M. canettii* (Supply *et al.* 2013). The acquisition of new genes by horizontal gene transfer as well as genomic decay appear to have played a crucial role in the early evolution and transition to a pathogenic lifestyle in the ancestor of the MTBC (Veyrier *et al.* 2009; Veyrier *et al.* 2011). Despite its important role in the early evolution of the pathogen, members of MTBC do not undergo horizontal gene transfer, and have a strongly clonal population structure (Baker *et al.* 2004; Hirsh *et al.* 2004; Supply *et al.* 2003).

Africa is the only continent where all extant MTBC lineages occur and the earliest branching clades are restricted to Africa, suggesting an African origin of the MTBC and subsequent dispersal throughout the world via human migrations (Comas *et al.* 2013; Hershberg *et al.* 2008; Wirth *et al.* 2008). The date at which the MTBC emerged remains much debated. Archaeological evidence suggests that tuberculosis is an ancient disease. The oldest biomolecular evidence for the MTBC comes from a bison bone from Wyoming dated to 17,000 years before the present (Rothschild *et al.* 2001), and infection with an MTBC strain dating back 9,000 years has been reported in Israel (Hershkovitz *et al.* 2008), however, the authenticity of this finding has been questioned (Wilbur *et al.* 2009). The ‘out-of-Africa’ hypothesis suggests the most recent common ancestor (MRCA) of the MTBC existed ~70,000 years ago and that the MTBC accompanied migrations of modern humans out of Africa (Comas *et al.* 2013). Conversely, two separate ancient DNA studies both estimated the MRCA existed fewer than 6,000 years ago (Bos *et al.* 2014; Kay *et al.* 2015). If the MRCA of the extant members of the MTBC is indeed younger than previously thought, this does not necessarily represent the time the disease first emerged as wholesale clonal replacement could have displaced ancient strain diversity.
1.3.3 Phylogeography of the *M. tuberculosis* complex

The geographical distribution of the human adapted lineages of the MTBC differ markedly and show a strong phylogeographical structure (Gagneux *et al.* 2006a; Gagneux and Small 2007; Hershberg *et al.* 2008). The most widely globally dispersed lineages are L4 and L2 (which includes the “Beijing” family). Conversely, L7 is almost exclusively found in Ethiopia (Firdessa *et al.* 2013) and the *M. africanum* lineages (L5 and L6) are largely restricted to West Africa (De Jong *et al.* 2010). The phylogeographical distribution of the human adapted lineages is suggestive of co-evolution and adaptation of particular lineages to sympatric human host populations (Baker *et al.* 2004; Brudie *et al.* 2006; Comas *et al.* 2013; Gagneux *et al.* 2006a; Hershberg *et al.* 2008; Hirsh *et al.* 2004; Wirth *et al.* 2008).

Adaptation of MTBC lineages to sympatric host human populations is supported by epidemiological studies in human populations whereby association of bacterial lineages with their sympatric host populations persist even in cosmopolitan environments where there is presumed mixing of human populations and bacterial strains (Gagneux *et al.* 2006a; Hirsh *et al.* 2004; Reed *et al.* 2009). Variation in host immunity is thought to play a role in this, a hypothesis supported by the finding that HIV infection, which causes immunodeficiency, disrupts the sympatric host-pathogen relationship (Fenner *et al.* 2013).

Comparison of the MTBC phylogeny with that of the main human mitochondrial haplogroups reveals congruence between the tree topologies, consistent with the MTBC diverging and evolving in parallel with its human host (Comas *et al.* 2013). In contrast, a similar analysis of the global phylogeographic structure of human Y-chromosome data did not identify strong signatures of co-divergence between *M. tuberculosis* and human populations (Pepperell *et al.* 2013). The more recent origin proposed for the MTBC (Bos *et al.* 2014; Kay *et al.* 2015) also precludes the possibly of co-evolution between humans and the MTBC and further, raises the question as to how the pathogen dispersed to achieve its current global distribution in this relatively recent timeframe. In a recent study, O’Neill *et al.* (2017) (preprint) sought to address this question using migration and demographic analyses. The authors connect major human events with global dispersal of the MTBC and present an historical context for a relatively recent evolutionary history of the MTBC based on mutation rates derived from ancient DNA analyses (O’Neill *et al.* 2017).
Regardless of the age of the MTBC, the association of different phylogenetic lineages of the MTBC with different host populations can still be hypothesised to reflect possible adaptation to specific human populations. Furthermore, the MTBC lineages appear to differ in their range of host specificity; some are suggested to behave as generalists able to persist in a range of human host populations, whilst others appear to be more specialist and infect only a small range of host populations (Brites and Gagneux 2015). This phenomenon is also observed amongst the ten major sublineages of the L4 lineage, which vary from being widely globally distributed to geographically restricted (Stucki et al. 2016b).

1.3.4 Genetic variation within the *M. tuberculosis* complex

Although the MTBC organisms are low in genomic diversity compared to other bacteria (Frothingham *et al*. 1994), they are genetically more diverse than traditionally assumed. There is increasing evidence that suggests this genomic variation can have phenotypic, clinical and epidemiological consequences (Section 1.4.1, reviewed in Coscolla (2017)). Members of the MTBC differ in their content of single nucleotide polymorphisms (SNPs), small insertions and deletions (indels) and large genomic deletions.

SNPs are one of the most common forms of genetic variation. The majority of these occur in coding regions, which comprise slightly over 90% of the *M. tuberculosis* genome (Cole *et al*. 1998a; Fleischmann *et al*. 2002). On average, *M. tuberculosis* clinical genomes harbour a SNP approximately every 3000 base pairs and two human adapted members of the MTBC differ by an average of around 1200 SNPs (Coscolla and Gagneux 2014). Analysis of the whole genome sequences of 1,601 MTBC isolates from around the world identified over 90,000 SNPs, of which almost 7,000 were strain specific (Coll *et al*. 2014). Strains belonging to L4 were found to contain 15–962 SNPs relative to the H37Rv reference genome, with an average of 746 per genome (Coll *et al*. 2014). A large proportion of SNPs occur as singletons (i.e. are only found in a single strain), a phenomenon suggested to be attributable to background selection (Pepperell *et al*. 2013). Due to their low frequency, such variants are better referred to as single nucleotide mutations rather than SNPs.
1.4 Consequences of genetic variation in *M. tuberculosis*

1.4.1 Impact on infection and disease outcome

It was previously thought that genetic variability between *M. tuberculosis* strains was not of clinical significance. However, increasing evidence now suggests that bacterial genetic background can have important clinical and epidemiological consequences. Numerous animal and *in vitro* studies of *M. tuberculosis* virulence have provided evidence of strain dependent differences in immunogenic and pathogenic properties of *M. tuberculosis* (Aguilar et al. 2010; Dormans et al. 2004; Lopez et al. 2003; Marquina-Castillo et al. 2009; Portevin et al. 2011; Theus et al. 2005). Evidence also suggests strain genotype can influence disease epidemiology and transmissibility (Anderson et al. 2013; De Jong et al. 2008; Kato-Maeda et al. 2010; Yang et al. 2012), the efficacy of BCG vaccination (Lopez et al. 2003; Tsenova et al. 2007), and the emergence of drug resistance (Drobniewski et al. 2005; Ford et al. 2013).

Strains belonging to the “modern” lineages typically have more virulent phenotypes in animal and *in vitro* models and are generally more transmissible than other strains (reviewed in Coscolla 2017; Coscolla and Gagneux 2014). For example, modern lineage strains are reported to replicate faster *in vitro* and in aerosol infected mice (Reiling et al. 2013), induce lower early inflammatory responses (Portevin et al. 2011), and are more likely to progress to active disease when compared to ancient lineage strains (De Jong et al. 2008). Whole genome sequencing (WGS) provides a powerful tool to study *M. tuberculosis* transmission (Section 1.6). Recent WGS studies have shown elevated transmission and a higher proportion of disease due to recent transmission for L2 compared with L1 (Guerra-Assunção et al. 2015; Holt et al. 2018). The L2/Beijing family is also commonly associated with drug resistance, and it is suggested that the genetic background of these strains is better suited to tolerate the fitness costs of drug resistance conferring mutations (Borrell and Gagneux 2009).

Strain dependent differences in virulence phenotypes and transmissibility have also been reported at the sublineage level (Aguilar et al. 2010; Anderson et al. 2013; Kato-Maeda et al. 2010; Kato-Maeda et al. 2012). For example, differences in the transmissibility of Beijing strains have been associated with virulence phenotypes...
in a mouse model; mice infected with highly transmitted strains were shown to have higher mortality, more extensive tissue damage, and differential cytokine expression (Aguilar et al. 2010). The association of virulence phenotypes with transmission also supports an elementary role for increased virulence in enhanced transmission.

1.4.2 Molecular determinants of virulence

While it is becoming evident there are important differences in virulence phenotypes between different lineages of *M. tuberculosis*, the molecular mechanisms underlying strain dependent variation in virulence remain unclear. Thousands of single nucleotide changes have been identified in clinical *M. tuberculosis* isolates and have potential phenotypic consequences. Around two-thirds of SNPs in *M. tuberculosis* are non-synonymous (nsSNPs), meaning they change the amino acid sequence of encoded proteins. Non-synonymous changes can result in amino acid substitutions, frame shifts, or premature stop codon insertion, potentially altering protein structure and function, which in turn has the potential to affect clinical and epidemiological characteristics of the disease. Rose et al. (2013) have estimated that around 44% of SNPs may impact protein function, although it remains to be determined whether this variation has biological and/or clinical consequences. Determining the functional consequences of SNPs at the molecular, biochemical and biological level, is important to ultimately elucidate the role this variation plays in the outcome of infection and disease.

The most well characterised effects of single nucleotide changes on bacterial fitness (and amongst the most consequential) are those involved in the development of drug resistance. As the MTBC does not undergo horizontal gene transfer, drug resistance in *M. tuberculosis* is primarily caused by single nucleotide mutations. Other SNPs that mitigate the fitness costs associated with drug resistance, termed ‘compensatory mutations’, have also been well documented (Casali et al. 2014; Comas et al. 2012; De Vos et al. 2013). Furthermore, strain genetic background also influences the fitness costs associated with the acquisition of drug resistance mutations (Gagneux et al. 2006b).
However, the majority of single nucleotide variants in the MTBC are not associated with drug resistance. Hence, this presents the obvious question: what effects do the remainder of these have on bacterial phenotype? Elucidating the effect of SNPs on protein function is an important step towards understanding the practical consequences of genomic variation in the MTBC and also can shed new light on *M. tuberculosis* biology. Systematic biochemical *in vitro* and *in vivo* analysis of the catalogue of *M. tuberculosis* SNP diversity is simply not practical. Comparative approaches and *in silico* prediction of functional effects provide a means to identify SNPs that may affect protein function, presenting candidates for further study. Recent genomic analysis of outbreak strains in Denmark and New Zealand have identified SNPs in virulence factors that may contribute to the success of these strains (Folkvardsen *et al.* 2018; Gautam *et al.* 2017), however this is yet to be experimentally validated. Holt *et al.* (2018) have recently identified a threonine to alanine SNP at position two (T2A) in *EsxW* that is under positive selection and is suggested to be a possible contributor to enhanced transmission of Beijing family strains (Holt *et al.* 2018). This SNP was shown to lead to a slightly increased affinity and stability of the *EsxW/EsxV* heterodimer (Holt *et al.* 2018), which is thought to be involved in ESX-5 substrate selection – a crucial virulence determinant for *M. tuberculosis*. SNPs that alter transcriptional regulation also have the potential to alter bacterial phenotype. SNPs affecting promoter activity and transcription start sites and nsSNPs in transcriptional regulators, have been associated with lineage specific differences in transcription profiles (Rose *et al.* 2013).

Understanding the complex relationship between bacterial genotype, virulence and clinical outcomes, is important for the development of improved vaccines, treatment regimens and public health measures. Characterising the effects of strain specific variation at the molecular level is an essential step towards understanding how genomic variation in the MTBC affects bacterial phenotype and its clinical and epidemiological outcomes. Studying genotype-phenotype associations also require robust methods to genotype isolates and is discussed in the following section.
1.5 Genotyping *M. tuberculosis*

Molecular typing of *M. tuberculosis* is important both in public health and research settings. Genotypic information can be used to discriminate between reactivation and re-infection, link index cases and contacts, and to track the spread of strains throughout the population. Strain lineage can also influence important clinical and epidemiological aspects of the disease (Section 1.4.1). The ability to distinguish genotype for *M. tuberculosis* with high confidence is therefore important for tuberculosis control efforts and to study genotype-phenotype associations. Genotyping data can also be used to investigate phylogenetic relationships within the MTBC to understand the population structure and evolution of the pathogen and provide insights as to how it has achieved its current global distribution.

1.5.1 Traditional molecular typing methods

Traditional molecular typing methods for *M. tuberculosis* involve the analysis of repetitive genetic elements using restriction fragment length polymorphism (RFLP) and/or polymerase chain reaction (PCR) based approaches. The three main typing methods used in epidemiological investigations are IS6110-RFLP, mycobacterial interspersed repetitive unit variable number tandem repeat analysis (MIRU-VNTR) and spoligotyping (Figure 1.3).

IS6110-RFLP is based on differences in the copy number and genomic locations of the IS6110 insertion element, which is exclusively found in the MTBC (van Embden *et al.* 1993) (Figure 1.3B). This method was the first “gold standard” for molecular typing of the MTBC and has been used in hundreds of studies around the globe. This approach however has limited resolution for strains with low numbers of IS6110 repeats (Cowan *et al.* 2002), is laborious, and relies on having large amounts of high-quality DNA requiring long culturing times. Spoligotyping and MIRU-VNTR typing are PCR based genotyping techniques developed to overcome some of the limitations of IS6110-RFLP. Spoligotyping patterns are defined by the presence or absence of 43 unique spacer sequences located in the direct repeat (DR) region of the *M. tuberculosis* genome (Kamerbeek *et al.* 1997) (Figure 1.3C). This approach provides typing information at the sublineage level, however, its ability to determine epidemiological links between tuberculosis cases is limited.
MIRU-VNTR typing classifies strains based on the number of repeats at different VNTR loci in the *M. tuberculosis* genome (Figure 1.3D). MIRU-VNTR typing using 15 or 24 loci has a similar overall discriminatory power to IS6110-RFLP when used alone or in combination with spoligotyping (reviewed in Merker *et al.* 2017). Both spoligotyping and MIRU-VNTR typing patterns can be readily compared to hundreds of other patterns from around the globe using the SITVITWEB (Demay *et al.* 2012) and MIRU-VNTRplus (Weniger *et al.* 2010) databases. They also require only small amounts of DNA, and therefore have turnaround times significantly faster than IS6110-RFLP. As a result of these benefits, MIRU-VNTR alone, or combined with spoligotyping, replaced IS6110-RFLP as the gold standard for tuberculosis genotyping until quite recently. These methods are in the process of being superseded by WGS as advances in next generation sequencing technologies and reduced costs are making this more practical (Section 1.6).
Figure 1.3. Schematic showing the principles of traditional molecular typing methods. (A) *M. tuberculosis* genome showing IS6110 elements (dark blue) and *Pvu*II cleavage sites (light blue arrows); MIRU-VNTR loci with different numbers of repeats scattered around the genome (green boxes); and the direct repeat (DR) locus (yellow). (B) IS6110-RFLP typing. *M. tuberculosis* genomes differ in the locations and number of IS6110 elements they possess. The whole genome is digested with *Pvu*II and then separated by gel electrophoresis. Hybridisation of fragments with an IS6110 specific DNA probe produces the characteristic banding pattern for each isolate. (C) Spoligotyping. The DR region is amplified by PCR and products are hybridised to spacer-specific oligonucleotide probes. The presence (black square) or absence (white square/blank) of 43 unique spacers located between direct repeats at the DR locus determines the spoligotyping pattern. (D) MIRU-VNTR typing. The number of repeats present at each MIRU-VNTR locus determines the MIRU-VNTR genotype. Specific primers amplify each locus and amplicon sizes are determined by gel electrophoresis. Standardised sets of 12, 15 or 24 different loci are used for genotyping.
1.5.2 Large sequence polymorphisms and single nucleotide polymorphisms

The molecular markers used for MIRU-VNTR and spoligotyping are prone to convergent evolution and have limited discriminatory power, limiting their use in phylogenetic studies. Although not typically used clinically, genotyping methods based on the analysis of genomic deletions (commonly also referred to as large sequence polymorphisms (LSPs), or regions of difference (RDs)), have been used as more robust markers for phylogenetic analysis of the MTBC. LSPs can be used to assign strains to the major lineages and sublineages of the MTBC (Figure 1.4A) and have provided valuable insights into the global phylogeographic distribution and evolution of the pathogen (Comas and Gagneux 2009; Gagneux et al. 2006a; Hershberg et al. 2008).

SNPs provide useful epidemiological and phylogenetic information and can also have important functional consequences (Section 1.4.2). SNPs show very low levels of homoplasy (~1%) (i.e. do not frequently undergo convergent evolution) and thus represent robust markers for phylogenetic analysis (Comas et al. 2009; Homolka et al. 2012). Phylogenetic trees constructed using SNP data are congruent with the main lineages identified by LSPs and better resolve phylogenetic relationships, identifying previously un-discriminated lineages (Coll et al. 2014; Homolka et al. 2012) (Figure 1.4B). Accordingly, several SNP classification schemes describing sets of phylogenetically informative marker SNPs for the assignment of strains to the main lineages and sublineages have been reported (Coll et al. 2014; Filliol et al. 2006; Homolka et al. 2012). The most comprehensive of these to date describes a set of 62 marker SNPs, allowing assignment to the all the main lineages and sublineages with high confidence and classifies a greater number of lineages than previously published alternatives (Coll et al. 2014). SNPs also offer practical advantages as genetic markers due to their suitability for the development of rapid and relatively inexpensive high throughput assays to genotype clinical isolates. For example, Stucki et al. (2012) have developed two rapid SNP-typing methods to classify isolates into the main MTBC lineages with high confidence and comparably little cost. Analysis of genome-wide SNPs using WGS provides the ultimate resolution for strain typing, epidemiological and phylogenetic analysis, further discussed in the following section.
Figure 1.4. Phylogeny of the MTBC based on LSPs and SNPs. (A) Schematic phylogeny of the main MTBC lineages based on LSPs. Specific lineage defining regions of difference are indicated on branches, lineage colours correspond the colouring in (B). RDs as in Gagneux et al. (2006a) and Brosch et al. (2002), additional LSPs enabling further classification of the animal adapted strains and M. tuberculosis lineage 2 are not shown. (B) Bayesian phylogeny inferred from genome-wide SNPs of 261 genomes, including three M. pinnipedi strains from 1000-year-old Peruvian mummies (orange) (Adapted from Bos et al. (2014)).
1.6 Whole genome sequencing of *M. tuberculosis*

WGS is now considered the new gold standard for strain genotyping and phylogenetic analysis, providing the ultimate resolution to discriminate between closely related clones. Due to advances in next generation technology and reduced costs, WGS is likely to become routine in typing laboratories (at least in low incidence countries) and hundreds of genomes from different *M. tuberculosis* strains from around the globe have now been sequenced. This is providing valuable insights into the transmission, emergence of drug resistance, evolution and global dispersal of the pathogen.

WGS provides a powerful approach to study tuberculosis transmission and outbreaks in high resolution. Genomic network analysis provides detailed insights into *M. tuberculosis* transmission dynamics, enabling inference of transmission pathways, detection of sub-clusters and micro-epidemics, identification of “super spreaders”, and has the potential to predict undiagnosed cases, potentially leading to earlier identification and treatment of infectious cases and their contacts (Gardy *et al.* 2011; Guerra-Assunção *et al.* 2015; Roetzer *et al.* 2013; Stucki *et al.* 2015; Walker *et al.* 2013b). Important to the determination of SNP thresholds for distinguishing linked and unlinked *M. tuberculosis* cases is the short-term mutation rate, which has been estimated at 0.3–0.5 SNPs per year (Bryant *et al.* 2013b; Roetzer *et al.* 2013; Walker *et al.* 2013a). Most isolates from epidemiologically linked patients differ by five of fewer SNPs (Perez-Lago *et al.* 2014; Walker *et al.* 2013a). Walker *et al.* (2013a) have proposed a threshold of five or fewer SNPs between isolates as suggestive of epidemiological linkage and more than 12 SNPs to rule out recent transmission.

Molecular dating provides another layer of information, enabling evolutionary timelines to be reconstructed characterising the dynamics of outbreaks and dating key events, such as the emergence of drug resistance and expansion of successful clones (Bjorn-Mortensen *et al.* 2016; Eldholm *et al.* 2015; Eldholm *et al.* 2016). Such high-resolution studies combining molecular-dating with spatial and/or epidemiological data have only recently been made possible due to increased accessibility and affordability of WGS, and offer a powerful way to study pathogen evolution in space and time.
In addition to studying inter-patient diversity, WGS can provide valuable insights into intra-patient variation and micro-evolutionary processes (Perez-Lago et al. 2014; Trauner et al. 2017) and differentiate relapse and re-infection cases with greater resolution than traditional typing methods (Bryant et al. 2013a; Guerra-Assunção et al. 2014). WGS also offers great promise as a tool to rapidly identify drug resistance mutations, potentially reducing the time taken to diagnose drug resistance from weeks to days (Koser et al. 2013; Pankhurst et al. 2016).

1.7 Tuberculosis in New Zealand

The research presented in this thesis is based on the genomic analysis of prevalent *M. tuberculosis* strains found in New Zealand. New Zealand is considered a low incidence country, having an annual tuberculosis notification rate of around 6.5 cases per 100,000 population, which translates to approximately 300 cases per year (ESR 2018). Tuberculosis is a notifiable disease in New Zealand under the Tuberculosis Act 1948 and is one of several communicable diseases (including meningococcal disease and acute rheumatic fever) that are a major source of socioeconomic and ethnic inequalities in New Zealand (Baker et al. 2012).

1.7.1 The New Zealand population

Aotearoa New Zealand has a population of approximately 4.9 million people and is the largest island nation in the Polynesian region of Oceania (national population estimate as at June 2018, StatsNZ (2018)). The majority of the population live on the two main islands, the North Island (*Te Ika a Maui*) and the South Island (*Te Wai Pounamu*) (Figure 1.5). Māori are the indigenous people of New Zealand and New Zealand is also home to the largest diaspora communities of indigenous Pacific People globally (Spickard et al. 2002). The European ethnic group is the dominant ethnic group and 74% of people identify with at least one European ethnicity (2013 National Census, StatsNZ (2013)). The other major ethnic groups are Māori (15%), Asian (12%), Pacific People (7%) and Middle Eastern/Latin American/African (MELAA) (1%) (it is important to note that some people identify with more than
one ethnic group). Nearly two-thirds of people who identify with at least one Pacific ethnicity were born in New Zealand.

![Map of New Zealand showing the main islands and geographical regions.](image)

Figure 1.5. Map of New Zealand showing the main islands and geographical regions.

1.1.1 Tuberculosis incidence in New Zealand

Unless otherwise indicated, all of the following statistics are from the 2015 annual surveillance report of tuberculosis in New Zealand released by The Institute of Environmental Science and Research (ESR) (ESR 2018). Statistics pre-dating this are either provided in the 2015 report, or extracted from older reports (Bissielo *et al.* 2012; ESR 2015a; 2015b; Lim and Heffernan 2013).

From 1990 to 2003, New Zealand tuberculosis notification rates fluctuated between 8.5–11.6 per 100,000. Between 2003 and 2007, rates decreased to 6.7/100,000 and have remained relatively stable since. In 2015 there were 294 notified cases of tuberculosis, resulting in a rate of 6.4 per 100,000 population (6.4/100,000). The majority of notifications were for new cases (97.3%, 286/294) and most were laboratory confirmed (88.8%, 261/294). The New Zealand 2015 notification rate is lower than the corresponding rate reported for the United Kingdom (10.5/100,000) (England 2016), but higher than for the United States (3.0/100,000) (CDC 2017),
Canada (4.6/100,000) (Gallant et al. 2017) and Australia (5.2/100,000) (NNDSS 2015).

There are several demographic differences in tuberculosis notifications in New Zealand, including age, ethnicity and place of birth. The majority of new cases occur in patients over 14 years of age (96.9%, 277/286), and the highest rate is observed in the 15–39 age group (9.5/100,000). Higher rates of tuberculosis occur in socioeconomically deprived areas and this trend is most apparent among New Zealand-born cases. Regional differences in notification rates are also apparent. The Auckland and Counties Manukau district health boards (DHBs) have the highest rates at 12.7/100,000 and 12.3/100,000, respectively, while in other DHBs rates range from zero (i.e. no cases) to 7.0/100,000. Rates vary markedly with ethnicity and over the last five years the Asian ethnic group has consistently had the highest notification rate (Figure 1.6A). In 2015, the highest notification rates were observed for the Asian ethnic group (34.3/100,000), followed by Pacific Peoples (20.2/100,000), MELAA (15.7/100,000), Māori (3.2/100,000) and European or Other ethnic groups (0.6/100,000).

![Figure 1.6](image_url)

Figure 1.6. New Zealand tuberculosis notification rates by ethnicity (2011–2015). Annual notification rates of new cases for different ethnic groups and the overall national rate are shown. It is important to note that although rates are relatively high for the MELAA (Middle Eastern/Latin American/African) group, the absolute number of cases in this group are low (8–16 cases annually). (Source: ESR (2018)).
For the five years from 2011–2015, slightly over three-quarters of all notified cases (75.5–82.9%) were born outside of New Zealand, and around half of these occurred within the first six years of arrival in New Zealand. The proportion of tuberculosis patients born in the Pacific Islands has recently increased from 13.2% in 2014, to 21.5% in 2015. Among New Zealand-born cases in 2015, 44.9% occurred in Māori, 24.5% in Pacific People, 22.4% in the European or Other group, and 8.2% in the Asian ethnic group.

New Zealand has a relatively low rate of drug resistant tuberculosis and only one case of extensively drug-resistant tuberculosis has been identified (this was in an immigrant from Myanmar in 2010 (Goh et al. 2011)). Drug susceptibility testing to isoniazid, rifampicin, ethambutol, streptomycin and pyrazinamide is routinely performed. In 2015, 89.7% (218/243) of tested isolates were fully drug susceptible and two cases of multi-drug-resistant tuberculosis were identified (0.8% of cases). Drug resistance is higher among non-New Zealand-born than New Zealand-born cases (11.6% compared to 2.8% of isolates, respectively) and only two multi-drug resistant tuberculosis cases have been identified in New Zealand-born patients in the ten years from 2004 to 2015.

1.1.2 Molecular typing in New Zealand

Universal typing of tuberculosis isolates was introduced in New Zealand 2002. Prior to 2009, IS6110-RFLP was the primary typing method, after which MIRU-VNTR became the primary method with secondary typing by IS6110-RFLP. Since 2011 typing has been undertaken by MIRU-VNTR analysis alone. At present, all molecular typing is carried out by the national tuberculosis reference laboratory, LabPLUS (Auckland, N.Z.). Primary typing is performed by MIRU-VNTR 12-loci analysis, and secondary typing by MIRU-VNTR 24-loci when an isolate shares its 12-loci pattern with previously typed isolate (Lim and Heffernan 2013).

Over one-third of MIRU-VNTR typed *M. tuberculosis* isolates in New Zealand have non-unique molecular typing results and are able to be assigned to ‘clusters’ (groups of strains with identical typing patterns) (ESR 2018). Genotypic clustering of *M. tuberculosis* isolates is typically interpreted to indicate recent transmission, although clustering can also represent reactivation of latent infection with endemic strains (Nguyen et al. 2004). A higher proportion of cases with non-unique
molecular types occur in the Māori (74.1%), and Pacific People (80.1%) ethnic groups, compared to all other groups (European or Other 32.5%, Asian 24.3%, MELAA 12.8%) (Figure 1.7). Cases born in the Pacific Islands have the highest proportion of non-unique molecular types for any region of birth (72.1%), although overall, overseas born cases have a lower proportion of non-unique molecular types (40.3%) compared to New Zealand-born patients (61.4%).

Although the majority of tuberculosis clusters in New Zealand are small (<5 cases), there are a small number of large clusters, some of which have been a source of tuberculosis infection for over two decades. The largest cluster in New Zealand based on identical or highly similar MIRU-VNTR typing patterns is most prevalent in Māori and is known as the ‘Rangipo’ cluster (Section 1.1.3). Two other major clusters, called the ‘Southern Cross’ and ‘Otara’ clusters, are most common in Pacific People. Since 2002, the Rangipo cluster has been responsible for at least 165 tuberculosis cases, the Southern Cross cluster 152 cases, and the Otara cluster 32 cases (V Playle, LabPLUS, personal communication).

![Figure 1.7. Proportion of clustered tuberculosis cases in New Zealand (2011–2015). Percentage of non-unique (i.e. clustered) and unique MIRU-VNTR typing profiles for different ethnic groups and the overall national proportion are shown. (Source: ESR (2018)).](image-url)
Chapter One

1.1.3 The Rangipo cluster

The Rangipo cluster is the largest New Zealand $M. \text{tuberculosis}$ cluster identified by related MIRU-VNTR typing patterns. This cluster has been a cause of ongoing outbreaks for around 30 years (Calder 2013; Colangeli et al. 2014; De Zoysa et al. 2001; McElnay et al. 2004). Approximately 12% of clustered cases in New Zealand belong to the Rangipo cluster and it is associated with more DHBs than any other cluster (Sexton et al. 2008). The majority of Rangipo strain cases occur in Māori (88%, 81/92 201), and it accounts for around one-quarter of tuberculosis cases in this population (J Sherwood, ESR, personal communication).

The Rangipo strain is most notably associated with a large outbreak in the late 1990s linked to the Rangipo prison (De Zoysa et al. 2001). During a three and half year period, this outbreak resulted in at least 61 cases of active tuberculosis and 119 cases of latent tuberculosis throughout the North Island (De Zoysa et al. 2001). It has since become known as the Rangipo strain, although cases caused by this strain have been recognised from the early 1990s, pre-dating the prison outbreak (N Karalus, Waikato Hospital, personal communication). In a subsequent 2002 Hawke’s Bay outbreak, 19 new cases of active tuberculosis and 42 cases of latent disease were diagnosed, including contacts only casually connected to the index case (McElnay et al. 2004). Such large outbreaks present a serious challenge to tuberculosis control efforts in New Zealand and stretch local public health and clinical services. Recently, an outbreak of the Rangipo strain involving six cases occurred in a small Waikato town in 2017/2018, showing the strain continues to spread and cause disease in New Zealand (R Hoskins, Waikato Hospital, personal communication).

Although no virulence testing has yet been undertaken, anecdotal evidence suggests this strain may be highly transmissible and previous outbreaks demonstrate high infectivity of index cases, infection of casual contacts, and the generation of large numbers of secondary cases (Calder 2013; De Zoysa et al. 2001; McElnay et al. 2004). Host social/environmental factors are also likely important contributors to the success of the Rangipo strain. For example, prison incarceration and/or gang affiliations were a feature of several cases in previous Rangipo outbreaks (De Zoysa et al. 2001; McElnay et al. 2004).
A clear understanding of the bacterial and host factors that underlie the success of this prevalent strain are imperative to improve public health measures and develop effective strategies to halt its further spread. Prompt identification of Rangipo strain cases is also important for this. To address this, WGS-data has been used in our lab to guide the development of a rapid SNP-based Rangipo strain-specific diagnostic assay (Ruthe 2015). WGS offers a promising route to shed light on transmission and bacterial genetic factors that may contribute to the success of the Rangipo strain and other prominent clusters in New Zealand. WGS of Rangipo isolates has revealed very little SNP diversity among isolates (0–19 SNP differences between isolates), consistent with relatively recent transmission (Colangeli et al. 2014; Gautam et al. 2017). A number of nsSNPs in virulence associated genes in Rangipo strains have been identified (Colangeli et al. 2014; Gautam et al. 2017; Ruthe 2015), providing valuable insight into the genomic context of the Rangipo cluster, although questions still remain concerning the functional consequences of common Rangipo genetic variants. Important evolutionary and social questions surrounding the origins and expansion of the Rangipo strain are yet to be addressed and are necessary to understand how this strain has become established as an important cause of tuberculosis in New Zealand.
1.8 Objectives

In my doctoral research I have used WGS data, phylogenetics and structural biology to examine the evolutionary origins and functional consequences of genetic variation in the New Zealand *M. tuberculosis* Rangipo strain and other prominent local strains. The overall aim of this research was to enhance our understanding of factors contributing to the success of the Rangipo strain in New Zealand. The specific objectives addressed in this thesis are outlined below.

Objective one: Identify SNPs specific to the Rangipo strain.

Objective two: Examine the consequences of genomic variation specific to the Rangipo strain at the molecular level using protein crystallography and biochemical approaches.

Objective three: Characterise the phylogenetic relationships and genetic variation within and between the Rangipo, Southern Cross and Otara clusters.

Objective four: Examine the evolutionary history of the Rangipo strain and identify its historical origin.
Chapter Two

Rangipo SNP-based analyses

2.1 Introduction

Colangeli et al. (2014) have sequenced the whole genomes of ten New Zealand Rangipo strain *Mycobacterium tuberculosis* clinical isolates spanning a 19-year period from 1991 to 2011, using the Applied Biosystems Inc. (ABI) SOLiD platform. These data were used to estimate *M. tuberculosis* mutation rates during latency and active disease (Colangeli et al. 2014) and for additional single nucleotide polymorphisms (SNP) analyses undertaken in this laboratory (Ruthe 2015). Isolates included five cases from a single source outbreak and five cases with no known epidemiological links to the outbreak (Figure 2.1). The ten isolates were found to carry little genetic variation, differing from each other by only 1–14 SNPs, and neighbour-joining trees also showed close phylogenetic relationships between the isolates (Colangeli et al. 2014). A detailed phylogeny in the context of other New Zealand or global *M. tuberculosis* isolates and full lineage classification was not performed. SNP differences between recently transmitted isolate pairs and reactivation cases estimated an approximately ten-fold slower mutation rate for latent *M. tuberculosis* compared with active disease (5.5 x 10^{-10} and 7.3 x 10^{-11} substitutions/site/generation, respectively (assuming a 20 hr generation time, μ(20hr)))) (Colangeli et al. 2014). This was in contrast to the situation reported in rhesus macaques, whereby mutation rates estimated for latent and active disease were very similar (2.0 x 10^{-10} and 2.2 x 10^{-10} substitutions/site/generation, μ(20hr))). The rate reported by Colangeli et al. 2014 translates to a mean rate of ~1.4 x 10^{-7} substitutions/site/year (my own calculations) which is similar to other short-term mutation rate estimates estimated from clinical *M. tuberculosis* isolates (Eldholm et al. 2015; Eldholm et al. 2016; Ford et al. 2013; Pepperell et al. 2013; Roetzer et al. 2013; Walker et al. 2013a).
Figure 2.1. M. tuberculosis Rangipo strain isolates sequenced by Colangeli et al. (2014). Chronological representation of epidemiological relationships among ten Rangipo isolates (1991–2011) sequenced on the ABI SOLiD platform. Each square represents a case at time of diagnosis, case “X” (grey box) and is assumed to be the index case for several other cases in the cluster. X was not available for sequencing. Broken lines represent known epidemiological links between cases. Isolates “C” and “R” were taken from the same individual 17 years apart and were shown to be the result of reinfection. Case “T” was the parent of “A”, however SNP analysis indicated this was not a direct transmission (Colangeli et al. 2014). Modified from Colangeli et al. (2014).

Colangeli et al. (2014) identified a total of 747 SNPs between the reference strain H37Rv and the ten Rangipo isolates, and 247 high quality SNPs were shared amongst all Rangipo isolates. Ali Ruthe completed her PhD in this laboratory in 2015 and performed further analyses on the 247 common Rangipo SNPs (Ruthe 2015). Ruthe (2015) cross-checked all 247 SNPs against 38 M. tuberculosis complex (MTBC) genomes in public databases and Mycobacterium canetti to determine if other strains carry the same variants. Ninety-nine SNPs were not identified in any other strains and were classified as ‘Rangipo specific’ SNPs (RS-SNPs). Three putative RS-SNPs (1380G>A in Rv1821/secA; 691G>A in Rv2504c/scoA; and 334A>G in Rv3119/moaE1) were used to develop a rapid cost-effective diagnostic assay using multiplex polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP), allowing classification of strains as Rangipo or non-Rangipo (Ruthe 2015). This assay was found to quickly and accurately distinguish Rangipo strain cases using DNA extracted from cultured isolates with higher discriminatory power than conventional MIRU-VNTR typing (Ruthe 2015). Region of difference PCR analysis identified the Rangipo strain as belonging to the L4/Euro-American lineage of the MTBC but the L4 sublineage remained unassigned (Ruthe 2015).
2.1.1 Objectives

Since the original analysis of Rangipo strain SNP data was performed (Colangeli et al. 2014; Ruthe 2015) the number of M. tuberculosis strains available in public databases for comparison has increased enormously. The primary objective of this work was to reclassify the 247 Rangipo SNPs and identify candidates of interest for structural and biochemical investigation. It was also important to assign the Rangipo strain to an L4 sublineage and re-evaluate the previous Rangipo PCR-RFLP diagnostic (Ruthe 2015) in light of an updated SNP analysis.

While more thorough phylogenetic and variant analyses were performed once Illumina sequencing of New Zealand cluster isolates was completed (Chapter Four), the analyses described in this chapter are included as they were pivotal to the direction of much of the work undertaken as part of this thesis.

2.1 Methods

2.1.1 Previous Rangipo strain outbreaks

Contact tracing results for three large Rangipo strain outbreaks have previously been reported (Calder 2013; De Zoysa et al. 2001; McElnay et al. 2004). The number of cases identified with active and latent tuberculosis were analysed for each outbreak. The proportion of total screened contacts with active and latent tuberculosis was calculated and compared to average estimates of tuberculosis prevalence in contacts reported in a large meta-analysis of 108 studies in high-income and 95 studies in low- to middle-income settings (Fox et al. 2013).

2.1.2 M. tuberculosis genomic DNA

Genomic DNA (gDNA) from clinical New Zealand M. tuberculosis cluster isolates was available from previous work in this laboratory (Ruthe 2015). DNA had been either extracted by Roberto Colangeli (University of Medicine and Dentistry of New Jersey, U.S.A.) as in Colangeli et al. (2014), or provided as crude clinical isolate extracts from LabPLUS (Auckland, N.Z.). LabPLUS samples included
gDNA from Rangipo, Otara and Southern Cross cluster isolates, and additional smaller New Zealand clusters identified by related MIRU-VNTR typing patterns (NZ_041, NZ_069, NZ_037, NZ_094) (Appendix A.1). Additional gDNA samples, including samples from various MTBC lineages and L4 sublineages, were provided by either LabPLUS or our collaborator Htin Aung (University of Otago, N.Z.).

DNA was quantified using a NanoDrop 2000 spectrophotometer (Thermo Scientific, U.S.A.) by measuring absorbance at 260 nm. The ratio of absorbance at 260 nm to 280 nm provides an indication of sample purity and a 260/280 ratio of ~1.8 was considered ideal indicating a DNA sample free from protein, RNA, phenol or other contaminants. Working *M. tuberculosis* genomic DNA samples were prepared by diluting a small amount of stock DNA solution with TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to a concentration of approximately 10 ng µl⁻¹.

2.1.3 Identification of putative Rangipo specific SNPs

Ten Rangipo genomes (Figure 2.1) were previously sequenced by collaborators Roberto Colangeli and David Alland at the University of Medicine and Dentistry of New Jersey (U.S.A.). Isolates from 2002 onwards were typed by IS6110-RFLP and six isolates (A, C, F, N, O) by MIRU-VNTR 24-locus typing, and share the same molecular typing patterns (IS6110-RFLP, 13/008RP; MIRU-VNTR, 233325153324-341444223362) (Ruthe 2015). Isolates were sequenced on an ABI SOLiD 5500XL instrument (Applied Biosystems Inc., U.S.A.) as described in Colangeli et al. (2014). Briefly, each isolate was sub-cultured and two individual colonies from each original culture were sequenced. SNPs relative to H37Rv were called using the CLC genomics workbench and SNPs supported by <80% of reads were discarded (Colangeli et al. 2014). 247 high quality SNPs present in all 20 genomes were identified.

A list of all 247 SNP positions with the base change and associated gene was provided in excel format. In this thesis, SNPs are named with the prefix “Rv” followed by the position in the H37Rv reference genome (NC_000962.3) and the reference base and nucleotide change as described in Fenner et al. (2013). For example, the 1380G>A in the Rv1821/secA gene is named Rv2067836GA as it changes the H37Rv nucleotide at position 2067836 from G to A. To identify SNPs
specific to the Rangipo strain, the position of each SNP was cross checked against 1084 global *M. tuberculosis* genomes in the GMTV database to determine if the same variant is present in other isolates (http://mTB.dobzhanskycenter.org) (Chernyaeva *et al.* 2014). Putative non-synonymous RS-SNPs (RS-nsSNPs) identified from this comparison were further checked by submitting protein sequences containing Rangipo variants to Protein BLASTP (BLASTP) and searching against the non-redundant protein sequence database (https://blast.ncbi.nlm.nih.gov) (Altschul *et al.* 1990).

2.1.3.1 In silico SNP functional assessment

Functional categories of genes harbouring RS-SNPs were assigned using the Tuberculist database (Lew *et al.* 2011). To identify SNPs that may impact on protein function the program SNAP2 was used (Screening for Non-Acceptable Polymorphisms) (Hecht *et al.* 2015). The H37Rv reference sequence of proteins harbouring RS-nsSNPs were input into the SNAP2 webserver (https://rostlab.org/services/snap2web/), the residue of interest was searched, and the result extracted for the variant amino acid corresponding to the SNP of interest.

2.1.4 Validation of SNPs by Sanger sequencing

2.1.4.1 Primers

Sanger sequencing was used to confirm the presence of RS-nsSNPs. Geneious R8 (Biomatters, N.Z.) and Primer3 (http://primer3.ut.ee) were used to design primers to amplify short genomic regions (168–387 bp) spanning SNPs of interest (Appendix A.3). Primer specificity was checked in Primer-BLAST (Ayres *et al.* 2012). Primers were ordered from Integrated DNA Technologies, Inc. (U.S.A.) and resuspended in 100 µM TE buffer (10 mM Tris-HCL, 1 mM EDTA, pH 8.0). Working stock solutions were prepared at 10 µM in MQ water.

2.1.4.2 Polymerase Chain Reaction

PCR was performed in 20 µl reactions containing 0.5 units (U) HOT FIREPol® DNA polymerase (Solis BioDyne, Estonia), the supplied B1 buffer at 1X
concentration, 2.0 mM MgCl₂, 250 µM dNTPs and 0.3 µM of each primer. Approximately 10 ng of gDNA from Rangipo isolate “A” was used as the PCR template and all reactions were run alongside a negative control. A touchdown PCR protocol was employed to reduce the potential for non-specific priming.

Thermal cycling conditions used for amplification were as follows:

\[\begin{align*}
95 °C & \quad 15:00 \ (\text{min:sec}) \\
95 °C & \quad 0:20 \\
68 °C & \quad 0:20 \quad \times 5 - 1 °C \text{ per cycle} \\
72 °C & \quad 0:20 \\
95 °C & \quad 0:20 \\
63 °C & \quad 0:20 \quad \times 30 \\
72 °C & \quad 0:20 \\
72 °C & \quad 1:00
\end{align*}\]

5 µl of each PCR product was run on an agarose gel (Section 2.1.4.3) to check for a single band of the correct size. PCR products were then ExoISAP treated (Section 2.1.4.4) to remove any remaining primers and free dNTPs before sequencing.

2.1.4.3 Agarose Gel Electrophoresis

DNA fragments were separated by agarose gel electrophoresis. Samples were mixed with 5X DNA loading dye (25% (v/v) glycerol, 0.2% (w/v) bromophenol blue) and separated on 1–2% (w/v) agarose TAE (40 mM TRIS-acetate, 2 mM EDTA) gels made with SYBR safe™ DNA gel stain (Invitrogen, U.S.A.) and run in TAE running buffer. Gels were visualised by blue light and band sizes were determined by visual comparison against a 1 Kb Plus DNA ladder (Thermo Fisher Scientific, U.S.A.).

2.1.4.4 ExoISAP treatment and Sanger sequencing of PCR products

20 U Exonuclease I (Thermo Fisher Scientific, U.S.A.) and 1 U rAPid Alkaline Phosphatase (Roche, Switzerland) were gently mixed with 5 µl of PCR reaction and incubated for 30 min at 37 °C, followed by inactivation at 80 °C for 15 min. ExoISAP treated PCR products were sent to the Massey Genome Service
Chapter Two

(Palmerston North, New Zealand) for sequencing on an ABI3730 DNA Analyzer (Applied Biosystems Inc., U.S.A.).

2.1.5 Sublineage classification

2.1.5.1 MIRU based sublineage classification

The MIRU-VNTRplus database website (http://www.miru-vntrplus.org) (Allix-Beguec et al. 2008) was used to perform MIRU-based lineage assignment for the New Zealand clusters based on MIRU-VNTR 24-locus typing patterns (Appendix A.1). The “Identification by similarity search” tool was used with the default categorical weighting of 1 and strict distance cut off of 0.17 to classify lineage based on the best match with reference strains in the database. “Identification by phylogenetic tree” was performed using the UPGMA method to classify any strains without matches and as further verification of the classification.

2.1.5.2 S lineage PCR-RFLP assay

The S lineage, also known as ‘S-type’, is a sublineage of the L4/Euro-American lineage. Published S lineage marker SNPs are listed in Table 2.1. A PCR-RFLP assay was developed to type for the S-type marker SNP from Homolka et al. (2012) (Section 2.2.3.1). The S-type clade identified in Homolka et al. (2012) is congruent with the L4.4.1.1 sublineage described in Coll et al. (2014).

<table>
<thead>
<tr>
<th>SNP</th>
<th>aa change</th>
<th>Locus</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-type</td>
<td>Rv648992CG</td>
<td>synonymous</td>
<td>Rv0557/mgtA</td>
</tr>
<tr>
<td>L4.4.1.1/S</td>
<td>Rv355181GA</td>
<td>synonymous</td>
<td>Rv0291/mycP3</td>
</tr>
</tbody>
</table>

PCR-RFLP enables SNPs to be easily and cheaply detected if one of the variant bases create a recognition sequence for cleavage by a restriction enzyme. WatCut (http://watcut.uwaterloo.ca/template.php) was used to screen both the S-type and the L4.4.1.1/S marker SNPs (Table 2.1) to identify restriction enzymes that would recognise only one of the variant bases. The BstNI restriction enzyme was identified.
as a suitable restriction enzyme for the detection of the S-type SNP (Homolka et al. 2012) as it is expected to cut non-S samples [CC^WGG] but not samples carrying the S-type marker SNP [CGWGG]. Primers were designed to amplify a 343 bp product containing this marker SNP and include an additional BstNI cut site to act as an internal digestion control (Table 2.2). Expected fragments sizes for S lineage isolates following BstNI digestion are 138 and 205 bp; and for non-S, 138, 151 and 54 bp (Table 2.2). PCR was performed using the same thermal cycling parameters as in Section 2.1.4.2 and 5 µl of product was run on an agarose gel to check for amplification. The remaining PCR product was then digested in a total 25 µl reaction volume with 3 U BstNI (New England Biolabs, U.S.A.), NEBuffer 3.1 and MQ water. Digestion reactions were incubated at 60 °C for 1 hr in a PCR machine and fragments were separated by gel electrophoresis on a 2% gel (Section 2.1.4.3).

Table 2.2. S lineage PCR-RFLP assay. PCR primers for the amplification of the S-type Rangipo marker SNP (Rv648992CG) from Homolka et al. (2012) and expected fragments following restriction enzyme digestion with BstNI.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5’ to 3’)</th>
<th>Product size (bp)</th>
<th>Digested fragments (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv0557(L153V)_fwd</td>
<td>CTGCTTGGCTACGGTGGACT</td>
<td>343</td>
<td>138, 205</td>
</tr>
<tr>
<td>Rv0557(L153V)_rev</td>
<td>GAGCAAGCCGACCACAAAG</td>
<td></td>
<td>138, 151, 54</td>
</tr>
</tbody>
</table>

2.1.6 DS6Quebec deletion PCR assays

The DS6Quebec deletion removes an ~11.4 kb region (positions 1987457 to 1998849) replacing it with an IS6110 element, and is characteristic of the DS6Quebec strain family endemic in Canada (Nguyen et al. 2004). A multiplex PCR assay was designed to screen isolates for the presence or absence this deletion using three primers (Table 2.3). A pair of external primers bind upstream and downstream of the DS6Quebec deletion. If the isolate has the deletion, a large 1836 bp PCR product spanning the deletion and its associated IS6110 element is amplified. An internal primer binds within the DS6Quebec region to pair with the external upstream primer to amplify a small 250 bp product if the region is present as in H37Rv (the external primer pair will not produce a product as the genomic distance between them is too large (11.9 kb)).
A DS6Quebec-\textit{IS6110} insertion-specific PCR using primers described in Nguyen \textit{et al.} (2004) was then performed on isolates testing positive for the deletion to verify the location is exactly the same as in the Canadian DS6Quebec family. Internal IS\textit{6110} primers were used with primers that span the deletion junction so that amplification will only occur if the deletion/IS\textit{6110} insertion occurred at exactly the same site.

Table 2.3. \textit{DS6}Quebec deletion assays. Primer sequences and expected PCR products for the multiplex PCR to screen for the deletion (1), and DS6Quebec-\textit{IS6110} insertion-specific verification of the DS6Quebec deletion (2 and 3). NA = no amplification.

<table>
<thead>
<tr>
<th>Primer name/ target region</th>
<th>Primer sequence (5’ to 3’)</th>
<th>Position in H37Rv1</th>
<th>Product (bp) H37Rv</th>
<th>Product (bp) DS6Quebec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DS6 5’ upstream</td>
<td>TCAGGCACCGTGACATATTCG</td>
<td>1987278</td>
<td>1836</td>
<td>250</td>
</tr>
<tr>
<td>DS6 5’ internal</td>
<td>TCTTAGCCAATAGACTGCGGC</td>
<td>1987527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS6 3’ downstream</td>
<td>CGCAGTAACTATCGCTGACCTAT</td>
<td>1999149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 \textit{IS6110} 3’ junction</td>
<td>AAGCCCCGGCGCGGCTGGATGAAC</td>
<td>1987438</td>
<td>161</td>
<td>NA</td>
</tr>
<tr>
<td>2 \textit{IS6110} 3’ internal</td>
<td>TTCAACCATCGCGCGCCTCT</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 \textit{IS6110} 5’ internal</td>
<td>GGTACCTCCTCGATGAACC</td>
<td>N/A</td>
<td>99</td>
<td>NA</td>
</tr>
<tr>
<td>3 \textit{IS6110} 5’ junction</td>
<td>AGGCCAGCAACCCCGCCCTGATAGGAAC</td>
<td>1998868</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Position of 5’ end of primer in the H37Rv reference genome.

2 Primer sequences from Nguyen \textit{et al.} (2004). Note that due to the direction of the \textit{IS6110} element, the \textit{IS6110} 3’ primers amplify the 5’ flank of the deletion and the \textit{IS6110} 5’ primers amplify the 3’ flank.

PCR reactions were prepared as per Section 2.1.4.2. Touchdown PCR was used to reduce the potential for non-specific priming for all PCR reactions. Thermal cycling conditions used for the DS6Quebec multiplex PCR were as follows:

95 °C \hspace{0.5cm} 15:00 (min:sec)
95 °C \hspace{0.5cm} 0:20
68 °C \hspace{0.5cm} 0:20 x 5 -1 °C per cycle
72 °C \hspace{0.5cm} 2:00
95 °C \hspace{0.5cm} 0:20
63 °C \hspace{0.5cm} 0:20 x 30
72 °C \hspace{0.5cm} 2:00
72 °C \hspace{0.5cm} 3:00

34
Chapter Two

Thermal cycling parameters used for DS6Quebec-IS\textit{6110} insertion-specific PCRs:

- 95 °C 15:00 (min:sec)
- 95 °C 0:20
- 70 °C 0:20 x 5 -1 °C per cycle
- 72 °C 0:20
- 95 °C 0:20
- 65 °C 0:20 x 30
- 72 °C 0:20
- 72 °C 3:00

PCR products were analysed by agarose gel electrophoresis (Section 2.1.4.3). Sanger sequencing of PCR products as in Section 2.1.4.4 to confirm the correct genomic regions had been amplified and as additional confirmation of the deletion.

2.1.7 Contig mapping and analysis

SNP analyses identified SNPs shared between the Rangipo strain and Canadian SUMu strain isolates (Section 2.2.2). Genomic contigs for 12 Canadian SUMu \textit{M. tuberculosis} isolates (SUMu001–SUMu012) were downloaded as fasta files from the Broad Institute (TB Natural Mutation Rate Sequencing Project, Broad Institute of Harvard and MIT, http://www.broadinstitute.org/). Contigs were mapped to the H37Rv reference genome (NC_000962.3) in Geneious R8 (Biomatters, N.Z.) using default settings. Variant positions of interest and the DS6Quebec deletion region (positions 1987457 to 1998849) were manually examined.

2.1.8 Rangipo diagnostic assay

A Rangipo specific SNP-based multiplex PCR-RFLP diagnostic assay has previously been developed in this laboratory (Ruthe 2015). Based on the updated analyses performed in this work, the Rangipo diagnostic was revised to type for a single RS-SNP, Rv2067836GA in the Rv1821/\textit{secA2} gene.
2.1.8.1 Rangipo PCR-RFLP assay

The Sau3AI restriction enzyme and its isoschizomer MboI were previously identified as suitable restriction enzymes for the detection of the Rangipo Rv1821/secA2 SNP as they are expected to cut non-Rangipo samples [^GATC], but not samples carrying the Rangipo SNP [AATC] (Ruthe 2015). A new forward primer was designed to be used with the original reverse primer to incorporate an additional Sau3AI/MboI cut site to act as in internal digestion control. Primers were designed and prepared as in Section 2.1.4.1. Primers are expected to amplify a 455 bp PCR product spanning the SNP and restriction enzyme digestion of this product is expected to produce 386 and 69 bp fragments for Rangipo strain isolates, and 215, 171 and 69 bp fragments for non-Rangipo (Table 2.4).

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5' to 3')</th>
<th>Product size (bp)</th>
<th>Digested fragments (bp)</th>
<th>Rangipo</th>
<th>Non- Rangipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv1821 Fwd new</td>
<td>GAGCCCAAGGAAGGTATCGAGAC</td>
<td>455</td>
<td>386, 69</td>
<td>215, 171, 69</td>
<td></td>
</tr>
<tr>
<td>Rv1821 Rev</td>
<td>CGCCCGGCCATTTGAGTTGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.4. Rangipo specific PCR-RFLP diagnostic assay. PCR primers for the amplification of the Rv1821/secA2 Rangipo marker SNP (Rv2067836GA) and expected fragments following restriction enzyme digestion with Sau3AI or its isoschizomer MboI.

PCR reactions were carried out in 20 µL volumes with 1 U HOT FIREPol® DNA Polymerase (Solis BioDyne, Estonia), supplied buffer B1 at 1X concentration, 2.0 mM MgCl₂, 250 µM dNTPs and 0.3 µM of each primer. Approximately 10 ng of M. tuberculosis template gDNA of was added to each reaction tube and all reactions were run alongside a no template negative control.

The following thermal cycling conditions were used for amplification:

95 °C 15:00 (min:sec)
95 °C 0:20
55 °C 0:20 x 30
72 °C 0:30
72 °C 1:00
PCR products were digested with MboI in order to distinguish between Rangipo and non-Rangipo isolates. 1 µl MboI (New England Biolabs, U.S.A.), NEB buffer 4.1 at 1X final concentration, and MQ H2O were added to the PCR reaction to a final volume of 50 µl. This was incubated at 37 °C for 1 hr in a PCR machine, followed by 65 °C for 20 min. Digested products were separated on 1.5% agarose gels (Section 2.1.4.3).

2.1.8.2 Sputum samples

Clinical sputum specimens were provided by the Waikato Hospital (Hamilton, N.Z.) to assay with the Rangipo PCR-RFLP diagnostic. Samples had been decontaminated using the BD BBL MycoPrep Kit (BD, U.S.A.), heat inactivated at 95 °C for 20 min and then spun down at 4,500 rpm for 10 minutes by hospital laboratory staff. PCR was performed using 0.5 µl of the supernatant as template and products were digested as in Section 2.1.8.2.

2.1.9 Ethical Considerations

Ethical approval is not required for sequencing and DNA analysis of New Zealand clinical M. tuberculosis bacterial isolates. Ethical approval was not required for Rangipo diagnosis from sputum samples as this was a public health investigation seeking to improve the turnaround time for pathogen strain typing and samples were used solely for the purpose they were collected for (diagnosis and strain typing of mycobacterial pulmonary infection), and destroyed immediately after. No identifiable health information was provided to researchers.

2.2 Results

2.2.1 Previous Rangipo strain outbreaks

Contact tracing summary data was available for three large Rangipo strain outbreaks that occurred between 1996 and 2012 (Calder 2013; De Zoysa et al. 2001; McElnay et al. 2004). Collectively these outbreaks resulted in at least 94 cases of
active tuberculosis, of which 68 where identified through contact tracing (additional cases were notified to public health services) and 253 cases of latent infection. In total, 4.6% (68/1482) of traced contacts were diagnosed with active tuberculosis (95% CI, 4.0–5.0%). This is over three times higher than the estimated average prevalence of active tuberculosis in traced contacts in high-income settings (1.4%; 95% CI, 1.1–1.8%) and 1.5 times higher than for low- and middle-income settings (3.1%; 95% CI, 2.2–4.4%) (Fox et al. 2013). Furthermore, this excludes additional cases identified by notification to public health services. The prevalence of latent infection in traced contacts was 17.1% (253/1482) (95% CI, 11.7–33.5%), which is lower than the estimated average for low- to middle-income settings (51.5%; 95% CI, 47.1–55.8%) and lower but within the 95% CI for high-income settings (28.1%; 95% CI, 24.2–32.4%) (Fox et al. 2013). In each Rangipo strain outbreak, the proportion of infected contacts with active disease exceeded the 5–10% expected to progress to active disease, and overall 21.2% of infected individuals (68/321) were diagnosed with active tuberculosis (95% CI, 11.7–33.5%).

Table 2.5. Contact tracing of previous Rangipo strain outbreaks. Percentage of traced contacts is shown in brackets.

<table>
<thead>
<tr>
<th></th>
<th>North Island 1996-2000(^1)</th>
<th>Hawkes Bay 2002(^2)</th>
<th>Hawkes Bay 2012(^3)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traced contacts</td>
<td>733</td>
<td>397</td>
<td>352</td>
<td>1482</td>
</tr>
<tr>
<td>Active tuberculosis</td>
<td>35 (4.8%)</td>
<td>19 (4.8%)</td>
<td>14 (4.0%)</td>
<td>68 (4.6%)</td>
</tr>
<tr>
<td>Latent tuberculosis</td>
<td>119 (16.2%)</td>
<td>40 (10.1%)</td>
<td>94 (26.7%)</td>
<td>253 (17.1%)</td>
</tr>
<tr>
<td>Total infected</td>
<td>154 (21.0%)</td>
<td>59 (14.9%)</td>
<td>108 (30.70%)</td>
<td>321 (21.7%)</td>
</tr>
<tr>
<td>Infected contacts with active disease</td>
<td>22.7%</td>
<td>32.2%</td>
<td>13.0%</td>
<td>21.2%</td>
</tr>
<tr>
<td>Contact types</td>
<td>Community and prison contacts</td>
<td>Household, close associates, and co-workers</td>
<td>Household, and shearing gang workers</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) De Zoysa et al. (2001)
\(^2\) McElnay et al. (2004)
\(^3\) Calder (2013)

2.2.2 Rangipo SNPs

Two hundred and forty-seven SNPs common to the Rangipo cluster were previously identified in ten Rangipo genomes sequenced on the ABI SOLiD platform (Colangeli et al. 2014). I then checked all 247 SNP positions by searching the GMTV database for the presence of the same variation in >1000 MTBC
genomes (accessed March 2015). Eleven of the 247 SNPs were found not to be SNPs relative to H37Rv (Table 2.6, Appendix A.2). Of the 236 remaining positions, 210 SNPs were present in at least one other strain and 26 were not present in any other isolates, and thus represent putative RS-SNPs. Nearly two-thirds of all SNPs were non-synonymous SNPs (nsSNPs) (150/236, 63.5%), consistent with that typically reported for M. tuberculosis (Fleischmann et al. 2002; Hershberg et al. 2008; Rose et al. 2013). A similar proportion of nsSNPs were observed for the RS-SNP subset (16/26, 61.5%).

Table 2.6. Classification of 247 common Rangipo SNPs. SNPs classified as Rangipo specific were not present in >1000 M. tuberculosis isolates in the GMTV database.

<table>
<thead>
<tr>
<th>Classification</th>
<th>sSNPs</th>
<th>nsSNPs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not a SNP relative to H37Rv</td>
<td>–</td>
<td>–</td>
<td>(11)</td>
</tr>
<tr>
<td>Present in at least one other strain</td>
<td>76</td>
<td>134</td>
<td>210</td>
</tr>
<tr>
<td>Rangipo specific SNP (RS-SNPs)</td>
<td>10</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>150</td>
<td>236</td>
</tr>
</tbody>
</table>

Amino acid sequences of the 16 proteins with RS-nsSNPs were submitted to BLAST to search other M. tuberculosis proteins for the same amino acid changes. This identified two amino acid changes (Rv0071 R67L and Rv1860/apa T146N) shared by the Rangipo strain and three M. tuberculosis isolates from Canada – SUMu002, SUMu004 and SUMu005.

The Canadian SUMu genomes carrying the Rv0071 and Rv1860 variants are from three of 12 M. tuberculosis isolates from Aboriginal communities in Western Canada sequenced using Roche 454 whole genome shotgun methodology (Pepperell et al. 2013). All 12 SUMu genomes are publicly available as contigs (raw fastq were files not available). These were downloaded and mapped to the H37Rv reference genome in Geneious R8 and all 26 putative RS-SNP positions were manually examined. SNPs in Rv0071 and Rv1860 were found to match those in the Rangipo strain, and two additional synonymous Rangipo SNPs; Rv1088676CT in Rv0976c and Rv2491388CT in Rv2221c/glnE, were also present. These four SNPs were all found in the SUMu002, SUMu004 and SUMu005 genomes, but not in any other Canadian SUMu genomes.
Chapter Two

Excluding these four SNPs, a final list of 22 RS-SNPs was produced (Appendix A.2). Fourteen of these were non-synonymous and thus have potential effects on protein function and bacterial fitness (Table 2.7).

<table>
<thead>
<tr>
<th>SNP</th>
<th>Locus</th>
<th>aa change</th>
<th>Gene product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv3253CG</td>
<td>Rv0002/dnaN</td>
<td>P401R</td>
<td>DNA polymerase III beta sliding clamp subunit dnaN</td>
</tr>
<tr>
<td>Rv489437CT</td>
<td>Rv0405/pks6</td>
<td>S1236L</td>
<td>Probable membrane bound polyketide synthase Pks6</td>
</tr>
<tr>
<td>Rv550620GT</td>
<td>Rv0458</td>
<td>D316Y</td>
<td>Probable aldehyde dehydrogenase</td>
</tr>
<tr>
<td>Rv1289731TC</td>
<td>Rv1161/narG</td>
<td>Y802H</td>
<td>Respiratory nitrate reductase alpha chain NarG</td>
</tr>
<tr>
<td>Rv1836099TG</td>
<td>Rv1631/coaE</td>
<td>Y363D</td>
<td>Dephospho-CoA kinase CoaE</td>
</tr>
<tr>
<td>Rv2807374GC</td>
<td>Rv2492</td>
<td>G33R</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>Rv3202633GA</td>
<td>Rv2893</td>
<td>G72S</td>
<td>Possible oxidoreductase</td>
</tr>
<tr>
<td>Rv3283879TC</td>
<td>Rv2941/fadD28</td>
<td>V182A</td>
<td>Long-chain-fatty-acid-AMP ligase FadD28</td>
</tr>
<tr>
<td>Rv3366098GA</td>
<td>Rv3007c</td>
<td>P118L</td>
<td>Possible oxidoreductase</td>
</tr>
<tr>
<td>Rv3561770AG</td>
<td>Rv3193c</td>
<td>L468S</td>
<td>Probable conserved transmembrane protein</td>
</tr>
<tr>
<td>Rv3895925GA</td>
<td>Rv3479</td>
<td>A36T</td>
<td>Possible transmembrane protein</td>
</tr>
<tr>
<td>Rv3980075CA</td>
<td>Rv3540/ltp2</td>
<td>E195D</td>
<td>Probable lipid transfer protein or keto acyl-CoA thiolase ltp2</td>
</tr>
<tr>
<td>Rv4085870GA</td>
<td>Rv3646/topA</td>
<td>T463M</td>
<td>DNA topoisomerase I topA</td>
</tr>
<tr>
<td>Rv4377908CT</td>
<td>Rv3894/eccC2</td>
<td>G849S</td>
<td>EESX-2 type VII secretion system protein eccC2</td>
</tr>
</tbody>
</table>

The final RS-SNP list excluded two SNPs previously used as diagnostic markers; Rv2819180CT in Rv2504c/scoA and Rv3485475AG in Rv3119/moaE1 (Ruthe 2015), as these were identified in other isolates in the GMTV database. The third diagnostic marker SNP Rv2067836GA in Rv1821/secA2, was not identified in any other isolates and remains classified as an RS-SNP. This was further validated by comparison against 220 M. tuberculosis L4.4 genomes in Chapter Four (Section 4.3.2.2).

One RS-nsSNP (Rv489437CT in Rv0405/pks6) and one SUMu shared SNP (Rv79685GT in Rv0071) have previously been validated in the Rangipo strain (Ruthe 2015). In this work, the remaining 13 RS-nsSNPs were confirmed by Sanger sequencing (Section 2.1.4).
2.2.2.1 Gene functional categories

Functional categories for genes carrying all 236 Rangipo SNPs were assigned using the Tuberculist database (Lew et al. 2011). Of the SNPs common to the Rangipo strain, genes in cell wall and cell processes were the most highly represented accounting for 27.5% of all SNPs (65/236), and 30.0% of nsSNPs (45/150) (Table 2.8). This was followed by the intermediary metabolism and respiration category, which accounted for 21.2% of all SNPs (50/236) and 20.7% of nsSNPs (31/150).

Genes in the intermediary metabolism and respiration category were the most highly represented among the RS-SNPs accounting for 31.8% of all RS-SNPs (7/22) and 35.7% of RS-nsSNPs (5/14); followed by cell wall and cell processes, 22.7% of all RS-SNPs (5/22), and 21.4% of RS-nsSNPs (3/14). The proportion of genes involved in lipid metabolism and in intermediary metabolism and respiration were enriched ~1.7-fold in the RS-nsSNP subset compared to the full set of nsSNPs. These two functional categories collectively accounted for 57.1% (8/14) of variant genes unique to the Rangipo strain; an approximate two-fold enrichment relative to their overall proportion of 28% in the M. tuberculosis genome (Camus et al. 2002) (Table 2.8). Genes involved in lipid metabolism were particularly over represented. This category accounting for 12.0% of common Rangipo nsSNPs (18/150) and 21.4% RS-nsSNPs (3/14), a two- and 3.5-fold enrichment, respectively, compared an overall proportion of just 6% in the M. tuberculosis H37Rv genome.

Although no RS-SNPs were identified in genes classified in the virulence, detoxification, adaptation functional category, four RS-nsSNPs occurred in genes encoding virulence factors listed in the PATRIC_VF and/or the VFDB databases: Rv0405/pks6, Rv1161/narG, Rv3540c/ltp2, and Rv2941/fadD28.
Table 2.8. Functional categories of genes harbouring Rangipo SNPs.

<table>
<thead>
<tr>
<th>Gene Functional Category</th>
<th>Common Rangipo SNPs</th>
<th>Rangipo specific SNPs</th>
<th>H37Rv¹</th>
<th>Percentage of genes in each functional category in the H37Rv reference genome as reported in Camus et al. (2002)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sSNPs</td>
<td>nsSNPs</td>
<td>All SNPs</td>
<td>sSNPs</td>
</tr>
<tr>
<td>Cell wall and cell processes</td>
<td>20 (23.3%)</td>
<td>45 (30.0%)</td>
<td>65 (27.5%)</td>
<td>2 (25.0%)</td>
</tr>
<tr>
<td>Conserved hypotheticals</td>
<td>16 (18.6%)</td>
<td>24 (16.0%)</td>
<td>40 (16.9%)</td>
<td>2 (25.0%)</td>
</tr>
<tr>
<td>Information pathways</td>
<td>7 (8.1%)</td>
<td>17 (11.3%)</td>
<td>24 (10.2%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Insertion seqs and phages²</td>
<td>2 (2.3%)</td>
<td>1 (0.7%)</td>
<td>3 (1.3%)</td>
<td>0</td>
</tr>
<tr>
<td>Intermediary metabolism and respiration</td>
<td>19 (22.1%)</td>
<td>31 (20.7%)</td>
<td>50 (21.2%)</td>
<td>2 (25.0%)</td>
</tr>
<tr>
<td>Lipid metabolism</td>
<td>10 (11.6%)</td>
<td>18 (12.0%)</td>
<td>28 (11.9%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Regulatory proteins</td>
<td>7 (8.1%)</td>
<td>9 (6.0%)</td>
<td>16 (6.8%)</td>
<td>0</td>
</tr>
<tr>
<td>Virulence, detoxification, adaptation</td>
<td>5 (5.8%)</td>
<td>5 (3.3%)</td>
<td>10 (4.2%)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>150</td>
<td>236</td>
<td>8</td>
</tr>
</tbody>
</table>

¹ Percentage of genes in each functional category in the H37Rv reference genome as reported in Camus et al. (2002)
² This gene category is underrepresented as the majority were excluded from SNP calling analyses due to the difficulties with mapping repetitive regions of the genome.
2.2.2.2 SNP functional effect prediction

SNAP2 is a freely available machine learning based classifier trained to distinguish between effect and neutral amino acid variations (Hecht et al. 2015). It considers a variety of sequence and variant features, including automatically generated multiple sequence alignments (which provide the most important signal), structural features, and annotations if available, to predict whether or not a single amino variant changes molecular function. For each residue and possible substitution, the program calculates an output score ranging from -100 (strong neutral) to +100 (strong effect), reflecting the likelihood that a specific mutation alters protein function, as well as the expected accuracy of the prediction.

All 14 RS-nSNPs were analysed with SNAP2 to identify those with predicted functional effects. Eight SNPs were predicted to have an effect, including those in the virulence-associated proteins Rv0405/pks6 and Rv1161/narG (Table 2.9). Around two-thirds of SNPs predicted to have functional consequences were found in genes involved in intermediary metabolism and respiration (Rv0458, Rv1161/narG, Rv1631/coaE, Rv2893 and Rv3007c). This gene functional category was also over represented among RS-nSNPs compared with the proportion of genes in category in the M. tuberculosis genome (Section 2.2.2.2). The remaining three SNPs predicted to have an effect were found in genes involved in cell wall and cell processes (Rv3894c/eccC2), conserved hypotheticals (Rv2492), and in lipid metabolism (Rv0405/pks6).

The highest ranked SNP in terms of predicted effect, Y363D in Rv1631/CoaE, was further examined in silico (Section 2.2.2.3). The Rv2893 G72S SNP was also further examined (Section 2.2.2.4) and is the subject of biochemical and structural investigation in Chapter Three.
Table 2.9. SNAP2 functional effect predictions for RS-nsSNPs. SNAP2 output is shown in the predicted effect, score and expected accuracy columns. Known virulence factor genes are listed in bold type. SNPs are ranked according to effect prediction score.

<table>
<thead>
<tr>
<th>Locus</th>
<th>SNP</th>
<th>Predicted Effect</th>
<th>Score</th>
<th>Expected Accuracy</th>
<th>Gene Functional Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv1631/coaE</td>
<td>Y363D</td>
<td>effect</td>
<td>87</td>
<td>91%</td>
<td>Intermediary metabolism and respiration</td>
</tr>
<tr>
<td>Rv1161/narG</td>
<td>Y802H</td>
<td>effect</td>
<td>80</td>
<td>91%</td>
<td>Intermediary metabolism and respiration</td>
</tr>
<tr>
<td>Rv2492</td>
<td>G33R</td>
<td>effect</td>
<td>79</td>
<td>85%</td>
<td>Conserved hypotheticals</td>
</tr>
<tr>
<td>Rv3007c</td>
<td>P118L</td>
<td>effect</td>
<td>59</td>
<td>75%</td>
<td>Intermediary metabolism and respiration</td>
</tr>
<tr>
<td>Rv0405/pks6</td>
<td>S1236L</td>
<td>effect</td>
<td>46</td>
<td>71%</td>
<td>Lipid metabolism</td>
</tr>
<tr>
<td>Rv2893</td>
<td>G72S</td>
<td>effect</td>
<td>28</td>
<td>63%</td>
<td>Intermediary metabolism and respiration</td>
</tr>
<tr>
<td>Rv3894c/eccC2</td>
<td>G849S</td>
<td>effect</td>
<td>20</td>
<td>63%</td>
<td>Cell wall and cell processes</td>
</tr>
<tr>
<td>Rv0458</td>
<td>D316Y</td>
<td>effect</td>
<td>14</td>
<td>59%</td>
<td>Intermediary metabolism and respiration</td>
</tr>
<tr>
<td>Rv3646c/topA</td>
<td>T463M</td>
<td>neutral</td>
<td>-5</td>
<td>53%</td>
<td>Information pathways</td>
</tr>
<tr>
<td>Rv3193c</td>
<td>L468S</td>
<td>neutral</td>
<td>-17</td>
<td>57%</td>
<td>Cell wall and cell processes</td>
</tr>
<tr>
<td>Rv0002/dnaN</td>
<td>P401R</td>
<td>neutral</td>
<td>-26</td>
<td>61%</td>
<td>Information pathways</td>
</tr>
<tr>
<td>Rv3540c/ltp2</td>
<td>E195D</td>
<td>neutral</td>
<td>-67</td>
<td>82%</td>
<td>Lipid metabolism</td>
</tr>
<tr>
<td>Rv2941/fadD28</td>
<td>V182A</td>
<td>neutral</td>
<td>-77</td>
<td>87%</td>
<td>Lipid metabolism</td>
</tr>
<tr>
<td>Rv3479</td>
<td>A36T</td>
<td>neutral</td>
<td>-80</td>
<td>87%</td>
<td>Cell wall and cell processes</td>
</tr>
</tbody>
</table>
2.2.2.3 *Rv1631/coaE Y363D SNP*

The Y363D SNP in *Rv1631/coaE* was predicted as the most significant SNP in SNAP2 analyses (Section 2.2.2.2). Examination of *M. tuberculosis* CoaE domain architecture in PFAM shows it is comprised of an N-terminal catalytic dephosphocoenzyme A kinase (CoaE) domain and a C-terminal GrpB domain (Figure 2.2A). The Y363D SNP is located in the GrpB domain 45 residues from the C-terminus. The GrpB PFAM HMM logo reveals that the Y363D SNP changes one of four highly conserved residues comprised of two tyrosines and two lysines (Y-K-Y-K) near the C-terminal end of the domain (Figure 2.2B).

![Figure 2.2. Domain structure of M. tuberculosis CoaE and position of the Y363D RS-nsSNP.](image)

The GrpB domain family is suggested to belong to the nucleotidylytransferase superfamily (Kuchta et al. 2009). This is a large and diverse family of proteins, nearly all of which catalyse the transfer of a nucleotide to an acceptor hydroxyl group (Kuchta et al. 2009). There are no structures available for *M. tuberculosis* CoaE and the only crystal structure of a GrpB domain is that of conserved protein GrpB of unknown function from *Enterococcus faecalis* (PDB ID: 2NRK). 2NRK shares 24% identity with the GrpB domain of *M. tuberculosis* CoaE, including the four conserved Y-K-Y-K residues and two sites identified as catalytic residues on the basis of structural homology (Asp52 and His99) (Kuchta et al. 2009) (Figure 2.3A). The Rangipo Y363D SNP position corresponds to Tyr131 in the 2NRK
structure. Examination of 2NRK shows the conversed Y-K-Y-K residues are positioned adjacent to one another on two neighbouring alpha helices forming a highly conserved motif (Figure 2.3). The highly conserved nature and chemical properties of the Y-K-Y-K motif and its position across from the active site Asp52 and His99 residues suggests this motif might be important for substrate binding in the GrpB protein family. However, in *M. tuberculosis* CoaE the only currently assigned function of the GrpB domain is in the proper protein folding of the enzyme and the last 50 residues at the C-terminus (including the Y363D SNP and all four conserved Y-K-Y-K residues) are dispensable for proper folding and full catalytic activity *in vitro* (Walia *et al.* 2009). Therefore this SNP may be less likely to affect CoaE activity than expected based on the prediction from SNAP2.

Figure 2.3. *The conserved protein GrpB from E. faecalis (2NRK).* The position of conserved Y-K-Y-K residues are indicated. The position of the Y363D RS-SNP corresponds to residue Tyr131 in 2NRK. (A) Sequence alignment and secondary structure elements of the *M. tuberculosis* CoaE GrpB domain and 2NRK. A black arrow indicates the position of Y363D. Catalytic residues Asp52 and His99 are highlighted in grey and the conserved Y-K-Y-K residues in orange. Secondary structure elements (alpha helices red, beta sheets blue) were predicted using JPred4. (B) The 2NRK structure showing the position of the Y-K-Y-K motif and catalytic residues.
2.2.2.4 \textit{Rv2893 G72S SNP}

\textit{Rv2893} is predicted to be a F\textsubscript{420}-dependent oxidoreductase and belongs to the luciferase like hydride transferase (LLHT) family of enzymes (previously known as luciferase like monooxygenases) (Selengut and Haft 2010). A PDB protein sequence search was performed to identify deposited structures with sequence similarity to \textit{Rv2893} (accessed 2015). Four of the top five unique protein hits were for F\textsubscript{420}-dependent LLHTs; F\textsubscript{420}-dependent glucose-6-phosphate dehydrogenase from \textit{M. tuberculosis} (mtbFGD, PDB ID: 3B4Y and 3C8N) (Bashiri \textit{et al.} 2008), methylenetetrahydromethanopterin reductase from \textit{Methanosarcina barkeri} (bMer, 1Z69) (Aufhammer \textit{et al.} 2005), Mer from \textit{Methanobacterium thermooautotrophicum} (tMer, 1F07), and Mer from \textit{Methanopyrus kandleri} (kMer, 1EZW) (Shima \textit{et al.} 2000). These share 21–32\% protein sequence identity with \textit{Rv2893}. All remaining proteins identified were non-F\textsubscript{420}-dependent LLHTs.

A sequence alignment of \textit{Rv2893} with mtbFGD, bMer, tMer, kMer and MSMEG_2516 (the \textit{Mycobacterium smegmatis} homologue of \textit{Rv2893}) shows \textit{Rv2893} has the conserved glycine in position 179 that enables binding of the phosphate group of F\textsubscript{420} without steric hindrance (Aufhammer \textit{et al.} 2004), consistent with it being an F\textsubscript{420}-dependent protein (Figure 2.4). \textit{Rv2893} also retains the conserved active site histidine (His48) and a second histidine occupies the site of the catalytic glutamate (His109) (His40 and Glu109 in mtbFGD (Oyugi \textit{et al.} 2016)). The Rangipo G72S SNP site corresponds to Gly71 in mtbFGD and is conserved in the alignment. In mtbFGD, Gly71 is positioned two residues from Ser73 and Val74, which are connected by a rare non-prolyl \textit{cis}-peptide bond (Bashiri \textit{et al.} 2008). Examination of the mtbFGD structure shows Gly71 is positioned at the end of a beta sheet next to the base of the non-prolyl \textit{cis}-peptide bond (Figure 2.5). This \textit{cis}-peptide bond is found in other F\textsubscript{420}-LLHTs and is important for F\textsubscript{420} binding and catalysis. It creates a bulge that packs against the \textit{Re}-face of F\textsubscript{420} that helps induce a butterfly bend in the ring system of F\textsubscript{420}, increasing the reactivity of the C5 atom (which is oxidised or reduced in the reaction) (Aufhammer \textit{et al.} 2004; Aufhammer \textit{et al.} 2005; Bashiri \textit{et al.} 2008; Shima \textit{et al.} 2000). The location of the G72S mutation near at the base of this bulge could have important consequences for F\textsubscript{420}-binding and catalysis via influence on the bulge and its interaction with F\textsubscript{420}.
Figure 2.4. Multiple sequence alignment of F_{420}-dependent of bacterial LLHT family proteins. Sequences are shown for M. tuberculosis Rv2893, the M. smegmatis orthologue MSMEG_2516, and three F_{420}-dependent LLHTs identified by sequence similarity searches in the PDB (mtbFGD, kMER, tMer and bMER). Catalytic resides (mtbFGD His40 and Glu109) and the conserved glycine that differentiates F_{420}-binding LLHTs are marked with red boxes and asterisks. The Rangipo specific G72S mutation is marked by a blue box and asterisk. Only the first 196 residues of Rv2893 are shown.

Figure 2.5. Corresponding position of the Rangipo G72S SNP site in M. tuberculosis FGD (3B47). The non-prolyl cis-peptide bond linking Ser73 and Val74 is indicated and Gly71, (position of the Rangipo SNP), is shown in red and labelled. F_{420} is coloured yellow.
2.2.3 Lineage classification

MIRU-VNTR-based lineage assignment was performed using the MIRU-VNTRplus database. This classified the Rangipo, Otara and NZ_094 clusters as belonging to the S lineage, Southern Cross and NZ_037 as LAM, and NZ_041 and NZ_069 as H37Rv-like.

2.2.3.1 S lineage classification PCR-RFLP assay

The S lineage, or ‘S-type’, was originally classified based on traditional molecular typing methods and is equivalent to the L4.4.1.1/S sublineage described in a recent high-resolution SNP phylogeny (Coll et al. 2014). L4.4.1.1/S belongs to the L4.4 sublineage of the L4/Euro-American lineage and L4.4 comprises three clades; L4.4.1.1/S, L4.4.1.2 and L4.4.2. L4.4 is reported to account for 10% of global L4 isolates and is the most common L4 sublineage in New Zealand, accounting for 43% of L4 cases (Stucki et al. 2016b).

To confirm the assignment of the Rangipo, Otara and NZ_094 clusters to the S lineage and to provide a fast and affordable method to identify other S lineage isolates, a SNP-based RFLP-PCR assay was designed. WatCut identified that the S-type marker SNP Rv648992CG described by Homolka et al. (2012) is selectively recognised using the restriction enzyme BstNI. A 343 bp product spanning the S-type Rv648992CG marker SNP was amplified by PCR and digested with BstNI. Sanger sequencing of the PCR product confirmed the correct 343 bp fragment had been amplified and the presence of the marker SNP in the Rangipo strain. Digestion with BstNI gave the expected fragments of 205 and 138 bp for S-type, and 138, 151 and 54 bp for non-S-type, allowing classification of isolates as S lineage or non-S (Figure 2.6A,B). Due to size similarity, the 138 and 151 bp fragments for non-S isolates migrated as a single band on the gel. This assay was used to screen New Zealand M. tuberculosis cluster isolates (Figure 2.6C). The Rangipo, Otara and the NZ_094 clusters were all classified as belonging to the S lineage and Southern Cross and the remaining clusters as non-S, consistent with MIRU-VNTR based lineage assignment.
2.2.4 DS6Quebec deletion

BLAST searches identified two SNPs shared only with Rangipo and three *M. tuberculosis* SUMu genomes from Aboriginal communities in Canada (Section 2.2.1). The most common *M. tuberculosis* lineage in Western Canadian Aboriginal populations and in French Canadian populations in Quebec is the DS6Quebec strain family (Pepperell *et al.* 2011). Spoligotyping patterns of DS6Quebec isolates show that this strain family belongs to the S lineage (Nguyen *et al.* 2003). The DS6Quebec family is characterised by the presence of a large genomic deletion called the DS6Quebec deletion. This removes ~11.4 kb between positions 1987457 and 1998849, replacing it with an IS6110 element (Nguyen *et al.* 2004) (Figure 2.7). A similar but evolutionarily independent ~12 kb deletion (positions 1986636 to
known as the RD152 deletion is also found in the hypervirulent Beijing/W strain (Tsolaki et al. 2005).

Figure 2.7. Schematic of the DS6Quebec and RD152 deletions. Genomic regions present in H37Rv that are deleted by the DS6Quebec deletion and the RD152 deletion in the Beijing/W strain are shown in blue and green, respectively.

All 12 *M. tuberculosis* SUMu genomes were examined for the presence of S lineage marker SNPs (Table 2.1) and evidence of the DS6Quebec deletion, as indicated by absence of coverage over the region. Eight of these genomes, including the three sharing SNPs with the Rangipo strain, had the DS6Quebec deletion and belong to the S lineage. The remaining four genomes were non-S lineage and did not have the DS6Quebec deletion. The identification of Rangipo SNPs shared with a subset of S lineage/DS6Quebec SUMu isolates suggested that the Rangipo strain might have a close phylogenetic relationship with the Canadian DS6Quebec lineage and harbour the DS6Quebec deletion.

PCR assays were used to screen Rangipo and other New Zealand *M. tuberculosis* cluster isolates for the DS6Quebec deletion (Figure 2.8). A multiplex PCR was used to first identify isolates with deletions in the DS6 region using forward and reverse primers external to the deletion together with an internal reverse primer (Figure 2.8A,C,D). If an isolate has the DS6Quebec deletion, a large 1836 bp product is amplified from the external primers. If the region is not deleted, a short 250 bp product is amplified from the external upstream and the internal primer, and the external primers will not amplify as the genomic distance between them is too large (11.9 kb). Two separate DS6Quebec-IS6110 insertion-specific PCRs as described in Nguyen et al. (2004) where then performed (Figure 2.8B,C,E). These use external deletion flanking primers that include 5 bp of the end of the IS6110 sequence and 20 bp of the sequence flanking the deletion, so that amplification will only occur if IS6110 insertion has occurred at exactly the same site (Figure 2.8B,E).
Figure 2.8. DS6\text{Quebec} deletion PCR assays. (A) DS6\text{Quebec} multiplex PCR. Expected PCR product indicating deletion of the DS6\text{Quebec} region is shown in blue and in red if the region is not deleted. Primer binding sites are indicated by black triangles. Not to scale. (B) DS6\text{Quebec}-IS6110 insertion-specific verification of the DS6\text{Quebec} deletion. Note that due to the direction of the IS6110 insertion, the IS6110 3' primers amplify the 5' flank of the deletion and the IS6110 5' primers amplify the 3' flank. (C) Schematic showing theoretical PCR products for the DS6\text{Quebec} multiplex (M) and DS6\text{Quebec} IS6110 insertion-specific PCRs (3' and 5') for strains harbouring the DS6\text{Quebec} deletion and for H37Rv. (D) DS6\text{Quebec} multiplex PCR amplification products. A, Rangipo A; 10, Rangipo 10; H, H37Rv; N, PCR negative control. (E) DS6\text{Quebec}-IS6110 insertion-specific PCR amplification products. The absence of a PCR product for Rangipo A in the multiplex PCR is likely due to DNA degradation preventing amplification of the large 1836 bp product.
Sanger sequencing confirmed the correct products had been amplified and the presence of the DS6Quebec deletion in the Rangipo strain. Rangipo isolate A produced bands of the correct sizes for both insertion-specific PCRs but failed to amplify in the multiplex PCR (Figure 2.8D,E). This is likely due to DNA degradation preventing amplification of the large 1836 bp product as LabPLUS Rangipo samples amplified in the large multiplex PCR product as expected for isolates carrying the deletion (Figure 2.8D, Figure 2.9A).

New Zealand \textit{M. tuberculosis} cluster isolates were screened with the multiplex PCR. Isolates from the Rangipo, Otara and NZ_094 clusters all gave a band of the expected size for the DS6Quebec deletion and insertion-specific PCRs confirmed the deletion occurred at the exact same site as in the DS6Quebec strain family (Figure 2.9). All Southern Cross and NZ_037 isolates and a single NZ_041 isolate failed to amplify in the multiplex PCR, despite repeated attempts. The remaining isolates from NZ_041 and all NZ_069 isolates gave the expected sized band for the absence of the deletion. The NZ_041 isolate that failed to amplify, one Southern Cross, and one NZ_037 isolate were also screened with the insertion-specific PCRs to ensure amplification failure was not the result of DNA degradation impairing amplification of long product. Neither the Southern Cross nor NZ_037 isolates amplified in either PCR reaction, confirming these clusters do not carry the DS6Quebec deletion. The NZ_041 isolate did not amplify for the 5’ insertion-specific PCR, but gave a band of the correct size for the 3’ insertion-specific PCR. This genomic region contains multiple mobile elements and is known to be highly variable and associated with frequent IS6110 insertion (Ho \textit{et al.} 2000). The failure of these isolates to amplify in either a DS6Quebec or H37Rv-like manner suggests an alternative deletion or IS6110 insertion in this region.
Figure 2.9. $DS6^{\text{Quebec}}$ deletion PCR assay typing of New Zealand M. tuberculosis cluster isolates. MIRU-VNTR cluster ID is shown above the lane number. (A) $DS6^{\text{Quebec}}$ deletion multiplex PCR (lanes 1-3, NZ_041; 4-6, NZ_069; 7-12, Rangipo; 13-15, Otara; 16-18, Southern Cross; 19-21, NZ_037; 22-24, H, H37Rv; N, PCR negative control). (B,C) $DS6^{\text{Quebec}}$-IS6110 insertion-specific PCR for the 5' (B) and 3' (C) ends of the deletion. Lane numbers correspond to isolates assayed in the multiplex PCR.

2.2.5 Rangipo diagnostic

Based on the reclassification of Rangipo SNPs (Section 2.2.1) and WGS of additional New Zealand cluster isolates (Chapter Four), a Rangipo specific SNP-based multiplex PCR-RFLP diagnostic assay previously developed in this laboratory (Ruthe 2015) was re-evaluated and updated. Reclassification of Rangipo SNPs identified the original diagnostic marker 1380G>A in Rv1821/secA2 (Rv2067836GA) as specific to the Rangipo strain. Analysis of Illumina WGS data confirmed the presence of this SNP in a further 18 Rangipo genomes and its absence in 220 non-Rangipo L4.4 genomes (Section 4.3.2.2). An updated search in the GMTV database did not identify this SNP in 2501 global MTBC genomes (accessed August 2018).
2.2.5.1 Rangipo PCR-RFLP assay

A revised RFLP-PCR diagnostic for the Rangipo specific Rv1821/secA2 SNP was developed to enable affordable and rapid identification of this strain. A 455 bp product PCR spanning the SNP was amplified and Sanger sequencing confirmed the correct fragment had been amplified. Digestion of this PCR product with the restriction enzyme MboI gave the expected fragments of 386 and 69 bp for Rangipo, and 215, 171 and 69 bp for non-Rangipo, allowing Rangipo and non-Rangipo isolates to be easily distinguished (Figure 2.10A,B).

This assay was experimentally validated on 28 isolates sequenced on the ABI SOLiD and/or Illumina platforms and 39 additional M. tuberculosis isolates including New Zealand cluster isolates and isolates from various MTBC lineages and L4 sublineages (Figure 2.10C,D). One sample (Figure 2.10D, lane 12) classified as Rangipo by MIRU-VNTR typing produced the non-Rangipo banding pattern. This isolate was from a case that likely contracted tuberculosis overseas (Ruthe 2015), supporting the non-Rangipo diagnosis and highlighting the greater discriminatory power of SNP-based typing over conventional MIRU typing. All remaining isolates gave the expected fragments for Rangipo and non-Rangipo isolates.

A total of 39 Rangipo isolates have been typed by WGS or PCR-RFLP for the Rv1821/secA2 SNP in this study and in previous work (Ruthe 2015) and all harbour the Rangipo specific variant. These isolates span a 26-year period (1991–2017) and include isolates from a range of geographic locations throughout New Zealand, and are expected to provide a good representative sample of this cluster. The phylogenetic analyses performed in Chapter Four show this SNP is a phylogenetically informative SNP specific to the Rangipo strain, further supporting its suitability for use as a diagnostic marker.

A paper describing this diagnostic assay has been published in Diagnostic Microbiology and Infectious Disease (Mulholland et al. 2017) (Appendix D).
Figure 2.10. Rangipo strain specific PCR-RFLP diagnostic assay. (A) Schematic showing positions of the MboI recognition sequences (arrows) on the PCR product and the resulting fragment sizes for Rangipo and non-Rangipo samples. (B) PCR-RFLP assay showing uncut PCR products and digested fragments of non-Rangipo (Non-R) and Rangipo (R) PCR products. (C) Digested fragments from New Zealand clinical M. tuberculosis isolates sequenced on the Illumina and/or ABI SOLiD platform. Isolates with Rangipo MIRU-VNTR typing profiles are shown in red text. (Lanes 1-16, Rangipo; 17-21, Southern Cross; 22-28, Otara). (D) New Zealand clinical M. tuberculosis isolates and isolates from major MTBC lineages and other from lineage 4 sublineages. Isolates with Rangipo MIRU-VNTR typing profiles are shown in red text. (Lanes 1-3, NZ_041; 4-6, NZ_069; 7-12 Rangipo; 13-15, Otara; 16-18 Southern Cross; 19-21, NZ_037; 22-25, NZ_094; 26, L1/EAI; 27-29, L2/Beijing; 30, L3/CAS; 31, Cameroon (L4); 32, Ural (L4); 33, Iran (L4); 34, Uganda (L4); 35, PGG3 (L4); 36, X (L4); 37, LAM (L4); 38, Haarlem (L4); 39, H37Rv (L4)).
2.2.5.2 Evaluation of the Rangipo diagnostic in a clinical setting

The Rangipo diagnostic was evaluated using culture independent DNA from heat inactivated sputum samples from a small local Rangipo strain outbreak in 2017/2018. Four samples were provided by the Waikato Hospital (Hamilton, New Zealand), including two non-Rangipo control cases. The PCR-RFLP assay was performed as for extracted gDNA, with the exception that heat inactivated supernatant from sputum specimens was directly input into the PCR instead of gDNA (Section 2.1.8.2). Samples 1 and 2 were both diagnosed as Rangipo and samples 3 and 4 as non-Rangipo (Figure 2.11). Consistent with these results, MIRU-VNTR typing at LabPLUS confirmed Sample 1 and 2 as Rangipo (MIRU-VNTR 24-locus code, 233325153324–341444223362) and 3 and 4 as non-Rangipo (223325173533–445643423382). PCR-RFLP results were available within 24 hrs, however this could be further reduced for samples received early in the day.

These results have been published in the New Zealand Medical Journal (Mulholland et al. 2018) (Appendix D).

Figure 2.11. Rangipo PCR-RFLP diagnostic screening of clinical sputum samples. Lane 1, uncut Rangipo control; 2, uncut non-Rangipo control (H37Rv); 3 and 4, clinical sputum samples diagnosed as Rangipo by this assay (samples 1 and 2); 5 and 6, clinical sputum samples diagnosed as non-Rangipo (samples 3 and 4); 7, Rangipo control isolate after digestion; 8, Non-Rangipo control after digestion; 9, PCR negative control.
2.3 Discussion

The Rangipo strain has been the source of several large outbreaks over the past 30 years and anecdotal evidence suggests that it is highly transmissible (Colangeli et al. 2014; De Zoysa et al. 2001; McElnay et al. 2004). Analysis of contact tracing results of previous Rangipo strain outbreaks revealed a higher proportion of traced contacts with active disease and a lower proportion with latent infection compared to average contact tracing estimates (Section 2.2.1). The portion of infected cases with active disease also exceeded the 5–10% of infections typically expected to progress to active disease. The skew towards active disease and the relatively low proportion of contacts with latent infection suggests that the Rangipo strain might not necessarily be more infectious, but that a greater proportion of infected contacts progress to active disease.

Bacterial, host and environmental factors can all influence the outcome of *M. tuberculosis* infection and as active pulmonary tuberculosis is required for transmission to occur, progression to active disease is relevant when considering tuberculosis transmission. De Jong et al. (2008) have reported strain specific differences in progression to active disease, demonstrating a role of bacterial genetic background in disease progression and the outcome of infection. While this preliminary analysis hints that Rangipo strain infections may be more likely to progress to active disease supporting the notion that this strain is highly virulent, it is limited by the absence of a control group/strain and heterogeneity among contact-tracing methodologies, including those used to estimate average tuberculosis incidence among contacts (Fox et al. 2013). Latent infection could also potentially be underestimated due to limitations of methods for identifying latent infections (Al-Orainey 2009).

Host factors also undoubtedly play an important role in the success of this strain. For example, prison incarceration is a common factor noted among Rangipo strain cases (De Zoysa et al. 2001) and is a known tuberculosis risk factor (Baussano et al. 2010). The Rangipo strain is predominantly found in Māori and inequalities facing this population such as household crowding, socioeconomic deprivation and cigarette smoking are also likely to influence transmission and outcome of infection. Further work should seek to examine transmission and rates of progression to active disease compared to other circulating strains to better
understand its epidemiology, along with laboratory testing to investigate its presumed high virulence.

2.3.1 Rangipo SNPs

To investigate potential bacterial genetic factors that may influence the pathogenicity of the Rangipo strain and to identify targets for further biochemical analysis, I sought to identify nsSNPs specific to this strain. Colangeli et al. (2014) identified 247 SNPs shared by ten Rangipo strain isolates collected from 1991–2011 sequenced on the ABI SOLiD platform. All of these SNPs have previously been crosschecked against 38 MTBC genomes in publicly available databases to identify SNPs specific to the Rangipo strain (Ruthe 2015). Since that analysis was performed, the number of strains available for comparison has increased dramatically. In this work, reclassification against >1000 M. tuberculosis genomes decreased the total number of RS-SNPs from 99 to 22, and the number of RS-nsSNPs from 61 to 14. Having a large number of strains available for comparison is particularly important for the identification of diagnostic marker SNPs as it is essential SNPs are specific to the strain of interest to prevent misclassification. Of three putative RS-SNPs that have previously been proposed as diagnostic makers for the Rangipo strain (Ruthe 2015) only one, 1380G>A in Rv1821/secA, remained classified as a RS-SNP in this work and was validated as a suitable diagnostic marker for Rangipo.

SNPs unique to the Rangipo strain, particularly those with in silico predicted functional effects, were predominantly located in genes involved in intermediary metabolism and respiration and lipid metabolism. A recent study by Gautam et al. (2017) sequenced nine Rangipo strain isolates on the Illumina platform and found nsSNPs common to Rangipo isolates were also predominantly located in genes with metabolic functions (Gautam et al. 2017). In the host granuloma, the bacterium experiences various stresses such as nutrient and oxygen depletion, requiring metabolic changes to circumvent nutritional shortages and to adapt to hypoxic conditions. The ability of M. tuberculosis to adapt to such hostile environmental changes during the course of infection underlies much of its success as a pathogen (Cook et al. 2009). Genes involved in basic cellular metabolism are generally not considered virulence factors, however other metabolic processes such as lipid
metabolism are important virulence determinants as during the course of infection the bacterium shifts from utilising carbon sources such as glucose, to fatty acids and host lipids (Schnappinger et al. 2003). Various lipids and glycolipids are also incorporated into the cell envelope where they are thought to be important for bacterial pathogenicity (Neyrolles and Guilhot 2011).

Determining the functional consequences of SNPs is important in understanding how genetic variation in the MTBC impacts bacterial fitness and virulence. In vitro biochemical and in vivo characterisation of variants provide the ultimate experimental evidence of variant effects. However, these methods are laborious and the functions of many MTBC proteins remain unknown making such investigations challenging. Computational approaches can identify SNPs with putative molecular effects enabling large numbers SNPs to be examined in silico. Such approaches do not connect effect at the molecular level to “impact on organism”, but rather can be used to inform the selection of candidate variants for experimental analysis (Hecht et al. 2015).

Eight SNPs unique to the Rangipo strain were predicted in silico to affect molecular function including two in the virulence factors narG and pks6. narG encodes the catalytic α-subunit NarG of the membrane bound multi-subunit nitrate reduction complex NarGHJI. This complex catalyses the respiratory reduction of nitrate (NO$_3^-$) to nitrite (NO$_2^-$), enabling nitrate to be used in place of oxygen as the final electron acceptor in the electron transport chain. M. tuberculosis is one of the strongest nitrate reducers amongst mycobacteria and the nitrate reductase system is implicated in M. tuberculosis virulence (reviewed in Khan and Sarkar 2012). pks6 encodes a predicted polyketide synthase Pks6. Polyketide synthases are large multi-domain proteins that catalyse complex reactions for the synthesis of complex lipids and secondary metabolites, and Pks6 is suggested to be involved in the production of novel polar lipids (Waddell et al. 2005). pks6 gene inactivation attenuates M. tuberculosis in mouse (Camacho et al. 1999) and human macrophage models (Rosas-Magallanes et al. 2007), implicating pks6 in virulence, however its exact role in pathogenesis remains unclear.

The Y363D SNP in coaE had the strongest prediction for a functional effect of all 14 RS-SNPs. Further investigation showed this SNP is located in the GrpB domain and is part of highly conserved Y-K-Y-K motif. Currently the only assigned
function of this domain is for the correct folding of the full enzyme and the last 50 residues at the C-terminus, including the Y363D SNP and all four conserved Y-K-Y-K residues, are dispensable for proper folding and catalytic activity (Walia et al. 2009). Therefore, if the sole role of the GrpB is for the folding of CoaE, the G72S SNP is unlikely to have an effect on enzyme activity. However, if this domain has an additional as yet unknown function, considering the chemical nature of the amino acid change and the highly conserved nature and structural confirmation of the Y-K-Y-K motif, this SNP could have a dramatic effect on activity.

Rv2893 encodes a putative oxidoreductase and is predicted to utilise the unusual deazaflavin cofactor F420 (Selengut and Haft 2010). F420 is an unusual low-redox potential flavin derivative cofactor synthesised by methanogenic archaea and several aerobic bacterial phyla including the Actinobacteria (Daniels et al. 1985; Ney et al. 2017). F420 is thought to enhance the metabolic flexibility of mycobacteria and in M. tuberculosis plays an important role in survival under hypoxic conditions, and protection from oxidative, nitrosative and antibiotic stress (Gurumurthy et al. 2013; Hasan et al. 2010; Purwantini and Mukhopadhyay 2009). Rv2893 belongs to the LLHT family of F420-dependent enzymes. There are 14 predicted F420-dependent LLHTs in M. tuberculosis (Selengut and Haft 2010), the most well characterised of which is F420-reducing glucose-6-phosphate dehydrogenase (FGD) (Bashiri et al. 2008; Oyugi et al. 2016; 2018). The functions of the majority of these, including Rv2893, remains unknown.

One of the main aims of the SNP analysis presented in this chapter was to identify candidate SNPs for biochemical and structural investigation. While the pks6 and narG SNPs are of interest due to these being known virulence associated genes, for practical reasons these variants were not selected for further study in this work. Pks6 is a large multi-domain enzyme and NarG is part of a multi-subunit complex anchored to the membrane. These features make proteins very difficult to work with for in vitro biochemical studies and are expected to make them difficult to crystallise. Soluble M. tuberculosis CoaE has been recombinantly expressed in E. coli and enzyme activity assayed by spectrophotometry (Walia et al. 2009) making it a suitable candidate from a practical perspective. However, further investigation revealed the mutation is located in a region of the protein dispensable for CoaE catalytic activity in vitro (Walia et al. 2009).
Based on the role of cofactor F_{420} in *M. tuberculosis*, further *in silico* analysis and practical considerations, the Rv2893 G72S SNP was selected as a suitable candidate for further investigation in Chapter Three of this thesis. Rv2893 is a cytoplasmic protein and is not part of a multimeric complex, making it a more suitable candidate for protein crystallography than other genes of interest harbouring Rangipo SNPs. The intrinsic fluorescence of F_{420} and the differences in its absorbance spectrum between the reduced and oxidised states also provides a simple way to monitor enzyme activity for future assay development. Furthermore, little is known about the functions of most members of the F_{420}-dependent LLHTs in *M. tuberculosis*, making this protein of general interest for further study.

Since this SNP analysis was performed, additional Rangipo strains have been sequenced using Illumina technology (as part of this research and by Gautam et al. (2017)) leading to the identification of additional Rangipo specific SNPs (Section 4.3.2.2). While these identify further candidates of interest, the selection of candidate SNPs was based on the analysis presented in this chapter as Illumina data was not available at the time.

In addition to genomic variation in the form of SNPs, differential carriage of virulence-associated genes may also impact bacterial fitness and pathogenicity. This work shows that the Rangipo strain harbours the DS6$^{\text{Quebec}}$ deletion that results in the loss of several virulence-associated genes (discussed in Section 2.3.3). Gautam et al. (2017) have also recently identified several genes present in the Rangipo strain that are absent in H37Rv, including three virulence-associated genes. Although these large genomic variants are not restricted to the Rangipo strain, they potentially also affect strain virulence and further work is needed to determine the consequences of this genomic diversity in *M. tuberculosis*.

2.3.2 The S lineage

The Rangipo strain has previously been assigned to the L4/Euro-American lineage of the MTBC but the sublineage remained unclassified (Ruthe 2015). Here, Rangipo, and additionally the Otara and NZ_094 strains, are classified as belonging to the L4.4.1.1/S sublineage. The ‘S lineage’ was originally classified based on its spoligotyping signature, which is characterised by the absence of the direct repeat spacers 9–10 and 33–36 (Warren et al. 2002a). Sequence based phylogenetic
Chapter Two

analyses show that S isolates group into the same SNP defined phylogenetic clade congruent with MIRU-VNTR and spoligotyping data (Coll et al. 2014; Homolka et al. 2012). A high-resolution WGS SNP phylogeny constructed from 1601 global MTBC genomes shows that the S lineage is equivalent to the L4.4.1.1 sublineage, which belongs to the larger L4.4 sublineage (Coll et al. 2014). Stucki et al. (2016b) have SNP-typed >3000 global L4 isolates from 100 countries and found L4.4 to be the fourth most frequent of the ten L4 sublineages globally accounting for 10% of isolates, and has an intermediate global distribution relative to other sublineages. In New Zealand, L4.4 is the most common L4 sublineage and accounts for 43% of L4 isolates from New Zealand-born cases (Stucki et al. 2016b).

Isolates belonging to the S lineage were first identified around the same time independently in Canada ('DS6Quebec') (Cheng et al. 2000), Italy (Sola et al. 2001) and South Africa ('F28') (Warren et al. 2002b). The DS6Quebec family is endemic in Canada and is the most prevalent lineage in French Canadians in Quebec (48% of isolates) and in Aboriginal populations in Ontario, Saskatchewan and Alberta (38–62% of isolates) (Pepperell et al. 2011). This lineage assumed to have been introduced to Quebec by a French migrant in the 17th century and was dispersed to indigenous populations in the 18–19th centuries via the Canadian fur trade (Pepperell et al. 2011). In New Zealand, the S lineage Rangipo and Otara strains are most prevalent in indigenous Māori and Pacific People and despite extensive social admixture of New Zealand Europeans and Māori, the Rangipo strain remains strongly associated with Māori. Different MTBC lineages are hypothesised to be adapted to specific human host populations (Gagneux 2012), raising the intriguing prospect that the S lineage may be locally adapted to these populations. Alternatively, the high prevalence of the Rangipo strain in Māori is also consistent with a founder effect or population bottle neck.

A small number of SNPs were found to be shared between the New Zealand Rangipo strain and a subset of Canadian DS6Quebec family isolates, suggesting these strains might share a close phylogenetic relationship. This was further explored in a detailed phylogenetic analysis including Otara and other global L4.4 lineage isolates in Chapter Four of this thesis.
2.3.3 DS6Quebec deletion

Nguyen \textit{et al.} (2004) have previously postulated that the 11.4 kb DS6Quebec deletion that characterises the Canadian DS6Quebec family may be a marker of a more globally distributed lineage. We have confirmed that the Rangipo strain and other New Zealand S lineage isolates harbour the DS6Quebec deletion, corroborating this hypothesis. South African F28 strain isolates also have an IS\textit{6110} insertion in this region (Chihota 2011), which together with our results suggest the DS6Quebec deletion might be more widely characteristic of the S lineage. This was further investigated in Chapter Four (Section 4.3.3.3).

The similar but evolutionarily independent RD152 deletion is characteristic of the highly successful Beijing/W strain (Tsolaki \textit{et al.} 2005). Both the DS6Quebec and RD152 deletions remove or interrupt the seven genes from Rv1755c/plc\textit{D} (which is truncated in H37Rv) to Rv1765c, and RD152 additionally interrupts Rv1754c (Figure 2.7). Some of these deleted genes have important roles in pathogenicity. Rv1759c/wag22 for example, is a PE-PGRS family fibronectin-binding protein that elicits an antibody response in human tuberculosis patients (Espitia \textit{et al.} 1999) and is suggested to play a role in the immune response maintaining latent infection (Campuzano \textit{et al.} 2007). Rv1760 is adjacent to Rv1759c/wag22 and encodes a possible triacylglycerol synthase. Triacylglycerol is an important energy source for sustaining \textit{M. tuberculosis} during latent infection and this gene is highly upregulated in a hypoxic macrophage model mimicking the microenvironment within the granuloma (Daniel \textit{et al.} 2011). It is interesting to note that this deletion removes genes that may play a role in latency. Increased progression from latent infection to active tuberculosis has been reported for contacts exposed to Beijing lineage strains compared to other \textit{M. tuberculosis} strains (De Jong \textit{et al.} 2008) and analysis of Rangipo outbreak contact tracing data performed here suggests relatively high rates of progression to active disease in Rangipo strain infections.

While the genes deleted by the DS6Quebec deletion are evidently not essential for virulence, the impact of this deletion on virulence and disease outcome remains unclear. Furthermore, additional deletions of variable lengths in this region have also been reported (Alonso \textit{et al.} 2013; Kato-Maeda \textit{et al.} 2001; Tsolaki \textit{et al.} 2005). H37Rv also has two deletions in this region relative to \textit{M. bovis} BCG and other MTBC strains (RvD2 and RvD3, both spanned by the DS6Quebec and RD152
deletions) (Brosch et al. 1999; Gordon et al. 1999). The highly variable nature of this region is associated with frequent IS6110 insertion, and homologous recombination between IS6110 elements provides a likely mechanism for frequent deletion events (Ho et al. 2000).

2.3.4 Rangipo diagnostic

WGS based *M. tuberculosis* strain-typing will likely become routine in the future but is not yet performed in New Zealand. WGS-directed SNP based assays such as the Rangipo PCR-RFLP diagnostic presented here, offers a rapid and affordable alternate approach for epidemiological typing in the interim. This diagnostic is able to distinguish between Rangipo and non-Rangipo isolates with higher discriminatory power than MIRU typing providing results within one day at little cost. Clinical isolates were able to be typed using culture-independent *M. tuberculosis* DNA directly from clinical sputum samples substantially faster than the standard turnaround time of 3-4 weeks for MIRU typing. Using a PCR-RFLP assay for strain typing offers the advantage of being cheap and easy to perform with basic lab equipment and requires little optimisation. As this is a SNP-based approach it could also be automated, for example by incorporation into the GeneXpert system. If the Rangipo strain is indeed more virulent, close supervision ensuring treatment adherence and broadening contact tracing networks may be beneficial to ensure secondary cases are completely and quickly detected to prevent potential later reactivation and further spread. The ability to rapidly identify Rangipo strain cases upon patient presentation will enable prompt intervention to help prevent further transmission of this strain.

2.3.5 Conclusions

The New Zealand Rangipo and Otara strains belong to the L4.4.1.1/S sublineage of the L4/Euro-American lineage of the MTBC. New Zealand S lineage strains harbour the DS6Quebec deletion and a putative relationship between the Rangipo strain and Canadian DS6Quebec family isolates was identified. Twenty-two SNPs were classified as specific to the Rangipo strain, including eight nsSNPs with predicted functional effects, providing interesting candidates for further investigation. In light of these results, a previously developed SNP-based Rangipo
diagnostic assay was re-optimised. This diagnostic enables rapid and affordable typing of Rangipo strain isolates directly from clinical sputum samples, offering higher resolution and faster results than conventional MIRU-VNTR typing.
Chapter Three

Structure of the F$_{420}$-dependent oxidoreductase Rv2893

3.1 Introduction

The New Zealand *Mycobacterium tuberculosis* Rangipo cluster harbours a strain specific single nucleotide polymorphism (SNP) encoding a G72S mutation in Rv2893 predicted *in silico* to affect protein function (Section 2.2.2). The Rv2893 gene encodes a putative oxidoreductase that belongs to the luciferase-like hydride transferase family of flavin/deazaflavin proteins. Rv2893 is predicted to utilise the 5'-deazaflavin cofactor F$_{420}$, a functionally versatile redox co-factor that is important for energy metabolism in *M. tuberculosis* and contributes to its ability to persist in challenging environments (Gurumurthy *et al.* 2013; Purwantini and Mukhopadhyay 2009). Bioinformatics analyses indicate the presence of at least 28 F$_{420}$-dependent proteins in *M. tuberculosis* (Selengut and Haft 2010). F$_{420}$-dependent proteins have been implicated in a range of processes in mycobacteria, including synthesis of cell wall lipids (Purwantini *et al.* 2016; Purwantini and Mukhopadhyay 2013), fatty acid modification, and heme degradation (Ahmed *et al.* 2015), however, the biological function of most of these oxidoreductases remains unknown.

There is no structure available for Rv2893 and its function is unknown. To investigate the consequences of the G72S mutation on protein structure and help elucidate the biological role of Rv2893, structures for both the wild-type protein (Rv2893H37Rv) and the Rangipo G72S variant (Rv2893G72S) in both the apo and F$_{420}$-bound forms were solved using protein X-ray crystallography.
3.1.1 Cofactor F_{420}

F_{420} is a low redox potential 5′-deazaflavin cofactor named for the strong fluorescence of the oxidised cofactor upon excitation at 420 nm (emission at 470 nm). It consists of an isalloxazine tricyclic ring system with a side chain comprised of ribitol and phospholactate moieties and oligoglutamate tail of varying length (Figure 3.1). In archaea, two glutamate residues are present on the tail (Eirich et al. 1978), whereas up to nine are observed in mycobacteria (Bashiri et al. 2008).

While its structure is similar to those of the universal flavin cofactors FAD and FMN, the N5 of the isalloxazine ring is substituted for a carbon in F_{420} resulting in different electrochemical properties. Unlike the flavins, which can act as one or two electron carriers, F_{420} is an obligate two-electron hydride carrier and has a lower redox potential (-340 mV) (Jacobson and Walsh 1984) than FAD and FMN (-220 mV and 190 mV, respectively), and the nicotinamide cofactor NAD(P) (-320 mV) (Thauer et al. 1977). These properties make F_{420} useful for reducing a wide range of reactants, enhancing the metabolic flexibility of microorganisms that produce it.

![Molecular structure of cofactor F_{420}](image)

Figure 3.1. Molecular structure of cofactor F_{420}. (A) Schematic representation of the chemical structure of F_{420}. The length of the polyglutamate tail varies among microorganisms; in *M. tuberculosis*, the major species contain 5–6 residues (Bair et al. 2001). (B) Oxidised and reduced forms of cofactor F_{420} (F_{420} and $F_{420}H_2$, respectively).
F$_{420}$ was formally identified and first isolated in the 1970s from methanogenic archaea (Cheeseman et al. 1972) and its chemical structure proposed six years later (Eirich et al. 1978). It was formally identified in bacteria in 1980 (Eker et al. 1980) and discovered in *M. tuberculosis* in 1985 (Daniels et al. 1985). F$_{420}$ is considered to be taxonomically restricted to the Euryarchaeota and Actinobacteria, although recently it has been shown to be more widely distributed in aerobic soil bacteria than previously thought (Ney et al. 2017).

F$_{420}$ is synthesised universally amongst Mycobacteria (Greening et al. 2016). The ability to synthesize and reduce F$_{420}$ is non-essential in mycobacteria under ideal conditions, however, loss of F$_{420}$ biosynthesis and reduction results in impaired survival under oxidative and nitrosative stress and following exposure to antimicrobials, and impairs its ability to recover following hypoxia-induced dormancy (Gurumurthy et al. 2013; Hasan et al. 2010; Jirapanjawat et al. 2016; Purwantini and Mukhopadhyay 2009). Mechanisms that enable the bacterium to withstand these stresses are important for pathogenesis and persistence of *M. tuberculosis* (Ehrt and Schnappinger 2009), pointing to a likely role for F$_{420}$ in the pathogenesis of *M. tuberculosis*. Furthermore, activation of the anti-tuberculosis drug PA-824 occurs via a F$_{420}$-dependent mechanism (Manjunatha et al. 2006), a finding that has sparked additional interest in cofactor F$_{420}$ and the enzymes which utilise it.

3.1.2 F$_{420}$-dependent enzymes

The majority of F$_{420}$-dependent enzymes fall into two major super families; the flavin/deazaflavin oxidoreductases (FDORs) and the luciferase-like hydride transferases (LLHTs). These have a diverse range of catalytic activities and vary in their co-factor preference for the different flavins (FMN, FAD and F$_{420}$).

The FDORs have a split β-barrel protein fold and can be divided into two major families (FDOR-A and FDOR-B) which share ~30% sequence identity (Ahmed et al. 2015; Taylor et al. 2010). FDOR-A family proteins are exclusively F$_{420}$-binding and are taxonomically restricted to the Actinobacteria and Chloroflexi. Conversely, FDOR-B proteins variously utilise different cofactors (F$_{420}$, FAD, FMN, and heme).
and are more widely distributed, including in non-F$_{420}$ producing organisms. (Reviewed in Greening et al. 2016).

Members of the LLHT protein super family have a TIM barrel fold. The LLHTs were previously known as luciferase-like monooxygenases (LLMs), however these are better defined as LLHTs as the reaction mechanisms of these enzymes is O$_2$ independent (Greening et al. 2016). The co-factor preference of these enzymes varies and they are found in both F$_{420}$ and non-F$_{420}$ producing organisms (Selengut and Haft 2010). A conserved glycine in the F$_{420}$-binding site allows binding of the phosphate group without steric hindrance and distinguishes F$_{420}$-dependent LLHTs from non-F$_{420}$ dependent enzymes (Aufhammer et al. 2004). Fourteen of the seventeen LLHT family genes in M. tuberculosis have been predicted as being F$_{420}$-dependent in silico (F$_{420}$-LLHTs), including Rv2893 (Selengut and Haft 2010). F$_{420}$-LLHTs are implicated in a range of processes in actinobacteria and most are thought to serve as reductases (reviewed in Greening et al. 2016). The most well characterised mycobacterial F$_{420}$-LLHT is F$_{420}$-dependent glucose-6-phosphate dehydrogenase (FGD, previously FGD1) from M. tuberculosis (mtbFGD) (Bashiri et al. 2007; Bashiri et al. 2008; Oyugi et al. 2016; 2018). FGD uses F$_{420}$ as the hydride acceptor to catalyse the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, producing reduced F$_{420}$ (F$_{420}$H$_2$) that is then used to reduce a diverse range of compounds by F$_{420}$-dependent reductases. FGD is thought to be the main source of F$_{420}$H$_2$ in mycobacteria (Jirapanjawat et al. 2016). FGD and other characterised F$_{420}$-LLHTs all have Si-face stereospecificity with respect to the C5 atom of the 5-deazaflavin group (Aufhammer et al. 2004; Aufhammer et al. 2005; Bashiri et al. 2008; Shima et al. 2000). Other F$_{420}$-LLHTs in M. tuberculosis have been implicated in the cell wall lipid synthesis (Purwantini et al. 2016; Purwantini and Mukhopadhyay 2013), although the functional roles of most of these proteins in M. tuberculosis is unknown.

3.1.2.1 Rv2893

Rv2893 is an LLHT family protein that belongs to the likely F$_{420}$-dependent F420_MSM_EG_2516 family (TIGR03621), which includes three members from Mycobacterium smegmatis and only Rv2893 in M. tuberculosis (Selengut and Haft 2010). Rv2893 belongs to the intermediary metabolism and respiration functional
category of genes (Tuberculist database assignment (Lew et al. 2011)) and is non-essential in *M. tuberculosis* for bacterial growth and for infection in a mouse model (Sassetti et al. 2003; Sassetti and Rubin 2003). The only phenotypic profiling data found for this protein shows that Rv2893 is repressed 1.5-fold during acid shock *in vitro* (Fisher et al. 2002).

Rv2893 is a 325 amino acid protein with a molecular weight of 34.6 kDa. It shares 65% identify with the *M. smegmatis* homologue MSMEG_2516 and 100% sequence identify with *M. bovis* Mb2917. The Rv2893 gene is located at position 3202420–3203397 in the *M. tuberculosis* genome and is not part of an operon (Figure 3.2).

Figure 3.2. Genomic context of Rv2893 in the M. tuberculosis H37Rv genome. Genes are coloured by functional category: information pathways (yellow), conserved hypotheticals (green), PE/PPE (pink), intermediary metabolism and respiration (blue), insertion sequences and phages (red). Rv2893 belongs to the intermediary metabolism and respiration functional category and is not part of an operon.

3.1.3 Objectives

SNP analyses in Chapter Two identified 22 SNPs specific to the New Zealand *M. tuberculosis* Rangipo strain. Eight of these were non-synonymous (nsSNPs) predicted *in silico* to effect on protein function, including a G72S mutation in the predicted F$_{420}$-dependent LLHT Rv2893. Due to the role of F$_{420}$ in *M. tuberculosis* and the relatively limited knowledge on F$_{420}$-LLHTs, as well as for practical reasons (Section 2.3.1), the Rv2893 G72S mutation was chosen for further investigation. There is no structure available for this protein and its function is unknown. To investigate the impact of this SNP on protein structure and provide clues to the function of Rv2893, I sought to solve the structure of Rv2893 for both apo- and F$_{420}$-bound Rv289337Rv and Rv2893G72S using protein X-ray crystallography.
3.2 Methods

3.2.1 Molecular cloning of Rv2893

Cloning primers were designed using Geneious R8 (Biomatters, N.Z.) for the ligation of Rv2893 variants into pYU28b (Bashiri et al. 2010) with an N-terminal His-tag (Appendix B.2). *M. tuberculosis* genomic DNA (gDNA) was kindly provided by LabPLUS (Auckland, New Zealand). Rv2893 was amplified from Rangipo strain gDNA (Rv2893^{G72S}) using KAPA HiFi™ HotStart DNA polymerase (Kapa Biosystems, U.S.A.), and from H37Rv gDNA (Rv2893^{H37Rv}) using HOT FIREPol® Blend Master Mix (Solis BioDyne, Estonia). PCR products were either gel extracted and purified using the QIAquick Gel Extraction Kit (Qiagen, Netherlands), or, purified from solution using the QIAquick PCR Product Purification Kit (Qiagen, Netherlands). Purified PCR products and plasmid DNA were double digested with NdeI and BamHI using the NEB CutSmart® buffer system (New England Biolabs, U.S.A.). Digestion products were purified from solution using the QIAquick PCR Product Purification Kit (Qiagen, Netherlands) and ligated with T4 DNA ligase (Invitrogen, U.S.A.). Ligation reactions were transformed into electrocompetent *E. coli* TOP10 cells by electroporation using standard laboratory protocols. For electroporation, single aliquots of freshly thawed cells were mixed with 10 µl ligation reaction and 40 µl 10% ice cold glycerol. Electroporation was performed in 2 mm cuvettes at 2.5 kV, 25 µF capacitance and 200 Ω using a Bio-Rad Gene Pulser. Cells were immediately recovered in 1 ml of SOC media and incubated at 37 °C with shaking for 60 min before plating onto low salt LB agar plates with hygromycin B (50 µg.ml^{−1}) for selection. Positive *E. coli* transformants were screened for Rv2893 insertion into pYU28b using PCR. Transformants testing positive for the insert were grown in 5 ml low salt LB broth with hygromycin B (50 µg.ml^{−1}) overnight at 37 °C with shaking. Plasmid DNA was extracted from broth cultures using the QIAprep Spin Miniprep Kit (Qiagen, Netherlands) and sent to the Massey Genome Service (Palmerston North, N.Z.) for sequencing on an ABI3730 DNA Analyzer (Applied Biosystems Inc., U.S.A.) using T7 primers.
3.2.2 Protein expression in *M. smegmatis*

Sequence verified plasmids were transformed into *M. smegmatis* mc² 4517 (Wang et al. 2010) by electroporation using established protocols (Cirillo et al. 1993). Single aliquots of freshly thawed cells were mixed with 1 µl plasmid DNA and 260 µl of 10% ice cold glycerol. Electroporation was performed in 2 mm cuvettes at 2.5 kV, 25 µF capacitance and 1000 Ω using a Bio-Rad Gene Pulser. Cells were immediately recovered in 1 ml of Middlebrook 7H9 broth supplemented with ADC and 0.05% (v/v) Tween 80, and incubated at 37 °C with shaking for 3 hrs before plating onto low salt LB agar plates containing hygromycin B (50 µg.ml⁻¹) and kanamycin (50 µg.ml⁻¹) for selection. Plates were incubated in a humidity chamber at 37 °C for three days and then used to inoculate a 10 ml starter culture of PA-0.5G defined media (Appendix B.1) with 0.05% (v/v) Tween 80, hygromycin B (50 µg.ml⁻¹) and kanamycin (50 µg.ml⁻¹). This was grown for 48 hrs at 37 °C with shaking, then used at a 1:100 dilution to inoculate expression cultures of ZYP-5052 auto-induction media (Appendix B.1) with 0.05% (v/v) Tween 80, hygromycin B (50 µg.ml⁻¹) and kanamycin (50 µg.ml⁻¹). The optimum expression conditions for protein purification were determined to be growth for 24 hrs at 37 °C and then for a further 4 days at 28 °C (Section 3.3.1.1). Cells were harvested by centrifugation (4,500 x g 20 min, 4 °C), and either frozen at -80 °C or used immediately for protein purification (Section 3.2.3).

3.2.2.1 Small scale protein expression trails

Protein expression of Rv2893 was initially confirmed and optimised from small scale expression cultures using His-tag binding with Ni Sepharose™ High Performance beads (GE Healthcare, Sweden). Expression cultures (5 ml) were grown at either 37 °C for 4 days; 28 °C for 5 days; or 37 °C for 24 hrs followed by 28 °C for 4 days. Cells were harvested by centrifugation and resuspended in 500 µl sodium phosphate lysis buffer (50 mM sodium phosphate buffer, 200 mM NaCl, 20 mM imidazole, pH 7.4). Cells were lysed on ice by sonication and the insoluble fraction separated by centrifugation. The soluble fraction was mixed with 25 µl Ni beads that had been pre-equilibrated with lysis buffer. Beads were incubated at room temperature for 15 min in a thermomixer at with shaking at 1,000 rpm, then
left to settle for 5 min, centrifuged (600 x g, 1 min), and the supernatant removed. Beads were washed twice with 1 ml of lysis buffer then analysed by SDS-PAGE. During the procedure, samples of whole cells, the soluble fraction, insoluble fraction and flow through were also set aside for analysis by SDS-PAGE.

3.2.3 Protein purification

Cell pellets from 500 ml expression cultures grown as in Section 3.2.2 were resuspended in 25 ml lysis buffer (50 mM HEPES, 200 mM NaCl, 20 mM imidazole, 10% glycerol, pH 7.4) and lysed on ice by sonication. Lysed cells were centrifuged (20,000 x g, 20 minutes, 4 °C) to separate the supernatant from insoluble cellular debris. Protein was isolated from the soluble fraction by immobilised metal affinity chromatography (IMAC) and anion exchange chromatography and excess salt removed either by dialysis or using a desalting column.

3.2.3.1 Immobilised metal affinity chromatography purification

IMAC was performed using a HisTrap HP column (GE Healthcare, Sweden) on a ÄKTA Basic or Purifier FPLC system (GE Healthcare, Sweden), or an NGC Quest™ 10 Plus Chromatography System (Bio-Rad, U.S.A.). The supernatant from lysed cells was successively filtered through 1.2 µm and 0.45 µm syringe filters and loaded onto the column. Weakly bound non-specific protein was removed by washing the column with 20 ml of 4% elution buffer (50 mM HEPES, 200 mM NaCl, 0.5 M imidazole, 10% glycerol, pH 7.4): 96% lysis buffer at a flow rate of 1 ml.min⁻¹. Rv2893 was eluted using a gradient of 0–100% elution buffer over 75 ml at a flow rate of 1 ml.min⁻¹ and collected in 2 ml aliquots. Rv2893 containing fractions were identified via the 280 nm absorbance trace and/or SDS-PAGE.

3.2.3.2 Anion exchange chromatography

Anion exchange was performed using a 5 ml HiTrap Q XL anion exchange column (GE Healthcare, Sweden) on a ÄKTA Basic or Purifier FPLC system (GE Healthcare, Sweden), or an NGC Quest™ 10 Plus Chromatography System (Bio-Rad, U.S.A.). IMAC purified Rv2893 fractions (Section 3.2.3.1) were pooled
and diluted with three volumes of anion dilution buffer (50 mM HEPES, 10% glycerol, pH 7.4), filtered through a 0.2 µm syringe filter and loaded onto the column. Unbound protein was removed by washing the column with 10 ml start buffer (50 mM HEPES, 50 mM NaCl, 10% glycerol, pH 7.4) at a 1 ml.min\(^{-1}\) flow rate. Rv2893 was eluted using a gradient of 0–100% elution buffer (50 mM HEPES, 1 M NaCl, 10% glycerol, pH 7.4) over 40 ml at a flow rate of 1 ml.min\(^{-1}\) and collected in 2 ml aliquots. Fractions containing Rv2893 were identified via the 280 nm absorbance trace and/or by SDS-PAGE.

3.2.3.3 Buffer exchange

For large scale dialysis, typically the most concentrated protein fraction from anion exchange (2 mL) was dialyzed against 500 ml target buffer (50 mM HEPES, 200 mM NaCl, 10% glycerol, pH 7.4) overnight at 4 ºC using 6–8 kDa molecular weight cut off Spectra Por® dialysis tubing (Spectrum Laboratories, U.S.A.). Alternatively, a 5 ml HiTrap Desalting column (GE Healthcare, Sweden) was used to desalt protein samples into target buffer as per the manufacturer’s instructions.

3.2.3.4 Size exclusion chromatography

Prior to the establishment of anion and buffer exchange protocols, Rv2893 was purified by size exclusion chromatography for crystallography screens. Protein containing fractions from IMAC purification were pooled and concentrated by centrifugation in a 2 ml or 20 ml Vivaspin concentrator with a 10 kDa molecular weight cut off (Sartorius AG, Germany). Protein was filtered through a 0.2 µm Minisart syringe filter and 0.5 ml was loaded on to a Superdex\(^{TM}\) 200 10/300 GL column (GE Healthcare, Sweden) with size exclusion buffer (50 mM HEPES, 200 mM NaCl, 10% glycerol, pH 7.4). Protein fractions were separated and eluted in size exclusion buffer at a flow rate of 0.35 ml.min\(^{-1}\) and collected in 0.5 ml aliquots. Fractions containing Rv2893 were identified from the 280 nm absorbance trace and/or SDS-PAGE.
3.2.3.5 *Determination of protein concentration by A*$_{280}$

Protein concentration was determined by measuring absorbance at 280 nm using a Nanodrop 2000 UV-vis spectrophotometer (Thermo Fisher scientific, U.S.A.) and correcting by the theoretical extinction coefficient (ε) as calculated using the ExPASy ProtParam tool (Gasteiger *et al.* 2005).

3.2.4 Protein characterisation

3.2.4.1 *Molecular weight determination by size exclusion chromatography*

A Superdex$^{\text{TM}}$ 200 Increase 10/300 GL analytical size exclusion column (GE Healthcare, Sweden) was calibrated using six protein standards from high & low molecular weight gel filtration calibration kits (GE Healthcare, Sweden), as per kit instructions. The column void volume (V_0) was determined with 1 mg.ml$^{-1}$ blue dextran dye. Standards and dye were eluted with size exclusion buffer (50 mM HEPES, 200 mM NaCl, 10% glycerol, pH 7.4) at a flow rate of 0.35 ml.min$^{-1}$ using an NGC Quest$^{\text{TM}}$ 10 Plus Chromatography System (Bio-Rad, U.S.A.). A sample of Rv2893$^{\text{G72S}}$ purified by IMAC and anion exchange chromatography was separately eluted at a flow rate of 0.35 ml.min$^{-1}$ and the retention volume determined from the 280 nm absorbance trace. Retention volumes of protein standards were used to construct a calibration curve by plotting K_{av} (Equation 3.1) versus molecular weight and the molecular weight of Rv2893 was calculated using the standard curve.

$$K_{av} = \frac{(V_e - V_o)}{(V_c - V_o)}$$ \hspace{1cm} (Equation 3.1)

Where K_{av} = gel phase distribution coefficient, V_e = elution volume; V_o = column void volume; and V_c = geometric column volume

3.2.4.2 *Melt temperature determination by differential scanning fluorimetry*

Differential scanning fluorimetry (DSF) using the SYPRO method (Lo *et al.* 2004) was used to compare the melting temperature (T_m) of Rv2893$^{\text{G72S}}$ and Rv2893$^{\text{H37Rv}}$. SYPRO dye (Life Technologies, U.S.A.) was diluted to 300X in buffer (50 mM HEPES, 200 mM NaCl, 10% glycerol, pH 7.4) and 7.5 µl of this was added to protein to a final volume of 25 µl with a protein concentration of 0.1 mg.ml$^{-1}$. Melts were performed in a Rotor-Gene$^{\text{TM}}$ real time PCR machine (Corbett Life Science,
Australia) using a temperature gradient of 25–99 °C with continuous fluorescence monitoring at excitation and emission wavelengths of 470 and 555 nm, respectively. Protein samples were assayed in triplicate alongside a blank containing no protein. Data was analysed in GraphPad Prism (www.graphpad.com). The T_m was taken as the inflection point of the raw data ($d^2F/dT^2 = 0$) and mean T_m values for triplicate samples were calculated.

3.2.5 Protein Crystallography

3.2.5.1 Crystallisation robot screens

Initial determination of crystallisation conditions was performed using the sitting drop method. Screens were set up using a Mosquito® Crystal robotic system (TTP Labtech Ltd, UK), using the PEGRx HT and Index HT crystallisation screens (Hampton Research, U.S.A.). Conditions were set up with 200 nl drops of equal volumes of protein and reservoir solution, against a 100 µl reservoir in Intelli-Plates (Hampton Research, U.S.A.), and stored at 18 °C.

3.2.5.2 Crystallisation fine screens

Crystallisation conditions were optimised by hanging-drop vapour diffusion in 24-well plates (Hampton Research, U.S.A.). In general, fine screens varied the precipitant concentration and pH of conditions identified in robot screens. Drops of 2–6 µl containing protein and reservoir solution in a 1:1 ratio were pipetted onto a siliconised coverslip which was then inverted and sealed over 0.5 ml reservoir solution. Plates were stored at either 18 °C, 21 °C, or 25 °C. Final crystallisation conditions used to grow crystals for data collection are shown in Table 3.1.

3.2.5.3 Heavy atom derivatisation

Electrophoretic mobility shift assays were employed to identify promising heavy atoms for experimental phasing, (Boggon and Shapiro 2000). Mixtures containing different heavy metal compounds at 2 mM and Rv2893G728 at 1 mg.ml$^{-1}$ were prepared in protein buffer (50 mM HEPES, 200 mM NaCl, 10% glycerol, pH 7.4) to a final volume of 10 µl and incubated on ice for 15 minutes. The protein was then
analysed by Native PAGE on a 12% polyacrylamide gel to identify compounds that produced a band shift indicating heavy atom derivatisation. Promising compounds were soaked into crystals to create derivates for experimental phasing. A 2 µl drop of reservoir solution containing the heavy metal compound at 1–2 mM was pipetted onto a coverslip and a crystal was transferred to this drop. This was placed over the reservoir and left overnight before looping and freezing the crystal for testing.

3.2.5.4 Ligand soaks

A sample of F_{420} was kindly provided by Ghader Bashiri (University of Auckland, N.Z.). This had been purified from *M. smegmatis* mc²4517 cells engineered to produce high levels of F_{420} (Bashiri *et al.* 2010) using solvent extraction and anion exchange as previously described (Bashiri *et al.* 2010; Isabelle *et al.* 2002), followed by high performance liquid chromatography. F_{420} concentration was calculated from an extinction coefficient of 25 mm⁻¹.cm⁻¹ at 400 nm (Jacobson and Walsh 1984) in 25 mM Sodium phosphate buffer, pH 7.0. A 2 µl drop of reservoir solution containing 1 mM F_{420} was pipetted onto a coverslip and a crystal was transferred to this drop. This was placed over the reservoir and left overnight before looping and freezing the crystal for testing.

3.2.6 X-Ray diffraction data collection and structure determination

3.2.6.1 Data collection

Crystals were removed from crystallisation drops with a cryo-loop and then briefly submerged in cryo-protectant solution (crystallisation reservoir solution with either 35% polyethylene glycol (PEG) 3350 or 10% PEG 3350 and 20% glycerol) before being flash frozen in liquid nitrogen. X-ray diffraction data were collected at the Australian Synchrotron (Melbourne, VIC). Data for apo crystals were collected at the macromolecular crystallography MX1 beamline using a Quantum 210r detector (ADSC, U.S.A.). Data from heavy metal and F_{420} soaked crystals were collected on the MX2 beamline using an EIGER x 16 M detector (Dectris, Switzerland).
3.2.6.2 Structure solution using single-wavelength anomalous dispersion

Phase information was obtained experimentally using the anomalous dispersion of gold bound to a Rv2893H37Rv crystal derivatised in KAuCl₄ as per Section 3.2.5.3. Multiple datasets were collected from the same crystal at 0.9537 Å as in Section 3.2.6.1. Datasets were auto-processed at the Australian synchrotron in XDS (Kabsch 2010) then merged using phenix.scale_and_merge with optimisation for anomalous differences (Akey et al. 2016). Gold sites were identified and refined using the Auto-Rickshaw platform (Panjikar et al. 2005) and a solution was determined by single-wavelength anomalous diffraction (SAD) phasing in the AutoSol wizard in PHENIX (Terwilliger et al. 2009) using these sites and the merged KAuCl₄ dataset as input. Automated model building with refinement was done using AutoBuild in PHENIX (Terwilliger et al. 2008), with the inclusion of a higher resolution isomorphous data set (obtained from a Hg acetate soaked crystal) to assist model building and refinement.

3.2.6.3 Structure solution by molecular replacement

The apo-Rv2893G72S structure was solved by molecular replacement in PHASER (McCoy et al. 2007) using the experimentally phased solution (Section 3.3.5) as the search model. Automated model building and refinement was done using the AutoBuild wizard in PHENIX (Terwilliger et al. 2008) and manual building performed in COOT (Emsley and Cowtan 2004; Emsley et al. 2010). The model was refined as in Section 3.2.6.4, and then used as the search model for molecular replacement for subsequent structures.

Diffraction data for molecular replacement collected using a CCD detector (native crystals, Section 3.2.6.1) and were integrated in iMOSFLM (Battye et al. 2011) then scaled and merged in the CCP4 software suite (Winn et al. 2011) using the Data Reduction task. This sequentially runs POINTLESS to determine the Laue group and possible space group (Evans 2006), AIMLESS to scale and merge multiple observations of reflections (Evans and Murshudov 2013), and then CTRUNCATE to convert intensities to structure factor amplitudes, and provides merging and other data processing statistics. Diffraction data collected using an EIGER detector (F₄₂₀ soaked crystals, Section 3.2.6.1) were indexed, integrated and scaled using XDS (Kabsch 2010) and then merged using AIMLESS (Evans and
Murshudov 2013). For all datasets, 5% of reflections were randomly marked for the \(R_{\text{free}} \) set for validation during structural refinement.

3.2.6.4 Model Refinement

Models were initially refined using real-space and rigid body refinement and simulated annealing in \textit{phenix.refine} (Afonine et al. 2012). Manual model building was performed in COOT (Emsley and Cowtan 2004; Emsley et al. 2010) with the electron density \(2|\text{FO}| - |\text{FC}| \) and \(|\text{FO}| - |\text{FC}| \) maps contoured to 1 \(\sigma \) and 3 \(\sigma \) respectively. Ligands were manually added and fitted in COOT following identification of regions of unmodeled density. Model refinement using REFMAC5 (Murshudov et al. 2011) and \textit{phenix.refine} was performed regularly during manual building and ligand fitting to ensure alterations improved the model fit to the data. Waters were added in the final stages of refinement in \textit{phenix.refine}.

3.2.6.5 Structure Analysis

Final refinement was performed in REFMAC5. Model statistics were generated using \textit{phenix.table_one} and Ramachandran analysis performed using RAMPAGE (Lovell et al. 2003). Structure analysis and visualisation was performed in COOT and PyMOL (The PyMOL Molecular Graphics System, Version 2.2 Schrödinger, LLC) and PyMOL used for image generation. Root mean square differences (RMSD) between protein molecules were calculated in PROsmart (Nicholls et al. 2014) in the CC4 suite. The dimer interface was analysed and surface area determined using PDBePISA (Krissinel and Henrick 2007). The Protein-Ligand Interaction Profiler (Salentin et al. 2015) and LigPlot+ (Laskowski and Swindells 2011) tools were used to assist the examination of the \(\text{F}_{420} \) binding mode. Hydrogen bonds were inferred where bond distances were within 2.5–3.2 Å for strong bonds and 3.2–4.0 Å for weak bonds (Jeffrey and Jeffrey 1997).
3.3 Results

3.3.1 Heterologous expression and purification of Rv2893

The Rv2893 genes from *M. tuberculosis* H37Rv (Rv2893^{H37Rv}) and the Rangipo G72S variant (Rv2893^{G72S}) were cloned into the mycobacterial expression vector pYUB28b (Bashiri *et al.* 2010) with an N-terminal His tag (Section 3.2.1). Ligation reactions were first transformed into *E. coli* TOP10 cells for transformant selection, vector purification and sequence validation. Sequence validated plasmids were then transformed in *M. smegmatis mc²* 4517 cells (Wang *et al.* 2010) for heterologous protein expression and purification (Section 3.3.2).

3.3.1.1 Small scale expression trials

Small scale expression trials were first performed to evaluate Rv2893 protein expression in *M. smegmatis mc²* 4517 and his-tag binding affinity using Ni beads (Section 3.2.2.1). Small scale cultures expressing Rv2893^{G72S} were grown at either 37 °C for 4 days; 28 °C for 5 days; or at 28 °C for 4 days following an initial growth period at 37 °C for 24 hrs. Rv2893^{G72S} predominantly expressed insolubly at 37 °C with a small amount of protein binding to the Ni beads (Figure 3.3A). A subtle improvement was seen at 28 °C with a stronger band of the correct size band in the soluble fraction, however, expression overall was lower (Figure 3.3B). Dropping the temperature to 28 °C after growing for 24 hrs at 37 °C had a marked effect on both soluble expression and overall yield (Figure 3.3C). Rv2893^{H37Rv} expression was then trailed under the same conditions resulting in soluble expression with ample binding to the Ni beads (Figure 3.3D). Two bands of similar size and intensity were also observed on the Ni beads when Rv2893 was expressed at 28 °C and the same bands were also apparent at 37 °C, although the smaller band was weaker. These two bands were both found to be Rv2893 and eluted as separate peaks in IMAC purification (Section 3.3.2).
Figure 3.3. Small scale protein expression trails and his-tag binding of Rv2893. (A–C) Rv2893^{G72S} and (D) Rv2893^{H37Rv}. Rv2893^{G72S} cultures were grown at (A) 37 °C for 4 days; (B) 28 °C for 5 days; (C) 37 °C for 24 hrs then 28 °C for 4 days; and (D) Rv2893^{H37Rv} grown at 37 °C for 24 hrs then 28 °C for 4 days. Samples were separated on 12% SDS-PAGE gels. Black boxes indicate expressed Rv2893. Labels: WC, whole cell sample; Sol, soluble fraction; Ins, insoluble fraction; FT, flow through; W1, wash one; and Ni, Ni beads with protein bound after wash steps.
3.3.2 Large scale expression and protein purification

Having established soluble expression for Rv2893^{G72S} and Rv2893^{H37Rv} at small scale, <i>M. smegmatis</i> expression was scaled up to large volume (500 mL) cultures for protein purification. Soluble protein suitable for crystallography was successfully purified using a two-step protocol comprised of IMAC (Section 3.2.3.1) followed by anion exchange (Section 3.2.3.2). Representative chromatograms are shown in Figure 3.4. Excess salt was removed either by dialysis or using a desalting column (Section 3.2.3.3). Anion purified and desalted protein was put directly into crystallisation screens. Using this protocol, protein suitable for crystallisation was purified at concentrations typically ~5–7 mg.ml^{–1}, with concentrations as high as 8.7 mg.ml^{–1} obtained.

Rv2839^{G72S} eluted in two peaks by IMAC purification with a major peak at ~220 mM imidazole and a second minor peak at ~400 mM imidazole (Figure 3.4A). SDS-PAGE bands from each peak were both similar in size to that expected for Rv2893 and corresponded to those observed during small-scale expression trails (Figure 3.3). Rv2839^{H37Rv} also produced the same two bands, however these eluted in three peaks by IMAC purification; the first peak predominantly contained the lower weight band, the second peak was a mixed population of the two bands, and the third peak was predominantly the higher weight band (Figure 3.4B). Bands from Rv2893^{G72S} were sent for analysis by mass spectroscopy at MS³ Solutions (Hamilton, N.Z.) and both were confirmed to be <i>M. tuberculosis</i> Rv2893 with no detectable differences between the two bands. Analysis by absorbance and fluorescence scans failed to detect cofactor F₄₂₀ or any differences between the two peaks. The structures of Rv2893 also confirmed the absence of F₄₂₀ in crystals grown from native purified protein. Because of the requirement for highly pure homogeneous samples for protein crystallisation, only the first peak from both Rv2839^{G72S} and Rv2839^{H37Rv} was carried through to further purification by anion exchange chromatography. Both Rv2893^{G72S} and Rv2893^{H37Rv} eluted in a single sharp peak at ~330 mM NaCl by anion exchange and the protein obtained was highly pure and of suitable concentration for crystallography (Figure 3.4C–D).
Figure 3.4. *Rv2893* protein purification by immobilised metal affinity chromatography (IMAC) and anion exchange chromatography. (A–B) IMAC purification of (A) *Rv2893*^{G72S} and (B) *Rv2893*^{H37Rv}. Chromatograms depict 280 nm UV absorbance and elution profile over a 50 mM to 0.5 M imidazole elution gradient. Corresponding 12% SDS-PAGE gels show the soluble fraction loaded onto the column (Load), insoluble fraction (Ins), flow through (FT) and eluted fractions corresponding to each coloured bar. IMAC purifications shown contained 0.01% DDM in buffers. (C–D) Anion exchange chromatography purification of (C) *Rv2893*^{G72S} and (D) *Rv2893*^{H37Rv}. Chromatograms depict 280 nm UV absorbance and elution profile over a 50 mM to 1 M NaCl elution gradient. Corresponding 12% SDS-PAGE gels show the sample that was loaded onto the column (Load), the column flow through (FT) and eluted fractions.
One of the major challenges encountered establishing purification protocols for Rv2893 was that the protein was unstable and typically precipitated out of solution within 24 hours. Concentrating Rv2893 was also challenging as it precipitated on protein concentrator spin columns. Anion exchange provided a means to circumvent this problem and also removed the imidazole from IMAC purification. The most concentrated anion exchange fraction eluted was typically 150–200% more concentrated from that eluted by IMAC, resulting in concentrations sufficient for crystallisation without the need for additional concentration steps.

Various approaches were trailed to improve the stability of Rv2893 including different additives, storage at different temperatures, and buffer screening using different lysis buffers, small scale dialysis and DSF thermal shift assays (Ericsson et al. 2006). The addition of glycerol had the most notable effect on stability and was included at 10% in all buffers. The inclusion of 1 mM dithiothreitol (DTT) in purification buffers also improved stability and this effect was retained when DTT was included only in lysis buffers and then re-added to purified protein for storage. This reduced the rate of protein aggregation by one or two days and was therefore included in all subsequent purifications. Earlier purifications included the addition of 0.01-0.03% n-Dodecyl β-D-maltoside (DDM). DDM is a non-ionic detergent that is effective for protein solubilisation and initially appeared promising at improving the stability of Rv2893. However, it still failed to retain protein in solution for >24 hrs, even at higher concentrations (1–2 %), and so was removed from purification buffers. Considering these challenges, the focus was made on laying down crystal screens using protein within 24 hrs of purification as freshly purified protein consistently produced the highest quality crystals.

The oligomeric state of purified Rv2893 was determined using analytical size exclusion chromatography (Section 3.2.4.1). The elution volume corresponded to 62.4 kDa, which is consistent with a dimer in solution when compared to the molecular weight of the monomer of 36.8 kDa (calculated using ProtParam, http://web.expasy.org/protparam).
3.3.3 Melt temperature of Rv2893G72S and Rv2893H37Rv

The melt temperatures of Rv2893H37Rv and Rv2893G72S were estimated using DSF to determine if the Rangipo G72S mutation affects the thermal stability of the protein. The \(T_m\) was determined from the highest peak of the first derivative of the melting curve (the \(dF/dT\) maxima) as the second derivative was too noisy. This corresponds to the inflection point of the melting curve, which is the temperature at which half the protein is in the unfolded state. The \(T_m\) of Rv2893H37Rv was estimated to be 54.9 °C and the Rv2893G72S variant had a 4 °C higher \(T_m\) of 58.9 °C (average of three replicates) (Figure 3.5). This indicates that the Rangipo Rv2893G72S variant is more temperature stable than Rv2893H37Rv.

![Figure 3.5. Melting temperature (T_m) comparison of Rv2893H37Rv (blue) and Rv2893G72S (red). The first derivative of the fluorescence output is shown. T_m values were determined from the dF/dT maxima and are indicated by dashed lines.](image)

3.3.4 Crystallisation of Rv2893

High throughput crystallisation trials were performed using the sitting-drop vapour diffusion method (Section 3.2.5.1) with Rv2893G72S at 2.6 mg.ml\(^{-1}\) and 2.2 mg.ml\(^{-1}\) purified by IMAC and size exclusion chromatography (Section 3.2.3, with 0.01% DDM in buffers). The best condition (0.2 M ammonium acetate, 0.1 M Bis-tris pH 5.5–6.5, 25% PEG 3350) was pursued using hanging-drop vapour diffusion fine screens (Section 3.2.5.2) using protein purified by IMAC and anion exchange chromatography directly eluted from anion exchange and/or following the removal of excess salt by dialysis or using a desalting column (Section 3.2.3).
Crystals appeared overnight and reached their maximum size within a few days. In addition to varying the precipitant concentration and pH of crystallisation conditions, a range of other approaches were trialled to improve crystal quality and diffraction. Additive screening and crystal seeding (batch and streak seeding) failed to improve crystal morphology and/or diffraction. Increasing the crystallisation temperature from 18 ºC to 25 ºC produced more single crystals and thicker crystals which diffracted well (Figure 3.6C, Table 3.1). Larger drop sizes (up to 6 µl) and the addition of glycerol or DTT inconsistently improved crystal quality. The final conditions used to grow crystals for data collection are reported in Table 3.1.

Table 3.1. Conditions used to grow Rv2893 crystals used for data collection.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Protein Conc.</th>
<th>Purification1</th>
<th>Crystallisation conditions</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAuCl₄-Rv2893<sup>H37Rv</sup></td>
<td>2.8 mg.ml⁻¹</td>
<td>IMAC + anion exchange + desalting</td>
<td>0.1 M Bis-tris pH 6.0, 0.2 M Ammonium acetate 16% PEG 3350</td>
<td>25 ºC</td>
</tr>
<tr>
<td>Hg acetate-Rv2893<sup>H37Rv</sup></td>
<td>2.7 mg.ml⁻¹</td>
<td>IMAC + anion exchange + desalting</td>
<td>0.1 M Bis-tris pH 6.2, 0.2 M Ammonium acetate 25% PEG 3350</td>
<td>25 ºC</td>
</tr>
<tr>
<td>apo-Rv2893<sup>G72S</sup></td>
<td>5.0 mg.ml⁻¹</td>
<td>IMAC<sup>2</sup> + anion exchange + dialysis</td>
<td>0.1 M Bis-tris pH 6.6, 0.2 M Ammonium acetate 25% PEG 3350</td>
<td>18 ºC</td>
</tr>
<tr>
<td>apo-Rv2893<sup>H37Rv</sup></td>
<td>5.7 mg.ml⁻¹</td>
<td>IMAC<sup>2</sup> + anion exchange</td>
<td>0.1 M Bis-tris pH 7.0, 0.2 M Ammonium acetate 19% PEG 3350</td>
<td>21 ºC</td>
</tr>
<tr>
<td>F<sub>420</sub>-Rv2893<sup>G72S</sup></td>
<td>7.2 mg.ml⁻¹</td>
<td>IMAC + anion exchange + dialysis</td>
<td>0.1 M Bis-tris pH 6.5, 0.2 M Ammonium acetate 27% PEG 3350</td>
<td>25 ºC</td>
</tr>
<tr>
<td>F<sub>420</sub>-Rv2893<sup>H37Rv</sup></td>
<td>1.8 mg.ml⁻¹</td>
<td>IMAC<sup>1</sup> + anion exchange + dialysis</td>
<td>0.1 M Bis-tris pH 6.3, 0.2 M Ammonium acetate 18% PEG 3350, 1 mM DTT</td>
<td>25 ºC</td>
</tr>
</tbody>
</table>

1 Protein purified as in Sections 3.2.3.1–3.2.3.3.
2 1 mM DDM in lysis and IMAC buffers.
3 1 mM DTT in lysis buffer.

Figure 3.6. Typical morphology of Rv2893 crystals. (A) Rv2893^{G72S} crystals grown at 18 ºC. (B) Rv2893^{H37Rv} crystals grown at 18 ºC. (C) Rv2893^{H37Rv} crystals grown at 25 ºC. These crystals were used for KAuCl₄ soaks to solve the structure by experimental phasing.
3.3.5 Experimental Phasing

Initial attempts to solve the Rv2893 structure by molecular replacement using *M. tuberculosis* FGD (3C8N) as the search model were unsuccessful and so phases were determined experimentally. To identify potential heavy-atom derivatives to use for experimental phasing, native PAGE gel shift assays were performed (Boggon and Shapiro 2000). Rv2893 was incubated with various heavy-atom compounds and then analysed by native PAGE gel electrophoresis to identify heavy atoms that bind to the protein, as indicated by a band shift (Section 3.2.5.3). Shifts were detected for HgCl₂, Hg acetate and K₂PtCl₄ (Figure 3.7). All gold compounds screened (KAu(CN)₂, KAuCl₄ and KAuBr₄) visibly precipitated Rv2893 and the protein did not run on a Native-PAGE gel. While this indicated denaturation of the protein it also implied that gold was interacting with Rv2893, therefore gold was pursued in addition to mercury and platinum for experimental phasing.

![Heavy metal native PAGE gel shift assay to identify heavy atom derivatives for experimental phasing of Rv2893.](image)

Rv2893 crystals soaked overnight in HgCl₂, Hg acetate, K₂PtCl₄, K₂PtCl₆ and KAuCl₄ (Section 3.2.5.3) were taken to the Australian synchrotron for screening and data collection. Mercury, platinum and gold were all found to bind to the protein as indicated by excitation scans and/or the presence of an anomalous signal in the diffraction data. The anomalous signal from mercury and platinum however, was not adequate to solve the structure and the final solution was obtained using gold-soaked crystals and SAD phasing.

Five datasets of 180 °/1800 frames were collected at 12.1 KeV (0.18 KeV above the L_{III} edge of gold, theoretical f'' = 9.94 e⁻ and f' = -10.39 e⁻) from various points and starting angles on a single KAuCl₄ soaked crystal (Table 3.1). Data was processed...
in the monoclinic space group \(\text{P12}_11 \) and the maximum resolution of individual datasets ranged from 3.14–3.68 Å. Individual datasets were scaled and merged together to optimise anomalous differences (Table 3.2). The anomalous signal was predicted to extend to 3.8 Å, and the overall anomalous correlation was 0.542. Twenty gold sites were identified using SHELX and refined with BP3 in the Autorickshaw server (Panjikar et al. 2005). The PHENIX AutoSol wizard (Terwilliger et al. 2009) identified an additional nine gold sites and successfully calculated phases from the anomalous differences. The calculated phases allowed model building and refinement and the inclusion of a higher resolution dataset collected from an isomorphous Hg acetate-soaked crystal (2.80 Å) was used to assist the model building (Table 3.2). The resultant model was not subject to further manual refinement as it was sufficient for molecular replacement with high resolution data. To the best of our knowledge, this was the first structure to be experimentally solved using the new EIGER detector on MX2 at the Australian Synchrotron.

![Figure 3.8](image)

Figure 3.8. Diffraction of Rv2893 heavy metal derivatives. (A) Rv2893\(^\text{H}_{37}\text{Rv} \) derivatised with gold (KAuCl\(_4 \)) was used for SAD phasing. (B) Rv2893\(^\text{H}_{37}\text{Rv} \) derivatised with mercury (Hg acetate) was used as a higher resolution isomorphous dataset to improve model building.
Table 3.2. Data collection statistics for Rv2893 SAD-phasing and statistics for the experimentally phased model. Statistics for the highest-resolution shell are shown in parentheses. Hg acetate-Rv2893^{H37Rv} data was used at the model building stage but not for phasing.

<table>
<thead>
<tr>
<th>Data collection<sup>1</sup></th>
<th>KAuCl<sub>4</sub>-Rv2893<sup>H37Rv</sup></th>
<th>Hg acetate-Rv2893<sup>H37Rv</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>1.0247</td>
<td>0.9999</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1 2 1</td>
<td>P 1 2 1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a/b/c (Å)</td>
<td>α/β/γ (°)</td>
</tr>
<tr>
<td></td>
<td>75.82/116.32/88.18</td>
<td>76.37/117.47/87.63</td>
</tr>
<tr>
<td></td>
<td>90.00/90.88/90.00</td>
<td>90.00/90.81/90.00</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>3.13–48.55 (3.13–3.35)</td>
<td>2.80–48.79 (2.80–2.93)</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.259 (0.608)</td>
<td>0.110 (0.628)</td>
</tr>
<tr>
<td>Rpim</td>
<td>0.067 (0.381)</td>
<td>0.045 (0.254)</td>
</tr>
<tr>
<td>Mean I/σ</td>
<td>6.2 (1.3)</td>
<td>11.8 (3.1)</td>
</tr>
<tr>
<td>CC<sub>(1/2)</sub></td>
<td>0.987 (0.783)</td>
<td>0.997 (0.857)</td>
</tr>
<tr>
<td>Total number of observations</td>
<td>351907 (14044)</td>
<td>264418 (31420)</td>
</tr>
<tr>
<td>Total number unique</td>
<td>26313 (4119)</td>
<td>37887 (4529)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>97.0 (84.3)</td>
<td>99.6 (97.2)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>13.4 (3.4)</td>
<td>7.0 (6.9)</td>
</tr>
<tr>
<td>Mosaicity</td>
<td>0.13</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phasing statistics<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomalous Completeness (%)</td>
</tr>
<tr>
<td>Mean anomalous difference</td>
</tr>
<tr>
<td>Anomalous CC between half-datasets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>work</sub></td>
</tr>
<tr>
<td>R<sub>free</sub></td>
</tr>
<tr>
<td>Protein residues</td>
</tr>
</tbody>
</table>

¹ Data collection statistics calculated in Aimless. For Au-Rv2893^{H37Rv}, data statistics are for five merged datasets collected from the same crystal.

² Phasing statistics calculated in phenix.scale_and_merge and phenix.xtriage
3.3.6 Structure determination by molecular replacement

High resolution data obtained from native and F_{420} soaked crystals were used to solve apo- and F_{420}-bound Rv2893^{G72S} and Rv2893^{H37Rv} structures by molecular replacement. The growth conditions of crystals used for final data collection are summarised in Table 3.1. To obtain structures complexed with F_{420}, apo crystals were soaked overnight in 1 mM F_{420} (Section 3.2.5.4). Data for apo crystals were collected on the MX1 beamline at the Australian synchrotron using a CCD detector and data from F_{420} soaked crystals on the MX2 beamline at the Australian synchrotron using an EIGER detector. Datasets were all collected at 13.0 KeV and frames from 360 ° oscillation were collected for each crystal. A delta of 0.5 ° was used for collecting MX1 data, and MX2 data was collected using a delta of 0.1 °.

All datasets were processed in space group P12_1 to thresholds of CC_{1/2} > 0.500 and I/σ > 1.5 in the outer/high resolution shell (Table 3.3). The maximum resolution of all four datasets were in a similar range of 2.17–2.31 Å. Both the Rv2893^{G72S} and Rv2893^{H37Rv} native datasets contained eight molecules in the asymmetric unit (ASU) and had strong evidence of pseudo-translational symmetry (p = 1.48 x 10^{-4} and p = 1.49 x 10^{-4}, respectively). Datasets from F_{420} soaked crystals had four molecules in the asymmetric unit and no crystal pathologies were detected.

The best dimer from the model obtained from the SAD solution (Section 3.3.5) was used as the search model for molecular replacement with the high resolution native Rv2893^{G72S} dataset. Following refinement, the best monomer from this model was used as the search model to solve the remaining structures. Final statistics for refined models are given in Table 3.4. The higher R-factors for the apo structures are likely in part due to the translational pseudosymmetry in these datasets as this can lead to difficulties in refinement (Read et al. 2013).
Table 3.3. Data collection statistics for apo and F_{420} bound Rv2893G72S and Rv2893H37Rv. Statistics for the highest-resolution shell are shown in parentheses.

<table>
<thead>
<tr>
<th>Data Statistic</th>
<th>apo-Rv2893H37Rv</th>
<th>apo-Rv2893G72S</th>
<th>F_{420}-Rv2893H37Rv</th>
<th>F_{420}-Rv2893G72S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>0.9537</td>
<td>0.9537</td>
<td>0.9537</td>
<td>0.9537</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1 2 1 1</td>
</tr>
<tr>
<td>Unit cell dimensions a/b/c (Å)</td>
<td>114.75/117.17/116.40</td>
<td>114.82/116.94/116.35</td>
<td>80.63/118.81/85.61</td>
<td>81.12/118.23/86.50</td>
</tr>
<tr>
<td></td>
<td>90.00/96.16/90.00</td>
<td>90.00/96.21/90.00</td>
<td>90.00/91.23/90.00</td>
<td>90.00/91.59/90.00</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>2.30–64.47 (2.30–2.34)</td>
<td>2.12–57.83 (2.12–2.16)</td>
<td>2.17–18.80 (2.17–2.21)</td>
<td>2.31–48.80 (2.31–2.36)</td>
</tr>
<tr>
<td>R_{merge}</td>
<td>0.240 (1.447)</td>
<td>0.212 (1.322)</td>
<td>0.078 (1.329)</td>
<td>0.078 (1.094)</td>
</tr>
<tr>
<td>R_{pim}</td>
<td>0.093 (0.559)</td>
<td>0.082 (0.512)</td>
<td>0.032 (0.526)</td>
<td>0.032 (0.454)</td>
</tr>
<tr>
<td>Mean I/σ</td>
<td>8.4 (1.5)</td>
<td>9.3 (1.7)</td>
<td>13.6 (1.5)</td>
<td>12.9 (1.5)</td>
</tr>
<tr>
<td>CC$_{(1/2)}$</td>
<td>0.992 (0.560)</td>
<td>0.994 (0.513)</td>
<td>0.999 (0.608)</td>
<td>0.999 (0.565)</td>
</tr>
<tr>
<td>Total number of observations</td>
<td>1030086 (51414)</td>
<td>1306478 (64022)</td>
<td>593159 (32844)</td>
<td>494858 (30363)</td>
</tr>
<tr>
<td>Total number unique</td>
<td>135812 (6760)</td>
<td>172401 (8481)</td>
<td>84901 (4491)</td>
<td>71447 (4548)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100.0 (100.0)</td>
<td>99.7 (99.3)</td>
<td>99.7 (99.1)</td>
<td>100.0 (99.9)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>7.6 (7.6)</td>
<td>7.6 (7.5)</td>
<td>7.0 (7.3)</td>
<td>6.9 (6.7)</td>
</tr>
<tr>
<td>Mosaicity</td>
<td>0.56</td>
<td>0.59</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>Monomers in the ASU</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 3.4. Refinement and model statistics for native and F420 bound Rv2893G72S and Rv2893H37Rv.

<table>
<thead>
<tr>
<th>Model statistic</th>
<th>apo-Rv2893H37Rv</th>
<th>apo-Rv2893G72S</th>
<th>F420-Rv2893H37Rv</th>
<th>F420-Rv2893G72S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{work}})</td>
<td>0.204 (0.296)</td>
<td>0.197 (0.293)</td>
<td>0.192 (0.293)</td>
<td>0.192 (0.303)</td>
</tr>
<tr>
<td>(R_{\text{free}})</td>
<td>0.237 (0.312)</td>
<td>0.232 (0.315)</td>
<td>0.220 (0.312)</td>
<td>0.222 (0.334)</td>
</tr>
<tr>
<td>Protein residues</td>
<td>2463</td>
<td>2458</td>
<td>1265</td>
<td>1264</td>
</tr>
<tr>
<td>Total number of non-hydrogen atoms</td>
<td>19066</td>
<td>19576</td>
<td>9520</td>
<td>9415</td>
</tr>
<tr>
<td>Protein</td>
<td>17864</td>
<td>17853</td>
<td>9110</td>
<td>9132</td>
</tr>
<tr>
<td>Ligands</td>
<td>16</td>
<td>26</td>
<td>95</td>
<td>89</td>
</tr>
<tr>
<td>Solvent</td>
<td>1186</td>
<td>1697</td>
<td>315</td>
<td>194</td>
</tr>
<tr>
<td>RMS Bonds (Å)</td>
<td>0.014</td>
<td>0.014</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>Average B value (Å²)</td>
<td>28.78</td>
<td>28.26</td>
<td>51.30</td>
<td>57.85</td>
</tr>
<tr>
<td>Protein</td>
<td>28.87</td>
<td>27.87</td>
<td>51.36</td>
<td>57.93</td>
</tr>
<tr>
<td>Ligands</td>
<td>43.77</td>
<td>44.97</td>
<td>55.58</td>
<td>64.91</td>
</tr>
<tr>
<td>Solvent</td>
<td>27.2</td>
<td>32.07</td>
<td>48.24</td>
<td>50.75</td>
</tr>
<tr>
<td>Ramachandran analysis¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of residues in favoured region (%)</td>
<td>2376 (97.9%)</td>
<td>2371 (98.1%)</td>
<td>1218 (97.8%)</td>
<td>1221 (98.2%)</td>
</tr>
<tr>
<td>Number of residues in allowed region (%)</td>
<td>51 (2.1%)</td>
<td>45 (1.9%)</td>
<td>27 (2.2%)</td>
<td>23 (1.8%)</td>
</tr>
<tr>
<td>Number of residues in outlier region (%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>

¹ Ramachandran plots are presented in Appendix B.5.
3.3.6.1 Rv2893 structural models

The crystal structures of apo-Rv2893H37Rv and apo-Rv2893G72S were solved at 2.30 Å and 2.12 Å, respectively, and models refined to R_{work}/R_{free} values of 0.204/0.237 and 0.197/0.232 (Table 3.4). Crystal structures of F$_{420}$-Rv2893H37Rv and F$_{420}$-Rv2893G72S were solved at 2.17 Å and 2.31 Å respectively, and models refined to R_{work}/R_{free} values of 0.192/0.220 and 0.192/0.222.

Both apo structures were solved with four dimers in the ASU and F$_{420}$ bound structures with two dimers in the ASU. The apo- and F$_{420}$-bound structures for both Rv2893H37Rv and Rv2893G72S have very similar overall conformations, as evident from the low overall root mean square differences (RMSD) in the Cα atomic positions between monomers (RMSD 0.11−1.53 Å, mean 0.60 Å) (Table 3.5, Appendix B.6). In both apo structures, each of the eight chains had a similar overall conformation with RMSD values ranging from 0.11−1.20 Å (mean, 0.47 Å). For F$_{420}$-Rv2893H37Rv and F$_{420}$-Rv2893H37Rv structures, RMSD between chains ranged from 0.69−1.47 Å (mean, 1.3 Å).

Up to three loops were missing in the electron density and were unable to be modelled in all chains. These loops are Gly197–Phe212 (the β6-α6 loop), Arg250–Ser272 (β7-α7 loop), and Glu304–Arg308 (β8-α8 loop) (Appendix B.7). In all chains, the first 25–26 residues from the N-terminus of the protein (including the His-tag) were not modelled, and 0–1 residue was missing from the C-terminus.

In addition to these missing residues, various sidechains throughout the structures were missing electron density for the side chain atoms and so were pruned from the model. Non-protein electron density that accommodated PEG was present in both apo structures and glycerol was present in F$_{420}$ bound structures.

<table>
<thead>
<tr>
<th></th>
<th>apo-Rv2893H37Rv</th>
<th>apo-Rv2893G72S</th>
<th>F$_{420}$-Rv2893H37Rv</th>
<th>F$_{420}$-Rv2893G72S</th>
</tr>
</thead>
<tbody>
<tr>
<td>apo-Rv2893H37Rv</td>
<td>0.47 (0.11−1.20)</td>
<td>0.44 (0.11−1.22)</td>
<td>0.69 (0.26−1.53)</td>
<td>0.67 (0.27−1.53)</td>
</tr>
<tr>
<td>apo-Rv2893G72S</td>
<td></td>
<td>0.47 (0.18−1.16)</td>
<td>0.68 (0.22−1.53)</td>
<td>0.66 (0.29−1.53)</td>
</tr>
<tr>
<td>F$_{420}$-Rv2893H37Rv</td>
<td></td>
<td>1.04 (0.74−1.47)</td>
<td>0.81 (0.17−1.47)</td>
<td></td>
</tr>
<tr>
<td>F$_{420}$-Rv2893G72S</td>
<td></td>
<td></td>
<td>0.95 (0.69−1.25)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.5. RMSD in the Cα atomic positions between Rv2893 structures. Average RMSD for all combinations of chain comparisons are reported, and minimum and maximum shown in brackets. RMSD between chains belonging to the same structure are italicised.
The electron density for F420 soaked crystals revealed F420 bound in two molecules of the same dimer for both F420-Rv2893G72S and F420-Rv2893H37Rv (chains A and B of the four chains in the ASU) (Figure 3.9A). A single monomer (chain D) in the other dimer had unexpected electron density that was neither protein, F420, nor water, in the active site region (Figure 3.9B). Considering the buffer and crystallisation conditions, it is not possible to guess the identity of the ligand that occupies this density. The arrangement of the sidechains of His48, His109 and Glu113 suggest a bound cation with tetrahedral coordination occupies part of this density. The N1 atoms of the imidazole sidechains of His48 and His109 and the carboxylate of Glu113 provide three of the required coordination partners and the fourth would be provided by a non-protein ligand. Mn$^{2+}$ has the required coordination number and the binding site is occupied by amino acid residues that are among the three major ligands for Mn$^{2+}$ in proteins (His, Asp, and Glu) (Zheng et al. 2008). Modelling Mn$^{2+}$ into this site shows the expected tetrahedral binding geometry and Mn$^{2+}$ fits the electron density well (Figure 3.9B). Modelling in other cations with a tetrahedral coordination (Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$ and Zn$^{2+}$) produced poorer electron density maps and a higher R_{free}. Attempts were made to identify the unexpected ligand using phenix.ligand_identification, but failed to identify ligands that fit the density appropriately. This tool automates the fitting of the 200 most frequently observed ligands found in the Protein Data Bank (PDB) to a provided electron density map (Terwilliger et al. 2007). Model analysis was therefore performed using models with Mn$^{2+}$ included and remainder of the density left unmodeled.

![Figure 3.9](image)

Figure 3.9. COOT electron density maps for ligand binding in Rv2893. 2IFO-[IFC] (blue) and |FOI-[IFC] (red/green) maps are shown contoured to 1 σ and 3 σ, respectively. (A) Electron density supporting the placement of F420. Density for the non-prolyl cis-peptide bond joining Leu74 and Val75 is also shown. (B) Non-protein electron density in the active site of chain D. The Mn$^{2+}$ cation is shown as a grey cross. Density for the F420-Rv2893H37Rv is shown and the same unmodeled density was present in F420-Rv2893G72S.
3.4 Analysis of Rv2893 structures

Each Rv2893 monomer is formed by a single \((\alpha/\beta)_8\) TIM barrel domain and has a surface area of \(~13400\ \text{Å}^2\) (Figure 3.10). Two monomers are arranged in an approximately 180° rotation parallel to the central axis of the TIM-barrel to form the Rv2893 homodimer (Figure 3.11). The TIM barrel \(\alpha\)-helices \(\alpha_2\) and \(\alpha_3\) from each monomer pack closely at the dimer interface and the monomers also associate by interactions involving the \(\alpha_1\) helix and additional loops. The dimer interface buries \(~1900\ \text{Å}^2\) (14% of each monomer) and involves four salt bridges and at least 14 hydrogen bonds. The active site is located at the C-terminal end of the TIM barrel (C-terminal end of the \(\beta\)-strands) as in other LLHTs. The substrate binding region has a relatively open conformation and three main accessory loops of 18–34 amino acids, loops \(\beta_4\text{-}\alpha_4\), \(\beta_6\text{-}\alpha_6\) and \(\beta_7\text{-}\alpha_7\), protrude upwards from the C-terminal end of the barrel. A fourth loop comprised of two \(\beta\)-strands (\(\alpha_4\text{-}\beta_5\), 28 amino acids) extends from the N-terminus of the TIM barrel and loops back around to sit adjacent to helix \(\alpha_4\).

A structural similarity search of the PDB using PDBfold shows that Rv2893 matches most closely with other bacterial LLHTs as expected. The closest structural homologue to Rv2893 is \(\text{F}_{420}\)-dependent methylenetetrahydromethanopterin reductase (Mer) from the methanogenic archaea \(\text{Methanosarcina barkeri}\) (bMer) (Table 3.6). The top ten matches to Rv2893 included six different \(\text{F}_{420}\)-dependent LLHTs (\(\text{F}_{420}\text{-}\text{LLHTs}\)); three Mer enzymes from different methanogenic archaea (bMer, kMer and tMer); two actinobacterial FGD enzymes from \(M. \text{tuberculosis}\) (mtbFGD) and \(\text{Rhodococcus jostii}\) (rhFGD); and \(\text{F}_{420}\)-dependent alcohol dehydrogenase (Adf) from the methanoarchaea \(\text{Methanoculleus thermophilus}\). Superimposition of the three Mer structures show these are all structurally very similar (RMSD 1.1–2.5 Å), as are the two FGD structures (RMSD 1.5 Å). bMer (PDB code 1Z69) and mtbFGD (3B4Y) were therefore selected for comparison with Rv2893, along with Adf (1RHC), as these all have \(\text{F}_{420}\) bound (Figure 3.12). The four remaining top matches were to three different non-\(\text{F}_{420}\) dependent bacterial LLHTs (Table 3.6).
Figure 3.10. Structure of Rv2893. (A) Cartoon structure of Rv2893 with Fd20 bound (yellow). Colouring is based on secondary structure; red, TIM barrel β strands; blue, TIM barrel α helices; pale yellow, short connecting loops (<18 aa); green, large accessory loops at the C-terminal end of the barrel; and cyan, large accessory loops at the N-terminal of the barrel. (B) Schematic depicting the topology of the Rv2893 structure. Colours correspond to the scheme in (A).
Figure 3.11. Dimeric arrangement of Rv2893. F$_{420}$ (yellow) is bound to both chains in the dimer and is depicted as sticks.

A sequence alignment of Rv2893, MSMEG_2516, bMer, mtbFGD, Adf and the top two non-F$_{420}$-dependent LLHT hits (1M41 and 3RAO), was generated in STRAP using the Aligner3D method to consider both structural and sequence information (Gille and Frömmel 2001) (Figure 3.13). In Rv2893, His48 and His109 correspond to the mtbFGD active site residues His40 and Glu109 (Bashiri et al. 2008; Oyugi et al. 2016). Examination of the alignment and structures shows 1M41 and 3RAO lack the conserved non-prolyl cis-bond found in F$_{420}$-LLHTs, as well as the catalytic histidine. Examination of the loops and substrate binding region in all four non-F$_{420}$ LLHTs structures showed no obvious commonalities with Rv2893, therefore further analyses focused on the three F$_{420}$-LLHTs with F$_{420}$ bound.
Table 3.6. Proteins in the PDB with structural similarity to Rv2893. The top ten matches identified using PDBeFold are shown. Structures used for main comparisons with Rv2893 are shown in bold and those used included in the alignment in Figure 3.13 are marked with asterisks.

<table>
<thead>
<tr>
<th>PDB ID</th>
<th>RMSD (Å)</th>
<th>%sséQ¹</th>
<th>%sséT¹</th>
<th>Protein</th>
<th>Abbr.²</th>
<th>Organism</th>
<th>F420-dependent</th>
<th>F420 bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Z69*</td>
<td>2.35</td>
<td>88</td>
<td>81</td>
<td>Coenzyme F420-dependent N(5),N(10)-methylenetetrahydromethanopterin reductase</td>
<td>bMer</td>
<td>Methanosarcina barkeri</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1M41*</td>
<td>2.15</td>
<td>79</td>
<td>83</td>
<td>FMNH2-dependent alkanesulfonate monooxygenase</td>
<td>Ssud</td>
<td>Escherichia coli</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>1F07</td>
<td>2.13</td>
<td>75</td>
<td>75</td>
<td>Coenzyme F420-dependent N(5),N(10)-methylene tetrahydromethanopterin reductase</td>
<td>tMer</td>
<td>Methanobacterium thermoautotrophicum</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3RAO*</td>
<td>2.34</td>
<td>79</td>
<td>83</td>
<td>Putative Luciferase-like Monoxygenase</td>
<td></td>
<td>Bacillus cereus</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>1NQK</td>
<td>2.21</td>
<td>71</td>
<td>81</td>
<td>FMNH2-dependent alkanesulfonate monooxygenase</td>
<td>Ssud</td>
<td>Escherichia coli</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>1RHC*</td>
<td>2.24</td>
<td>83</td>
<td>87</td>
<td>F420-dependent alcohol dehydrogenase</td>
<td>Adf</td>
<td>Methanoculleus thermophilus</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3B4Y*</td>
<td>2.26</td>
<td>71</td>
<td>74</td>
<td>F420-dependent glucose-6-phosphate dehydrogenase 1</td>
<td>mtbFGD</td>
<td>Mycobacterium tuberculosis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5LXE</td>
<td>2.34</td>
<td>71</td>
<td>74</td>
<td>F420-dependent glucose-6-phosphate dehydrogenase 1</td>
<td>rhFGD</td>
<td>Rhodococcus jostii</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1EZW</td>
<td>2.47</td>
<td>88</td>
<td>81</td>
<td>Coenzyme F420-dependent N(5),N(10)-methylene tetrahydromethanopterin reductase</td>
<td>kMer</td>
<td>Methanopyrus kandleri</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1LUC</td>
<td>2.44</td>
<td>71</td>
<td>81</td>
<td>Bacterial Luciferase</td>
<td></td>
<td>Vibrio harveyi</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹ %ssé is percent of matched secondary structure of the query chain identified in the target protein (%sséQ) and of target chain matched in the query (%sséT).
² Abbr. = abbreviation used in this thesis
Comparison of the overall topology of Rv2893 with other F₄₂₀-LLHT structures show all structures share the same TIM barrel fold and a similar α₄-β₃ loop at the N-terminal end of the barrel (Figure 3.12). The main differences are in the accessory loops at the C-terminal end of the barrel, particularly in the β₆-α₆ and β₇-α₇ loops. The β₆-α₆ loop is extended by 13–14 residues in Rv2893 compared to the other structures (discussed further in Section 3.4.1), whereas the β₇-α₇ loop is 20–36 residues shorter and does not fold over F₄₂₀ to cap the barrel. Substrate binding cavities were also very different among the F₄₂₀-LLHTs.

Figure 3.12. Overall topology of different F₄₂₀-dependent LLHTs. Structures of *M. tuberculosis* Rv2893, *M. tuberculosis* FGD (3B4Y), *M. barkeri* Mer (1Z69) and *M. thermophilus* Adf (1RHC) with F₄₂₀ bound are shown. The β₇-α₇ loop is coloured blue, the β₆-α₆ loop red, and F₄₂₀ is shown as yellow sticks. Compared with mtbFGD, bMer and Adf, the Rv2893 β₇ strand is interrupted and instead of forming a single extended strand, a short beta strand at the N-terminal end of the β₇-α₇ loop follows the β₇ strand and is coloured as part of the β₇-α₇ loop in Rv2893.
Figure 3.13. Multiple sequence alignment of LLHT proteins. Sequences are shown for *M. tuberculosis* Rv2893, *M. smegmatis* MSMEG_2516, and five other LLHTs (Table 3.6). F420-dependent LLHTs are indicated. Secondary structure features for Rv2893 are shown above the sequences and labelled according to Figure 3.10. The non-prolyl cis-peptide bond is shown in red and labelled. The start of the β7-α7 loop in Rv2893 forms part of an extended β strand in other F420-dependent LLHTs (Figure 3.12) and is indicated by a dashed blue line. Putative active site residues, the Rangipo G72S SNP, and the conserved glycine for F420 binding, are indicated below the sequences with red, black and green asterisks, respectively. The alignment was generated in STRAP (Gille and Frömmel 2001) using Aligner3D and the figure drawn using ESPript (Robert and Gouet 2014).
3.4.1 \(\beta_6-\alpha_6 \) loop

Superimposition and sequence alignment of Rv2893 with other F_{420}-LLHTs shows that the region connecting \(\beta_6 \) and \(\alpha_6 \) of the TIM barrel – the \(\beta_6-\alpha_6 \) loop, has a 13–14 aa insertion in Rv2893 (Figure 3.13, Figure 3.14A). This loop appears to be a flexible region of the protein and was only able to be fully modelled in three of four chains in the F_{420}-bound structures and for one pair of chains related by pseudo-translational symmetry in apo structures. The Rv2893 \(\beta_6-\alpha_6 \) loop extends from the C-terminal end of the barrel bridging over the tail of F_{420} to contact the \(\beta_4-\alpha_4 \) loop. Three conformational states were modelled for this loop; an ‘open’ confirmation observed in both F_{420} bound and apo monomers; a more closed state only observed in F_{420} bound monomers (closed-1); and a different closed state in monomers with Mn\(^{2+}\) and the unexpected ligand (closed-2) (Figure 3.14B). A fourth conformation also appears to be present in the apo structures, however it was not able to be fully modelled. In the open conformation, the region of the loop between Asp201 and Phe209 extends outwards from the core of the TIM barrel, whereas in the closed-1 form this region is bent \(\sim 90^\circ \) towards to the core of barrel to sit above His200. This loop is exposed to the substrate binding cleft and is associated with differing positions of His200, which may be important for substrate binding (Section 3.4.3).

![Figure 3.14](image)

Figure 3.14. The \(\beta_6-\alpha_6 \) loop. (A) Structural overlay of the \(\beta_6-\alpha_6 \) loop from Rv2893 (green), mttbFGD (gold), bMer (cyan) and Adf (pink). (B) A surface representation of Rv2893 is shown coloured by hydrophobicity (red, hydrophobic; white hydrophilic) and the underlying \(\beta_6-\alpha_6 \) loop shown as a black cartoon with His200 as sticks. The \(\beta_6-\alpha_6 \) loop was modelled in three different conformations in Rv2893 termed ‘open’, ‘closed-1’ and ‘closed-2’. The open confirmation is observed in both apo and F_{420}-bound monomers, whereas the closed-1 confirmation was only observed in F_{420} bound monomers, and closed-2 only in monomers with the unknown ligand bound.
3.4.2 \(F_{420} \) binding

The apo- and \(F_{420} \)-bound Rv2893 structures are highly similar with only minor conformational changes in the main chain (average RMSD 0.72 Å) (Appendix B.4). The most notable difference was observed in the \(\beta_6-\alpha_6 \) loop, as discussed in the previous section. As in other \(F_{420} \)-LLHTs, \(F_{420} \) is bound at the C-terminal end of the TIM barrel with the isoalloxazine ring positioned innermost to the core of the barrel and the tail projecting outwards (Figure 3.15). The tail of \(F_{420} \) binds in a largely negatively charged cleft created between helix \(\alpha_4 \), \(\alpha_5 \), and the \(\beta_4-\alpha_4 \) and \(\beta_5-\alpha_5 \) loops (Figure 3.15A). The \(\beta_6-\alpha_6 \) loop folds over the cleft but is not within bonding distance of \(F_{420} \). The isoalloxazine ring binds with the \(Re \)-face adjacent to the non-prolyl \(cis \)-peptide that connects Leu74 and Val75, as in other \(F_{420} \)-LLHTs (Figure 3.15B) (Aufhammer et al. 2004; Aufhammer et al. 2005; Bashiri et al. 2008). Rv2893 has the conserved aspartate on the \(\beta_2-\alpha_2 \) loop (Asp47) found in other \(F_{420} \)-LLHTs that is thought to stabilise the bulge of the \(cis \)-peptide bond (Aufhammer et al. 2004). However, unlike the other \(F_{420} \)-LLHTs the \(F_{420} \) isoalloxazine ring system lacks the pronounced butterfly bend in Rv2893 (Figure 3.15C). In Rv2893, the \(F_{420} \) isoalloxazine ring adopts a planar conformation with a bend in the C5 about the pyrimidine and phenol rings of only 7°.

Rv2893 predominantly contacts \(F_{420} \) through hydrogen bonds involving main chain amide and carbonyl groups (Figure 3.15D). The pyrimidine ring of the isoalloxazine ring makes three hydrogen bonds to the peptide backbone, one to the side chain of Asn77, and one to an ordered water. The phenolic ring at the other end is held in a predominantly hydrophobic environment and makes only one weak hydrogen bond with the peptide backbone to a water molecule. The OH groups of the ribitol and phosphate moieties and the first glutamate residue of the tail make several hydrogen bonds to the backbone before the remainder of the tail extends into the solvent. Upon \(F_{420} \) binding the \(C\alpha \) of Asn178 on the \(\beta_5-\alpha_5 \) loop shifts ~2.4 Å away from the \(F_{420} \) tail and its side chain flips outwards to accommodate the phosphate group of \(F_{420} \), which then hydrogen bonds the backbone amide of Asn178 and Gly179 (Figure 3.15E).
Figure 3.15. \(F_{420} \) binding to Rv2893 and other LLHTs. (A) Cartoon representation of Rv2893 with a surface charge representation of the \(F_{420} \) binding site (surface carve set to 5 Å). Local regions of positive, negative and neutral electrostatic potential are coloured blue, red and white, respectively. (B) The bulge created by the non-prolyl cis-peptide bond packs against the Re-face of the \(F_{420} \) isalloxazine ring. Hydrogen bonding interactions of the ring are indicated by dark grey (strong bonds) and light grey (weak bond) dashed lines. (C) \(F_{420} \) binding in different LLHTs; *M. tuberculosis* Rv2893, *M. tuberculosis* FGD (3B4Y), *M. barkeri* Mer (1Z69) and *M. thermophilus* Adf (1RH1). \(F_{420} \) bound to Rv2893 lacks the pronounced butterfly bend apparent in the other structures. (D) Schematic showing hydrogen bonding contacts to \(F_{420} \) (bold, dark grey). Oxygen atoms are coloured red, nitrogen atoms blue, and phosphorous gold. Strong hydrogen bonds are shown as black dashed lines and weak bonds as light grey dashed lines. The non-prolyl cis-peptide bind between Leu74 and Val75 is indicated. (E) Conformational shift of Asn178 upon \(F_{420} \) binding to accommodate the phosphate group. The \(F_{420} \) bound conformation is shown in green and non-\(F_{420} \) bound in light blue.
3.4.3 Substrate binding region and active site

The substrate binding site is at the base of a deep solvent exposed cleft above the Si-face of the F420 isalloxazine ring system and has a predominately hydrophobic character (Figure 3.16). The guanidine group of the Arg110 sidechain sits above the imidazole group of His48 and together with His48 and His109, and His200, form a hydrophilic region above the pyrimidine ring. In mtbFGD and Adf, hydride transfer is mediated by conserved histidine (His40 and His39, respectively) and glutamate residues (Glu109 and Glu108, respectively) (Aufhammer et al. 2004; Bashiri et al. 2008). Although His40 plays a crucial role in mtbFGD catalysis, it has recently been shown not act as a general base as previously proposed (Oyugi et al. 2016). Rv2893 retains the conserved histidine, His48, and this adopts the same confirmation at the Si-face of F420 as in other F420-LLHTs and is presumably positioned to bond with the substrate and partake in catalysis. His109 occupies the site of the catalytic glutamate that serves as the general acid donating a proton to N1 of F420 (Oyugi et al. 2016). Depending of its protonation state, His109 could act as either a general base or acid in catalysis. In apo-monomers, the His109 sidechain adopts either the same conformation as in F420 bound monomers above the O4 atom of F420, or, is rotated about 90° in the N-terminal direction and hydrogen bonds with the peptide backbone. A third histidine in Rv2893, His200 on the β6-α6 loop, is also positioned in the substrate binding region with the imidazole ring ~5 Å above the F420 ribitol moiety in a slightly offset stacked confirmation with His109. In this conformation, the sidechains of His48, His109 and His200 all point into the substrate binding region above the Si-face of F420. In Adf and mtbFGD an essential tryptophan residue on the β2-α2 loop stabilises the transition state (Aufhammer et al. 2004; Bashiri et al. 2008; Oyugi et al. 2016). Rv2893 lacks this residue and Arg110 on the β4-α4 occupies the region of the tryptophan sidechain, however the Arg110 sidechain was not able to be modelled in all chains suggesting it is highly labile.
Figure 3.16. *Rv2893* substrate binding cleft. (A) Surface view of Rv2893 showing F₄₂₀ bound at the base of the cleft. Local regions of positive, negative and neutral electrostatic potential are coloured blue, red and white, respectively. The β₆-α₆ loop is in the closed-1 conformation. (B) Detailed view of the substrate binding region. Sidechain residues that make up the substrate binding region are shown as sticks and a surface representation shows protein surfaces within 6 Å of F₄₂₀ coloured by hydrophobicity (red, hydrophobic; white hydrophilic). Residues for chain A (β₆-α₆ loop in the open conformation) are shown in light grey, and chain B (closed-1 conformation) in a darker grey. The closed-1 conformation brings Val207 into the substrate binding region.

The other end of the substrate binding region above the F₄₂₀ phenol ring is comprised predominately of hydrophobic residues and shares similar characteristics with that of Adf. In Adf, Val193, Leu227 and Trp229 are positioned to interact with both the phenolic end of the F₄₂₀ ring as well as the hydrocarbon end of the substrate. These residue characteristics are conserved in Rv2893, whereby Ala196, Leu240 and Phe302 occupy the corresponding positions. However, in Adf, the β₇-α₇ loop closes over the active site and interacts with β₂-α₂ and β₄-α₄ creating a substrate binding pocket that is completely buried inside the enzyme. These loops adopt a very similar conformation in *M. tuberculosis* FGD, although the mtbFGD substrate binding pocket comprises fewer hydrophobic and more polar residues. In Rv2893, the β₂-α₂ loop is shortened and the β₇-α₇ loop does not close over the core of the barrel, leaving a cleft above the F₄₂₀ Si-face exposed to the bulk solvent. This cleft is also lined by predominantly hydrophobic residues and in the β₆-α₆ loop closed-1 conformation found only in F₄₂₀ bound monomers (Section 3.4.1), the hydrophobic sidechain of Val207 also faces into the upper region of the substrate cleft above the F₄₂₀ C5 atom, further contributing to the hydrophobic environment.
(Figure 3.16B). Mer also lacks an expanded β_2-α_2 loop and the Si-face of F_{420} and substrate binding site are open and largely exposed to the bulk solvent.

Electron density that was neither protein, water, nor F_{420}, was observed in the substrate binding region in a single apo-monomer in both F_{420} bound structures (Figure 3.17). An Mn^{2+} cation was modelled into part of this density, however, despite attempts to identify the ligand using automated modelling of a ligand library in PHENIX and manually modelling numerous different ligands, its identity currently remains unknown. Binding of this ligand disrupts the arrangement of His48, His109 and His200 (Figure 3.17A) and the β_6-α_6 loop adopts the closed-2 conformation. The His48 sidechain is rotated \sim25 $^\circ$ away from the F_{420} pyrimidine ring and the Mn^{2+} cation occupies the site between the imidazole rings of His48, His109 and the carboxylate of Glu113 on the β_4-α_4 loop. The imidazole ring of His109 is shifted into the region occupied by the O2 and N3 atoms of F_{420} and the other end of the ligand is positioned where the hydroxyl group of the F_{420} phenolic ring binds. This would prevent F_{420} binding, therefore the bound ligand is unlikely to be a substrate of Rv2893 but rather may represent a competitive inhibitor or regulator.

The ‘head’ of the ligand is positioned adjacent to the cation and the shape of the electron density in this region is highly suggestive of a phosphate group. Library ligands modelled by PHENIX frequently placed a phosphate group adjacent to the cation and the shape of the density is appropriate for either a phosphate or sulphate group. Modelling PO_4 in provides a good fit to the density and provides the appropriate tetrahedral geometry for the coordination of Mn^{2+}, as well making hydrogen bonds to the His200 and Arg110 side chains (Figure 3.17B). The unmodeled density extends \sim11 Å from the phosphorous atom into the core of TIM barrel. Both the central region and tail end of the ligand are planar and the two planes are offset by an approximately 120 $^\circ$ rotation. The shape of the density and modelling in various cyclic compounds suggests at these regions might be occupied by monocyclic rings.
Figure 3.17. The unidentified ligand bound in the Rv2893 active site. (A) Arrangement of active site residues His48 and His109, and His200, in the substrate binding region and binding of the unexpected ligand (semi-transparent white blob). F$_{420}$ is not found in monomers with the ligand bound (light blue sticks). F$_{420}$-bound monomers with the β$_6$-α$_6$ loop in the open and closed-1 conformations are shown as green and dark green sticks, respectively. Binding of the unexpected ligand disrupts the confirmation of the active site residues and the tail of the ligand occupies the region in which the hydroxyl of the F$_{420}$ ring binds. (B) Phosphate modelled into the head end of the density for the unidentified ligand. Coordination of Mn$^{2+}$ to His48, His109 and Glu113 is indicated by dashed red lines. Hydrogen bonds made by the phosphate are indicated with dark grey dashed lines for strong bonds and light grey dashed lines for weak bonds.

3.4.4 The Rangipo specific SNP encoding a G72S mutation

The Rangipo specific G72S mutation site is positioned at the base of the bulge created by the non-prolyl cis-peptide bond (Figure 3.19). No major global or local topology changes were observed between the wild type Rv2893$^{\text{H37Rv}}$ and Rangipo variant Rv2893$^{\text{G72S}}$ structures (average RMSD between apo monomers 0.44 Å).

Figure 3.18. Rangipo specific G72S SNP. Superimposition of F$_{420}$-Rv2893$^{\text{H37Rv}}$ (green) and F$_{420}$-Rv2893$^{\text{G72S}}$ (dark teal) with the SNP site and non-prolyl cis-peptide bond indicated. In F$_{420}$-Rv2893$^{\text{H37Rv}}$, an ordered water molecule (red sphere) occupies a similar position as the Ser72 hydroxyl group. No other local or global rearrangements were observed.
The non-prolyl cis-peptide bond is conserved in other F₄₂₀-LLHTS and is important for F₄₂₀ binding and catalysis as it creates a bulge that packs against the Re-face of F₄₂₀, helping induce a butterfly bend in the F₄₂₀ isoalloxazine ring system increasing its reactivity (Bashiri et al. 2008). Although the mutation is not in a position to directly interact with F₄₂₀ or the substrate, its location at the base of this bulge is a prime position for having a functional effect via interaction with the bulge. Examination of the region and adjacent β-sheets shows that the G72S mutation creates two additional hydrogen bonds between the β₃ and β₄ strands (Figure 3.19B) which may explain the increased thermal stability observed for the G72S variant compared to the wild-type (Section 3.3.3). In Rv2893^{G72S}, the OH group of Ser72 makes hydrogen bonds to the backbone carbonyl groups of Thr73 on β₃ and Glu102 on β₄, as well as with another ordered water that also hydrogen bonds to the carboxylate group of Glu102. In Rv2893^{H37Rv}, these intramolecular hydrogen bonds are lost and an ordered water sits between the two β-strands in the site occupied by the Ser72 hydroxyl and makes hydrogen bonds to the carbonyl groups of Thr73 and Glu102, and to the other ordered water.

![Figure 3.19](image-url) **Figure 3.19. Structural location of the Rangipo specific G72S SNP.** Arrangement of the residues surrounding the SNP position and non-prolyl cis-peptide bond in (A) Rv2893^{H37Rv} and (B) Rv2893^{G72S}. Ordered water molecules are shown as red spheres and F₄₂₀ as yellow sticks. Intra-molecular hydrogen bonds are indicated by yellow dashed lines, and hydrogen bonds to water molecules by light grey dashed lines. Hydrogen bond distances were all within 2.7–3.1 Å and the non-prolyl cis-peptide bond is indicated.
3.5 Discussion

Members of the *M. tuberculosis* complex (MTBC) are genetically more diverse than traditionally assumed and increasing evidence suggests strain genetic background impacts virulence phenotypes and can have important clinical and epidemiological consequences (Section 1.4.1). Understanding the molecular mechanisms underlying this variation is an essential step towards understanding the complex relationship between bacterial genotype, virulence, and clinical outcomes. SNPs are one of the most common forms of genetic variation in the MTBC and have the potential to alter bacterial phenotype if they change the amino sequence of encoded proteins or alter transcriptional regulation.

The Rangipo strain has been the source of numerous tuberculosis outbreaks in New Zealand over the past 30 years and has been suggested to be highly virulent relative to other circulating strains (Section 1.1.3). Characterising the consequences of genetic variation unique to this strain may help understand factors contributing to its success. Analysis of whole genome SNP data from the New Zealand Rangipo *M. tuberculosis* cluster identified several Rangipo specific nsSNPs predicted to affect protein function (Section 2.2.2.2) and thereby may affect bacterial phenotype. The putative F$_{420}$-dependent oxidoreductase Rv2893 harbours a G72S mutation that I have identified as specific to the Rangipo strain (nsSNP) and is predicted to effect protein function *in silico* (Section 2.2.2.4). This SNP was selected for further investigation based on the biological roles of its predicted cofactor F$_{420}$ in *M. tuberculosis*, as well as for practical considerations. F$_{420}$ is an unusual low-redox potential cofactor that enhances the metabolic flexibility of mycobacteria and is important for survival in challenging environments (Gurumurthy *et al.* 2013; Hasan *et al.* 2010; Jirapanjawat *et al.* 2016; Purwantini and Mukhopadhyay 2009). However, the mechanisms by which F$_{420}$ contributes to this and its roles in *M. tuberculosis* metabolism remain poorly understood.

Crystal structures of Rv2893 were solved at 2.12–2.31 Å for the *M. tuberculosis* reference strain H37Rv protein and the Rangipo G72S variant in the apo-form and with F$_{420}$ bound, confirming this protein is indeed an F$_{420}$-dependent LLHT. Despite being expressed in *M. smegmatis* cells, which produce F$_{420}$, Rv2893 purified without F$_{420}$ bound and it had to be soaked into Rv2893 crystals to obtain the liganded structure. The same scenario was reported for mtbFGD expressed in
M. smegmatis and its F420-bound structure was also obtained by soaking crystals in F420 (Bashiri et al. 2008). Conversely, M. tuberculosis F420-reducing hydroxymycolic acid reductase (fHMAD, Rv0132c) (Purwantini and Mukhopadhyay 2013) (also an LLHT family protein), has also been expressed in M. smegmatis and was found to co-purify with F420 (Bashiri et al. 2012). These are the only other published M. tuberculosis F420-dependent LLHTs that have been purified and characterised, although the F420-dependency of an additional mycobacterial LLHT – phthiodiolone ketoreductase (fPKR) (Rv2951c), has also been experimentally validated (Purwantini et al. 2016). Rv2893 therefore increases the number of experientially confirmed F420-binding LLHTs in M. tuberculosis to four.

There are only three other F420-dependent LLHT structures complexed with F420 deposited in the PDB; mtbFGD (3B4Y), Adf (1RHC) and bMer (1Z69), and a further three without F420 bound; rhFGD (5LXE), kMer (1EZW) and tMer (1F07). The overall binding mode of F420 in Rv2893 is the same as in mtbFGD, bMer and Adf with the F420 isoalloxazine ring bound innermost and its Si-face exposed to the substrate binding region. However, in Rv2893 the F420 isoalloxazine ring lacks the pronounced butterfly bend apparent in the other structures, despite conservation of the non-prolyl cis-peptide bond. Non-prolyl cis-peptide bonds are energetically unfavourable features rarely found in protein structures and tend to occur in important regions, such as next to an active site (Jabs et al. 1999). In F420-LLHTs the non-prolyl cis-peptide bond is important for F420 binding and catalysis as it creates a bulge that packs against the Re-face of the isoalloxazine ring, inducing the formation and stabilisation of a butterfly bend confirmation about the C5 atom. This bent conformation is energetically unfavourable for oxidised F420 and is important for catalysis as in this conformation the C5 carbon adopts a more tetrahedral sp3-like geometry, increasing its reactivity (Aufhammer et al. 2004; Bashiri et al. 2008). This pronounced bend was not observed in Rv2893, and it is speculated that substrate binding may be required to induce this more reactive confirmation in Rv2893. In both Adf and bMer, protein residues pack against the phenol ring of F420 inducing the bent conformation, and in FGD1 rather than protein residues, the inhibitor citrate packs against F420 ring and promotes the bend (Bashiri et al. 2008). Rv2893 lacks packing above the phenol ring either from substrate or protein.
residues and substrate binding may therefore be required to promote the butterfly bend and assist catalysis.

The Rangipo G72S mutation is located adjacent to the non-prolyl cis-peptide and creates two additional hydrogen bonds between the β_3 and β_4 strands. Melting temperature analysis by DSF indicated that the Rangipo Rv2893G72S variant has higher thermal stability than the wild-type Rv2893H37Rv protein, which may be explained by these additional intra-molecular bonds. Although there is no simple relationship between changes in protein stability and protein functional changes, mutations that change stability frequently affect protein function (Bromberg and Rost 2009). Changes in stability alter the ratio of folded to unfolded molecules; high stability results in more folded molecules, whereas low stability results in a higher proportion of unfolded molecules and increases the propensity for aggregation. Changes in stability can have important phenotypic consequences, in humans for example, the majority of disease associated single nucleotide mutations affect protein stability, although typically these are destabilising mutations (Wang and Moult 2001). While the effects of destabilising mutations causing protein aggregation and decreasing the pool of active molecules are readily appreciated, changes that increase stability can also have marked effects. As well as increasing the ratio of folded to unfolded molecules, highly thermostable proteins are also more resistant to proteolysis (Daniel et al. 1982). Most notably, increasing stability can reduce flexibility, a critical feature of protein catalysis. There is a fine balance between protein stability and flexibility, whereby proteins must be rigid enough to retain confirmations required for function, but also still labile enough to allow structural changes required for substrate binding and catalysis. Thus, increased stability can adversely affect activity if it inhibits required conformational changes. No notable changes were apparent in F$_{420}$ binding between Rv2893H37Rv and Rv2893G72S in the crystal structures, however, in biological reality proteins are not rigid molecules as portrayed in structural models. Thus, considering the location of the G72S mutation at the base of the cis-peptide bulge and the important role this feature plays in F$_{420}$ binding and catalysis, concomitant with its effects on overall stability, it is speculated that this mutation will likely influence F$_{420}$ binding affinity or catalysis in solution. Further work needs to be undertaken to characterize the binding kinetics of F$_{420}$ to Rv2893H37Rv and Rv2893G72S to determine this.
Chapter Three

Whether additional stability imposed by the G72S SNP impairs or enhances Rv2893 enzyme activity, its consequences on bacterial phenotype are likely to be largely dictated by its functional role in *M. tuberculosis*. Rv2893 retains the conserved catalytic histidine (His48) and another histidine (His109), occupies the site of catalytic acid found in other F$_{420}$-LLHTs. Depending on its protonation state, His109 could act as either a general base or acid in acid-base catalysis and Rv2893 therefore retains the necessary active site chemistry that would enable it to catalyse hydride transfer. It remains unclear whether Rv2893 is an F$_{420}$-reducing dehydrogenase or an F$_{420}$H$_2$-reductase. FGD is the main source of F$_{420}$H$_2$ in *M. tuberculosis*. This apparent from the phenotypic effects produced by disrupting the gene encoding FGD, which reflect those produced by eliminating F$_{420}$ biosynthesis (Jirapanjawat *et al.* 2016; Purwantini and Mukhopadhyay 2009). fHMAD is also an LLHT family F$_{420}$-reducing dehydrogenase (Purwantini and Mukhopadhyay 2013). The majority of other F$_{420}$-dependent LLHTs however are expected to be reductases (Greening *et al.* 2016). It therefore seems more likely Rv2893 is a F$_{420}$H$_2$-reductase than a F$_{420}$-reducing dehydrogenase.

Rv2893 shares structural homology with other microbial F$_{420}$-LLHTs; Mer, Adf and FGD, as well as non-F$_{420}$-dependent LLHTs. These act on a diverse range of different substrates and have a broad range of roles in different organisms. FGD enzymes oxidise glucose-6-phosphate to 6-phospho-gluconolactone producing F$_{420}$H$_2$ which is then used by F$_{420}$-dependent reductases. Mer is involved in CO$_2$ reduction in methanogenic archaea and catalyses the reduction of N^5,N^{10}-methylene-tetrahydromethanopterin to N^5-methyl-tetrahydromethanopterin, with concomitant oxidation of F$_{420}$H$_2$ to F$_{420}$. Adf is a secondary alcohol dehydrogenase also found in methanogenic archaea and enables isopropanol to be used a hydrogen donor for CO$_2$ reduction, reducing F$_{420}$ in the process (Widdel and Wolfe 1989). Rv2893 is well suited to bind a hydrophobic substrate and shares notable similarities with Adf in terms of the hydrophobic characteristics of the residues comprising the substrate binding site. However, unlike Adf, the Rv2893 substrate binding region has a more open character which would allow for binding of a larger substrate. The Mer substrate, methylene-tetrahydromethanopterin, is also much bulkier than those of FGD and Adf, and accordingly Mer has a relatively open substrate binding cleft rather than a tight substrate binding pocket.
Interestingly, F$_{420}$-bound structures were also found to be complexed with a currently unidentified ligand. This ligand represents a competitive inhibitor or regulator as the structural changes it induces would be inhibitory for F$_{420}$ binding and catalysis. The head of the ligand is suggested to be a phosphate group and the remainder appears to be comprised of one or more monocyclic rings, likely with a hydrophobic nature. As it was only bound in monomers unoccupied by F$_{420}$ its binding is not dependent on F$_{420}$ binding, so it is curious that it was not bound in the apo structures. Its presence could potentially be the result of an impurity in the F$_{420}$ purification introduced during soaks. Alternatively, both apo, but not F$_{420}$ bound structures, were solved from crystallised protein that had been purified with DDM in lysis and IMAC buffers. This detergent may have stripped away the ligand early on the purification. Identification of this ligand will likely provide additional clues as to the function of Rv2893 and further work needs to be undertaken to determine its identity.

3.5.1 Conclusions

The structure of the *M. tuberculosis* putative F$_{420}$-dependent oxidoreductase Rv2893 has been solved showing it shares the same overall TIM barrel fold as other bacterial LLHTs and validating it as an F$_{420}$-binding protein. Only three other F$_{420}$-LLHT structures complexed with cofactor F$_{420}$ are currently available and this structure represents just the second F$_{420}$-LLHT from *M. tuberculosis*. The Rv2893 active site region and F$_{420}$ binding mode share conserved features found in other F$_{420}$-LLHTs important for F$_{420}$ binding and enzyme catalysis. However, in Rv2893 F$_{420}$ lacks the pronounced butterfly bend and substrate binding may be required to induce this more reactive confirmation. The Rangipo specific G72S mutation is located at the base of the bulge created by the non-prolyl *cis*-bond important for F$_{420}$ binding and catalysis. This SNP creates additional intramolecular hydrogen bonds and increases the thermal stability of Rv2893, which may have important consequences for F$_{420}$ binding and/or enzyme activity. The biological consequences of this SNP will largely depend on the function of this protein in *M. tuberculosis* and further work will seek to elucidate its role. This will provide new insights regarding the role of F$_{420}$ in *M. tuberculosis* and enable further investigation into the functional consequences of the Rangipo G72S SNP.
Chapter Four

Evolutionary analysis of the Rangipo and Otara tuberculosis clusters

4.1 Introduction

Modern tuberculosis strain diversity in New Zealand Europeans, Māori and Pacific People is dominated by L4/Euro-American strains (Yen et al. 2013). Although the annual incidence rate of TB notifications in New Zealand is comparatively low at around 6.5 cases per 100,000 population, the disease disproportionally affects Māori and Pacific People (ESR 2018). Around three-quarters of *Mycobacterium tuberculosis* isolates from Māori and Pacific People have non-unique MIRU-VNTR molecular typing patterns and this is typically interpreted to indicate recent transmission of strains. The two largest *M. tuberculosis* clusters in New Zealand – the Rangipo and Southern Cross clusters, are most prevalent in Māori and Pacific People, respectively. The Otara cluster is another large cluster predominantly found in Pacific People. The Rangipo cluster is of particular public health concern due to it being a source of several outbreaks over the last thirty years and it has also been suggested to be highly virulent (Colangeli *et al.* 2014; De Zoysa *et al.* 2001; McElnay *et al.* 2004).

One of the main objectives of this chapter was to trace the historical origins and dispersal of the Rangipo and Otara clusters. Both of these clusters belong to the L4.4 sublineage, which is the most prevalent L4/Euro-American sublineage in New Zealand born tuberculosis cases (43% of L4 cases) (Stucki *et al.* 2016b). Oceania was the last major global region to be reached by Europeans and it is generally assumed that tuberculosis was absent from New Zealand prior to European arrival (Durie 1998). When considering tuberculosis in New Zealand it is important to
understand the migratory and colonial history of New Zealand and the wider South Pacific.

4.1.1 Historical and demographic context

Oceania is geographic region in the Pacific Ocean comprised of Australia, Melanesia, Micronesia and Polynesia. The Polynesian sub-region is made up of over one thousand islands scattered across the central and southern Pacific Ocean, extending from Hawaii to the north to New Zealand and Easter Island to the south and east (Figure 4.1). New Zealand is home to both the indigenous Māori population and the largest diaspora communities of indigenous Polynesian people (Spickard et al. 2002), offering a unique setting for the investigation of \textit{M. tuberculosis} dispersal and transmission in the South Pacific.

\textbf{Figure 4.1. Map of Oceania highlighting the Polynesian sub-region (blue).} (Modified from https://commons.wikimedia.org/wiki/File:Oceania_UN_Geoscheme_Regions_with_Zones_and_ISO3166_labels.svg)
Māori make up 15% of the New Zealand population and Pacific People account for 7% (StatsNZ 2013). The majority of New Zealand’s Pacific island population identify with ethnic groups from Polynesia (excluding Hawaii), and Fiji is the only notable contributor from outside this region (4.9% of Pacific People identify as Fijian). The three major Pacific ethnic groups represented in New Zealand are Samoan, Cook Island Māori and Tongan, and 90% of Pacific People in New Zealand identify with one or more of these groups (StatsNZ 2013).

4.1.1.1 Early European presence in Polynesia

The islands of Polynesia have been inhabited by humans for around three thousand years, whereas Europeans have only been part of the history of this region for approximately the last five hundred years. The early-1500s to late-1700s were an era of great European exploration in the South Pacific, dominated by the Spanish in the 1500s, the Dutch in the 1600s, and then the British and French from the mid-1700s. These early voyages commonly involved contact and trade with local communities, however, early contact between Europeans and indigenous Pacific peoples was both irregular and brief. The great European exploration and scientific voyages ceased from the late 1700s and the European presence in the Pacific began to be dominated by whalers, sealers and other traders. This led to the establishment of more regular and intensified contact between Pacific Islanders and Europeans and had much greater lasting impacts on Pacific societies than the previous passing visits of European explorers. The whaling industry had a particularly profound effect on indigenous Pacific Island populations and was a major driving force for European colonisation. From 1840, European colonies and protectorates were established, however with the exception of New Zealand (Section 4.1.1.2), the islands of Polynesia did not receive mass influxes of European migrants. The increasing volume of European ships passing through the Southern Pacific also promoted the growth of trading settlements and larger commerce hubs. Pacific societies changed significantly as people relocated to harbours for work and trade, and local economies shifted to provide goods for trade. (Campbell 2011; Fischer 2013).
4.1.1.2 European discovery and early settlement of New Zealand

The Polynesian ancestors of the Māori arrived in New Zealand around 1230–1280 AD during an era of widespread Polynesian voyaging (King 2004; Wilmshurst et al. 2011). The era of long-distance Polynesian voyaging rapidly declined around 1450 AD (Rolett 2002) and Māori were isolated from island Polynesia and the rest of the world for several hundred years until the arrival of Europeans. The first European explorer to reach New Zealand was the Dutch explorer Abel Tasman in 1642, however it was not until 1769 that the first European set foot in New Zealand, Englishman Captain James Cook. Cook met with Māori on numerous occasions and the consequences of these encounters have been described as “far-reaching, although they did not change the cultural pattern or the quality of day-to-day Māori life” (King 2004). The French became interested in the Pacific around the same time as the English. French explorers were the only other Europeans who played significant role in mapping the New Zealand coastline, and they also interacted with local Māori during visits to New Zealand (Wilson 2016). The first Europeans to live in New Zealand were predominantly sealers, whalers, ship deserters or convicts, many of whom were of English or Irish descent (Phillips 2015). European migration initially occurred at low levels, just over 300 Europeans had settled in New Zealand by 1830 and this increased to around 2,000 by 1840 (King 2004). From 1840 the rate of immigration increased significantly and by the end of the 19th century the European population numbered nearly 800,000 (Orange 2012) (Figure 4.2). The majority of Europeans who moved to New Zealand were from Britain and Ireland, with only minor contributions from other countries including a small number of French who settled in Akaroa (fewer than 100), and 281 Germans who settled near Nelson (Phillips 2015).
4.1.1.3 New Zealand and the Pacific Islands

From the early 1800s only very small numbers of Pacific people began to settle in New Zealand and by 1916 when the first census data counting Pacific ethnicities is available there were only 151 Pacific Island Polynesians in New Zealand (StatsNZ 1916). The Pacific population began to slowly increase in the first half of the 20th century until a surge in migration in the 1950s to early 1970s with most migration coming from Samoa, the Cook Islands, Tonga, Niue, Tokelau and Fiji (Dunsford et al. 2011). Between 1951 and 1976 the Pacific Island Polynesian population increased from 3,624 to 61,354 (StatsNZ 1996) (Figure 4.3) and there are now approximately three hundred thousand Pacific people in New Zealand, comprising seven percent of the population (StatsNZ 2013).

Figure 4.2. Māori and European population in New Zealand, 1840–1901. Source: Orange (2012).

Figure 4.3. Pacific Island Polynesian population in New Zealand, 1916–1976. Source: (StatsNZ 1996).
4.1.1.4 A brief history of tuberculosis in New Zealand

Tuberculosis is generally considered to have been absent from New Zealand prior to European arrival (Durie 1998). The disease may have been introduced as early as the arrival of English captain James Cook in 1769, as crew suffering from tuberculosis were present on the Endeavour (Gluckman 1976). Māori deaths from tuberculosis following voyages to England have been recorded as early as 1807 and by the 1830s high tuberculosis rates amongst Māori were becoming apparent (Gluckman 1976). In the first two decades of the 20th century public health efforts and discussion around tuberculosis in New Zealand focused on Europeans and the tuberculosis problem in Māori was largely ignored (Dow 1999; Durie 1998). By the 1920s, the threat of tuberculosis to Māori was well known, however, the full extent of the problem was not acknowledged until the 1930s (Dow 1999). Although European tuberculosis morality rates have been recorded since the 1870s, the first reliable records for Māori mortality rates were not collected until the 1930s and show rates as high as 407.8 per 100,000 population (MacLean 1964). Following intensified public health efforts in the 1940–1950s, there was a marked decline in Māori tuberculosis notification rates (Figure 4.4) and by the 1970s tuberculosis was considered to have been bought under control (Durie 1998). Māori rates however, were still around five times higher than in Europeans, a trend that continues to persist today.

In 2015, the European and Other ethnic group had a tuberculosis notification rate of 0.6/100,000, whereas the rate in Māori was 3.2/100,000, and in Pacific People 20.2/100,000 (ESR 2018). Furthermore, around three-quarters of M. tuberculosis isolates from Māori and Pacific People have non-unique molecular types (i.e. are clustered) compared to approximately one-third in the European or Other group (ESR 2018). Molecular clustering is typically interpreted to indicate recent transmission but can also represent the reactivation of latent infection of endemic strains (Nguyen et al. 2003).

4.1.2 Phylodynamics and molecular dating

Phylodynamic approaches combining molecular-dating with spatial and epidemiological data offer a powerful way to study pathogen evolution in space and time. Recent phylodynamic studies of M. tuberculosis have provided valuable new insights into the evolution of drug resistance (Eldholm et al. 2015; Eldholm et al. 2016), the emergence and spread of outbreaks (Bjorn-Mortensen et al. 2016; Roetzer et al. 2013), and historic events associated with M. tuberculosis dispersal (Eldholm et al. 2016).

Molecular dating methods estimate rates of genomic evolution in units of time, enabling absolute timescales to be placed on phylogenetic trees and evolutionary events such as lineage divergence or the appearance of mutations to be dated. Converting rates of sequence evolution and divergence events from relative to absolute time requires calibration of the molecular clock. Clock calibrations can be performed using information from the fossil record, geological or historical events, or from sample tip-dates. Tip-based calibration requires that samples are collected at different time points and that sequence data captures measurable levels of genetic change with time, providing a clock like signal that is used to calibrate the tree. Sequences that have these properties are termed ‘measurably evolving’ or ‘heterochronous’ (Drummond et al. 2003). The ability to capture sufficient temporal signal in the data is dependent on the mutation rate, the number of variable sites in the sequences, and the temporal width of the sampling interval (Rieux and Balloux 2016). Whole genome sequencing of large datasets of bacterial pathogens, such as M. tuberculosis, shows the accumulation of genetic variation over epidemiological timescales, pushing M. tuberculosis into the realm of measurably
evolving populations and allowing tip-based calibration for fine-scaled molecular dating studies (Biek et al. 2015). The increased accessibility of whole genome sequencing (WGS) has also led to the sequencing of thousands of MTBC strains from throughout the globe and the deposition of this data into public repositories provides a rich archive of genomic data for studies of MTBC diversity and dispersal.

4.1.3 Objectives

Our collaborators Greg Cook and Htin Aung at the University of Otago, N.Z., have sequenced the genomes of thirteen Rangipo, seven Otara and five Southern Cross isolates on the Illumina MiSeq platform. This chapter presents genomic analyses I have undertaken using these data. The primary objectives of these analyses were; (1) to characterise the phylogenetic relationships and genetic diversity within and between these clusters, and (2) to trace the evolutionary history and identify the historical origin of the Rangipo strain.

4.2 Methods

4.2.1 Whole genome sequencing of New Zealand *M. tuberculosis* isolates

4.2.1.1 Clinical *M. tuberculosis* isolates

Clinical New Zealand *M. tuberculosis* isolates or genomic DNA (gDNA) for whole genome sequencing were kindly provided by the Waikato Hospital, Hamilton, New Zealand, and LabPLUS, Auckland, New Zealand.

Thirteen isolates in the Waikato Hospital archive that had been identified as Rangipo strains on the basis of contact tracing and/or IS6110 molecular typing were available for WGS. Collection dates spanned an 18-year period (1991–2009). Four isolates; O, F, R/C2 and A, have previously been sequenced on the ABI SOLiD platform (Colangeli et al. 2014), and were re-sequenced under the IDs NZLK, NZLL, NZLM, NZLN, respectively. NZLK, NZLL and NZLN have previously been sent to LabPLUS for MIRU-VNTR 24-loci typing and share the ‘primary’
Chapter Four

Rangipo MIRU-VNTR 24-loci profile (233325153324-341444223362) (Ruthe 2015).

Seven Otara and five Southern Cross isolates were selected for WGS by collaborators at LabPLUS. These were chosen to encompass a range of collection dates and variant MIRU-VNTR 24-loci typing patterns among Otara cluster isolates. All Southern Cross isolates had identical MIRU-VNTR 24-locus profiles (123326153326-343224123253). Three Otara isolates (NZL01, NZL10, NZL13) shared the ‘primary’ Otara MIRU-VNTR 24-locus profile and the remaining four isolates represented three Otara variants (Appendix C.1). Collection dates of the Southern Cross strain isolates spanned a 13-year period (2002–2015) and Otara strain isolates spanned a seven-year period (2006–2013).

4.2.1.2 Whole genome sequencing

Rangipo isolates provided by the Waikato Hospital were sent to collaborators Greg Cook and Htin Aung at the University of Otago for culture and gDNA extraction as previously described (Aung et al. 2016). gDNA extracted from Otara and Southern Cross isolates was provided by collaborators Sally Roberts and James Bower at LabPLUS for sequencing. gDNA was sequenced at New Zealand Genomics Limited (Otago, New Zealand) using paired-end 250-bp reads on an Illumina MiSeq using the Nextera™ XT DNA Kit (Illumina Inc., Hayward, CA). For all isolates, raw paired-end sequencing data was supplied in fastq format for analysis.

4.2.2 Lineage assignment

Fastq files were analysed in the program KvarQ (Steiner et al. 2014) using the ‘coll14’ test suite to determine MTBC lineage. This test suite contains the full set of MTBC barcode/marker single nucleotide polymorphisms (SNPs) described in Coll et al. (2014). The ‘resistance’ test suite was used to screen isolates for common drug resistance mutations. This test suite contains common drug resistance-associated SNPs and checks short gene regions known to harbour different drug resistance-associated mutations (Steiner et al. 2014).
4.2.3 Global M. tuberculosis L4.4 dataset

4.2.3.1 Additional Rangipo M. tuberculosis genomes

An additional nine Rangipo genomes from a recently published study (Gautam et al. 2017) were kindly provided by Ronan O’Toole and Sanjay Gautam (University of Tasmania, Australia) for inclusion in the analyses. These isolates came from multiple geographical locations and were collected over a two-year period (2010–2011). Eight isolates shared identical Rangipo strain MIRU-VNTR 24-loci profiles (233325153324 341444223362), and the ninth isolate (strain 356) differed at one locus (Gautam et al. 2017). The code ‘NZLR’ was added to the start of the published IDs of each of these isolates.

4.2.3.2 Canadian DS6Québec lineage M. tuberculosis genomes

Unpublished WGS data for 25 Canadian clinical isolates belonging to the DS6Québec lineage were kindly provided by Caitlin Pepperell (University of Madison-Wisconsin, Wisconsin, U.S.A.). These were selected to encompass a broad range of collection dates and molecular typing patterns. Libraries were prepared as previously described (Eldholm et al. 2016) and sequenced on the Illumina MiSeq platform.

4.2.3.3 Publicly available L4.4 genomes

A list of 401 L4.4 genomes in publicly available databases was kindly provided by Sebastien Gagneux and Daniela Brites (Swiss Tropical and Public Health Institute, Basel, Switzerland). This list had been generated by screening over 12,000 genomes using KvarQ (Steiner et al. 2014) and IDs of genomes identified as L4.4 extracted. From the provided list, I excluded genomes that were identified as having low (<10X) or mixed coverage. Metadata for the remaining genomes were obtained from the NCBI Short Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) and the European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena), and relevant publications in which genomes were first described. Genomes were excluded if country data was not available. If multiple genomes were available for an isolate only the first was included. Literature searches together with KvarQ screening of
fastq files was performed to identify additional recent L4.4 isolates not deposited when the original list was compiled.

Publicly available genomes included in the final L4.4 dataset (Section 4.2.3.4) included 188 genomes from 17 countries from recently published studies (Bjorn-Mortensen et al. 2016; Bryant et al. 2013a; Bryant et al. 2013b; Casali et al. 2014; Casali et al. 2012; Clark et al. 2013; Guerra-Assunção et al. 2015; Guerra-Assunção et al. 2014; Holt et al. 2018; Walker et al. 2013a; Zhang et al. 2013) and Broad Institute initiatives (broadinstitute.org) (Appendix C.4). Genomes were downloaded from the NCBI Short Read Archive (Leinonen et al. 2011) using fastq-dump (available in the NCBI SRA Toolkit).

4.2.3.4 Datasets for phylogenetic analyses

Two datasets were used for phylogenetic analyses: a global L4.4 dataset for maximum likelihood phylogenetic analysis (dataset 1, \(n = 236 \)); and a subset comprised of all high quality L4.4.1.1/S isolates with known year of isolation for Bayesian phylogenetic analysis and molecular dating (dataset 2, \(n = 117 \)) (Appendix C.4). Genomes were only included if they met the quality criteria described in Section 4.2.4. Datasets included New Zealand Rangipo and Otara cluster isolates sequenced on the Illumina platform as part of this project (Section 4.2.1), previously published Rangipo isolates (Section 4.2.3.1), Canadian DS\textsubscript{Quebec} lineage isolates (Section 4.2.3.2) and other global L4.4 genomes (Section 4.2.3.2).

4.2.4 Reference guided assembly and variant calling

FASTQ files were processed through the Reference Guided Assembly Pepperell Lab Pipeline (available at https://github.com/pepperell-lab/RGAPepPipe). Raw reads were trimmed using a quality threshold of 15 and reads less than 20 bp long were discarded using TrimGalore!, a wrapper script around Cutadapt (Martin 2011) and FASTQC (Andrews 2010). Trimmed reads were mapped to the \textit{M. tuberculosis} H37Rv reference genome (NC\textunderscore 000962.3) (Cole et al. 1998b) using BWA MEM (Li 2013). Duplicates were removed using Picard tools (http://broadinstitute.github.io/picard) and local realignment around indels was performed using GATK (DePristo et al. 2011). Variants were called with Pilon
(Walker et al. 2014) using a minimum depth threshold of 10, base quality of 20 and mapping quality of 40. VCF files generated by Pilon were converted to FASTA format using Pepperell lab in house scripts that treat ambiguous calls and deletions as missing data (‘?’ and ‘-’).

Bases in or within 10 bp of repetitive regions, including genes annotated as PE/PPE/PGRS, REP13E12, transposable and phage elements were removed from FASTA sequences prior to alignment as these are prone to mapping errors. Geneious R8 (Biomatters, N.Z.) was used to search H37Rv reference annotations (NC_000962.3) to identify repetitive regions and these were curated into a bed file. Repetitive regions were masked in FASTA files using bedtools maskfasta and then removed.

Mapping quality was assessed using Qualimap (Garcia-Alcalde et al. 2012). Genomes were excluded if the depth of coverage was <25X or if <75% of reads mapped to the reference genome. Genomes with missing data at >10% of sites were excluded from further analyses.

4.2.5 Phylogenetic inference

4.2.5.1 Nucleotide Alignments

Variant sites were extracted from concatenated whole genome alignments using SNP-sites (Page et al. 2016). Only genomes with missing data at <10% of sites and sites where at least 90% of isolates had high quality base calls were included in phylogenetic and molecular dating analyses. The alignment-thin tool in the program BALi-Phy (Suchard and Redelings 2006) was used to remove positions from alignments with <90% high confidence base calls.

4.2.5.2 Selection of nucleotide substitution model

jModelTest2 (Darriba et al. 2012; Guindon and Gascuel 2003) was used to perform statistical selection of the best fitting nucleotide substitution model for phylogenetic analyses. SNP alignments were input into jModelTest2 (Darriba et al. 2012) and options were set to include models with different rate categories (x4) and unequal base frequencies. Models with invariant sites were not considered as by default SNP
alignments lack invariant sites. Model selection was based on the Bayesian information criterion.

4.2.5.3 Maximum likelihood phylogenetic analysis

Maximum likelihood phylogenetic trees were inferred from SNP alignments in PhyML (Guindon et al. 2010; Guindon and Gascuel 2003) using x1000 bootstrap replicates and the general time reversible (GTR) substitution model as this was the best fitting model jModelTest2 (Section 4.2.5.2). Trees were visualised in ggplot (Yu et al. 2017) and Figtree (tree.bio.ed.ac.uk/software/figtree/). Mesquite was used to infer SNP distances along branches by parsimony reconstruction of ancestral states using maximum likelihood trees and SNP alignments as input.

4.2.6 Diversity and clustering analyses

The R-package PopGenome (Pfeifer et al. 2014) was used to calculate fixation indices (F_{ST}), and genetic diversity (π, average nucleotide pairwise difference between sequences) from SNP alignments. Pairwise SNP distances were calculated using the poppr::bitwise.dist package in R using the ‘missing_match = T’ option to count sites with missing data as matching (Kamvar et al. 2014). WGS-defined clusters were identified based on SNP-distance using the criteria of Walker et al. (2013a), whereby recent transmission was ruled out if isolates were separated by >12 SNPs.

4.2.7 Rangipo SNPs

High quality SNPs (coverage depth \geq10, base quality \geq20, minimum mapping \geq40, and excluding SNPs in repetitive regions) were extracted from VCF files and the vcf-isec tool in the VCFtools program package (Danecek et al. 2011) was used to identify Rangipo specific SNPs. SNPs shared by all Rangipo genomes were first identified and then compared against all other individual non-Rangipo genomes in the global L4.4 dataset ($n = 220$, Section 4.3.3.1) to identify SNPs unique to the Rangipo cluster. SNPs were annotated with snpEff v4.3 using the M. tuberculosis H37Rv database (Cingolani et al. 2012).
STRING network analysis was performed on proteins harbouring non-synonymous SNPs (nsSNPs) shared by all Rangipo strain isolates and Rangipo specific nsSNPs (RS-nsSNPs). Network analysis and clustering using the Markov Cluster Algorithm was performed using default settings to identify clusters of functionally connected proteins. Clusters containing ≥10 proteins were then analysed independently to identify functional enrichments by gene ontology (GO) biological processes.

4.2.8 Bayesian evolutionary analysis

4.2.8.1 Assessment of temporal signal in data

Prior to BEAST2 analyses, datasets were assessed to determine if there was sufficient temporal signal in the data for accurate molecular dating. Maximum likelihood trees for all L4.4.1.1/S isolates with dates (dataset 2, n = 117) and for the DS6Q clade containing the New Zealand isolates (n = 47) were constructed in PhyML as in Section 4.2.5.3. Tempest (Rambaut et al. 2016) was used to determine the root-to-tip distance for regression analysis against tip date and regression analysis was performed in R. As further assessment of the strength of the temporal signal in the data, date randomisation was performed on the L4.4.1.1/S dataset used for molecular dating. Sampling dates of isolates were randomly shuffled 20 times and the randomised dates were then substituted for the real dates in XML files. Date randomised and original datasets were analysed in BEAST2 as described in Section 4.2.8.2 using a strict clock and constant coalescent demographic model.

4.2.8.2 BEAST analyses

BEAST (Bayesian Evolutionary Analysis by Sampling Trees) is a software package for Bayesian phylogenetic analysis of molecular sequence data (Bouckaert et al. 2014). It is focused towards inferring rooted, time-scaled phylogenies and provides a platform for parameter estimation and hypothesis testing of evolutionary models. Clock calibrations can be incorporated as priors on node-ages or using a tip-dating approach. BEAST uses Markov chain Monte Carlo (MCMC) sampling to estimate the posterior distribution (the probability distribution over parameter state space). Evolutionary parameters are sampled from their target distributions and the output provides an approximation of the posterior distribution from which statistics such
as the median and the 95% highest posterior density (HPD) interval are reported. The \(x\% \) HPD is the smallest interval that encompasses \(x\% \) of the probability distribution and is analogous to confidence intervals reported in classical statistics.

Mutation rates and divergence times were estimated for the L4.4.1.1/S sublineage using MCMC sampling in BEAST2 (v2.4) (Bouckaert et al. 2014) with the BEAGLE library v2.1 (Ayres et al. 2012) to facilitate rapid likelihood calculations. XML input files were generated in BEAUTi using an input alignment of 3161 variant sites from 117 L4.4.1.1/S genomes with known year of isolation (dataset 2). Only nucleotide positions where at least 90% of isolates had high quality data where included in molecular dating analyses (3,949,977 sites total). XML-input files were manually modified to specify the number of invariant sites, as calculated by scaling the number of non-SNP sites by the frequency of each base in the alignment.

BEAST2 analyses were performed using the GTR substitution model with the strict and relaxed (uncorrelated log-normal distribution (UCLD)) clocks, and coalescent constant, exponential, or Bayesian skyline plot (BSP) demographic models. The performance of various clock and demographic models was assessed using path sampling (Section 4.2.8.3). Trees were calibrated using tip dates covering a 27-year period (1987 to 2013). Two monophyletic taxon sets were created to ensure the root was correctly placed as determined from the maximum likelihood tree. Uniform prior distributions were defined for the substitution rate (\(1 \times 10^{-10} - 1 \times 10^{-6} \) s/s/y). A uniform prior distribution was defined for population size in the constant and exponential demographic models (upper bound of \(1 \times 10^{10} \)), and the Jeffrey’s \((1/X)\) prior was unselected for the skyline model. The default Jeffrey’s \((1/X)\) prior was not used for this parameter as it is an improper prior and therefore an unsuitable prior for path sampling as this requires sampling from the prior distribution (Baele et al. 2013). Default priors were used for the remaining parameters.

To estimate posterior distributions for each model, three independent MCMC chains were run for 150–350 million states, sampling every 10,000 states. The first 10% of states were discarded as burn-in and chains were assessed for convergence and sufficient mixing as indicated by effective sample sizes >200 for all parameters. The three chains less burn-in were then combined in LogCombiner and parameter estimation was based on the combined chain. Median parameter estimates are reported unless otherwise specified.
The maximum clade credibility tree was estimated from the combined tree samples in TreeAnnotator using median node heights. Trees were visualised and edited in Figtree (tree.bio.ed.ac.uk/software/figtree/) and ggplot (Yu et al. 2017).

For all models, MCMC sampling was also used to sample from the prior in the absence of data to check there were no unexpected interactions between priors, and that the posterior estimate is not simply an artefact reflecting the prior. The effect of the prior selection on parameter estimation was examined by defining different upper bounds on the uniform distribution for the effective population size (1 x 10^8 and 1 x 10^6) and using the default 1/X prior, in a strict clock and constant demographic model with all other parameter settings kept constant.

4.2.8.3 Model selection

In order to assess the performance of the various clock and demographic models used for molecular dating, marginal likelihood estimation (MLE) was performed using path sampling (Lartillot and Philippe 2006). Path sampling runs were set up and analysed using the BEAST Model Selection package (v1.3.4) and performed in BEAST2 (v2.5). For each model, 100 path steps were specified using the proportions of a β(0.3, 1.0) distribution to space out the steps. The pre-burn-in was specified as 10% of the total number of steps used in the standard MCMC run and for each step the default burn-in of 50% was used. Models were ranked based on average log MLE for two replicate runs. The log Bayes factor were calculated relative to the top ranked model. Log Bayes factors were interpreted according to the guidelines of Kass and Raftery (1995).

4.3 Results

4.3.1 New Zealand M. tuberculosis cluster isolates

4.3.1.1 Illumina whole genome sequencing

Thirteen Rangiipo, seven Otara and five Southern Cross New Zealand clinical M. tuberculosis isolates were sequenced on the Illumina MiSeq platform (Section 4.2.1) and I was provided with raw data in fastq format for analysis as part of this
thesis. The mean raw read depth was 158X (34–258X) and median read length was 250 bp (32–251 bp).

Trimmed reads were mapped to the *M. tuberculosis* H37Rv reference genome as described in Section 4.2.4. The mean depth of coverage across the reference genome was 105X (30–226X) and on average 98.8% of the genome had a depth of coverage of at least 10X (95.0–99.4%) (Table 4.1, Appendix C.2).

Table 4.1. Summary of Illumina WGS data for New Zealand *M. tuberculosis* cluster isolates.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>n</th>
<th>Year</th>
<th>Mean raw read depth</th>
<th>Mean coverage depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rangipo</td>
<td>13</td>
<td>1991–2009</td>
<td>64X (34–107)</td>
<td>50X (30–99)</td>
</tr>
<tr>
<td>Otara</td>
<td>7</td>
<td>2003–2013</td>
<td>172X (77–237)</td>
<td>146X (72–207)</td>
</tr>
</tbody>
</table>

1 Average mapped coverage across the H37Rv reference genome (NC_000962.3).

4.3.1.2 Lineage assignment

Lineage classification was performed using KvarQ (Steiner *et al.* 2014). This classified the Rangipo and Otara clusters as belonging the L4.4.1.1/S sublineage of the L4/Euro-American lineage and Southern Cross as L4.3.3/LAM, consistent with the classification in Section 2.2.3. No drug resistance mutations were identified.

4.3.1.3 Phylogeny, clustering and genetic diversity of the New Zealand isolates

Twenty-four of our New Zealand *M. tuberculosis* genomes and an additional four Rangipo strain *M. tuberculosis* genomes available from a previous study (Gautam *et al.* 2017) met the quality criteria for inclusion in downstream phylogenetic analyses. A maximum likelihood tree of these 28 genomes was inferred using a 1735 bp SNP alignment as described in Section 4.2.5.3 and included an L2/Beijing strain isolate as an outgroup to root the tree (Figure 4.5). This SNP-based phylogeny shows that the Rangipo, Otara and Southern Cross MIRU-VNTR-defined clusters form three well-differentiated monophyletic clades with differing phylogenetic structures. The Rangipo and Otara clusters were separated from one another by 108 SNPs and from the Southern Cross cluster by 554 and 524 SNPs, respectively.
Figure 4.5. Phylogeny of New Zealand M. tuberculosis cluster isolates. Maximum likelihood phylogeny of 28 clinical New Zealand M. tuberculosis genomes belonging to the Rangipo, Otara and Southern Cross clusters. The most recent common ancestor is shown as a black circle (rooted to L2/Beijing, not shown). Bootstrap values are shown for nodes with >50% support.

WGS offers higher resolution to delineate recent transmission events and define clusters of infection compared with MIRU-VNTR (Bryant et al. 2013b; Roetzer et al. 2013; Walker et al. 2013a). A threshold of five or fewer SNPs has been suggested to define strains involved in recent transmission events and more than 12 SNPs to rule out recent transmission (Walker et al. 2013a). Using these thresholds, SNP distances were used to identify WGS-defined clusters within each of the MIRU-VNTR clusters (Figure 4.6). As phylogenies were constructed using only high-quality sites with >90% confident base calls (which could potentially decrease the number of SNPs between isolates leading to an over estimation of clustering), pairwise differences calculated from all SNP positions were also examined (Table 4.3) and all isolates still fell into the same WGS-defined clusters.
Table 4.2. Genetic variation in New Zealand M. tuberculosis cluster isolates.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>n</th>
<th>Total SNPs¹</th>
<th>Pairwise SNPs²</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rangipo</td>
<td>16</td>
<td>729</td>
<td>0–12 (4)</td>
<td>3.3</td>
</tr>
<tr>
<td>Southern Cross</td>
<td>5</td>
<td>812</td>
<td>2–92 (6)</td>
<td>28.2</td>
</tr>
<tr>
<td>Otara</td>
<td>7</td>
<td>886</td>
<td>2–107 (84)</td>
<td>66.3</td>
</tr>
</tbody>
</table>

¹ SNPs relative to H37Rv.
² Median SNP distance is shown in brackets.

Figure 4.6. WGS-based clustering of New Zealand M. tuberculosis isolates. Maximum likelihood SNP phylogenies of MIRU-VNTR defined clusters showing WGS-defined clusters in grey. Individual isolates are indicated by numbers within white circles (prefixes NZL and NZLR removed from IDs) and unsampled internal nodes are shown in dark grey. Smaller black circles indicate nodes separated by more than one SNP, with each circle representing one additional SNP difference. Distances between nodes outside of clusters are shown with dashed lines and numbers represent SNP differences between nodes. Not to scale.

Pairwise distances and nucleotide diversity (π) were calculated as measures of genetic variation within each MIRU-VNTR defined cluster (Table 4.2, Table 4.3). Rangipo isolates harboured the least genetic diversity of the three clusters (π = 3.3) with a maximum of 12 SNPs between any two isolates (0–12 SNPs; median, 4). Accordingly, all Rangipo isolates belong to a single WGS-defined cluster (Figure 4.6) and the phylogeny is characterised by short terminal branches (0–5 SNPs, median 1 SNP), indicative of recent clonal expansion and temporally short transmission chains. A total of 729 SNPs relative to H37Rv were identified in the 16 Rangipo strain genomes. This is comparable to previous reports of 747 and 727 SNPs identified among ten and nine Rangipo strains, respectively (Colangeli et al. 2014; Gautam et al. 2017).
The Otara phylogeny is characterised by long terminal branches (0–37 SNPs; median, 12 SNPs) and Otara isolates harboured the greatest genetic diversity of the three MIRU-VNTR clusters ($\pi = 66.3$) (2–107 pairwise SNPs; median, 94) indicating that this cluster represents an endemic strain in Pacific people. Unlike the Rangipo and Southern Cross isolates which shared identical MIRU-VNTR typing patterns (except for one Rangipo isolate), the Otara isolates represent four variant typing profiles, distinguishable by a single locus difference (Appendix C.1). Two isolates sharing the same variant MIRU-VNTR profile (NZL11 and NZ12) were separated by only two SNPs indicating recent transmission. All remaining pairwise comparisons differed by 28–107 SNPs and the three isolates sharing the ‘primary’ Otara MIRU-VNTR type (NZL01, NZL10 and NZL13) were not monophyletic and differed by 40–103 SNPs. This indicates that the higher levels of SNP diversity observed for this cluster are not simply the result of the inclusion of isolates with more variant MIRU-VNTR profiles.

The five Southern Cross isolates differed by 2–92 SNPs (median, 6 SNPs), although large SNP differences were attributable to just a single isolate, NZL04. The phylogeny shows NZL02, NZL07, NZL08 and NZL09 are closely related differing by only 2–6 SNPs and belong to a WGS-defined cluster, indicating relatively recent transmission. This strain caused a large tuberculosis outbreak in 1999 at an Auckland church attended by Pacific peoples, resulting in 27 cases of active TB and a further 57 cases of latent TB (Hill and Calder 2000). This cluster of isolates likely traces back to that outbreak. NZL04 however was separated by 89–92 SNPs from other Southern Cross isolates and does not belong to a WGS-defined cluster, despite sharing matching MIRU-VNTR profiles with the other Southern Cross isolates. This hints that the Southern Cross cluster might belong to a larger endemic Pacific strain, as for the Otara cluster, however more data is needed to investigate this.
Table 4.3. *Pairwise SNP distances*. Pairwise distance matrixes showing SNP variation between isolates within each of the three New Zealand M. tuberculosis clusters.

Rangipo

<table>
<thead>
<tr>
<th></th>
<th>NZLA</th>
<th>NZLB</th>
<th>NZLC</th>
<th>NZLE</th>
<th>NZLF</th>
<th>NZLH</th>
<th>NZLI</th>
<th>NZLJ</th>
<th>NZLK</th>
<th>NZLL</th>
<th>NZLM</th>
<th>NZLN</th>
<th>NZLR22</th>
<th>NZLR278</th>
<th>NZLR486</th>
<th>NZLR494</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZLA</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NZLB</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NZLC</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NZLE</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NZLF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZLH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZLJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZLK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NZLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>NZLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>NZLN</td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>NZLR22</td>
<td></td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>NZLR278</td>
<td></td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>NZLR486</td>
<td></td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>NZLR494</td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Southern Cross

<table>
<thead>
<tr>
<th></th>
<th>NZL02</th>
<th>NZL04</th>
<th>NZL07</th>
<th>NZL08</th>
<th>NZL09</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZL02</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZL04</td>
<td></td>
<td>5</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZL07</td>
<td>5</td>
<td>89</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZL08</td>
<td>6</td>
<td>90</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NZL09</td>
<td></td>
<td>6</td>
<td>90</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Otara

<table>
<thead>
<tr>
<th></th>
<th>NZL01</th>
<th>NZL03</th>
<th>NZL05</th>
<th>NZL10</th>
<th>NZL11</th>
<th>NZL12</th>
<th>NZL13</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZL01</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZL03</td>
<td></td>
<td>93</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZL05</td>
<td>103</td>
<td>107</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZL10</td>
<td>98</td>
<td>103</td>
<td>98</td>
<td>86</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZL11</td>
<td>96</td>
<td>101</td>
<td>94</td>
<td>96</td>
<td>94</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NZL12</td>
<td></td>
<td>95</td>
<td>99</td>
<td>28</td>
<td>40</td>
<td>88</td>
<td>86</td>
</tr>
<tr>
<td>NZL13</td>
<td></td>
<td></td>
<td>95</td>
<td>99</td>
<td>28</td>
<td>40</td>
<td>88</td>
</tr>
</tbody>
</table>
4.3.1.4 Phylogenetic analysis of additional Rangipo strain genomes

Six of the 22 available Rangipo genomes failed to meet the strict quality criteria for inclusion in downstream phylogenetic analyses. This was predominantly due to low coverage (<25X) and/or a high proportion of missing base calls (>10%). To examine the phylogenetic relationship between these isolates and the included genomes, a phylogenetic analysis using more relaxed quality thresholds was performed. Genomes were re-processed as in Section 4.2.4 with the exception that variants were called using a minimum depth threshold of five instead of ten. One genome still had a high number of missing base calls and was excluded (NZLR547, 31% missing sites). The remaining 21 genomes had <12% of missing sites and were all used for this analysis. Isolate collection dates covered a 21-year period (1991–2011) and came from a range of geographical locations in New Zealand.

The 21 Rangipo genomes were found to differ by 38 SNPs and a total of 742 SNPs relative to H37Rv were identified. Individual isolates were separated by 0–14 SNPs. A maximum likelihood phylogeny was constructed from a 710 bp alignment including H37Rv to root the tree as in Section 4.2.5.3 (Figure 4.7A). An unrooted maximum likelihood phylogeny was also constructed using a 38 bp alignment including all variant bases between the 21 Rangipo genomes (Figure 4.7B). The excluded isolates are dispersed throughout the phylogeny and none are more deeply rooted than those retained, indicating that the retained isolates provide a good representative sample of this cluster.

![Figure 4.7. Phylogeny of 21 M. tuberculosis Rangipo strain genomes. Genomes excluded from downstream phylogenetic analyses are shown in red. (A) Maximum likelihood phylogeny inferred from a 710 bp alignment rooted to H37Rv. (B) Unrooted maximum likelihood phylogeny inferred from a 38 bp alignment including all variant positions between Rangipo genomes. Distances between nodes are in number of SNPs.](image-url)
4.3.2 Rangipo strain SNPs

4.3.2.1 Common Rangipo SNPs

A total of 513 high quality SNPs were identified in all 16 high quality Rangipo genomes (Appendix C.3). 438 of these were found in protein coding regions, 272 of which were nsSNPs (62.1%), including four stop codon gains and one stop codon loss. 254 different genes harboured common Rangipo SNPs that altered protein coding sequence. Functional connections among the affected proteins were investigated using the STRING database (Szklarczyk et al. 2014). STRING identifies known and predicted protein-protein associations including direct (physical) interactions, as well as indirect (functional) interactions. The STRING network identified 424 functional interactions and an average of 3.3 interactions per protein (Table 4.4). No significant GO functional enrichments were detected. Cluster analysis identified 25 clusters of three or more functionally connected proteins three of which comprised ≥10 proteins. The largest was comprised of 13 proteins, including eight polyketide synthases (Figure 4.8). GO functional enrichment analysis showed this cluster was enriched for proteins in lipid biosynthetic process, cellular lipid metabolic process and DIM/DIP cell wall layer assembly pathways (Table 4.5). The GO term “DIM/DIP cell wall layer assembly,” encompasses genes involved in the synthesis and export of surface glycolipid phthiocerol dimycocerosates (PDIM). The third largest cluster was enriched for GO pathways relating to DNA replication and repair and no significant enrichments were identified in the second largest cluster.

<table>
<thead>
<tr>
<th>Number of nodes</th>
<th>All</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges</td>
<td>424</td>
<td>31</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Average node degree</td>
<td>3.3</td>
<td>4.8</td>
<td>4.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Average local clustering coefficient</td>
<td>0.345</td>
<td>0.404</td>
<td>0.721</td>
<td>0.796</td>
</tr>
</tbody>
</table>

Table 4.4. STRING network analysis of proteins harbouring common Rangipo strain nsSNPs. STRING network statistics for 254 proteins containing nsSNPs shared by all Rangipo genomes and for clusters of ≥10 proteins within the full network.

1 Average number of interactions for protein in the network
2 How connected the nodes in the network are, high values = highly connected.
Table 4.5. Functional enrichment analysis for clusters of ≥10 proteins harbouring common Rangipo strain nsSNPs. Enrichment of GO terms in the first and third largest clusters of proteins harbouring nsSNPs common to all Rangipo genomes are shown. The second largest cluster did not have any function enrichments.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Nodes</th>
<th>Pathway description</th>
<th>Genes</th>
<th>False discovery rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>lipid biosynthetic process</td>
<td>6</td>
<td>0.00331</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cellular lipid metabolic process</td>
<td>6</td>
<td>0.00331</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIM/DIP cell wall layer assembly</td>
<td>3</td>
<td>0.0102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNA replication</td>
<td>5</td>
<td>1.3e-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNA ligation involved in DNA repair</td>
<td>2</td>
<td>0.00538</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNA metabolic process</td>
<td>4</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cellular macromolecule biosynthetic process</td>
<td>6</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cellular response to stress</td>
<td>4</td>
<td>0.0144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNA repair</td>
<td>3</td>
<td>0.0366</td>
</tr>
</tbody>
</table>

Figure 4.8. STRING protein-protein associations among the largest cluster of proteins harbouring common Rangipo SNPs. SNPs identified as specific to the Rangipo strain are shown in bold. (A) Network showing all types of interaction evidence among proteins. (B) predicted binding interactions. (C) strength of data supporting interactions, the thicker and darker the line the higher the confidence in the association.
4.3.2.2 Rangipo specific SNPs

The 513 common Rangipo SNPs were compared against 220 non-Rangipo L4.4 sublineage *M. tuberculosis* genomes in the global L4.4 dataset compiled for phylogenetic analyses (Section 4.3.3.1). 53 SNPs were found to be specific to the Rangipo strain (RS-SNPs), 29 of which were nsSNPs (54.7%) (Table 4.6, Appendix C.3). The positions of all 29 RS-nsSNPs and the Rv1821/secA2 diagnostic marker synonymous SNP (sSNP) were examined in the six Rangipo genomes excluded from phylogenetic analyses (Section 4.3.1.4) and all carried the Rangipo variant base. All 14 Rangipo specific nsSNPs and six of eight sSNPs identified based on SOLiD WGS data in Section 2.2.2 were confirmed as RS-SNPs in this analysis; including the Rv2893 G72S SNP further investigated in Chapter Three and the Rv1821/secA2 diagnostic maker SNP (Section 2.2.5).

In silico functional effect prediction was performed for the additional 15 RS-nsSNPs identified in this analysis the using the program SNAP2 (Section 2.1.3.1). Three of these were predicted have functional effects, two of which are found in known virulence factors – Rv0022c/whiB5 and Rv2048c/pks12. Overall, 11 of the 29 RS-nsSNPs (37.9%) were predicted to have functional effects, including four in known virulence factors: Rv0405/pks6 S1236L, Rv1161/narG Y802H, Rv0022c/whiB5 R43H and Rv2048c/pks12 R669P (Table 4.6).

Functional category assignment of genes harbouring the 29 RS-nsSNPs shows genes involved in the lipid metabolism category accounted for 17.2% of RS-nsSNPs (5/29), a nearly 3-fold enrichment relative to the overall proportion in the *M. tuberculosis* genome (6%) (Camus et al. 2002) (Table 4.7). This is similar to the analysis of the 14 RS-nsSNPs in Section 2.2.2.1, in which a 3.6-fold enrichment of genes involved in lipid metabolism was observed (3/14, 21.4% of RS-nsSNPs). STRING network analysis was performed on all 29 proteins carrying RS-nsSNPs. This identified 16 predicted interactions and an average of 1.1 interactions per protein (Figure 4.9). No significant GO functional enrichments were detected. Cluster analysis identified six different clusters, three comprised of three proteins and the remaining three of two proteins. The three proteins in one of these clusters (Pks12, FadD28 and Pks6) were also found in the largest cluster in the full network of 254 proteins (Figure 4.8).
Table 4.6. Rangipo specific nsSNPs identified from Illumina WGS data. Functional effect prediction output from SNAP2 is shown and virulence factors are indicated in bold type.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Locus/ Gene ID</th>
<th>aa change</th>
<th>Product</th>
<th>SNAP2 Effect</th>
<th>SNAP2 Score</th>
<th>Predicted Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv3253CG</td>
<td>Rv0002/dnaN</td>
<td>P401R</td>
<td>DNA polymerase III (beta chain) DnaN</td>
<td>N</td>
<td>-26</td>
<td>61%</td>
</tr>
<tr>
<td>Rv27315CT</td>
<td>Rv0022c/whiB5</td>
<td>R43H</td>
<td>Probable transcriptional regulatory protein WhiB-like WhiB5</td>
<td>Y</td>
<td>59</td>
<td>75%</td>
</tr>
<tr>
<td>Rv45753TC</td>
<td>Rv0041/leuS</td>
<td>V731A</td>
<td>Probable leucyl-tRNA synthetase LeuS</td>
<td>N</td>
<td>-84</td>
<td>93%</td>
</tr>
<tr>
<td>Rv129668GA</td>
<td>Rv0107c/ctlp</td>
<td>P292S</td>
<td>Probable cation-transporter ATPase I Ctlp</td>
<td>N</td>
<td>-61</td>
<td>82%</td>
</tr>
<tr>
<td>Rv489437CT</td>
<td>Rv0405/pks6</td>
<td>S1236L</td>
<td>Membrane bound polyketide synthase</td>
<td>Y</td>
<td>46</td>
<td>71%</td>
</tr>
<tr>
<td>Rv500620GT</td>
<td>Rv0458</td>
<td>D316Y</td>
<td>Probable aldehyde dehydrogenase</td>
<td>Y</td>
<td>14</td>
<td>59%</td>
</tr>
<tr>
<td>Rv616877CT</td>
<td>Rv0526</td>
<td>A11V</td>
<td>Possible thioredoxin protein</td>
<td>N</td>
<td>-18</td>
<td>57%</td>
</tr>
<tr>
<td>Rv103271CT</td>
<td>Rv0926c</td>
<td>A356T</td>
<td>Conserved hypothetical protein</td>
<td>N</td>
<td>-96</td>
<td>97%</td>
</tr>
<tr>
<td>Rv1289731TC</td>
<td>Rv1161/narG</td>
<td>Y802H</td>
<td>Respiratory nitrate reductase (alpha chain) NarG</td>
<td>Y</td>
<td>80</td>
<td>91%</td>
</tr>
<tr>
<td>Rv1836099TG</td>
<td>Rv1631/coaE</td>
<td>Y363D</td>
<td>Probable dephospho-CoA kinase CoaE</td>
<td>Y</td>
<td>87</td>
<td>91%</td>
</tr>
<tr>
<td>Rv230491CG</td>
<td>Rv2048c/pks12</td>
<td>R699P</td>
<td>Polyketide synthase Pks12</td>
<td>Y</td>
<td>24</td>
<td>63%</td>
</tr>
<tr>
<td>Rv2402434GA</td>
<td>Rv2142c/parE2</td>
<td>A26V</td>
<td>Possible toxin ParE2</td>
<td>N</td>
<td>-25</td>
<td>61%</td>
</tr>
<tr>
<td>Rv2807374GC</td>
<td>Rv2492</td>
<td>G33R</td>
<td>Hypothetical protein</td>
<td>Y</td>
<td>79</td>
<td>85%</td>
</tr>
<tr>
<td>Rv3202633GA</td>
<td>Rv2893</td>
<td>G72S</td>
<td>Possible oxidoreductase</td>
<td>Y</td>
<td>28</td>
<td>63%</td>
</tr>
<tr>
<td>Rv3219432CG</td>
<td>Rv2912c</td>
<td>G144R</td>
<td>Probable transcriptional regulatory protein (probably TetR-family)</td>
<td>N</td>
<td>-55</td>
<td>78%</td>
</tr>
<tr>
<td>Rv3203879TC</td>
<td>Rv2941/fadD28</td>
<td>V182A</td>
<td>Fatty-acid-AMP ligase FadD28</td>
<td>N</td>
<td>-77</td>
<td>87%</td>
</tr>
<tr>
<td>Rv3366098GA</td>
<td>Rv3007c</td>
<td>P118L</td>
<td>Possible oxidoreductase</td>
<td>Y</td>
<td>59</td>
<td>75%</td>
</tr>
<tr>
<td>Rv3561770AG</td>
<td>Rv3193c</td>
<td>L468S</td>
<td>Probable conserved transmembrane protein</td>
<td>N</td>
<td>-17</td>
<td>57%</td>
</tr>
<tr>
<td>Rv3654060GA</td>
<td>Rv3272</td>
<td>A205T</td>
<td>Conserved hypothetical protein</td>
<td>Y</td>
<td>68</td>
<td>80%</td>
</tr>
<tr>
<td>Rv3858800GA</td>
<td>Rv3439c</td>
<td>A288V</td>
<td>Conserved hypothetical alanine and proline rich protein</td>
<td>N</td>
<td>-54</td>
<td>76%</td>
</tr>
<tr>
<td>Rv3895925GA</td>
<td>Rv3479</td>
<td>A36T</td>
<td>Possible transmembrane protein</td>
<td>N</td>
<td>-80</td>
<td>87%</td>
</tr>
<tr>
<td>Rv3922515GT</td>
<td>Rv3506/fadD17</td>
<td>A76S</td>
<td>Fatty-acid-CoA synthetase FadD17</td>
<td>N</td>
<td>-52</td>
<td>78%</td>
</tr>
<tr>
<td>Rv3980075CA</td>
<td>Rv3540c/ltp2</td>
<td>E195D</td>
<td>Probable lipid transfer protein or keto acyl-CoA thiolase Ltp2</td>
<td>N</td>
<td>-67</td>
<td>82%</td>
</tr>
<tr>
<td>Rv3985279GC</td>
<td>Rv3545c/cyp125</td>
<td>G56A</td>
<td>Probable cytochrome P450 125 Cyp125</td>
<td>N</td>
<td>-91</td>
<td>97%</td>
</tr>
<tr>
<td>Rv4085870GA</td>
<td>Rv3646c/topA</td>
<td>T463M</td>
<td>DNA topoisomerase I TopA</td>
<td>N</td>
<td>-5</td>
<td>55%</td>
</tr>
<tr>
<td>Rv4150655GA</td>
<td>Rv3707c</td>
<td>A129V</td>
<td>Conserved hypothetical protein</td>
<td>N</td>
<td>-62</td>
<td>82%</td>
</tr>
<tr>
<td>Rv4163025GC</td>
<td>Rv3719</td>
<td>Q240H</td>
<td>Conserved protein</td>
<td>N</td>
<td>-89</td>
<td>93%</td>
</tr>
<tr>
<td>Rv4177114CA</td>
<td>Rv3728</td>
<td>P748T</td>
<td>Probable conserved two-domain membrane protein</td>
<td>N</td>
<td>-46</td>
<td>72%</td>
</tr>
<tr>
<td>Rv4377908CT</td>
<td>Rv3894/c/ccc2</td>
<td>G849S</td>
<td>ESX-2 type VII secretion system protein EccC2</td>
<td>Y</td>
<td>20</td>
<td>63%</td>
</tr>
</tbody>
</table>
Table 4.7. Gene functional categories of Rangipo specific nsSNPs. The percentage of genes in H37Rv as reported in Camus et al. (2002) in each category is also shown.

<table>
<thead>
<tr>
<th>Gene Functional Category</th>
<th>nsSNPs</th>
<th>H37Rv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell wall and cell processes</td>
<td>5 (17.2%)</td>
<td>18%</td>
</tr>
<tr>
<td>Conserved hypotheticals</td>
<td>6 (20.7%)</td>
<td>26%</td>
</tr>
<tr>
<td>Information pathways</td>
<td>3 (10.3%)</td>
<td>6%</td>
</tr>
<tr>
<td>Intermediary metabolism and respiration</td>
<td>7 (24.1%)</td>
<td>22%</td>
</tr>
<tr>
<td>Lipid metabolism</td>
<td>5 (17.2%)</td>
<td>6%</td>
</tr>
<tr>
<td>Regulatory proteins</td>
<td>2 (6.9%)</td>
<td>5%</td>
</tr>
<tr>
<td>Virulence, detoxification, adaptation</td>
<td>1 (3.4%)</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.9. STRING protein-protein associations among proteins harbouring Rangipo specific nsSNPs. Proteins harbouring SNPs with predicted functional effects are shown in bold type and known virulence factors are underlined. Nodes are coloured by clusters as identified by STRING.
4.3.3 Global phylogeny of L4.4

To identify possible historical sources of the Rangipo and Otara clusters, a large genomic dataset comprising the New Zealand L4.4.1.1/S genomes and publicly available L4.4 genomes from around the world was compiled and used to infer a global L4.4 phylogeny. This was also used to determine the phylogenetic placement of the DS6Quebec deletion and provide new insights into the global population structure and phylogeographical distribution of L4.4.

4.3.3.1 L4.4 dataset

The final dataset used to construct the L4.4 global phylogeny was comprised of 236 isolates (Appendix C.4, C.5). This included 23 high quality New Zealand Rangipo and Otara strain genomes (Section 4.3.1.3) and 213 global L4.4 genomes from 19 different countries representing all five global regions (Figure 4.10). Collection dates were available for 72.4% of isolates (171/236) and spanned a 27-year period from 1987 to 2013. L4.4 is reported to occur at high proportions in parts of Africa and Asia (Stucki et al. 2016b). Reflective of this, Africa was the most highly represented region accounting for 41.4% of all isolates (97/236) followed by Asia with 22.9% of isolates coming from this region (54/236). The New Zealand strains accounted for 9.7% of all L4.4 isolates (23/236).

![Figure 4.10. Global distribution of 236 L4.4 sublineage genomes included in this study (dataset 1, n = 236).](image)

Figure 4.10. Global distribution of 236 L4.4 sublineage genomes included in this study (dataset 1, n = 236).
4.3.3.2 Maximum likelihood phylogeny of L4.4

A whole genome maximum likelihood phylogeny was constructed from a 9024 bp SNP alignment of 236 global L4.4 isolates and H37Rv to root the tree (Figure 4.11, Figure 4.12). This phylogeny splits L4.4 into three sublineages, L4.4.1.1/S, L4.4.1.2 and L4.4.2, consistent with the classification system of Coll et al. (2014). Pairwise fixation indices (F_{ST}) were calculated to estimate population separation between sublineages. F_{ST} values provide a measure of the genetic differentiation between populations and range from zero (no separation) to one (complete separation). F_{ST} values between three L4.4 sublineages were between 0.50 and 0.57, indicating that the sublineages are well differentiated.

![Global phylogeny of the L4.4 sublineage. Maximum-likelihood phylogeny of 236 global M. tuberculosis L4.4 sublineage genomes. Tips are coloured by global region and sublineages are labelled according to the nomenclature of Coll et al. (2014). A black circle indicates the node position of the most recent common ancestor of L4.4 (rooted to H37Rv, not shown). The DS6Q clade, the New Zealand Rangipo and Otara clusters, and country of other clades within the DS6Q are labelled.](image-url)
Figure 4.12. Global phylogeny of the L4.4 sublineage and regional distribution of sublineages. Maximum-likelihood phylogeny of 236 global *M. tuberculosis* L4.4 genomes. Lineages are labelled according to the nomenclature of Coll et al. (2014). Tips labels are coloured by global region and pie charts show the regional distribution of isolates within sublineages. A black circle indicates node position of the most recent common ancestor of L4.4 (rooted to H37Rv, not shown). A grey box highlights the DS6Q.
The L4.4 phylogeny revealed differing global distributions and population structures of the three L4.4 sublineages, which presumably reflects different demographic histories of these sublineages. L4.4.2 was essentially restricted to Eastern Asia (45/46 isolates, 97.8%) indicating in-situ expansion of this sublineage. Conversely, L4.4.1.1/S and L4.4.1.2 have broader global distributions and show limited phylogeographical structure, indicative of high rates of migration and efficient dispersal.

The New Zealand isolates accounted for 13.8% of L4.4.1.1/S sublineage genomes (23/168). The Rangipo and Otara clusters form two separate monophyletic clades within L4.4.1.1/S and are part of a larger clade consisting of 47 genomes from New Zealand, Canada and Russia (23, 21 and 3 genomes, respectively). The Canadian isolates belong to the DS6Quebec strain family discussed in Section 2.3.3, we therefore termed this clade the DS6Q clade. The Canadian isolates comprise three separate clades within the DS6Q. The polytomy at the root of the DS6Q clade and the polyphyletic nature of the New Zealand and Canadian isolates implies dispersal of multiple closely related strains from a common origin and is consistent with at least two separate introductions of the DS6Q clade into New Zealand. The DS6Quebec lineage is assumed to have been introduced to Canada from France (Pepperell et al. 2011) suggesting a similar European origin for the Rangipo and Otara clusters. This hypothesis was further explored using molecular dating (Section 4.3.4).

4.3.3.3 DS6Quebec deletion

The DS6Quebec deletion removes an ~11.4 kb region (positions 1987457 to 1998849 in H37Rv), truncating the plcD gene and deleting a further six protein coding genes present in H37Rv (Figure 2.7). The Rangipo and Otara clusters were confirmed to harbour the DS6Quebec deletion by PCR (Section 2.2.4) and we hypothesised that this deletion might be more widely characteristic of the S lineage. All 236 genomes in the L4.4 dataset were examined for the presence of the DS6Quebec deletion. All L4.4.1.1/S and L4.4.1.2 genomes, but no L4.4.2 genomes, were found to harbour this deletion, showing that it is a characteristic deletion of L4.4.1 (Figure 4.13). One L4.4.1.1/S genome had an earlier start of the deletion (position 1987142) indicating a subsequent small deletion event.
4.3.4 Molecular dating

The temporal evolution of the L4.4.1.1/S sublineage was investigated using Bayesian evolutionary analysis in BEAST2. This enables inference of the time this sublineage emerged and allows a reconstruction of its demographic history. Molecular dating estimates for the DS6Q were able to be linked with historical trade and migrations, providing new insight into historical phenomena and social factors that have contributed to the dispersal and successful expansion of the Rangipo and Otara clusters.

4.3.4.1 L4.4.1.1/S dataset

The dataset used for molecular dating contained all L4.4.1.1/S genomes with known isolate collection dates (n = 117) (Appendix C.4, C.5). The range of collection dates was the same as for the full L4.4 dataset spanning a 27-year period from 1987 to 2013. Genomes came from 14 different countries covering all five global regions and contained all 47 genomes identified as belonging to the DS6Q clade (23 from New Zealand, 21 from Canada and 3 from Russia).
4.3.4.2 Assessment of temporal signal for tip-dating

Molecular dating was performed using tip dates to calibrate the molecular clock (Section 4.3.4.3). Prior to molecular dating analysis using tip dating it is necessary to establish whether or not the data contains sufficient temporal signal for tip-based calibration (i.e. to determine if the population is ‘measurably evolving’) (Drummond et al. 2003). If the population is measurably evolving, the root-to-tip distance of isolates in the undated phylogeny should correlate with sampling time as more recently collected samples will have had more time to acquire additional mutations and diverge further from the ancestor at the root. Root-to-tip regression analysis showed a modest temporal signal in the L4.4.1.1/S dataset (adjusted $R^2 = 0.229$) and a weaker signal in the DS6Q isolate subset (adjusted $R^2 = 0.139$) (Figure 4.15A,B), the L4.4.1.1/S dataset was therefore used for further dating analyses. There was no significant difference between the two slopes (t-test, $p = 0.0579$) (this provides an estimate of the evolutionary rate).

Date randomisation was performed as a further test of strength of the temporal signal in the L4.4.1.1/S dataset as this is a more robust method to test for temporal signal (Rieux and Balloux 2016). In this test, sample dates are permuted to create multiple date randomised datasets and parameters are estimated from the true and randomised dates then compared. At least 20 randomisation tests are recommended and under the strictest criterion and rate estimates obtained from the true dates.
should not overlap with the 95% HPD intervals of estimates from the randomised dates (Duchêne et al. 2015). Twenty date randomisations were performed on the L4.4.1.1/S dataset. Estimates of the substitution rate and TMRCA for L4.4.1.1/S showed no overlap in the 95% HPD between the real and randomised dates (Figure 4.15C,D), indicating that the data contains sufficient temporal signal for tip-based calibration.

Figure 4.15. Assessment of temporal signal for tip-dating. (A,B) Root-to-tip regression analysis for (A) the L4.4.1.1/S dataset and (B) the DS6Q sample subset. (C,D) Tip date randomisation results for the L4.4.1.1/S dataset. Median and 95% HPD intervals for estimates of (C) substitution rate and (D) tree height (in years since 2013) after tip randomisation and for real dates (GTR, strict clock, constant population demographic model).
4.3.4.3 Molecular dating in BEAST2

Molecular dating analyses were performed in BEAST2 using a 3163 bp SNP alignment generated from 117 L4.4.1.1/S genomes. Analyses were performed using the GTR model of substitution using strict and relaxed molecular clocks, with coalescent constant, exponential and Bayesian Skyline demographic models. Triplicate MCMC chains were run for each model and showed sufficient mixing and ESS values >200 for all parameters for each chain. The different model combinations all produced very similar substitution rates and TMRCA estimates ($6.15 \times 10^{-8} - 6.64 \times 10^{-8}$ s/s/y); outermost 95% HPD intervals over all models, $4.23 \times 10^{-8} - 9.08 \times 10^{-8}$) (Table 4.8). Model comparison determined the strict clock with the Bayesian skyline demographic model best fit the data (Section 4.2.8.3). Under this model, the substitution rate was estimated as 6.28×10^{-8} s/s/y (95% HPD, $4.54 \times 10^{-8} - 8.10 \times 10^{-8}$) resulting in a TMRCA estimate of 1492 for L4.4.1.1/S (95% HPD, 1325–1629) (Figure 4.16, Figure 4.17). All other parameter estimates reported in the main text are for this model. Trace outputs of key parameters showing convergence of the MCMC chain for replicate runs for this model are shown in Appendix C.6.

Figure 4.16. Bayesian phylogeny of the L4.4.1.1/S sublineage. Maximum clade credibility tree inferred from 117 *M. tuberculosis* L4.4.1.1/S sublineage genomes. A black node marks the most recent common ancestor and the DS6Q is highlighted in grey.
Figure 4.17. Bayesian phylogeny and population dynamics of the L4.4.1.1/S sublineage. (A) Maximum clade credibility tree. Individual node heights are shown in years since 2013 and posterior support for each node is indicated by colour. A grey box highlights the DS6Q. (B) Bayesian skyline plot showing change in effective population size (N_e) over time since 1492. 95% HPD interval shown in grey.
Table 4.8. Substitution rate and TMRCA estimates for the L4.4.1.1/S sublineage. Estimates are reported for different clock and population demographic models. Median values are reported and the 95% HPD interval is shown in brackets. The GTR model of substitution was used for all analyses. Substitution rate is in substitutions per site per year (s/s/y). The best fitting model determined by path sampling is highlighted in bold type.

<table>
<thead>
<tr>
<th>Clock</th>
<th>Demographic model</th>
<th>Substitution rate (s/s/y)</th>
<th>L4.4.1.1/S TMRCA</th>
<th>DS6Q TMRCA</th>
<th>Rangipo TMRCA</th>
<th>Otara TMRCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict</td>
<td>Exponential</td>
<td>6.63 x 10^{-8} (4.37 x 10^{-8}–9.08 x 10^{-8})</td>
<td>1513 (1299–1672)</td>
<td>1672 (1530–1781)</td>
<td>1978 (1965–1986)</td>
<td>1827 (1745–1887)</td>
</tr>
<tr>
<td>UCLD</td>
<td>Constant</td>
<td>6.49 x 10^{-8} (4.23 x 10^{-8}–8.93 x 10^{-8})</td>
<td>1500 (1277–1667)</td>
<td>1665 (1518–1774)</td>
<td>1977 (1964–1986)</td>
<td>1824 (1741–1887)</td>
</tr>
</tbody>
</table>
The population dynamics of the L4.4.1.1/S sublineage and the star-like structure near the root of the phylogeny suggest this sublineage underwent a swift population expansion following its emergence (Figure 4.17B). This was followed by a period where the population size remained consistent until another period of population growth in the 19th century followed by a sharp population decline in the last half of the 20th century.

Our TMRCA estimate of the DS6Q clade was 1652 (95% HPD, 1535–1741) and 1691 for Rangipo and the closest Canadian clade (95% HPD, 1588–1776) (Table 4.8). This coincides with the French migration to Quebec (1608–1760) (Charbonneau et al. 1993) and is therefore consistent with a French/European origin of the DS6Q clade. The TMRCA estimate of the Rangipo cluster was 1980 (95% HPD, 1969–1988), indicating that Rangipo is either a relatively recent clonal expansion from a previously introduced DS6Q strain or a recent introduction.

The Otara cluster has a much older TMRCA estimate of 1813 (95% HPD, 1746–1868). As this cluster is most prevalent in Pacific people in New Zealand, the TMRCA and phylogenetic structure suggests this is an endemic strain in this population. Migration to New Zealand from the Pacific Islands occurred at low levels in the 1800s, such that there were only 151 Pacific Island Polynesians in New Zealand by 1916 (StatsNZ 1916). Migration from the Pacific Islands significantly increased in the 1950s–1970s (Dunsford et al. 2011) and between 1945 and 1976 the Pacific population in New Zealand increased around 30-fold from 2,159 to ~66,000 (StatsNZ 1996) (Figure 4.3). The phylogeny of the Otara cluster can be explained by initial dispersal to the Pacific Islands from Europe in the early 1800s, followed by several later introductions into New Zealand with more recent Pacific migrations. Long internal branches stretching >100 yrs back in time suggest at least four separate introductions of the Otara strain to New Zealand, while more recent nodes could represent transmission occurring either within New Zealand or the Pacific Islands.

4.3.4.4 Model selection

Path sampling in BEAST2 was used to compare the fit of the various clock and demographic models used in the molecular dating analyses. Based on path sampling MLE, the Bayesian skyline demographic model was found to fit the data best with
the strict clock fitting better than the relaxed clock (Table 4.9). Replicate MLEs for both models were highly congruent (Figure 4.18) and the relaxed clock with the skyline demographic model had a log Bayes factor of 3.4 relative to the strict clock, providing positive evidence in favour of the strict clock. The constant and exponential demographic models all had log Bayes factors >30 relative to the skyline model, providing very strong positive evidence against these models. These models all had very similar MLEs and the variability between MLEs for replicate path sampling runs was larger than the difference between models, reducing confidence in the ranking of the bottom four models. This however was not considered of major concern due to the high confidence and strong statistical support for selection of the top model.

Table 4.9. Model evaluation using path sampling. Average marginal likelihood from two replicate runs are reported. Bayes factors are relative to the top ranked model.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Clock model</th>
<th>Demographic model</th>
<th>Log-marginal likelihood</th>
<th>log Bayes factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strict</td>
<td>Skyline</td>
<td>-5342225.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Relaxed</td>
<td>Skyline</td>
<td>-5342228.9</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>Relaxed</td>
<td>Constant</td>
<td>-5342259.6</td>
<td>34.1</td>
</tr>
<tr>
<td>4</td>
<td>Strict</td>
<td>Constant</td>
<td>-5342261.1</td>
<td>35.6</td>
</tr>
<tr>
<td>5</td>
<td>Strict</td>
<td>Exponential</td>
<td>-5342262.4</td>
<td>37.0</td>
</tr>
<tr>
<td>6</td>
<td>Relaxed</td>
<td>Exponential</td>
<td>-5342263.2</td>
<td>37.7</td>
</tr>
</tbody>
</table>

Figure 4.18. Marginal likelihood estimates for replicate path sampling runs in BEAST2.
4.3.4.5 Validity of results

To assess the validity and robustness of the results, date randomisation was performed and effects of prior distributions on parameter estimation were investigated. Date randomisation showed no overlap in the 95% HPD intervals between substitution rate estimates obtained from the true dates compared with those obtained from randomised dates demonstrating the sufficient temporal signal in the data (Section 4.2.8.1). MCMC was used to sample from the prior distribution in the absence of data and comparison of marginal posterior and prior distributions showed a strong signal from the data indicating these results are just not an artefact reflecting the prior. To assure unintentional biases were not being introduced into the results through the selection of priors, BEAST2 analyses were run using different prior distributions on the population size prior. Negligible effects on the substitution rate were observed using either the default Jeffreys (1/X prior) or differing upper bounds on uniform prior distributions (1×10^6–1×10^{10}), demonstrating the robustness of the result to this prior specification.

![Comparison of parameter estimates using differing population size prior specifications.](image)

Figure 4.19. Comparison of parameter estimates using differing population size prior specifications. (GTR, strict clock, constant population demographic model).
4.4 Discussion

4.4.1 The New Zealand *M. tuberculosis* clusters

The three largest *M. tuberculosis* clusters in New Zealand defined by MIRU-VNTR 24-locus typing are known as the Rangipo, Otara and Southern Cross clusters. High quality WGS sequencing data was available for 16 Rangipo, five Southern Cross and seven Otara clinical *M. tuberculosis* isolates. The Rangipo strain dataset provides a good representative sample of this cluster and shows it harbours little genetic diversity. All Rangipo isolates were all found to belong to a single cluster defined both by MIRU-VNTR typing and SNPs, consistent with relatively recent clonal expansion and transmission. SNP analyses revealed that the Otara strain isolates did not belong to a single WGS cluster and indicated recent transmission between only two of the seven sequenced isolates. Although a smaller number of isolates were sequenced from this cluster, it is apparent it harbours much higher levels of genetic diversity than the Rangipo cluster. Unlike the Rangipo and Southern Cross isolates, which had identical MIRU-VNTR profiles (except for one Rangipo isolate that differed at a single locus), the Otara strains sequenced included more variant MIRU-VNTR profiles. The higher level of genetic diversity among Otara strains however is not simply a result of this and these analyses indicate that the Otara cluster represents an endemic strain in Pacific People rather than a recent clonal expansion. Accordingly, molecular dating analysis of the Otara cluster show this strain was first introduced to the Pacific Islands from Europe in the early 1800s and has migrated to New Zealand several times (further discussed in Section 4.4.2.1). These results also demonstrate the limitation of MIRU-VNTR typing to discriminate recent transmission events, consistent with other recent studies (Bryant et al. 2013b; Roetzer et al. 2013; Stucki et al. 2016a; Walker et al. 2013a).

Recent transmission was evident among four of the five Southern Cross isolates and these are presumed to be related to the large outbreak caused by this strain in 1999 (Hill and Calder 2000). A fifth more distantly related Southern Cross isolate hints that this MIRU-VNTR defined cluster might also belong a larger endemic Pacific strain, as for the Otara cluster. However, additional sequencing needs to be undertaken to better characterise the molecular epidemiology of this cluster.
The Rangipo strain is most commonly found in Māori and has been the source of numerous outbreaks over the last thirty years (Calder 2013; Colangeli et al. 2014; De Zoysa et al. 2001; McElnay et al. 2004). The Rangipo strain continues to cause outbreaks, the most recent involving six cases in the Waikato region in 2017/2018 (R. Hoskins, Waikato Hospital, personal communication). Anecdotal evidence suggested that this strain may be highly virulent and contact tracing data from previous Rangipo outbreaks suggest high rates of progression to active disease in Rangipo strain infections (Section 2.2.1).

Illumina sequencing data identified 29 SNPs specific to the Rangipo strain, including an additional 15 SNPs not identified from SOLiD data. The additional SNPs identified likely reflect differences in the sequencing technologies used as well as the bioinformatics processes used to analyse WGS data. Eight of the 29 RS-nsSNPs were found in known virulence associated genes, four of which are predicted to have functional effects on the proteins they encode; Rv0405/pks6 S1236L, Rv1161/narG Y802H, Rv0022c/whiB5 R43H and Rv2048c/pks12 R669P. A cluster of Rangipo SNPs was identified that was enriched for proteins, predominantly polyketide synthases, involved in lipid biosynthesis and metabolism and PDIM cell wall layer assembly. This cluster included two putative functional effect SNPs specific to the Rangipo strain; Rv0405/pks6 S1236L and Rv2048c/pks12 R669P. The *M. tuberculosis* cell wall is rich in unique lipids that are important for pathogenesis, including the glycolipid PDIM which is a major virulence factor in *M. tuberculosis* (Forrellad et al. 2013). Although the function of PDIM is not well understood, it is proposed to have roles in immune evasion and the modulation of host immune responses during the early steps of infection (reviewed in Arbues et al. 2014; Stanley and Cox 2013). Biosynthesis of PDIM and other important mycobacterial cell lipids involve polyketide synthases, therefore genetic variants affecting the function of these enzymes could have important phenotypic effects and consequences for strain virulence.

In addition to potential functional effects, SNPs also provide valuable phylogenetic information that can be used to understand the evolution and dispersal of *M. tuberculosis* strains. The remainder of this work used SNP-based evolutionary analyses to gain new insight into historical and social drivers of success of the Rangipo and Otara clusters.
4.4.2 Origins and dispersal of the DS6Q clade in Polynesia

I sought to investigate the origins and historical dispersal of the New Zealand Rangipo and Otara clusters using a phylodynamics approach and a large dataset of global *M. tuberculosis* genomes. A global phylogeny of the L4.4 sublineage identified that the Rangipo and Otara belong to a L4.4.1.1/S clade – the ‘DS6Q’ clade, that is commonly found in indigenous populations in Canada and New Zealand. Pepperell *et al.* (2011) have shown that this lineage was introduced to Western Canadian indigenous populations via the fur trade and later expanded concomitant with 19th century industrialisation (Pepperell *et al.* 2011). The DS6Quebec lineage accounts for 48% of *M. tuberculosis* isolates in Quebec and is assumed to have been introduced to Canada from France (Pepperell *et al.* 2011), implying a similar European origin for the New Zealand DS6Q clusters. Molecular dating analysis estimated the last common ancestor of the DS6Q clade existed in the mid-17th century which coincides with the French migration to Quebec (1608–1760) (Charbonneau *et al.* 1993), and is thus consistent with a French origin of the clade (Figure 4.20).

Considering the history of early European activity in the South Pacific region and history of European migration to New Zealand, the introduction of DS6Q strains to Polynesia are hypothesised to represent trade-associated introductions resulting from contact with French whalers in the early 19th century (Figure 4.20). During the early 19th century, the only French economic activity of any scale in the South Pacific was the whaling trade (Maclellan 1998), of which the most significant years were 1832–1846 (Fourrier 2005). French whalers had a notable presence in New Zealand and were a significant factor in the British decision to annex New Zealand in 1840. The first French whalers arrived in New Zealand in 1836 and in the years 1840–43 the majority of French whaling voyages included New Zealand (70/81) (Fourrier 2005). French protectorates were also established in the South Pacific starting with Tahiti/French Polynesia in 1842, however there was no large-scale overseas emigration from France to Polynesia.

European whaling in the South Pacific began in the 1790s and was pursued mostly by American, British and French vessels. From 1820–60 the whaling industry was the backbone of Pacific commerce and was dominated by American whalers, although smaller numbers of British and French vessels continued to frequent the
region (Campbell 2011; Fischer 2013). These arrivals were coming from regions where tuberculosis rates were at epidemic proportions; Western Europe tuberculosis mortality rates approached 1000 per 100,000 people per year (Daniel 2006), and the relationships established with local indigenous people during this era provide the necessary social context for transmission of the disease.

As with the Canadian fur trade, the formation of productive social and economic relationships with the local people was essential for the commercial success of the whaling industry (Stevens and Wanhalla 2017). The impacts of the southern New Zealand whaling trade on indigenous populations are described as being very similar to those in the fur trade. For example, intermarriage played a central role in industry establishment and success in both the Canadian fur trade and New Zealand whaling (Stevens and Wanhalla 2017). Polynesians were also frequently recruited onboard European and American whaling vessels accounting for up to one-fifth of
crews, and Māori and Tahitians were particularly popular amongst British and French whalers (Chappell 1997; Fischer 2013). These close interactions both on land and on-board would have established strong social ties conducive for the dispersal of *M. tuberculosis*. Accordingly contact with European trade vessels and ports have been implicated in the introduction of tuberculosis and other infectious diseases to the region (Chappell 1997; Lange 1984). In the Cook Islands for example, the locals themselves readily associated European ships as sources of disease, developing the phrase *kua pai au*, which translates to “I am shippy”, to pinpoint the source of their illness (Lange 1984).

Limited data is available on *M. tuberculosis* diversity elsewhere in Polynesia. Molecular epidemiology studies using MIRU-VNTR and spoligotyping have found the S-type accounts for 11% of isolates on Kiribati (8/73) (Aleksic et al. 2013) and over one-third of *M. tuberculosis* isolates on Tahiti, French Polynesia (10/27) (Osman et al. 2017). Tahiti was an especially important commerce hub provisioning European whaling and trade vessels in the early 19th century and was made a French protectorate in 1842 and a colony in 1880. Although no WGS data was available for inclusion in phylogenetic analyses, we speculate whether the S lineage presence in Tahiti might also represent DS6Q clade strains introduced via the same historical trading activities.

In addition to DS6Q strains in Canada and New Zealand, this clade is also represented by isolates from Russia. Unlike New Zealand and Canada where the DS6Q clade occurs at relatively high frequencies, the L4.4 sublineage is rare in Russia (Casali et al. 2014; Stucki et al. 2016b). Historically, Western Europe and Russia have been culturally and politically more connected and trade dates between them back to ancient times (Öhberg 1955). Thus, DS6Q dispersal to Russia has not been associated with any particular migrations or trade eras.

4.4.2.1 History of the Otara cluster

The early 19th century TMRCA estimate for the Otara cluster is consistent with an introduction to the South Pacific by French/European whalers (Figure 4.20). Although the median of TMRCA estimate slightly predates the peak of French whaling in the region, the 95% HPD falls well within this time period. Unlike New Zealand, which received a massive influx of European settlers from the 1840s, other
Polynesian islands did not experience the same *en masse* arrival of European emigrants, lending further support to this being a trade-associated introduction. The ancestor of the Otara strain was presumably introduced first to the Pacific Islands from Europe, and then later dispersed to New Zealand with more recent Pacific migrations. This highlights the importance of tuberculosis trends in the Pacific islands to those in New Zealand and the need for Pacific-wide TB control efforts.

4.4.2.2 History of the Rangipo cluster

These analyses show that the Rangipo cluster is a clonal expansion that emerged around forty years ago (Figure 4.20). Māori tuberculosis mortality rates declined sharply in the mid-20th century (MacLean 1964) and notification data also show a decline of 83% from 1954 to 1970 (AJHR H-31, 1951-97 in Dunsford 2008) (Figure 4.4). Thus, it is expected modern strain diversity represents just a portion of that circulating prior to the mid-1900s and the observation that one single relatively recent clonal expansion accounts for 25% of tuberculosis in Māori further attests to this bottleneck. Along with falling tuberculosis rates, between 1945–1980 Māori also experienced one of the fastest rates of urbanisation of any population in the world (Pool 1991). This was accompanied by major host environment changes, including overcrowded housing and increased prison incarceration rates, both known tuberculosis risk factors (Baussano *et al.* 2010; Clark *et al.* 2002). The TMRCA of the Rangipo cluster fits with the urbanisation of Māori and the host social changes brought about by this are undoubtedly important factors contributing to the successful expansion and dispersal of this strain.

Prisons represent reservoirs of tuberculosis disease for the general population and prison outbreaks have been linked to increased incidence of the strain in the surrounding community (Jones *et al.* 2003). The Rangipo strain was named for its association with a large outbreak in the 1990s that involved cases who had spent time in the Rangipo prison (De Zoysa *et al.* 2001; McElnay *et al.* 2004). The TMRCA estimate for the Rangipo cluster predates this outbreak, although its introduction into the prison environment has presumably promoted its further spread. Overall, the historic and social factors that have facilitated the success of this strain are themselves products of the colonial history of New Zealand and
therefore Rangipo strain cannot simply be considered a ‘prison strain’, as its name implies.

French whaling in New Zealand presents a possible source for the introduction of DS6Q strains into New Zealand from which the Rangipo strain could have emerged. Alternatively, Rangipo could be a recent introduction into New Zealand coinciding with changes in host ecology facilitating its successful expansion. The TMRCA of Rangipo follows a period of mass migration to New Zealand from the Pacific Islands in the 1950s-1970s offering a conceivable route. Although it is evident that the Rangipo cluster has ultimately emerged from a strain of European origin, more in-depth sampling of L4.4.1.1/S isolates from both New Zealand and the Pacific may provide a clearer picture of the route this strain to New Zealand and will shed additional light into the dispersal of this sublineage in our region.

4.4.3 Tuberculosis stigma

The naming of the New Zealand clusters as ‘Rangipo’ and ‘Otara’ reflect the geographic locations where these strains were first identified. Naming diseases by place of origin can stigmatise the associated population and serves to emphasise the ‘other’ aspect of disease (Perry and Donini-Lenhoff 2010). Tuberculosis stigma adversely affects health-seeking behaviours resulting in delays in diagnosis, influences treatment adherence and complicates contact tracing efforts, and thus has implications for tuberculosis control efforts (Craig et al. 2017). Stigma also increases emotional suffering of patients therefore alleviating the additional burden of stigma is also important for reducing the overall suffering of those affected by tuberculosis.

Both Rangipo and Otara are Māori place names and Otara is home to large population of Pacific People, associating these tuberculosis strains with Māori and Pacific People more generally. Our results show that these strains do not represent Māori or Polynesian *M. tuberculosis* strains, but rather strains that have been introduced and expanded in these populations as a consequence of European contact and colonisation. This highlights the pejorative nature of these names and unfairly scapegoats the affected communities as sources of disease. These findings support the renaming of these clusters to refrain from further perpetuating stigmatisation of
communities where tuberculosis is present and further work will seek to rename these clusters in consultation with local Māori and communities of interest.

4.4.4 The L4.4 sublineage

In addition to defining the historic origins of the New Zealand clusters, these results also provide a characterisation of L4.4 and L4.4.1.1/S sublineage. Recent phylogeographic analyses show the evolutionary history of L4 was characterised by rapid diffusion and high rates of migration, identifying range expansion as a contributor to the growth of this lineage (O’Neill et al. 2017). Consistent with this, our results reveal efficient dispersal of L4.4 suggestive of high rates of migration.

As this thesis was in the final stages of preparation, a new study was published by Brynildsrud et al. (2018) reconstructing the migratory history of the L4 lineage. This study included isolates from 15 countries in Europe, Africa, the Americas, and Southeast Asia, but none from the South Pacific. Global dispersal of L4 was found to be dominated by historical migrations out of Europe and dispersal of L4 to Africa and the Americas occurred concomitant with European colonial migrations (Brynildsrud et al. 2018). We observe the same scenario with the introduction of L4.4 to the South Pacific and the DS6Q clade provides a striking example of the role of European expansion in the global dispersal of M. tuberculosis. Our analyses reveal the migration of several closely related DS6Q strains out of Europe in the 17th–19th centuries to remote and unconnected populations driven by expanding European trade networks and colonial migrations. The nearest branch neighbouring the DS6Q on our phylogeny splits into two nodes comprised of Vietnamese and South African descendants which share a MRCA in the mid-17th century (Figure 4.17). This split coincides with the first planned migration of French Huguenots to South Africa in 1687 (van Ruymbeke et al. 2003) and the onset of French-Vietnamese interactions starting in 1627 (Chapuis 1995). Additionally, the node age of the Vietnamese clade fits with the French Indochina war in the 20th century, suggesting these are also likely French introductions.

The emergence and initial growth of L4.4.1.1/S in the 16th century is coincident with the European age of exploration (Arnold 2013) providing a plausible factor that may have contributed to the growth and dispersal of this sublineage. This era would have provided ample opportunity for dispersal from Europeans to other
populations and geographic range expansion followed by population expansion in the L4 lineage has recently been linked to this era (O’Neill et al. 2017). We also detect L4.4.1.1/S population growth in the 19th century. This could be attributable to various colonial activities around this time involving countries represented in our sample; the French-Canadian fur trade (1730–1870) (Innis 1999), the South Pacific whaling era (1790s–1860) (Campbell 2011), and the rapid occupation and colonisation of much of the African continent during the “Scramble for Africa” (1876–1912) (Pakenham 2015). A later population decline in the late 20th century coincides with the dramatic decline in tuberculosis incidence in the developed world over the last century.

4.4.4.1 L4.4.1.1/S sublineage substitution rate

Molecular dating analysis estimated a substitution rate for the L4.4.1.1/S lineage of 6.3×10^{-8} s/s/y (95% HPD, $4.5 \times 10^{-8} – 8.1 \times 10^{-8}$). This is consistent with rates inferred by previous studies of modern L4 and mixed lineage MTBC genomes (median rates estimates, $7 \times 10^{-8} – 1 \times 10^{-7}$ s/s/y (Eldholm et al. 2015; Eldholm et al. 2016; Ford et al. 2011; Ford et al. 2013; Pepperell et al. 2013; Roetzer et al. 2013; Walker et al. 2013a)); and slightly higher than long term mutation rates of $\sim 5 \times 10^{-8}$ s/s/y estimated from ancient DNA studies (Bos et al. 2014; Kay et al. 2015) (Figure 4.21). Our rate is markedly higher than the long-term substitution rate inferred on the assumption of co-divergence of the MTBC and humans (the ‘out of Africa’ hypothesis; 2.6×10^{-9} s/s/y) (Comas et al. 2013).

Colengali et al (2013) have previously estimated a substitution rate from Rangipo strain isolates using SNP differences between recently transmitted isolate pairs and reactivation cases. A rate of 5.5×10^{-10} substitutions/site/generation was estimated for recently transmitted tuberculosis (assuming a 20 hr generation time) and 7.3×10^{-11} substitutions/site/generation for latent tuberculosis. This translates to a mean rate of $\sim 1.4 \times 10^{-7}$ s/s/y (my own calculation), which is slightly higher than our estimate for the L4.4.1.1/S lineage, but is still within range of other L4 rate estimates. This estimate however is limited, as the time from infection to active disease can vary markedly between cases, therefore the mean of the recent and latent rates does not necessarily provide a good comparison with ours or other substitution rates.
Figure 4.21. Comparison of substitution rate estimated in this study with previously published studies. Estimates of long-term substitution rate estimates are shown in the grey box. Short-term rate estimates from human *M. tuberculosis* isolates were calibrated using tip-dating (this study (L.4.1.1/S), Eldholm *et al.* 2015; Eldholm *et al.* 2016; Ford *et al.* 2013; Roetzer *et al.* 2013), experimental infection of macaques (Ford *et al.* 2011), recent transmission events (Walker *et al.* 2013a), and historic events (Pepperell 2013). Long-term rate estimates were calibrated using aDNA (Bos *et al.* 2014; Kay *et al.* 2015) or human divergence events (Comas *et al.* 2013).

While ours and other short-term substitution rate estimates for the reported MTBC are all highly similar, the long-term substitution rate and age of the MTBC remains debated and studies using different approaches have produced markedly different rate and date estimates. The out of Africa hypothesis postulates *M. tuberculosis* diversity and dispersal was shaped by human migrations out of Africa and suggest the last common ancestor of the MTBC existed around seventy thousand years ago (Comas *et al.* 2013). In contrast, two separate studies using ancient DNA from different time periods both produced 10-fold slower substitution rate estimates suggesting the last common ancestor of the MTBC existed less than six thousand years ago (Bos *et al.* 2014; Kay *et al.* 2015). Archaeological samples also indicate that tuberculosis is a much more ancient disease (Hershkovitz *et al.* 2008; Rothschild *et al.* 2001), although a more recent MRCA could be reconciled with a scenario of whole scale clonal replacement of ancient strains.
4.4.5 Study Limitations

One limitation of this study is that the global isolates in our dataset were primarily compiled from isolates available in public repositories and not all countries where the L4.4 lineage is present are represented. The addition of further isolates from under-represented regions and within the Pacific would further strengthen the sample and provide a more detailed picture of L4.4 and DS6Q dispersal. Genomes were annotated with country of isolation, as recorded in databases and published sources. Isolates from countries where many cases occur in migrants could potentially reflect reactivation of infection contracted in the country of birth. However, this was kept in mind throughout the analyses and is not a concern for the clades/countries on which the conclusions of this work have been based.

4.4.6 Conclusions

Using a large, global WGS dataset and a phylodynamics approach I have investigated the origins and historical dispersal of the Rangipo and Otara clusters. Historical and social factors facilitating the expansion and dispersal of these strains have been identified, showing that they are a product of the colonial history of New Zealand and the South Pacific and highlight the importance of Pacific-wide tuberculosis control efforts. These results also demonstrate the power of phylodynamics approaches to study *M. tuberculosis* dispersal at both the global and local scale and provide valuable new insights into human social phenomena underlying the global dispersal of this globally successful bacterial pathogen.
Chapter Five

Conclusions and future directions

The overall aim of this research was to understand factors contributing to the success of prevalent *Mycobacterium tuberculosis* clusters in New Zealand, in particular the Rangipo cluster. Ultimately, this information could be used to better control the circulation of these strains. The Rangipo cluster has been circulating in New Zealand for around 30 years and continues to cause outbreaks, predominantly in the Māori population. This prompts the question – why is this strain so successful and seemingly highly transmissible in this population? And how can it be stopped? My research investigated evolutionary and functional aspects of genomic variation in the Rangipo cluster to address this question.

This thesis identifies bacterial genetic variants that may contribute to the high transmissibility of the Rangipo strain and points to an important role for historical factors and host ecology changes in driving the success of this strain. The prevalence of this cluster is not solely due to this being a ‘hypervirulent strain’ but rather, likely the result of intersecting bacterial and host determinants, underpinned by the colonial history of New Zealand. Furthermore, this work demonstrates the use of whole genome sequencing (WGS) data in a multi-disciplinary approach to investigate different factors contributing to the success of prevalent *M. tuberculosis* strains, as well the practical applications of single nucleotide polymorphisms (SNPs) in a clinical setting. The SNP-based Rangipo strain specific diagnostic assay developed here enables accurate strain classification directly from sputum samples within 24 hours for minimal cost and with high discriminatory power. Being a SNP-based approach, typing for this Rangipo strain marker could be readily automated and incorporated into routine clinical practice. The rapid identification of this strain will enable clinicians and public health authorities to implement appropriate strategies to halt its further transmission.
Elucidating the functional consequences of genetic variation in the *M. tuberculosis* complex is important to understand how strain genetic background affects virulence and the outcome of infection. Several SNPs with putative functional effects specific to the Rangipo strain have been identified, providing several potential candidates for further investigation. An enrichment of non-synonymous SNPs in genes involved in lipid metabolism were identified. Lipid metabolism plays an important role in *M. tuberculosis* pathogenicity and presents a possible avenue for further investigation into molecular determinants of Rangipo virulence. However, in order to properly understand of the role of genetic background to the high transmissibility of the Rangipo strain, experimental virulence testing needs to be performed to validate its putative high virulence and to correlate genetic variants with phenotypic effects.

The structures of the luciferase-like hydride transferase family protein Rv2893 experimentally validate this as an F_{420}-binding protein and identify additional intramolecular hydrogen bonds introduced by the Rangipo G72S mutation. The additional thermal stability produced by this mutation and its location at the base of the bulge induced by the conserved non-prolyl cis-peptide may influence F_{420} binding and catalysis. The consequences of this mutation on enzyme activity and bacterial phenotype remain to be determined and will largely be dependent on the role of Rv2893 in *M. tuberculosis*. Further investigation is needed to elucidate the function of Rv2893 and for development of biochemical assays to determine the effect of the G72S mutation on catalysis. As a starting point, identifying the unexpected ligand found in Rv2893 structures will provide clues as to the function of this protein. Other approaches such as gene deletion of the Rv2893 homologue in *Mycobacterium smegmatis* and metabolomic profiling, will provide possible routes to further probe the function of this protein. Binding assays also need to be undertaken to determine the kinetics of F_{420} binding and how the G72S mutation affects this.

The New Zealand Rangipo and Otara strains are predominantly found in Māori and Pacific People, respectively. My research shows these are unequivocally of European origin and are linked to European trade expansion and colonisation. These clusters have differing demographic histories and highlight the relevance to New Zealand of tuberculosis in the Pacific islands. Understanding Pacific wide
transmission dynamics will be vital for the improvement of strategies seeking to reduce the tuberculosis burden in the region.

WGS is now sufficiently fast and affordable that it is possible to sequence large collections of *M. tuberculosis* isolates. Further sequencing of clinical isolates will provide a wealth of additional information about tuberculosis transmission in New Zealand. Clinical isolate collections held at Waikato Hospital and LabPLUS will be valuable resources for such further work. Sequencing these collections would provide the opportunity to perform a detailed characterisation of strain diversity and transmission of tuberculosis in New Zealand at high resolution. Understanding local tuberculosis trends and transmission dynamics has important implications for public health and is essential for improvement of strategies seeking to arrest the transmission of local strains. Additional L4.4.1.1/S sublineage genomes will also further enhance our understanding of how this sublineage dispersed and expanded in New Zealand and the South Pacific.

Importantly, this work demonstrates that these strains are products of the colonial history of New Zealand, highlighting the inappropriate and pejorative naming of these strains with Māori names. Addressing the transmission of these and other tuberculosis strains in New Zealand, requires a multi-disciplinary approach and necessitates consultation with affected communities. Further work will seek to rename these strains in consultation with Māori and other groups of interest. This will be important for community engagement and a step towards addressing the stigma that can hamper tuberculosis control efforts and exacerbates the suffering of those affected by the disease.
References

References

site of enzymes within the nonprolyl cis-peptide containing bacterial luciferase family. *Protein Sci.* 14:1840.

175

References

References

179

References

Appendices

Appendix A: Appendices relating to Chapter Two

Appendix A.1. MIRU-VNTR typing patterns of New Zealand M. tuberculosis cluster isolates provided by LabPLUS.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>MIRU ID</th>
<th>MIRU-12</th>
<th>MIRU-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rangipo</td>
<td>NZ_040</td>
<td>233325153324</td>
<td>341344223362</td>
</tr>
<tr>
<td></td>
<td>NZ_040_001</td>
<td>233325153324</td>
<td>341444223352</td>
</tr>
<tr>
<td></td>
<td>NZ_040_002</td>
<td>233325153324</td>
<td>341434223362</td>
</tr>
<tr>
<td></td>
<td>NZ_040_003</td>
<td>233325153324</td>
<td>341544223362</td>
</tr>
<tr>
<td>Southern Cross</td>
<td>NZ_061_001</td>
<td>123326153326</td>
<td>343224123253</td>
</tr>
<tr>
<td></td>
<td>NZ_061_002</td>
<td>123326153326</td>
<td>342224123253</td>
</tr>
<tr>
<td></td>
<td>NZ_061_005</td>
<td>123326153326</td>
<td>342125123253</td>
</tr>
<tr>
<td>Otara</td>
<td>NZ_062_001</td>
<td>233325143322</td>
<td>341544223392</td>
</tr>
<tr>
<td></td>
<td>NZ_062_002</td>
<td>233325143322</td>
<td>341544223392</td>
</tr>
<tr>
<td></td>
<td>NZ_062_004</td>
<td>233325143322</td>
<td>2415442233C2</td>
</tr>
<tr>
<td>NZ_037</td>
<td>NZ_037</td>
<td>124326153224</td>
<td>323124123262</td>
</tr>
<tr>
<td>NZ_041</td>
<td>NZ_041_001</td>
<td>223125153324</td>
<td>242334223552</td>
</tr>
<tr>
<td></td>
<td>NZ_041_002</td>
<td>223125153324</td>
<td>222334223552</td>
</tr>
<tr>
<td>NZ_069</td>
<td>NZ_069</td>
<td>223326153321</td>
<td>242234223552</td>
</tr>
<tr>
<td></td>
<td>NZ_069_006</td>
<td>223326153321</td>
<td>242334223552</td>
</tr>
<tr>
<td>NZ_094</td>
<td>NZ_094_001</td>
<td>233325143325</td>
<td>3415442213B2</td>
</tr>
</tbody>
</table>

Appendix A.2. Rangipo SNPs identified from SOLiD whole genome sequencing data. Spreadsheets detailing these are provided in a separate file (Appendix_A2_Rangipo-SOLiD-SNPs.xlsx)

Common Rangipo SNPs: Classification of SNPs common to the Rangipo strain identified by Colangeli et al. (2014) \(n = 247\)

Rangipo Specific SNPs: SNPs classified as specific to the Rangipo strain \(n = 22\) and Rangipo and SUMu/Canadian DS6Quebec shared SNPs \(n = 4\)

<table>
<thead>
<tr>
<th>SNP</th>
<th>Locus</th>
<th>Primer name</th>
<th>Primer sequence (5’ to 3’)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv3253CG</td>
<td>Rv0002</td>
<td>Rv0002(P401R) fwd</td>
<td>GATTGCGTTAAACCAACCTACTCT</td>
<td>297</td>
</tr>
<tr>
<td>Rv550620GT</td>
<td>Rv0458</td>
<td>Rv0458(D316Y) fwd</td>
<td>ACGACGACTTCTGCGCAAA</td>
<td>227</td>
</tr>
<tr>
<td>Rv1289731TC</td>
<td>Rv1161</td>
<td>Rv1161(Y022H) rev</td>
<td>GCAATCCAGAGGGAAGCTC</td>
<td>249</td>
</tr>
<tr>
<td>Rv1836099TG</td>
<td>Rv1631</td>
<td>Rv1631(Y363D) rev</td>
<td>ATCAGGAAACACGGCTC</td>
<td>253</td>
</tr>
<tr>
<td>Rv2807374GC</td>
<td>Rv2492</td>
<td>Rv2492(G33R) fwd</td>
<td>GATAATTCTGACCCGAGACT</td>
<td>295</td>
</tr>
<tr>
<td>Rv3202633GA</td>
<td>Rv2893</td>
<td>Rv2893(G72S) rev</td>
<td>ATCCCATAGCGTTGACCAG</td>
<td>387</td>
</tr>
<tr>
<td>Rv3283879TC</td>
<td>Rv2941</td>
<td>Rv2941(V182A) rev</td>
<td>CATGCCTGGTAGAAGGTT</td>
<td>246</td>
</tr>
<tr>
<td>Rv3366098GA</td>
<td>Rv3007c</td>
<td>Rv3007c(P118L) rev</td>
<td>AGGCCATAATACCCGAGA</td>
<td>290</td>
</tr>
<tr>
<td>Rv3561770AG</td>
<td>Rv3193c</td>
<td>Rv3193c(L468S) rev</td>
<td>GGACGACGTTAGAGCCACCACC</td>
<td>293</td>
</tr>
<tr>
<td>Rv3895925GA</td>
<td>Rv3479</td>
<td>Rv3479(A36T) rev</td>
<td>CGGTGGTACCCGAGGAT</td>
<td>288</td>
</tr>
<tr>
<td>Rv3980075CA</td>
<td>Rv3540c</td>
<td>Rv3540c(E196D) rev</td>
<td>GCCTCGTGCGCAAGCTC</td>
<td>296</td>
</tr>
<tr>
<td>Rv4085870GA</td>
<td>Rv3646c</td>
<td>Rv3646c(T463M) rev</td>
<td>CCAATTGATGGATTTCCGCC</td>
<td>274</td>
</tr>
<tr>
<td>Rv4377908CT</td>
<td>Rv3894c</td>
<td>Rv3894c(G849S) rev</td>
<td>CCACAGAATTTCTGTTAG</td>
<td>291</td>
</tr>
</tbody>
</table>
Appendix B: Appendices relating to Chapter Three

Appendix B.1. Bacterial strains, vectors and media used in this study.

<table>
<thead>
<tr>
<th>Bacterial Strain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli TOP10 (electrocompetent)</td>
<td>F-mcrA Δ(mrr-hsdRMS-mcrBC) Φ80 diacZ ΔM15 Δ lacX74 deoR recA1 araD139 Δ(ara leu)7697 galU galK rpsL endA1 nupG</td>
</tr>
<tr>
<td>M. smegmatis mc²4517</td>
<td>M. smegmatis expression strain with T7 RNA polymerase; Km⁺ (Wang et al. 2010)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pYUB28b</td>
<td>E. coli mycobacterium shuttle vector. 4921 bp, T7 promoter, MCS pET28b, C- and N-terminal His-tags, N-terminal thrombin cleavage site, Hyg’ (Bashiri et al. 2010)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solid media</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB agar</td>
<td>1% (w/v) bactotryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 15 g/L agar</td>
</tr>
<tr>
<td>Low salt LB agar</td>
<td>1% (w/v) bactotryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) NaCl, 15 g/L agar</td>
</tr>
<tr>
<td>7H10/ADC/T80 agar</td>
<td>1.9 g 7H10 powder, 0.5% (v/v) glycerol in 90 ml H₂O, autoclaved then 10 ml ADC enrichment and 0.05% (v/v) Tween 80 added at 50 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liquid media</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB broth</td>
<td>1% (w/v) bactotryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, autoclaved and then added 20 mM glucose before use.</td>
</tr>
<tr>
<td>Low salt LB broth</td>
<td>1% (w/v) bactotryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) NaCl, 0.05% (w/v) glucose, 0.2% (w/v) α-lactose, 1X metals mix¹</td>
</tr>
<tr>
<td>7H9/ADC/T80 broth</td>
<td>0.47 g 7H9 powder, 0.2% (v/v) glycerol in 90 ml H₂O, autoclaved then 10 ml ADC enrichment medium and 0.05% (v/v) Tween-80 added at 50 °C</td>
</tr>
<tr>
<td>SOC recovery media</td>
<td>2% (w/v) bactotryptone, 0.55%(w/v) yeast extract, 10 mM NaCl, 50 mM Na₂HPO₄, 50 mM KH₂PO₄, 25 mM (NH₄)₂SO₄, 1 mM MgSO₄, 0.5% (w/v) glucose, 0.1X metals mix¹ each of 17 amino acids (no Cys, Tyr or Met). Individual components autoclaved or sterile filtered before adding to sterile H₂O</td>
</tr>
<tr>
<td>PA-0.5G defined media</td>
<td>50 mM Na₂HPO₄, 50 mM KH₂PO₄, 25 mM (NH₄)₂SO₄, 1 mM MgSO₄, 0.5% (w/v) glycerol, 0.05% (w/v) glucose, 0.2% (w/v) α-lactose, 1X metals mix¹</td>
</tr>
<tr>
<td>ZYP-5052 auto-induction media</td>
<td>1% (w/v) bactotryptone, 0.5% (w/v) yeast extract autoclaved and then added sterile 50 mM Na₂HPO₄, 50 mM KH₂PO₄, 25 mM (NH₄)₂SO₄, 1 mM MgSO₄, 0.5% (w/v) glycerol, 0.05% (w/v) glucose, 0.2% (w/v) α-lactose, 1X metals mix¹</td>
</tr>
</tbody>
</table>

¹ 1000X Metals mix made up from the sterile stock solutions of separate components to give the following concentrations: 50 μM FeCl₃ in 0.12 M HCl (filter sterile), 20 μM CaCl₂, 10 μM MnCl₂, 10 μM ZnSO₄, 2 μM CoCl₂, 2 μM CuCl₂, 2 μM NiCl₂, 2 μM Na₂MoO₄, 2 μM Na₂SeO₃, 2 μM H₃BO₃.
Appendix B.2. Cloning primers. Primers used to clone Rv2893 into pYUB28b and T7 primers used for screening and sequence confirmation of the insert.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5' to 3')</th>
<th>RE site</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv2893 cloning_fwd</td>
<td>GGAATTCCATATGACCGTTGCCAGCACCGCTCA</td>
<td>NdeI</td>
<td>996</td>
</tr>
<tr>
<td>Rv2893 cloning_rev</td>
<td>CGGGATCCCTAGCCGTAGCGCAGGCTGTCGAGGCCGCCGGGTTCGACGTGCTGGCC</td>
<td>BamHI</td>
<td></td>
</tr>
<tr>
<td>T7_fwd (promoter)</td>
<td>TAATACGACTACTATAGGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7_rev (terminator)</td>
<td>GCTAGTATTGTCACGGGG</td>
<td></td>
<td>1260/317</td>
</tr>
</tbody>
</table>

1260 bp if the correct insert is ligated, 317 bp for empty vector

Appendix B.3. Gene and protein information. The position of the Rangipo G72S mutation is in bold and highlighted by a grey box.

Rv2893^{H327Rv} (978 bp)

ATGACCGTGCCAGCACCCTACCATACACGTGCTACGGTTGGCGGCACCGCTTGGCGCGCGGGCACCACTGGCAACCCGCTGGCAACCGGATC
AGGCCAGCGTTGGCGCAACCCGCTGGCAACCGGATC

Rv2893^{H327Rv} (325 aa)

MW 34617.24 Da, pI 6.22

MTVASTAAHTRRLRFGLAAPLPRAGTQMRAFAQAVEAGFDVLAPFDLHLPSVSAPFAATAAAMATQLRLHTGTVLNNDFRHVDTAREAAGAVTAELAEGRFELGLAGHRSYEYDAAGITFDSGATTVRALIESAHLRLLDVFDVFQYRHVEAGSLAVPKVRPVELLQGNTVILLELRIGLAVLAGI

Rv2893^{H327Rv} pYUB28b N-terminal His-tag (345 aa)

MW 36780.57 Da, pl 6.57

MGSSHHHSDSGLVPRSGSHMTVAHHAHTRLRRLRFGLAAPLPRAGTQMRAFAQAVEAGFDVLALF

DHLPSVSAPFAATAAAMATQLRLHTGTVLNNDFRHVDTAREAAGAVTAELAEGRFELGLAGHRSYEYDAAGITFDSGATTVRALIESAHLRLLDVFDVFQYRHVEAGSLAVPKVRPVELLQGNTVILLELRIGLAVLAGI

SHNRDATQVRFPFIADDGLDRIAVVRHAADRFEAIELNALIQAVVCTNDNNAAEAELALTGGITPEQVLESFPLLGLQTHEMELAAARQRFRGVSYWTVFDEWAGRASAMRDIAEVIALLRYG

TPEQVLESFPLLGLQTHEMELAAARQRFRGVSYWTVFDEWAGRASAMRDIAEVIALLRYG
Appendices

Rv2893

ATGACCGTGGCCAGCACCCCTCACCATAACGTGCCTACGTTGGTCGGCGCACCCCGTTCGACGTGCTGGCC

Rv2893 G72S (978 bp)

AGGTCCGAATACGACGCCCGCACCTGGTGCCTTCGGTTTCGCCGTTCGCAGGCGCGACCGCCGCGGCGATGGCCACGCAACGACTGCACACC

Rv2893 G72S

MTVASTAHHTRRLRFGLAAPLPRAGTQMRAFAQAVEAAGFDVLAFPDLHVLPSVSPFAGATAAAAMAT

Rv2893

MTVASTAHHTRLRFGLAAPLPRAGTQMRAFAQAVEAAGFDVLAFPDLHVLPSVSPFAGATAAAAMAT

Rv2893 G72S (325 aa)

MW 34647.27 Da, pI 6.22

Rv2893 G72S

MW 36810.59 Da, pI 6.57

Appendix B.4. Rv2893 protein structures. MTZ and PDB files are provided separately in folder **Appendix_B3_structures.** Note that in PDB files numbering starts at the methionine before the His-tag and therefore add 20 amino acids on to the position, e.g. G72 is G92.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Files (.mtz and .pdb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv2893<sup>H37Rv</sup></td>
<td>Rv2893_solution</td>
</tr>
<tr>
<td>apo-Rv2893<sup>H37Rv</sup></td>
<td>apo-Rv2893H37Rv</td>
</tr>
<tr>
<td>apo-Rv2893<sup>G72S</sup></td>
<td>apo-Rv2893G72S</td>
</tr>
<tr>
<td>F<sub>420</sub>-Rv2893<sup>H37Rv</sup></td>
<td>F420-Rv2893H37Rv</td>
</tr>
<tr>
<td>F<sub>420</sub>-Rv2893<sup>G72S</sup></td>
<td>F420-Rv2893G72S</td>
</tr>
</tbody>
</table>
Appendix B.5. Ramachandran analysis for Rv2893 structures.

apo-Rv2893H37Rv

- Number of residues in favoured region (~98.0% expected) : 2376 (97.9%)
- Number of residues in allowed region (~2.0% expected) : 51 (2.1%)
- Number of residues in outlier region : 0 (0.0%)

apo-Rv2893G72S

- Number of residues in favoured region (~98.0% expected) : 2371 (98.1%)
- Number of residues in allowed region (~2.0% expected) : 45 (1.9%)
- Number of residues in outlier region : 0 (0.0%)

F\textsubscript{420}-Rv2893H37Rv

- Number of residues in favoured region (~98.0% expected) : 1218 (97.8%)
- Number of residues in allowed region (~2.0% expected) : 27 (2.2%)
- Number of residues in outlier region : 0 (0.0%)

F\textsubscript{420}-Rv2893G72S

- Number of residues in favoured region (~98.0% expected) : 1221 (98.2%)
- Number of residues in allowed region (~2.0% expected) : 23 (1.8%)
- Number of residues in outlier region : 0 (0.0%)
Appendix B.6. Root mean square differences (RMSD) in the α atomic positions between protein chains for Rv2893 structures.

Chains with F_{420} bound are shaded grey.

<table>
<thead>
<tr>
<th></th>
<th>apo-Rv2893H37Rv</th>
<th>apo-Rv2893G72S</th>
<th>F_{420}-Rv2893H37Rv</th>
<th>F_{420}-Rv2893G72S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B C D E F G H</td>
<td>A B C D E F G H</td>
<td>A B C D</td>
<td>A B C D</td>
</tr>
<tr>
<td>apo-Rv2893H37Rv</td>
<td>0.30 0.16 0.45 0.48 1.20 0.56 0.73</td>
<td>0.17 0.29 0.23 0.43 0.50 0.70 0.46 1.15</td>
<td>0.30 0.17 0.99 1.53 1.53</td>
<td>0.31 0.35 0.96 1.53 1.53</td>
</tr>
<tr>
<td></td>
<td>A B C D E F G H</td>
<td>A B C D E F G H</td>
<td>A B C D</td>
<td>A B C D</td>
</tr>
<tr>
<td></td>
<td>0.34 0.11 0.32 0.40 0.35 0.33</td>
<td>0.30 0.15 0.34 0.12 0.34 0.33 0.42 0.42</td>
<td>0.40 0.37 0.49 0.51 0.51</td>
<td>0.40 0.36 0.43 0.51 0.51</td>
</tr>
<tr>
<td></td>
<td>0.50 0.46 1.20 0.54 0.73</td>
<td>0.24 0.34 0.18 0.48 0.48 0.70 0.44 1.15</td>
<td>0.31 1.40 0.97 1.52 1.52</td>
<td>0.31 1.37 0.95 1.52 1.52</td>
</tr>
<tr>
<td></td>
<td>0.42 0.43 0.36 0.34</td>
<td>0.47 0.18 0.50 0.12 0.36 0.35 0.42 0.45</td>
<td>0.54 0.39 0.51 0.56 0.56</td>
<td>0.55 0.39 0.46 0.56 0.56</td>
</tr>
<tr>
<td></td>
<td>0.61 0.24 0.51 1.22 0.45 0.49 0.28 0.62 0.15</td>
<td>0.49 0.53 0.65 0.42 0.42</td>
<td>0.48 0.51 0.64 0.39 0.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.45 0.26</td>
<td>1.12 1.05 0.26 0.84</td>
<td>1.20 1.03 0.27 0.84</td>
<td>1.20 1.03 0.27 0.84</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>0.80 0.38 0.56 0.35 0.15 0.36 0.32 0.48</td>
<td>0.57 0.50 0.51 0.43 0.43</td>
<td>0.56 0.48 0.51 0.39 0.39</td>
</tr>
<tr>
<td></td>
<td>0.75 0.37 0.73 0.38 0.40 0.11 0.53 0.30</td>
<td>0.78 0.66 0.35 0.61 0.61</td>
<td>0.77 0.63 0.30 0.60 0.60</td>
<td></td>
</tr>
<tr>
<td>apo-Rv2893G72S</td>
<td>0.27 0.19 0.43 0.52 0.71 0.46 1.16</td>
<td>0.33 0.17 0.97 1.53 1.53</td>
<td>0.34 0.35 0.97 1.53 1.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.32 0.18 0.35 0.36 0.35 0.44</td>
<td>0.38 0.32 0.53 0.52 0.52</td>
<td>0.38 0.32 0.46 0.52 0.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.47 0.48 0.69 0.43 0.11</td>
<td>0.33 1.38 0.97 1.51 1.51</td>
<td>0.34 1.35 0.95 1.50 1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34 0.38 0.38 0.47</td>
<td>0.51 0.38 0.54 0.55 0.55</td>
<td>0.52 0.39 0.48 0.55 0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.39 0.27 0.49</td>
<td>0.54 0.48 0.55 0.41 0.41</td>
<td>0.52 0.45 0.54 0.36 0.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51 0.29</td>
<td>0.78 0.73 0.35 0.60 0.60</td>
<td>0.76 0.63 0.32 0.58 0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>0.45 0.50 0.67 0.41 0.41</td>
<td>0.43 0.49 0.66 0.40 0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.17 1.05 0.22 0.78</td>
<td>1.15 0.98 0.29 0.78</td>
<td>1.15 0.98 0.29 0.78 0.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.31 1.03 1.47 1.47</td>
<td>0.18 1.30 1.01 1.47 1.47</td>
<td>0.18 1.30 1.01 1.47 1.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.96 0.76</td>
<td>1.14 0.17 0.98 0.73 0.73</td>
<td>1.04 0.94 0.23 0.75 0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.74</td>
<td>1.27 0.73 0.77 0.24 0.24</td>
<td>1.27 0.73 0.77 0.24 0.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.12 1.01 1.25 1.25</td>
<td>0.89 0.69 1.25 1.25 1.25</td>
<td>0.89 0.69 1.25 1.25 1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.75</td>
<td>0.75 0.75 0.75</td>
<td>0.75 0.75 0.75 0.75 0.75</td>
</tr>
</tbody>
</table>
Appendix B.7. Unmodeled regions in Rv2893 structures.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Chain</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>apo-Rv2893H37Rv</td>
<td>B</td>
<td>GLY 197</td>
<td>PHE 212</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>ARG 250</td>
<td>SER 272</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>TRP 305</td>
<td>ARG 308</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>ILE 198</td>
<td>PHE 212</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>TRP 305</td>
<td>ARG 308</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>ILE 198</td>
<td>PHE 209</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>TRP 305</td>
<td>GLY 307</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>HIS 200</td>
<td>VAL 207</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>ILE 198</td>
<td>THR 210</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>ILE 198</td>
<td>PHE 209</td>
</tr>
<tr>
<td>apo-Rv2893G72S</td>
<td>B</td>
<td>ALA 196</td>
<td>PHE 212</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>ASN 251</td>
<td>SER 272</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>GLU 304</td>
<td>ARG 308</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>GLY 197</td>
<td>HIS 211</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>TRP 305</td>
<td>ARG 308</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>ILE 198</td>
<td>THR 210</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>TRP 305</td>
<td>GLY 307</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>ILE 198</td>
<td>PHE 209</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>TRP 305</td>
<td>GLY 307</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>ILE 198</td>
<td>THR 210</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>ALA 258</td>
<td>ILE 264</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>TRP 305</td>
<td>GLY 307</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>SER 199</td>
<td>VAL 207</td>
</tr>
<tr>
<td>F\textsubscript{420}-Rv2893H37Rv</td>
<td>A</td>
<td>TRP 305</td>
<td>GLY 307</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>TRP 305</td>
<td>GLY 307</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>SER 199</td>
<td>ARG 208</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>TRP 305</td>
<td>GLY 307</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>THR 260</td>
<td>GLY 263</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>TRP 305</td>
<td>ARG 308</td>
</tr>
<tr>
<td>F\textsubscript{420}-Rv2893G72S</td>
<td>A</td>
<td>ALA 204</td>
<td>GLN 206</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>TRP 305</td>
<td>ARG 308</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>TRP 305</td>
<td>ARG 308</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>SER 199</td>
<td>ARG 208</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>TRP 305</td>
<td>GLY 307</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>TRP 305</td>
<td>ARG 308</td>
</tr>
</tbody>
</table>
Appendix C: Appendices relating to Chapter Four

Appendix C.1. New Zealand M. tuberculosis isolates sequenced on the Illumina MiSeq platform (n = 25).

Rangipo cluster isolates (n = 13)

<table>
<thead>
<tr>
<th>ID</th>
<th>Year</th>
<th>MIRU ID</th>
<th>MIRU-12</th>
<th>MIRU-24</th>
<th>IS6110-RFLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZLA</td>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZLB</td>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZLC</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZLE</td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZLF</td>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td>13/008RP</td>
</tr>
<tr>
<td>NZLG</td>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td>13/008RP</td>
</tr>
<tr>
<td>NZLH</td>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td>13/008</td>
</tr>
<tr>
<td>NZLI</td>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZLJ</td>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td>13/008RP</td>
</tr>
<tr>
<td>NZLK (O)</td>
<td>2008</td>
<td>NZL_040_001</td>
<td>233325153324</td>
<td>341444223362</td>
<td>13/008RP</td>
</tr>
<tr>
<td>NZLL (F)</td>
<td>1996</td>
<td>NZL_040_001</td>
<td>233325153324</td>
<td>341444223362</td>
<td></td>
</tr>
<tr>
<td>NZLM (R)</td>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td>13/008RP</td>
</tr>
<tr>
<td>NZLN (A)</td>
<td>1991</td>
<td>NZL_040_001</td>
<td>233325153324</td>
<td>341444223362</td>
<td></td>
</tr>
</tbody>
</table>

1 The ID isolates were sequenced under on the ABI SOLID platform (Colangeli et al. 2014) are shown in brackets.

Otara cluster isolates (n = 7)

<table>
<thead>
<tr>
<th>ID</th>
<th>Year</th>
<th>MIRU ID</th>
<th>MIRU-12</th>
<th>MIRU-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZL01</td>
<td>2008</td>
<td>NZL_062-001</td>
<td>233325143322</td>
<td>341544223392</td>
</tr>
<tr>
<td>NZL03</td>
<td>2011</td>
<td>NZL_062-004</td>
<td>233325143322</td>
<td>2415442233C2</td>
</tr>
<tr>
<td>NZL05</td>
<td>2008</td>
<td>NZL_062-002</td>
<td>233325143322</td>
<td>341534223392</td>
</tr>
<tr>
<td>NZL10</td>
<td>2013</td>
<td>NZL_062-001</td>
<td>233325143322</td>
<td>341544223392</td>
</tr>
<tr>
<td>NZL11</td>
<td>2003</td>
<td>NZL_127-001</td>
<td>233325141322</td>
<td>341544223392</td>
</tr>
<tr>
<td>NZL12</td>
<td>2013</td>
<td>NZL_127-001</td>
<td>233325141322</td>
<td>341544223392</td>
</tr>
<tr>
<td>NZL13</td>
<td>2006</td>
<td>NZL_062-001</td>
<td>233325143322</td>
<td>341544223392</td>
</tr>
</tbody>
</table>

Southern Cross cluster isolates (n = 5)

<table>
<thead>
<tr>
<th>ID</th>
<th>Year</th>
<th>MIRU ID</th>
<th>MIRU-12</th>
<th>MIRU-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZL02</td>
<td>2010</td>
<td>NZL_061-001</td>
<td>123326153326</td>
<td>343224123253</td>
</tr>
<tr>
<td>NZL04</td>
<td>2007</td>
<td>NZL_061-001</td>
<td>123326153326</td>
<td>343224123253</td>
</tr>
<tr>
<td>NZL07</td>
<td>2015</td>
<td>NZL_061-001</td>
<td>123326153326</td>
<td>343224123253</td>
</tr>
<tr>
<td>NZL08</td>
<td>2002</td>
<td>NZL_061-001</td>
<td>123326153326</td>
<td>343224123253</td>
</tr>
<tr>
<td>NZL09</td>
<td>2002</td>
<td>NZL_061-001</td>
<td>123326153326</td>
<td>343224123253</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isolate ID</th>
<th>Total read count</th>
<th>Mean read length</th>
<th>Median read length</th>
<th>Raw read depth</th>
<th>Mean Coverage¹</th>
<th>Mean MQ</th>
<th>% Reads Mapped</th>
<th>%10X²</th>
<th>%20X²</th>
<th>%30X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZLA</td>
<td>1781828</td>
<td>214.6</td>
<td>250</td>
<td>86.7</td>
<td>66.9</td>
<td>58.1</td>
<td>88.9</td>
<td>99.2</td>
<td>98.3</td>
<td>93.4</td>
</tr>
<tr>
<td>NZLB</td>
<td>1181092</td>
<td>213.1</td>
<td>250</td>
<td>57.1</td>
<td>43.8</td>
<td>57.9</td>
<td>87.5</td>
<td>98.7</td>
<td>90.1</td>
<td>66.2</td>
</tr>
<tr>
<td>NZLC</td>
<td>1211718</td>
<td>229.6</td>
<td>250</td>
<td>63.1</td>
<td>49.4</td>
<td>58.2</td>
<td>90.2</td>
<td>98.9</td>
<td>94.2</td>
<td>77.0</td>
</tr>
<tr>
<td>NZLE</td>
<td>1270322</td>
<td>224.6</td>
<td>250</td>
<td>64.7</td>
<td>49.8</td>
<td>58.0</td>
<td>88.3</td>
<td>99.0</td>
<td>94.5</td>
<td>77.2</td>
</tr>
<tr>
<td>NZLF</td>
<td>902728</td>
<td>224.7</td>
<td>250</td>
<td>46.0</td>
<td>35.8</td>
<td>57.9</td>
<td>88.1</td>
<td>98.2</td>
<td>84.1</td>
<td>51.3</td>
</tr>
<tr>
<td>NZLG</td>
<td>779518</td>
<td>193.3</td>
<td>222</td>
<td>34.2</td>
<td>30.4</td>
<td>57.7</td>
<td>96.8</td>
<td>95.0</td>
<td>68.3</td>
<td>35.8</td>
</tr>
<tr>
<td>NZLH</td>
<td>1497248</td>
<td>225.9</td>
<td>250</td>
<td>76.7</td>
<td>57.6</td>
<td>58.1</td>
<td>88.3</td>
<td>99.1</td>
<td>97.8</td>
<td>89.9</td>
</tr>
<tr>
<td>NZLI</td>
<td>1341768</td>
<td>198.1</td>
<td>249</td>
<td>60.3</td>
<td>46.2</td>
<td>57.8</td>
<td>89.6</td>
<td>98.2</td>
<td>89.8</td>
<td>68.6</td>
</tr>
<tr>
<td>NZLJ</td>
<td>1465386</td>
<td>226.7</td>
<td>250</td>
<td>75.3</td>
<td>50.3</td>
<td>58.0</td>
<td>82.5</td>
<td>98.9</td>
<td>94.2</td>
<td>76.6</td>
</tr>
<tr>
<td>NZLK</td>
<td>2472612</td>
<td>190.2</td>
<td>214</td>
<td>106.6</td>
<td>99.3</td>
<td>58.2</td>
<td>98.7</td>
<td>99.0</td>
<td>98.3</td>
<td>97.4</td>
</tr>
<tr>
<td>NZLL</td>
<td>1280644</td>
<td>221.5</td>
<td>250</td>
<td>64.3</td>
<td>47.1</td>
<td>57.9</td>
<td>85.3</td>
<td>98.8</td>
<td>91.0</td>
<td>69.8</td>
</tr>
<tr>
<td>NZLM</td>
<td>1161542</td>
<td>219.5</td>
<td>250</td>
<td>57.8</td>
<td>42.8</td>
<td>58.1</td>
<td>87.2</td>
<td>98.7</td>
<td>90.5</td>
<td>65.4</td>
</tr>
<tr>
<td>NZLN</td>
<td>913298</td>
<td>206.6</td>
<td>241</td>
<td>42.8</td>
<td>34.0</td>
<td>58.1</td>
<td>88.5</td>
<td>97.8</td>
<td>81.6</td>
<td>48.7</td>
</tr>
<tr>
<td>NZLO1</td>
<td>4018730</td>
<td>203.5</td>
<td>248</td>
<td>185.3</td>
<td>147.9</td>
<td>58.9</td>
<td>83.8</td>
<td>99.3</td>
<td>99.0</td>
<td>98.7</td>
</tr>
<tr>
<td>NZLO3</td>
<td>4915778</td>
<td>212.7</td>
<td>250</td>
<td>237.0</td>
<td>206.9</td>
<td>58.8</td>
<td>94.0</td>
<td>99.3</td>
<td>99.1</td>
<td>98.8</td>
</tr>
<tr>
<td>NZLO5</td>
<td>4978762</td>
<td>195.7</td>
<td>233</td>
<td>220.8</td>
<td>173.5</td>
<td>58.9</td>
<td>80.9</td>
<td>99.2</td>
<td>99.0</td>
<td>98.7</td>
</tr>
<tr>
<td>NZLO10</td>
<td>3783886</td>
<td>209.3</td>
<td>249</td>
<td>179.5</td>
<td>152.6</td>
<td>58.7</td>
<td>91.6</td>
<td>99.3</td>
<td>99.0</td>
<td>98.7</td>
</tr>
<tr>
<td>NZLO11</td>
<td>4382194</td>
<td>212.3</td>
<td>250</td>
<td>210.9</td>
<td>185.8</td>
<td>58.8</td>
<td>93.2</td>
<td>99.4</td>
<td>99.2</td>
<td>99.0</td>
</tr>
<tr>
<td>NZLO12</td>
<td>1703674</td>
<td>199.5</td>
<td>232</td>
<td>77.0</td>
<td>71.8</td>
<td>58.7</td>
<td>97.4</td>
<td>98.7</td>
<td>97.7</td>
<td>96.1</td>
</tr>
<tr>
<td>NZLO13</td>
<td>1929004</td>
<td>206.6</td>
<td>250</td>
<td>90.3</td>
<td>85.4</td>
<td>58.9</td>
<td>98.9</td>
<td>97.9</td>
<td>96.9</td>
<td>96.9</td>
</tr>
<tr>
<td>NZLO2</td>
<td>5147200</td>
<td>218.5</td>
<td>250</td>
<td>254.9</td>
<td>226.0</td>
<td>59.1</td>
<td>95.9</td>
<td>99.2</td>
<td>98.9</td>
<td>98.6</td>
</tr>
<tr>
<td>NZLO4</td>
<td>5178286</td>
<td>190.4</td>
<td>214</td>
<td>223.5</td>
<td>182.0</td>
<td>58.9</td>
<td>84.8</td>
<td>99.2</td>
<td>99.0</td>
<td>98.7</td>
</tr>
<tr>
<td>NZLO7</td>
<td>5542744</td>
<td>205.1</td>
<td>249</td>
<td>257.7</td>
<td>204.2</td>
<td>59.1</td>
<td>83.7</td>
<td>99.1</td>
<td>98.9</td>
<td>98.6</td>
</tr>
<tr>
<td>NZLO8</td>
<td>4652740</td>
<td>195.2</td>
<td>231</td>
<td>205.8</td>
<td>168.4</td>
<td>59.0</td>
<td>84.6</td>
<td>99.3</td>
<td>99.1</td>
<td>98.8</td>
</tr>
<tr>
<td>NZLO9</td>
<td>5069446</td>
<td>198.0</td>
<td>241</td>
<td>227.6</td>
<td>170.8</td>
<td>59.0</td>
<td>78.3</td>
<td>99.2</td>
<td>98.9</td>
<td>98.6</td>
</tr>
</tbody>
</table>

¹ Average mapped coverage across the H37Rv reference genome (NC_000962.3).
² Fraction of the reference sequenced with at least a given coverage rate.
Appendices

Appendix C.3. Rangipo SNPs identified by analysis of Illumina whole genome sequencing data. Spreadsheets detailing these are provided in a separate file (Appendix C3_Rangipo-Illumina-SNPs.xlsx).

Common Rangipo SNPs: SNPs shared by all Rangipo isolates (n = 513)
Rangipo Specific SNPs: Rangipo specific SNPs identified from Illumina WGS data by comparison with 220 global L4.4 M. tuberculosis genomes (n = 53)

Appendix C.4. Isolates used in phylogenetic analyses. Spreadsheets detailing these are provided in a separate file (Appendix C4_L44-dataset.xlsx).

Dataset 1: Complete L4.4 sublineage global dataset (n = 236)
Dataset 2: L4.4.1.1/S sublineage molecular dating dataset (n = 117)
Appendices

Appendix C.5. Frequency of M. tuberculosis L4.4 sublineage genomes included in phylogenetic analyses by country.

Dataset 1. Complete L4.4 sublineage global dataset

<table>
<thead>
<tr>
<th>Country</th>
<th>L4.4.1.1</th>
<th>L4.4.1.2</th>
<th>L4.4.2</th>
<th>All L4.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>21</td>
<td>12.6%</td>
<td>4</td>
<td>17.4%</td>
</tr>
<tr>
<td>China</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Colombia</td>
<td>1</td>
<td>0.6%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Greenland</td>
<td>18</td>
<td>10.8%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>India</td>
<td>1</td>
<td>0.6%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Kenya</td>
<td>2</td>
<td>1.2%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Malawi</td>
<td>22</td>
<td>13.1%</td>
<td>7</td>
<td>31.8%</td>
</tr>
<tr>
<td>Malaysia</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1</td>
<td>0.6%</td>
<td>4</td>
<td>17.4%</td>
</tr>
<tr>
<td>New Zealand</td>
<td>23</td>
<td>13.8%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Romania</td>
<td>1</td>
<td>0.6%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Russia</td>
<td>4</td>
<td>2.4%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>South Africa</td>
<td>59</td>
<td>35.3%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>South Korea</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>1.2%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Thailand</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Uganda</td>
<td>7</td>
<td>4.2%</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2</td>
<td>1.2%</td>
<td>3</td>
<td>13.0%</td>
</tr>
<tr>
<td>Vietnam</td>
<td>4</td>
<td>2.4%</td>
<td>4</td>
<td>17.4%</td>
</tr>
<tr>
<td>Total</td>
<td>168</td>
<td>100%</td>
<td>22</td>
<td>100%</td>
</tr>
</tbody>
</table>

Dataset 2. L4.4.1.1/S sublineage molecular dating dataset

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>21</td>
</tr>
<tr>
<td>Colombia</td>
<td>1</td>
</tr>
<tr>
<td>India</td>
<td>1</td>
</tr>
<tr>
<td>Kenya</td>
<td>2</td>
</tr>
<tr>
<td>Malawi</td>
<td>22</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1</td>
</tr>
<tr>
<td>New Zealand</td>
<td>23</td>
</tr>
<tr>
<td>Romania</td>
<td>1</td>
</tr>
<tr>
<td>Russia</td>
<td>4</td>
</tr>
<tr>
<td>South Africa</td>
<td>31</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
</tr>
<tr>
<td>Uganda</td>
<td>2</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2</td>
</tr>
<tr>
<td>Vietnam</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>117</td>
</tr>
</tbody>
</table>

198
Appendices

Appendix C.6. Assessment of MCMC chain convergence. Trace outputs are shown for key parameters from three independent chains for the best fitting model as determined by path sampling (GTR, strict clock, Bayesian skyline demographic). (A) Posterior probability. (B) substitution rate in substitutions/site/year (s/s/y). (C) tree height (years since 2013); and (D-F) time to most recent common ancestor (TMRCA) for the DS6Q clade, and Rangipo and Otara clusters.
Appendix C.7. Bayesian MCC tree of 117 M. tuberculosis L4.4.1.1/S genomes showing individual node ages. Median node ages in years since 2013 are shown. A grey box highlights the DS6Q.
Appendix C.8. Bayesian MCC tree of 117 M. tuberculosis L4.4.1.1/S genomes showing posterior probabilities of individual nodes. A grey box highlights the DS6Q.