
Counterexample Computation in

Compositional Nonblocking Verification

Robi Malik ∗ Simon Ware ∗∗

∗ Department of Computer Science, University of Waikato, Hamilton,
New Zealand (e-mail: robi@waikato.ac.nz)

∗∗ School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore (e-mail: sware@ntu.edu.sg)

Abstract: This paper describes algorithms to compute a counterexample when compositional
nonblocking verification determines that a discrete event system is blocking. Counterexamples
are an important feature of model checking that explains the cause of a detected problem, greatly
helping users to understand and fix faults. In compositional verification, counterexamples are
difficult to compute due to the large state space and the loss of information after abstraction.
The paper explains the difficulties and proposes a solution, and experimental results show that
counterexamples can be computed successfully for several industrial-scale systems.

Keywords: Verification, validation, test; Supervisory control theory; Tools.

1. INTRODUCTION

The nonblocking property is a weak liveness property com-
monly used in supervisory control theory of discrete event
systems to express the absence of livelocks and deadlocks
(Ramadge and Wonham, 1989). This is a crucial property
of safety-critical control systems, and with the increasing
size and complexity of these systems, there is an increasing
need to verify them automatically. The standard method
to check the nonblocking property involves the explicit
composition of all components involved, and is limited
by the well-known state-space explosion problem. Symbolic
model checking can be used to reduce the memory require-
ments by representing the state space symbolically rather
than enumerating it explicitly (Baier and Katoen, 2008).

Compositional verification (Graf and Steffen, 1990) is an
effective alternative that can be used independently of
or in combination with symbolic methods. Compositional
verification works by abstracting or simplifying individual
components of a large system, gradually reducing the state
space and allowing larger systems to be verified in the end.
When applied to the nonblocking property, compositional
verification requires specific abstraction methods (Flordal
and Malik, 2009), and a suitable theory is that of conflict
equivalence (Malik et al., 2006). Various abstraction rules
preserving conflict equivalence have been proposed (Pena
et al., 2009; Su et al., 2010; Ware and Malik, 2012; Lindsey,
2012; Pilbrow and Malik, 2015).

If a system fails the nonblocking check, it is important
to present a counterexample that shows the cause of the
problem and helps to find a fix. The counterexample is
a sequence of events that takes the system to livelock or
deadlock situation, and it is routinely computed by stan-
dard model checking algorithms (Malik, 2016). However,
if verification is done compositionally, the counterexample
at first only applies to the simplified system, and needs to
be converted back to the original system. This problem is
addressed by Ware and Malik (2008) for safety properties,

but only partly by Lindsey (2012) for the nonblocking
property. This paper gives a more complete account of
the issues and solutions regarding counterexample compu-
tation in compositional nonblocking verification.

In the following, Section 2 reviews the background of finite-
state machines, the nonblocking property, and composi-
tional verification. Then Section 3 describes the process
of counterexample computation for two common classes of
abstraction rules, and Section 4 shows some experimental
results. Lastly, Section 5 adds concluding remarks.

2. PRELIMINARIES

2.1 Languages and Finite-State Machines

Event sequences and languages are a simple means to
describe discrete system behaviours. Their basic building
blocks are events, which are taken from a finite alphabet Σ.
The silent event τ /∈ Σ labels transitions that are only
taken by the component under consideration.

Σ∗ denotes the set of all finite traces of the form σ1σ2 · · ·σn

of events from Σ, including the empty trace ε. The con-
catenation of two traces s, t ∈ Σ∗ is written as st. A subset
L ⊆ Σ∗ is called a language. The standard projection
P : (Σ ∪ {τ})∗ → Σ∗ is the operation that deletes all
silent (τ) events from traces.

Definition 1. A (nondeterministic) finite-state machine
(FSM) is a tuple G = 〈Σ, Q,→, Q◦, Qω〉 where Σ is a set
of events, Q is a finite set of states, → ⊆ Q×(Σ∪{τ})×Q
is the transition relation, Q◦ ⊆ Q is the set of initial states,
and Qω ⊆ Q is the set of accepting states.

The transition relation is written in infix notation x
σ
→ y

and extended to traces s ∈ (Σ ∪ {τ})∗ in the standard

way. For state sets X,Y ⊆ Q, the notation X
s
→ Y means

x
s
→ y for some x ∈ X and y ∈ Y . For states or state

sets x and y, the notation x → y means x
s
→ y for some

s ∈ (Σ ∪ {τ})∗, and x
s
→ means x

s
→ z for some z ∈ Q.

Events not in the event set of an FSM are always enabled
without state change, so the transition relation is further

extended by x
σ
→ x for all x ∈ Q and σ /∈ Σ ∪ {τ}.

To support silent events, another transition relation ⇒ ⊆
Q × Σ∗ × Q is introduced, where x

s
⇒ y denotes the

existence of a trace t ∈ (Σ ∪ {τ})∗ such that P (t) = s

and x
t
→ y. That is, x

s
→ y denotes a path with exactly

the events in s, while x
s
⇒ y denotes a path with an

arbitrary number of τ events shuffled with the events of s.

Notations such asX
s
⇒ Y and x

s
⇒ are defined analogously

to →. The accepting language of a state or state set x is

Lω(x) = { s ∈ Σ∗ | x
s
⇒ Qω }. For an FSM G, the notation

G
s
⇒ x means Q◦ s

⇒ x.

FSMs are synchronised in lock-step (Hoare, 1985). The
synchronous composition of two FSMs G = 〈ΣG, QG,→G,
Q◦

G, Q
ω
G〉 and H = 〈ΣH , QH ,→H , Q◦

H , Qω
H〉 is

G ‖H = 〈ΣG ∪ ΣH , QG ×QH ,→, Q◦
G ×Q◦

H , Qω
G ×Qω

H〉

where

(xG, xH)
σ
→ (yG, yH) if σ 6= τ, xG

σ
→G yG, xH

σ
→H yH ;

(xG, xH)
τ
→ (yG, xH) if xG

τ
→G yG ;

(xG, xH)
τ
→ (xG, yH) if xH

τ
→H yH .

2.2 The Nonblocking Property

The key liveness property in supervisory control theory is
the nonblocking property (Ramadge and Wonham, 1989).
An FSM is nonblocking if, from every reachable state, an
accepting state can be reached.

Definition 2. (Malik et al., 2006) An FSM G = 〈Σ, Q,→,
Q◦, Qω〉 is nonblocking if, for every state x ∈ Q and every

trace s ∈ Σ∗ such that Q◦ s
⇒ x, there exists a trace t ∈ Σ∗

such that x
t
⇒ Qω; otherwise G is blocking.

If a system is found to be blocking by automatic verifica-
tion, it is desirable to present an explanation of the fault
to the designers. In model checking, this explanation is
provided in the form of a counterexample.

Definition 3. Let G = 〈Σ, Q,→, Q◦, Qω〉 be an FSM. A
counterexample to the nonblocking property of G is a path

x0
σ1→ x1

σ2→ · · ·
σn→ xn (1)

such that x0 ∈ Q◦, and Lω(xn) = ∅.

A counterexample highlights the cause of blocking by
showing a path that leads to a faulty (blocking) state. It
is an alternating sequence of states and events, starting
from the initial state and following transitions of the
FSM. Its end state xn has an empty accepting language,

Lω(xn) = ∅, or equivalently xn
t
⇒ Qω does not hold for

any t ∈ Σ∗. Such a state is called a blocking state. Clearly,
a counterexample to the nonblocking property exists if and
only if G is blocking.

2.3 Compositional Verification

To reason about the nonblocking property in a compo-
sitional way, the notion of conflict equivalence is used
(Malik et al., 2006). According to process-algebraic testing
theory, two FSMs are considered as equivalent if they both
respond in the same way to tests (De Nicola and Hennessy,

1984). For conflict equivalence, a test is an arbitrary FSM,
and the response is the observation whether the test com-
posed with the FSM in question is nonblocking or not.

Definition 4. (Malik et al., 2006) Let G and H be two
FSMs. G is less conflicting than H, written G .conf H, if
for any FSM T such that G‖T is nonblocking, it also holds
that H ‖T is nonblocking. G and H are conflict equivalent,
G ≃conf H, if G .conf H and H .conf G.

When verifying whether a composed system of FSMs

G1 ‖G2 ‖ · · · ‖Gn , (2)

is nonblocking, compositional methods (Graf and Stef-
fen, 1990; Flordal and Malik, 2009) avoid building the
full synchronous composition. First, individual FSMs Gi

are simplified and replaced by smaller conflict equivalent
FSMs. When no further simplification is possible, a sub-
system (Gj)j∈J is selected and replaced by its synchronous
composition. The result is then simplified again before
proceeding further.

The final result of this process is a single FSM G, which
is the compositional abstraction of (2). The congruence
properties (Malik et al., 2006) of conflict equivalence
ensure that G is nonblocking if and only if the original
system (2) is. G typically has fewer states than (2), making
it possible to check whether it is nonblocking even though
the full composition (2) may be too large to fit in memory.

3. COUNTEREXAMPLE EXPANSION

Assume that a system (2) is found to be blocking at the end
of compositional verification, i.e., the final compositional
abstraction is blocking. Then standard state exploration
algorithms (Malik, 2016) produce a counterexample to the
nonblocking property in addition to detecting blocking,
but this counterexample applies to the compositional
abstraction only. After several steps of simplification, it
is not guaranteed to apply to the original system (2).

In the following, a counterexample to the nonblocking
property of an abstracted system is called an abstract
counterexample, while a counterexample to the nonblock-
ing property of the system before abstraction is called a
concrete counterexample.

The fact that each abstraction step preserves conflict
equivalence guarantees that, for each abstract counter-
example there must exist a concrete counterexample. A
concrete counterexample for the original system (2) can be
obtained by a process of expansion. Starting with the last
abstraction step, the abstract counterexample is modified
to be a concrete counterexample for the system before the
last step, and this is repeated for each abstraction step
until the original system is reached. Precisely how these
expansion steps work depends on the particular kind of
abstraction performed at each step.

Next, Section 3.1 explains the principle using simple ab-
straction steps, and afterwards Sections 3.2 and 3.3 present
expansion algorithms for two typical conflict-preserving
abstraction rules.

3.1 Synchronous Composition and Hiding

The simplest abstraction step is that of synchronous com-
position. The system (2) can be replaced by

(G1 ‖G2) ‖G3 ‖ · · · ‖Gn . (3)

Here, two components G1 andG2 are selected and replaced
by their synchronous composition. Clearly, the composed
systems before and after abstraction are isomorphic in this
case, so any abstract counterexample is also a concrete
counterexample—except for the state information. The
state tuples in an abstract counterexample for (3) have the
structure ((x1, x2), x3, . . . , xn), which needs to be changed
to (x1, x2, x3, . . . , xn) in a concrete counterexample for (2).

Another simple type of abstraction is hiding. Assume that
in (2) the events in some Υ ⊆ Σ appear only in G1 and in
no other components. Then (2) can be replaced by

(G1 \Υ) ‖G2 ‖ · · · ‖Gn . (4)

Here, G1 \ Υ is the result of hiding, which is obtained
from G1 by replacing all events in Υ by the silent event τ
(Flordal and Malik, 2009). The abstraction is isomorphic
to the original system apart from event renaming. An ab-
stract counterexample for (4) may contain steps labelled τ
that are not possible in the original system (2). These steps
can be identified from the state information, and their τ
events must be replaced with the correct events from the
original FSM G1.

These two counterexample transformations are straightfor-
ward, provided that there is sufficient information about
the intermediate FSMs computed during compositional
abstraction. This information must either be held in mem-
ory or recalculated on demand.

3.2 State Merging

A common method to simplify an FSM is to construct
its quotient modulo an equivalence relation. The following
definitions are standard.

An equivalence relation is a reflexive, symmetric, and
transitive relation. Given an equivalence relation ∼ on a
set Q, the equivalence class of x ∈ Q with respect to ∼,
denoted [x], is [x] = {x′ ∈ Q | x′ ∼ x }. An equivalence
relation on a set Q partitions Q into Q/∼ = { [x] | x ∈ Q }.

Definition 5. Let G = 〈Σ, Q,→, Q◦, Qω〉 be an FSM, and
let ∼ ⊆ Q × Q be an equivalence relation. The quotient
FSM G/∼ of G with respect to ∼ is G/∼ = 〈Σ, Q/∼ ,

→/∼ , Q̃◦, Q̃ω〉, where →/∼ = { ([x], σ, [y]) | x
σ
→ y },

Q̃◦ = { [x◦] | x◦ ∈ Q◦ }, and Q̃ω = { [xω] | xω ∈ Qω }.

When constructing a quotient FSM, classes of equivalent
states are combined or merged into a single state. The
quotient FSM contains a transition linking two classes of
states if the original FSM contains a transition with the
same event that links some states of these classes.

There are several relations ∼ such that G1 and G1/∼ are
conflict equivalent (Flordal and Malik, 2009; Su et al.,
2010). Therefore, it is common in compositional nonblock-
ing verification to replace an FSM in (2) by its quotient
and obtain an abstract system

(G1/∼) ‖G2 ‖ · · · ‖Gn . (5)

If the abstracted system (5) is blocking, then it has a
counterexample accepted by all its components that ends
in a blocking state. This counterexample needs to be
modified so that it is accepted by G1 rather than G1/∼
and leads to an end state that is blocking in the origi-
nal system (2). The following condition ensures that this
counterexample modification can be done using informa-
tion about G1 and G1/∼ only.

Definition 6. Let G and H be two FSMs. G is counter-
example-based less conflicting than H, written G .ce H,

if for all paths H
s
⇒ xH there exists a state xG of G such

that G
s
⇒ xG and Lω(xG) ⊆ Lω(xH).

Proposition 1. Let G and H be two FSMs. If G .ce H
then G .conf H.

Being counterexample-based less conflicting is a stronger
property than being less conflicting, so this property
can help to prove that an abstraction preserves conflict
equivalence.

If Def. 6 holds, a concrete counterexample can be obtained
by the following observations: if an abstract counter-
example takes the abstract FSM H to some state xH ,

i.e., H
s
⇒ xH , then the definition ensures the existence

of a state xG of the concrete FSM G with a smaller
marked language. This state xG is a suitable end state
for a concrete counterexample. It remains to change the
path to xH so that it ends in xG while using the same

non-τ events, which must be possible because G
s
⇒ xG. If

H is obtained by state merging, H = G/∼, the condition
Lω(xG) ⊆ Lω(xH) can usually be replaced by xG ∈ xH ,
which is easier to implement.

Algorithm 1 is a search procedure to find a concrete
counterexample when Def. 6 is satisfied after abstraction
of G1 in a composition (2). First, the loop in line 1 deletes

from the abstract counterexample C̃ all τ -transitions that
correspond to the abstract FSM, as these must be replaced
by transitions from the concrete FSM. From line 3, the
algorithm performs a search through the concrete FSM G1

to find paths using the same steps as the abstract counter-
example, possibly interleaved with τ -transitions of the
concrete FSM. It uses a Queue of pairs (C, C̃), where
C is a partially constructed initial segment of a concrete
counterexample, and C̃ is the remainder of the abstract
counterexample still to be processed. The set Visited con-
tains pairs (x1, i) of concrete states x1 ofG1 and positions i
in the abstract counterexample, to ensure termination by
avoiding duplicate search states. The loop in line 3 ini-
tialises the search with concrete counterexamples starting
from each initial states of G1. The main loop in line 7
decomposes each pair (C, C̃) as per lines 9–10 to get the

matching state tuples at the end of C and the start of C̃,
and explores transitions originating from the concrete end
state xi

1 in G1.

If the end of C̃ has been reached, line 12 checks the ter-
mination condition Lω(xi

1) ⊆ Lω(x̃k
1) according to Def. 6,

and returns C as the concrete counterexamples if satisfied.
Otherwise, the next event σi+1 from C̃ is considered, and
its possible transitions are explored to extend C and form
new search states. The event is either synchronised withG1

(lines 14–20) or only performed by the rest of the system
G2 ‖ · · · ‖ Gn (lines 21–25). In any case, τ -transitions
in G1 also have to be explored (lines 26–30). The last
loop should also include events present in G1 but not in
G2‖· · ·‖Gn, but such events will typically have been hidden
and replaced by τ during compositional abstraction.

Assuming Def. 6, Algorithm 1 always terminates through
line 13 before the Queue becomes empty. By processing
pairs with shortest combined length first in line 8, the al-
gorithm performs an A∗-search that guarantees a shortest

Algorithm 1: State Merging Expansion

Input: G1, . . . , Gn where Gi = 〈Σi, Qi,→i, Q
◦
i , Q

ω
i 〉

Input: Abstract counterexample C̃ = ỹ0
σ1→ · · ·

σk→ ỹk

where ỹi = (x̃i
1, x

i
2, . . . , x

i
n) for 0 ≤ i ≤ k

Output: Concrete counterexample C

1 while C̃ includes ỹi
τ
→ ỹi+1 where x̃i

1 6= x̃i+1
1 do

2 delete the first such transition together with its

source state ỹi from C̃

3 foreach x◦
1 ∈ Q◦

1 do

4 C := (x◦
1, x

0
2, . . . , x

0
n) // 1-state counterexample

5 add (C, C̃) to Queue
6 add (x◦

1, 0) to Visited

7 while Queue is not empty do

8 remove (C, C̃) with minimal |C|+ |C̃| from Queue

9 let C̃ = ỹi
σi+1

−−−→ · · ·
σk→ ỹk, ỹi = (x̃i

1, x
i
2, . . . , x

i
n)

10 let C = y0 → · · · → yj , yj = (xi
1, x

i
2, . . . , x

i
n)

11 if C̃ = ỹk (i.e., C̃ has only one state) then
12 if Lω(xi

1) ⊆ Lω(x̃k
1) then

13 return C

14 else if σi+1 ∈ Σ1 then

15 foreach transition xi
1

σi+1

−−−→1 z1 in G1 do
16 if (z1, i+ 1) /∈ Visited then

17 C ′ := C
σi+1

−−−→ (z1, x
i+1
2 , . . . , xi+1

n)

18 C̃ ′ := ỹi+1 σi+2

−−−→ · · ·
σk→ ỹk

19 add (C ′, C̃ ′) to Queue
20 add (z1, i+ 1) to Visited

21 else if (xi
1, i+ 1) /∈ Visited then

22 C ′ := C
σi+1

−−−→ (xi
1, x

i+1
2 , . . . , xi+1

n)

23 C̃ ′ := ỹi+1 σi+2

−−−→ · · ·
σk→ ỹk

24 add (C ′, C̃ ′) to Queue

25 add (xi
1, i+ 1) to Visited

26 foreach transition xi
1

τ
→1 z1 in G1 do

27 if (z1, i) /∈ Visited then

28 C ′ := C
τ
→ (z1, x

i
2, . . . , x

i
n)

29 add (C ′, C̃) to Queue
30 add (z1, i) to Visited

result (Hart et al., 1968). Most state merging abstractions
satisfy Def. 6 in such a way that the test Lω(xi

1) ⊆ Lω(x̃k
1)

in line 12 can be replaced by the simpler condition xi
1 ∈ x̃k

1 .
This holds for observation equivalence (Milner, 1989) and
weak observation equivalence (Su et al., 2010), and it can
also be shown for other cases such as the Active Events
and Silent Continuation Rules (Flordal and Malik, 2009).

The complexity of Algorithm 1 depends on the length of
the abstract counterexample and the size of the concrete
FSM. The number of possible search states and thus itera-
tions of the main loop in line 7 is bounded by |C̃||Q1|, and
each iteration may process up to two transitions to each
state of the nondeterministic FSM G1 through the loops
in lines 15 and 26. This gives a worst-case time complexity
of O(|C̃||Q1|

2), which is insignificant compared to the
overall runtime of compositional nonblocking verification.

G:
α

α
β

β

β

0

1

2

3

H:

α
β 0

⊥

T1:

α, β
0

T2:

α
β0

1

Fig. 1. Example of certain conflicts abstraction.

3.3 Certain Conflicts

The converse of Prop. 1 does not hold, so being counter-
example-based less conflicting is a strictly stronger prop-
erty than being less conflicting. An example is abstraction
by certain conflicts (Malik, 2004; Lindsey, 2012). FSMs
G and H in Fig. 1 are conflict equivalent, because any
FSM T that can initially execute α is conflicting with
both G and H. Note that execution of α may take G to
state 1, where β is needed to reach an accepting state, but
β also leads to the blocking state 2. However, G is not
counterexample-based less conflicting that H, because for

H
α
⇒ ⊥ with Lω(⊥) = ∅, there is no state in G reachable

via α with a smaller accepting language.

Counterexample expansion is more difficult in the absence
of Def. 6. Assume that the remainder of the system in
Fig. 1 behaves like T1, and the abstract counterexample

for H ‖ T1 is (0, 0)
α
→ (⊥, 0). Attempts to convert this to

a concrete counterexample with end state (1, 0) or (3, 0)
in G ‖ T1 fail as these are not blocking states. A concrete
counterexample can only be obtained by extension, e.g.,

(0, 0)
α
→ (1, 0)

β
→ (2, 0) is a counterexample to the

nonblocking property of G ‖ T1. How to extend does not
only depend on the abstracted FSM but also on the rest of
the system (Lindsey, 2012). An abstract counterexample

for H ‖ T2 in Fig. 1 is (0, 0)
α
→ (⊥, 1), which cannot and

does not need to be extended.

In the following, a variant of the of the Certain Conflicts
Rule (Flordal and Malik, 2009) is considered, which is
exemplary for all cases where Def. 6 does not apply.

Definition 7. (Limited Certain Conflicts Rule). Let G =
〈Σ, Q,→, Q◦, Qω〉 be an FSM. Define sets of limited cer-
tain conflict states inductively:

lcc0G = {x ∈ Q | Lω(x) = ∅ } ; (6)

lcci+1
G = {x ∈ Q | for every path x = x0

σ1→ · · ·
σk→

xk ∈ Qω there exists j ≥ 0 such that
j ≤ k and xj

ε
⇒ lcciG, or j < k and

xj

σj+1

=⇒ lcciG } ;

(7)

lccG =
⋃

i≥0

lcciG . (8)

The limited certain conflicts abstraction of G is Lcc(G) =
〈Σ, Qlcc,→lcc, Q

◦
lcc, Q

ω
lcc〉 where Qlcc = (Q \ lccG) ∪ {⊥}

(with ⊥ /∈ Q); x
σ
→lcc y if x, y 6= ⊥ and x

σ
→ y and

x
P (σ)
=⇒ lccG does not hold, or x 6= ⊥ = y and x

σ
→ lccG;

Q◦
lcc = Q◦ if Q◦ ∩ lccG = ∅ and Q◦

lcc = {⊥} otherwise; and
Qω

lcc = Qω \ lccG.

The set lcc0G of level-0 limited certain conflict states is the
set of blocking states (6). Level i + 1 adds to this states
that can only reach accepting states by passing through

Algorithm 2: Limited Certain Conflicts Extension

Input: G1, . . . , Gn where Gi = 〈Σi, Qi,→i, Q
◦
i , Q

ω
i 〉

Input: Abstract counterexample C̃ = ỹ0
σ1→ · · ·

σk→ ỹk

where ỹi = (xi
1, x

i
2, . . . , x

i
n) for 0 ≤ i ≤ k

Output: Concrete counterexample

1 if x0
1 = ⊥ then

2 j := 0; I := (Q◦
1 ∩ lccG1

)× {(x0
2, . . . , x

0
n)}

3 else if xi
1 = ⊥ for some 1 ≤ i ≤ k then

4 j := min{ i | xi
1 = ⊥} − 1; I := {ỹj}

5 else

6 j := k; I := {ỹk}

7 m := min{ i | lcciG1
= lccG1

}; Q′ := Q2 × · · · ×Qn

8 while m ≥ 0 and I → lccmG1
×Q′ in G1 ‖ · · · ‖Gn do

9 assign E to be the path I → lccmG1
×Q′

10 m := m− 1

11 if E is unassigned then
12 return C̃
13 else if j = 0 then
14 return E
15 else
16 return ỹ0

σ1
→ · · ·

σj

→ E

a state that can reach a level-i limited certain conflict
state using τ -transitions, or using a transition that may
lead to a level-i state (7). These sets form an increasing
sequence, lcc0G ⊆ lcc1G ⊆ · · · , which in the finite-state case
converges against the set lccG. The abstraction Lcc(G) is
constructed by merging these states into a new state ⊥,
and deleting some transitions. In Fig. 1, for example,
lcc0G = {2} and lccG = lcciG = {1, 2} for i ≥ 1. This
results in the abstraction Lcc(G) = H (the unreachable
state 3 is not shown in the figure).

Proposition 2. Let G be an FSM. Then G ≃conf Lcc(G).

By Prop. 2, during compositional nonblocking verification,
an FSM G1 in (2) can be abstracted to get

Lcc(G1) ‖G2 ‖ · · · ‖Gn . (9)

An abstract counterexample for (9) is accepted by all the
FSMs in the original system (2), up to the point where
Lcc(G1) visits the new state ⊥. If ⊥ is encountered, then
the path from this point on must be replaced by a path
into the limited certain conflicts of the concrete FSM G1.
To ensure that the concrete counterexample reaches a
blocking state, it is extended to the lowest level lcciG1

(closest to blocking) possible according to the other FSMs
G2 ‖ · · · ‖Gn.

Algorithm 2 searches for this extension. Given the abstract
counterexample C̃ for (9), it first determines the starting

point I for extension. If C̃ starts in ⊥, then the search
starts from the initial states of the concrete FSM G1

(line 2), otherwise from the last state before⊥ in C̃ (line 4).
If the abstract counterexample does not contain ⊥ at
all, extension may still be needed as G1 could reach an
accepting state with transitions removed in Lcc(G1). In

this case, the search starts from the end of C̃ (line 6).

Once the set I of start states is determined, the loop in
line 8 searches for an extension E from I to the lowest
possible level of limited certain conflicts of G1, which is

accepted by the concrete system (2). If no extension can be
found, the abstract counterexample is returned unchanged
(line 12). Otherwise the result is the extension, possibly
preceded by the steps of the abstract counterexample that
do not include ⊥ (line 14 or 16).

From Def. 7 it follows that (i) an abstract counterexample
not into ⊥ is a concrete counterexample, or it can be
extended into limited certain conflicts; and (ii) a concrete
path into limited certain conflicts is a concrete counter-
example, or it can be extended to a lower level of limited
certain conflicts. These observations are the basis for the
correctness proof of Algorithm 2.

Proposition 3. Let G1, . . . , Gn be FSMs. If C̃ is a counter-
example to the nonblocking property of Lcc(G1)‖G2‖· · ·‖
Gn, then Algorithm 2 terminates and returns a counter-
example to the nonblocking property of G1 ‖ · · · ‖Gn.

The search for the extension in line 8 can be done with
a language inclusion check (Ware and Malik, 2008). It
involves the full composed state space of (2), which may
not be feasible to explore in the context of compositional
verification. One option is to use the iterative projection
algorithm (Ware and Malik, 2008), which has similar
performance characteristics to compositional nonblocking
verification.

The complexity of Algorithm 2 is dominated by these lan-
guage inclusion checks. Their number is bounded by O(m),
the maximum level of limited certain conflicts. It can be
reduced to O(log2 m) using binary search (Wirth, 1986), or
to a single check using a modified language inclusion proce-
dure that takes the levels into account. Even so, extension
can result in one additional language inclusion check per
successful abstraction step, substantially increasing the
overall nonblocking check time.

4. EXPERIMENTAL RESULTS

The counterexample expansion procedure is part of the
compositional conflict check in Supremica (Åkesson et al.,
2006). It has been used to compute counterexamples for
21 examples. The test suite includes complex industrial
models and case studies from different application areas
such as manufacturing systems, automotive electronics,
and communication protocols (Pilbrow and Malik, 2015).

Each model was verified with and without limited certain
conflicts (LCC). The abstraction sequence consists of τ -
loop removal, observation equivalent transition removal,
marking removal, the Silent Incoming Rule, the Only
Silent Outgoing Rule, the Silent Continuation Rule, the
Active Events Rule, possibly the Limited Certain Conflicts
Rule, weak observation equivalence, and marking satura-
tion (Flordal and Malik, 2009; Pilbrow and Malik, 2015).

Table 1 shows the results of the experiments. It shows
for each model, the number of FSMs (n), the number of
reachable states in the synchronous composition (State
space), and the shortest possible counterexample length
(CE min). Then it shows for each test the combined
runtime of verification and counterexample computation
(Total), the total time taken by Algorithm 1 (Exp), and
the length of the computed counterexample (CE len).
Algorithm 2 is only needed with limited certain conflicts,
where the table shows the time taken by Algorithm 2 (Ext)
and the number of language inclusion checks (Ext #).

Table 1. Experimental results.

Model No LCC LCC

State CE Total Exp CE Total Exp Ext Ext CE

Name n space min [s] [s] len [s] [s] [s] # len

agvb 17 2.3 · 107 6 0.2 0.0 18 0.3 0.0 0.0 4 17

aip0alps 35 3.0 · 108 4 0.3 0.0 19 0.3 0.0 0.1 1 20

aip0tough 60 1.0 · 1010 39 7.1 0.1 149 7.1 0.1 6.4 5 39

aip1efa 〈16〉 50 9.5 · 1012 153 35.5 0.2 185 36.0 0.6 1.3 1 185

aip1efa 〈24〉 50 1.8 · 1013 153 27.9 0.1 185 27.7 0.1 0.0 0 185

ct17 67 3.9 · 1022 3 0.5 0.0 5 0.3 0.0 0.0 1 5

fencaiwon09b 31 8.9 · 107 225 0.4 0.0 249 0.4 0.0 0.0 1 249

fms2003 30 1.7 · 107 20 1.4 0.1 34 0.4 0.0 0.0 1 20

ftechnik 36 1.2 · 108 0 0.4 0.0 3 0.5 0.0 0.1 3 3

prime sieve4b 16 1.2 · 1020 31 5.6 0.4 32 7.5 0.5 3.5 10 32

psl partleft 39 7.7 · 107 4 6.0 0.1 9 0.6 0.0 0.4 3 15

psl restart 37 3.9 · 107 8 1.1 0.1 50 0.9 0.0 0.3 4 25

tbed ctct 84 3.9 · 1013 0 7.0 0.1 0 434.3 0.3 428.5 11 203

tbed hisc1 184 2.9 · 1017 19 2.8 0.1 22 2.1 0.1 0.9 10 31

tbed noderailb 84 3.2 · 1012 2 3.4 0.2 4 43.6 0.2 40.4 8 4

tip3 bad 54 5.2 · 1010 16 0.8 0.1 24 0.8 0.1 0.0 0 24

verriegel3b 52 1.3 · 109 4 0.7 0.0 53 0.8 0.0 0.4 3 4

verriegel4b 64 6.3 · 1010 4 1.0 0.1 81 1.0 0.0 0.5 3 4

6linka 53 2.4 · 1014 5 0.3 0.0 6 0.3 0.0 0.0 1 16

6linkp 48 4.4 · 1014 1 0.4 0.0 11 0.2 0.0 0.0 1 11

6linkre 59 6.2 · 1013 90 0.4 0.0 102 0.5 0.1 0.1 11 107

The compositional conflict check algorithm proves all these
models to be blocking within seconds. While the expan-
sion time of Algorithm 1 is insignificant, extension by
Algorithm 2 adds substantial runtime to the tbed ctct
and tbed noderailb tests, by far outweighing the small
verification time benefit from the improved abstraction. In
other cases such as psl partleft and tbed hisc1 the over-
all performance improves with limited certain conflicts.
The difference is likely due to the time when limited certain
conflicts are triggered: late during the abstraction process
the number of FSMs and the extension effort are small.

The computed counterexamples are rarely the shortest
possible, although close to the minimum in several cases.
While Algorithm 1 guarantees a shortest result, this is
not the case for Algorithm 2. Either way, minimality in
individual steps does not ensure a shortest result overall.
In some cases, e.g., aip0tough and verriegel4b, limited
certain conflicts lead to shorter counterexamples, while in
other cases such as tbed ctct the opposite is the case.
Although shorter counterexamples are usually preferable,
extension into certain conflicts makes the counterexample
more specific and can add valuable information.

5. CONCLUSIONS

Two algorithms for counterexample computation for dif-
ferent abstraction rules during compositional nonblocking
verification are proposed. While counterexample expansion
is fast and simple, some abstraction rules require a more
time-consuming algorithm of counterexample extension.
The counterexample computation process depends on the
type of abstraction used during verification, and this pa-
per covers the most common rules (Flordal and Malik,
2009). More advanced abstraction (Ware and Malik, 2012;
Pilbrow and Malik, 2015) will be studied in future work.

REFERENCES

Åkesson, K., Fabian, M., Flordal, H., and Malik, R.
(2006). Supremica—an integrated environment for ver-
ification, synthesis and simulation of discrete event sys-
tems. In 8th Int. Workshop on Discrete Event Systems,

WODES ’06, 384–385. IEEE. doi:10.1109/WODES.
2006.382401.

Baier, C. and Katoen, J.P. (2008). Principles of Model
Checking. MIT Press.

De Nicola, R. and Hennessy, M.C.B. (1984). Testing
equivalences for processes. Theoretical Comput. Sci.,
34(1–2), 83–133. doi:10.1016/0304-3975(84)90113-0.

Flordal, H. and Malik, R. (2009). Compositional verifica-
tion in supervisory control. SIAM J. Control Optim.,
48(3), 1914–1938. doi:10.1137/070695526.

Graf, S. and Steffen, B. (1990). Compositional mini-
mization of finite state systems. In 1990 Workshop on
Computer-Aided Verification, volume 531 of LNCS, 186–
196. Springer. doi:10.1007/BFb0023732.

Hart, P.E., Nilsson, N.J., and Raphael, B. (1968). A formal
basis for the heuristic determination of minimum cost
paths. IEEE Trans. Syst. Sci. Cybern., 4(2), 100–107.
doi:10.1109/TSSC.1968.300136.

Hoare, C.A.R. (1985). Communicating Sequential Pro-
cesses. Prentice-Hall.

Lindsey, J. (2012). The set of certain conflicts. Honours
project report, Dept. of Computer Science, University
of Waikato.

Malik, R. (2004). On the set of certain conflicts of a
given language. In 7th Int. Workshop on Discrete Event
Systems, WODES ’04, 277–282. IFAC. doi:10.1016/
S1474-6670(17)30757-7.

Malik, R. (2016). Programming a fast explicit conflict
checker. In 13th Int. Workshop on Discrete Event
Systems, WODES ’16, 464–469. IEEE. doi:10.1109/
WODES.2016.7497885.

Malik, R., Streader, D., and Reeves, S. (2006). Conflicts
and fair testing. Int. J. Found. Comput. Sci., 17(4),
797–813. doi:10.1142/S012905410600411X.

Milner, R. (1989). Communication and concurrency.
Series in Computer Science. Prentice-Hall.

Pena, P.N., Cury, J.E.R., and Lafortune, S. (2009). Veri-
fication of nonconflict of supervisors using abstractions.
IEEE Trans. Autom. Control, 54(12), 2803–2815. doi:
10.1109/TAC.2009.2031730.

Pilbrow, C. and Malik, R. (2015). An algorithm for com-
positional nonblocking verification using special events.
Sci. Comput. Programming, 113(2), 119–148. doi:10.
1016/j.scico.2015.05.010.

Ramadge, P.J.G. and Wonham, W.M. (1989). The control
of discrete event systems. Proc. IEEE, 77(1), 81–98.
doi:10.1109/5.21072.

Su, R., van Schuppen, J.H., Rooda, J.E., and Hofkamp,
A.T. (2010). Nonconflict check by using sequential au-
tomaton abstractions based on weak observation equiv-
alence. Automatica, 46(6), 968–978. doi:10.1016/j.
automatica.2010.02.025.

Ware, S. and Malik, R. (2008). The use of language pro-
jection for compositional verification of discrete event
systems. In 9th Int. Workshop on Discrete Event
Systems, WODES ’08, 322–327. IEEE. doi:10.1109/
WODES.2008.4605966.

Ware, S. and Malik, R. (2012). Conflict-preserving ab-
straction of discrete event systems using annotated au-
tomata. Discrete Event Dyn. Syst., 22(4), 451–477. doi:
10.1007/s10626-012-0133-3.

Wirth, N. (1986). Algorithms and Data Structures.
Prentice-Hall.

