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Abstract. The metacommunity concept provides a useful framework to assess the influence of local and
regional controls over diversity patterns. Culture-independent studies of soil microbial communities in the
McMurdo Dry Valleys of East Antarctica (778 S) have shown that bacterial diversity is related to soil
geochemical gradients, while studies targeting edaphic cyanobacteria have linked local diversity patterns
to dispersal-based processes. In this study, we increased the spatial extent of observed soil microbial
communities to cover the Beardmore Glacier region in the central Transantarctic Mountains (848 S). We
used community profiling techniques to characterize diversity patterns for bacteria and the cyanobacterial
subcomponent of the microbial community. Diversity partitioning was used to calculate beta diversity and
estimate among-site dissimilarity in the metacommunity. We then used variation partitioning to assess the
relationship between beta diversity and environmental and spatial gradients. We found that dominant
groups in the soil bacterial metacommunity were influenced by gradients in pH and soil moisture at the
Transantarctic scale (800 km). Conversely, beta diversity for the cyanobacterial component of the edaphic
microbial metacommunity was decoupled from these environmental gradients, and was more related to
spatial filters, suggesting that wind-driven dispersal dynamics created cyanobacterial biogeography at a
local scale (,3 km).
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INTRODUCTION

Ecological context can affect the balance of
niche- and dispersal-based metacommunity dy-
namics, which influence biodiversity patterns
and how they are structured by environmental
gradients (Caruso et al. 2011). For example,
community composition is more closely tied to
habitat characteristics for good dispersers than

dispersal-limited organisms (De Bie et al. 2012),
random drift in community composition is more
likely in assemblages in stable habitats with high
productivity (Chase 2007, 2010), and assemblag-
es in high stress habitats (e.g., frequent drought,
low productivity) are more likely to converge
upon similar community compositions of toler-
ant taxa (Chase 2007). Understanding how
ecological context influences local and regional
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controls over soil microbial diversity (Dumbrell
et al. 2009, Caruso et al. 2011, Soininen 2012) is
imperative for Antarctic soils because these
relatively simple ecosystems (Hogg et al. 2006)
may be particularly sensitive to climate change
(Nielsen and Wall 2013). Antarctic soils are
predicted to become warmer and wetter (Brace-
girdle et al. 2008), and an increased frequency of
pulse melt/flood events (IPCC 2007) will likely
alter the temporal and spatial distribution of
liquid water, which can significantly affect soil
ecological processes (Barrett et al. 2008, Nielsen
et al. 2012, Nielsen and Wall 2013). Therefore, it is
essential to resolve the influences of local and
regional controls over soil microbial community
composition, which may allow us to predict how
Antarctic terrestrial ecosystems will respond to
climatic shifts.

A metacommunity is a group of biotic com-
munities that are potentially connected by
regional dispersal dynamics (i.e., immigration
and emigration). Thus, the metacommunity
concept (Leibold et al. 2004) provides a useful
framework for evaluating the influence of local
and regional controls over biodiversity. In niche-
based metacommunity hypotheses (H1: niche-
based species sorting), the compositions of
assemblages in a metacommunity are deter-
mined by the local habitat, which acts to restrict
the types of organisms that can occur there
(Keddy 1992, Chase and Leibold 2003, Van der
Gucht et al. 2007). H1 predicts that variation in
community composition will track variation in
habitat characteristics that act as environmental
filters. In dispersal-based hypotheses (H2: dis-
persal-based biogeography) (Hubbell 2001,
2005), emigration and immigration rates in a
metacommunity control the composition of local
communities and regional diversity patterns;
consequently, spatially autocorrelated diversity
patterns (spatial structure) arise in a landscape
because more propagules move between sites in
close spatial proximity than sites that are far
apart. Metacommunity theory further predicts
that habitat heterogeneity and functional diver-
sity determine the degree to which local (H1,
species-sorting by environmental filters) and
regional (H2, source-sink dispersal-based dy-
namics) processes interact to determine local
assemblage composition and regional diversity
patterns (Martiny et al. 2006, Dumbrell et al.

2009, Bru et al. 2010, Caruso et al. 2011, Logue et
al. 2011, Heino et al. 2012).

Culture-independent techniques have demon-
strated that microbial communities in arid soils
in the Transantarctic Mountains of East Antarc-
tica are more diverse than previously thought
(Adams et al. 2006, Aislabie et al. 2006, 2008,
Niederberger et al. 2008, 2012, Takacs-Vesbach et
al. 2010, Lee et al. 2012), and that these soils
harbor phylum-level diversity similar to that of
other soil ecosystems worldwide (Barrett et al.
2006, Cary et al. 2010). Recent evidence has
shown that soil communities in the McMurdo
Dry Valleys can respond rapidly to shifts in the
local habitat, indicating the potential for local
environmental controls over microbial commu-
nity composition (McKnight et al. 2007, Tiao et
al. 2012) and providing support for H1. Inter-
valley differences in soil microbial community
profiles (Lee et al. 2012) suggest that regional
processes also influence microbial community
composition. However, it is unclear whether
these regional-scale diversity patterns result from
local species-sorting dynamics (H1) (e.g., Van der
Gucht et al. 2007) scaled up to the landscape
level, or spatial heterogeneity associated with
dispersal-based metacommunity dynamics and
historical factors (H2) (Fenchel 2003, Martiny et
al. 2006, 2011, Takacs-Vesbach et al. 2008).

For this study, we conducted a geospatially
referenced survey of soil microbial communities
and geochemical variables in two areas spanning
across 78 in latitude within the Transantarctic
Mountains. We assessed diversity patterns for
both the total and the cyanobacterial subcompo-
nent of soil bacterial communities, because
cyanobacterial community composition appears
to be related to local dispersal dynamics (i.e.,
proximity of an aquatic habitat to serve as a
source for cyanobacterial propagules) (Wood et
al. 2008, Michaud et al. 2012, Niederberger et al.
2012), whereas total bacterial diversity patterns
appear to be related to environmental gradients
(Aislabie et al. 2008, Lee et al. 2012, Tiao et al.
2012). The nature of these relationships is linked
to the ecological context�the characteristics of
the organisms populating a metacommunity (i.e.,
dispersal ability [Fenchel and Finlay 2004, Shurin
et al. 2009, Ha·jek et al. 2011, De Bie et al. 2012]
and prevalence of dormancy [Jones and Lennon
2010, Lennon and Jones 2011]), which in turn
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determine how the metacommunity can respond
to environmental gradients in a given landscape.

We used diversity patterns derived from our
survey to infer the scales at which different
metacommunity dynamics organize community
composition. We quantified local (alpha) and
regional (gamma) diversity patterns to estimate
multiplicative beta diversity (variation in com-
munity composition among assemblages) (Jost
2007, Chao et al. 2012), which can also be related
to scale of metacommunity mixing (Barton et al.
2013). Using variation partitioning, we assessed
the spatial scale of community composition
heterogeneity in the metacommunity (spatial
component of beta diversity) and the spatial
scales at which community composition re-
sponds to environmental gradients (environmen-
tal component of beta diversity) (Borcard et al.
1992, Peres-Neto et al. 2006, Van der Gucht et al.
2007, Dumbrell et al. 2009, Bru et al. 2010, Logue
and Lindstro¤m 2010, Caruso et al. 2011, Logue et
al. 2011, De Bie et al. 2012).

METHODS

Site description
Surface soils were collected from two of the

largest ice-free regions in the Transantarctic
Mountains (Hopkins et al. 2006, Bockheim
2008): a northern group of sites was located in
the McMurdo Dry Valleys (MDV, 778 S) in
southern Victoria Land, and a southern group
of sites was located in the Beardmore Glacier (BG,
858 S) region in the Central Transantarctic
Mountains (Table 1, Fig. 1). The MDV region
has mean annual temperatures ranging between
�158C and �358C (Doran et al. 2002), and receives
50 to 150 mm water equivalent yr�1 precipitation
(Fountain et al. 2010). In general, MDV soils are
extremely cold and liquid water-limited (Barrett
et al. 2006), but there is considerable within-

valley variation in microclimate conditions
(Marchant and Denton 1996, Doran et al. 2002).
Comparable soils were selected in the BG region,
where mean annual temperatures range from
�308C to �358C (Bockheim 2008). In this study,
we included arid soils collected from Alatna,
Taylor, and Miers Valleys in the MDV region and
Kyffin and Cloudmaker in the BG region.

Sample collection
The sampling design of this study was

spatially stratified so that the scale of environ-
mental gradients and biodiversity patterns could
be quantified (Fig. 1, Table 1, Appendix: Table
A1). Each soil sample was a composite of five
sub-samples collected from the top 10 cm of soil
in a 1-m2 plot (see Appendix for methods for
sample collection and geochemical analysis). Five
samples were collected along a 100-m transect
with paired sampling plots (separated by 1 m)
located at the ends of a transect, which generated
local, within-transect, spatial lags of 1 m, 10 m,
and 100 m. At each site, samples were collected
along three replicate transects spaced 1 km apart
(n … 15), except for one case where the area of
exposed soil only allowed for two transects (n …
10, Kyffin). This sampling pattern resulted in
inter-transect spatial lags of 1 to 3 km. Inter-site
comparisons provided spatial lags of 50�200 km,
and comparisons between the MDV and BG
regions occurred over spatial lags of ;800 km.
This design created a distribution of between-
plot comparisons spanning nearly 6 orders of
magnitude, with pairwise comparisons repre-
senting spatial lags of 1 m, 10 m, 100 m, 1�3 km,
50�200 km, and 800 km (Fig. 2).

Soil bacterial and cyanobacterial
community profiling

To characterize the edaphic bacteria and
cyanobacterial assemblages for each sampling

Table 1. Site description and coordinates of ice-free geographic features where samples were collected.

Region Site Latitude Longitude Elevation range (m) No. observations

MDV Alatna Valley �76.90897 161.04310 970�1030 15
MDV Miers Valley �78.10618 163.98832 250�370 15
MDV Taylor Valley �77.62854 163.24954 70�95 15
BG Cloudmaker �84.26848 169.82540 885�990 15
BG Kyffin �83.81664 171.95883 555�585 10

Note: Three 100-m transects were located in each valley, except at Kyffin, where samples were only collected from two
transects.
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plot, environmental DNA was extracted from soil
samples at the University of Waikato, New
Zealand using a modified cetyltrimethyl-ammo-
nium bromide-polyvinylpyrrolidone-bmercap-
toethanol (CTAB) extraction protocol described
by Barrett et al. (2006, but also see Dempster et al.
1999, Coyne et al. 2001). The bacterial communi-
ties were characterized using terminal restriction
fragment length polymorphism (tRFLP; see Ap-
pendix) (Tiao et al. 2012), and automated
ribosomal intergenic spacer analysis (ARISA; see
Appendix) (modified from Wood et al. 2008) was
used to characterize the cyanobacterial subcom-
ponent of the soil microbial community. Because
we were only able to extract small amounts of
environmental DNA from some of the samples,
we used a relatively small amount of template (1
ng) in PCR amplifications of 16S rDNA prior to
tRFLP profiling. We assumed the cyanobacteria-
specific primers used in amplification prior to
ARISA would target a much smaller subset of the
total bacterial community, therefore we used an
order magnitude more template in these PCRs (10
ng template DNA in each reaction).

To determine community composition and
structure in each sample, electropherograms
were processed using PeakScanner v1.0 (PE

Applied Biosystems) with a peak-height cutoff
of 5 relative fluorescence units. ��Signal�� peaks
and ��noise�� peaks were separated using a
heavily modified implementation of Abdo et al.
(2006), where noise peaks were modeled using a
log-normal distribution with alpha … 0.01 for
delineation of noise. Relative abundance of each
peak was calculated using peak areas and those
comprising less than 0.1% of the total community
in each sample were omitted. Peaks from all
samples were then size-binned with one another
using an agglomerative clustering algorithm
with a width of 1 nucleotide to form a sample
by fragment length (FL) relative abundance table.

Statistical analysis
All statistical analyses were performed using

the R 2.13.1 statistical environment (R Develop-
ment Core Team 2011) unless otherwise speci-
fied. Environmental variables were log (x þ c)
transformed, where c is a constant representing
the first percentile value, except for pH measure-
ments. Using a constant set to the first percentile
value, instead of the arbitrary c … 1, results in a
similar rescaling across all transformed variables
(Legendre and Legendre 1998, McCune and
Grace 2002). Relative abundances of community

Fig. 1. Map of Beardmore Glacier (BG) and McMurdo Dry Valley (MDV) region locations in Antarctica (a), site
locations in the Transantarctic Mountains (b), and sampling transect layout at a site (c, sampling plot locations in
Taylor Valley in the MDV region).
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profiles were not transformed prior to analysis
because the dissimilarity indices used in the
community analyses have inherent rescaling
properties that are difficult to interpret when
data are transformed prior to analysis (see Jost
2007, Jost et al. 2011).

We used Principal Coordinates of Neighbor
Matrices (PCNM, see Appendix and Supple-
ment) (Borcard et al. 2004), which is a special
case of distance-based Moran Eigenvector Map
(MEM) analysis (Peres-Neto et al. 2006), to
calculate spatial filters from sampling plot
coordinates (Borcard and Legendre 2002, Bor-
card et al. 2004, De Bie et al. 2012, Legendre et al.
2012, Heino et al. 2012). PCNM eigenvectors with
positive eigenvalues were used as variables to
represent different scales of heterogeneity (i.e.,
spatial filters), with the first eigenvector (PCNM
1) representing the broadest spatial gradient, and
each successive eigenvector representing finer
scale spatial structure (Fig. 2).

We used Principal Component Analysis (PCA)
to assess the variation in soil chemistry among
sampling plots (Legendre and Legendre 1998,
McCune and Grace 2002). All values were scaled
to a zero mean and unit variance prior to
analysis. We used forward stepwise selection
(Blanchet et al. 2008) based on adjusted R2 values
(Peres-Neto et al. 2006) to build a redundancy
analysis (RDA) model to describe variation in
soil chemistry as a function of the spatial
variables calculated using PCNM analysis. This
analysis can be used to relate the overall
environmental variation described in the PCA
to spatial gradients. We used stepwise model
selection based on AIC to build univariate spatial
models for each environmental variable using the
stepAIC function in the MASS package for R
(Venables and Ripley 2002).

All diversity metrics in this analysis are based
on Hill numbers (Jost 2006, 2007, Jost et al. 2011,
Chao et al. 2012), which typically represent
��species equivalents��, but represent ��FL equiva-
lents�� in this analysis. We estimated diversity for
bacterial tRFLP and cyanobacterial ARISA com-
munity profiles using Hill numbers (qD) of order
q … 0 and q … 2. Order q … 0 Hill numbers
represent richness (i.e., alpha diversity … no.
peaks observed in a tRFLP profile), and are more
sensitive to variation in the presence/absence of
less dominant FLs. Alternatively, Hill numbers of

Fig. 2. Spatial scales represented by select spatial
filters (PCNM eigenvectors). Pairwise differences in
PCNM eigenvector scores plotted against spatial lag.
Selected spatial filters for PCNM eigenvectors 1, 3, 4, 5,
7, and 11. PCNM scores calculated for 70 sites.
Number of pairwise comparisons for each spatial lag
group (in increasing order) are 28, 28, 84, 325, 825, and
1,125. Appendix: Table A2 shows which PCNM
eigenvectors differentiate among regions and sites.
See Appendix: Fig. A1 for georeferenced maps of
PCNM 1 and PCNM 11 scores.
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order q … 2 are biased toward differences in the
relative abundances of dominant FLs. Thus we
refer to order q … 0 diversity measures as rare-
biased and q … 2 diversity measures as dominant-
biased.

We partitioned FL diversity into alpha, beta, and
gamma components at the site, region, and whole-
study levels of organization. Alpha diversity (qDa)
represents the local diversity of a 1-m2 sampling
plot. Mean alpha diversity (qD fla) for a group of
observations is calculated as exp(mean[qHa]),
where qH … log(qD) and represents the Renyi
entropy of order q. Gamma diversity (qDc) is an
estimate of the total FL richness when q … 0, or an
estimate of the total number of dominant-biased
FL equivalents when q … 2, for a group of sites.
Using the multiplicative formula qDb … qDc/qD fla,we
partitioned gamma diversity into alpha and beta
components. We calculated qD fla, qDb, and qDc for
sites, regions, and all assemblages pooled. We used
bootstrap resampling to calculate 95% confidence
intervals for each diversity estimate (Hesterberg et
al. 2007) for each level of organization (see
Appendix and Supplement). This multiplicative
measure of beta diversity is an estimate of
��distinct�� communities in a group of assemblages
(Jost 2007, Jost et al. 2011, Chao et al. 2012), making
it more robust to the problems associated with
fingerprinting methods (i.e., multiple FLs associ-
ated with a single taxon, or multiple taxa
associated with one or more FLs) (Crosby and
Criddle 2003, Okubo and Sugiyama 2009) than
comparisons based on FL richness (alpha or
gamma diversity).

We used model selection to build a logistic
regression model to predict the presence of
amplifiable cyanobacterial DNA as a function of
environment. We used the stepAIC function to
conduct a forward model selection based on AIC
values to select the environmental variables that
best predicted the presence of peaks in the
ARISA community profile. We used the glm
function in the stats package with a binomial
distribution and a logit linking function to create
the logistic regression models (Venables and
Ripley 2002). We calculated the coefficient of
determination using log likelihood values of the
best fit model and the null model (a model with
an intercept but no predictor variables).

The main objective in this study is to explain
variation in soil microbial community profiles

among sampling plots, which is a measure of
beta diversity. We calculated dissimilarity matri-
ces from the FL relative abundance tables
produced from tRFLP profiles for bacteria and
from ARISA profiles for cyanobacteria. For both
profile types, we calculated incidence-based
dissimilarity matrices using Jaccard distances
and relative-abundance-based dissimilarity ma-
trices using the Morisita-Horn index, which
represent all two-sample, pairwise calculations
of rare-biased (0Db) and dominant-biased (2Db)
beta diversity, respectively (Chao et al. 2008, Jost
et al. 2011). We used principal coordinate
analysis (PCoA) to plot ordinations of bacterial
and cyanobacterial community composition us-
ing both the incidence-based Jaccard dissimilar-
ities and the relative-abundance-based Morisita-
Horn dissimilarities. Vectors representing the
influence of environmental gradients over varia-
tion in community composition were added to
the PCoA plots using the envfit function in the
vegan package (Oksanen et al. 2012).

We used variation partitioning to assess how
environmental and spatial gradients influenced
the structure of microbial metacommunities (see
Supplement) (Borcard et al. 1992, Peres-Neto et
al. 2006). First, we used distance-based redun-
dancy analysis (dbRDA) to model variation in
community profiles as a function of either
environmental [E] or spatial [S] variables. We
used forward stepwise model selection (Blanchet
et al. 2008) based on adjusted R2 (Beisner et al.
2006, Peres-Neto et al. 2006, Nabout et al. 2009,
Legendre et al. 2012) to select environmental
variables that best explained variation in com-
munity profiles. The same technique was used to
select spatial variables (PCNM eigenvectors) that
best explained among-site variation in commu-
nity profiles. We then combined the environmen-
tal and spatial variables into a single dbRDA
model to calculate the total variation in commu-
nity profiles explained by environmental and
spatial variables [E þ S]. Using the adjusted R2

values for the environmental, spatial, and envi-
ronmental þ spatial models, we classified among-
site variation in community profiles as pure
environmental [EjS], spatially structured by the
environment [E \ S], pure spatial [SjE], or unex-
plained (Borcard et al. 1992, Peres-Neto et al.
2006).
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RESULTS

Spatial filters and spatial structure
of soil geochemical properties

Spatial filters in this study were modeled using
the scores for 36 positive PCNM eigenvectors.
Pairwise differences in eigenvector scores were
plotted against spatial lag to identify the scale of
heterogeneity represented by each PCNM eigen-
vector (Fig. 2). The first eigenvector (PCNM 1)
characterized broad scale (640�840 km) hetero-
geneity, differentiating the two regions, MDV
and BG (Appendix: Fig. A1, Table A2). PCNM 3
and PCNM 4 represented inter-valley scale (50�
200 km) heterogeneity in the MDV and BG
regions, respectively. PCNM 5 and PCNM 7
represented intermediate scale spatial structure
(1�3 km). Spatial variables PCNM 8 through
PCNM 36 modeled within-site spatial heteroge-
neity at scales as fine as 1 m.

The spatial structure of edaphic gradients was
predominantly organized over broad scales. PCA
showed that different sampling locations within
a site tended to have similar soil chemical
characteristics (Fig. 3; see Appendix: Table A3
and Fig. A2 for environmental variable values);
soils from Miers and Taylor (MDV region), and
Alatna and Kyffin (MDV and BG regions,
respectively) clustered together, indicating those
pairs of sites had comparatively similar soil
characteristics. The Cloudmaker site in the BG
region appeared to be unique in terms of the soil
characteristics measured in this study. The best-
fit spatial model for all environmental variables
described 65% of measured environmental vari-
ation, and only included spatial filters that
described heterogeneity at the inter-site scale or
larger (PCNM 4, 1, 3, 5, and 7; Table 2; the order
in which spatial variables are listed reflects their
importance in the model). PCNM 4, which
primarily differentiated between sites in the BG
region, was mainly associated with water content
and major ion concentrations and described the
largest amount of environmental variation ob-
served in this study. The next most prevalent
spatial variable in the overall model, PCNM 1,
reflected inter-regional scale heterogeneity. Span-
ning 78 latitude and 800 km, PCNM 1 represent-
ed the broadest spatial gradient and it was
strongly associated with soil water and organic
matter content. PCNM 3 and PCNM 5 both

differentiated between sites in the MDV region.
PCNM 3 was most strongly correlated with
gradients in pH, ammonium concentrations,
and C:N ratio, and thus indicated more pro-
nounced inter-site differences in the MDV region
with respect to these environmental variables.

Extractable DNA
Environmental DNA was successfully extract-

ed from soil from all sampling plots in the MDV
region, with total DNA yields ranging between
41 and 4,800 ng�g�1 wet weight soil (Appendix:
Table A3, Fig. A2). DNA extractions from soils
from the BG region were less successful and
resulted in lower yields than in the MDV region,
presumably reflecting lower biomass in these
soils (F1,68 … 5.8, P … 0.02; Appendix: Table A4).
We were unable to extract DNA from two
samples at the Cloudmaker site, and yields from
the other 13 samples did not exceed 152 ng�g�1

wet weight soil. Extractions from the Kyffin site
were more successful and yields ranged between

Fig. 3. Biplot of a PCA ordination of sites in
geochemical space. First two axes explained 70% of
among-site environmental variation (69 sites in the five
valleys listed above). Each point represents a sampling
plot, and shapes represent site. Filled symbols are from
the MDV region, open symbols are from the BG region.
Vectors represent loading of geochemical variables
onto the first two principal components.
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9 and 1,804 ng�g�1 wet weight soil.

Total bacterial diversity
Bacterial community tRFLP profiles were

determined for 60 assemblages from sites in both
the BG and MDV regions. Diversity partitioning
(Table 3) indicated that estimates of alpha-, beta-,
and gamma diversity were influenced by the
scale at which assemblages were pooled. In
general, dominant-biased estimates of diversity
were lower because there were fewer ��species
equivalents�� (or ��FL equivalents�� in this case)
when rare FLs were discounted in the diversity
measurement. Miers Valley was anomalous with
higher estimates for both rare- (0D fla) and domi-
nant-biased (2D fla) alpha diversity.

Beta diversity represents the number of ��dis-
tinct�� communities in a group of pooled samples.
Estimates of rare-biased beta diversity (0Db) were
between 2.9 and 5.5 at the site level and 7.6 (4.9,
8.5, 95% CL) for the entire study. For dominant-
biased beta diversity (2Db), values were between
1.4 and 2.1 at the site level and 2.2 (1.9, 2.5, 95%
CL) for the entire study. Beta diversity increased
with sampling effort (scale at which observations
were pooled, Fig. 4), but the slope was only
significantly different from 0 for dominant-
biased beta diversity (Fig. 4c).

Cyanobacterial diversity
Cyanobacterial community ARISA profiles

were detected in 28 assemblages (see Table 3).
In particular, no peaks were detected at the

Cloudmaker site in the BG region. Diversity
partitioning (Table 3) showed that Miers Valley
supported the highest local diversity estimates
for cyanobacteria. More distinct communities
(beta diversity) were detected in the cyanobacte-
rial community profiles than in the bacterial
tRFLP profiles. Estimates of 0Db were between
5.2 and 10 distinct communities at the site level
and 22.7 across all assemblages. Estimates of 2Db
were between 1.5 and 4.4, and a total of 6.5
distinct communities were observed across all
assemblages. Dominant-biased beta-diversities
were positively correlated with sampling effort
(Fig. 4d), meaning more distinct communities
were observed when more assemblages from a
larger geographic area were pooled together. A
comparison of slopes (Fig. 4c, d) indicated
distinct communities accumulated more rapidly
with sampling effort in cyanobacterial ARISA
profiles than bacterial tRFLP profiles.

Assessing the influence of spatial
and environmental filters

Among the 70 sampling locations considered in
this study, bacterial rDNA was amplifiable in
more samples (60) than cyanobacterial rDNA (28).
We used model selection on logistic regression to
determine the environmental variable(s) that best
predicted sites with detectable cyanobacterial FLs.
Total soil nitrogen (TN) was the only variable
included in the best fit logistic model predicting
the presence of amplifiable cyanobacterial 16S
rDNA (R2 … 0.143, P , 0.005; Table 4).

Table 2. Best-fit models describing spatial structure of environmental gradients.

Environmental variable Adj. R2 F df P Spatial filters�

All� 0.65 25.8 5, 63 0.005 4, 1, 3, 5, 7
pH 0.90 54.9 11, 57 ,0.001 3, 1, 5, 4, 6, 7, 2, 26, 29, 19, 36
Conductivity 0.73 13.9 14, 54 ,0.001 4, 3, 5, 6, 17, 10, 12, 1, 13, 30, 29, 9, 2, 15
Soil moisture 0.66 20.2 7, 61 ,0.001 1, 7, 6, 8, 3, 27, 4
NH4-N 0.64 14.7 9, 59 ,0.001 3, 4, 1, 7, 21, 5, 30, 19, 6
NO3-N 0.70 12.6 14, 54 ,0.001 4, 1, 2, 6, 26, 10, 13, 12, 17, 33, 3, 5, 9, 18
Cl 0.72 12.0 16, 52 ,0.001 4, 3, 5, 1, 12, 13, 2, 29, 33, 8, 6, 16, 26, 10, 17, 21
SO4 0.60 8.4 14, 54 ,0.001 4, 5, 6, 19, 34, 2, 17, 11, 31, 13, 10, 12, 25, 1
TOC 0.89 32.6 17, 51 ,0.001 1, 4, 3, 7, 5, 10, 21, 14, 6, 17, 20, 26, 18, 8, 2, 22, 15
TN 0.91 49.3 15, 53 ,0.001 1, 4, 6, 5, 10, 2, 17, 7, 8, 13, 20, 21, 26, 33, 15
C:N 0.74 20.8 10, 58 ,0.001 3, 4, 7, 6, 14, 36, 21, 10, 22, 18

Notes: The spatial organization of all environmental variables was assessed using dbRDA. Multiple linear models were fit to
individual environmental variables. Models were selected using stepwise model fitting. Predictor variables are scores from
positive eigenvectors representing spatial filters calculated using PCNM analysis on spatial coordinates. TOC, total organic
carbon; TN, total nitrogen.

� PCNM eigenvectors, listed in order of influence.
� The response variable for dbRDA model selection was a Euclidean distance matrix of scaled, transformed environmental

variables and represents overall environmental variability.
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We found that both environmental and spatial
gradients influenced bacterial and cyanobacterial
community composition (Table 4). According to
best-fit dbRDA models, environmental gradients
[E] were better predictors of variation in com-
munity composition for total bacterial communi-
ty profiles than cyanobacterial community
profiles. This was true for rare-biased diversity
estimates (bacteria vs. cyanobacteria … 11.5% vs.
6.2%) as well as dominant-biased diversity
estimates (bacteria vs. cyanobacteria … 30.4% vs.
15.1%). In rare-biased bacterial community pro-
files, the best-fit dbRDA model indicated pH,
moisture, TN, and conductivity to be the most
important variables explaining plot-to-plot vari-
ation (Fig. 5a), whereas pH, moisture, C:N ratio,
conductivity, and NH4-N were most important
when dominant-biased dissimilarities were used
(Fig. 5b). In rare-biased cyanobacterial commu-

nity profiles, the best fit dbRDA model indicated
soil C:N, NO3-N, and conductivity to be the most
important variables explaining plot-to-plot vari-
ation (Fig. 5c), whereas soil C:N, TN, and NO3-N
were most important when dominant-biased
dissimilarities were used (Fig. 5d).

For both bacterial and cyanobacterial commu-
nity profiles, spatial filters [S] explained domi-
nant-biased diversity better than rare-biased
diversity. For bacterial tRFLP community pro-
files, rare-biased diversity was organized at a
broader spatial scale (PCNM 1 and 3, adj. R2 …
0.084) than dominant-biased diversity (PCNM
eigenvectors 3, 5, 1, 11, and 28; adj. R2 … 0.316).
For cyanobacterial ARISA community profiles,
rare-biased diversity correlated with both broad
and local scale spatial filters (PCNM 3, 1, and 10,
adj. R2 … 0.094). Dominant-biased diversity was
organized at a similar scale (PCNM 3, 1, 5, and

Table 3. Alpha, beta, and gamma components of total bacterial tRFLP and cyanobacterial ARISA community
profiles.

Site n

Rare-biased diversity Dominant-biased diversity
0D fla

0Db
0Dc

2D fla
2Db

2Dc

Bacteria (tRFLP)
ALL 60 38

(40.6, 54.3)
7.6

(4.9, 8.5)
289

(237, 387)
12.5

(10.7, 14.6)
2.2

(1.9, 2.5)
28.1

(22.7, 31.5)
BG region 19 35.8

(37.8, 65.7)
6.5

(3.3, 6.8)
231

(174.7, 326.7)
11.4

(7.6, 16)
2.1

(1.6, 2.3)
24.3

(15.1, 30.1)
Cloudmaker 11 36.8

(31.2, 58.3)
4.5

(2.5, 7.2)
167

(106.6, 300.9)
12.7

(9.3, 16.6)
2.1

(1.5, 2.1)
26.1

(16.8, 29.8)
Kyffin 8 34.4

(32.3, 89.1)
5.5

(1.9, 7)
190

(114.5, 332)
9.8

(4.8, 20.3)
1.7

(1, 1.8)
16.7

(7.2, 28)
MDV region 41 39

(38.5, 52.3)
5.6

(3.9, 6.8)
218

(176.5, 302.4)
13.1

(10.9, 15.2)
2.1

(1.8, 2.3)
27

(21.9, 30.3)
Alatna Valley 13 34.6

(28.6, 55.5)
4.6

(2.6, 8.8)
158

(91.8, 324)
9.8

(6.8, 13.6)
1.4

(1.1, 1.7)
13.6

(8.7, 19.9)
Miers Valley 14 50.1

(43.7, 63.4)
2.9

(2.2, 3.8)
146

(118, 189.4)
16.6

(14.2, 19.4)
1.4

(1.2, 1.5)
23.3

(18.3, 27.3)
Taylor Valley 14 34

(30.7, 53.3)
4

(2.4, 5.2)
136

(103.5, 194.6)
13.5

(10.2, 17.5)
1.9

(1.5, 2.1)
26.3

(18.8, 28.8)
Cyanobacteria (ARISA)

ALL 28 4.8
(5, 12.1)

22.7
(8.1, 24.5)

108
(74, 162.5)

2.7
(2.1, 3.6)

6.5
(3.3, 7.7)

17.5
(8, 23.9)

BG region 4 3.7
(1.5, 12)

5.2
(1.2, 27.8)

19
(4, 147)

2.2
(1.3, 2.9)

2.2
(1, 2.4)

4.8
(1.7, 6.6)

Kyffin 4 3.7
(1.8, 12.3)

5.2
(1.3, 27.8)

19
(4, 147)

2.2
(1.3, 2.9)

2.2
(1, 2.4)

4.8
(1.7, 6.6)

MDV region 24 5
(5.4, 13.5)

20.5
(7.1, 24)

102
(69, 171.7)

2.8
(2.1, 3.8)

5.1
(2.6, 6.4)

14.2
(6.4, 21)

Alatna Valley 8 3.7
(2.8, 12.1)

10
(2.4, 32.6)

37
(12.1, 172.5)

1.8
(1.2, 2.8)

1.5
(1, 2.1)

2.8
(1.5, 4.8)

Miers Valley 8 8.4
(6, 24)

7.2
(2.1, 25.4)

60
(30, 215.6)

4.5
(2.8, 7)

4.4
(1.9, 4.2)

19.8
(7.1, 20.3)

Taylor Valley 8 4
(2.8, 10.8)

10
(2.9, 44.3)

40
(13, 224.1)

2.7
(1.7, 4.3)

4.2
(1.9, 4.3)

11.3
(3.8, 15.4)

Note: Diversities are calculated from Hill numbers of order q … 0 and q … 2. Alpha, beta, and gamma components were
calculated for the entire study, observations grouped by region, and observations grouped by site. 95% CLs for mean alpha and
beta were calculated using bootstrap resampling.
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10; adj. R2 … 0.189). A fraction of the spatial
structure of both the bacterial and cyanobacterial
community profiles was explained by spatially
structured environmental gradients [E \ S]; how-
ever, all profiles had significant spatial structure
that was independent of measured environmen-
tal gradients [SjE]. Only the dominant-biased
cyanobacterial community profile had a signifi-
cant local [SjE] component.

DISCUSSION

Lee et al. (2012) reported significant inter-
valley variation in soil bacterial community
composition in the MDV region and also dem-
onstrated that variation in community composi-
tion was correlated with gradients in soil
geochemistry associated with microclimate and
the influence of liquid water (also see Aislabie et
al. 2008). The cyanobacterial component of the

soil microbial community appears to be associ-
ated with different environmental gradients at
finer spatial scales (Wood et al. 2008, Michaud et
al. 2012, Niederberger et al. 2012). In this study,
our sampling design allowed us to identify the
spatial filters and environmental gradients asso-
ciated with variation in soil microbial community
composition, and thus provide insight to the
scales at which niche-based species sorting (H1)
and dispersal-based biogeography (H2) influence
diversity patterns. Increasing the extent of our
survey beyond the MDV region (;200 km) to
include sites that were geochemically similar
(e.g., Kyffin soils were similar to Alatna; Fig. 3),
but up to 800 km away from the MDV region,
provided an opportunity to test predictions of H1
and H2 over a broad spatial scale. H1 predicts
that the relationship between community com-
position and environmental gradients will be
maintained as spatial lags are increased, whereas

Fig. 4. Beta diversity estimates for samples pooled by site, by region, and for the entire study, plotted against
sampling effort (see Table 3). Panels represent rare-biased beta diversity for total bacterial (a) and cyanobacterial
(b) community profiles and dominant-biased beta diversity for total bacterial (c) and cyanobacterial (d)
community profiles. Sampling effort represents the number of assemblages pooled at a given scale. Error bars
reflect estimates of 95% CIs using 1,000 bootstrapped iterations (resampling with replacement). 95% CLs of the
slope of the best fit lines were calculated using 10,000 bootstrapped iterations.
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H2 predicts that community composition will be
decoupled from environmental variation.

Total soil bacterial diversity corresponds
with broad environmental gradients

Total bacterial diversity assessed with tRFLP
profiling showed the most common taxonomic
groups (associated with most abundant FLs) of
the metacommunity were relatively well mixed
throughout the Transantarctic Mountains and
responded to broad scale environmental gradi-
ents spanning 78 of latitude, reaching as far south
as 84.38 S (evidence for H1). However, this data
set represents a relatively coarse taxonomic
resolution (Crosby and Criddle 2003, Danovaro
et al. 2006, Novis et al. 2007, Gao and Tao 2012),
and dispersal-based metacommunity dynamics
(H2) may create biogeography at a finer taxo-
nomic resolution (i.e., species or strain).

In the MDV region of the Transantarctic
Mountains, regional scale gradients in soil
physiochemical properties that correspond with
elevation, lithology, and climate have been
shown to organize microbial community compo-

sition (Aislabie et al. 2006, 2008, Barrett et al.
2006, Pointing et al. 2009, Cary et al. 2010, Zeglin
et al. 2011, Lee et al. 2012). Total bacterial
diversity patterns presented here provide evi-
dence in support of the possibility that MDV and
BG regions share a source pool, and local
assemblages are derived from similar species-
sorting processes (H1). Specifically, soil pH and
moisture, which are globally ubiquitous abiotic
drivers of bacterial community composition
(Fierer and Jackson 2006, Angel et al. 2010),
appeared to be organizing niche-based sorting at
the taxonomic resolution that could be distin-
guished with tRFLP in soils in the Transantarctic
Mountains (Table 4, Fig. 5a, b).

Multiplicative beta diversity values, reported
as Hill numbers, represent the number of
��distinct�� communities in a data set (Jost 2007,
Chao et al. 2012). Beta diversity is expected to
increase with scale (i.e., pooling samples from an
increasingly large area) as new communities are
encountered with an expanded sampling effort
across the landscape. This can occur at local
scales as new niches are encountered along

Table 4. Best-fit environmental and spatial models for bacterial and cyanobacterial community composition in
Antarctic soils.

Response variable
(model type)

Environmental
variables

Spatial
filters

Fraction of variation as partial adj. R2

[E]
[S]

(local [S]) [EjS] [E \ S]
[SjE]

(local [SjE]) [E þ S]

Bacteria (tRFLP)
Rare-biased community

composition (multivariate,
dbRDA)

pH, Moisture,
TN, Cond.

1, 3 0.115* 0.084*
(NA)

0.049* 0.066 0.019*
(NA)

0.133*

Dominant biased community
composition (multivariate,
dbRDA)

pH, Moisture,
C:N, Cond.,
NH4-N

3, 5, 1, 11, 28 0.304* 0.316*
(0.103*)

0.093* 0.210 0.106*
(NA)

0.410*

Cyanobacteria (ARISA)
Detectable PCR product

(univariate, logistic)
(�) TN 0.143*

Rare-biased community
composition (multivariate,
dbRDA)

C:N, NO3-N,
Cond.

3, 1, 10 0.062* 0.080*
(0.023*)

0.041* 0.021 0.059*
(NA)

0.121*

Dominant biased community
composition (multivariate,
dbRDA)

C:N, TN, NO3-N 3, 1, 5, 10 0.151* 0.218*
(0.042*)

0.006ns 0.145 0.073*
(0.033*)

0.224*

Notes: Both environmental and spatial (eigenvectors from PCNM analysis) variables were used to explain variation in
community composition. Variation in community composition was partitioned using dbRDA for presence/absence data using
Jaccard distances (rare-biased, emphasizes the influence of rare taxa) and for relative-abundance data using Morisita-Horn
distances (dominant-biased, emphasizes the influence of abundant taxa). Environmental and spatial explanatory variables were
identified with a forward, stepwise selection. Adjusted R2 is the proportion of variation in community composition explained
by environmental [E] or spatial [S] variables, where [EjS] is the environmental influence independent of spatial variables,
[E \ S]�intersection between [E] and [S]�represents spatially structured environmental variables, [SjE] represents spatial
structure independent of environmental influence, and [E þ S] is the total variation explained by environmental and spatial
variables. An asterisk indicates a significant adjusted R2 (P value , 0.05) based on a permutation test, ��ns�� indicates a P value .
0.05. Adjusted R2 values in parentheses describe local (e.g., within a site or valley, ,3 km) spatial heterogeneity. Logistic
regression was used to predict cyanobacteria presence/absence using environmental variables.
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environmental gradients, or over broad spatial
scales as new biogeographic regions are encoun-
tered (Barton et al. 2013). However, beta diversity
is expected to be scale invariant at intermediate
(��regional��) scales when a metacommunity is
sufficiently mixed, and no new habitats with
novel communities are encountered with in-
creased sampling effort (Barton et al. 2013).
Observed beta diversity was relatively scale
invariant for total soil bacterial tRFLP profiles
(Fig. 4), indicating the same taxonomic groups,
as identified using tRFLP, were dominant in the
same niches across the Transantarctic Mountains.

Edaphic cyanobacteria exhibit biogeography
The presence of cyanobacterial FLs was nega-

tively correlated with total soil nitrogen (Table 4,
univariate logistic model). This empirical rela-
tionship may exist because both edaphic cyano-
bacterial profiles (Moorhead et al. 1999, 2003)
and major ion concentrations (including nitrate)
(Bockheim 2008) are influenced by the historical
availability of liquid water. Dry Valleys without
prominent aquatic features (e.g., lakes, ponds or
streams, which source cyanobacterial communi-
ties in neighboring soils) tend to be depauperate
in soil cyanobacteria (Moorhead et al. 1999, 2003,
Wood et al. 2008, Pointing et al. 2009). Excep-

Fig. 5. Principal coordinate analysis of sites based on community composition profiles, with environmental
vector overlays. Ordinations calculated for total bacterial profiles (tRFLP) using Jaccard distances (a) and
Morisita-Horn distances (b), and for cyanobacterial profiles (ARISA) using Jaccard distances (c), and Morisita-
Horn distances (d).
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tionally old surfaces that are not exposed to
liquid water during the austral summer (March-
ant and Denton 1996) accumulate high concen-
trations of soluble nitrate from atmospheric
deposition (Michalski et al. 2005, Bockheim
2008), which may explain why soil TN levels
negatively covaried with cyanobacterial presence
in edaphic habitats.

Among plots with detectable cyanobacterial
FLs, diversity patterns in ARISA community
profiles exhibited heterogeneity in community
composition over localized spatial gradients
represented by transects �3 km (i.e., within a
valley, Table 4, local [S] and local [SjE] compo-
nents of beta diversity). Previous studies in the
MDV region have shown wind-driven dispersal
redistributes propagules from aquatic and inter-
mittently saturated habitats to neighboring, more
water limited soils (Wood et al. 2008, Michaud et
al. 2012, Niederberger et al. 2012). These dynam-
ics could have created the local (i.e., within a
valley) spatial heterogeneity in cyanobacterial
diversity that we detected in this study. Com-
munity composition was also correlated with soil
C:N, suggesting the cyanobacterial influence over
soil stoichiometry that has been documented in
the Dry Valleys (Barrett et al. 2007) may be
general to soils throughout the Transantarctic
Mountains.

Beta diversity was highly and positively
correlated with sampling effort (Fig. 4d), indicat-
ing new ��distinct�� cyanobacterial communities
were detected with increased sampling coverage
and extent. Localized spatial structure and lack
of correlation with environmental gradients
(other than C:N) support the hypothesis (H2)
that spatially limited dispersal creates spatial
heterogeneity in the cyanobacterial metacom-
munity over relatively small (,3 km) distances
(Wood et al. 2008, Michaud et al. 2012, Nieder-
berger et al. 2012).

Local and regional influences over Antarctic
microbial metacommunities in arid soils

We did not detect spatial heterogeneity in
community composition that was not explained
by gradients in soil geochemistry in total soil
bacterial tRFLP community profiles. The lack of
detectable biogeography in total soil bacteria
may be due to phylogenetic niche conservatism
(Losos 2008), reflecting a phylum level response

to broad environmental gradients detected in this
data set because of the coarse taxonomic resolu-
tion of tRFLP profiling techniques (Crosby and
Criddle 2003, Gao and Tao 2012). The possibility
exists that dispersal-based metacommunity dy-
namics may influence the biogeography of
species or strains within a phylum or functional
group (e.g., Dumbrell et al. 2009, Caruso et al.
2011).

Such is the case for the cyanobacterial subset of
the total bacterial community. We detected
biogeographic patterns using a profiling tech-
nique with higher taxonomic resolution (ARISA).
However, edaphic cyanobacterial diversity pat-
terns are not representative of total bacterial
diversity in arid soils, and this finding is
consistent across community profiling method-
ologies, including tRFLP, ARISA, and amplicon
pyrosequencing (Lee et al. 2012, Tiao et al. 2012).
Similar to this study, but using ARISA for both
total bacterial and cyanobacterial community
profiles, Lee et al. (2012) showed more distinct
cyanobacterial assemblages than total bacterial
assemblages in Dry Valley soils. The consistency
of these diversity patterns across community
profiling techniques suggests the lack of detect-
able biogeography in the total bacterial meta-
community reported in this study cannot be
explained solely by the phylogenetic resolution
of the fingerprinting technique. An alternative,
though not mutually exclusive, hypothesis is that
the taxonomic groups that dominate the total soil
bacterial pool represent a cosmopolitan meta-
community that is well mixed throughout the
Transantarctic Mountains. The cyanobacterial
subcomponent represents a minor fraction of
the total bacterial metacommunity in arid soils
(e.g., Lee et al. 2012), and thus may have a
negligible influence on total soil bacterial diver-
sity patterns.

Aeolian redistribution by saltation provides a
localized dispersal mechanism (i.e., within val-
ley) that has been demonstrated to create
spatially autocorrelated distribution patterns in
the Dry Valleys for soil micro- and meiofauna
(Nkem et al. 2006, Adams et al. 2007), including
cyanobacteria (Wood et al. 2008, Michaud et al.
2012, Niederberger et al. 2012), and drives local
scale (i.e., within valley) heterogeneity in com-
munity composition. Aeolian redistribution of
cyanobacterial cells (Wood et al. 2008) combined
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with the legacy of the historical influence of
liquid water in the landscape (Moorhead et al.
1999, 2003) appear to interact to create a
heterogeneous patchwork of cyanobacterial as-
semblages over spatial gradients ,3 km. As
such, it appears that the distribution of aquatic
features in the landscape act as an environmental
filter (H1) that determines the presence of
cyanobacteria (logistic model, Table 4), and
dispersal-based metacommunity dynamics (H2)
create biogeographic patterns within the cyano-
bacterial component of the soil microbial com-
munity (dbRDA models, Table 4).

Diversity patterns in the total bacterial com-
munity appear to be organized by different
metacommunity dynamics than the cyanobacte-
rial subcomponent. Taxa that dominate the total
bacterial community may represent groups that
become entrained in the atmosphere (Morris et
al. 2008, Bowers et al. 2011) and redistributed
over broad scales. While the near-ground aeolian
redistribution of cyanobacteria has been docu-
mented in the Dry Valleys (Wood et al. 2008,
Michaud et al. 2012), cyanobacteria appear to be
a minor component in more broadly dispersed
bioaerosols (Bottos et al. 2013). Past studies have
shown beta diversity will have a larger environ-
mental [EjS] component in a well-mixed meta-
community, and a larger [SjE] component when
dispersal is limited (De Bie et al. 2012). In this
study, we found diversity of the cyanobacterial
subcomponent of the soil microbial community
to be significantly correlated with local [SjE], and
total bacterial diversity was more strongly
correlated with [EjS] (Table 4). This result is
consistent with the hypothesis that metacom-
munity mixing occurs over different spatial
scales for different subgroups of the soil micro-
bial community.

The dynamic rank-abundance curve hypothe-
sis (Lennon and Jones 2011) suggests that the rare
biosphere (Sogin et al. 2006) provides a dormant
seed bank of propagules that can be recruited to
the active component of the community when
local environmental conditions are appropriate
(Jones and Lennon 2010, Lennon and Jones 2011).
For soil microbial communities worldwide,
.80% of the cells and ;50% of species are
dormant (Lennon and Jones 2011), and nutrient
poor habitats tend to have larger proportions of
dormant cells (Jones and Lennon 2010). The

presence of such a cryptobiotic seed bank has
been demonstrated for MDV soils (McKnight et
al. 2007, Antibus et al. 2012, Tiao et al. 2012).
Diversity patterns observed in this study for total
bacteria (i.e., [SjE] only significant over broad
spatial scales in Table 4, shallower slope than
cyanobacteria in Fig. 4) suggest a substantial
proportion of FLs present in the tRFLP profiles
not only represent a relatively well mixed
metacommunity, but also demonstrate that the
seed bank can respond consistently to broad
environmental gradients at the Transantarctic
scale.

However, because abundance and distribution
tend to be correlated (Nemergut et al. 2011), rare-
biased diversity likely also represents the more
dispersal limited, endemic members of the
microbial metacommunity, including the cyano-
bacterial subcomponent. Edaphic cyanobacteria
are sourced from nearby aquatic habitats (Wood
et al. 2008) that tend to be relative hotspots for
primary productivity (Zeglin et al. 2009). Such
habitats are more likely to be influenced by
ecological drift (i.e., priority effects, endemism)
and produce diversity patterns with local scale
spatial heterogeneity (Chase 2007, 2010). Thus,
edaphic cyanobacterial community composition
is more closely linked to the proximity of aquatic
source pools rather than immediate measures of
soil moisture (Wood et al. 2008, Niederberger et
al. 2012), and dispersal dynamics strongly
influence cyanobacterial diversity at local spatial
scales.

Antarctic soil microbial communities can rap-
idly respond to shifts in the local habitat
(McKnight et al. 2007, Tiao et al. 2012), but an
effective conceptual model of metacommunity
dynamics must account for both regional and
local influences over the active and dormant
pools to scale this response to a landscape
(Leibold et al. 2004, Martiny et al. 2006, 2011,
Logue et al. 2011, Nemergut et al. 2011, Soininen
2012). The survey data and analyses presented
here are a first step to identifying the scales at
which niche- and dispersal-based dynamics are
likely driving patterns in soil microbial diversity.
Moreover, the balance of local and regional
drivers of community composition appears to
depend on the life history characteristics (e.g.,
dispersal ability, dormancy) of the community of
interest. How functional traits of individuals
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scale up to determine metacommunity level
responses to regional environmental gradients
will depend on how well a metacommunity is
mixed, the level of endemism, and the extent and
functional diversity of the dormant seed bank.
Understanding the scales at which these dynam-
ics interact will be essential for creating models to
predict how Antarctic soils will respond in a
changing environment.
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SUPPLEMENTAL MATERIAL

APPENDIX

Detailed methods
Sample collection.�Aseptic sampling tech-

niques were used to collect a 500-g composite
soil sample from the upper 10 cm in a plot,
excluding pebbles .2 mm in diameter. Each
composite sample was homogenized in a poly-
ethylene Whirl-Pak (Nasco International, Fort
Atkinson, WI, USA), and split into subsamples
for geochemical analysis, soil moisture analysis,
and DNA extraction. The DNA extraction split (1
g soil) was preserved in ;600 ll CTAB extraction
buffer (Dempster et al. 1999, Coyne et al. 2001) in
a 2-ml CryoVial, stored on ice in the field, and
stepped down to �808C as soon as possible.

Geochemical analysis.�Standard methods for
Antarctic soils (Barrett et al. 2002, 2009) were
used to measure physicochemical soil properties
(gravimetric soil moisture, conductivity, and pH)
and to extract soluble ions in deionized water
and inorganic nitrogen in 2M KCl at the Crary
Laboratory at McMurdo Station. Soil samples
and analytes were shipped to Virginia Tech for
chemical analysis. Ion concentrations in DI
extracts were measured on a DIONEX DX500
ion chromatograph (DIONEX, Sunnydale, CA)
and inorganic N concentrations in KCl extracts
were measured on a LACHAT QuicChem 8500
FIA System (Hach, Loveland, CO). Soil from each
sample was air dried and ground in a ball mill;
organic C and total C and N (TN) were
determined on acidified and unacidified samples
on an Elantech EA 1112 elemental analyzer

(Elantech, Lakewood, NJ, USA) (Barrett et al.
2004).

Soil bacterial and cyanobacterial community pro-
filing.�The bacterial communities were charac-
terized using terminal restriction fragment length
polymorphism (tRFLP) as follows (Lee et al.
2012): PCR of the 16S ribosomal RNA gene was
carried out in 25-ll reactions containing 300 nM
of FAM-labeled forward primer 27F (50 - /56 -
FAM/AGA GTT TGA TCC TGG CTCAG - 30)
(Lane 1991), 300 nM of reverse primer 1492R (50 -
GGT TAC CTT GTT ACG ACTT - 30) (Lane 1991),
3 mM MgCl2, 13 Platinum Taq PCR buffer, 1.25
U of Platinum Taq DNA polymerase (Invitrogen
Ltd., Carlsbad, CA), 2.5 lg bovine serum
albumin, 200 lM of each dNTP (Roche Diagnos-
tics, New Zealand), 1 ng of extracted template
DNA, and UltraPure distilled water (Invitrogen
Ltd.). Amplification was performed using an
initial denaturation step at 948C for 3 min
followed by 30 cycles of 948C, 30 sec; 558C, 30
sec; 728C, 90 sec; and a final extension step of
728C for 5 min. Duplicate PCR reactions were
pooled together, and 30 lL of pooled product
was purified (QuickClean 5M PCR purification
kit, GenScript). Purified amplicons (10 lL of
purified product) were digested at 378C for 3 h in
20 ll reactions containing 40 U of MspI, 13 Buffer
4 (NE Biolabs) and DNAse-free water (MoBio),
followed by heat inactivation at 808C for 20 min.
All reactions were stored at �208C until being
sent to the University of Waikato DNA Sequenc-
ing Facility (University of Waikato, New Zea-
land) for standard desalting and fragment size
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Fig. A1. Map of sampling locations and scores representing the broadest spatial filter (PCNM 1) and a fine scale
spatial filter (PCNM 11). Contours represent the spatial gradient interpolated from the PCNM scores for each
sample location. Size of symbols are correlated with the absolute value of the PCNM score at a location, filled
symbols represent a negative score. Note that PCNM 1 distinguishes between the MDV and CTAM regions, and
PCNM 11 represents heterogeneity at a local scale (;1 m).
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Fig. A2. Geochemical properties of soils collected from valleys in the MDV and BG regions (in black). For
reference (in gray), geochemical values from locations from each region with low/no DNA yields (not reported in
the study), and from localized (;100 m) hydrologic gradients from each region (Taylor Valley in MDV, Meyer
Desert in BG, not reported in the study). See Table A3 for means and range of observed values for the sites used in
this study.
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Table A1. Sampling locations and dates.

Region Valley Transect Location Latitude Longitude Sampling date�

MDV Alatna Valley 1 10 �76.9111 161.080742 20101119
MDV Alatna Valley 1 0A �76.911 161.080385 20101119
MDV Alatna Valley 1 0B �76.9111 161.080367 20101119
MDV Alatna Valley 1 100A �76.9114 161.084079 20101119
MDV Alatna Valley 1 100B �76.9114 161.08406 20101119
MDV Alatna Valley 2 10 �76.9089 161.046669 20101119
MDV Alatna Valley 2 0A �76.909 161.047066 20101119
MDV Alatna Valley 2 0B �76.9089 161.047067 20101119
MDV Alatna Valley 2 100A �76.909 161.043102 20101119
MDV Alatna Valley 2 100B �76.909 161.043099 20101119
MDV Alatna Valley 3 10 �76.9103 161.003367 20101119
MDV Alatna Valley 3 0A �76.9103 161.00301 20101119
MDV Alatna Valley 3 0B �76.9103 161.002992 20101119
MDV Alatna Valley 3 100A �76.91 161.006648 20101119
MDV Alatna Valley 3 100B �76.91 161.006632 20101119
BG Cloudmaker 1 10 �84.2685 169.8254 20101208
BG Cloudmaker 1 0A �84.2684 169.824889 20101208
BG Cloudmaker 1 0B �84.2684 169.824814 20101208
BG Cloudmaker 1 100A �84.2693 169.830301 20101208
BG Cloudmaker 1 100B �84.2693 169.830224 20101208
BG Cloudmaker 2 10 �84.2782 169.814667 20101208
BG Cloudmaker 2 0A �84.2781 169.814729 20101208
BG Cloudmaker 2 0B �84.2781 169.814642 20101208
BG Cloudmaker 2 100A �84.279 169.812479 20101208
BG Cloudmaker 2 100B �84.279 169.812391 20101208
BG Cloudmaker 3 10 �84.2601 169.816567 20101208
BG Cloudmaker 3 0A �84.2602 169.816076 20101208
BG Cloudmaker 3 0B �84.2602 169.815993 20101208
BG Cloudmaker 3 100A �84.2594 169.819826 20101208
BG Cloudmaker 3 100B �84.2594 169.819742 20101208
BG Kyffin 1 10 �83.8215 171.968083 20101209
BG Kyffin 1 0A �83.8216 171.968522 20101209
BG Kyffin 1 0B �83.8216 171.968447 20101209
BG Kyffin 1 100A �83.8208 171.964582 20101209
BG Kyffin 1 100B �83.8208 171.964511 20101209
BG Kyffin 2 10 �83.8118 171.947033 20101209
BG Kyffin 2 0A �83.8119 171.946829 20101209
BG Kyffin 2 0B �83.8118 171.946772 20101209
BG Kyffin 2 100A �83.8112 171.952799 20101209
BG Kyffin 2 100B �83.8112 171.952737 20101209
MDV Miers Valley 1 10 �78.1112 164.025 20101122
MDV Miers Valley 1 0A �78.1111 164.024745 20101122
MDV Miers Valley 1 0B �78.1111 164.024722 20101122
MDV Miers Valley 1 100A �78.1116 164.028561 20101122
MDV Miers Valley 1 100B �78.1116 164.028541 20101122
MDV Miers Valley 2 10 �78.1062 163.988317 20101122
MDV Miers Valley 2 0A �78.1062 163.988763 20101122
MDV Miers Valley 2 0B �78.1062 163.988736 20101122
MDV Miers Valley 2 100A �78.1056 163.985414 20101122
MDV Miers Valley 2 100B �78.1056 163.985387 20101122
MDV Miers Valley 3 10 �78.1015 163.93835 20101122
MDV Miers Valley 3 0A �78.1015 163.938704 20101122
MDV Miers Valley 3 0B �78.1015 163.938695 20101122
MDV Miers Valley 3 100A �78.1013 163.934438 20101122
MDV Miers Valley 3 100B �78.1014 163.934428 20101122
MDV Taylor Valley 1 10 �77.6191 163.2982 20101118
MDV Taylor Valley 1 0A �77.6191 163.297861 20101118
MDV Taylor Valley 1 0B �77.6191 163.297837 20101118
MDV Taylor Valley 1 100A �77.6186 163.301295 20101118
MDV Taylor Valley 1 100B �77.6186 163.301272 20101118
MDV Taylor Valley 2 10 �77.6282 163.253033 20101118
MDV Taylor Valley 2 0A �77.6282 163.253424 20101118
MDV Taylor Valley 2 0B �77.6282 163.253409 20101118
MDV Taylor Valley 2 100A �77.6285 163.249542 20101118
MDV Taylor Valley 2 100B �77.6285 163.249525 20101118
MDV Taylor Valley 3 10 �77.6309 163.190883 20101118
MDV Taylor Valley 3 0A �77.631 163.19031 20101118
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determination using an ABI 3130 xl sequencer
(PE Applied Biosystems, Foster City, USA).

For profiling of cyanobacterial community
profiles using automated ribosomal intergenic
spacer analysis (ARISA), PCR of the intergenic
spacer of the rRNA operon was carried out in 25-
ll reactions containing 300 nM of forward FAM
labeled primer CY-ARISA-F (50 - TET/TG GYC
AYR CCC GAA GTC RTT A - 30) (modified from
Wood et al. 2008); 300 nM of reverse primer
23S30R (50 - CHT CGC CTC TGT GTG CCW
AGG T - 30) (modified from Taton et al. 2003,
Wood et al. 2008) 1.5 mM MgCl2, 13 Platinum
Taq PCR buffer, 1.25 U of Platinum Taq DNA
polymerase (Invitrogen Ltd., New Zealand), 0.5
lg bovine serum albumin, 200 lM of each dNTP
(Roche Diagnostics, New Zealand), 10 ng of
extracted template DNA and UltraPure distilled
water (Invitrogen Ltd.). The master mix, contain-
ing all reagents except the fluorescently labeled
forward primer was treated with 0.1 lg/ll
ethidium monoazide bromide (Biotium Inc.,
Hayward, CA) by incubation in the dark for 1
min followed by exposure to high wattage light
for 1 min (Rueckert and Morgan 2007). Ampli-
fication was performed using an initial denatur-
ation step at 948C for 2 min followed by 35 cycles
of 948C, 20 sec; 558C, 15 sec; 728C, 90 sec and a
final extension step of 728C for 7 min. Duplicate
PCR reactions were pooled together and diluted
1:20 and stored at �208C until being sent to the
University of Waikato DNA sequencing facility
(University of Waikato, New Zealand) for frag-
ment size determination using an ABI 3130 xl
sequencer (PE Applied Biosystems, Foster City,
USA).

Calculating spatial filters (PCNM eigenvectors)
from sampling plot coordinates.�Sampling plot
coordinates were recorded as latitude and
longitude and locations were visually confirmed
using Google Earth. We used the distm function

in the geosphere package for R (Hijmans and
Williams 2011) to calculate a geographic distance
matrix of great circle distances, in meters, using
the Vicenty ellipsoid method and the WGS84
ellipsoid. We used the pcnm function in the
vegan package (Oksanen et al. 2012) to calculate
Principal Coordinates of Neighbor Matrices
(PCNM) (Borcard et al. 2004), which is a special
case of distance based MEM analysis (Peres-Neto
et al. 2006). PCNM provides a method to
calculate eigenvectors from a truncated distance
matrix, and we used a truncation threshold of the
minimum distance that kept sites connected in a
spanning tree (Borcard et al. 2004). The maxi-
mum distance in the truncated matrix was 4
times the threshold distance (Borcard et al. 2004).
Eigenvectors with positive eigenvalues were
used as variables to represent different scales
heterogeneity (i.e., spatial filters), with the first
eigenvector (PCNM 1) representing the broadest
spatial gradient, and each successive eigenvector
representing finer scale spatial structure.

Calculating 95% confidence intervals for alpha,
beta, and gamma components of diversity.�We used
bootstrap resampling to calculate 95% CLs for
each diversity estimate (Hesterberg et al. 2007)
for each level of organization (see Supplement).
Diversity was partitioned for each bootstrapped
sample, and the 2.5% and 97.5% percentiles are
reported as CLs. Rare-biased gamma diversity
(0Dc) was calculated for bootstrapped assem-
blages using the incidence based Chao estimate
of richness for each bootstrapped sample (Chao
1987), which estimates the number of unob-
served taxa (FLs in this case) based on the
frequency observed rare groups. Because domi-
nant-biased gamma diversity (2Dc) emphasizes
regional diversity of dominant groups, we did
not include a correction for unobserved rare FLs
when calculating 95% CLs.

Table A1. Continued.

Region Valley Transect Location Latitude Longitude Sampling date�

MDV Taylor Valley 3 0B �77.631 163.19029 20101118
MDV Taylor Valley 3 100A �77.6306 163.193659 20101118
MDV Taylor Valley 3 100B �77.6306 163.19364 20101118

� Sampling dates are in the form: yyyymmdd.
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SUPPLEMENT

R script and data files used for diversity partitioning and to bootstrap confidence intervals for
diversity metrics described in the main text (Ecological Archives C004-014-S1).

Table A2. ANOVAs comparing within and between site spatial variable (PCNM) scores.

Spatial variable F df P

Results from Tukey�s HSD test

MDV region BG region

Taylor Miers Alatna Kyffin Cloudmaker

PCNM1 639959.5 4, 65 0 a a a b b
PCNM2 0.964 4, 65 0.433
PCNM3 578.523 4, 65 0 a b c d d
PCNM4 241.429 4, 65 0 a a a b c
PCNM5 344.386 4, 65 0 a b c d d
PCNM6 0.008 4, 65 1
PCNM7 0.004 4, 65 1
PCNM 8�36 NS

Note: Among-site variation in PCNM scores was greater than within-site variation for PCNM variables 1, 3, 4 and 5,
indicating these variables represent broad scale (among-site) spatial heterogeneity.

Table A3. Summary of geochemistry and DNA yields (see Fig. A2).

Variable

MDV CTAM

Alatna Miers Taylor Cloudmaker Kyffin

pH 7.40
(6.97, 8.3)

9.64
(9.21, 10.04)

9.74
(8.40, 10.06)

8.52
(8.33, 8.79)

7.72
(6.52, 8.62)

Conductivity (lS) 62.8
(15, 229)

373
(72.0, 1264)

483
(147, 1786)

373
(97, 1059)

36.1
(8, 71)

Soil moisture (g H2O/g dry soil) 0.010
(0.007, 0.022)

0.007
(0.004, 0.021)

0.009
(0.004, 0.015)

0.032
(0.01, 0.079)

0.071
(0.005, 0.158)

NH4-N (mg/kg) 0.22
(0.11, 0.5)

0.04
(0, 0.11)

0.06
(0.01, 0.11)

0.18
(0.04, 0.41)

0.09
(0.02, 0.14)

NO3-N (mg/kg) 4.03
(0.03, 20.51)

2.32
(0.03, 15.75)

0.64
(0.04, 3.11)

93.07
(4.5, 542)

0.34
(0.07, 1.32)

Cl (mg/kg) 14.2
(1.3, 99.2)

244.9
(1.2, 1165.5)

346.8
(23.2, 853)

178.2
(7.9, 861)

2.7
(0.9, 9.3)

SO4 (mg/kg) 129
(4.1, 628)

76.8
(4.4, 268)

774
(24.2, 8753)

342
(36.8, 1098)

4.8
(0.5, 17)

TOC (mg/kg) 0.22
(0.16, 0.28)

0.39
(0.28, 0.57)

0.41
(0.25, 0.69)

1.37
(0.83, 2.88)

0.46
(0.27, 0.84)

TN (mg/kg) 0.05
(0.04, 0.06)

0.05
(0.03, 0.07)

0.06
(0.04, 0.12)

0.18
(0.13, 0.29)

0.11
(0.07, 0.18)

C:N 4.16
(3.6, 5.24)

8.77
(7.48, 10.94)

6.36
(5.65, 7.24)

7.68
(3.66, 14.58)

4.13
(3.04, 4.93)

DNA (ng/g) 1491
(41, 4160)

328
(55, 708)

810
(114, 4800)

53
(0, 152)

613
(9, 1804)

Note: Means (min, max) reported for each site.

Table A4. ANOVA comparing MDV and BG total soil DNA yields.

Source of variance df Sum Sq Mean Sq F P

Region 1 1445900 1445900 5.805 0.0187
Residuals 68 16937116 249075
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