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Reduced magnetohydrodynamics and parallel spectral transfer
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The self-consistency of the reduced magnetohydrodynarti®dHD) model is explored by
examining whether(paralle) spectral transfer might invalidate the assumptions employed in
deriving it. Using direct numerical simulations we find that transfer of energy to structures with high
parallel wavenumber is in fact limited by ongoing perpendicular transfer. Thus, the dynamics
associated with RMHD models remains consistent with the underlying assumptions of RMHD. In
particular, in well-resolved simulations it is neither necessary nor correct to introduce additional
dissipation terms thatartificially) damp spectral transfer parallel to the mean magnetic field
By,. © 2004 American Institute of Physic§DOI: 10.1063/1.1705652

I. INTRODUCTION However, these features of RMHD also raise concerns
) . about the self-consistency of its derivation. A question that
The equations of reduced magnetohydrodynamic

: L : ?irises is whether the conditions that are imposed in deriving
(RMHD) are a nonlinear approximation to the equations o . . . !
. . : . RMHD will remain valid as the fields evolve. For example,
full (i.e., nonlinear, compressible, and three-dimensjonal

MHD, appropriate in certain situations where there is athere are no explicit factors in the RMHD model that prevent

strong mean magnetic fieB,. Physically, systems governed spect_ral cascade of a type that would steepen gradients in the
by the RMHD equations can be considered as a set of planéirection paraliel td3,. Also, as noted above, RMHD has no
of two-dimensional (2D) MHD fluctuations, which are dissipation in the parallel direction. Consequently, lacking
coupled together byong wavelength Alfve waves, propa- both restrictions on théparalle) cascade and parallel dissi-
gating normal to the planes. First derived by Kadomtsev anghation effects—either of which might limit the formation of
Pogutsé€, they have beerg rederived from various other per-structure with ever finer parallel length scales—it seems pos-
spectives several t|mé§._ In _partlcular, n Montgomery%_ sible that such higl, excitations could emerge dynamically
derivation the stated motivation was to find a set of equation, solutions of the RMHD equations. This technical issue
yvh|crf1 Slrgultgneouslly _retam?d _nor;mean_tl_es while rﬁmam'leads to concerns that RMHD invalidates itself, and therefore
Ing ot (1) timescale in t. € |m|t_a 0o, 1.6, Somenow gnight question the usefulness of the model. Here we exam-
avoiding the large-magnitude time derivatives associate . : . . . . .

: , e ine the issue directly using numerical simulations. We will
with Alfven waves in this limit. Subsequently, RMHD mod- o o

ygpnclude that parallel spectral transfer is indeed limited—not

els have been widely used in both terrestrial and space ph e 3 -
ics applications, including plasma fusion studiand coro-  PY dissipation—but by the efficacy perpendicularspectral

nal heating modelgsee, e.g., Refs. 7 and 8 and referencedransfer. Thus, the RMHD model can remain valid without
therein. use of artificial dissipation terms that damp fluctuations with
In this paper we focus on several apparently underhighk.

appreciated features of the RMHD approximation, associated As is clear from the derivation of the RMHD equations,
with the nature of spectral transfer in the directiorBgf In  the couplings retained in an RMHD model are a subset of
particular, we show that for fluctuations evolving accordingthose present in the full MHD model. This justifies at least
to the RMHD equations, parallel spectral transfer is self-partia"y the use of RMHD models by some autiofs to
limiting—despite the absence of dissipation in this direCtioninvestigate theoretical issues in general MHD theory. By in-
(see also Ref. 0 vestigating in some detail the structure of RMHD in the con-

An Important feature of RMHD systems Is that h'gh' text of full MHD, we will provide here a context for under-
frequency Alfvan waves are—by construction—excluded, in . . S .
standing the generality and limitations of such conclusions.

effect by the insistence that the “wave terms” et mosj Th is structured as foll Section Il revi th
comparable in magnitude to the nonlinear ones. This leads to € paper Is structured as 1ollows. Section I Teviews the

a compact representation, which, as the applied magnetf&af[“re of the RMHD approximgtion. Discussion of related

field becomes very strong, lacks fast timescales and smaioints regarding cascades—in both full and reduced
parallel lengthscales. The RMHD approximation also leaddHD—is given in Sec. lIl. Simulation results are presented

to the dissipative terms becoming independent of the parallé@nd discussed in Sec. 1V, for the case of periodic boundary
gradients, e.g., viscous dissipation is proportionalVtov  conditions. A conclusions section and several Appendices
rather than the full Laplacian of the velocity. close the paper.
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Il. THE RMHD APPROXIMATION within these planes is strongly nonlinear. This strong nonlin-
. , ) earity occurs as a consequence of the enforcement of the
The usual primary assumption of RMHD is that a Strong“hydrolike condition.” as we now discuss.

uniform magnetic fieldBo=Bo2, is present:**°By strong, The RMHD equations can be derived from the 3D MHD
one means that fluctuations in the velocity and magneti%quation? by assuming thati) v2 b2<B§ and (ii) that
fields have much smaller energy densities than that assocj_—NLSTA_ We refer to the latter constraint, between the ti-

ated withB,. Insisting fur_ther_that the nonl_inear terresg., mescales, as th@lobal) hydrolike condition(see also Ap-
b-Vv) be comparaplg in size to the I|_near opé&sg., pendix B. More verbosely, it is the restriction that the non-
Bo- Vv), means that it is necessary to restrict gradients alongnear timescale for the fluctuationsy, =\/éu, is shorter
By to be sma!l. This leads to a natural rescahng@fthe thanry=L, /By, the time taken for an Alfue wavepacket
parallel coordinatez, to be purely large-scale arld) the 1, yaverse a distance of order the typical lengthscale associ-
mean field strengtBo, which become®(1). Wedenote the 104 with parallel structure in the systeln,. Here,\ is the
rescaled field strength &, with Bo the strength of the  gneyqgy.containing lengthscale for the velocity field atudis
actual physical field. Similarlyz” is the rescaled version of ¢ 1mg velocity(Often \ is estimated using the correlation
physmal_ coprdmatg. For _conS|stency, we denote the vari- scale),, which is a measurable quantitive refer to the
able which is Fourier conjugate @ by k; . _ simultaneous satisfaction of both assumptigisand (ii)
The_ weII-knqwn _Ieadmg-order equations which _reS““above as satisfaction of thgloba) RMHD condition
from this approximation are referred to as the equations of ¢ is also of interest to develop the analogous timescale
RMHD. They involve an,mcgmpressmle zero-mean planeongition in terms of Fourier modes. Fourier decomposing
polarized velocityv(x,y,z",t)=(vy,vy,0) and a similarly ) andh(x), one finds that there are twmondissipative
plane-polarized magnetic fluctuation. In nondimensionalizeqjescales associated with wavevectordhese are
(Alfvén speedl units they can be expressédas equations

for the evolution of the fluctuations in the fluid vorticity 1
and the magnetic vector potentil Ta(K)= KByl = KBl (4
*Bo 1Bo
i—i—v-V w=b-Vj+VV2w+B'a—j (1) 1 1
at * LT R0z (k)= =, ®)
Kok Kby
d ) , oY respectively, referred to as the Alivgor wave timescale
S tvVija= 7Via+Bo—7, () and the(direction-averagedmodal nonlinear timescale. The

quantityﬁﬁ is an approximation for the energyper unit
mas$ associated with the Fourier componentsvofvhose

_ _ 5 5 _ w2
where V. =(dx,0y.,0), V=V Xy2, b=VXxaz «==Viy | ovevectors have magnitude= |k|. (The near equality of

= —Vfa, andV, -v=0. This representation of fluctuations

(but not explicitly the RMHD dynamical equationisas been Uk andb is a consequence.o'f 'the Alfeeffect |rlduced by

. the st 1617hut the definition based only @h, should
adopted in closure models of “shear Alivewave” €s r0_ng30_, yt the detinition based only an shou
turbulenceld14 be retained in nonequipartition situations, as can occur due to

boundary effects for instand®). Note that two-dimensional
(2D) modes havek,=0, by definition, and are non-

resistivity, %, but note that it involve§f not the full V2. In i ithr, (K) . Thus. th | tisfy th
these unitsB; is technically the(large-scalg Alfvén speed, propagating withra(k)—ce. Thus, they always satisfy the
hydrolike condition.

V,; for convenience, however, we often continue to refer to Th i of th : | ield

it as the mean field. Also, because of the rescaling ofzthe e ratio” ot these tWO. timescales yields a parame_ter
coordinate, ta’, lengthscale variations in this direction are centralps;uiz 152'\6!_2'5_6‘“ indeed  MHD  turbulence in
necessarily large, i.eQ(1). It is sometimes useful to em- eneral.—
phasize this aspect by rewriting the final term in EL, for

Dissipation occurs via the action of both viscosityand

(k)
example, as k)= e . 6
Ehydro( ) ’TA(k) ( )
(E)(Ei% 3) One can partition the Fourier modes into two sets on the
e\ az']" basis of whether or notQep,q(k)=<1 (referred to as the

modal hydrolike condition. Those modes for which the in-
where a small parameter, appears explicitlfsee Appendix equality holds have a nonlinear time which is faster than the
A). The two bracketed terms then correspond directly to thévave timescale and define thgdrolike modeslf, in addi-
actual(very strong physical mean field,=Bj/e, and the tion to the hydrolike condition being satisfied, it is also true
(very weal gradient operator along t. that the fluctuations are small amplitude in the sense that
It is worth emphasizing that RMHD igot a weak tur- 72,bZ<B3, then we will call these)RMHD modes

bulenceapproximation. While it is true that the fluctuations With a few further assumptions concerning the nature of
are of small amplitude relative #,, and that the coupling the energy spectra, one can characterize regions of wavevec-
betweenz-planes is only weakly nonlinear, the coupling tor space that are distinguished according to the nature of
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“ A wk To provide an estimate of the RMHD boundary in
steady-state conditions, we suppose there is an energy-
Non-ANHD containing range of scales, characterized by a sifigtgro-
pic) length scale\. For kA<1, the defining timescale in-
f equality is M du<(kBg) 1. Consequently the RMHD
T region in the energy-containing range of scales lies within
: A*TJ the region k,<\~16u/B,. For smaller (inertial rangg
- scales, determination of the boundary requires a functional

form for the spectrum. On assumption of a powerlaw Kol-

; —5/3 B
FIG. 1. (a) Cartoon sketch depicting the RMHD and non-RMHD regions, in mogorov perpendlculz;/rg energ_y spectrunk, ", and using
Fourier space, and their bounddsplid curve defined by the modal RMHD TNL(k? = (A/éu)(llk)\)_ ,  Which matCheS. the energy-
condition: 7y, (k)= 7a(k), subject to the fluctuations being of small ampli- containing range estimate &t 1/\, one estimates an iner-
tude. The dash-dot curve represents the asymptotically valid form for thgjg| range RMHD region akf<7\_1(5b/50)3(kf+ ki) Fig-

inertial range boundark, ~ (k,Bo)*2 For illustration this has been inap- : : : ;
propriately extended down to the origith) Schematic indication of the ure 1@ illustrates the RMHD region and its nominal

direction of spectral transfer for RMHD and non-RMHD modes. The arrowpounda_ry eStimat.ed. using the marginal point of the above
thickness provides a rough guide to the strength of the transfer. Interactioriiequalities. ASB, is increased the boundary draws in closer

inside the RMHD region are always resonant or nearly resonant, wheregagwards theki axis, decreasing the size of the RMHD re-
outside this region resonant interactions can only occur at fikged.e.,
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perpendicular transferThe dashed box indicates a possible computational . .
domain, with a maximum retained parallel wavenumbek5¥, and reveals Note that wherk, >k the inertial rangselzbouhd'ary as-
that both kinds of modes can lie within such domains. ymptotically approaches the curike ~ (k,Bg)*'<. This is the

boundary originally described by Higd&h[below his Eq.

(5)], and later described by Goldreich and Sridfas the
spectral transfer within them. Discussions along these linesondition for a “critically balanced cascade.” In the present
have been given previous?'324-24yith a clear emphasis estimate, the RMHD region is always somewhat larger than
on understanding the nature of the highly anisotropicthe estimate given by the asymptotic relation. The major dif-
cascade?®-3lthat occurs in the directions perpendicular to aference is that in the energy-containing regiér<(L/\), the
strong applied mean magnetic field. In the present paper theandwidth of the RMHD region irk, does not approach
emphasis is on understanding the complementary issue of tlzero, as it does when the asymptotic inertial range behavior
nature of the parallel RMHD cascade. is extrapolated—inappropriately—towarks=0.

Figure 1 illustrates some of the salient features of the  Since the boundary is not rectilinear, a rectangular re-
MHD wavevector space in the presence of a strBgpgThe  gion of wavevector space, as would ordinarily be employed
shaded area indicates the region in which the RMHD condiin a numerical simulation, will often include both RMHD
tion is satisfied(we assume here that,,b,<By). In the  and non-RMHD modegFig. 1(b)]. Exceptions to this could
unshaded region, RMHD is not valid, and more completedccur in a situation where the boundaries perpendiculBgto
MHD couplings are in principle required. One should note,are “open” (e.g., nonperiodic and the implied wavelength
however, that couplinginvolving RMHD modes occur in  Of the fluctuations is larger than the simulation domain; see
both regions, but in the latter region there are also couplingéppendix C.

which do not involve RMHD modegf. Fig. 2. The bound- From a numerical point of view, there is no particular
ary formed by the marginal RMHD condition separates theProblem in solving the RMHD equations using initial condi-
two regions>? tions which include non-RMHD fluctuations, as would be the

case for the situation sketched in Figb), for example.
Presumably, at later times the solutions to the equations will
@ ®) © still include contributions from non-RMHD fluctuations.
; , Questions then arise as to the consistency of the RMHD
- o equations, including whether they adequately capture the
/\ /\ ‘/A(\’ physics of non-RMHD fluctuations along with that of the
RMHD ones.
. k*é “l/ The question we wish to address herein is whether spec-

amplitude
amplitude
amplitude

tral transfer is eventually expected to invalidate the assump-

> > - tions of RMHD. Two initial situations, in particular, are of
interest. First, if a simulation is started with excitations con-

FIG. 2. Possible types of interactions between hydrolike and nonhydrolikeined within the RMHD wavevector region, will they always
wavepackets/modes. Shown arspace wavepacket interactiottsp row) remain so confined? If not. how dynamically significant is
and correspondingg-space wavevector triad®ottom row. In the bottom . ) ! : s
row, the shaded regions are indicative of the hydrolike regions and théhe generation of non-RMHD modes? Second, if the initial
driven mode(k) is depicted using an open arrow head. The mean Bgli data includes both RMHD and non-RMHD fluctuations, will
assumed to be at least somewhat strqagNonhydrolike with nonhydro- g region of non-RMHD fluctuations grow in importance as
like. (b) Nonhydrolike with hydrolike. Note the nonlocal nature of the in- time increases? Clearly these are issues that depend upon the
teraction ink-space. The two near vertical arrows represent the same hydro- ’ ’
like mode, with the dashed one being its “natural’ position and the solid fate and nature of parallel spectral transfer from the RMHD
one translated to form the triact) Hydrolike with hydrolike. region into the non-RMHD region.
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I1l. SPECTRAL TRANSFER: PERPENDICULAR traveling modg as was first pointed out by Shebaéhal !
VERSUS PARALLEL The nonpropagating modes are also known as the 2D turbu-
lence mode$?

Similarly, resonant driving ofA, requires thatg,=0.
Thus, a 2D mode and a propagating mddéthe opposite
sign of cross helicityinteract to drive another mode with the
same propagation properties as the driving mode. In particu-
Yar, the driven and driving modes have the same parallel
wavenumber, so that driving occurs at constiant At this
order, then, there is no parallel spectral transfer and the en-
ergy cascade is purely perpendicfaf® 31

The above conditions foexact resonance can be re-
laxed, by allowing the argument of the exponential term to
be small rather than zero. This yields the conditions for
quasi-resonance. Here, small means that averaging the right-

=|v—.b, say, gng Ieft—(jtra\(/jgllng :‘jluctuatmns aﬁ.zvffsb' hand side of Eq(10) over the Alfven time associated with
relative to a rightwards directed mean magnetic fiBil the driving wave does not give a near-zero result. Thus, if

which is assumed to be at least as energetic as the quctu?.— + - ;
. r ) . =2m/(q,By), andA. and A, do not vary appreciabl
tions. Two features make resonance difficult to achieve. First, 4 ™/ (6Bo) P a y app y

and rather remarkably, Alfvewaves propagating in the same over this timescale, then one requires

direction do not interact nonlinearly at all, even for finite 1 (Ta o0y 2p,

amplitudes. Second, oppositely propagating wavepackets can T_jo gPPotdt~1 = q—u<1. (11)

only interact for a time of the order of their crossing time d

Tin=N/(2V,a), where is the larger of the parallel extents Hence, provided that one of the wavepackets is very broad

of the two propagating packe(Eig. 2). compared to the other, quasi-resonance will occur when they
For simplicity, assume that the left and right-traveling collide [Fig. 2(b)].

packets have dominant characteristic wavevectors, respec- There is an additional restriction, if the notion of “quasi-

The resonance condition for spectral transfer(ful)
incompressible MHD with aB, has been discussed
extensively~13:2124-26.28-31.35-48q cited as a partial justi-
fication for the validity of the RMHD approximatichThe
mathematical context emerges by imposing frequenc
matching (i.e., resonandein addition to the mandatory
wavevector matching of the tria@ka three “wave’) inter-
actions arising from the MHD quadratic nonlinearities. This
provides conditions, akin to selection rules, for rapid nonlin-
ear couplings that drive the cascade.

It is convenient to discuss this in terms of an Bksar
representation in which right-traveling fluctuations are

tively p andq. Thus, resonance” is to mean that nonlinear interactions can pro-
_ ceed unabated by wave propagation effects. That is, the beat
ZH (1)~ A (t) P ep), (7)  frequency associated with the inexactness of the resonance
must be low enough that the nonlinearity is not averaged to
Z (X, ~Ag (1) @0t (8)  zero. Accordingly we require that
where the sense of propagation is encoded in the choice of pr+wq—wk|< 1 _ (12)
the wave frequenciesv,=—p By and wq=+0B,. Note L (K)

that the amplitudesA™ are in general time-dependent, al-
though this dependence may turn out to be “slow.” We de-
fine the cross helicity abl.=(z"-z"—z -z")/4, which is
positive for left-traveling modes and negative for right-
traveling one$?

The two packets can interact to drive left and right-
traveling packets withthe samg dominant wavevectok
=p+q and amplitudes?, . Substituting into the Elsser
form of the MHD equations dz*/ot ~—2z"-Vz= =By
-Vz*), one obtains for the right-traveling packet, A. Nonhydrolike—nonhydrolike interactions

The above understanding of quasi-resonance leads to an
improved picture for the interaction of MHD wavepackets.
Since any system with By can always support a hydrolike
region®® it is useful to treat each wavepacket as being either
a hydrolike (H) one or a nonhydrolikeN) one. There will
then be three distinct classes of interactidr:N, N—H, and
H-H (Fig. 2. These classes are now discussed in more de-
tail.

IA- This corresponds to the interaction ofcounter-

g (kx—kBot) Z_K_ ~q-AS A, dPTa) xgTi(optagt 9) propagating high-frequency waves, essentially via the well-
at P known Iroshnikov—Kraichnan pictufé; %6 with 7j<7y. .

Since both interacting modes have large parallel wavenum-
bers, resonance is not possibleg. 2(@)]. If the interactions
were coherent it would take= 7, / 7;,; encounters to amass
the equivalent of a single collision of duratiaf, . How-
upon substitution of théparalle) wavevector matching con- ever, as they are incoherent encounters are required, giv-
dition k,=p,+q, . A similar equation holds fosA; /ot. Ex-  ing a spectral transfer time af=n?r,,,= TﬁL/Tim> L SO
act resonance can only occur if the argument to the exponethat relative to hydrodynamics the cascade process is signifi-
tial is zero, which implies thap,=0. Thus, the mode which cantly slowed.
was assumed to be left-traveling, must in fact have a zero The wavenumber scaling of the inertial range associated
parallel wavenumber and is therefore a nonpropagating modith this interaction class is a question of some interest. Re-
(with, however, the same sign of cross helicity as a left-call that the Kolmogorov dimensional analysis approach to

A

— q-A, A, €2PiBat, (10)
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inertial range cascades—originally written in terms of thelead to an expectekl, 53 spectrum in theN range ofk,. The
nonlinear timescaley, (k)—can be reformulated in terms of weak turbulence contribution o, 2 would be masked. On
the triple correlation timescales(k), as was first done by the other hand, the whole relevance of the expected direct
Kraichnan®>%¢ Under the assumption of isotropy this yields transfer inertial range for th&l—N and N—H interactions
_ 42 may be called into question if, at a givéq, the spectrum

e~ a(K)KE(K), (13 needs to climb “up” at large; to meet the hydrolike bound-
wheree is the spectral energy fluk=|k|, andE(k) is the  ary (cf. Fig. 4.
omni-directional energy spectrum. The Iroshnikov—
Kraichnan scaling follows by taking;=1/kB, and assum- _ o )
ing small cross helicit{f**>However, for the present class of C- Hydrolike—hydrolike interactions

interactions isotropy is clearly a poor assumption. Interest-  As a consequence of the inherently low frequencies as-
ingly though, using the knowledge that the cascade is primasociated with hydrolike modes, the interaction time for two
rily perpendicular one can employ an anisotropic variant ofH modes is long, and will typically be associated with driv-
Eq. (13) to obtain a scaling which agrees with that of moreing of anotherH mode. In this sense their self-interactions
formal analyseS?®(see also Refs. 11, 18, 35, and3ds We  are always nearly resonant, sometimes referred to as “trivi-
now show. WhenBy, is strong and the parallel cascade is ally resonant.”® Thus, the hydrolike modes constitute a
suppressed, the energy transfer rais almost entirely due resonantly broadened analog of the strictly 2D modes.
to couplings to higher perpendicular wavenumber, and theClearly, the 2D-2D and 2DH interactions are subsets of
nonlinear timescale should depend primarily ugan On  thjs interaction classThese are also sometime called “zero
the other hand wave propagation effects are associated Withodes” and their couplings amongst one another, zero fre-
73(k) =1/k;Bg|, the (anisotropi¢ Alfven timescale. Ignor-  quency turbulence. Typically, it will not be particularly use-
ing the dependence of the energy spectrunkorEq. (13)is  ful to think of these modes as being wave-like.
rearranged to find For excitations well within the hydrolike region, parallel
2 B -2 and perpendicular spectral transfer are not essentially differ-

Elk) =k, "Ver(kokiBo~k, ™, (149 ent, since wave effects are secondary there. Consequently,
wheree, (k) is the (perpendicularenergy flux at that value the spectral transfer is approximately isotropic, although its
of k;. This scaling withk, has been observed in direct nu- region of applicability is not, and indeed emphatically not
merical simulations of RMHD under certain boundary con-when By, is strong[Fig. 2(c)]. Transfer in the perpendicular
ditions which limit the efficiency of the perpendicular direction proceeds unimpeded until theerpendicular dis-
cascadé® Note that the dependence &nis as a parameter sipation scalekgss, is reached. However, as the hydrolike
not a variable. The functional form of the parallel energyregion is narrow in the parallel direction, transfer in this
spectrum is undetermined in this approach. direction soon encounters the hydrolike boundary region
Where TNL= TA -

Once the excitation is transferred across this boundary,
into anN mode, it is no longer in the alway®early) reso-

Interactions of this type are essentially the same as thoseant region and its subsequent dynamics are of\thél or
first identified by Shebaliet al,®! but with allowance made N-N kind, discussed aboV&.A sharp “energy cliff” will
for quasi-resonance rather than exact resonance. As dithus develop around the hydrolike boundary Zdrisee Sec.
cussed in connection with E¢L1) above, the quasi-resonant V).

B. Nonhydrolike—hydrolike interactions

spectral transfer occurs at quasi-constgritFig. 2(b)]. That The shape of the parallel spectrum inside the hydrolike
is, the turbulent cascade is an approximately perpendiculaegion may be rather difficult to determine and problem de-
one. pendent. WhemB,, is large, there are relatively felys in the

Clearly, the efficiency ofparallel spectral transfer is hydrolike region—especially at low, —so that there is little
weak for these interactions. Indeed, there are good groundsope for the development of an inertial range or other scal-
for expecting the parallel spectrum to have an exponentiaihg range in this direction. The simulations discussed below
falloff, a suggestion first made by MontgoméfySection suggest that treating the parallel spectrum as approximately

IV A contains more discussion on this matter. flat in this region is a reasonable approdch Refs. 13, 25,
Note that these interactions are strongly nonlocal inand 26.
k-space, with resonant driving of the high-frequendy) ( As a final point in this section, we note that since the

modes requiring the presence of “catalytic” hydrolike energy of the(strictly) 2D modes is continually cascaded

modes. The nonlocality is due to the possibly substantiatowards the dissipative sink at hidq , there is a need to

difference in parallel wavenumbgsee Fig. 2o)] for N and  replenish this energy if this component is to survive. It is

H modes. Moreover, the strength of the interaction dependstraightforward to show thagxactresonant driving of 2D

on the partitioning of energy between thd and N modes using non-2D modes is not possible. Howavearly

modes?1225 resonant replenishment of the 2D modes can occur, via the
Under the condition that the quasi-two-dimensional partinteraction of two hydrolike modesp and g, with p,

of the spectrunithe H modeg is sufficiently strong, it seems = —q;. In the absence of external forcing of the 2D modes,

likely that the perpendicular spectrum of tNemodes will be  we suggest that this is the primary mechanism for replenish-

determined by theN—H interactions, and that this would ment of their energy.
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Exnlk) Similar results are obtained for various other resolutions
and initial conditions we have investigated. In particular, for
a given runseti.e., same IC, differer values the parallel
spectra are always ordered wilj in the same way as they
are in Fig. 3a).
AN Also shown[Fig. 3(b)], for the same set oB| values,
b P T are the steady perpendicular spectra for #je=0 (2D)

. modes. We defin€&,p(k, )=E(k.=0k,), where the axi-

FIG. 3. Steady-state energy spectra from 2282 simulations withB;,  Symmetric energy spectrufat givenk, andk;) is
=1/2,1,2,4,8(a) Parallel spectra(b) Perpendicular spectra for the 2R)(

10"
10-!2

=0) modes. The perpendicular dissipation wavenumber is indicated. Curves E -(k’ k)= 2 E(k k k')
are ordered wittBg . The “standard” case oBj=1 is depicted using a solid axiihz 1L — X1ty Rz /-
curve. In each plot, the thick roughly horizontal line is the initial condition. ky oky with [k, — VK, +k{[<1/2

(16)

The E,p spectra are qualitatively similar for all tHg), and
IV. SIMULATIONS there is even a short region aroukd~8—20 where they
are, very roughly, equal. This relatively weak dependence
uponBj is in marked contrast to the situation for the parallel
spectra. The Reynolds numbers are too low for gen(pee

Numerous spectral methd&ourier collocation simula-
tions of the RMHD equations were performed with values of
By between 1/2 and &f. Appendix A. The resolutions em-

ploed included 128<32, and 64xN, with N,=16, 32, PCNISLE el Jandee 19 CBbion.
and 64. Time advancement was via a second-order Runge— W yz possIbiity par spectru

Kutta algorithm. To achieve steady-state conditions thdS exponential in character. Consider first the situation in full
RMHD equations were augmented with forcing terms and3D MHD (cf. .S.ec. . From. t.he (paralle) wavevector
run for some 40-50 box-crossing times. The forcing termdnatching conditionk, =p,+q,., itis clear that parallel spec-
were originally designed for a coronal heating moteind ral trar_1$fer can orjly occur if bofy ,q”f 0. The gxponentlal
consist of directly driving a single Alfwe wave with factor in Eq.(10) is then always oscillatory, with angular

wavevectork=(1,1,1), and allowing all modes to undergo frglquin%ywch%inHBo, 'and exaé:t' resona:cz ist#n?cniev—
reflection at a specified rate. All the runs used initial condi-2P'€: ASBo andiorp, are increased in magnitude, the “chop-

tions (ICs) where the excited modes were restricted to have'"Y effect of this term becomes increasingly pronounced

2<k, <6 and —K,sk,<K, with approximately equal
amounts of energy in eadj plane. Usually we se,=4.
The fluctuations were initialized in Fourier space using
Gaussian random phases, with the amplitudes(&j and

b(k)~1/v1+ (kL/5)8/3. The initial energy in the fluctuations js more effectively averaged towards zero.

was unity, equipartitioned between the velocity and magnetic  For a given simulatiorB,, is fixed. Over the(shorb in-

fields, with normalized cross helicities-0.02. All runs terval t,—t; many different values OpH will contribute to

where performed with-= »=1/200, corresponding to initial the tota?* AA, . For parallel transfer, the most effective

large-scale Reynolds numbers of 200. contributions will typically come from the smallgx’s (usu-

ally associated with RMHD modgsRecall, that in a peri-

odic system the wavevectors are discretely spaced so that
Figure 3a) shows the parallel energy spectrui(k;),  there is a minimum difference between distinct wavevectors,

for five 128 32 runs, each employing the same initial statej e., |k, —ky|=Akpy,. It follows that parallel cascade must

but with distinct values 0B,. The parallel spectrum is de- pe associated with changes in parallel wavenumber quan-

t )
AA[%J' 2q-A;(t)A;(t) g2PiBol gt (17
ty

A. Strength and nature of the cascades

fined as tized in units of Aky,. Similarly weno=2pBo=2(K
—q) By is quantized in units of &K,;,By. Thus, the small-
E,(k.)= 2 E(ky.ky ,k.), (15) est non-zerop;, has magnitudeAk.,, and impliesk,=q;
kx Ky * AKnin, and an associated parallel cascade. The efficacy of

this cascade will clearly be weakened for larger valugs, of
whereE(k) is the full (kinetic plus magneticmodal energy However, as noted by Kinney and McWilliarAsjt is
spectrum of the fluctuations. Clearly there is significant fall-not a cascade in the traditional sense since(Ed. depends
off with increasing|k;| for all values ofB;, and the stronger upon the(mode-independenamplitudeB,. Consequently, it
B, the more dramatic the falloff. Although the rangekdfs is not clear that power-law scalings kn will result. Indeed,
employed is not large, fits to an exponential dependence osince the perpendicular cascade is, at leading order, both
|k;| for |k;|=7 are reasonably convincing, particularly for resonant andB,-independent, it is likely that at a givek
largerB( . Note that thesteady-stateReynolds numbers for most of the energy will be transferred to high, with only
these runs have deliberately been kept rather IBe~(R,,  a small amount trickling through to still highds [cf. Fig.
~200-300) to ensure that there is no doubt regarding thé(b)]. This “survivalist” interpretation of the parallel transfer
resolution of the perpendicular dissipation scale. also suggests that the parallel spectrum will be exponential.
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FIG. 4. Several cross-sections through the spectfiyn(k. k,) for the i — j:_'”m
128X 32 run with B=8. () Eg(k, k,) at indicatedk,. Note that for e Y R T
k, =12, the perpendicular spectrum actually shows a largeasebetween o N aaesius B aisle
k, =1 andk, ~20. (b) Ea(ky k,) atk, =1 (solid), 4 (dash, and several : @ - <{,\/7 Fise—
indicated values. Regions which are approximately flakjnincrease in = Q@ fj\)cm {A{;’“;;

15 10 5 0 5 10 15 15 10 5 0 5 10 15 15 10 5 0 5 10 15

width ask, increases. The dissipation wavenumber in the perpendicular
direction is~32.

By 2 By= 1 By =05

FIG. 5. Steady energy spectrEq(k,,k,), from fixed resolution 128
X 32 simulations for variou8;. Top left Overlaid surface plots foB

An exponential form for the parallel spectrum @ill) =1 and 8.Remaining paneisContour plots of lod=,,i(k; .k, ) for the in-

. ] dicated values 0B, using the same fixed contour levels in each plot. The
3D MHD turbulence with a strong, was first SqueSted by putative size of the RMHD regioffas indicated by the area where the

7 . e
Montgomgry‘.‘ More re.cently, K'nney and McWilliants contours are roughly parallel to the-axis) is seen to increase &, is
made a similar suggestion within the context of RMHD tur- decreased. However, for this parallel resoluti&d¥=16), probably only

bulence, and also provided evidence for it from freely decaythe By=8 run is adequately resolved.
ing RMHD simulations. The numerical support presented
herein appears to be the first for the case of forcedady
RMHD turbulence. however, still the question of how much resolution is re-
Plots of the steady axisymmetric energy spectrum, dequired in the parallel direction in order to adequately resolve
fined by Eq.(16), are also illuminating. Figure 4 shows sev- both the parallel and the perpendicular structure. In effect,
eral cross-sections of this quantity from the 4282 run  this is the question of how to chooBg andky'® (defined to
with Bo=8. The lefthand panel displays cross-sections abe the maximunk; retained in the simulationin tandem, in
four values ofk,. The striking similarity of the curves at such a way that the spectra are well-resolved in all direc-
high k, suggests thatvithin the RMHD regions parallel tions.(The usual requirement that the minimum perpendicu-
transfer is efficient, producing parallel spectra that are aplar scale resolved is smaller than the dissipation scale is also
proximately flat. This is corroborated in Fig(®. Note that needed.
at lowk, , the falloff with k, is so sharp that dt,= 12 (for Since the above arguments and simulation results indi-
examplé the perpendicular spectrum actually hasnicrease  cate that the evolution of non-RMHD modes is handled ad-
by a factor of~10* betweenk, =1 and~20 (possibly via equately by the RMHD equations, ideally the simulation do-
“pback-fill” from larger k), in order to attain the correct main should be chosen large enough to ensure that the
spectral level near they, (k) =~ rA(k) boundary. RMHD region is a proper subset of it. This is perhaps easiest
Figure 4b) displays cross-sections in the perpendicularto see in Fourier spade.g., Fig. 1b)]. If, instead, the simu-
direction, at five values ok, . The efficiency of parallel lation boundank;®=max]k;|} crosses into the true RMHD
transfer within the RMHD region, especially at larder, is ~ region at higher values ¢f, , as in Fig. 1b), then the system
apparent from the flatness of the cross-sections there. Notis, likely to be improperly resolved. In particular, energy
moreover, that thé, =1 andk, =4 curves in this panel which should have been transferred within a widening
have, more or less, the sanke boundary, especially for RMHD region may be constrained to transfer through an
|k.|=<5. This provides support for our contention that theartificially narrow RMHD region, leading to elevated spec-
shape of the RMHD boundary at loky is determined by the tral levels and changes of spectral slopes there. Although
large-scale eddy turnover tin{see the discussion regarding global quantities such as the energy decay rates could con-
Fig. 1 in Sec. I). ceivably still be correct in such simulations, the spectral dis-
In summary, the simulation results support the assertiofibution of energy, etc. clearly will not be.
that RMHD is a self-consistent model. In particular, the ~ We examine numerically the influence of parallel reso-
transfer of energy from RMHD modes to non-RMHD ones islution using two complementary studies. In the fiB, is

found to be a weak process associated with steep, possibyaried with the resolution held fixed, while in the second
exponential, perpendicular spectra. k'™ is varied withB, fixed. Figure 5 displays plots from the

first such study. Shown are contours and surfaces of the
steady-state axisymmetric energy spectra, for five? X2
runs withBj=1/2, 1, 2, 4, and 8. The apparent size of the
The results of the previous subsection show that paralleRMHD region appears to increase B§ is decreased. This
cascade in RMHD is indeed self-limiting, due to the weak-shows that there is insufficient parallel resolution since the
ness of spectral transfer in this direction, while perpendiculaboundary of the RMHD region is not evident. Indeed, prob-
transfer continues to drain away available energy. There isably only theB|=8 case is properly resolved here. The pres-

B. Resolution issues
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FIG. 6. Contour plots of thélog of) the energy spectrB,i(k; ,k,) show-
ing improving resolution of parallel transfer as the maximum retakjeid

increased. Simulations are at?64{64,32,16. Top row: B,=8 case. Bot-
tom row: By=1 case. All plots use the same set(efjui-spacedcontour
levels.

ence of approximately horizontal contours which span the

entire k, domain is diagnostic of under-resolution in this
direction. Note also that the energy is piling ugkinasB is
decreasedconsider, for example, the—7.318" contours.

Results from the second study are shown in Figs. 6 ané

7. The former displays contour plots of th&teady axisym-

metric energy spectra. Plots are shown for two different val

ues ofBg, each at three parallel resolutions. For fg=8
cases(top row) retaining 32 or 64 parallel wavenumbers

gives adequate resolution, while retaining 16 is probably no

quite adequate. As can be seen from inspection of the loc
tion of the “—5.6" contours, for example, there is a definite
accumulation of energy well above the level seen in the tw
more highly resolved cases. For tB§=1 cases, only the

64°X 64 run shows signs of an encircling non-RMHD re-

gion, and even it may only be marginally resolved. Empiri-
cally, then, for these simulations it seems that acceptabl

parallel resolution can be ensuredkf'*B;=100. On the
other hand, if contour plots oE,,(k. ,k,) include some
contours which are “flat” across alk,, then the parallel
resolution is unlikely to be adequate.

More generally, one can obtain a lower bound on the

product kB, which should be comfortably exceeded to

Reduced MDH and parallel spectral transfer 2221

mean forcing rate at steady state, approximatedsag>(\.
Equivalently, one can use the inner timescalg= Vv/€ in
place of 7y (k). Both approaches yield

1

ma I __
I(z XBO_ T
NL

RY?, (19

where, as beforery, =\/6u is the global nonlinear time-
scale. Although this formula is likely to underestimate the
actual product required—since it makes no allowance for an
encircling non-RMHD region—it does reveal the scaling
with Reynolds number. For example, the simulations associ-
ated with Fig. 6 haveR,~250 and eddy turnover times of
order one, givingk'"¥By~16, which is well below the em-
pirical value of 100. Equatiofil8) can also be rewritten to
give a useful expression for the ratio of the required parallel
and perpendicular resolutions:

|

where db~ éu is assumed.

More information on the character of the errors in the
energy spectra arising from lack of parallel resolution is re-
ealed in Fig. 7. Shown are perpendicular cross-sections of
ai(K; k. ) taken from thredB)=4 runs with differing par-
allel resolutions. Run parameters are identical except for the

13
: (19

1
Kgis\

k™ sb
kdiss_ Bé

value ofN, . The left-hand panel indicates that all three reso-

lutions are acceptable at low enoulh. Indeed, fork,=0
ndk;=1, the traces from the different resolution runs are

usually overlain. The same is true fef=4 at sufficiently

qérge k, . At smallerk, , the lowest resolution run is out by

a factor of~3, suggesting that the resolution is inadequate.

OI'his is confirmed by examining cross-sections for two other

representative values df, (right-hand panel For thek]

=14 case, only the highest parallel-resolution run is ad-
equate. The curves from the poorly resolved runs are clearly
fo flat as a function of, (atlowk,). In particular, because
they can be several orders of magnitude too high ikear
=1, they may not capture the substantial increase in spectral
amplitude which should occur with increasikg (compare

the dotted and solid curves f&t=7).

ensure adequate parallel resolution. The bound is obtained By CONCLUSIONS

evaluatingry (k)= 7a(k) at ak, equal to the Kolmogorov
dissipation wavenumber. As usuali.<= (e/v%)Y* wheree
is the mean energy dissipation rate, assumed equal to t

oty TR,

I S

100

FIG. 7. Cross-sections d(k, k) at variousk from By=4 runs at
three different parallel resolutions: 84N, .

We have shown that for strongly forced RMHD, parallel

hSépectral transfer is self-limiting due to the weakness of the

cascade in this direction: There is no need to introduce par-
allel dissipative terms. As expected, perpendicular spectral
transfer is limited in the usual way, i.e., by the dissipation
scale in that direction.

These results indicate that RMHD is indeed a self-
consistent model. That is, weaRfy non-RMHD
fluctuations—either  present initially or generated
dynamically—are adequately evolved by the RMHD equa-
tions, despite the fact that the equations are not formally
valid for them. Moreover, since the leading-order couplings
for strongly non-RMHD fluctuations are of the resonant
hydrolike—nonhydrolike kind(Sec. Il B—associated with
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suppressed parallel transfer bigtill) strong perpendicular bility than this. Indeed, whether the turbulence is weak or
transfer—one might anticipate that the RMHD equations willstrong in terms of the size afb/B,, we would suggest that
also adequately capture the physics associated with these itihere is almost always a region where the turbulence is
teractions. strong in the sense that the nonlinear interactions are strong.
One practical conclusion from this study is that in orderWe refer to this as the hydrolike region, defined in Fourier
to correctly simulate the dynamics of the RMHD modes us-space by the set of Fourier wavevectors whose modes satisfy
ing the RMHD equations, it is necessary to choose Bjh  enyadK)=1, or equivalentlyry (k)=7a(k). As discussed
and the maximum retaineld, large enough so that, in Fou- in Appendix B, as the mean field is progressively weakened
rier space, the RMHD region lies inside the computationathe hydrolike region expands to fill more and more of the
domain. The required parallel resolution scaleskd§\  (Fourier spacedomain.
~(8b/By)RY? [see Eqgs(18) and (19)]. The usual restriction In closing, we note that in deriving a kinetic equation for
of the maximum retaine#t, being greater than the dissipa- weak turbulence, defined by=sb/B,<1, Galtier et al*®
tion wavenumber is also required. Simulations based on thebserve that “for any turbulence intensity there always
RMHD equations should use a domain in which the RMHDexists a region of smak, in which the conditiork,> e’k is
region is a well-resolved subset of the computational doviolated; this corresponds to thenuniformvalidity of the
main. If this is not done, then the self-limiting of the parallel kinetic equation.” This seems to us to correspond to what we
cascade will not usually be apparent atikall. Quantities like  have called the RMHD region, which is inherently strongly
the axisymmetric energy spectruri,,(k, k), are then nonlinear and not describable using weak turbulence theory.
likely to be distorted in terms of both spectral shape andlhe hydrolike region is the generalization of the RMHD re-
spectral amplitude. gion to the situation where is not restricted to be small.
Although it is always better to have adequate resolution,
one can ask how quantities obtained by integration over one
or more directions irk-space, are affected by the parallel ACKNOWLEDGMENTS

resolution. Such quantities. include _the_specﬁfgékz) an_d We would like to express our thanks to David Montgom-
E2p(k,), and bulk values like the kinetic energy. As inte- ery and Marco Velli for helpful and informative discussions

grated quantities are typically most influenced by the exc'ta'regarding the RMHD approximation.

tion levels of the energy-containing modes, one might hope This research was supported by grants from the NSF
that they would not be particularly sensitive to the lack 0f(ATM-9977692 and ATM-0105254 NASA (NAG5-11603

resolution in the parallel direction, since the excitation is
' . and the New Zealand Marsden F -UOW-050 MIS.
very weak at largek,. Indeed, energy spectra pldiSig. 7) W u@e S

indicate that parallel resolution primarily affects the situation
at higherk,, with relatively weak effects for the lowekt  AppENDIX A: SMALL PARAMETERS AND THE

modes. . . . “NATURAL” RMHD UNITS
We have also discussed the importance ofttidrolike 6 _
conditionto RMHD, and MHD turbulence in general. This Strauss” derivation of the RMHD equations was based

condition, or cousins of it, has also been invoked in varioug/pon an expansion in terms of the small parametggss
other context$:?>?2~*4These include the definition of the =I./l;, the ratio of characteristic lengthscales in the perpen-
Kubo number?® of relevance in the theory of scattering of dicular and parallel directions. However, he found that sim-
particles by MHD turbulence, and the “critical balance” con- ply expanding in this small parameter was not sufficient; it
dition, introduced by Higdotf and used by Goldreich and Was also necessary to make some assumptions regarding the
Sridhat®®" (hereafter G5 in their model of strong MHD ordering of the fluctuation strengths and the timescale. Spe-
turbulence.(We note that there are several papers whictcifically, v, b, ~esyayss B;~Bo+ €5yass and dlat
identify some problems with further conclusions of the GS~ €strauss
approach 11545 In contrast, Montgomery®derivation was based upon a
The critical balance assumptiti?’ asserts that within ~ distinct small parametes,n= 5b/By, wheresb is the rms
the (putative inertial range of strong MHD turbulence, the value for the fluctuating magnetic field and the total field is
k-dependent “nonlinearity parameter,¥(k)=k, 7, /k,Bq  B=Bo+b(x,t). Again, simply expanding in the small pa-
(in our notation, will dynamically adjust to take values of rameter is not sufficient, with additional restrictions on the
about unity. As noted in Sec. lly is a special case of scalings of other quantities being required. In particular,
Uenyaro=Ta(K)/ Ty (K); specifically, when the nonlinear Montgomery found that the expansion would only remain
time is approximated using perpendicular components. In efvalid if lengthscales were restricted so that<l, .
fect, substantial anisotropy is being assumed in the definition ~The ratio of these two small parameters is
of x, whereas this is not the case in the definitionegf;y,.
In cases where the anisotropy is strong, the distinction is of
course largely irrelevant.
As part of their definition ostrongMHD turbulence, GS so that the(globa) RMHD condition can be stated as
assume thabu, sSb~B,. However, as discussed in the body egyaus= emoni<<1 (Which includes the possibility O&gyauss
of this paper, it is our view that the “critical balance/ <eyon). In effect, the Strauss and Montgomery derivations
hydrolike condition” style of idea has much wider applica- each assumeeéyo,= €syrauss

€Strauss ) 7

€Mont B % B_0 - T_A - EhydrO! (Al)
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TABLE I. Various subsets of the full set of 3D MHD modes, specified by reference to their Fourier modes. A
dc fieldBy=ZB, is assumed to be present with its direction defining the parallel coordinate. The 2D planes have
Z as their normal.

Name of Geometry ofv Domain and

subset (andb) range Constraints

3D v(k, ,k)=(u,v,w) f:R3 RS

2D v, (k, ,00=(u,v,0) f:R?—R? alaz=0,
2-v=0.

Z%D v(k, ,0)=(u,v,w) f:R?—R® dldz=0

RMHD? v(k, kS =(u,v,0) f:RZX R* —R? LK) = 7a(K),

v, ,0<Bg.
hydrolike’ vk, k)= (u,u,w) f:R3—R3 L (K) = 7a(K)

®RMHD also includes parallel componentswéndb, in which case one hasR?x R* —R®, whereR* denotes

a subset off centered around zerdhe set ofk;s). However, these components are dynamically passive and
often ignored(Refs. 3 and

PAlso calledquasi-2DwhenBy, is large.

An alternative derivation of the RMHD equations can bedefining properties for several such subsets. The intersections
accomplished by expanding the full 3D MHD equations per-of the various subsets are depicted in Fig. 8 using a Venn
turbatively with respect td@oth of these parametersreated  diagram.

as independeptwhere A key distinction to be made is that between the hydro-
like modes, defined as the set of modes which satisfy
Boz ) ) L (K) = 74(K), and the RMHD modes which must, in addi-
B= EMont+b +émonb1t -, (A2) " tion, satisfy the restriction that the fluctuations have small
amplitudes, e.g.9b/By<<1. As discussed throughout this pa-
2 per, satisfaction dboth of these constraints requires also that
z= +2z)+ €syausZyt - (A3)  the parallel lengthscales are long compared to the perpen-
€strauss dicular ones. Said differently, the RMHD modes form a

proper subset of the hydrolike modes.

Clearly not all of the 2D and 3> modes present in a
system are necessarily RMHD in charadfeig. 8), since the
small amplitude restriction must also be satisfied. This is to
B P be contrasted with the situation for the hydrolike modes, for
( 0 )(%Uauss_,)j, (A4)  Which the 2D and 2D modes are proper subsets. Moreover,

€Mont 0z the strictly 2D modes which are also RMHD modes must
have nonzero parallel components, since otherwise they
wherej=2-V XDb’. The situation is similar for the analogous \yould be pure 2D modes; that is, in this case acconust
term in the equation for the vector potential. These formsyg taken ofv,(k) andb,(k), even though they are dynami-
make it explicit that althoughl’ andB; areO(1), theactual cally passive’®
physical quantities associated with these “natural units” | circumstances where there is a strong mean magnetic
variables are both large.

In the simulations discussed in Sec. IV the RMHD equa-
tions are solved for values d@g=B{esyausd €Emont FANGING
from 1/2 to 8.(Note thatBy is denoted a8 outside of this
Appendix) In the context of the investigation discussed
there, an appropriate interpretation for the physical fields is
to consideregy,,sst0 be fixed, independent of the mean field
strength, so that for all simulations of a given parallel reso-
lution the same set djphysica) k;’s is employed. Different
values ofBj then represent changes in the physiBgl as
desired.

and a prime(’) denotes the values in the rescal@dtura)
units. One finds that thB(dj/dz’' term in Eq.(1) above[cf.
Eq. (3)] should really be written

Full 3D

APPENDIX B: SUBSETS OF INCOMPRESSIBLE MHD

_Vanous subsets OT full mcompressmle 3D _MHWIth a FIG. 8. Venn diagram of som@noda) subsets of incompressible 3D MHD
dc field presentare of interest and importance in the contextyrhulence. The boundaries for the RMHD subset and the hydrolike subset

of MHD turbulence and its applications. Table | lists some(shown as broken curveslepend upon the magnitude Bj .
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