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The self-consistency of the reduced magnetohydrodynamics~RMHD! model is explored by
examining whether~parallel! spectral transfer might invalidate the assumptions employed in
deriving it. Using direct numerical simulations we find that transfer of energy to structures with high
parallel wavenumber is in fact limited by ongoing perpendicular transfer. Thus, the dynamics
associated with RMHD models remains consistent with the underlying assumptions of RMHD. In
particular, in well-resolved simulations it is neither necessary nor correct to introduce additional
dissipation terms that~artificially! damp spectral transfer parallel to the mean magnetic field
B0 . © 2004 American Institute of Physics.@DOI: 10.1063/1.1705652#

I. INTRODUCTION

The equations of reduced magnetohydrodynamics
~RMHD! are a nonlinear approximation to the equations of
full ~i.e., nonlinear, compressible, and three-dimensional!
MHD, appropriate in certain situations where there is a
strong mean magnetic fieldB0 . Physically, systems governed
by the RMHD equations can be considered as a set of planes
of two-dimensional ~2D! MHD fluctuations, which are
coupled together bylong wavelength Alfvén waves, propa-
gating normal to the planes. First derived by Kadomtsev and
Pogutse,1 they have been rederived from various other per-
spectives several times.2–6 In particular, in Montgomery’s3

derivation the stated motivation was to find a set of equations
which simultaneously retained nonlinearities while remain-
ing of O(1) timescale in the limit asB0→`; i.e., somehow
avoiding the large-magnitude time derivatives associated
with Alfvén waves in this limit. Subsequently, RMHD mod-
els have been widely used in both terrestrial and space phys-
ics applications, including plasma fusion studies1,5 and coro-
nal heating models~see, e.g., Refs. 7 and 8 and references
therein!.

In this paper we focus on several apparently under-
appreciated features of the RMHD approximation, associated
with the nature of spectral transfer in the direction ofB0 . In
particular, we show that for fluctuations evolving according
to the RMHD equations, parallel spectral transfer is self-
limiting—despite the absence of dissipation in this direction
~see also Ref. 9!.

An important feature of RMHD systems is that high-
frequency Alfvén waves are—by construction—excluded, in
effect by the insistence that the ‘‘wave terms’’ are~at most!
comparable in magnitude to the nonlinear ones. This leads to
a compact representation, which, as the applied magnetic
field becomes very strong, lacks fast timescales and small
parallel lengthscales. The RMHD approximation also leads
to the dissipative terms becoming independent of the parallel
gradients, e.g., viscous dissipation is proportional to“'

2 v
rather than the full Laplacian of the velocity.

However, these features of RMHD also raise concerns
about the self-consistency of its derivation. A question that
arises is whether the conditions that are imposed in deriving
RMHD will remain valid as the fields evolve. For example,
there are no explicit factors in the RMHD model that prevent
spectral cascade of a type that would steepen gradients in the
direction parallel toB0 . Also, as noted above, RMHD has no
dissipation in the parallel direction. Consequently, lacking
both restrictions on the~parallel! cascade and parallel dissi-
pation effects—either of which might limit the formation of
structure with ever finer parallel length scales—it seems pos-
sible that such highki excitations could emerge dynamically
in solutions of the RMHD equations. This technical issue
leads to concerns that RMHD invalidates itself, and therefore
might question the usefulness of the model. Here we exam-
ine the issue directly using numerical simulations. We will
conclude that parallel spectral transfer is indeed limited—not
by dissipation—but by the efficacy ofperpendicularspectral
transfer. Thus, the RMHD model can remain valid without
use of artificial dissipation terms that damp fluctuations with
high ki .

As is clear from the derivation of the RMHD equations,
the couplings retained in an RMHD model are a subset of
those present in the full MHD model. This justifies at least
partially the use of RMHD models by some authors9–12 to
investigate theoretical issues in general MHD theory. By in-
vestigating in some detail the structure of RMHD in the con-
text of full MHD, we will provide here a context for under-
standing the generality and limitations of such conclusions.

The paper is structured as follows. Section II reviews the
nature of the RMHD approximation. Discussion of related
points regarding cascades—in both full and reduced
MHD—is given in Sec. III. Simulation results are presented
and discussed in Sec. IV, for the case of periodic boundary
conditions. A conclusions section and several Appendices
close the paper.
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II. THE RMHD APPROXIMATION

The usual primary assumption of RMHD is that a strong
uniform magnetic field,B05B0ẑ, is present.1,3,5,6By strong,
one means that fluctuations in the velocity and magnetic
fields have much smaller energy densities than that associ-
ated withB0 . Insisting further that the nonlinear terms~e.g.,
b•¹v) be comparable in size to the linear ones~e.g.,
B0•¹v), means that it is necessary to restrict gradients along
B0 to be small. This leads to a natural rescaling of~i! the
parallel coordinate,z, to be purely large-scale and~ii ! the
mean field strengthB0 , which becomesO(1). Wedenote the
rescaled field strength asB08 , with B0 the strength of the
actual physical field. Similarly,z8 is the rescaled version of
physical coordinatez. For consistency, we denote the vari-
able which is Fourier conjugate toz8 by kz8 .

The well-known leading-order equations which result
from this approximation are referred to as the equations of
RMHD. They involve an incompressible zero-mean plane-
polarized velocityv(x,y,z8,t)5(vx ,vy ,0) and a similarly
plane-polarized magnetic fluctuation. In nondimensionalized
~Alfvén speed! units they can be expressed3,6 as equations
for the evolution of the fluctuations in the fluid vorticityv
and the magnetic vector potentiala:

S ]

]t
1v"“ Dv5b•¹' j 1n¹'

2 v1B08
] j

]z8
, ~1!

S ]

]t
1v"“ Da5 h¹'

2 a1B08
]c

]z8
, ~2!

where ¹'5(]x ,]y ,0), v5¹3c ẑ, b5¹3aẑ, v52¹'
2 c,

j 52¹'
2 a, and¹'•v50. This representation of fluctuations

~but not explicitly the RMHD dynamical equations! has been
adopted in closure models of ‘‘shear Alfve´n wave’’
turbulence.13,14

Dissipation occurs via the action of both viscosity,n, and
resistivity,h, but note that it involves¹'

2 not the full¹2. In
these unitsB08 is technically the~large-scale! Alfvén speed,
VA8 ; for convenience, however, we often continue to refer to
it as the mean field. Also, because of the rescaling of thez
coordinate, toz8, lengthscale variations in this direction are
necessarily large, i.e.,O(1). It is sometimes useful to em-
phasize this aspect by rewriting the final term in Eq.~1!, for
example, as

S B08

e D S e
]

]z8D j , ~3!

where a small parameter,e, appears explicitly~see Appendix
A!. The two bracketed terms then correspond directly to the
actual~very strong! physical mean fieldB0[B08/e, and the
~very weak! gradient operator along it.3

It is worth emphasizing that RMHD isnot a weak tur-
bulenceapproximation. While it is true that the fluctuations
are of small amplitude relative toB0 , and that the coupling
betweenz-planes is only weakly nonlinear, the coupling

within these planes is strongly nonlinear. This strong nonlin-
earity occurs as a consequence of the enforcement of the
‘‘hydrolike condition,’’ as we now discuss.

The RMHD equations can be derived from the 3D MHD
equations15 by assuming that~i! v2,b2!B0

2, and ~ii ! that
tNL&tA . We refer to the latter constraint, between the ti-
mescales, as the~global! hydrolike condition~see also Ap-
pendix B!. More verbosely, it is the restriction that the non-
linear timescale for the fluctuations,tNL5l/du, is shorter
thantA5L i /B0 , the time taken for an Alfve´n wave~packet!
to traverse a distance of order the typical lengthscale associ-
ated with parallel structure in the system,L i . Here,l is the
energy-containing lengthscale for the velocity field anddu is
the rms velocity.~Often l is estimated using the correlation
scalelc , which is a measurable quantity.! We refer to the
simultaneous satisfaction of both assumptions~i! and ~ii !
above as satisfaction of the~global! RMHD condition.

It is also of interest to develop the analogous timescale
condition in terms of Fourier modes. Fourier decomposing
v~x! and b~x!, one finds that there are two~nondissipative!
timescales associated with wavevectorsk. These are,

tA~k!5
1

uk"B0u
5

1

ukiB0u
, ~4!

tNL~k!5
1

kṽk

'
1

kb̃k

, ~5!

respectively, referred to as the Alfve´n ~or wave! timescale
and the~direction-averaged! modal nonlinear timescale. The
quantity ṽk

2 is an approximation for the energy~per unit
mass! associated with the Fourier components ofv whose
wavevectors have magnitudek5uku. ~The near equality of

ṽk
2 and b̃k

2 is a consequence of the Alfve´n effect induced by
the strongB0 ,16,17but the definition based only onṽk should
be retained in nonequipartition situations, as can occur due to
boundary effects for instance.18! Note that two-dimensional
~2D! modes haveki50, by definition, and are non-
propagating withtA(k)→`. Thus, they always satisfy the
hydrolike condition.

The ratio19 of these two timescales yields a parameter
central to RMHD—and indeed MHD turbulence in
general:3,9,12,13,20–23

ehydro~k!5
tNL~k!

tA~k!
. ~6!

One can partition the Fourier modes into two sets on the
basis of whether or not 0<ehydro(k)&1 ~referred to as the
modal hydrolike condition!. Those modes for which the in-
equality holds have a nonlinear time which is faster than the
wave timescale and define thehydrolike modes. If, in addi-
tion to the hydrolike condition being satisfied, it is also true
that the fluctuations are small amplitude in the sense that

ṽk
2 ,b̃k

2!B0
2 , then we will call theseRMHD modes.

With a few further assumptions concerning the nature of
the energy spectra, one can characterize regions of wavevec-
tor space that are distinguished according to the nature of
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spectral transfer within them. Discussions along these lines
have been given previously9,12,13,24–27with a clear emphasis
on understanding the nature of the highly anisotropic
cascade9,28–31that occurs in the directions perpendicular to a
strong applied mean magnetic field. In the present paper the
emphasis is on understanding the complementary issue of the
nature of the parallel RMHD cascade.

Figure 1 illustrates some of the salient features of the
MHD wavevector space in the presence of a strongB0 . The
shaded area indicates the region in which the RMHD condi-
tion is satisfied~we assume here thatṽk ,b̃k!B0). In the
unshaded region, RMHD is not valid, and more complete
MHD couplings are in principle required. One should note,
however, that couplingsinvolving RMHD modes occur in
both regions, but in the latter region there are also couplings
which do not involve RMHD modes~cf. Fig. 2!. The bound-
ary formed by the marginal RMHD condition separates the
two regions.32

To provide an estimate of the RMHD boundary in
steady-state conditions, we suppose there is an energy-
containing range of scales, characterized by a single~isotro-
pic! length scale,l. For kl,1, the defining timescale in-
equality is l/du,(kiB0)21. Consequently the RMHD
region in the energy-containing range of scales lies within
the region ki,l21du/B0 . For smaller ~inertial range!
scales, determination of the boundary requires a functional
form for the spectrum. On assumption of a powerlaw Kol-
mogorov perpendicular energy spectrum;k'

25/3, and using
tNL(k)5(l/du)(1/kl)2/3, which matches the energy-
containing range estimate atk51/l, one estimates an iner-
tial range RMHD region aski

3,l21(db/B0)3(ki
21k'

2 ). Fig-
ure 1~a! illustrates the RMHD region and its nominal
boundary estimated using the marginal point of the above
inequalities. AsB0 is increased the boundary draws in closer
towards thek' axis, decreasing the size of the RMHD re-
gion.

Note that whenk'@ki the inertial range boundary as-
ymptotically approaches the curvek';(kiB0)3/2. This is the
boundary originally described by Higdon34 @below his Eq.
~5!#, and later described by Goldreich and Sridhar13 as the
condition for a ‘‘critically balanced cascade.’’ In the present
estimate, the RMHD region is always somewhat larger than
the estimate given by the asymptotic relation. The major dif-
ference is that in the energy-containing region (k,1/l), the
bandwidth of the RMHD region inki does not approach
zero, as it does when the asymptotic inertial range behavior
is extrapolated—inappropriately—towardsk'50.

Since the boundary is not rectilinear, a rectangular re-
gion of wavevector space, as would ordinarily be employed
in a numerical simulation, will often include both RMHD
and non-RMHD modes@Fig. 1~b!#. Exceptions to this could
occur in a situation where the boundaries perpendicular toB0

are ‘‘open’’ ~e.g., nonperiodic!, and the implied wavelength
of the fluctuations is larger than the simulation domain; see
Appendix C.

From a numerical point of view, there is no particular
problem in solving the RMHD equations using initial condi-
tions which include non-RMHD fluctuations, as would be the
case for the situation sketched in Fig. 1~b!, for example.
Presumably, at later times the solutions to the equations will
still include contributions from non-RMHD fluctuations.
Questions then arise as to the consistency of the RMHD
equations, including whether they adequately capture the
physics of non-RMHD fluctuations along with that of the
RMHD ones.

The question we wish to address herein is whether spec-
tral transfer is eventually expected to invalidate the assump-
tions of RMHD. Two initial situations, in particular, are of
interest. First, if a simulation is started with excitations con-
fined within the RMHD wavevector region, will they always
remain so confined? If not, how dynamically significant is
the generation of non-RMHD modes? Second, if the initial
data includes both RMHD and non-RMHD fluctuations, will
a region of non-RMHD fluctuations grow in importance as
time increases? Clearly, these are issues that depend upon the
rate and nature of parallel spectral transfer from the RMHD
region into the non-RMHD region.

FIG. 1. ~a! Cartoon sketch depicting the RMHD and non-RMHD regions, in
Fourier space, and their boundary~solid curve! defined by the modal RMHD
condition:tNL(k)5tA(k), subject to the fluctuations being of small ampli-
tude. The dash-dot curve represents the asymptotically valid form for the
inertial range boundary,k';(kiB0)3/2. For illustration this has been inap-
propriately extended down to the origin.~b! Schematic indication of the
direction of spectral transfer for RMHD and non-RMHD modes. The arrow
thickness provides a rough guide to the strength of the transfer. Interactions
inside the RMHD region are always resonant or nearly resonant, whereas
outside this region resonant interactions can only occur at fixedki ~i.e.,
perpendicular transfer!. The dashed box indicates a possible computational
domain, with a maximum retained parallel wavenumber ofki

max, and reveals
that both kinds of modes can lie within such domains.

FIG. 2. Possible types of interactions between hydrolike and nonhydrolike
wavepackets/modes. Shown arex-space wavepacket interactions~top row!
and correspondingk-space wavevector triads~bottom row!. In the bottom
row, the shaded regions are indicative of the hydrolike regions and the
driven mode~k! is depicted using an open arrow head. The mean fieldB0 is
assumed to be at least somewhat strong.~a! Nonhydrolike with nonhydro-
like. ~b! Nonhydrolike with hydrolike. Note the nonlocal nature of the in-
teraction ink-space. The two near vertical arrows represent the same hydro-
like mode, with the dashed one being its ‘‘natural’’ position and the solid
one translated to form the triad.~c! Hydrolike with hydrolike.
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III. SPECTRAL TRANSFER: PERPENDICULAR
VERSUS PARALLEL

The resonance condition for spectral transfer in~full !
incompressible MHD with a B0 has been discussed
extensively9–13,21,24–26,28–31,35–40and cited as a partial justi-
fication for the validity of the RMHD approximation.3 The
mathematical context emerges by imposing frequency
matching ~i.e., resonance! in addition to the mandatory
wavevector matching of the triad~aka three ‘‘wave’’! inter-
actions arising from the MHD quadratic nonlinearities. This
provides conditions, akin to selection rules, for rapid nonlin-
ear couplings that drive the cascade.

It is convenient to discuss this in terms of an Elsa¨sser
representation in which right-traveling fluctuations arez2

5v2b, say, and left-traveling fluctuations arez15v1b,
relative to a rightwards directed mean magnetic fieldB0 ,
which is assumed to be at least as energetic as the fluctua-
tions. Two features make resonance difficult to achieve. First,
and rather remarkably, Alfve´n waves propagating in the same
direction do not interact nonlinearly at all, even for finite
amplitudes. Second, oppositely propagating wavepackets can
only interact for a time of the order of their crossing time
t int5l i /(2VA), wherel i is the larger of the parallel extents
of the two propagating packets~Fig. 2!.

For simplicity, assume that the left and right-traveling
packets have dominant characteristic wavevectors, respec-
tively p andq. Thus,

z1~x,t !;Ap
1~ t ! ei (p"x2vpt), ~7!

z2~x,t !;Aq
2~ t ! ei (q"x2vqt), ~8!

where the sense of propagation is encoded in the choice of
the wave frequencies:vp52piB0 and vq51qiB0 . Note
that the amplitudesA6 are in general time-dependent, al-
though this dependence may turn out to be ‘‘slow.’’ We de-
fine the cross helicity asHc5(z1

•z12z2
•z2)/4, which is

positive for left-traveling modes and negative for right-
traveling ones.41

The two packets can interact to drive left and right-
traveling packets with~the same! dominant wavevectork
5p1q and amplitudesAk

6 . Substituting into the Elsa¨sser
form of the MHD equations (]z6/]t ;2z7

•“z66B0

•“z6), one obtains for the right-traveling packet,

ei (k"x2kiB0t)
]Ak

2

]t
;q"Ap

1Aq
2ei (p1q)•xe2 i (vp1vq)t ~9!

⇒ ]Ak
2

]t
;q"Ap

1Aq
2ei2piB0t, ~10!

upon substitution of the~parallel! wavevector matching con-
dition ki5pi1qi . A similar equation holds for]Ak

1/]t. Ex-
act resonance can only occur if the argument to the exponen-
tial is zero, which implies thatpi50. Thus, the mode which
was assumed to be left-traveling, must in fact have a zero
parallel wavenumber and is therefore a nonpropagating mode
~with, however, the same sign of cross helicity as a left-

traveling mode!, as was first pointed out by Shebalinet al.31

The nonpropagating modes are also known as the 2D turbu-
lence modes.42

Similarly, resonant driving ofAk
1 requires thatqi50.

Thus, a 2D mode and a propagating mode~of the opposite
sign of cross helicity! interact to drive another mode with the
same propagation properties as the driving mode. In particu-
lar, the driven and driving modes have the same parallel
wavenumber, so that driving occurs at constantki . At this
order, then, there is no parallel spectral transfer and the en-
ergy cascade is purely perpendicular.25,28–31

The above conditions forexact resonance can be re-
laxed, by allowing the argument of the exponential term to
be small rather than zero. This yields the conditions for
quasi-resonance. Here, small means that averaging the right-
hand side of Eq.~10! over the Alfvén time associated with
the driving wave does not give a near-zero result. Thus, if
Tq52p/(qiB0), and Ap

1 and Aq
2 do not vary appreciably

over this timescale, then one requires

1

Tq
E

0

Tq
ei2piB0t dt'1 ⇒ 2pi

qi
!1. ~11!

Hence, provided that one of the wavepackets is very broad
compared to the other, quasi-resonance will occur when they
collide @Fig. 2~b!#.

There is an additional restriction, if the notion of ‘‘quasi-
resonance’’ is to mean that nonlinear interactions can pro-
ceed unabated by wave propagation effects. That is, the beat
frequency associated with the inexactness of the resonance
must be low enough that the nonlinearity is not averaged to
zero. Accordingly we require that

uvp1vq2vku,
1

tNL~k!
. ~12!

The above understanding of quasi-resonance leads to an
improved picture for the interaction of MHD wavepackets.
Since any system with aB0 can always support a hydrolike
region,43 it is useful to treat each wavepacket as being either
a hydrolike~H! one or a nonhydrolike (N) one. There will
then be three distinct classes of interaction:N–N, N–H, and
H –H ~Fig. 2!. These classes are now discussed in more de-
tail.

A. Nonhydrolike–nonhydrolike interactions

This corresponds to the interaction of~counter-
propagating! high-frequency waves, essentially via the well-
known Iroshnikov–Kraichnan picture,44–46 with t int!tNL .
Since both interacting modes have large parallel wavenum-
bers, resonance is not possible@Fig. 2~a!#. If the interactions
were coherent it would taken5tNL /t int encounters to amass
the equivalent of a single collision of durationtNL . How-
ever, as they are incoherent,n2 encounters are required, giv-
ing a spectral transfer time ofts5n2t int5tNL

2 /t int@tNL , so
that relative to hydrodynamics the cascade process is signifi-
cantly slowed.

The wavenumber scaling of the inertial range associated
with this interaction class is a question of some interest. Re-
call that the Kolmogorov dimensional analysis approach to
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inertial range cascades—originally written in terms of the
nonlinear timescaletNL(k)—can be reformulated in terms of
the triple correlation timescalet3(k), as was first done by
Kraichnan.45,46 Under the assumption of isotropy this yields

e't3~k!k4E2~k!, ~13!

wheree is the spectral energy flux,k5uku, andE(k) is the
omni-directional energy spectrum. The Iroshnikov–
Kraichnan scaling follows by takingt351/kB0 and assum-
ing small cross helicity.44,45However, for the present class of
interactions isotropy is clearly a poor assumption. Interest-
ingly though, using the knowledge that the cascade is prima-
rily perpendicular one can employ an anisotropic variant of
Eq. ~13! to obtain a scaling which agrees with that of more
formal analyses25,26~see also Refs. 11, 18, 35, and 37!, as we
now show. WhenB0 is strong and the parallel cascade is
suppressed, the energy transfer ratee is almost entirely due
to couplings to higher perpendicular wavenumber, and the
nonlinear timescale should depend primarily uponk' . On
the other hand wave propagation effects are associated with
t3(k)51/ukiB0u, the ~anisotropic! Alfvén timescale. Ignor-
ing the dependence of the energy spectrum onki , Eq. ~13! is
rearranged to find

E~k'!5k'
22Ae'~ki!kiB0;k'

22 , ~14!

wheree'(ki) is the~perpendicular! energy flux at that value
of ki . This scaling withk' has been observed in direct nu-
merical simulations of RMHD under certain boundary con-
ditions which limit the efficiency of the perpendicular
cascade.18 Note that the dependence onki is as a parameter
not a variable. The functional form of the parallel energy
spectrum is undetermined in this approach.25

B. Nonhydrolike–hydrolike interactions

Interactions of this type are essentially the same as those
first identified by Shebalinet al.,31 but with allowance made
for quasi-resonance rather than exact resonance. As dis-
cussed in connection with Eq.~11! above, the quasi-resonant
spectral transfer occurs at quasi-constantki @Fig. 2~b!#. That
is, the turbulent cascade is an approximately perpendicular
one.

Clearly, the efficiency ofparallel spectral transfer is
weak for these interactions. Indeed, there are good grounds
for expecting the parallel spectrum to have an exponential
falloff, a suggestion first made by Montgomery.47 Section
IV A contains more discussion on this matter.

Note that these interactions are strongly nonlocal in
k-space, with resonant driving of the high-frequency (N)
modes requiring the presence of ‘‘catalytic’’ hydrolike
modes. The nonlocality is due to the possibly substantial
difference in parallel wavenumber@see Fig. 2~b!# for N and
H modes. Moreover, the strength of the interaction depends
on the partitioning of energy between theH and N
modes.9,12,25

Under the condition that the quasi-two-dimensional part
of the spectrum~theH modes! is sufficiently strong, it seems
likely that the perpendicular spectrum of theN modes will be
determined by theN–H interactions, and that this would

lead to an expectedk'
25/3 spectrum in theN range ofki . The

weak turbulence contribution ofk'
22 would be masked. On

the other hand, the whole relevance of the expected direct
transfer inertial range for theN–N and N–H interactions
may be called into question if, at a givenki , the spectrum
needs to climb ‘‘up’’ at largek' to meet the hydrolike bound-
ary ~cf. Fig. 4!.

C. Hydrolike–hydrolike interactions

As a consequence of the inherently low frequencies as-
sociated with hydrolike modes, the interaction time for two
H modes is long, and will typically be associated with driv-
ing of anotherH mode. In this sense their self-interactions
are always nearly resonant, sometimes referred to as ‘‘trivi-
ally resonant.’’48 Thus, the hydrolike modes constitute a
resonantly broadened analog of the strictly 2D modes.
~Clearly, the 2D–2D and 2D–H interactions are subsets of
this interaction class.! These are also sometime called ‘‘zero
modes’’ and their couplings amongst one another, zero fre-
quency turbulence. Typically, it will not be particularly use-
ful to think of these modes as being wave-like.

For excitations well within the hydrolike region, parallel
and perpendicular spectral transfer are not essentially differ-
ent, since wave effects are secondary there. Consequently,
the spectral transfer is approximately isotropic, although its
region of applicability is not, and indeed emphatically not
whenB0 is strong@Fig. 2~c!#. Transfer in the perpendicular
direction proceeds unimpeded until the~perpendicular! dis-
sipation scale,kdiss, is reached. However, as the hydrolike
region is narrow in the parallel direction, transfer in this
direction soon encounters the hydrolike boundary region
wheretNL'tA .

Once the excitation is transferred across this boundary,
into anN mode, it is no longer in the always~nearly! reso-
nant region and its subsequent dynamics are of theN–H or
N–N kind, discussed above.49 A sharp ‘‘energy cliff’’ will
thus develop around the hydrolike boundary zone13 ~see Sec.
IV !.

The shape of the parallel spectrum inside the hydrolike
region may be rather difficult to determine and problem de-
pendent. WhenB0 is large, there are relatively fewkis in the
hydrolike region—especially at lowk'—so that there is little
scope for the development of an inertial range or other scal-
ing range in this direction. The simulations discussed below
suggest that treating the parallel spectrum as approximately
flat in this region is a reasonable approach~cf. Refs. 13, 25,
and 26!.

As a final point in this section, we note that since the
energy of the~strictly! 2D modes is continually cascaded
towards the dissipative sink at highk' , there is a need to
replenish this energy if this component is to survive. It is
straightforward to show thatexact resonant driving of 2D
modes using non-2D modes is not possible. However,nearly
resonant replenishment of the 2D modes can occur, via the
interaction of two hydrolike modes,p and q, with pi

52qi . In the absence of external forcing of the 2D modes,
we suggest that this is the primary mechanism for replenish-
ment of their energy.
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IV. SIMULATIONS

Numerous spectral method~Fourier collocation! simula-
tions of the RMHD equations were performed with values of
B08 between 1/2 and 8~cf. Appendix A!. The resolutions em-
ployed included 1282332, and 6423Nz with Nz516, 32,
and 64. Time advancement was via a second-order Runge–
Kutta algorithm. To achieve steady-state conditions the
RMHD equations were augmented with forcing terms and
run for some 40–50 box-crossing times. The forcing terms
were originally designed for a coronal heating model,50 and
consist of directly driving a single Alfve´n wave with
wavevectork5(1,1,1), and allowing all modes to undergo
reflection at a specified rate. All the runs used initial condi-
tions ~ICs! where the excited modes were restricted to have
2<k'<6 and 2Kz<kz8<Kz with approximately equal
amounts of energy in eachkz8 plane. Usually we setKz54.
The fluctuations were initialized in Fourier space using
Gaussian random phases, with the amplitudes ofv~k! and

b(k);1/A11(k'/5)8/3. The initial energy in the fluctuations
was unity, equipartitioned between the velocity and magnetic
fields, with normalized cross helicities;0.02. All runs
where performed withn5h51/200, corresponding to initial
large-scale Reynolds numbers of 200.

A. Strength and nature of the cascades

Figure 3~a! shows the parallel energy spectrum,Ez(kz8),
for five 1282332 runs, each employing the same initial state
but with distinct values ofB08 . The parallel spectrum is de-
fined as

Ez~kz8!5 (
kx ,ky

E~kx ,ky ,kz8!, ~15!

whereE(k) is the full ~kinetic plus magnetic! modal energy
spectrum of the fluctuations. Clearly there is significant fall-
off with increasingukz8u for all values ofB08 , and the stronger
B08 the more dramatic the falloff. Although the range ofkz8’s
employed is not large, fits to an exponential dependence on
ukz8u for ukz8u*7 are reasonably convincing, particularly for
largerB08 . Note that the~steady-state! Reynolds numbers for
these runs have deliberately been kept rather low (Re'Rm

'200– 300) to ensure that there is no doubt regarding the
resolution of the perpendicular dissipation scale.

Similar results are obtained for various other resolutions
and initial conditions we have investigated. In particular, for
a given runset~i.e., same IC, differentB08 values! the parallel
spectra are always ordered withB08 in the same way as they
are in Fig. 3~a!.

Also shown@Fig. 3~b!#, for the same set ofB08 values,
are the steady perpendicular spectra for thekz850 ~2D!
modes. We defineE2D(k')[Eaxi(kz850,k'), where the axi-
symmetric energy spectrum~at givenk' andkz8) is

Eaxi~kz8 ,k'!5 (
kx ,ky with uk'2Akx

2
1ky

2u,1/2

E~kx ,ky ,kz8!.

~16!

The E2D spectra are qualitatively similar for all theB08 , and
there is even a short region aroundk';8 – 20 where they
are, very roughly, equal. This relatively weak dependence
uponB08 is in marked contrast to the situation for the parallel
spectra. The Reynolds numbers are too low for genuine~per-
pendicular! inertial ranges to develop.

We now analyze the possibility that the parallel spectrum
is exponential in character. Consider first the situation in full
3D MHD ~cf. Sec. III!. From the ~parallel! wavevector
matching condition,ki5pi1qi , it is clear that parallel spec-
tral transfer can only occur if bothpi ,qiÞ0. The exponential
factor in Eq. ~10! is then always oscillatory, with angular
frequencyvchop52piB0 , and exact resonance is unachiev-
able. AsB0 and/orpi are increased in magnitude, the ‘‘chop-
ping’’ effect of this term becomes increasingly pronounced
since

DAk
2'E

t1

t2
q"Ap

1~ t !Aq
2~ t ! ei2piB0t dt, ~17!

is more effectively averaged towards zero.
For a given simulationB0 is fixed. Over the~short! in-

terval t22t1 many different values ofpi will contribute to
the total51 DAk

2 . For parallel transfer, the most effective
contributions will typically come from the smallerpi’s ~usu-
ally associated with RMHD modes!. Recall, that in a peri-
odic system the wavevectors are discretely spaced so that
there is a minimum difference between distinct wavevectors,
i.e., uk12k2u>Dkmin . It follows that parallel cascade must
be associated with changes in parallel wavenumber quan-
tized in units of Dkmin . Similarly vchop52piB0[2(ki

2qi)B0 is quantized in units of 2DkminB0. Thus, the small-
est non-zeropi has magnitudeDkmin and implieski5qi

6Dkmin , and an associated parallel cascade. The efficacy of
this cascade will clearly be weakened for larger values ofpi .

However, as noted by Kinney and McWilliams,27 it is
not a cascade in the traditional sense since Eq.~17! depends
upon the~mode-independent! amplitudeB0 . Consequently, it
is not clear that power-law scalings inki will result. Indeed,
since the perpendicular cascade is, at leading order, both
resonant andB0-independent, it is likely that at a givenki

most of the energy will be transferred to highk' , with only
a small amount trickling through to still higherki @cf. Fig.
1~b!#. This ‘‘survivalist’’ interpretation of the parallel transfer
also suggests that the parallel spectrum will be exponential.

FIG. 3. Steady-state energy spectra from 1282332 simulations withB08
51/2,1,2,4,8.~a! Parallel spectra.~b! Perpendicular spectra for the 2D (kz8
50) modes. The perpendicular dissipation wavenumber is indicated. Curves
are ordered withB08 . The ‘‘standard’’ case ofB0851 is depicted using a solid
curve. In each plot, the thick roughly horizontal line is the initial condition.
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An exponential form for the parallel spectrum of~full !
3D MHD turbulence with a strongB0 was first suggested by
Montgomery.47 More recently, Kinney and McWilliams9

made a similar suggestion within the context of RMHD tur-
bulence, and also provided evidence for it from freely decay-
ing RMHD simulations. The numerical support presented
herein appears to be the first for the case of forced~steady!
RMHD turbulence.

Plots of the steady axisymmetric energy spectrum, de-
fined by Eq.~16!, are also illuminating. Figure 4 shows sev-
eral cross-sections of this quantity from the 1282332 run
with B058. The lefthand panel displays cross-sections at
four values ofkz8 . The striking similarity of the curves at
high k' suggests thatwithin the RMHD regions parallel
transfer is efficient, producing parallel spectra that are ap-
proximately flat. This is corroborated in Fig. 4~b!. Note that
at low k' , the falloff with kz8 is so sharp that atkz8512 ~for
example! the perpendicular spectrum actually has toincrease
by a factor of'104 betweenk'51 and'20 ~possibly via
‘‘back-fill’’ from larger k'), in order to attain the correct
spectral level near thetNL(k)'tA(k) boundary.

Figure 4~b! displays cross-sections in the perpendicular
direction, at five values ofk' . The efficiency of parallel
transfer within the RMHD region, especially at largerk' , is
apparent from the flatness of the cross-sections there. Note,
moreover, that thek'51 and k'54 curves in this panel
have, more or less, the samekz boundary, especially for
ukz8u&5. This provides support for our contention that the
shape of the RMHD boundary at lowk' is determined by the
large-scale eddy turnover time~see the discussion regarding
Fig. 1 in Sec. II!.

In summary, the simulation results support the assertion
that RMHD is a self-consistent model. In particular, the
transfer of energy from RMHD modes to non-RMHD ones is
found to be a weak process associated with steep, possibly
exponential, perpendicular spectra.

B. Resolution issues

The results of the previous subsection show that parallel
cascade in RMHD is indeed self-limiting, due to the weak-
ness of spectral transfer in this direction, while perpendicular
transfer continues to drain away available energy. There is,

however, still the question of how much resolution is re-
quired in the parallel direction in order to adequately resolve
both the parallel and the perpendicular structure. In effect,
this is the question of how to chooseB08 andkz

max ~defined to
be the maximumkz8 retained in the simulation!, in tandem, in
such a way that the spectra are well-resolved in all direc-
tions. ~The usual requirement that the minimum perpendicu-
lar scale resolved is smaller than the dissipation scale is also
needed.!

Since the above arguments and simulation results indi-
cate that the evolution of non-RMHD modes is handled ad-
equately by the RMHD equations, ideally the simulation do-
main should be chosen large enough to ensure that the
RMHD region is a proper subset of it. This is perhaps easiest
to see in Fourier space@e.g., Fig. 1~b!#. If, instead, the simu-
lation boundarykz

max5max$ukz8u% crosses into the true RMHD
region at higher values ofk' , as in Fig. 1~b!, then the system
is likely to be improperly resolved. In particular, energy
which should have been transferred within a widening
RMHD region may be constrained to transfer through an
artificially narrow RMHD region, leading to elevated spec-
tral levels and changes of spectral slopes there. Although
global quantities such as the energy decay rates could con-
ceivably still be correct in such simulations, the spectral dis-
tribution of energy, etc. clearly will not be.

We examine numerically the influence of parallel reso-
lution using two complementary studies. In the first,B08 is
varied with the resolution held fixed, while in the second
kz

max is varied withB08 fixed. Figure 5 displays plots from the
first such study. Shown are contours and surfaces of the
steady-state axisymmetric energy spectra, for five 1282332
runs with B0851/2, 1, 2, 4, and 8. The apparent size of the
RMHD region appears to increase asB08 is decreased. This
shows that there is insufficient parallel resolution since the
boundary of the RMHD region is not evident. Indeed, prob-
ably only theB0858 case is properly resolved here. The pres-

FIG. 4. Several cross-sections through the spectrumEaxi(kz8 ,k') for the
1282332 run with B058. ~a! Eaxi(kz8 ,k') at indicatedkz8 . Note that for
kz8512, the perpendicular spectrum actually shows a largeincreasebetween
k'51 andk''20. ~b! Eaxi(kz8 ,k') at k'51 ~solid!, 4 ~dash!, and several
indicated values. Regions which are approximately flat inkz8 increase in
width as k' increases. The dissipation wavenumber in the perpendicular
direction is'32.

FIG. 5. Steady energy spectra,Eaxi(kz8 ,k'), from fixed resolution 1282

332 simulations for variousB08 . Top left: Overlaid surface plots forB08
51 and 8.Remaining panels: Contour plots of logEaxi(kz8 ,k') for the in-
dicated values ofB08 , using the same fixed contour levels in each plot. The
putative size of the RMHD region~as indicated by the area where the
contours are roughly parallel to thekz8-axis! is seen to increase asB08 is
decreased. However, for this parallel resolution (kz

max516), probably only
the B0858 run is adequately resolved.
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ence of approximately horizontal contours which span the
entire kz8 domain is diagnostic of under-resolution in this
direction. Note also that the energy is piling up ink' asB08 is
decreased~consider, for example, the ‘‘27.318’’ contours!.

Results from the second study are shown in Figs. 6 and
7. The former displays contour plots of the~steady! axisym-
metric energy spectra. Plots are shown for two different val-
ues ofB08 , each at three parallel resolutions. For theB0858
cases~top row! retaining 32 or 64 parallel wavenumbers
gives adequate resolution, while retaining 16 is probably not
quite adequate. As can be seen from inspection of the loca-
tion of the ‘‘25.6’’ contours, for example, there is a definite
accumulation of energy well above the level seen in the two
more highly resolved cases. For theB0851 cases, only the
642364 run shows signs of an encircling non-RMHD re-
gion, and even it may only be marginally resolved. Empiri-
cally, then, for these simulations it seems that acceptable
parallel resolution can be ensured ifkz

maxB08*100. On the
other hand, if contour plots ofEaxi(kz8 ,k') include some
contours which are ‘‘flat’’ across allkz8 , then the parallel
resolution is unlikely to be adequate.

More generally, one can obtain a lower bound on the
product kz

maxB08 , which should be comfortably exceeded to
ensure adequate parallel resolution. The bound is obtained by
evaluatingtNL(k)5tA(k) at ak' equal to the Kolmogorov
dissipation wavenumber. As usualkdiss5(e/n3)1/4, wheree
is the mean energy dissipation rate, assumed equal to the

mean forcing rate at steady state, approximated as (du)3/l.
Equivalently, one can use the inner timescaletdiss5An/e in
place oftNL(k). Both approaches yield

kz
maxB085

1

tNL
Re

1/2, ~18!

where, as before,tNL5l/du is the global nonlinear time-
scale. Although this formula is likely to underestimate the
actual product required—since it makes no allowance for an
encircling non-RMHD region—it does reveal the scaling
with Reynolds number. For example, the simulations associ-
ated with Fig. 6 haveRe'250 and eddy turnover times of
order one, givingkz

maxB08'16, which is well below the em-
pirical value of 100. Equation~18! can also be rewritten to
give a useful expression for the ratio of the required parallel
and perpendicular resolutions:

kz
max

kdiss
5

db

B08
S 1

kdissl
D 1/3

, ~19!

wheredb'du is assumed.
More information on the character of the errors in the

energy spectra arising from lack of parallel resolution is re-
vealed in Fig. 7. Shown are perpendicular cross-sections of
Eaxi(kz8 ,k') taken from threeB0854 runs with differing par-
allel resolutions. Run parameters are identical except for the
value ofNz . The left-hand panel indicates that all three reso-
lutions are acceptable at low enoughkz8 . Indeed, forkz850
and kz851, the traces from the different resolution runs are
usually overlain. The same is true forkz854 at sufficiently
largek' . At smallerk' , the lowest resolution run is out by
a factor of;3, suggesting that the resolution is inadequate.
This is confirmed by examining cross-sections for two other
representative values ofkz8 ~right-hand panel!. For the kz8
514 case, only the highest parallel-resolution run is ad-
equate. The curves from the poorly resolved runs are clearly
too flat as a function ofk' ~at low k'). In particular, because
they can be several orders of magnitude too high neark'

51, they may not capture the substantial increase in spectral
amplitude which should occur with increasingk' ~compare
the dotted and solid curves forkz857).

V. CONCLUSIONS

We have shown that for strongly forced RMHD, parallel
spectral transfer is self-limiting due to the weakness of the
cascade in this direction: There is no need to introduce par-
allel dissipative terms. As expected, perpendicular spectral
transfer is limited in the usual way, i.e., by the dissipation
scale in that direction.

These results indicate that RMHD is indeed a self-
consistent model. That is, weakly52 non-RMHD
fluctuations—either present initially or generated
dynamically—are adequately evolved by the RMHD equa-
tions, despite the fact that the equations are not formally
valid for them. Moreover, since the leading-order couplings
for strongly non-RMHD fluctuations are of the resonant
hydrolike–nonhydrolike kind~Sec. III B!—associated with

FIG. 6. Contour plots of the~log of! the energy spectraEaxi(kz8 ,k') show-
ing improving resolution of parallel transfer as the maximum retainedkz8 is
increased. Simulations are at 6423$64,32,16%. Top row: B0858 case. Bot-
tom row: B0851 case. All plots use the same set of~equi-spaced! contour
levels.

FIG. 7. Cross-sections ofEaxi(kz8 ,k') at variouskz8 from B0854 runs at
three different parallel resolutions: 6423Nz .
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suppressed parallel transfer but~still! strong perpendicular
transfer—one might anticipate that the RMHD equations will
also adequately capture the physics associated with these in-
teractions.

One practical conclusion from this study is that in order
to correctly simulate the dynamics of the RMHD modes us-
ing the RMHD equations, it is necessary to choose bothB08
and the maximum retainedkz8 large enough so that, in Fou-
rier space, the RMHD region lies inside the computational
domain. The required parallel resolution scales askz

maxl
;(db/B0)Re

1/2 @see Eqs.~18! and ~19!#. The usual restriction
of the maximum retainedk' being greater than the dissipa-
tion wavenumber is also required. Simulations based on the
RMHD equations should use a domain in which the RMHD
region is a well-resolved subset of the computational do-
main. If this is not done, then the self-limiting of the parallel
cascade will not usually be apparent at allk' . Quantities like
the axisymmetric energy spectrum,Eaxi(kz8 ,k'), are then
likely to be distorted in terms of both spectral shape and
spectral amplitude.

Although it is always better to have adequate resolution,
one can ask how quantities obtained by integration over one
or more directions ink-space, are affected by the parallel
resolution. Such quantities include the spectraEz(kz) and
E2D(k'), and bulk values like the kinetic energy. As inte-
grated quantities are typically most influenced by the excita-
tion levels of the energy-containing modes, one might hope
that they would not be particularly sensitive to the lack of
resolution in the parallel direction, since the excitation is
very weak at largekz . Indeed, energy spectra plots~Fig. 7!
indicate that parallel resolution primarily affects the situation
at higherkz , with relatively weak effects for the lowestkz

modes.
We have also discussed the importance of thehydrolike

condition to RMHD, and MHD turbulence in general. This
condition, or cousins of it, has also been invoked in various
other contexts.9,20,22–24These include the definition of the
Kubo number,53 of relevance in the theory of scattering of
particles by MHD turbulence, and the ‘‘critical balance’’ con-
dition, introduced by Higdon34 and used by Goldreich and
Sridhar13,37 ~hereafter GS! in their model of strong MHD
turbulence.~We note that there are several papers which
identify some problems with further conclusions of the GS
approach.10,11,54,55!

The critical balance assumption13,37 asserts that within
the ~putative! inertial range of strong MHD turbulence, the
k-dependent ‘‘nonlinearity parameter,’’x(k)5k'ṽk /kzB0

~in our notation!, will dynamically adjust to take values of
about unity. As noted in Sec. II,x is a special case of
1/ehydro5tA(k)/tNL(k); specifically, when the nonlinear
time is approximated using perpendicular components. In ef-
fect, substantial anisotropy is being assumed in the definition
of x, whereas this is not the case in the definition ofehydro.
In cases where the anisotropy is strong, the distinction is of
course largely irrelevant.

As part of their definition ofstrongMHD turbulence, GS
assume thatdu,db;B0 . However, as discussed in the body
of this paper, it is our view that the ‘‘critical balance/
hydrolike condition’’ style of idea has much wider applica-

bility than this. Indeed, whether the turbulence is weak or
strong in terms of the size ofdb/B0 , we would suggest that
there is almost always a region where the turbulence is
strong in the sense that the nonlinear interactions are strong.
We refer to this as the hydrolike region, defined in Fourier
space by the set of Fourier wavevectors whose modes satisfy
ehydro(k)&1, or equivalentlytNL(k)&tA(k). As discussed
in Appendix B, as the mean field is progressively weakened
the hydrolike region expands to fill more and more of the
~Fourier space! domain.

In closing, we note that in deriving a kinetic equation for
weak turbulence, defined bye5db/B0!1, Galtier et al.26

observe that ‘‘for any turbulence intensitye there always
exists a region of smallki in which the conditionki@e2k' is
violated; this corresponds to thenonuniformvalidity of the
kinetic equation.’’ This seems to us to correspond to what we
have called the RMHD region, which is inherently strongly
nonlinear and not describable using weak turbulence theory.
The hydrolike region is the generalization of the RMHD re-
gion to the situation wheree is not restricted to be small.

ACKNOWLEDGMENTS

We would like to express our thanks to David Montgom-
ery and Marco Velli for helpful and informative discussions
regarding the RMHD approximation.

This research was supported by grants from the NSF
~ATM-9977692 and ATM-0105254!, NASA ~NAG5-11603!,
and the New Zealand Marsden Fund~02-UOW-050 MIS!.

APPENDIX A: SMALL PARAMETERS AND THE
‘‘NATURAL’’ RMHD UNITS

Strauss’5 derivation of the RMHD equations was based
upon an expansion in terms of the small parametereStrauss

5 l' / l i , the ratio of characteristic lengthscales in the perpen-
dicular and parallel directions. However, he found that sim-
ply expanding in this small parameter was not sufficient; it
was also necessary to make some assumptions regarding the
ordering of the fluctuation strengths and the timescale. Spe-
cifically, v' ,b';eStrauss, Bz;B01eStrauss

2 , and ]/]t
;eStrauss.

In contrast, Montgomery’s3 derivation was based upon a
distinct small parametereMont5db/B0 , wheredb is the rms
value for the fluctuating magnetic field and the total field is
B5B01b(x,t). Again, simply expanding in the small pa-
rameter is not sufficient, with additional restrictions on the
scalings of other quantities being required. In particular,
Montgomery found that the expansion would only remain
valid if lengthscales were restricted so thatl'! l i .

The ratio of these two small parameters is

eStrauss

eMont
5

l'
dbY l i

B0
5

tNL

tA
[ehydro, ~A1!

so that the ~global! RMHD condition can be stated as
eStrauss&eMont!1 ~which includes the possibility ofeStrauss

!eMont). In effect, the Strauss and Montgomery derivations
each assumedeMont5eStrauss.

2222 Phys. Plasmas, Vol. 11, No. 5, May 2004 Oughton, Dmitruk, and Matthaeus

Downloaded 03 Nov 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



An alternative derivation of the RMHD equations can be
accomplished by expanding the full 3D MHD equations per-
turbatively with respect toboth of these parameters~treated
as independent!, where

B5
B08ẑ

eMont
1b81eMontb181... , ~A2!

z5
z8

eStrauss
1z081eStraussz181... , ~A3!

and a prime~8! denotes the values in the rescaled~natural!
units. One finds that theB08] j /]z8 term in Eq.~1! above@cf.
Eq. ~3!# should really be written

S B08

eMont
D S eStrauss

]

]z8D j , ~A4!

wherej 5 ẑ"“3b8. The situation is similar for the analogous
term in the equation for the vector potential. These forms
make it explicit that althoughz8 andB08 areO(1), theactual
physical quantities associated with these ‘‘natural units’’
variables are both large.

In the simulations discussed in Sec. IV the RMHD equa-
tions are solved for values ofB095B08eStrauss/eMont ranging
from 1/2 to 8.~Note thatB09 is denoted asB08 outside of this
Appendix.! In the context of the investigation discussed
there, an appropriate interpretation for the physical fields is
to considereStraussto be fixed, independent of the mean field
strength, so that for all simulations of a given parallel reso-
lution the same set of~physical! ki’s is employed. Different
values ofB09 then represent changes in the physicalB0 , as
desired.

APPENDIX B: SUBSETS OF INCOMPRESSIBLE MHD

Various subsets of full incompressible 3D MHD~with a
dc field present! are of interest and importance in the context
of MHD turbulence and its applications. Table I lists some

defining properties for several such subsets. The intersections
of the various subsets are depicted in Fig. 8 using a Venn
diagram.

A key distinction to be made is that between the hydro-
like modes, defined as the set of modes which satisfy
tNL(k)&tA(k), and the RMHD modes which must, in addi-
tion, satisfy the restriction that the fluctuations have small
amplitudes, e.g.,db/B0!1. As discussed throughout this pa-
per, satisfaction ofbothof these constraints requires also that
the parallel lengthscales are long compared to the perpen-
dicular ones. Said differently, the RMHD modes form a
proper subset of the hydrolike modes.

Clearly not all of the 2D and 212D modes present in a
system are necessarily RMHD in character~Fig. 8!, since the
small amplitude restriction must also be satisfied. This is to
be contrasted with the situation for the hydrolike modes, for
which the 2D and 212D modes are proper subsets. Moreover,
the strictly 21

2D modes which are also RMHD modes must
have nonzero parallel components, since otherwise they
would be pure 2D modes; that is, in this case accountmust
be taken ofv i(k) andbi(k), even though they are dynami-
cally passive.3,6

In circumstances where there is a strong mean magnetic

TABLE I. Various subsets of the full set of 3D MHD modes, specified by reference to their Fourier modes. A
dc fieldB05 ẑB0 is assumed to be present with its direction defining the parallel coordinate. The 2D planes have
ẑ as their normal.

Name of
subset

Geometry ofv
~andb!

Domain and
range Constraints

3D v(k' ,ki)5(u,v,w) f :R3→R3
¯

2D v'(k' ,0)5(u,v,0) f :R2→R2 ]/]z50,
ẑ•v50.

2
1
2D v(k' ,0)5(u,v,w) f :R2→R3 ]/]z50

RMHDa v(k' ,ki
slow)5(u,v,0) f :R23R* →R2 tNL(k)&tA(k),

v' ,v i!B0 .
hydrolikeb v(k' ,ki)5(u,v,w) f :R3→R3 tNL(k)&tA(k)

aRMHD also includes parallel components ofv andb, in which case one hasf :R23R* →R3, whereR* denotes
a subset ofR centered around zero~the set ofkis). However, these components are dynamically passive and
often ignored~Refs. 3 and 6!.

bAlso calledquasi-2DwhenB0 is large.

FIG. 8. Venn diagram of some~modal! subsets of incompressible 3D MHD
turbulence. The boundaries for the RMHD subset and the hydrolike subset
~shown as broken curves! depend upon the magnitude ofB0 .
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field, satisfaction of the hydrolike condition for a mode
would typically require thatk'@ki , so that these modes are
then conveniently referred to asquasi-2D. On the other hand,
as B0→0 the geometry ofk becomes of less relevance in
satisfying the defining timescale restriction, and so the term
quasi-2D becomes increasingly misleading. Whatever term is
used to describe such modes, the key point is that as far as
dynamical processes are concerned wave effects are usually
of secondary importance.~Although exceptions are possible;
for example, within an RMHD model counter-propagating
waves can be used to drive the turbulence.50,56,57!

Finally, we note that the definition of the hydrolike
modes could be generalized somewhat by using atA(k)
based upon the~local! mean field as felt by thatk, rather than
just the global mean field, e.g.,Blocal5B01^b& local. This
would presumably be in better accord with the local physics
and any wave-like attributes characteristic of the
fluctuations.24,58,59

APPENDIX C: RMHD AND NONPERIODIC BOUNDARY
CONDITIONS

Cases with nonperiodic boundary conditions~e.g., finite
length nonperiodic domains! require some care in defining
the Alfvénic timescales. Indeed, there are now two such
timescales to consider. The first is the usual wave period
tA52p/uk"B0u, which is the time taken to propagate one
wavelength, essentially the same as Eq.~4!. The second is
the box-crossing time,tbox5Lz /B0 , which is the time it
takes an Alfve´n wave to propagate across thedomain. For
periodic boundary conditions, it is not possible to consider
fluctuations with wavelengths longer than the box length,
hence tA<tbox. In the nonperiodic case, however, the
wavevectorsk are unrestricted. In some circumstances the
effective wavelength of somek vectors can be very large,
leading totA@tbox. In solar physics, for example, the foot-
point motions of magnetic field-lines which emerge through
the photosphere and extend upwards into the corona are of-
ten quasi-static. Thus, when considering a ‘box’ of coronal
plasma of finite height, the slowness of the field-line mean-
derings can easily lead totA@tbox.

As far as the RMHD condition is concernedtbox is of no
direct relevance, and thus might be thought to play no role in
determining whether RMHD is an appropriate approximation
to use in a given system. However, the situation is compli-
cated by the presence of other important timescales associ-
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