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 2 

ABSTRACT 1 

In the Surat Basin of eastern Australia, the Lower Jurassic Precipice Sandstone and 2 

Evergreen Formation are a highly prospective reservoir-seal pair for notional future carbon 3 

capture and storage. However, the succession remains poorly constrained from a paleo-4 

depositional standpoint and this has impacted the capacity to construct predictive reservoir 5 

models. Here we integrate sedimentological, ichnological, and palynological data from ten cores 6 

located across a large region of the northern and central basin to produce conceptual 7 

depositional models. 8 

Our analysis shows that the Lower Jurassic Series consists of fifteen recurring sedimentary 9 

facies that are arranged into six facies associations – braidplain, lower delta plain, subaqueous 10 

delta, delta-influenced shoreface, tidally influenced shoreline, and restricted marine shoals. The 11 

facies associations occur in the context of a large scale fluvio-deltaic system that developed 12 

within the basin. These results are supported by ichnological indications of marine and brackish 13 

water, and a coastal suite of palynomorphs including rare dinocysts, acritarchs, and copepod 14 

fragments. The very low abundance of marine palynomorphs are confined to the upper portion 15 

of the Evergreen Formation, and in combination with sedimentological and ichnological results 16 

suggest that marine influence increased through time. 17 

The elucidation of marine influenced deposition contravenes all but the most recent facies 18 

interpretations of the Precipice Sandstone and Evergreen Formation, and suggests that the 19 

paleogeography of the Mesozoic of eastern Australia needs to be reconsidered. Importantly, the 20 

nearshore and shallow marine depositional affinity has important implications for the size, 21 

orientation, and distribution of geobodies when building geologically realistic static reservoir 22 

models for dynamic flow simulation. 23 

24 
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 3 

1. Introduction 1 

Facies analysis and paleoenvironmental interpretation are integral for predicting reservoir 2 

performance due to their implications for fluid flow properties (i.e., porosity and permeability; 3 

(Burton and Wood, 2013; Baniak et al., 2014; La Croix et al., 2017) and the continuity and 4 

connectedness of reservoirs and seals (Allen, 1978; Ainsworth, 2005). Facies data are 5 

fundamental inputs to high-resolution static reservoir models (Harding et al., 2005; Mikes and 6 

Geel, 2006; Ringrose and Bentley, 2015), and thus capturing detailed facies information can 7 

reduce uncertainty in the prediction of plume migration and pressure response in CO2 injection 8 

scenarios.  9 

Carbon capture and storage (CCS) in subsurface aquifers and depleted hydrocarbon 10 

reservoirs is a growing area of research and investment (Garnett et al., 2014; Neele et al., 2017; 11 

Worth et al., 2017). This is due to its large potential for mitigating emissions from coal- and gas-12 

fired power generation and for the abatement of climate change (Metz et al., 2005; Agency, 13 

2008). As a result, regional subsurface assessment of the sedimentary basins in Eastern 14 

Australia have identified the Surat Basin as being highly prospective because of its depth, 15 

temperature gradient,  the presence of high-quality reservoir-seal pairs and its proximity to large 16 

point-source emissions (Bradshaw et al., 2011; Hodgkinson and Grigorescu, 2013; Garnett et 17 

al., 2014). Within the Surat Basin, the Lower Jurassic Precipice Sandstone and Evergreen 18 

Formation represent the primary reservoir and seal intervals with potential to meet commercial-19 

scale storage requirements (Bradshaw et al., 2011). 20 

The regional-scale geology of the Precipice Sandstone and Evergreen Formation is not well 21 

understood. This is because they are generally not hydrocarbon bearing strata, particularly in 22 

the deep central regions of the Surat Basin where CCS potential is greatest. Detailed 23 

depositional interpretations are few, hindering modelling efforts to help forecast reservoir 24 

performance and sealing potential. Most past studies have interpreted the Precipice Sandstone 25 

to represent braided river deposits with minimal effects of relative sea level (e.g., Sell et al., 26 

1972; Exon, 1976; Exon and Burger, 1981; Martin, 1981; Green et al., 1997). More recently, an 27 

argument for marine influence has been put forth based on data from the outcrop belt and one 28 

core located in the northern portion of the basin (Bianchi et al., 2018b; Martin et al., 2018). The 29 

basal Evergreen Formation, on the other hand, has been interpreted as continental meandering 30 

river and freshwater lake deposits (Mollan et al., 1972; Dickins and Malone, 1973; Exon, 1976; 31 

Cosgrove and Mogg, 1985). Uppermost Evergreen Formation deposits have been interpreted 32 

as fluvio-lacustrine (Exon and Burger, 1981; Fielding, 1989, 1990; Cranfield et al., 1994), though 33 

marine incursions have been suggested to explain the presence of oolitic ironstone in the 34 
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 4 

Westgrove Ironstone Member (Mollan et al., 1969; Mollan et al., 1972; Exon, 1976; Beeston, 1 

1979). Few studies to date have integrated multiple datasets across a large area to gain a 2 

regional perspective of the distribution of paleoenvironments and their representative 3 

sedimentary strata. Such regional integration of facies analysis for the Precipice Sandstone and 4 

Evergreen Formation needs to be revisited to establish an updated view of the depositional 5 

environments as this has not been undertaken for several decades. 6 

The aim of this study was to analyse facies by integrating sedimentology, ichnology, and 7 

palynology from the Lower Jurassic- Precipice Sandstone and Evergreen Formation with a 8 

regional perspective in mind. We sought to construct depositional models that fit the large-scale 9 

distribution of facies and which document the progressive changes in environments through 10 

time. We focused on providing evidence of marine-influenced deposition, a topic that is still 11 

debated in the literature and holds important implications for the paleogeography of eastern 12 

Australia during the breakup of Gondwana. The results of this study are important for aiding 13 

sequence-stratigraphic interpretations (e.g., Wang et al., 2019), for predicting facies where data 14 

are sparse or absent (e.g., He et al., 2019), and ultimately to improve reservoir modelling for the 15 

purpose of CO2 storage in the subsurface (Hodgkinson and Grigorescu, 2013). 16 

 17 

2. Geological Setting 18 

2.1 Structure and Basin Formation 19 

The Surat Basin lies between latitudes 25 and 33 S, and from longitudes 147 to 152 E, 20 

enveloping an area of ~327, 000 km2 in Queensland and New South Wales, Australia (Fig. 1). 21 

The Surat Basin is time equivalent to the Eromanga and Clarence-Moreton basins, separated 22 

from them by the Nebine and Kumbarilla ridges (structural highs) to the west and east, 23 

respectively (Power and Devine, 1970; Exon and Senior, 1976; Green et al., 1997). As a 24 

shallow platform depression sitting unconformably above the narrower Bowen and Gunnedah 25 

basins, the Surat Basin partly rests upon Palaeozoic basement rocks, and partly on sedimentary 26 

rocks of Permo-Triassic age. The basin axis trends north-south along the Mimosa Syncline, 27 

roughly corresponding to the Taroom Trough which is the thickest part of the underlying Bowen 28 

Basin (Exon, 1976; Fielding et al., 1990). 29 

There are three differing basin formation models of the Surat Basin: 1) thermal subsidence 30 

(Korsch et al., 1989); 2) dynamic platform tilting (Gallagher et al., 1994; Korsch and Totterdell, 31 

2009; Waschbusch et al., 2009); and, 3) intraplate rifting (Fielding, 1996). These differing 32 

interpretations stem from a poorly resolved tectonic history and debate over the intracratonic 33 

(Fielding, 1996; Yago and Fielding, 1996) versus pericratonic nature of the basin (Exon, 1976; 34 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 5 

Exon and Senior, 1976; Veevers et al., 1982; Gallagher, 1990). Despite the relatively 1 

undeformed nature of its sedimentary fill, several important structural features occur within the 2 

Surat Basin (Fig. 1). The most prominent basement structures are the Auburn Arch in the 3 

southwest, the Yarraman Block in the northeast, and the Texas High in the southeast. These 4 

fault blocks were major sediment sources, but became less exposed as time progressed and 5 

the basin was filled (Green et al., 1997). The sedimentary succession is no longer at its 6 

maximum burial depths because up to 2500 m of sediment have been eroded from the northern 7 

and eastern parts of the basin in the last ~100Ma (Gallagher et al., 1994; Raza et al., 2009). 8 

 9 

2.2 Sedimentation Cycles and Stratigraphy 10 

The 2500 m thick fill of the Surat Basin was delivered in six major pulses (Exon and Burger, 11 

1981). Each cycle broadly equates to a 2nd order transgressive-regressive cycle (10–20 Ma), 12 

with three cycles for the Jurassic section, one spanning the Jura-Cretaceous boundary, and two 13 

during the Cretaceous. The cycles are informally known as: (1) the Precipice-Evergreen, (2) the 14 

Hutton-Walloon, (3) the Springbok-Westbourne, (4) the Gubberamunda-Orallo, (5) the Mooga-15 

Bungil, and (6) the Wallumbilla. 16 

Stratigraphic correlation across the Surat Basin has garnered substantial effort over several 17 

decades (Gray, 1968; Power and Devine, 1970; Mollan et al., 1972; Exon, 1976; Green et al., 18 

1997; Hoffmann et al., 2009; Totterdell et al., 2009; Wang et al., 2019). Yet, a set of 19 

lithostratigraphic terminology that is agreed upon and applied across the basin consistently has 20 

not been established (e.g., Mollan et al., 1972; Exon, 1976; McKellar, 1998). More recently, 21 

workers have focused on packaging rocks according to their age and genetic relationships using 22 

a sequence-stratigraphic framework (Wells et al., 1994; Hoffmann et al., 2009; Totterdell et al., 23 

2009; Ziolkowski et al., 2014; Wang et al., 2019). The most recent stratigraphic scheme of 24 

Wang et al. (2019) for the Precipice Sandstone and Evergreen Formation comprises three 3rd-25 

order sequences (Fig.2; Haq et al., 1987). 26 

 27 

2.3 Palynology and Biostratigraphy  28 

A substantial body of literature exists relating to the palynology of Jurassic–Cretaceous 29 

strata within the Surat Basin. In the Precipice Sandstone and Evergreen Formation, as well as 30 

time equivalent units in eastern Australia, palynology has mainly been used to understand the 31 

regional stratigraphy and timing of deposition (Evans, 1962, 1966; Reiser and Williams, 1969; 32 

Price, 1997; McKellar, 1998; de Jersey and McKellar, 2013). Other studies have documented 33 
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 6 

the palynoflora from a taxonomic and paleoclimate point of view (de Jersey and Dearne, 1964; 1 

de Jersey and Paten, 1964b, a; de Jersey, 1965; Paten, 1967; Reiser and Williams, 1969; 2 

McKellar, 1974, 1998), noting a shift from warmer climates in the Early Jurassic corresponding 3 

to the Callialasporites dampieri Microflora to cooler climatic conditions represented by the 4 

Microcachryidites Microflora. This was under palaeolatitudinal control due to the position of the 5 

Pangea supercontinent, which was located towards the south pole at the time (McKellar, 1998). 6 

More recently, palynology has been applied to detailed paleoenvironmental interpretations with 7 

differing views on the (e.g., Ziolkowski et al., 2014) versus marine implications of the palynological 8 

suites (e.g., Martin et al., 2018). One problem that has hindered all previous studies, however, has 9 

been the relatively limited datasets in terms of number of wells used for analysis; most studies only 10 

considered a single well or few wells within a portion of the basin. Nonetheless, past studies set 11 

the stage for a regional-scale investigation of the palynology and especially one that combines 12 

with insights from sedimentology and ichnology.  13 

 14 

3. Methods 15 

 Ten subsurface cores were logged to gain a regional perspective on the depositional 16 

environments and facies evolution of the Precipice–Evergreen succession: Chinchilla 4, 17 

Condabri MB9-H, Kenya East GW7, Moonie 31, Moonie 34, Reedy Creek MB3-H, Roma 8, 18 

Taroom 17, West Wandoan 1, and Woleebee Creek GW4 (Table 1). Cores were predominantly 19 

located in the northern portion of the Surat Basin, and to a lesser extent on the western and 20 

eastern flanks (Fig. 1). Cored intervals ranged from 7 m (Moonie 31) to 295 m thick (Woleebee 21 

Creek GW4). The succession was described in terms of lithology, physical sedimentary 22 

structures, and biogenic structures. Ichnological observations included bioturbation intensity 23 

using the bioturbation index (Taylor and Goldring, 1993), diversity of bioturbation, distribution of 24 

bioturbation between beds, and identification of trace fossils to the ichnogenus level. 25 

 Sixty-one samples were collected from mudstone or heterolithic (i.e., interbedded 26 

sandstone and mudstone) facies for palynological analysis. Samples were quantitatively 27 

analysed for the first 300 palynomorphs counted with only the presence of subsequent grains 28 

being recorded, but not included in the counts. Notably, counts did not account for reworking 29 

and re-deposition, sediment-gravity processes, windblown sedimentation, or other processes 30 

that might affect the distribution of palynomorphs. 31 

To place our sedimentological, ichnological, and palynological observations into context 32 

and to facilitate comparison between wells, we describe the strata using the sequence 33 

stratigraphy of Wang et al. (2019) (Figs. 2 and 3).  34 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 7 

4. Results and Interpretation 1 

4.1 Sedimentary Facies 2 

Fifteen discrete facies were identified from the Precipice Sandstone and Evergreen 3 

Formation (Table 2). These facies group together into six facies associations interpreted to 4 

represent braidplain, lower delta plain, subaqueous delta, delta-influenced shoreface, tidally 5 

influenced shoreline, and restricted marine shoal depositional environments. The Precipice 6 

Sandstone is overwhelmingly dominated by the braid plain association, whereas the Evergreen 7 

Formation comprises a complex mixture of lower delta plain, subaqueous delta, delta-influenced 8 

shoreface, tidally influenced shoreline, and restricted marine shoal deposits. 9 

 10 

4.2 Facies Associations 11 

4.2.1 Facies Association 1: Braid Plain 12 

Facies Association 1 (FA1) predominantly consists of interbedded conglomerate and 13 

sandstone (Facies 1 (F1); Fig. 4A) representing lag deposits or channel bases, mud-clast 14 

breccia (Facies 2 (F2); Fig. 4B) interpreted as channel bank collapse or channel bases, and 15 

coarse-grained planar-tabular cross-bedded sandstone (Facies 3 (F3); Fig. 4C) deposited as 16 

the main channel fill (Table 2). Typical complete facies successions comprise F1 passing 17 

gradationally upwards into F3, with interspersed layers of  2 (Fig. 4). Individual packages range 18 

from 3–7 m, but they are commonly stacked into multi-storied packages up to 80 m thick, with 19 

the thickest occur near the axis of the basin along the Mimosa Syncline. The overall coarse 20 

grain size and thick cross-bedded layers of F3 suggests deposition under high flow velocities 21 

(Fig. 4C). Mud-clast breccias (F2) most commonly located near the base of individual fining-22 

upward units indicates undercutting of the floodplain (Fig. 4B), whereas structureless layers (F1) 23 

indicate rapidly deposited sediment (Fig. 4A). The quartz-dominated nature of FA1 suggests 24 

that the sediment source area was rich in quartz. The sedimentological evidence and a general 25 

lack ichnological features indicates that FA1 was deposited in a braid plain system with 26 

abundant sediment supply (Miall, 1977). FA1 reflects the early stages of Surat Basin 27 

development as braided rivers flowed across the base-Surat unconformity surface following 28 

irregular topographic lows. 29 

 30 

4.2.2 Facies Association 2: Lower Delta Plain 31 

Facies Association 2 (FA2) is composed of planar-tabular to cross-bedded sandstone 32 

(Facies 4 (F4); Fig. 5A), structureless to planar-parallel laminated sandstone (Facies 5 (F5); Fig. 33 

5B), carbonaceous sandstone and siltstone (Facies 6 (F6); Fig. 5C, D), coal (Facies 7 (F7); Fig. 34 
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 8 

5D), and bioturbated muddy sandstone and sandy mudstone (Facies 8 (F8); Fig. 5F). These are 1 

interpreted to represent distributary channel, levee and crevasse splay, floodplain, peat mire, 2 

and interdistributary bay deposits, respectively (Table 2). The association is characterized by an 3 

overall fining upward succession of F4 passing upward into F5, grading into F6, and capped 4 

with F7 (Fig. 5G). Facies 8 is interspersed at various stratigraphic positions, but is most 5 

commonly above F6. Facies successions vary between 3–13 m thick, with the thickest occurring 6 

towards the basin-centre. Sedimentological characteristics of the sandstone indicate quasi-7 

steady unidirectional flow in channels (F4; Fig. 5A) with episodic breaching of the channel banks 8 

(F5; Fig. 5B). The thin nature of most channel deposits is interpreted to represent terminal 9 

distributary channels (Olariu and Bhattacharya, 2006). Thin coal deposits (F7; Fig. 5D) 10 

interbedded with carbonaceous siltstone and mudstone (F6; Fig. 5C) suggests a low-energy 11 

environment subject to river flooding. Peat forming environments would have required a 12 

sufficiently high water-table. Trace fossils produced by terrestrial insects or annelids – 13 

Planolites, Taenidium, and Naktodemasis – support the notion of a continental setting (Savrda 14 

et al., 2000). On the other hand, unstructured to crudely structured muddy sandstone and sandy 15 

mudstone (F8; Fig. 5F) suggests slow deposition rates between active zones of sediment 16 

delivery. Synaeresis cracks, rootlets, and a depauperate assemblage of marine burrows 17 

indicate normal to reduced marine salinity, which is consistent with the interpretation of 18 

interdistributary bays (MacEachern et al., 2007). The association between subaerial, freshwater 19 

subaqueous, and marine-influenced subaqueous deposits is taken to indicate that FA2 20 

represents deposition within a lower delta plain setting. 21 

 22 

4.2.3 Facies Association 3: Subaqueous Delta 23 

Facies Association 3 (FA3) comprises wave to combined flow ripple laminated mouthbar 24 

sandstone (Facies 9 (F9); Fig. 6A), sand-dominated heterolithics representing the delta front 25 

(Facies 10 (F10); Fig. 6B, C), and muddy heterolithics deposited on the prodelta (Facies 11 26 

(F11); Fig. 6D), arranged into coarsening-upward successions (Table 2). The association varies 27 

in thickness from 3–12 m, though individual facies are seldom thicker than 5 m. Typical facies 28 

successions consists of F11 passing gradationally upward into F10, and capped with F9, 29 

indicating overall progradational facies stacking (Fig. 6E). A dominance of combined flow rippled 30 

sandstone attests the close relationship with a channel system modified by waves and tides. 31 

Interbedded sharp-based mudstones with normal or inverse grading are interpreted to represent 32 

fluid mud deposits (Fig. 6D). Rare navichnia reflect sediment swimming behaviors as organisms 33 

were buried by fluid mud carried in hyperpycnal flows (Bhattacharya and MacEachern, 2009). 34 
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 9 

Synaeresis cracks combined with a depauperate marine ichnological assemblage indicate 1 

mixing of fresh and marine water (Fig. 6B; MacEachern et al., 2005). Finally, micro-faults 2 

suggest sediment loading and high deposition rates. The predominance of current generated 3 

physical structures, with subordinate wave and tide generated structures suggests a 4 

depositional setting dominated by fluvial processes, with secondary waves and tides (Ainsworth 5 

et al., 2011). The sedimentological and ichnological characteristics, in concert with the 6 

stratigraphic stacking patterns suggest that these deposits accumulated within the subaqueous 7 

portion of a delta. 8 

 9 

4.2.4 Facies Association 4: Delta-Influenced Shoreface 10 

Facies Association 4 (FA4), consists of a gradational transition from upper offshore 11 

bioturbated sandy mudstone with HCS (Facies 13 (F13); Fig. 7B) to bioturbated muddy 12 

sandstone (Facies 12 (F12); Fig. 7A) with wave-ripples and HCS of the lower shoreface, 13 

arranged into an upward-coarsening succession (Table 2; Fig. 7C). The association varies from 14 

4–12 m thick. Wave and storm-generated physical structures and the increasing proportion of 15 

sandstone beds upwards reflects a change from deposition below fairweather wave base to 16 

above fairweather wave base where sediment was persistently agitated by wave energy. 17 

Interbedding between laminated sandstone and bioturbated mudstone is interpreted to 18 

represent alternation between fairweather depositional conditions and storm deposition (Fig. 19 

7B). Sharp-based, graded mud beds represent hyperpycnal flows carrying fluid mud from 20 

nearby deltas (Bhattacharya and MacEachern, 2009). Highly bioturbated beds contain the most 21 

diverse suite of marine trace fossils in the Precipice Sandstone and Evergreen Formation (Fig. 22 

7A, B) and suggests that the association represents a marine end-member. In consideration of 23 

the sedimentological and ichnological characteristics of FA4, the succession is interpreted to 24 

represent deposition on a delta-influenced shoreface. 25 

 26 

4.2.5 Facies Association 5: Tidally Influenced Shoreline 27 

Facies Association 5 (FA5) consists of mixed sandy and muddy heterolithics with tide-28 

generated structures and uncommon to abundant bioturbation with marine trace fossils (Facies 29 

14 (F14); Fig. 8 A, B; Table 2). The association is characterized by fining-upward heterolithic 30 

packages of strata (Fig. 8C). The association varies in thickness from 1–5 m. Current and tide-31 

generated physical sedimentary structures dominate the succession (Fig. 8A, B), indicating 32 

alternating current directions. Rootlets suggest periodic subaerial exposure. Although 33 

bioturbation with marine trace fossils has completely homogenized portions of this facies, some 34 
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 10 

beds and bedsets remain unburrowed. This is interpreted to indicate alternating physico-1 

chemical environmental stresses in the depositional setting such as periodic subaerial 2 

exposure, as well as high and rapidly changing energy conditions (MacEachern et al., 2007). 3 

However, the bioturbation signature varies considerably in terms of intensity and distribution, 4 

and this might reflect differences in the location of deposition in relation to sources of freshwater 5 

influx (i.e., proximal or distal to a river mouth; (cf. Dashtgard, 2011)). Although FA5 is not 6 

common in the cored intervals, it demonstrates that tides were an important sediment transport 7 

and deposition mechanism, and suggests that parts of the basin were tidally influenced. The 8 

presences of tidal indicators also supports the notion of a marine influenced basin although we 9 

recognize that rarely tidal structures can be produced by meteorological tides (Ainsworth et al., 10 

2012). FA5 is interpreted to represent deposition on tidal flats adjacent to active distributary 11 

channels, receiving some protection from wave fetch and freshwater input into the basin. 12 

 13 

4.2.56 Facies Association 6: Restricted Marine Shoals 14 

 Facies 6 (FA6) is composed of oolitic ironstone (Facies 15A (F15A); Fig. 9A) and 15 

cemented ironstone (Facies 15B (F15B); Fig. 9B; Table 2). Rare horizontal planar parallel 16 

lamination or wave ripple lamination occurs in F15A, indicating periodic wave agitation of the 17 

sea floor. The absence of bioturbation suggests a physico-chemical environmental stress that 18 

precluded infaunal colonization. Facies 15B contains stylolites and is unstructured, suggesting 19 

overprinting of the original depositional texture (Fig. 9B). FA6 is nearly always interbedded with 20 

FA3, implying a close depositional affinity. Taken together, the characteristics of FA6 is 21 

interpreted to represent deposition in a restricted marine environment with freshwater influx, 22 

wave agitation, but protected (i.e. “restricted”) from abundant mixing of the water column such 23 

that the Fe context could be maintained long enough for mineralization of ooids; the restriction 24 

of mixing in the water column is most likely related to geomorphological barriers on the seafloor 25 

(cf. Hallam and Bradshaw, 1979), but the effects of embayments cannot be discounted. Hot 26 

fluids associated with structural features such as faults and fracturs account for the diagenetic 27 

overprint observed in the F15B sub-facies. 28 

 29 

4.3 Sequence Stratigraphy 30 

In the sequence stratigraphic scheme first introduced by Wang et al. (2019) the 31 

Precipice Sandstone and Evergreen Formation consist of 3 sequences from base to top (Fig. 2). 32 

The first and third sequences (i.e., SQ1 and SQ3) are defined by a basal unconformity (J10, 33 

SB2, J20, J30), contain a transgressive surface (TS1, TS3), a maximum flooding surface 34 
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(MFS1, MFS3), and are marked by an unconformity at their top. These segment the sequences 1 

into a lowstand systems tract, transgressive systems tract, and highstand systems tract, 2 

respectively. However, the second sequence (i.e., SQ2) is relatively thin and possibly 3 

incompletely preserved across the basin, and therefore, individual systems tracts were not 4 

defined. Thus, SQ2 is described as a single unit. The stratigraphy is composed of the surfaces: 5 

J10 (base-Surat unconformity), TS1, MFS1, SB2, J20, TS3, MFS3, and J30 (top Evergreen) 6 

from base to top. 7 

 8 

4.4 Palynology 9 

 Palynological analysis identified a diverse spore-pollen assemblage as well as 10 

freshwater algae. In addition, spinose acritarchs, dinocysts, and copepod fragments were also 11 

identified in some of the samples. Although copepods can be found in both marine and non-12 

marine settings those identified in these samples were accompanied by spinose acritarchs, 13 

thought to indicate brackish to marine influence (Figure 10; Table 3). Six sporomorph ecogroups 14 

(SEGs) were interpreted from the microplankton forms based on Abbink (1998) and Abbink et 15 

al. (2004). The SEGs consisted of: 1) marine forms, 2) coastal spores, 3) continental spores, 4) 16 

coastal pollen, 5) continental pollen, 6) freshwater algae, and 7) fungi. The marine SEG 17 

comprised dinoflagellates, acritarchs, and copepod fragments. The coastal spore SEG 18 

consisted of the genera Retitriletes. The coastal pollen SEG is composed of Araucariacites, 19 

Callialasporites, and Corollina / Classpollis . The remainder of spore, pollen, algae, and fungi 20 

were interpreted to represent non-marine to freshwater ecogroups. We describe the palynology 21 

by stratigraphic interval to give a sense of how the palynological signature changed through the 22 

vertical succession. 23 

 24 

4.3.1 Lowstand Systems Tract 1 25 

 Palynological grains from the Precipice Sandstone (i.e., LST 1) were dominated by 26 

coastal pollen and continental pollen, with subordinate proportions of continental spores and 27 

coastal spores, and minor freshwater algae (Fig. 11; Table 4). Coastal spores ranged between 28 

0% (Taroom 17 and West Wandoan 1) and 14.7% (Condabri MB9-H). Continental spores varied 29 

from 6.3% (Taroom 17) and 55.3% (Condabri MB9-H). The proportion of coastal pollen was in 30 

the range from 26.3% (Condabri MB9-H) to 85.0% (West Wandoan 1). Continental pollen 31 

content was between 2.7% (Condabri MB9-H) and 86.1% (Chinchilla 4). Finally, freshwater 32 

algae varied between 0.3% (Taroom 17) and 5.1% (Chinchilla 4). No fungi, dinocysts, 33 

acritarchs, or copepod fragments were recovered. 34 
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 1 

4.3.2 Transgressive Systems Tract 1 2 

 Grains counted from the lower Evergreen Formation (i.e., TST 1) were dominated by 3 

coastal pollen and continental pollen, with lesser amounts of continental spores and coastal 4 

spores, and minor freshwater algae (Fig. 11; Table 4). Coastal spores varied from 3.3% 5 

(Taroom 17) to 14.7% (Kenya East GW7). Continental spores ranged between 15.3% (Taroom 6 

17) and 46.0% (Kenya East GW7). Coastal pollen proportions were from 14.6% (Kenya East 7 

GW7) to 65.3% (Kenya East GW7). Continental pollen content ranged between 8.3% (Condabri 8 

MB9-H) and 64.6% (Chinchilla 4). Lastly, freshwater algae varied between 0% (Woleebee 9 

Creek GW4) and 5.6% (Kenya East GW7). No fungi, dinocysts, acritarchs, or copepod grains 10 

were counted. 11 

 12 

4.3.1 Highstand Systems Tract 1 13 

Palynology grain counts for HST 1 were dominated by coastal pollen and continental 14 

pollen, with subordinate proportions of continental spores and coastal spores, and minor 15 

freshwater algae (Fig. 11; Table 4). Coastal spores ranged between 2.3% (Chinchilla 4) and 16 

9.6% (Condabri MB9-H). Continental spores varied from 14.3% (Chinchilla 4) to 34.7% 17 

(Condabri MB9-H). The proportion of coastal pollen was in the range from 47.3% (Condabri 18 

MB9-H) to 63.5% (Chinchilla 4). Continental pollen content was between 6.7% (Condabri MB9-19 

H) and 84.0% (Chinchilla 4). Freshwater algae varied between 0% (Taroom 17) and 2.0% 20 

(Reedy Creek MB3-H). Freshwater algae were only present in Chinchilla 4 at a proportion of 21 

0.3%. No dinocysts, acritarchs, or copepod fragments were recovered. 22 

 23 

4.3.1 Sequence 2 24 

In Sequence 2 palynological analysis showed that mudstone samples were dominated 25 

by coastal pollen, continental pollen, and continental spores (Fig. 11; Table 4). Lesser 26 

proportions of coastal spores were observed and only a minor freshwater algae component was 27 

noted. No fungi, dinocysts, acritarchs, or copepod fragments were counted. The proportion of 28 

coastal spores varied between 4.6% (Woleebee Creek GW4) and 31.3% (Woleebee Creek 29 

GW4). Continental spores ranged from 25.05% (Taroom 17) and 52.3% (Condabri MB9-H). 30 

Coastal pollen grains comprise 24.7% (Condabri MB9-H) to 51.7% (Woleebee Creek GW4) of 31 

samples. Continental pollen consists of 2.3% (Roma 8 and Woleebee Creek GW4) to 41.8% 32 

(Reedy Creek MB3-H). Finally, freshwater algae varied between 0.3% (Reedy Creek MB9-H) 33 

and 6.0% (Roma 8). 34 
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 1 

4.3.1 Transgressive Systems Tract 3 2 

 Transgressive Systems Tract 3 comprised palynology grains dominated by coastal 3 

pollen and continental pollen, with lesser continental spores and coastal spores, and minor 4 

freshwater algae and marine indicators (i.e., dinocysts, acritarchs, copepoda; Fig. 11; Table 4). 5 

Samples consisted of between 1.3% (Chinchilla 4) and 30.0% (West Wandoan 1) coastal 6 

spores. Continental spores comprised between 7.0% (West Wandoan 1 and Woleebee Creek 7 

GW4) and 32.2% (West Wandoan 1) of samples. Coastal pollen ranged between 23.2% 8 

(Chinchilla 4) and 64.3% (Roma 8). Continental pollen varied from 8.0% (West Wandoan 1) and 9 

81.5% (Chinchilla 4). The proportion of freshwater algae grains ranged between 0.9% (Roma 8) 10 

and 12.3% (Kenya East GW7). Marine indicators were as high as 6.1% of samples (West 11 

Wandoan 1). No fungi were observed. 12 

 13 

4.3.1 Highstand Systems Tract 3 14 

 The palynology of Highstand Systems Tract 3 is dominated by coastal pollen, continental 15 

pollen, and continental spores, with lesser amounts of coastal spores (Fig. 11; Table 4). Minor 16 

freshwater algae content was observed, with trace indications of marine influence in the form of 17 

dinocysts, acritarchs, and copepoda. The proportion of coastal spores ranged from 6.1% 18 

(Condabri MB9-H) to 14.2% (Kenya East GW7). Continental spores varied between 15.7% 19 

(Roma 8) and 46.8% (Condabri MB9-H). Coastal pollen content is from 21.3% (Kenya East 20 

GW7) to 60.9% (Chinchilla 4). Continental pollen proportions vary from 5.8% (Condabri MB9-H) 21 

to 75.7% (Chinchilla 4). Freshwater algae comprise between 0.7% (Roma 8) and 5.3% (Roma 22 

8). Finally, marine indicators were as high as 1.0% in Kenya East GW7. No fungi grains were 23 

counted. 24 

 25 

5. Discussion 26 

5.1 The Palynological Signal of Coastal Systems 27 

Our dataset is consistent with the sporomorph ecogroup model proposed by Abbink et 28 

al. (2004), especially in the context of the other sedimentological and ichnological observations. 29 

In that framework, pollen such as Corollina / Classopollis represent flora (Cheirolepidiaceae) 30 

that inhabit salt marshes and mangroves at the transition from land to sea (Batten and 31 

MacLellan, 1984; Stukins et al., 2013; Galloway et al., 2015). Similarly our analysis would 32 

suggest that the pollen Callialasporites (Harris, 1979; Vakhrameev, 1991), Araucariacidites 33 

(Grant-Mackie et al., 2000; Barron et al., 2006), and the spores Denisporites (Couper, 1958; 34 
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Retallack, 1975, 1997), and Retitriletes (Balme, 1995) have a coastal to marginal marine affinity. 1 

It should be noted that previous workers interpreted a fully terrestrial depositional setting for the 2 

palynomorphs from the Precipice Sandstone and Evergreen Formation, and therefore our 3 

interpretation is not agreed upon by everyone (Ziolkowski et al., 2014). 4 

Although the large proportion of coastal pollen and spores throughout the Precipice–5 

Evergreen succession supports a nearshore depositional interpretation, the suite does not 6 

directly indicate marine influence sensu stricto. However, agglutinated foraminifera reported by 7 

Martin et al. (2018) supports the interpretation. There are a few possible mechanisms to explain 8 

the lack of dinocysts, acritarchs, and copepoda within Sequence 1 and Sequence 2. The first is 9 

flushing of the palynomorphs due to abundant freshwater run-off from distributary channels 10 

(Hardy and Wrenn, 2009). A second explanation is low preservation potential due to distributary 11 

channels cannibalizing marine influenced facies as they migrate across a low-accommodation 12 

delta plain. This problem remains unresolved, however, and is a potential area of future 13 

research. Finally, marine influence on deposition of Sequence 3 is clearly illustrated by the 14 

dominance of coastal pollen and spores and the small proportion of marine palynomorphs. 15 

 16 

5.2 Facies Evolution and Depositional Model 17 

 Differences in the distribution of facies occur both across the basin and up stratigraphic 18 

section through the Precipice–Evergreen succession. The facies evolution displays differences 19 

related to along-strike variation as well as proximal to distal relationships. The basin axis occurs 20 

along the Mimosa Syncline (Fig. 1) and contains the thickest and most complete succession, 21 

recorded in wells such as West Wandoan 1 and Woleebee Creek (Table 1). Towards the basin 22 

margins, the succession is thinner, and in some cases the basal part is missing. Wells such as 23 

Roma 8, Moonie 31, and Moonie 34 show this relationship (Table 1). However, the same 24 

general stratigraphic evolution is observed in all ten wells with each well recording different 25 

proximal to distal positions within the basin. Broadly speaking, from proximal to distal we rank 26 

the wells: Roma 8 (Fig. 12), Moonie 31 (Fig. 13), Moonie 34 (Fig. 14), Chinchilla 4 (Fig. 15), 27 

Condabri MB9-H (Fig. 16), Kenya East GW7 (Fig. 17), Taroom 17 (Fig. 18), Reedy Creek MB3-28 

H (Fig. 19), West Wandoan 1 (Fig. 20), and Woleebee Creek GW4 (Fig. 21). We describe the 29 

evolution of sedimentary facies in the context of the sequence stratigraphy and display block 30 

models showing the major depositional environments and their stratal stacking relationships 31 

(Figs. 22–24). Notably, we make no attempt to show the specific geographic distribution of 32 

facies; the diagrams are conceptual and intended to show the broad-scale arrangement of 33 

depositional environments through time. 34 
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 1 

5.2.1 Lowstand Systems Tract 1 (J10–TS1) 2 

 The base of the Precipice Sandstone is manifest as a sharp, erosive contact overlain by 3 

coarse-grained structureless to planar-tabular cross-bedded sandstone (F3) containing rip up 4 

clasts (F2) and pebble lags (F1). The entire lowstand systems tract consists of a series of 5 

amalgamated (aggradational) small-scale (i.e., 2–6 m thick) fining-upward packages. The 6 

succession is thicker and cleaner in terms of mudstone content in West Wandoan 1 (Fig. 20) 7 

and Woleebee Creek (Fig. 21), along the axis of the basin. Towards the basin margins the 8 

proportion of mudstone interbeds increases slightly, such as in Chinchilla 4 (Fig. 15) and 9 

Taroom 17 (Fig. 18). The basal part of the succession is missing in Roma 8 (Fig. 12) which is 10 

located near the edge of the basin, as well as in Moonie 31 (Fig. 13) and Moonie 34 (Fig. 14). 11 

Up section, facies transition to finer grained sandstone (F4–5) with increasing proportions of 12 

mudstone, coal, and heterolithics (F6–11). We interpret this to reflect progressive infilling of 13 

basin topography through time, where the basin centre was situated within the middle of a 14 

braidplain (FA1) and the basin margins underwent periodic deposition within a lower delta plain 15 

(FA2) and subaqueous delta (FA3) (Fig. 22A). Palynological content, which consists primarily of 16 

subequal proportions of continental pollen and spores and coastal pollen and spores suggests 17 

that the braidplain was situated in the upper delta plain. 18 

 19 

5.2.2 Transgressive Systems Tract 1 (TS1–MFS1) 20 

 The transgressive systems tract is characterized by an overall fining-upward succession 21 

(Fig. 22B). Along the axis of the basin, at West Wandoan 1 (Fig. 20) and Woleebee Creek GW4 22 

(Fig. 21) the interval displays a series of small-scale fining-upward packages consisting of 23 

cross-bedded sandstones (F4) that transition into heterolithic strata (F9–11). Towards the basin 24 

margins, near Chinchilla 4 (Fig. 15) and Taroom 17 (Fig. 18), the succession comprises cross-25 

bedded (F4) and planar parallel laminated (F5) sandstones passing gradationally upward into 26 

carbonaceous mudstones (F6) and coal (F7). Bioturbated sandy mudstone and muddy 27 

sandstone (F8) occurs sporadically distributed through both successions. All wells across the 28 

basin become progressively muddier towards their top. The stratigraphic architecture and facies 29 

transitions are taken to represent retrogradational facies stacking. Along the basin axis 30 

depositional environments transition from distal lower delta plain (FA2) into the subaqueous 31 

delta (FA3). Further up depositional dip, away from the basin centre, lower delta plain (FA2) 32 

strata dominate, but with a gradual transition to proximal delta front packages (FA3) recorded. 33 

Variations between facies patterns in the most closely spaced wells reflect along-strike variation 34 
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in environments. A sub-equal mixture of continental spore-pollen and coastal spore-pollen 1 

suggests deposition consistently occurred in proximity to a marine basin, and the bioturbate 2 

textures in FA2 and FA3 support this notion. 3 

 4 

5.2.3 Highstand Systems Tract 1 (MFS1–SB2) 5 

 Highstand Systems Tract 1 displays a coarsening-upward succession that consists of 6 

smaller-scale coarsening- and fining-upward packages (Fig. 22C). Generally, the highstand 7 

systems tract is thin (approximately 10–20 m), and is characterized by heterolithic strata (F10–8 

11) overlain by cross-bedded (F4) and combined-flow ripple laminated (F9) sandstones. 9 

Towards the basin margins – up depositional dip – facies packages consist of carbonaceous 10 

mudstones (F6) and coals (F7) overlying cross-bedded (F4) and planar parallel laminated (F5) 11 

sandstone. In wells such as Chinchilla 4, the highstand is composed of moderate to highly 12 

bioturbated heterolithics showing alternations in current direction (F14). The facies evolution is 13 

interpreted to reflect progradational tacking patterns. In distal depositional positions 14 

progradation is manifest as lower delta plain (FA2) strata building outwards atop the 15 

subaqueous delta (FA3). In more proximal locations (Roma 8, Moonie 31 and 34), 16 

progradational motifs are poorly expressed and difficult to differentiate from autogenic shifts in 17 

environments. However, along-strike variation in deposition is clearly evident through the shift 18 

from lower delta plain (FA2) to tidally influenced shoreline (FA5) strata, which are recorded 19 

between wells displaying the same proximal-distal relationship (i.e., Chinchilla 4 versus Taroom 20 

17). A mixture of continental spore-pollen and coastal spore-pollen suggests there was subtle 21 

marine influence on deposition, further evidence of which is manifest in the recurrence of marine 22 

trace fossils in FA2–FA6. 23 

 24 

5.2.4 Sequence 2 (SB2–J20) 25 

 Sequence 2 rests atop a sharp, and sometimes erosive interface at the top of highstand 26 

deposits in Sequence 1. The sequence is thin (25–60 m) suggesting limited accommodation 27 

space (Wang et al., 2019). At the basin centre, near Woleebee Creek GW4 (Fig. 21), stacked 28 

cross-bedded sandstones (F4) give way to muddy (F11) and heterolithic (F9 and F10) strata 29 

with coarsening-upward characteristics. Packages are initially mud prone, becoming sand-30 

dominated gradually up section (Fig. 21). Further up depositional dip, the sections in Chinchilla 31 

4 (Fig. 15) and Taroom 17 (Fig. 17) have thicker sandstone successions at their base (Fig. 22A) 32 

and become muddier upward but to a lesser extent (Fig. 22B, C). Finally, in the most proximal 33 

positions, such as Roma 8 (Fig. 12), the succession primarily consists of cross-bedded 34 
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sandstones (F4) alternating with bioturbated muddy sandstone (F8) and combined-flow ripple 1 

laminated sandstone (F9) with a subtle fining-upward character. Together the stratigraphic 2 

stacking and facies evolution suggest the full succession from lowstand through transgression 3 

to highstand are recorded in Sequence 2. Marine influenced on deposition is indicated by the 4 

presence of substantial proportions of coastal spores and pollen, in concert with bioturbation by 5 

marine organisms. 6 

 7 

5.2.5 Lowstand Systems Tract 3 (J20–TS3) 8 

The lowstand systems tract in Sequence 3, otherwise known as the Boxvale Sandstone 9 

Member (Fig. 2), is marked by an abrupt lithological change from the underlying mudstone 10 

across the J20 unconformity . Along the axis of the Mimosa Syncline in West Wandoan 1 (Fig. 11 

20) and Woleebee Creek (Fig. 21), the lowstand is characterized by amalgamated cross-12 

bedded (F4) or combined-flow ripple laminated sandstone (F5). The lowstand systems tract 13 

thins towards the basin margins where it is composed of cross-bedded sandstone (F4), such as 14 

in Taroom 17 (Fig. 18). Up stratigraphic section the strata shift towards heterolithic deposits 15 

(F10) in most wells. Distributary channel and mouthbar sandstone deposits display 16 

aggradational stacking patterns representing the lower delta plain (FA2) and proximal 17 

subaqueous delta facies (FA3), respectively (Fig. 24A). The large spacing between wells is too 18 

great to resolve the detail of along-strike variation in facies. However, the c presence of coastal 19 

spores and coastal pollen indicate a persistently marine-influenced depositional setting through 20 

large portions of the basin. However, very little bioturbation is observed in this interval to aid in 21 

the interpretation. 22 

 23 

5.2.6 Transgressive Systems Tract 3 (TS3–MFS3) 24 

 Transgressive Systems Tract 3 displays an overall fining-upward succession (Fig. 24B) 25 

and is also known as the Westgrove Ironstone Member (Fig. 2). In the basin centre, near West 26 

Wandoan 1 (Fig. 20) and Woleebee Creek GW4 (Fig. 21), the succession displays small-scale 27 

fining-upward packages consisting of combined-flow ripple laminated sandstone (F9) passing 28 

upward into heterolithic sandstone and mudstone (F10–11). Interbedded layers of oolitic 29 

ironstone (F15) define individual fining-upward packages. In Roma 8 (Fig. 12) at the basin 30 

margin, the transgressive systems tract consists of alternations between cross-bedded 31 

sandstone (F4), combined-flow ripple laminated sandstone (F9), and heterolithic sandstone and 32 

mudstone (F10–11) with interspersed oolitic ironstone (F15). Up stratigraphic section, all cored 33 

intervals become progressively muddier, with fewer sandstone layers. In the context of the 34 
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stratigraphy, and considering the vertical and lateral distribution of facies, the succession 1 

displays a retrogradational facies stacking pattern interpreted to be associated with relative sea 2 

level rise. Along the basin axis subaqueous delta (FA3) facies are interbedded with restricted 3 

marine shoals (FA6). Further up depositional dip and away from the basin centre, proximal 4 

subaqueous delta (FA3) to distal lower delta plain (FA2) facies dominate. Along-strike variation 5 

is demonstrated in the shift from lower delta plain (FA2) strata in Reedy Creek MB3-H (Fig. 19) 6 

to delta-influenced shoreface packages (FA5) in Condabri MB9-H (Fig. 16) and Kenya East 7 

GW7 (Fig. 17) at approximately the same stratigraphic level. A low proportion of marine 8 

palynomorphs, including dinocysts, acritarchs, and copepod fragments, as well as ichnological 9 

assemblages composed of marine trace fossils are a strong indication of significant marine 10 

influenced deposition. 11 

To explain the mechanisms for iron enrichment and the formation of widespread oolitic 12 

ironstone, we propose that it was due to  slight wave and / or tide agitation in a geographically 13 

restricted marine setting. It is most likely that the physical restriction was a topographic low or 14 

trough on the sea floor that prevented mixing of water (Hallam and Bradshaw, 1979; Turner et 15 

al., 2009). It is possible that humic acid assisted in liberating iron from clay minerals that were 16 

later precipitated to form ironstone (Tombacz et al., 2004). A potential contributor may have 17 

been microbes, acting to reduce the iron from clays (Liu et al., 2017). Minor paralic lakes and 18 

bays might also have been conducive depositional settings to accumulate ironstone, being in 19 

connection to the basin and sharing similar chemistry (Veevers and Wells, 1959; Gibson et al., 20 

1994). 21 

 22 

5.2.7 Highstand Systems Tract 3 (MFS3–J30) 23 

Finally, Highstand Systems Tract 3 is characterized by a coarsening-upward succession 24 

(Fig. 24C) comprising a series of meter-scale coarsening-upward packages that become thicker 25 

up section. The highstand at the basin-centre, near West Wandoan 1 (Fig. 20) and Woleebee 26 

Creek (Fig. 21), is manifest as stacked combined-flow ripple laminated (F9) to heterolithic 27 

sandstone and mudstone (F10–11) packages. At more proximal positions near the basin 28 

margins, the succession is very similar but contains a few cross-bedded sandstone layers (F4) 29 

or tidal heterolithic sandstone and mudstone (F14). Chinchilla 4 demonstrates these facies 30 

relationships (Fig. 15). The progradational stratal stacking patterns in concert with the types of 31 

facies observed, leads to the interpretation that the basin was predominantly occupied by 32 

subaqueous deltas (FA3) at the basin centre, and in more proximal positions was characterized 33 

by lower delta plain (FA2) and tidal shoreline (FA5) environments. Along-strike variation in 34 
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deposition is not conspicuous at this stratigraphic level, probably due to the wide spacing 1 

between cores. Low proportions of dinocysts, acritarchs, and copepod fragments shows quite 2 

clearly that marine influence was steadily increasing up-section. The most diverse assemblages 3 

of marine traces also occur in this stratigraphic interval. 4 

 5 

5.3 Implications for the Paleogeography of Eastern Australia 6 

 Relatively few paleogeographic maps of eastern Australia have been published, and 7 

existing interpretations of the Lower Jurassic Series – corresponding to the Precipice Sandstone 8 

and lower Evergreen Formation – show an eastern Australia dominated by “fluvial”, “lacustrine”, 9 

and “fluvial-lacustrine” depositional conditions (e.g., Bradshaw and Yeung, 1990; Struckmeyer 10 

and Totterdell, 1990; Bradshaw and Yeung, 1992). Notably, the outcrop belt and northern Surat 11 

Basin region have been re-interpreted as fluvio-deltaic  systems with paleo-flow directions to the 12 

east of the Surat Basin (Bianchi et al., 2018b). Our results bolster those of Bianchi et al. 13 

(2018b), and extend the interpretation of nearshore to shallow marine deposition across all of 14 

the northern and central Surat Basin. This suggests that the paleogeography of all Mesozoic 15 

basins of eastern Australia needs to be re-considered, especially in light of the increasing 16 

sedimentological (Bianchi et al., 2018a; Bianchi et al., 2018b; Martin et al., 2018) and 17 

stratigraphic evidence (Wang et al., 2019) of relative sea-level control on deposition. 18 

 19 

5.4 Impact on Reservoir Characterization and Modelling 20 

 The work presented in this paper suggests that reservoir models of the Precipice–21 

Evergreen interval should be constructed of flow units that are controlled by geobody 22 

geometries consistent with coastal to shallow marine depositional systems (Bianchi et al., 23 

2018a). Geometric constraints on geobody size and distribution can be distilled from studies of 24 

distributary channels (Bridge and Tye, 2000; Gibling, 2006), interdistributary bays (Elliott, 1974), 25 

mouthbars (Bhattacharya, 2006), and delta lobes (Howell et al., 2008; Enge et al., 2010). The 26 

differentiation of nearshore and shallow marine facies and environments (e.g., Miall, 1985; 27 

Jorgensen and Fielding, 1996; Lang et al., 2000) means that more accurate and geologically-28 

realistic facies models can be constructed and used to parameterize flow units. This is 29 

especially applicable to the Transgressive Systems Tract 1 through to Sequence 2 interval 30 

where previous interpretations have potentially overpredicted the lateral extent and connectivity 31 

of sandstone bodies 32 

 In addition to the reservoir modelling implications, facies interpretation also affects the 33 

ways in which reservoir characteristics are mapped and predicted. For example, siderite 34 
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cements within sandstones might have different occurrence patterns given fluvial (Gibson et al., 1 

1994; Al-Agha et al., 1995) versus nearshore and shallow marine depositional interpretations 2 

(Machemer and Hutcheon, 1988; Mozley, 1989; Pye et al., 1990; Huggett et al., 2000). 3 

Differences in bioturbate textures that are genetically related to the sedimentary environment 4 

would also be expected to impact the distribution of porosity and permeability (Pemberton and 5 

Gingras, 2005; Gingras et al., 2012; La Croix et al., 2013; La Croix et al., 2017). 6 

 7 

6. Conclusions 8 

 The integration of sedimentological, ichnological, and palynological observations from 9 

core has yielded an improved view of the facies characteristics and paleodepositional 10 

environments of the Precipice Sandstone and Evergreen Formation. The major conclusions that 11 

can be drawn from this facies analysis are: 12 

 13 

1) The succession consists of fifteen recurring facies that were observed in ten cores 14 

across the north and central portions of the Surat Basin. 15 

2) Facies are arranged into 6 distinct associations representing braidplain, lower delta 16 

plain, subaqueous delta, delta-influenced shoreface, tidally influenced shoreline, and 17 

restricted marine shoal environments. These associations are interpreted to occur within 18 

the context of a large-scale fluvio-deltaic system that occupied the basin. 19 

3) Using a sporomorph ecogroup model to interpret the palynology showed that there is a 20 

significant component of coastal pollen and coastal spores which independently support 21 

the facies interpretations from sedimentology and ichnology. 22 

4) Increasing marine influence on deposition through time is supported by increased, yet 23 

minor proportion of dinocysts, acritarchs, and copepod fragments up-section. 24 

Sedimentological and ichnological characteristics suggest increasing marine influence 25 

as well. 26 

 27 

Our results indicate that the paleogeography of eastern Australia during the Jurassic should 28 

be reconsidered to incorporate a greater degree of marine influence – similar deposits might 29 

exist in the neighboring Eromanga and Clarence-Moreton Basins. Finally, the updated view of 30 

depositional environments has important implications for reservoir characterization and 31 

modelling for CO2 storage; geobody distribution, orientation, and dimensions should utilize 32 

nearshore to shallow marine concepts to produce the most geologically-realistic static reservoir 33 

models.  34 
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8. Figure and Table Captions 30 

 31 

Table 1 – Core locations and intervals logged as part of this study. 32 

 33 

Table 2 – Detailed facies descriptions and interpretations of the nineteen discrete facies 34 

observed in the Precipice Sandstone and Evergreen Formation. 35 

 36 

Table 3 – List of the palynomorphs encountered during palynological analysis of the Precipice 37 

Sandstone and Evergreen Formation. 38 

 39 
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 31 

Table 4 – Summary table of the palynomorph counts for each sample analyzed from the 1 

Precipice Sandstone and Evergreen Formation. 2 

 3 

Figure 1 – The geographic location and major structural elements of the Surat Basin in eastern 4 

Australia. Black dots indicate the location of cored wells that were analyzed in this study. The 5 

dashed black line indicates the location of the lines of section displayed in Figure 3. 6 

 7 

Figure 2 – Stratigraphic nomenclature of the Lower Jurassic in the Surat Basin. The 8 

lithostratigraphy is after McKellar (11998), the sequence stratigraphy is based on Wang et al. 9 

(2019), and the global sea level curve is from Haq et al. (1987). The sequence stratigraphy 10 

consists of three 3rd order sequences (SQ1–SQ3), and is sub-divided into systems tracts by the 11 

sequence boundaries J10, SB2, J20, and J30, the transgressive surfaces TS1 and TS3, and the 12 

maximum flooding surfaces MFS1 and MFS3. Notably, SQ2 was not subdivided into systems 13 

tracts due to its very thin preservation across the basin; Sequence 2 represents a relatively 14 

minor stratal package and no systems tracts were defined within it. 15 

 16 

Figure 3 – North-south and west-east oriented cross sections showing the sequence 17 

stratigraphic sub-division of the cored wells. See Figure 1 for location of lines of section. 18 

 19 

Figure 4 – Core photographs of the facies that comprise Facies Association 1 (FA1) – 20 

braidplain. (A) F1, interbedded conglomerate and sandstone from Chinchilla 4, 1063.91 m. (B) 21 

F2, mud-clast breccia in Kenya East GW7, 1152.6 m. (C) F3, coarse-grained cross-bedded 22 

sandstone from Chinchilla 4, 1219.7 m. (D) Litholog from Chinchilla 4 showing the aggrading, 23 

fining-upward sandstone packages that characterizes FA1. 24 

 25 

Figure 5 – Core photographs of Facies Association 2 (FA2) – lower delta plain. (A) F4, fine-26 

grained cross-bedded to current ripple laminated sandstone from Woleebee Creek GW4, 27 

1518.5 m. (B) F5, planar parallel laminated sandstone from Woleebee Creek GW4, 1297.25 m. 28 

(C) F5, structureless sandstone from Woleebee Creek GW4, 1081.3 m. (D) F6, apparently 29 

structureless mudstone from Roma 8, 1076.5 m. (E) F7, coal from Chinchilla 4, 1107.40 m. (F) 30 

F8, bioturbated muddy sandstone with juxtaposition of roots (Ro) and Teichichnus (Te) from 31 

Chinchilla 4, 1003.75 m. (G) Litholog from Condabri MB9-H showing fining-upward channel 32 

packages stacked with coarsening-upward interdistributary bay deposits that comprise FA2. 33 

 34 
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 32 

Figure 6 – Core photographs of the constituent facies in Facies Association 3 (FA3) – 1 

subaqueous delta. (A) F9, wave-ripple laminated sandstone from Taroom 17, 336.74 m. Note 2 

the juxtaposition of roots (Ro) and Lockeia (Lo) within the wave ripples (wr). (B) F10, sandstone-3 

dominated heterolithics with Planolites (Pl) and synaeresis cracks (syn) from Chinchilla 4, 4 

1026.45 m. (C) F10, mixed sandy and muddy heterolithics with Planolites and Lockeia from 5 

Chinchilla 4, 987.70 m. (D) F11, mudstone-dominated heterolithics with combined flow ripples 6 

(cf) and Planolites (Pl) from Roma 8, 1006.25 m. (E) Litholog from Woleebee Creek GW4 7 

displaying the coarsening-upward prodelta to delta front and mouthbar succession that is typical 8 

of FA3. 9 

 10 

Figure 7 – Core photographs of Facies Association 4 (FA4) – shoreface – and its primary 11 

facies. (A) F12, bioturbated muddy sandstone with wave-ripple to HCS interbeds from Kenya 12 

East GW7, 1013.40 m. The facies displays laminated beds interpreted as tempestites (tm), 13 

Palaeophycus (Pa), Planolites (Pl), Teichichnus (Te), Phycosiphon (Ph), and Scolicia (Sc). (B) 14 

F13, bioturbated sandy mudstone with wave ripples, Diplocraterion (Di), Palaeophycus (Pa), 15 

and Phycosiphon (Ph) from Kenya East GW7, 1013.70 m. (C) Litholog from Kenya East GW7 16 

showing the coarsening upwards transition from upper offshore to lower shoreface deposits in 17 

FA4. 18 

 19 

Figure 8 – Core photographs of Facies Association 5 (FA5) – tidal shoreline. (A) F14, tidally 20 

influenced heterolithics (muddy end-member) with Planolites (Pl) and Palaeophycus (Pa) from 21 

Chinchilla 4, 983.80 m. (B) F14, tidally influenced heterolithics (sandy end-member) displaying 22 

lenticular bedding (len), synaeresis cracks (syn), as well as Planolites (Pl) and Palaeophycus 23 

(Pa) from Taroom 17, 302.70 m. (C) Litholog from Chinchilla 4 displaying the overall fining-24 

upwards nature of deposits in FA5. 25 

 26 

Figure 9 – Core photographs of Facies Association 6 (FA6) – restricted marine shoals. (A) 27 

F15A, oolitic ironstone from Chinchilla 4, 1036.87 m. (B) F15B, cemented ironstone from 28 

Chinchilla 4, 1030.50 m. (C) Litholog from Kenya East GW7 showing alternating ironstone 29 

layers of FA6 alternating with prodelta strata of FA3. 30 

 31 

Figure 10 – Photomicrographs of palynomorph taxa identified from the Precipice Sandstone 32 

and Evergreen interval. (A) The coastal pollen Araucariacites australis from Chinchilla 4, 33 

983.00. m. (B) The coastal pollen Corollina spp. from Roma 8, 1041.00 m. (C) The coastal 34 
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pollen Callialasporites dampierii from Chinchilla 4, 983.00 m. (D) The coastal pollen 1 

Callialasporites turbatus from Kenya East GW7, 1023.60 m. (E) The continental spore 2 

Stereisporites antiquasporites from Moonie 31, 1724.25 m. (F) The continental spore 3 

Kekryphalospora distincta from Woleebee Creek GW4, 1356.785 m. (G) The algae 4 

Leiosphaeres spp. from West Wandoan 1, 1011.86 m. (H) The continental spore 5 

Cadargasporites baculatus from Condabri MB9-H, 1461.22 m. (I) The continental spore 6 

Sculptisporites moretonensis from Taroom 17, 397.35 m. (J) The coastal spore Retitriletes 7 

australoclavatidites from Woleebee Creek GW4, 1485.44 m. (K) The continental spore 8 

Apiculatisporites pristadentatus from Kenya East GW7, 1181.50 m. (L) The algae Botryococcus 9 

spp. from Moonie 31, 1724.25 m. (M) The acritarch Multiplicisphaeridium spp. from Woleebee 10 

Creek GW4, 1336.70 m. (N) Undifferentiated dinocyst from West Wandoan 1, 1011.86 m. (O) 11 

Copepod fragment from Chinchilla 4, 1017.00 m. 12 

 13 

Figure 11 – The proportion of palynomorphs in each of the wells analyzed organized into their 14 

sporomorph ecogroups (SEGs) based on Abbink (1998) and Abbink et al. (2004). D / A / C 15 

denotes the proportion of the marine SEG which comprise dinocysts, acritarchs, and copepod 16 

fragments. 17 

 18 

Figure 12 – Detailed lithological description of the Precipice Sandstone and Evergreen 19 

Formation in Roma 8 from 1059.70 m to 954.00 m. The descriptions include physical 20 

sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, and the 21 

sequence stratigraphic sub-division of the core. 22 

 23 

Figure 13 – Detailed lithological description of the Precipice Sandstone and Evergreen 24 

Formation in Moonie 31 from 1731.20 m to 1724.60 m. The descriptions include physical 25 

sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, and the 26 

sequence stratigraphic sub-division of the core. 27 

 28 

Figure 14 – Detailed lithological description of Moonie 34 from 1780.20 m to 1758.40 m. The 29 

descriptions include physical sedimentary structures and accessories, trace fossils and 30 

bioturbation intensity, facies, and the sequence stratigraphic sub-division of the core. 31 

 32 

Figure 15 – Detailed lithological description of the Precipice Sandstone and Evergreen 33 

Formation in Chinchilla 4 from 1226.60 m to 983.20 m. The descriptions include physical 34 
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 34 

sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, and the 1 

sequence stratigraphic sub-division of the core. 2 

 3 

Figure 16 – Detailed lithological description of the Precipice Sandstone and Evergreen 4 

Formation in Condabri MB9-H from 1528.50 m to 1399.70 m. The descriptions include physical 5 

sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, and the 6 

sequence stratigraphic sub-division of the core. 7 

 8 

Figure 17 – Detailed lithological description of the Precipice Sandstone and Evergreen 9 

Formation in Kenya East GW7 from 1220.50 m to 973.00 m. The descriptions include physical 10 

sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, and the 11 

sequence stratigraphic sub-division of the core. 12 

 13 

Figure 18 – Detailed lithological description of the Precipice Sandstone and Evergreen 14 

Formation in Taroom 17 from 500.20 m to 270.80 m. The descriptions include physical 15 

sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, and the 16 

sequence stratigraphic sub-division of the core. 17 

 18 

Figure 19 – Detailed lithological description of the Precipice Sandstone and Evergreen 19 

Formation in Reedy Creek MB3-H from 1351.70 m to 1150.60 m. The descriptions include 20 

physical sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, 21 

and the sequence stratigraphic sub-division of the core. 22 

 23 

Figure 20 – Detailed lithological description of the Precipice Sandstone and Evergreen 24 

Formation in West Wandoan 1 from 1237.00m to 953.80 m. The descriptions include physical 25 

sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, and the 26 

sequence stratigraphic sub-division of the core. 27 

 28 

Figure 21 – Detailed lithological description of the Precipice Sandstone and Evergreen 29 

Formation in Woleebee Creek GW4 from 1573.60 m to 1285.20 m. The descriptions include 30 

physical sedimentary structures and accessories, trace fossils and bioturbation intensity, facies, 31 

and the sequence stratigraphic sub-division of the core.  32 

 33 
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 35 

Figure 22 – Depositional block model for Sequence 1 showing the major depositional 1 

environments and their associated facies. The models are sub-divided into the lowstand 2 

(Lowstand Systems Tract 1), transgressive systems tract (Transgressive Systems Tract 1), and 3 

highstand (Highstand Systems Tract 1). No implications for scale or paleogeographic orientation 4 

are intended. 5 

 6 

Figure 23 – Depositional block model for Sequence 2 showing the major depositional 7 

environments and their associated facies. The models are sub-divided into a lowstand, 8 

transgressive systems tract, and highstand systems tract; these packages were not defined by 9 

stratigraphic surfaces due to the thin and potentially incomplete preservation of this sequence 10 

across the basin. No implications for scale or paleogeographic orientation are intended. 11 

 12 

Figure 24 – Depositional block model for Sequence 3 showing the major depositional 13 

environments and their associated facies. The models are sub-divided into the lowstand 14 

(Lowstand Systems Tract 1), transgressive systems tract (Transgressive Systems Tract 1), and 15 

highstand (Highstand Systems Tract 1). No implications for scale or paleogeographic orientation 16 

are intended. 17 
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Well Name Latitude Longitude Base (m, MD) Top (m, MD) 

Thickness 

(m) 

 

Chinchilla 4 26°43'7.9721"S 
 

150°12'5.0989"E 
 1227 979 248 

Condabri 
MB3-H 

26°48'32.9400"S 
 

150°10'15.7900"E 
 1517 1300 217 

Kenya East 
GW7 27°01'44.5100"S 150°34'27.8800"E 1228 972 256 

Moonie 31 27°44'42.6577"S 150°15'13.9337"E 1731 1724 7 
Moonie 34 27°45'50.6600"S 150°14'27.9384"E 1780 1758 22 

Reedy Creek 
MB3-H 26°21'27.8000"S 149°25'35.8900"E 1351 1149 202 

Roma 8 26°33'12.0538"S 148°36'14.4833"E 1060 950 110 
Taroom 17 25°47'21.0026"S 148°44'57.7232"E 499 271 228 

West 
Wandoan 1 26°10'53.8590"S 149°48'44.7444"E 1238 953 285 

Woleebee 
Creek GW4 26°16'54.8917"S 149°42'50.9384"E 1575 1280 295 

    Total 1807 
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Facies 

Association 
Facies Grain Size Physical Structures Trace Fossils Bioturbation Intensity 

and Distribution Ichnofacies Accessories Sedimentary 

Environment 

FA1: Braid 

plain 

F1: Interbedded conglomerate and 
sandstone 

Medium to very 
coarse-grained sand; 
granules to pebbles 

Structureless to crudely laminated None BI 0 - - Lag deposit or 
channel base 

F2: Mud-clast breccia 

Medium to very 
coarse-grained sand; 
granules to pebbles 

(angular) 

Structureless to crudely laminated, mud 
rip-up clasts None BI 0 - - 

Channel base or 
channel bank 

collapse 

F3: Coarse-grained planar-tabular 
cross-bedded sandstone 

Medium to very 
coarse-grained sand 

Fining-upward, planar tabular cross-
beds, rare current ripples, normal graded 

beds 
None BI 0 - Rip-up clasts, pebbles, 

pebble lags Fluvial channel 

FA2: Lower 

delta plain 

F4: Fine-grained planar-tabular 
grading into current ripple laminated 

sandstone 

Very fine to fine 
grained sand 

Fining-upward, planar tabular cross beds, 
current ripples Planolites, Taenidium BI 0-1, burrowed tops, 

sporadic distribution Scoyenia 
Carbonaceous detritus, 

rip-up clasts, pebbles and 
pebble lags 

Distributary channel 

F5: Structureless to planar-parallel 
laminated sandstone 

Fine to medium 
grained sand 

Structureless to horizontal planar-parallel 
lamination Planolites BI 0-1, burrowed tops, 

sporadic distribution Scoyenia 
Rootlets, siderite 

horizons, coal fragments, 
spherulitic siderite 

Channel levee or 
splay 

F6: Structureless, carbonaceous 
siltstone and mudstone 

Very fine silt to coarse 
silt 

Structureless, rare planar parallel or 
current ripple lamination Planolites, Taenidium, Naktodemasis BI 0-1 Scoyenia 

Carbonaceous detritus, 
coal fragments, rare 

slickensides 
Floodplain 

F7: Coal Macerated plant 
material N/A None BI 0 - - Peat Mire 

F8: Bioturbated muddy sandstone and 
sandy mudstone 

Coarse silt to fine-
grained sand 

Rare horizontal planar parallel 
lamination, wavy or lenticular bedding, 

synaeresis cracks 

Planolites, Palaeophycus, navichnia 
rare Teichichnus 

BI 0-3, sporadic 
distribution 

Impoverished 
Cruziana - Interdistributary Bay 

FA3: 

Subaqueous 

delta 

F9: Wave- to combined-flow ripple 
laminated sandstone 

Very fine to fine 
grained sand 

Coarsening-upward, wave or combined-
flow ripples, soft sedimentary 

deformation, thin planar-parallel 
lamination and graded mudstone beds 

Planolites, Teichichnus, Lockeia, 
fugichnia 

BI 0-2, sporadic 
distribution Skolithos 

Rootlets, carbonaceous 
detritus, siderite horizons, 

rare coal fragments 
Mouthbar 

F10: Sand-dominated to sub-equal 
sandy and muddy heterolithics 

(sandstone and mudstone); 
90%>sand>30% 

Medium to coarse silt 
and very fine to fine 

grained sand 

Current to combined flow ripples, wave 
ripples, soft sedimentary deformation, 
micro-faults, synaeresis cracks, normal 

and inverse grading 

Planolties, Palaeophycus, Lockeia, 
Techichnus, Siphonichnus, fugichnia 

BI 0-3, sporadic 
distribution in 

mudstone, rare in 
sandstone 

Impoverished 
Proximal 
Cruziana 

Sideritized horizons Delta front 

F11: Mud-dominated heterolithics 
(sandstone and mudstone); 

30%>sand>10% 

Medium to coarse silt 
and very fine to fine 

grained sand 

Current to combined flow ripples, 
horizontal planar-parallel lamination, 
normal and inverse grading, wavy to 

lenticular bedding 

Planolites, Palaeophycus, 
Diplocraterion, Teichichnus, 

Thalassinoides, Siphonichnus. 
navichnia, rare Asterosoma 

BI 0-3, sporadic 
distribution in 
mudstone and 

sandstone 

Impoverished 
Archetypal 
Cruziana 

- Prodelta 

FA4: Delta-

influenced 

shoreface 

F12: Bioturbated muddy sandstone 
with wave-ripple lamination and HCS 

interbeds 

Coarse silt to medium 
grained sand 

Wave ripples, micro HCS, wavy 
undulatory lamination, normal-graded 

beds 

Asterosoma, Conichnus, Chondrites, 
Planolites, 

Scolicia, Teichichnus, Palaeophycus, 
Phycosiphon, Lockeia, fugichnia 

BI 0-5, laminated to 
scrambled 

Proximal 
Cruziana - Lower shoreface 

F13: Bioturbated sandy mudstone 
with wave-ripple to HCS interbeds 

Coarse silt with 
interstitial very fine to 

fine grained sand 

Rare horizontal planar parallel 
lamination in muds; micro HCS in 

sandstone 

Asterosoma, Conichnus, Chondrites, 
Planolites, Teichichnus, 

Palaeophycus, Phycosiphon, 
Helminthopsis 

BI 0-6, laminated to 
scrambled 

Archetypal 
Cruziana - Upper offshore 

FA5: Tidally e-

influenced 

shoreline 

F14: Mixed sandy and muddy 
heterolithics with tide-generated 

structures (sandstone and mudstone) 
90%>sand>10% 

Medium to coarse silt 
and very fine to fine 

grained sand 

Flaser, wavy, lenticular bedding, current 
to combined flow ripples, synaeresis 

cracks 

Planolites, Palaeophycus 
Cylindrichnus, Teichicnus, 

Diplocraterion, Siphonichnus, 
navichnia 

BI 2-5, sporadic 
distribution in 
mudstone and 

sandstone 

Depauperate 
“Mixed Skolithos-

Cruziana” 

Carbonaceous detritus, 
rootlets, rare sideritized 

horizons 
Tidal flats 

FA 6: Restricted 

mMarine shoals 

F15A: Oolitic Ironstone 
Fine- to medium-

grained sand 
Horizontal planar-parallel lamination, 

structureless, rare wave ripples None BI 0 - - Shallow Restricted 
marine shoals 

F15B: Cemented Ironstone N/A Cemented None BI 0 - Stylolites Diagenetic overprint 
related to faults 
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Palynomorph Type Palynomorph Type Palynomorph Type 

Cymatiosphaera spp. Achritarch Podocarpidites ellipticus Continental Pollen Klukisporites lacunus Continental Spore 
Micrhystridium spp. Achritarch Protohaploxypinus spp. Continental Pollen Klukisporites scaberis Continental Spore 
Multiplicisphaeridium spp. Achritarch Trisaccates undiff. Continental Pollen Klukisporites spp. Continental Spore 
Veryhachium spp. Achritarch Vitreisporites pallidus Continental Pollen Klukisporites variegatus Continental Spore 
Algae spp. Algae Vitreisporites signatus Continental Pollen Krauselisporites spp. Continental Spore 
Bartenia communis Algae Anapiculatisporites dawsonensis Continental Spore Laevigatosporites spp. Continental Spore 
Botryococcus spp. Algae Anapiculatisporites pristidentatus Continental Spore Leptolepidites spp. Continental Spore 
cf. Peltacystia spp. Algae Annulispora folliculosa Continental Spore Leptolepidites verrucatus Continental Spore 
Cymatiosphaera spp. Algae Annulispora microannulata Continental Spore Lundbladispora brevicula Continental Spore 
Leiosphaeres spp. Algae Antulsporites clavus Continental Spore Maratthesisporites crassibalteus Continental Spore 
Micrhystridium spp. Algae Antulsporites regius Continental Spore Matonisporites crassiangulatus Continental Spore 
Multiplicisphaeridium spp. Algae Antulsporites regius Continental Spore Neoraistrickia elongata Continental Spore 
Veryhachium spp. Algae Antulsporites saevus Continental Spore Neoraistrickia rugobacula Continental Spore 
Araucariacites australis Coastal Pollen Apiculatisporites spp. Continental Spore Neoraistrickia suratensis Continental Spore 
Araucariacites fissus Coastal Pollen Aratrisporites "miniparvispinosus" Continental Spore Neoraistrickia taylori Continental Spore 
Callialasporites dampieri Coastal Pollen Aratrisporites parvispinosus Continental Spore Neoraistrickia trichosa Continental Spore 
Callialasporites segmentatus Coastal Pollen Baculatisporites comaumensis Continental Spore Neoraistrickia truncata Continental Spore 
Callialasporites trilobatus Coastal Pollen Cadargasporites baculatus Continental Spore Nevesisporites vallatus Continental Spore 
Callialasporites turbatus Coastal Pollen Cadargasporites granulatus Continental Spore Obtusisporis modestus Continental Spore 
Corollina spp. Coastal Pollen Cadargasporites reticulatus Continental Spore Obtusisporites modestus Continental Spore 
Densoisporites spp. Coastal Spore Cadargasporites senectus Continental Spore Osmundacidites spp. Continental Spore 
Densoisporites velatus Coastal Spore Cadargasporites verrucosus Continental Spore Osmundacidites wellmanii Continental Spore 
Retitriletes "net" Coastal Spore Calamospora spp. Continental Spore Perotrilites whitfordensis Continental Spore 
Retitriletes austroclavatidites Coastal Spore Camarozonosporites ramosus Continental Spore Playfordiaspora velata Continental Spore 
Retitriletes circolumenus Coastal Spore Camarozonosporites rudis Continental Spore Polycingulatisporites clavus Continental Spore 
Retitriletes clavatoides Coastal Spore Cibotiumsporites juriensis Continental Spore Polycingulatisporites crenulatus Continental Spore 
Retitriletes facetus Coastal Spore Cingulatisporites spp. Continental Spore Polycingulatisporites mooniensis Continental Spore 
Retitriletes huttonensis Coastal Spore Clavatisporites spp. Continental Spore Rogalskaisporites cicatricosus Continental Spore 
Retitriletes nodosus Coastal Spore Concavissimisporites punctatus Continental Spore Rugulatisporites spp. Continental Spore 
Retitriletes proxiradiatus Coastal Spore Converrucosisporites pricei Continental Spore Sculptisporis moretonensis Continental Spore 
Retitriletes semimuris Coastal Spore Converrucosisporites verrucosus Continental Spore Staplinisporites caminus Continental Spore 
Retitriletes watherooensis Coastal Spore Coronatispora perforata Continental Spore Staplinisporites manifestus Continental Spore 
Alisporites grandis Continental Pollen Cyathidites australis Continental Spore Stereisporites antiquasporites Continental Spore 
Alisporites lowoodensis Continental Pollen Cyathidites minor Continental Spore Stereisporites pocockii Continental Spore 
Alisporites similis Continental Pollen Dictyophyllidites harrisii Continental Spore Stereisporites psilatus Continental Spore 
Alisporites spp. Continental Pollen Foraminisporis caelatus Continental Spore Striatella jurassica Continental Spore 
Ashmoripollis reducta Continental Pollen Foraminisporis spp. Continental Spore Striatella parva Continental Spore 
Ashmoripollis reducta Continental Pollen Foraminisporis tribulosus Continental Spore Striatella seebergensis Continental Spore 
Cycadopites follicularis Continental Pollen Foveosporites canalis Continental Spore Thymospora ipsviciensis Continental Spore 
Cycadopites spp. Continental Pollen Foveosporites moretonensis Continental Spore Todisporites major Continental Spore 
Exesipollenites tumulus Continental Pollen Foveosporites spp. Continental Spore Todisporites minor Continental Spore 
Falcisporites australis Continental Pollen Gleicheniidites senonicus Continental Spore Trilobosporites antiquus Continental Spore 
Falcisporites grandis Continental Pollen Granulatisporites spp. Continental Spore Verrucosisporites varians Continental Spore 
Falcisporites similis Continental Pollen Interulobites intraverrucatus Continental Spore Copepod fragments Copepoda 
Perinopollenites elatoides Continental Pollen Ischyosporites crateris Continental Spore Dinocyst indet. Dinocyst 
Pinuspollenites parvisaccatus Continental Pollen Ischyosporites spp. Continental Spore Mendicodinium spp. Dinocyst 
Platysaccus queenslandi Continental Pollen Kekryphalospora distincta Continental Spore Fungal spores Fungi 
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Well Total 
Count 

Coastal 
Spores 

Continental 
Spores 

Coastal 
Pollen 

Continental 
Pollen 

Freshwater 
Algae Fungal 

Dino / 
Achritarch / 
Copepoda 

Depth Facies Sequence 
Stratigraphy 

Chinchilla 4 281 19 63 171 213 3 0 0 983.00 SM4 HST 3 
Chinchilla 4 272 29 100 63 156 15 0 1 1017.40 M1 TST 3 
Chinchilla 4 303 4 33 135 247 23 0 + 1045.45 SM3 TST 3 
Chinchilla 4 276 24 104 137 166 6 0 0 1098.65 SM3 Sequence 2 
Chinchilla 4 293 7 42 186 246 2 1 0 1126.70 SM3 HST 1 
Chinchilla 4 277 23 92 136 179 4 0 0 1162.08 SM3 TST 1 
Chinchilla 4 275 11 66 182 202 4 0 0 1199.64 SM3 LST1 
Chinchilla 4 294 6 26 228 253 15 0 0 1217.60 SM3 LST 1 

Condabri MB9-
H 295 18 138 115 17 7 0 0 1326.06 M3 HST 3 

Condabri MB9-
H 300 25 137 116 18 4 0 0 1417.59 SM3 Sequence 2 

Condabri MB9-
H 300 41 157 74 23 5 0 0 1436.37 SM2 Sequence 2 

Condabri MB9-
H 300 29 104 142 20 5 0 0 1445.09 SM3 HST 1 

Condabri MB9-
H 300 19 103 144 25 9 0 0 1461.22 M1 TST 1 

Condabri MB9-
H 300 44 166 79 8 3 0 0 1501.41 SM1 LST 1 

Condabri MB9-
H 301 15 117 129 28 6 0 0 1508.70 SM2 LST 1 

Kenya East 
GW7 310 44 107 66 77 13 0 3 981.35 SM3 HST 3 

Kenya East 
GW7 300 17 32 129 95 27 0 0 1023.60 S6 TST 3 

Kenya East 
GW7 300 7 38 93 120 37 0 5 1028.60 M2 TST 3 

Kenya East 
GW7 300 12 54 196 33 5 0 0 1146.70 M1 TST 1 

Kenya East 
GW7 300 13 62 166 54 5 0 0 1165.30 SM3 TST 1 

Kenya East 
GW7 300 44 138 44 57 17 0 0 1181.50 SM3 TST 1 

Kenya East 
GW7 300 11 116 112 52 9 0 0 1192.70 SM2 LST 1 

Moonie 31 316 35 69 160 49 3 0 0 1724.25 M1 TST 1 
Reedy Creek 

MB3-H 201 11 32 79 150 8 0 0 1208.35 M1 TST 3 

Reedy Creek 
MB3-H 307 22 28 143 235 18 + 4 1215.17 M1 TST 3 

Reedy Creek 
MB3-H 297 52 120 92 124 1 0 0 1243.30 M1 Sequence 2 

Reedy Creek 
MB3-H 299 11 60 173 221 6 0 0 1270.42 SM2 HST 1 

Reedy Creek 
MB3-H 294 33 128 69 124 6 0 0 1326.26 SM2 TST 1 

Reedy Creek 
MB3-H 300 3 48 205 242 6 0 0 1337.68 SM2 LST 1 

Roma 8 300 40 47 121 76 16 0 + 956.70 SM3 HST 3 
Roma 8 300 21 87 100 89 2 0 1 967.87 SM3 HST 3 
Roma 8 305 8 27 196 71 3 0 0 985.26 SM3 TST 3 
Roma 8 300 47 108 120 7 18 0 0 995.85 SM2 Sequence 2 
Roma 8 300 34 71 146 44 5 0 0 1011.40 M1 Sequence 2 
Roma 8 300 19 68 174 38 1 0 0 1029.15 M1 HST 1 
Roma 8 305 37 57 182 28 1 0 0 1041.00 M1 TST 1 
Roma 8 301 16 65 185 26 9 0 0 1042.90 SM1 TST 1 

Taroom 17 302 46 73 111 61 11 0 0 280.70 M3 TST 3 
Taroom 17 301 4 71 182 35 6 0 0 297.65 SM2 TST 3 
Taroom 17 300 51 75 88 66 18 0 0 331.37 S4 Sequence 2 
Taroom 17 299 9 79 157 54 0 0 0 378.53 SM3 HST 1 
Taroom 17 300 10 46 175 68 1 0 0 386.42 SM3 TST 1 
Taroom 17 306 17 50 193 41 5 0 0 397.35 SM3 TST 1 
Taroom 17 300 22 101 112 63 2 0 0 421.80 M1 TST 1 
Taroom 17 300 0 19 252 28 1 0 0 483.25 SM2 LST 1 

West Wandoan 
1 405 11 108 198 81 7 0 0 980.45 SM2 TST 3 

West Wandoan 
1 304 41 98 117 43 5 0 0 990.84 SM3 TST 3 

West Wandoan 
1 327 40 73 142 65 7 0 0 993.51 M3 TST 3 

West Wandoan 
1 308 18 45 102 110 33 0 0 998.65 SM3 TST 3 

West Wandoan 
1 300 90 30 130 24 26 0 + 1010.56 SM3 TST 3 

West Wandoan 
1 307 15 40 114 82 37 0 19 1011.86 SM3 TST 3 

West Wandoan 
1 349 18 87 83 149 10 0 2 1013.40 M1 TST 3 

West Wandoan 
1 300 14 21 136 125 4 0 0 1027.61 SM2 TST 3 

West Wandoan 
1 300 0 22 255 15 8 0 0 1207.61 SM2 LST 1 

Woleebee 
Creek GW4 300 49 77 102 57 15 0 0 1310.60 M2 TST 3 

Woleebee 
Creek GW4 300 10 21 152 87 27 0 3 1336.70 M2 TST 3 

Woleebee 
Creek GW4 299 93 110 76 7 13 0 0 1356.75 SM3 Sequence 2 

Woleebee 
Creek GW4 300 25 110 135 28 2 0 0 1382.25 SM3 Sequence 2 

Woleebee 
Creek GW4 300 14 83 155 45 3 0 0 1391.25 SM2 Sequence 2 

Woleebee 
Creek GW4 300 14 64 182 40 0 0 0 1422.55 M1 TST 1 

Woleebee 
Creek GW4 298 19 93 124 55 7 0 0 1489.55 SM4 LST 1 
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