Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from the thesis.
Using ESI-MS to Investigate the Organometallic Compound Cp₂Ti(SC₆H₄CO₂) and Closely Related Compounds

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at The University of Waikato

by

Kai Song

2019
Abstract

This thesis reports investigations on the electrospray ionisation mass spectrometric (ESI-MS) behaviour of some metallocene complexes of titanium and molybdenum. The ESI-MS behaviour of titanocene dichloride (Cp₂TiCl₂) compound, which is has shown of interest as an anticancer agent was investigated. Cp₂TiCl₂ was dissolved in various solvents and spectra were recorded at various capillary exit voltages from 60 V to 250 V. Bis(ethylcyclopentadienyl) dichlorotitanium(IV) was also studied via ESI-MS. Results indicated clearly some main species like [Cp₂TiH]⁺, [Cp₂Ti(OCH₃)]⁺ and [Cp₂Ti(OCH₃)₂+H]⁺ were observed. When the capillary exit voltage was greater than 150 V species containing two Ti centres like [Cp₄Ti₂(OCH₃)₂Cl]⁺, [Cp₄Ti₂(OCH₃)₃Cl+H]⁺ and [(Cp₂Ti(OCH₃)₂+H)₂+Cl⁻] disappeared and titanocene(III) species [Cp₂Ti(CH₃OH)]⁺ was observed which indicated reduction of titanium(IV) during ESI-MS analysis. Larger ions which contain three or more Ti centres were not observed.

The main focus of this thesis was to investigate the chemistry and characterisation of the organometalloic compound bis(cyclopentadienyl) thiosalicylatotitanium(IV) (Cp₂Ti(tsal) tsal = SC₆H₄CO₂). A further experiment was done to run the spectrum of a mixed solution of Cp₂TiCl₂ and Cp₂Ti(tsal) in CH₃OH to investigate the possibility of the tsal ligand bridging two Cp₂Ti centres. Characterisation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of added alkali metal salts and the reactivity of Cp₂Ti(tsal) towards soft electrophile was also studied.

At the same time, a new complex bis(ethylcyclopentadienyl) thiosalicylatotitanium(IV) ((EtCp)₂Ti(tsal)) was synthesised and studied by ESI-MS. Comparison of the ESI-MS spectra of Cp₂Ti(tsal) with those of (EtCp)₂Ti(tsal) was used to confirm the identity of some unknown species. This new complex was characterised by elemental analysis, melting point, nuclear magnetic resonance (NMR) and infra-red (IR) spectroscopy.

Finally the molybdocene dichloride (Cp₂MoCl₂) compound was studied by ESI-MS. The closely related compound bis(cyclopentadienyl) thiosalicylato-molybdenum(IV) (Cp₂Mo(tsal)) was synthesised and characterised by ESI-MS, melting point, NMR and IR spectroscopy. Less species can be observed
in the Mo system than in the Ti system. Most species in the Mo system contained a Cl ligand.
Acknowledgements

Firstly, I would like to thank my supervisor Professor Bill Henderson for giving me this opportunity and helping me with this experiment process. I appreciated his education for me on the ESI instruments and checking my paper over and over again.

I would like to acknowledge R.J. Hill Laboratories, and thank them for giving me the educational leave each week to finish my degree.

I would also like to thank Ryland Fortney-Zirker who helped me to explain the unknown ion observed during this research and enlightened me as to the superoxo complex Cp₂TiO₂⁺.

A special thanks to Haiming Tang for helping me with NMR experiments and the use of NMR instruments.

Many thanks as well to Jenny Stockdill, the technical staff of Chemistry in Waikato University. She kindly helped me to find out some suppliers of chemicals used.

Thanks to Cheryl Ward, the university librarian who helped me fix the references.

Thanks to everyone in the lab C.3.04 for providing a positive learning environment.

Lastly, I would like to thank my parents, my wife Jennifer Zhang and friends for their support and encouragement throughout my degree.
Table of Contents

Abstract ... i
Acknowledgements ... iii
Table of Contents ... iv
List of Figures ... viii
List of Tables ... xv
List of Schemes ... xvii
Chapter 1 Introduction .. 1
1.1 Titanocene compounds ... 1
1.2 Thiosalicylate ligand and metal-thiosalicylate complexes ... 4
1.2.1 Complexes of the thiosalicylate ligand with main-group elements .. 6
1.2.2 Complexes of the thiosalicylate ligand with transition metals .. 8
1.3 Electrospray ionisation mass spectrometry ... 13
1.3.1 ESI-MS ionisation mechanism .. 13
1.3.2 Applications of ESI-MS in coordination and organometallic chemistry 15
1.3.3 ESI-MS behaviour of metallocene compounds .. 16
1.3.4 ESI-MS behaviour of Ti compounds ... 17
1.4 Scope of investigation .. 20
Chapter 2 An investigation of the ESI-MS behaviour of Cp₂TiCl₂ ... 21
2.1 Introduction ... 21
2.1.1 The hydrolysis and alcoholysis reactions of Cp₂TiCl₂ in solution .. 21
2.1.2 Review of the previous ESI-MS investigation of Cp₂TiCl₂ ... 22
2.1.3 Project outline .. 23
2.2 Experimental .. 24
2.2.1 Chemicals and solvents .. 24
2.2.2 ESI-MS instrumentation .. 24
2.2.3 Experimental procedure .. 25
2.3 Results and discussion .. 26
2.3.1 Isotope pattern of titanium and the effect of additional chlorine .. 26
2.3.2 Analysis of a freshly-prepared solution of Cp₂TiCl₂ in methanol with low and wide range method .. 28
2.3.3 Beta-hydride elimination ... 31
2.3.4 Reduction reaction during ESI-MS analysis ..32
2.3.5 An investigation of dinuclear species observed in the ESI mass spectra of a freshly-prepared solution of Cp₂TiCl₂ in methanol34
2.3.6 An investigation of the effects of the capillary exit voltage to the peak relative intensity ...35
2.3.7 An investigation of the effects of the time to the peak intensity37
2.3.8 Analysis of a freshly-prepared solution of (EtCp)₂TiCl₂ in methanol with low range method ..38
2.3.9 Analysis of solutions of Cp₂TiCl₂ in other alcohols using ESI-MS40
2.3.10 Analysis of freshly-prepared solutions of Cp₂TiCl₂ and (EthylCp)₂TiCl₂ in a non-protic solvent using ESI-MS43
2.3.11 Analysis of a freshly-prepared solution of Cp₂TiCl₂ in deuterated methanol using ESI-MS ...45

2.4 Discussion ..49

Chapter 3 An investigation of the ESI-MS behaviour of Cp₂Ti(SC₆H₄CO₂)51
3.1 Introduction ...51
3.1.1 Review of the previous investigation of Cp₂Ti(tsal)51
3.1.2 Project outline ..53

3.2 Experimental ..54
3.2.1 Chemicals and solvents ..54
3.2.2 ESI-MS instrumentation ...54
3.2.3 NMR instrumentation ...54
3.2.4 Melting point and Infra-red (IR) instrumentation55
3.2.5 Experimental procedures ..55
3.2.5.1 Synthesis of Cp₂Ti(tsal) ..55
3.2.5.2 Synthesis of (EtCp)₂Ti(tsal) ..55
3.2.5.3 Investigation of the possibility of the tsal ligand bridging two Cp₂Ti centres ..56
3.2.5.4 Characterisation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of added alkali metal salt ..56
3.2.5.5 Investigation of the reactivity of Cp₂Ti(tsal) towards soft electrophiles ..56

3.3 Results and discussion ...56
3.3.1 An investigation of the ESI-MS behaviour of Cp₂Ti(tsal)56
3.3.1.1 Analysis of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with low range method ..56
3.3.1.2 Analysis of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with wide range method.. 61

3.3.1.3 Analysis of a freshly-prepared solution of Cp₂Ti(tsal) in ethanol using ESI-MS.. 64

3.3.2 An investigation of the ESI-MS behaviour of (EtCp)₂Ti(tsal)...........65

3.3.2.1 Introduction .. 65

3.3.2.2 Analysis of a freshly-prepared solution of (EtCp)₂Ti(tsal) in methanol with low range method............................... 67

3.3.3 Investigation of the possibility of the tsal ligand bridging two Cp₂Ti centres .. 68

3.3.4 Investigation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of added alkali metal salts..........................72

3.3.4.1 Investigation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of LiCl... 73

3.3.4.2 Investigation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of NaCl and KCl .. 75

3.3.4.3 Investigation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of RbCl and CsCl... 77

3.3.4.4 Summary of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of added alkali metal salts.................................. 78

3.3.5 Investigation of the reactivity of Cp₂Ti(tsal) towards soft electrophiles .. 78

3.4 Discussion...81

Chapter 4 An investigation of the ESI-MS behaviour of Cp₂MoCl₂ and Cp₂Mo(tsal)..83

4.1 Introduction..83

4.1.1 Review of the previous investigation of molybdocene dichloride.....83

4.1.2 Project outline ..84

4.2 Experimental...85

4.2.1 Chemicals and solvents ..85

4.2.2 ESI-MS instrumentation ...85

4.2.3 NMR instrumentation ..85

4.2.4 Melting point and Infra-red (IR) instrumentations ...85

4.2.5 Experimental procedures ...86

4.2.5.1 Synthesis of Cp₂Mo(tsal) ... 86

4.3 Results and discussion ...86

4.3.1 An investigation of the ESI-MS behaviour of Cp₂MoCl₂.............86
4.3.1.1 Analysis of a freshly-prepared solution of Cp₂MoCl₂ in methanol with low range method... 86

4.3.1.2 Analysis of a freshly-prepared solution of Cp₂MoCl₂ in methanol with wide range method.. 92

4.3.2 An investigation of the ESI-MS behaviour of Cp₂Mo(tsal)...............94

4.3.2.1 Introduction ... 94

4.3.2.2 Analysis of a freshly-prepared solution of Cp₂Mo(tsal) in methanol with low range method................................. 96

4.3.2.3 Analysis of a freshly-prepared solution of Cp₂Mo(tsal) in methanol with wide range method................................. 100

4.3.3 Comparison of Cp₂TiCl₂/Cp₂Ti(tsal) systems with Cp₂MoCl₂/Cp₂Mo(tsal) systems ... 102

4.3.3.1 Comparison of the ESI-MS spectra of Cp₂TiCl₂ with those of Cp₂MoCl₂... 102

4.3.3.2 Comparison of Cp₂Ti(tsal) system with Cp₂Mo(tsal) system ... 104

4.4 Discussion.. 107

Chapter 5 Conclusions and recommendations for further work108

References ..110
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Chemical structure of titanocene dichloride</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Chemical structures of Titanocene X (top) and Titanocene Y (bottom)</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Some examples of titanocene compounds having antitumor activity</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Chemical structure of thiosalicylic acid</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Summary of the binding modes in metal-thiosalicylate complexes</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>Part of the X-ray structure of [Ba(HSC₆H₄COO)₂(H₂O)]ₐ. Colour code: barium (green); oxygen (red); carbon (grey); sulfur (yellow); hydrogen (white)</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Chemical structure of Se(SC₆H₄COOH)₂</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>The X-ray structure of [Fe₂(μ-S)₂(SC₆H₄CO₂)₂]²⁻. Colour code: iron (orange); oxygen (red); sulfur (yellow); carbon (grey); hydrogen (white)</td>
<td>9</td>
</tr>
<tr>
<td>1.9</td>
<td>The X-ray structure of [Fe(SC₆H₄CO₂)₂]³⁻. Colour code: iron (orange); oxygen (red); sulfur (yellow); carbon (grey); hydrogen (white)</td>
<td>10</td>
</tr>
<tr>
<td>1.10</td>
<td>Part of the X-ray structure of [Ag₄(SC₆H₄CO₂)₂(en)]ₙ. Colour code: silver (light grey); nitrogen (blue); sulfur (yellow); carbon (grey); oxygen (red)</td>
<td>11</td>
</tr>
<tr>
<td>1.11</td>
<td>Chemical structure of gold(III) thiosalicylate complexes</td>
<td>12</td>
</tr>
<tr>
<td>1.12</td>
<td>The basic components of the ESI-MS</td>
<td>13</td>
</tr>
<tr>
<td>1.13</td>
<td>The electrospray ionisation process</td>
<td>14</td>
</tr>
<tr>
<td>1.14</td>
<td>Operation of a quadrupole mass analyser</td>
<td>14</td>
</tr>
<tr>
<td>1.15</td>
<td>Operation of a time-of-flight mass analyser</td>
<td>15</td>
</tr>
<tr>
<td>1.16</td>
<td>Chemical structure of Cp₂Ti(acetylacetonate)</td>
<td>17</td>
</tr>
<tr>
<td>1.17</td>
<td>Chemical structure of salalen ligand and two major titanium salalen complex species</td>
<td>18</td>
</tr>
<tr>
<td>1.18</td>
<td>Chemical structure of mono and bis titanatrane moieties</td>
<td>19</td>
</tr>
<tr>
<td>1.19</td>
<td>Chemical structure of Cp₂Ti(tsal)</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>Hydrolysis of the chloride ligands of Cp₂TiCl₂</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Hydrolysis of a Cp ligand of Cp₂Ti(OH)₂</td>
<td>22</td>
</tr>
</tbody>
</table>
Figure 2.3: Chemical structure of \((\text{EtCp})_2\text{TiCl}_2\) .. 23

Figure 2.4: Titanium isotope pattern .. 26

Figure 2.5: \(\text{Cp}_2\text{TiCl}^+\) ion isotope pattern. (A) Calculated isotope pattern of \(\text{Cp}_2\text{TiCl}^+\) (B) Experimental isotope pattern of \(\text{Cp}_2\text{TiCl}^+\) 27

Figure 2.6: Positive-ion ESI mass spectra of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in methanol with low range method at capillary exit voltages of (a) 60 V, (b) 100 V, (c) 180 V and (d) 250 V 28

Figure 2.7: Positive-ion ESI mass spectra of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in methanol with wide range method at capillary exit voltages of (a) 60 V, (b) 100 V, (c) 180 V, and (d) 250 V 29

Figure 2.8: Positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in methanol with low range method at a capillary exit voltage of 90 V. The insert in this figure is an isotope pattern comparison of A the experimentally observed \(m/z\) 179 ion and B the calculated \(m/z\) 179 ion for \(\text{Cp}_2\text{TiH}^+\). C shows the experimentally observed \(m/z\) 209 ion and D shows the calculated \(m/z\) 209 ion for \(\text{Cp}_2\text{Ti(OCH}_3\text{)}^+\) 30

Figure 2.9: Positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in methanol with low range method at a capillary exit voltage of 120 V. The insert in this figure is an isotope pattern comparison of A the experimentally observed \(m/z\) 213 ion and B the calculated \(m/z\) 213 ion for \(\text{Cp}_2\text{TiCl}^+\). C shows the experimentally observed \(m/z\) 241 ion and D shows the calculated \(m/z\) 241 ion for \([\text{Cp}_2\text{Ti(OCH}_3\text{)}_2]^+\) .. 31

Figure 2.10: Formation of \([\text{Cp}_2\text{TiH}]^+\) from \([\text{Cp}_2\text{Ti(OCH}_3\text{)}]^+\) species by\(\beta\)-hydride elimination ... 32

Figure 2.11: \(\beta\)-hydride elimination .. 32

Figure 2.12: Positive-ion ESI mass spectrum of \(m/z\) 209 and 210 peaks of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in methanol with low range method at different capillary exit voltages .. 33

Figure 2.13: Part of the positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in methanol at mass range 440 to 530 \(m/z\) at a capillary exit voltage of 60 V ... 35

Figure 2.14: Relative intensity vs capillary exit voltage of major species in low \(m/z\) range for a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in CH\(_3\)OH..... 36

Figure 2.15: Relative intensity vs capillary exit voltage of major species in high \(m/z\) range for a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in CH\(_3\)OH..... 37

Figure 2.16: Intensity vs time for some major species.................................. 38
Figure 2.17: ESI mass spectra of (EtCp)_2TiCl_2 (Top) and Cp_2TiCl_2 (Bottom) with low range method at a capillary exit voltage of 60 V 39

Figure 2.18: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp_2TiCl_2 in (A) methanol, (B) ethanol, (C) propan-1-ol and (D) butan-1-ol at a capillary exit voltage of 60 V ... 41

Figure 2.19: Positive-ion ESI mass spectrum of Cp_2TiCl_2 in acetonitrile at a capillary exit voltage of 60 V with low range method 43

Figure 2.20: Positive-ion ESI mass spectrum of (EtCp)_2TiCl_2 in acetonitrile at a capillary exit voltage of 60 V with low range method. m/z 353.10 ion does not contain Ti ... 44

Figure 2.21: Positive-ion ESI mass spectra of Cp_2TiCl_2 a) in CD_3OD b) in CH_3OH at a capillary exit voltage of 90 V with low range method... 45

Figure 2.22: Positive-ion ESI mass spectra of m/z 212 and 211 peaks of a freshly-prepared solution of Cp_2TiCl_2 in CD_3OD at a capillary exit voltage of (A) 150 V and (B) 180 V with low range method 47

Figure 2.23: Positive-ion ESI mass spectrum of m/z 209 and 210 peaks of a freshly-prepared solution of Cp_2TiCl_2 in CH_3OH at capillary exit voltages of (A) 150 V and (B) 180 V with low range method 48

Figure 2.24: Positive-ion ESI mass spectrum of Cp_2TiCl_2 in CD_3OD at a capillary exit voltage of 180 V with low range method. The insert shows an isotope pattern comparison of the experimentally and the calculated protonated peroxy species at m/z 211 ... 48

Figure 3.1: Molecular structure of Cp_2Ti(tsal) ... 52

Figure 3.2: The proposed fragmentation pattern for Cp_2Ti(tsal) 53

Figure 3.3: Chemical structure of (EtCp)_2Ti(tsal) ... 54

Figure 3.4: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp_2Ti(tsal) in methanol with low range method at a capillary exit voltage of 150 V ... 57

Figure 3.5: An isotope pattern comparison for [Cp_2Ti(tsal)+H]^+ (a) experimental (m/z 331.06) and (b) calculated (m/z 331.03) 58

Figure 3.6: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp_2Ti(tsal) in methanol with low range method at a capillary exit voltage of 180 V .. 59

Figure 3.7: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp_2Ti(tsal) in methanol with low range method at a capillary exit voltage of 220 V ... 60
Figure 3.8: Positive-ion ESI mass spectrum of a freshly-prepared solution of
Cp₂Ti(tsal) in methanol with wide range method at a capillary exit
voltage of 100 V .. 61

Figure 3.9: Positive-ion ESI mass spectrum of a freshly-prepared solution of
Cp₂Ti(tsal) in methanol with wide range method at a capillary exit
voltage of 180 V .. 62

Figure 3.10: Positive-ion ESI mass spectrum of a freshly-prepared solution of
Cp₂Ti(tsal) in methanol with wide range method at a capillary exit
voltage of 240 V .. 63

Figure 3.11: Positive-ion ESI mass spectra of a freshly-prepared solution of
Cp₂Ti(tsal) in ethanol with low range method at capillary exit
voltages of (a) 100 V, (b) 180 V and (c) 240 V 64

Figure 3.12: ¹H NMR spectrum for (EtCp)₂Ti(tsal) .. 66

Figure 3.13: ESI mass spectra of (EtCp)₂Ti(tsal) (Top) and Cp₂Ti(tsal)
(Bottom) with low range method at a capillary exit voltage of 100
V .. 67

Figure 3.14: A possible structure of the ion formed by reaction of Cp₂Ti(tsal)
with Cp₂TiCl₂ to form the tsal ligand bridging two Cp₂Ti centres 69

Figure 3.15: Positive-ion ESI mass spectrum (low range method) of a freshly-
prepared solution of Cp₂Ti(tsal) with Cp₂TiCl₂ in dichloromethane
and diluted with methanol at a capillary exit voltage of 150 V. 70

Figure 3.16: An isotope pattern comparison for Cp₂Ti(tsal)Cp₂TiCl⁺ (a)
experimental (m/z 543.14) and (b) calculated (m/z 543.02) 70

Figure 3.17: Positive-ion ESI mass spectrum of a freshly-prepared solution of
Cp₂Ti(tsal) with Cp₂TiCl₂ in methanol with low range method at a
capillary exit voltage of 150 V ... 71

Figure 3.18: An isotope pattern comparison for Cp₂Ti(tsal)Cp₂Ti(OCH₃)⁺ (a)
experimental (m/z 539.16) and (b) calculated (m/z 539.06) 72

Figure 3.19: Positive-ion ESI mass spectra of a freshly-prepared solution of
Cp₂Ti(tsal) without (a) and with LiCl (b) in methanol using low
range method at a capillary exit voltage of 180 V 73

Figure 3.20: Positive-ion ESI mass spectra of a freshly-prepared solution of
Cp₂Ti(tsal) with LiCl in methanol with wide range method at
capillary exit voltages of (a) 60 V, (b) 90 V and (c) 180 V. Low
range method at capillary exit voltage of (d) 180 V 74

Figure 3.21: Positive-ion ESI mass spectra of a freshly-prepared solution of
Cp₂Ti(tsal) with NaCl in methanol with wide range method at
capillary exit voltages of (a) 60 V and (b) 180 V. Cp₂Ti(tsal) with
KCl in methanol with wide range method at capillary exit voltages
of (c) 60 V and (d) 180 V .. 76
Figure 3.22: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp₂Ti(tsal) with RbCl in methanol with wide range method at capillary exit voltages of (a) 60 V and (b) 180 V. Cp₂Ti(tsal) with CsCl in methanol with wide range method at capillary exit voltages of (c) 60 V and (d) 180 V .. 77

Figure 3.23: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂Ti(tsal) with PhHgCl in methanol with low range method at a capillary exit voltage of 150 V.. 79

Figure 3.24: An isotope pattern comparison for [Cp₂Ti(PhHgSC₆H₄COO)]⁺ (a) experimental (m/z 609.06) at a capillary exit voltage of 150 V and (b) calculated (m/z 609.03).. 79

Figure 3.25: The proposed structures of [Cp₂Ti(PhHgSC₆H₄COO)]⁺ from the reaction of Cp₂Ti(tsal) with one mole equivalent of PhHgCl................. 80

Figure 3.26: Relative Intensity vs capillary exit voltages of [Cp₂Ti(PhHgSC₆H₄COO)]⁺ species .. 81

Figure 4.1: Chemical structure of molybdocene dichloride... 83

Figure 4.2: Hydrolysis chemistry of Cp₂MoCl₂ ... 84

Figure 4.3: Chemical structure of Cp₂Mo(tsal) .. 85

Figure 4.4: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂MoCl₂ in methanol with low range method at a capillary exit voltage of 90 V .. 86

Figure 4.5: An isotope pattern comparison for [Cp₂MoCl]⁺ (A) experimental (m/z 263.00) and (B) calculated (m/z 262.95)................................. 87

Figure 4.6: An isotope pattern comparison for [Cp₂Mo(OCH₃)Cl+H]⁺ (A) experimental (m/z 294.99) and (B) calculated (m/z 294.98)................. 88

Figure 4.7: An isotope pattern comparison for [Cp₂MoCl₂+Cp₂Mo(OH)₂+H]⁺ (A) experimental (m/z 556.98) and (B) calculated (m/z 556.92)....... 88

Figure 4.8: An isotope pattern comparison for [Cp₂MoCl₂+Cp₂Mo(OCH₃)₂+H]⁺ (A) experimental (m/z 585.06) and (B) calculated (m/z 584.95) .. 89

Figure 4.9: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂MoCl₂ in methanol with low range method at a capillary exit voltage of 150 V .. 90

Figure 4.10: An isotope pattern comparison for [Cp₂MoH]⁺ (A) experimental (m/z 229.03) and (B) calculated (m/z 228.99)................................. 91

Figure 4.11: Formation of [Cp₂MoH]⁺ from [Cp₂Mo(OCH₃)]⁺ species by β-hydride elimination ... 91
Figure 4.12: Positive-ion ESI mass spectrum of a freshly-prepared solution of
\(\text{Cp}_2\text{MoCl}_2\) in methanol with wide range method at a capillary exit
voltage of 90 V ... 92

Figure 4.13: An isotope pattern comparison for [Cp2MoCl2]+ (A)
experimental (m/z 558.91) and (B) calculated (m/z 558.87) 93

Figure 4.14: Positive-ion ESI mass spectrum of a freshly-prepared solution of
\(\text{Cp}_2\text{MoCl}_2\) in methanol with wide range method at a capillary exit
voltage of 150 V ... 94

Figure 4.15: \(^1\)H NMR spectrum for \(\text{Cp}_2\text{Mo(tsal)}\) .. 95

Figure 4.16: Positive-ion ESI mass spectrum of a freshly-prepared solution of
\(\text{Cp}_2\text{Mo(tsal)}\) in methanol with low range method at a capillary exit
voltage of 90 V ... 96

Figure 4.17: An isotope pattern comparison for [Cp2Mo(tsal)+H]+ (A)
experimental (m/z 381.03) and (B) calculated (m/z 380.99) 97

Figure 4.18: An isotope pattern comparison for [2(Cp2Mo(tsal))+H]+ (A)
experimental (m/z 757.08) and (B) calculated (m/z 756.96) 97

Figure 4.19: Positive-ion ESI mass spectrum of a freshly-prepared solution of
\(\text{Cp}_2\text{Mo(tsal)}\) in methanol with low range method at a capillary exit
voltage of 150 V ... 98

Figure 4.20: An isotope pattern comparison for [Cp2Mo(OH)]+ (A)
experimental (m/z 245.02) and (B) calculated (m/z 244.99) 99

Figure 4.21: An isotope pattern comparison for [Cp2Mo(OH)2]+ (A)
experimental (m/z 262.99) and (B) calculated (m/z 263.00) 99

Figure 4.22: Positive-ion ESI mass spectrum of a freshly-prepared solution of
\(\text{Cp}_2\text{Mo(tsal)}\) in methanol with wide range method at a capillary exit
voltage of 90 V ... 100

Figure 4.23: An isotope pattern comparison for
[Cp2Mo(tsal)+Cp2Mo(OH)2]+ (A) experimental (m/z 638.95)
and (B) calculated (m/z 638.98) 101

Figure 4.24: Positive-ion ESI mass spectrum of a freshly-prepared solution of
\(\text{Cp}_2\text{Mo(tsal)}\) in methanol with wide range method at a capillary exit
voltage of 150 V ... 101

Figure 4.25: Positive-ion ESI mass spectra of a freshly-prepared solution of
\(\text{Cp}_2\text{TiCl}_2\) (A) and \(\text{Cp}_2\text{MoCl}_2\) (B) in methanol with low range
method at a capillary exit voltage of 90 V 102

Figure 4.26: Positive-ion ESI mass spectra of a freshly-prepared solution of
\(\text{Cp}_2\text{TiCl}_2\) (A) and \(\text{Cp}_2\text{MoCl}_2\) (B) in methanol with low range
method at a capillary exit voltage of 150 V 103
Figure 4.27: Positive-ion ESI mass spectra of a freshly-prepared solution of \(\text{Cp}_2\text{Ti(tsal)} \) (A) and \(\text{Cp}_2\text{Mo(tsal)} \) (B) in methanol with low range method at a capillary exit voltage of 90 V .. 105

Figure 4.28: Positive-ion ESI mass spectra of a freshly-prepared solution of \(\text{Cp}_2\text{Ti(tsal)} \) (A) and \(\text{Cp}_2\text{Mo(tsal)} \) (B) in methanol with low range method at a capillary exit voltage of 150 V .. 106
List of Tables

Table 2.1: Summary of 11 possible species that can be formed when hydrolysis of Cp$_2$TiCl$_2$ occurs in water ... 22

Table 2.2: Operating conditions of the ESI-MS in positive ion mode 24

Table 2.3: Summary of capillary exit and skimmer 1 voltages used 25

Table 2.4: Naturally-occurring isotopes of titanium 26

Table 2.5: Naturally-occurring isotopes of chlorine 27

Table 2.6: Summary of corresponding species formed by Cp$_2$TiCl$_2$ and (EtCp)$_2$TiCl$_2$.. 40

Table 2.7: Summary of corresponding species of Cp$_2$TiCl$_2$ in various alcohols at a capillary exit voltage of 60 V with low and wide range methods. (---- not observed) ... 42

Table 2.8: Intensity of Cp$_2$Ti(OR)$^+$ in various alcohols at a capillary exit voltage of 50 V with low range method ... 42

Table 2.9: Summary of corresponding species of Cp$_2$TiCl$_2$ in CH$_3$OH and CD$_3$OD at a capillary exit voltage of 90 V with low range method... 46

Table 3.1: Metal-containing ions recorded in the mass spectrum of Cp$_2$Ti(tsal) 52

Table 3.2: Summary of species containing the tsal group observed at a capillary exit voltage of 150 V in a freshly-prepared solution of Cp$_2$Ti(tsal) in methanol with low range method .. 58

Table 3.3: Summary of species containing the tsal group observed at a capillary exit voltage of 180 V in a freshly-prepared solution of Cp$_2$Ti(tsal) in methanol with low range method .. 60

Table 3.4: Summary of species containing the tsal group observed at a capillary exit voltage of 100 V of a freshly-prepared solution of Cp$_2$Ti(tsal) in methanol with wide range method ... 62

Table 3.5: Summary of species containing the tsal group observed at a capillary exit voltage of 180 V of a freshly-prepared solution of Cp$_2$Ti(tsal) in methanol with wide range method ... 63

Table 3.6: Summary of corresponding species of Cp$_2$Ti(tsal) in methanol and ethanol at a capillary exit voltage of 100 V with low range method . 65

Table 3.7: Summary of corresponding species formed by Cp$_2$TiCl$_2$ and (EtCp)$_2$TiCl$_2$.. 68
Table 4.1: Summary of species observed at a capillary exit voltage of 90 V in a freshly-prepared solution of \(\text{Cp}_2\text{MoCl}_2 \) in methanol with low range method... 89

Table 4.2: Summary of species observed at a capillary exit voltage of 90 V in a freshly-prepared solution of \(\text{Cp}_2\text{MoCl}_2 \) in methanol with wide range method.. 93
List of Schemes

Scheme 1.1: Two routes for the synthesis of Cp$_2$TiCl$_2$... 1

Scheme 3.1: Formation of Cp$_2$Ti(tsal) from Cp$_2$TiCl$_2$ and thiosalicylic acid 51
Chapter 1

Introduction

1.1 Titanocene compounds

Since titanocene dichloride was first reported in 1954 [1], there has been growing interest in the development of the chemistry of titanocene compounds. This is because titanocene compounds can act as catalysts in organic synthesis and some of them even as antioxidative or antitumor agents [2]. Titanocene dichloride is a bright red solid with the formula (η⁵-C₅H₅)₂TiCl₂ and abbreviated as Cp₂TiCl₂. (Figure 1.1). It is one of the most important titanocene compounds used in the world.

![Figure 1.1: Chemical structure of titanocene dichloride](image)

Cp₂TiCl₂ was first synthesised by Wilkinson and Birmingham by the reaction of titanium tetrachloride (TiCl₄) with sodium cyclopentadienide in dry tetrahydrofuran under an argon atmosphere [3]. It can be also prepared by reacting freshly distilled cyclopentadiene with TiCl₄ (Scheme 1.1) [4].

\[
\begin{align*}
2\text{NaC}_5\text{H}_5 + \text{TiCl}_4 & \rightarrow (\text{C}_5\text{H}_5)_2\text{TiCl}_2 + 2\text{NaCl} \\
2\text{C}_5\text{H}_6 + \text{TiCl}_4 & \rightarrow (\text{C}_5\text{H}_5)_2\text{TiCl}_2 + 2\text{HCl}
\end{align*}
\]

Scheme 1.1: Two routes for the synthesis of Cp₂TiCl₂

This compound has been characterised by an X-ray structure determination which shows it has a quasi-tetrahedral structure with 2 chloride ligands and 2 cyclopentadienyl (Cp) ligands around the Ti metal centre. Two planar Cp ligands are in a bent sandwich configuration coordinated to the Ti [3]. The two Cp rings are inclined at an angle of 131° and the Cl-Ti-Cl angle is 94.5°. The Ti-Cl bond
distances is 2.36 Å and distance between the central of the Cp ring and Ti is 2.06 Å [5]. This kind of structure makes titanocene dichloride easily lose the chloride ligands and behave as a Cp₂Ti²⁺ source. Thus, it can undergo fast hydrolysis in water even through it has poor water solubility.

Cp₂TiCl₂ was the first non-platinum antitumor agent to be considered in clinical trials [1]. *In vivo*, Cp₂TiCl₂ shows a very pronounced growth inhibition on solid animal tumours and experimental ascites tumours. Its biological activity is superior to that achieved with equitoxic doses of cisplatin [6]. Cp₂TiCl₂ shows exceptional antitumor activity against lung, colon and breast cancers [7]. It has become the main representative of the early transition metal antitumor agents. Unfortunately, in phase II clinical trials in patients with breast cancer and metastatic renal cancer, the efficacy of Cp₂TiCl₂ was too low to pursue [8].

However, the remarkable activity of Cp₂TiCl₂ against cancer encouraged the development of other novel titanocene compounds with antitumor activity. Two famous series of drugs are Titanocene X ([1,2-di(cyclopentadienyl)-1,2-di-(4-N,N-dimethylaminophenyl)ethanediyl] titanium dichloride) and Titanocene Y (bis-[(p-methoxybenzyl)cyclopentadienyl] titanium(IV) dichloride) (Figure 1.2).
They displayed cytotoxic and antiproliferative effects in a variety of tumour cells and recent studies have shown that Titanocene Y had better effects against renal and uterine cancer cells than cisplatin [7]. In most cases, Titanocene Y has more potent cytotoxic activity than Titanocene X [8].

In recent years, many other titanocene compounds have been synthesised and tested as antitumor agents. Some examples are shown in Figure 1.3 [9].
Due to the instability of \(\text{Cp}_2\text{TiCl}_2 \) in aqueous solution, most syntheses of titanocene compounds are conducted in the absence of water [10]. Most of the novel drugs are unbridged titanocene analogues, which increases the cytotoxicity [8]. These novel drugs all have the \(\text{TiCl}_2 \) moiety, which has the ability to be hydrolysed at physiological pH [7]. In a new generation of titanocene antitumor agents, the substituent methoxy-aryl of cyclopentadienes of Titanocene Y is replaced by ethenyl-methoxide or ethenyl-phenoxide [9]. This change increases the titanocene antitumor agent’s stability and cytotoxic activity on breast cancer cells [9]. Some reports have shown that titanocene complexes having lipophilic groups have an improved antiproliferative effect on breast cancer cells [9]. Overall, the mechanism of action of titanocene compounds involves the Ti(IV) having very high affinity to serum protein transferrin (Tf). Two titaniums bound to transferrin (Ti\(_2\)-Tf) can be considered to specifically target cancer cells since most cancer cells are Tf receptors [11].

1.2 Thiosalicylate ligand and metal-thiosalicylate complexes

The thiosalicylate ligand, derived from thiosalicylic acid (Figure 1.4) by deprotonation of acidic hydrogens, is a hybrid ligand containing a combination of
hard oxygen donor atoms and a soft sulfur donor atom. This combination of donor atoms allows the thiosalicylate ligand to coordinate to various metal centres to form metal-thiosalicylate complexes [12]. The abbreviation tsal is used for the thiosalicylate ligand hereafter.

![Chemical structure of thiosalicylic acid](image1)

Figure 1.4: Chemical structure of thiosalicylic acid

Disregarding the protonation state of the thiosalicylate ligand, there are 22 various binding modes (Figure 1.5) for metal-thiosalicylate complexes [13].

![Summary of the binding modes in metal-thiosalicylate complexes](image2)

Figure 1.5: Summary of the binding modes in metal-thiosalicylate complexes
The coordination chemistry of the thiosalicylate ligand has been recently reviewed [13]. The next two sections summarise the coordination chemistry of thiosalicylate complexes, with an emphasis on those complexes that have been fully characterised.

1.2.1 Complexes of the thiosalicylate ligand with main-group elements

This section summarises the coordination chemistry of the thiosalicylate ligand with main-group elements. Due to the chemical hardness of the group 1 metals, alkali metal cations interact with tsal through the oxygen atoms [13]. A number of alkali metal-thiosalicylate complexes have been prepared and most of them are mixed-ligand complexes which contain cobalt or zinc etc. Examples include (NEt₄)₃Na₃[Co(SC₆H₄COO)]₂.6CH₃OH, (NEt₄)Na[Zn(SC₆H₄COO)]₂.H₂O and (NEt₄)₂Na[Co(SC₆H₄COO)]₃.2H₂O [14].

In group 2, beryllium, calcium and strontium thiosalicylate complexes with other ancillary ligands have been prepared but poorly characterised. The best characterised is the barium thiosalicylate complex [Ba(HSC₆H₄COO)]₂(H₂O)₄]n (Figure 1.6) [15].

![Figure 1.6: Part of the X-ray structure of [Ba(HSC₆H₄COO)]₂(H₂O)₄]n. Colour code: barium (green); oxygen (red); carbon (grey); sulfur (yellow); hydrogen (white)
In group 13, Al(SC₆H₄CO₂)(O’Pr) and Al(SC₆H₄CO₂)(HSC₆H₄CO₂) were prepared by the reaction of Al(O’Pr)₃ with thiosalicylic acid [16]. Gallium and indium thiosalicylate complexes have also been prepared by reaction of Ga³⁺ and In³⁺ ions towards thiosalicylic acid in ethanol [17]. Thallium(I) and thallium(III) thiosalicylate compounds have also been reported [18,19].

In group 14, a number of silicon thiosalicylate complexes have been prepared and characterised, such as PhMeSi(SC₆H₄CO₂), Me₂Si(SC₆H₄CO₂), [Me₂NHCH₂Si(SC₆H₄CO₂)₂] and C₆H₄(SSiMe₃)(COOSiMe₃) [20,21]. A limited number of germanium thiosalicylate complexes have been reported, with the best well-known one being Et₂Ge(SC₆H₄CO₂) [22]. Complexes of the thiosalicylate ligand with tin have been very extensively studied, mainly on tin in the IV oxidation state. Examples include (Cy₂NH₂)[Ph₃Sn(SC₆H₄CO₂)] and [Me₂Sn(SC₆H₄CO₂)] [23,24]. A limited number of lead thiosalicylate complexes have been studied and no X-ray crystal structures have been reported. The best well-known one is [Pb(SC₆H₄CO₂)] [25].

In group 15, the arsenic thiosalicylate complex Me₂AsSC₆H₄COOH has been synthesised and used for cancer chemotherapy [13]. Some other arsenic thiosalicylate complexes like As(SC₆H₄COOH)₃ and RNHC(O)C₆H₄As(SC₆H₄COOH)₂ (R = H or Me) have been known for many years, but there are no reports on X-ray structures of these complexes [26]. A number of antimony(III) and bismuth(III) thiosalicylate complexes have been reported, since these metal centres are chemically soft. Examples include Cl₂Sb(SC₆H₄COOH) and (NH₄)₃[Bi(SC₆H₄CO₂)₃].2H₂O [27].

In group 16, Se(SC₆H₄COOH)₂ (Figure 1.7) has been prepared by reduction of selenous acid with thiosalicylic acid in methanol and characterised by high performance liquid chromatography (HPLC) [28]. Te(SC₆H₄COOH)₂ has been prepared from thiosalicylic acid with sodium tellurite and characterised by NMR spectroscopy [29].
1.2.2 Complexes of the thiosalicylate ligand with transition metals

This section summarises the coordination chemistry of the thiosalicylate ligand with transition metals, with an emphasis on the best-characterised and best known thiosalicylate complexes.

\(\text{Ti(OPr}^\text{i})_4 \) and \(\text{Zr(OPr}^\text{i})_4 \) can react with thiosalicylic acid to form \(\text{M(SC}_6\text{H}_4\text{CO}_2)\text{L}_2 \) or \(\text{M(SC}_6\text{H}_4\text{CO}_2)_2(\text{OPr}^\text{i})_2 \) (M=Ti or Zr) depending on the mole ratio [16]. The titanocene derivative \(\text{Cp}_2\text{Ti(SC}_6\text{H}_4\text{CO}_2) \) and the related complex \((\text{C}_5\text{H}_4\text{Me})_2\text{Ti(SC}_6\text{H}_4\text{CO}_2) \) have also been synthesised and characterised by UV-visible spectroscopy [30]. There are no reports on thiosalicylate complexes of hafnium [13].

An early study of thiosalicylate ligands with vanadium investigated the reaction of \(\text{VO}^{2+} \) ion with thiosalicylic acid giving a common type \(\text{VO(SC}_6\text{H}_4\text{CO}_2)\text{L}_2 \) (L = other donor ligands) [31]. More recently, reaction of the vanadium(III) precursor \([\text{VCl}_3(\text{thf})_3] \) (thf = (CH\(\text{2}_2\))O) or the vanadium(IV) precursor \([\text{VOCl}_4]^{2-} \) with thiosalicylic acid has been studied. Their products \([\text{V}_3\text{OCl}_4(\text{HSC}_6\text{H}_4\text{CO}_2)_5]^{2-} \) and \([\text{Li}_4\text{V}_2\text{O}_2\text{Cl}_4(\text{SC}_6\text{H}_4\text{CO}_2)_4]^{4-} \) were characterised by X-ray structure determinations [32]. There are no reports on thiosalicylate complexes of niobium and tantalum [13].

A limited number of chromium thiosalicylate complexes have been reported, one known example being \([\text{Cr(SC}_6\text{H}_4\text{CO}_2\text{(H}_2\text{NCH}_2\text{CH}_2\text{NH}_2)_2}]^{2+} \) [33]. In contrast, there have been extensive studies on molybdenum(VI) thiosalicylate complexes. Examples include \((\text{Et}_3\text{NH})_2[\text{MoO}_2(\text{SC}_6\text{H}_4\text{CO}_2)_2] \) and the related complex \((\text{Et}_3\text{NH})_2[\text{MoO(NNPh}_2\text{(SC}_6\text{H}_4\text{CO}_2)_2}] \) [34,35]. Some lower oxidation state
molybdenum(V) and molybdenum(IV)-thiosalicylate complexes have been synthesised and characterised [36]. A number of molybdenum thiosalicylate complexes based on sulfide clusters are also reported, eg (Et$_3$NH)$_2$[Mo$_3$S$_7$(SC$_6$H$_4$CO$_2$)$_3$] [37]. There are no reports on thiosalicylate complexes of tungsten [13].

A colourless manganese(II)-thiosalicylate complex [Mn(SC$_6$H$_4$CO$_2$)$_2$]$^2^-$ has been characterised. Some manganese(III)-thiosalicylate complex have also been reported, for example the red complex [Mn(SC$_6$H$_4$CO$_2$)$_2$]$_2^-$ [38]. Some organometallic manganese-thiosalicylate complexes containing carbonyl ligands have been reported and characterised [39]. The technetium thiosalicylate chemistry is based on a metastable nuclear isomer of Tc-99 which symbolised as 99mTc. Reduction of 99mTcO$_4^-$ with SnCl$_2$ and succinic dihydrazide followed by the addition of phosphine gave the $[^{99m}$Tc(N)(L)(SC$_6$H$_4$CO$_2$)] [L = {Ph$_3$P(CH$_2$)$_2$)$_2$O or {Me$_2$P(CH$_2$)$_2$)$_2$NMe}] [40]. For rhenium, reaction of ReCl(CO)$_5$, [Re$_2$(μ-OH)$_5$(CO)$_6$]$^-$, [ReO$_2$(py)$_4$]Cl or [ReOCl$_3$]$^2^-$ with thiosalicylic acid in different reagents gave a variety of rhenium-thiosalicylate complexes [41,42].

A range of iron-thiosalicylate complexes have been synthesised and reported. One example is the “Roussin red ester” complex [Fe$_2$(μ-SC$_6$H$_4$COOH)$_2$(NO)$_4$], which can be prepared by reaction of [Fe$_2$(μ-Br)$_2$(NO)$_4$] with thiosalicylic acid [43]. Iron-sulfide compounds containing thiosalicylate ligands such as [Fe$_2$(μ-S)$_2$(SC$_6$H$_4$CO$_2$)$_2$]$^2^-$ (Figure 1.8) are also known [44]. Reduction of this complex with [Co(η5-C$_5$Me$_5$)$_2$] gives the reduced species [Fe$_2$(μ-S)$_2$(SC$_6$H$_4$CO$_2$)$_2$]$^3^-$.

From this species, iron(II) bis(thiosalicylate) complex [Fe(SC$_6$H$_4$CO$_2$)$_2$]$^2^-$ (Figure 1.9) and tetra-ferric cluster [Fe$_4$S$_6$(SC$_6$H$_4$CO$_2$)$_2$]$^4^-$ were able to be isolated and characterised [45].

![Figure 1.8: The X-ray structure of [Fe$_2$(μ-S)$_2$(SC$_6$H$_4$CO$_2$)$_2$]$^2^-$](image)

Colour code: iron (orange); oxygen (red); sulfur (yellow); carbon (grey); hydrogen (white)
A number of different types of ruthenium-thiosalicylate complexes have been synthesised and reported, some showing anticancer activity. One example is (Et₄N)[Ru₃(SC₆H₄CO₂)₂(SC₆H₄CO₂)₃] [46]. Ruthenium-thiosalicylate complex (Et₄N)₂[Ru(SC₆H₄CO₂)₄(SC₆H₄CO₂H₂)(OAc)₀.₅.₃H₂O can react with Fe(CH₃COCHCOCH₃) and (Et₄N)OAc in ethylene glycol to give polymeric (Et₄N)₂[Fe(OCH₂CH₂OH)(H₂O)]₃[Ru₃(SC₆H₄CO₂)₆].2H₂O.C₂H₆O₂ [47].

Reaction of osmium carbonyls such as the triosmium cluster [Os₃(CO)₁₀(CH₃CN)] with thiosalicylic acid forms the osmium-thiosalicylate complex [Os₃H(CO)₁₀(μ-SC₆H₄CO₂)] [48].

A number of cobalt(II) and cobalt(III)-thiosalicylate complexes have been reported. One of the best-known cobalt(II) thiosalicylate complexes is [Co(SC₆H₄CO₂)₂]₈, which shows antiferromagnetic behaviour [49]. Limited numbers of rhodium and iridium-thiosalicylate complexes have been reported. Recently, [M(SC₆H₄CO₂)(η⁵-C₅Me₅)]₂ (M = Rh, Ir) have been prepared by reaction of [MCl₂(η⁵-C₅Me₅)]₂ with thiosalicylic acid and Et₃N base [50].

A variety of different types of nickel(II), palladium(II) and platinum(II)-thiosalicylate complexes have been characterised in early studies. [Ni(SC₆H₄CO₂)(dppe)] has been synthesised by reaction of [NiCl₂(dppe)] with thiosalicylic acid in methanol with pyridine base. [51]. [Pt(SC₆H₄CO₂)(bipy)] was one of the first synthesised and characterised platinum(II)-thiosalicylate complexes [52]. A number of platinum thiosalicylate complexes containing neutral nitrogen-donor ligands, e.g. pyridine, imidazole, etc have also been synthesised [53].
One of the most widely known copper(II)-thiosalicylate complexes is $[\text{Cu}_2(\text{HSC}_6\text{H}_4\text{COOH})_2(\text{H}_2\text{O})_6]^{4+}$ [54]. Copper(II)-thiosalicylate complexes can be stabilised by binding with nitrogen-donor ligands [13]. The copper(I)-thiosalicylate complex $[\text{Cu}((\text{SC}_6\text{H}_4\text{COOH})(\text{PPh}_3)_3]$ has also been prepared and characterised [55].

There are a wide range of mononuclear and polynuclear silver complexes containing the thiosalicylate ligand, on account of silver ions showing coordination numbers of 2 to 4 and silver’s affinity for both sulfur and oxygen donors. One of the most common examples of a mononuclear silver complex containing the thiosalicylate ligand is $[\text{Ag}((\text{SC}_6\text{H}_4\text{COOH})(\text{PPh}_3)_3]$, which can be synthesised by reaction of $[\text{AgCl}(\text{PPh}_3)_3]$ or $[\text{AgCl}(\text{PPh}_3)_2]_2$ with thiosalicylic acid and sodium hydroxide [56]. $[\text{Ag}_4((\text{SC}_6\text{H}_4\text{CO}_2)_2(\text{en})_n$ (en = $\text{C}_2\text{H}_4(\text{NH}_2)_2$) (Figure 1.10) is one example of a polynuclear silver complex, prepared by reaction of silver nitrate with thiosalicylic acid and ethylenediamine (en) [57].

![Figure 1.10](image)

Figure 1.10: Part of the X-ray structure of $[\text{Ag}_4((\text{SC}_6\text{H}_4\text{CO}_2)_2(\text{en})_n$. Colour code: silver (light grey); nitrogen (blue); sulfur (yellow); carbon (grey); oxygen (red)

Silver(I)-thiosalicylate complexes have been found to show antibacterial activity [58].

A number of gold(I)-thiosalicylate complexes have been reported, since gold(I) has very strong affinity for S ligands. The gold(I)-thiosalicylate complex $(\text{Ph}_3\text{P})\text{AuSC}_6\text{H}_4\text{COOH}$ has antifungal and antibacterial activity [59]. Some gold(I)-thiosalicylate complexes can be used to generate supramolecular liquid-crystalline aggregates [60]. A number of gold(III)-thiosalicylate complexes containing
cycloaurated ligands have been synthesised and summarised in a review [61]. Cycloaurated ligands are used to stabilise the gold(III) metal centre as it can reduce the positive charge on the gold atom and make it less prone to reduction, and hence less oxidising [62]. This kind of complex has anticancer activity [63]. Gold(III)-thiosalicylate complexes (Figure 1.11) show affinity for thiol-based ligands, unlike platinum anticancer complexes which have affinity for DNA [64].

![Chemical structure of gold(III) thiosalicylate complexes](image)

Figure 1.11: Chemical structure of gold(III) thiosalicylate complexes

[Zn(SC₆H₄CO₂)] is one of the well-characterised zinc-thiosalicylate complexes synthesised in different ways and characterised by IR spectroscopy and elemental analysis [65]. A number of zinc-thiosalicylate complexes with an ancillary tris(pyrazolyl)borate ligand have also been investigated and reported [66]. There are only a few studies on cadmium thiosalicylate complexes. [Cd₂(SC₆H₄CO₂)₂(bipy)₂] is one of the best-characterised cadmium-thiosalicylate complexes [67]. In contrast to cadmium, there is an extensive chemistry of mercury with thiosalicylate ligands, since mercury has a strong affinity for thiolate ligands. Mercury-thiosalicylate complexes can be divided into inorganic and organometallic mercury complexes. The best-known example of an inorganic mercury-thiosalicylate complex is [Hg(SC₆H₄CO₂H)₂Cl] [25]. EtHgSC₆H₄CO₂H is the best-known organomercury containing thiosalicylate complex and it has been used as an antibacterial agent [68].

12
1.3 Electrospray ionisation mass spectrometry

Since 1989, when Fenn introduced electrospray ionisation (ESI), it has become the most widely used soft ionisation technique in biochemical and chemical analysis. Combined with a mass spectrometer (MS), it allows the analysis of samples in solution form [69]. There are two major advantages of using a soft ionisation technique. One is that little or no fragmentation occurs during soft ionisation, as very little residual energy is retained by the analyte. Therefore, this technique is very useful in investigation of large biological molecules, such as proteins. The other advantage of this soft ionisation technique is that weak non-covalent interactions are preserved in the gas phase [70].

1.3.1 ESI-MS ionisation mechanism

There are 3 basic components for ESI-MS: the ion source, mass analyser and detector (Figure 1.12).

![Diagram of ESI-MS components]

Figure 1.12: The basic components of the ESI-MS

Generally a dilute analyte solution is injected into the ion source at a low flow rate. Within the ESI source, a very high voltage is applied to the tip of the metal capillary and is assisted by a nebulising gas, which breaks the sample solution into an aerosol of highly charged electrospray droplets. Evaporation of the solvent reduces the size of the charged droplets and at the same time increases their surface charge density (Figure 1.13).
Finally, when the charged droplets reach a critical point, ions are ejected into the gas phase. Then the emitted ions are accelerated into the mass analyser. The mass analyser is a core component of the ESI-MS. It can separate and sort the ions according to their mass to charge ratio (m/z value). The most commonly used mass analyser is a quadrupole mass analyser (Figure 1.14). In this mass analyser, ions travel forward in the z direction with the oscillating pattern in the x-y plane [71]. The different types of ions have different amplitudes of oscillation under different the DC and RF voltages. Specific DC and RF voltages are set to make sure that desirable ions travel along the z-axis without hitting the quadrupole rods, and thus reach the detector.

The Time-of-Flight (TOF) mass analyser is the type of mass spectrometer detector used in this research. The principle of TOF is: Ions are formed in pulses and inserted
by an applied electric field into the TOF analyser. At this stage, all the ions have the same kinetic energy and enter the field-free drift tube (Figure 1.15) [72]. Since the ion kinetic energy is 0.5mv², heavier ions have a lower velocity than lighter ions and reach the detector later. The major advantage of a TOF is parallel ion detection. It can detect all the ions present in the source. The TOF analyser is also more sensitive compared to quadrupole mass analyser.

![Figure 1.15: Operation of a time-of-flight mass analyser](image)

After the ions pass through the mass analyser, they reach the detector system. At this time, the system will measure their abundance and display the results on a mass spectrum. High vacuum is applied to the mass analyser and detector system since the ions in the gas phase are often short-lived and very reactive.

1.3.2 Applications of ESI-MS in coordination and organometallic chemistry

ESI-MS has been widely used in the study of coordination and organometallic chemistry, and such applications have been reviewed several times [73,74]. In general, ESI-MS is used to detect and analyse various species in sample solution. In coordination and organometallic chemistry, ESI-MS can confirm the stoichiometry of an unknown, newly-synthesised complex [75]. In contrast to NMR, it can be used for paramagnetic samples [74].

Like other MS techniques, ESI-MS can only detect ions. For neutral species further ionisation is required. The most common process for them to be ionised is to abstract a proton from the solvent to give a [M+H]⁺ ion. On the other hand, neutral species containing –COOH or –OH groups can lose a proton to give a negative ion.
[M-H]−. To encourage these ionisation processes, a base (e.g. NH3) or an acid (e.g. HCOOH) can be added. In some cases, metal ions such as K+, Na+ or Ag+ can also be used, since some metal ions favour binding to “soft” ligand centres and some ions favour binding to “hard” ligand centres [76]. Loss of an anionic ligand like a halide is another common ionisation mechanism, since a number of coordination and organometallic complexes contain halide ligands [74].

1.3.3 ESI-MS behaviour of metallocene compounds

An electrochemical reaction occurs during the analyte through the ESI high-voltage capillary, this reaction can induce an electron flow from or to the metal capillary and redox reactions of the analyte solvent occurs in the ESI capillary [70]. Since the coordinated Cp ligand is not protonatable, the ESI-MS behaviour of metallocene compounds is strongly dependent on the ancillary ligands present. Ferrocene (Cp2Fe) and a selection of analogues [Cp2Fe]BF4, FeCCH2NMe2, FeCCH2P(O)(OPh)2, FeCCH2OH, FeCCH2P(CH2OH)2, FeCCH2PH2 [Fc = (C5H5)Fe(C5H4)] have been analysed by ESI-MS [77–80]. In the case of [Cp2Fe]BF4 neither oxidation nor protonation are needed, since the metallocene is already charged. However, for neutral metallocenes during the ionisation process, oxidation and protonation will compete with each other, depending on the redox potential of the metal centre, the solvent flow rate used by the instrument and the basicity of other ligands. Thus only the protonated [M+H]+ ion was observed when ferrocenyl-amine FeCCH2NMe2 is analysed by ESI-MS, due to the high basicity of the NMe2 group. In cases of lower basicity, like the phosphonate FeCCH2P(O)(OPh)2, both oxidised [M]+ and protonated [M+H]+ ions can be observed. Osmocene (Cp2Os) and ruthenocene (Cp2Ru) have also been investigated by ESI-MS, where the [Cp2M]+ ion was observed for those complexes [81]. Molybdocene complexes with cysteine and glutathione have been characterised by ESI-MS in positive-ion mode; the results suggest that Cp2MoCl2 will coordinate to thiols in vivo [82]. Three zirconium metallocene complexes Cp2ZrMe2, (MeCp)2ZrMe2 and (MeCp)2Zr(BH4)2 have also been studied by ESI-MS [72,83].
1.3.4 ESI-MS behaviour of Ti compounds

Many Ti compounds have been investigated using ESI-MS. In early studies, titanium trichloride (TiCl$_3$) and titanium tetrachloride (TiCl$_4$) were characterised by ESI-MS, resulting in confirmation of their hydrolysed species [84]. The interaction between Cp$_2$TiCl$_2$ and methanol has been investigated by ESI-MS in positive ion mode. Three methoxide species [TiCp$_2$(OMe)]$^+$, [TiCp(OMe)(OH$_2$)(OH)]$^+$ and [Ti(OMe)$_3$(OH$_2$)]$^+$ have been observed. (Further details of this study are provided in chapter 2) [85]. ESI-MS has been used to study a number of titanium(III) β-diketonate complexes like Cp$_2$Ti(acetylacetonate) (Figure 1.16) which give the expected [M]$^+$ parent cations in positive mode (i.e. due to the oxidation occurring) [86].

![Chemical structure of Cp$_2$Ti(acetylacetonate)](image)

Figure 1.16: Chemical structure of Cp$_2$Ti(acetylacetonate)

Recently, ESI-MS has been used to investigate a series of different Ti clusters. Ti clusters with 11-12 Ti atoms have been observed in the case of sol-gel solutions based on titanium tetraisopropoxide (TTIP). For sol-gel solutions based on titanium tetrabutoxide (TTB), clusters containing 10-11 Ti atoms were identified. Smaller clusters with 5-7 Ti atoms were identified for sol-gel solutions based on titanium tetraethoxide (TTE). However, a limited number of Ti clusters containing OH groups were observed [87]. A titanium salalen complex has been studied using ESI-MS. The ESI mass spectrum of the salalen ligand (Figure 1.17 a) with titanium isopropoxide in dichloromethane has shown two major signals which indicate the species shown in Figure 1.17 b and c [88].
Figure 1.17: Chemical structure of salalen ligand and two major titanium salalen complex species
ESI-MS has also been used for the analysis of the highly moisture-sensitive metal alkoxide compound Ti(OEt)$_4$. The negative-ion spectra of Ti(OEt)$_4$ show four major species which indicate $[\text{Ti}_3(\text{OEt})_{12}(\text{OH})_2\text{Na}]^{-}$, $[\text{Ti}_4(\text{OEt})_{16}(\text{OH})_2\text{Na}]^{-}$, $[\text{Ti}_5(\text{OEt})_{20}(\text{OH})_2\text{Na}]^{-}$ and $[\text{Ti}_6(\text{OEt})_{23}(\text{OH})_3\text{Na}_2]^{-}$ [89].

ESI-MS was used in characterising titanium triethanolamine (tea = N(CH$_2$CH$_2$O$^-$)$_3$) complexes. The results have shown that the present species include the mono and bis titanatrane moieties shown in Figure 1.18. Examples include $(\text{teaTi})_3\text{teaH}^+$, $(\text{teaTi})_3(\text{OCH}_3)_2^+$ and $(\text{teaTi})_2\text{teaH}_2\text{H}^+$ [90].

![Chemical structure of mono and bis titanatrane moieties](image)

Figure 1.18: Chemical structure of mono and bis titanatrane moieties

Recently, ESI-MS had been used to investigate the binding preferences of titanocene to RNA and DNA. Results from competition experiments in combination with ESI-MS demonstrated titanocene generally strong preference for the binding to phosphate groups adjacent to thymidines in DNA [91].
1.4 Scope of investigation

There are few previous reports of ESI-MS investigations on Cp₂TiCl₂. The aim of this project was therefore to carry out a detailed investigation of the MS characteristics and reactivity of the organometallic compounds Cp₂TiCl₂ and Cp₂Ti(tsal) (Figure 1.19) using ESI-MS. The deep green titanocene derivative Cp₂Ti(tsal) can be prepared by reaction of Cp₂TiCl₂ with thiosalicylic acid in benzene or in a water-chloroform mixture with β-cyclodextrin or in an ethanol-chloroform mixture with sodium hydroxide base [92]. Two Cp ligands in Cp₂Ti(tsal) are similar to those in Cp₂TiCl₂, which are in a bent sandwich configuration coordinated to the Ti. The thiosalicylate ligand binds through the S and carboxylate O to the central metal. This compound is a relatively rare example of a stable (to air and water), chemically hard Ti(IV) centre in combination with a chemically soft thiolate ligand.

Figure 1.19: Chemical structure of Cp₂Ti(tsal)

This project will investigate the behaviour of Cp₂Ti(tsal) in potential reactions with a variety of reagents. These reagents include alkali metal salts and PhHg⁺. This project will also investigate ligand exchange reactions to see the possibility of the tsal ligand bridging two Cp₂Ti centres. Finally the closely related compounds Cp₂MoCl₂ and Cp₂Mo(tsal) were studied by ESI-MS. Overall, ESI-MS will be utilised as the primary technique in all the investigation of these chemical reactions.
Chapter 2

An investigation of the ESI-MS behaviour of Cp$_2$TiCl$_2$

2.1 Introduction

2.1.1 The hydrolysis and alcoholysis reactions of Cp$_2$TiCl$_2$ in solution

1H NMR spectroscopy has been previously used to investigate the hydrolysis chemistry of Cp$_2$TiCl$_2$ and has shown that [Cp$_2$Ti(OH)$_2$(OH)]$^+$ and [Cp$_2$(OH)$_2$Ti-O-Ti(OH)$_2$Cp$_2$]$^{2+}$ are the two major species present in the solution [93]. The pH and chloride concentration influence hydrolysis reactions of Cp$_2$TiCl$_2$ in solution. At low pHs, one of the chloride ligands is rapidly hydrolysed and replaced by an aqua or hydroxido ligand, but hydrolysis of the second chloride ligand takes about 50 min. at 35ºC (Figure 2.1) [94]. The rate of hydrolysis is expected to increase at low chloride concentrations and high pH values [94].

![Diagram of hydrolysis reactions](image)

Figure 2.1: Hydrolysis of the chloride ligands of Cp$_2$TiCl$_2$

The dihydroxido titanocene species [Cp$_2$Ti(OH)$_2$] undergoes further hydrolysis to release a free cyclopentadiene and a hydroxido titanium species (Figure 2.2). The hydrolysis of the Cp ligands is much slower than that hydrolysis of the Cl ligands,
and at low pH values, Cp ligands can be stable over several days [94]. At pH values above 4, insoluble titanium oxido species can be observed due to loss of the Cp ligands and protonation [95].

![Diagram of hydrolysis of a Cp ligand of Cp₂Ti(OH)₂]

Figure 2.2: Hydrolysis of a Cp ligand of Cp₂Ti(OH)₂

There are 11 possible species (Table 2.1) containing Ti(IV) which can be formed when hydrolysis of Cp₂TiCl₂ occurs in water [94]. During this research, some of these species have been observed, but not all of them. Hydrolysis of Cp₂TiCl₂ in water-containing organic solvents has a general trend which involves formation of Ti⁴⁺-O²⁻-Ti⁴⁺ bridges [3].

Table 2.1: Summary of 11 possible species that can be formed when hydrolysis of Cp₂TiCl₂ occurs in water

<table>
<thead>
<tr>
<th>Mononuclear species</th>
<th>Dinuclear species</th>
<th>Polymeric species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp₂TiCl₂</td>
<td>Cp₄Ti₂Cl₂O</td>
<td>[(CpTiO)₄O₂]ₙ</td>
</tr>
<tr>
<td>[Cp₂Ti(OH₂)₂]²⁺</td>
<td>[Cp₄Ti₂(OH₂)₂O]²⁺</td>
<td></td>
</tr>
<tr>
<td>[Cp₂Ti(OH₂)(OH)]⁺</td>
<td>Cp₃Ti₃Cl₃O₂</td>
<td></td>
</tr>
<tr>
<td>[CpTi(OH₂)(OH₂)]⁺</td>
<td>Ti₄Cl₄O₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Ti₄(OH₂)₃O₄]⁴⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ti₄(OH)₄O₄</td>
<td></td>
</tr>
</tbody>
</table>

2.1.2 Review of the previous ESI-MS investigation of Cp₂TiCl₂

Solutions of Cp₂TiCl₂ in alcohols have been investigated previously using ESI-MS [85]. Previously, research has shown that the alcohols can accelerate the catalytic action of Cp₂TiCl₂ and increase its cytotoxicity [94,96]. ESI-MS in positive-ion mode had been used to investigate the behaviour of solutions of Cp₂TiCl₂ in CH₃OH and proved Cp₂TiCl₂ in CH₃OH accelerated catalytic Mannich reactions [96]. Two major species were found at m/z 241.07 and m/z 209.04 which correspond to the ions [Cp₂Ti(OCH₃)₂+H]⁺ and [Cp₂TiOCH₃]⁺ respectively [96]. After 3 weeks of
aging, the Cp₂TiCl₂ solutions in methanol and ethanol were also analysed by ESI-MS. The result showed no doubly-charged ions and chlorides were absent from all species. In CH₃OH, there were four major methoxide species observed: [Cp₂Ti(OCH₃)]⁺ (m/z 209), [CpTi(OCH₃)(OH₂)(OH)]⁺ (m/z 179), [Ti(OCH₃)₃(OH₂)]⁺ (m/z 159) and [Ti(OCH₃)₃]⁺ (m/z 141). The species observed in ethanol were similar to those in CH₃OH [85]. The literature reports that methanolic solutions of Cp₂TiCl₂ will generate species [OTiH]⁺ (m/z 65) and [Cp₂TiH]⁺ (m/z 179) via ESI [97]. Cp₂TiCl₂ solutions in acetonitrile with formic acid gives the [Cp₂Ti(O₂CH)]⁺ (m/z 223) ion via ESI [97].

The reaction of ethanol with Cp₂TiCl₂ has also been studied by ¹H NMR and HRMS; the result shows the species [Cp₂Ti(OCH₂CH₃)₂+H]⁺ can be formed. This result clearly demonstrates that ethoxyl groups can bind with the Cp₂Ti moiety and the ethanol is not just an inert solvent for the Cp₂TiCl₂ complex [98].

2.1.3 Project outline

This research project carried out a much more in-depth investigation on solutions of Cp₂TiCl₂ in alcohols. An ESI source coupled with a high resolution TOF mass spectrometer was used for investigating the ESI-MS behaviour of the Cp₂TiCl₂ complex. A suitable solvent is very important for the ESI-MS studies; in this case Cp₂TiCl₂ was dissolved in methanol, ethanol, propan-1-ol and butan-1-ol. At the same time, bis(ethylcyclopentadienyl) titanium(IV) dichloride (EtCp)₂TiCl₂ (EtCp = C₅H₄CH₂CH₃) (Figure 2.3) was also studied by ESI-MS. Comparison of the ESI-MS spectra of Cp₂TiCl₂ with (EtCp)₂TiCl₂ ESI-MS spectra was used to confirm the identity of some unknown species.

![Figure 2.3: Chemical structure of (EtCp)₂TiCl₂](image_url)
2.2 Experimental

The chemicals, solvents and instruments used during this research are listed in sections 2.2.1 and 2.2.2.

2.2.1 Chemicals and solvents

Powdered bis(cyclopentadienyl)titanium(IV) dichloride was obtained from Ralph N. Emanuel Ltd, Alperton, Middlesex, UK and bis(ethylcyclopentadienyl) titanium(IV) dichloride was purchased from Alfa Aesar. Univar grade methanol used was distilled. Ethanol, propan-1-ol and butan-1-ol used were of laboratory reagent grade. Deuterated methanol used was of greater than 99.8 atom % D grade from Sigma-Aldrich.

2.2.2 ESI-MS instrumentation

In this research, ESI-MS data were collected using a Bruker MicrOTOF mass spectrometer. Mass spectra were collected in positive-ion mode, and low range and wide range methods were used. The parameters of these two methods are shown in Table 2.2.

<table>
<thead>
<tr>
<th>Acquisition parameter</th>
<th>Low range method</th>
<th>Wide range method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan start</td>
<td>50 m/z</td>
<td>500 m/z</td>
</tr>
<tr>
<td>Scan end</td>
<td>800 m/z</td>
<td>1500 m/z</td>
</tr>
<tr>
<td>End plate offset</td>
<td>-500 V</td>
<td>-500 V</td>
</tr>
<tr>
<td>Capillary</td>
<td>4500 V</td>
<td>4500 V</td>
</tr>
<tr>
<td>Capillary exit</td>
<td>60-250 V</td>
<td>60-250 V</td>
</tr>
<tr>
<td>Nebuliser pressure</td>
<td>0.4 Bar</td>
<td>0.4 Bar</td>
</tr>
<tr>
<td>Dry gas flow rate</td>
<td>4.0 L/min</td>
<td>4.0 L/min</td>
</tr>
<tr>
<td>Dry temperature</td>
<td>180 °C</td>
<td>180 °C</td>
</tr>
<tr>
<td>Skimmer 1</td>
<td>20-80 V</td>
<td>20-80 V</td>
</tr>
<tr>
<td>Skimmer 2</td>
<td>22.5 V</td>
<td>24.5 V</td>
</tr>
<tr>
<td>Hexapole 1</td>
<td>-25.5 V</td>
<td>-25.5 V</td>
</tr>
<tr>
<td>Hexapole RF</td>
<td>80 Vpp</td>
<td>600 Vpp</td>
</tr>
<tr>
<td>Lens 1 transfer</td>
<td>49 μs</td>
<td>63 μs</td>
</tr>
<tr>
<td>Lens 1 pre pulse</td>
<td>5 μs</td>
<td>11 μs</td>
</tr>
</tbody>
</table>
In this case, the capillary exit voltage was varied from 60 to 250 V. The capillary exit voltage should be approximately three times higher than the skimmer 1 voltage. Table 2.3 shows a full summary of capillary exit and skimmer 1 voltages used for this research. Using a higher capillary exit voltage typically produces more fragmentation.

Table 2.3: Summary of capillary exit and skimmer 1 voltages used

<table>
<thead>
<tr>
<th>Capillary Exit Voltage</th>
<th>Skimmer 1 Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>180</td>
<td>60</td>
</tr>
<tr>
<td>210</td>
<td>70</td>
</tr>
<tr>
<td>250</td>
<td>80</td>
</tr>
</tbody>
</table>

The instrument-based software micrOTOFcontrol was used to collect data which were further analysed using software mMass [99].

2.2.3 Experimental procedure

The instrument was calibrated prior to use with calibration solution (0.002 mol L\(^{-1}\) sodium formate). Typically a tiny amount (i.e. 0.1 mg) of analyte was diluted to ca. 1.5 mL with the solvent in a plastic Eppendorf tube and then centrifuged to remove any insoluble matter before analysis.

During the investigation of intensity of \([\text{Cp}_2\text{Ti(OR)}]^+\) ion in various alcohols where exact by 2 mg of \(\text{Cp}_2\text{TiCl}_2\) in 1 mL of various alcohols and spectra recorded at a capillary exit voltage of 150 V.

In this research no visible insoluble material was present in any of the sample solutions. Samples were injected into the spectrometer via a syringe pump with a flow rate of 180 \(\mu\)L/hour. Before each operation, \(\text{CH}_3\text{OH}\) was used to flush the instrument system for approximate by half an hour to reduce contamination.
2.3 Results and discussion

2.3.1 Isotope pattern of titanium and the effect of additional chlorine

There are 5 stable isotopes for naturally occurring titanium: 46Ti, 47Ti, 48Ti, 49Ti and 50Ti. 48Ti is the dominant isotope with 73.72% natural abundance. The atomic mass, natural abundance and the relative intensities of each Ti isotope are given in Table 2.4.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Atomic Mass</th>
<th>Natural Abundance%</th>
<th>*MS%</th>
</tr>
</thead>
<tbody>
<tr>
<td>46Ti</td>
<td>45.95</td>
<td>8.25</td>
<td>11.2</td>
</tr>
<tr>
<td>47Ti</td>
<td>46.95</td>
<td>7.44</td>
<td>10.1</td>
</tr>
<tr>
<td>48Ti</td>
<td>47.95</td>
<td>73.72</td>
<td>100.0</td>
</tr>
<tr>
<td>49Ti</td>
<td>48.95</td>
<td>5.41</td>
<td>7.3</td>
</tr>
<tr>
<td>50Ti</td>
<td>49.94</td>
<td>5.18</td>
<td>7.0</td>
</tr>
</tbody>
</table>

*relative abundances are normalised

A set of peaks containing different isotopes but with the same chemical formula is known as the isotope pattern. The isotope pattern is a result of the relative abundance of the isotopes and their masses. Figure 2.4 shows the theoretical titanium isotope pattern with 5 isotope peaks and 48Ti at m/z 47.95 with the highest intensity.

![Figure 2.4: Titanium isotope pattern](image-url)
In this particular study, chlorine is the other element having more than one isotope in any significant abundance, ^{35}Cl and ^{37}Cl. Table 2.5 gives the details of these isotopes.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Atomic Mass</th>
<th>Natural Abundance%</th>
<th>*MS%</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{35}Cl</td>
<td>34.97</td>
<td>75.78</td>
<td>100.0</td>
</tr>
<tr>
<td>^{37}Cl</td>
<td>36.97</td>
<td>24.22</td>
<td>32.0</td>
</tr>
</tbody>
</table>

*relative abundances are normalised

In the mass spectrum, these two isotopes are observed as two peaks separated by m/z 2 and with a relative intensity ratio of 3:1. Based on this characteristic, any ion with a single chlorine atom will have a distinctive isotope pattern. One example is the Cp_2TiCl^+ ion at m/z 213. Figure 2.5 (A) shows the calculated isotope pattern of Cp_2TiCl^+ and (B) is the experimental isotope pattern of Cp_2TiCl^+ ion from Cp_2TiCl_2 dissolved in CH_3OH.

![Figure 2.5: Cp₂TiCl⁺ ion isotope pattern. (A) Calculated isotope pattern of Cp₂TiCl⁺ (B) Experimental isotope pattern of Cp₂TiCl⁺](image-url)
If an ion contains two chlorine atoms, there will be 3 major peaks in the molecular ion region with 2 m/z units gaps between them and their peak heights ratio will be 9:6:1. The presence of chlorine in any Ti-containing ions is therefore easily determined by its distinctive effect on the isotope pattern.

2.3.2 Analysis of a freshly-prepared solution of Cp₂TiCl₂ in methanol with low and wide range method

Positive-ion ESI-MS spectra for Cp₂TiCl₂ in methanol solution using the low range method (Table 2), recorded at a range of capillary exit voltages, are given in Figure 2.6.

![Figure 2.6: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp₂TiCl₂ in methanol with low range method at capillary exit voltages of (a) 60 V, (b) 100 V, (c) 180 V and (d) 250 V](image)

The results show that there are two main groups of ions, one group of species at m/z 200-300 and the other group of species only observed at low capillary exit voltages (60 and 100 V, Figure 2.6a and b respectively), at m/z 400-550. As the capillary exit voltage increases, the intensity of the low m/z range species increases and high m/z range species decrease.
To investigate larger Ti clusters which contain three or more Ti required the use of the wide range method. In this research, the wide range method has a maximum at \(m/z \) 1500. Positive-ion ESI-MS spectra for \(\text{Cp}_2\text{TiCl}_2 \) in methanol solution with the wide range method, recorded at a range of capillary exit voltages, are given in Figure 2.7.

![Figure 2.7](image)

Figure 2.7: Positive-ion ESI mass spectra of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2 \) in methanol with wide range method at capillary exit voltages of (a) 60 V, (b) 100 V, (c) 180 V, and (d) 250 V

The resultant spectra show all the species are concentrated under \(m/z \) 600. A low intensity ion at \(m/z \) 1400 was observed when employing a 100 V or higher capillary exit voltages, but this ion does not contain Ti. Most of these species were also observed with the low range method and low range method refers to a limited \(m/z \) range. The single-crystal X-ray structure of the trinuclear \([\text{Cp}_3\text{Ti}_3\text{O(OCH}_3)_6]\text{I}_3 \) complex has been reported [3]. This complex was synthesised by reaction of \(\text{Cp}_2\text{TiI}_2 \) with methanol [3]. The ion \([\text{Cp}_3\text{Ti}_3\text{O(OCH}_3)_6]^+ \) at expected \(m/z \) 541.07 was not observed in the spectra of \(\text{Cp}_2\text{TiCl}_2 \) in methanol, but it was observed during the investigation of the reactivity of \(\text{Cp}_2\text{Ti(tsal)} \) towards soft electrophiles (Section 3.3.5).
Positive-ion ESI mass spectra of a freshly-prepared solution of Cp₂TiCl₂ in methanol acquired with the low range method at capillary exit voltages of 90 V and 120 V are shown in Figure 2.8 and Figure 2.9. The major species at low m/z range containing one titanium centre are [Cp₂TiH]⁺ (m/z 179.09), [Cp₂Ti(OCH₃)]⁺ (m/z 209.11), [Cp₂TiCl]⁺ (m/z 213.06) and [Cp₂Ti(OCH₃)₂+H]⁺ (m/z 241.14). Their corresponding species can also be observed in deuterated methanol (Section 2.3.11).

The insert to Figure 2.8 shows an isotope pattern comparison of the experimentally observed m/z 179 (Figure 2.8A) and the calculated m/z 179 (Figure 2.8B) for Cp₂TiH⁺. The experimentally observed m/z 209 is shown in Figure 2.8C while calculated m/z 209 was shown in Figure 2.8D for Cp₂Ti(OCH₃)⁺. In Figure 2.9, the insert in this figure is an isotope pattern comparison of (A) the experimentally observed m/z 213 and (B) the calculated m/z 213 for Cp₂TiCl⁺. (C) the experimentally observed m/z 241 and (D) the calculated m/z 241 for [Cp₂Ti(OCH₃)₂+H]⁺.

![Figure 2.8: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂TiCl₂ in methanol with low range method at a capillary exit voltage of 90 V. The insert in this figure is an isotope pattern comparison of A the experimentally observed m/z 179 ion and B the calculated m/z 179 ion for Cp₂TiH⁺. C shows the experimentally observed m/z 209 ion and D shows the calculated m/z 209 ion for Cp₂Ti(OCH₃)⁺](image-url)
Figure 2.9: Positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2 \) in methanol with low range method at a capillary exit voltage of 120 V. The insert in this figure is an isotope pattern comparison of A the experimentally observed \(m/z \) 213 ion and B the calculated \(m/z \) 213 ion for \(\text{Cp}_2\text{TiCl}^+ \). C shows the experimentally observed \(m/z \) 241 ion and D shows the calculated \(m/z \) 241 ion for \([\text{Cp}_2\text{Ti(OCH}_3)_2+\text{H}]^+ \)

In Figure 2.9, as the other major ion \([\text{Cp}_2\text{Ti(OCH}_3)_3]^+ \) was at \(m/z \) 209, the experimentally observed \(m/z \) 211 peak in (A) was much higher than the calculated \(m/z \) 211 peak in (B).

2.3.3 Beta-hydride elimination

\([\text{Cp}_2\text{TiH}]^+ \) is one of the major species at low \(m/z \) range containing one titanium centre, this ion is proposed to be formed by \(\beta \)-hydride elimination (Figure 2.10).
Beta elimination is the major decomposition pathway for alkyl groups which have a hydrogen on the β-carbon. The characteristic of this elimination is cleavage of σ bond and formation of a π bond. The most famous type of β-elimination is β-hydride elimination. This reaction converts an alkyl group bonded to a metal centre into an alkene and metal-bonded hydride, which involves the formation of an M-H bond and π bond (Figure 2.11) [100].

Figure 2.10: Formation of [Cp₂TiH]^+ from [Cp₂Ti(OCH₃)]^+ species by β-hydride elimination

2.3.4 Reduction reaction during ESI-MS analysis

The complex isotope pattern at m/z 209/210 at a capillary exit voltage of 150 V, that appeared was initially thought to be from 2 overlapping Ti species (Figure...
2.12C). In fact, reduction of titanocene(IV) during ESI-MS analysis has been observed during this research. As the capillary exit voltage is increased, the relative intensity of titanocene(III) species increases. In this case, at low capillary exit voltages the titanocene(IV) species \([\text{Cp}_2\text{Ti(OCH}_3\text{)}]^+\) was observed at \(m/z\) 209, but as the capillary exit voltage was increased, the intensity of an overlapping \(m/z\) 210 peak increased (Figure 2.12). At a high capillary exit voltage (250 V, Figure 2.12d), complete reduction occurs and this \(m/z\) 210 ion is proposed to be the titanocene(III) species \([\text{Cp}_2\text{Ti(CH}_3\text{OH)}]^+\).

Figure 2.12: Positive-ion ESI mass spectrum of \(m/z\) 209 and 210 peaks of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in methanol with low range method at different capillary exit voltages
Titanocene(III) complexes are usually highly oxygen-sensitive and can be easily prepared by stirring the titanocene(IV) precursor and zinc or manganese dust. The applications of titanocene(III) complexes in the field of organic synthesis had been investigated and essentially Cp₂TiCl as a powerful tool in organic synthesis [101]. Cp₂Ti(CO)₂ is another important titanocene complex in a lower oxidation state.

This reduction reaction also occurs for other metal complexes at high voltages during ESI-MS analysis. One example is the reduction of a copper(II) chloride solution; at high voltages the bare Cu⁺ ion has been observed. Another example is InCl₃ in methanol at high voltages where reduction to In⁺ has been observed. Reduction of metal ions such as mercury(II) and iron(III) also occur readily in ESI-MS [72]. Also even for lanthanide ions, where the trivalent state dominates the aqueous chemistry of these ions, the Ln⁺ ions can be obtained under highly fragmenting conditions. This has been described in the literature as ‘bare metal ion’ mode [102].

2.3.5 An investigation of dinuclear species observed in the ESI mass spectra of a freshly-prepared solution of Cp₂TiCl₂ in methanol

The major species at high m/z containing two titanium centres were only observed at low capillary exit voltages, ie [Cp₄Ti₂Cl(OCH₃)₂]⁺ (m/z 453.18), [Cp₄Ti₂(OCH₃)₃(OH)+H]⁺ (m/z 467.22), [Cp₄Ti₂(OCH₃)₄+H]⁺ (m/z 481.24), [Cp₄Ti₂Cl(OCH₃)₃+H]⁺ (m/z 485.19) and [(Cp₂Ti(OCH₃)₂+H⁺)₂+Cl⁻]⁺ (m/z 517.23). Unfortunately just based on ESI mass spectrum, [OCH₃+H]⁺ and [CH₃OH]⁺ ions can’t be distinguished. An illustrative spectrum is shown in Figure 2.13.
Figure 2.13: Part of the positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂TiCl₂ in methanol at mass range 440 to 530 m/z at a capillary exit voltage of 60 V

Dinuclear Cp₂Ti-X-TiCp₂ species have been synthesised previously. One example is [Cp₂Ti(μ-S)₂TiCp₂]; this labile complex was synthesised as an intermediate in the reaction of [Cp₂Ti(NᵗBu)(py)] with an excess of MeSH or H₂S [103]. The bimetallic titanocene alkoxide species Cp₂Ti(Ph)(μ-OCH₂C(CH₃)₂CH₂O)(Ph)TiCp₂ has also been reported, formed by the reaction of Cp₂TiPh₂ with 2,2-dimethylpropane-1,3-diol [104]. The X-ray crystallographic structure determination of the oxo-bridged titanium(III) complex [Cp₂Ti₂(μ-O) has been reported [105]. This complex can be formed by the reaction of Cp₂Ti with N₂O [106].

2.3.6 An investigation of the effects of the capillary exit voltage to the peak relative intensity

The relative intensity of major species in low m/z range for a freshly-prepared solution of Cp₂TiCl₂ in CH₃OH varies with the capillary exit voltage. Figure 2.14 shows the relationship between relative intensity and capillary exit voltage.
This result shows that, as capillary exit voltage increases, the relative intensity of
\([\text{Cp}_2\text{TiH}]^+\), \([\text{Cp}_2\text{Ti(OCH}_3\text{)}]^+\) and \([\text{Cp}_2\text{TiCl}]^+\) increases but that of
\([\text{Cp}_2\text{Ti(OCH}_3\text{)}_2+\text{H}]^+\) decreases.

The relative intensities of these high \(m/z\) species also varies with the capillary exit
voltage. Figure 2.15 shows the relationship between relative intensity and capillary
exit voltage for major species at high \(m/z\) range.
Figure 2.15: Relative intensity vs capillary exit voltage of major species in high m/z range for a freshly-prepared solution of Cp₂TiCl₂ in CH₃OH

This figure shows that, as the capillary exit voltage increases, the relative intensity of \([\text{Cp}_2\text{Ti}(\text{OCH}_3)_2\text{Ti(OCH}_3)_2+\text{H}^+]+\text{Cl}^-\] will rapidly decrease. The relative intensity of other major species at high m/z range is almost constant.

2.3.7 An investigation of the effects of the time to the peak intensity

The intensity of major species also changes with time. In this case, solutions of Cp₂TiCl₂ in CH₃OH were left 8 hours and spectra were recorded every two hours from time zero, using a capillary exit voltage of 60 V. Figure 2.16 shows how the major species \([\text{Cp}_2\text{Ti}(\text{OCH}_3)]^+, [\text{Cp}_2\text{Ti}(\text{OCH}_3)_2+\text{H}^+]+\) and \([\text{Cp}_2\text{Ti}(\text{OCH}_3)_2+\text{H}^+]+\text{Cl}^-\) change in absolute intensity over this period of time.
Figure 2.16: Intensity vs time for some major species

The result shows that all the intensity of major species decreased with time, with a significant decrease in the first 2 hours. After 2 hours \([\text{Cp}_2\text{Ti(OCH}_3\text{)}_2]^+\) and \([\text{Cp}_2\text{Ti(OCH}_3\text{)}_2+\text{H}]^+\) ions became relatively stable but the intensity of the larger ion \([((\text{Cp}_2\text{Ti(OCH}_3\text{)}_2+\text{H})^+)_2+\text{Cl}]^+\) is still decreasing.

2.3.8 Analysis of a freshly-prepared solution of (EtCp)_2TiCl_2 in methanol with low range method

The major species containing Cp groups observed in positive-ion ESI mass spectra of \(\text{Cp}_2\text{TiCl}_2\) were confirmed by running the spectrum of \((\text{EtCp})_2\text{TiCl}_2\) in methanol solution. Mass-shifted corresponding species should be seen in the ESI mass spectra of \((\text{EtCp})_2\text{TiCl}_2\) if the assignments are correct. Figure 2.17 shows mass spectra of \(\text{Cp}_2\text{TiCl}_2\) and \((\text{EtCp})_2\text{TiCl}_2\) with low range method at a capillary exit voltage of 60 V. The spectra have a similar appearance with two groups of species, one group at lower \(m/z\) values and the other group at higher \(m/z\) values. All the major species in \(\text{Cp}_2\text{TiCl}_2\) mass spectra can also observed in ESI mass spectra of \((\text{EtCp})_2\text{TiCl}_2\), with the latter mass-shifted in \((\text{EtCp})_2\text{TiCl}_2\) mass spectra. At lower \(m/z\) values, major species shift by \(m/z\) 56 i.e. Cp and EtCp differ by 28 mass units so \(\text{Cp}_2\) and \((\text{EtCp})_2\) differ by two times 28 mass units, i.e. 56 mass units. For example \([\text{Cp}_2\text{Ti(OCH}_3\text{)}_2]^+\) \((m/z 209.10)\) and \([(\text{EtCp})_2\text{Ti(OCH}_3\text{)}_2]^+\) \((m/z 265.10)\); the intensity of this ion was larger for the EtCp compound. At higher \(m/z\) values, major species increase in mass by 112 units as they contain four Cp groups, such as \([((\text{Cp}_2\text{Ti(OCH}_3\text{)}_2+\text{H})^+)_2+\text{Cl}]^+\)
(m/z 517.23) and [(EtCp)$_2$Ti(OCH$_3$)$_2$+H$^+$)$_2$+Cl$^-$] (m/z 629.23), but this time the intensity of this ion is smaller for the EtCp compound.

![ESI mass spectra of (EtCp)$_2$TiCl$_2$ (Top) and Cp$_2$TiCl$_2$ (Bottom) with low range method at a capillary exit voltage of 60 V](image)

Figure 2.17: ESI mass spectra of (EtCp)$_2$TiCl$_2$ (Top) and Cp$_2$TiCl$_2$ (Bottom) with low range method at a capillary exit voltage of 60 V

Different capillary exit voltages were also used to record the spectra of (EtCp)$_2$TiCl$_2$. Table 2.6 summarises all the corresponding species which were observed at various voltages.
Table 2.6: Summary of corresponding species formed by Cp$_2$TiCl$_2$ and (EtCp)$_2$TiCl$_2$

<table>
<thead>
<tr>
<th></th>
<th>Cp$_2$TiCl$_2$ species</th>
<th>m/z</th>
<th>(EtCp)$_2$TiCl$_2$ species</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ti</td>
<td>[Cp$_2$Ti(OCH$_3$)2]${[+]}$</td>
<td>209.04</td>
<td>[(EtCp)$_2$Ti(OCH3)]${[+]}$</td>
<td>265.11</td>
</tr>
<tr>
<td></td>
<td>[Cp$_2$Ti(OCH$_3$)(OH)2]${[+]}$</td>
<td>227.06</td>
<td>[(EtCp)$_2$Ti(OCH$_3$)(OH)2]${[+]}$</td>
<td>283.12</td>
</tr>
<tr>
<td></td>
<td>[Cp$_2$Ti(OCH$_3$)2]${[+]}$</td>
<td>241.07</td>
<td>[(EtCp)$_2$Ti(OCH$_3$)2]${[+]}$</td>
<td>297.13</td>
</tr>
<tr>
<td></td>
<td>[Cp$_2$TiCl(OCH$_3$)(OH)2]${[+]}$</td>
<td>245.02</td>
<td>[(EtCp)$_2$TiCl(OCH$_3$)(OH)2]${[+]}$</td>
<td>301.08</td>
</tr>
<tr>
<td></td>
<td>[Cp$_2$TiCl2H]${[+]}$</td>
<td>248.97</td>
<td>[(EtCp)$_2$TiCl2H]${[+]}$</td>
<td>305.03</td>
</tr>
<tr>
<td></td>
<td>[Cp2TiCl]${[+]}$</td>
<td>213.00</td>
<td>[(EtCp)2TiCl]${[+]}$</td>
<td>269.06</td>
</tr>
<tr>
<td></td>
<td>[Cp2Ti(OH)]${[+]}$</td>
<td>195.03</td>
<td>[(EtCp)2Ti(OH)]${[+]}$</td>
<td>251.09</td>
</tr>
<tr>
<td></td>
<td>[Cp$_2$Ti(OH)2]${[+]}$</td>
<td>213.04</td>
<td>[(EtCp)$_2$Ti(OH)2]${[+]}$</td>
<td>269.10</td>
</tr>
</tbody>
</table>

2 Ti	[Cp$_4$Ti$_2$(OCH$_3$)$_3$H]$_{[+]}$	481.13	[(EtCp)$_4$Ti$_2$(OCH$_3$)$_3$H]$_{[+]}$	593.26
	[Cp$_4$Ti$_2$(OCH$_3$)$_3$]$_{[+]}$	449.11	[(EtCp)$_4$Ti$_2$(OCH$_3$)$_3$]$_{[+]}$	561.23
	[Cp$_4$Ti$_2$(OCH$_3$)$_3$ClH]$_{[+]}$	485.08	[(EtCp)$_4$Ti$_2$(OCH$_3$)$_3$ClH]$_{[+]}$	597.21
	[Cp$_4$Ti$_2$(OCH$_3$)$_3$Cl]$_{[+]}$	453.06	[(EtCp)$_4$Ti$_2$(OCH$_3$)$_3$Cl]$_{[+]}$	565.18
	[Cp$_4$Ti$_2$(OCH$_3$)$_2$Cl$_2$H]$_{[+]}$	489.04	[(EtCp)$_4$Ti$_2$(OCH$_3$)$_2$Cl$_2$H]$_{[+]}$	601.16
	[Cp$_4$Ti$_2$(OCH$_3$)$_2$(OH)]$_{[+]}$	435.09	[(EtCp)$_4$Ti$_2$(OCH$_3$)$_2$(OH)]$_{[+]}$	547.22
	[Cp$_4$Ti$_2$(OCH$_3$)$_2$(OH)$_2$]$_{[+]}$	453.10	[(EtCp)$_4$Ti$_2$(OCH$_3$)$_2$(OH)$_2$]$_{[+]}$	565.23

2.3.9 Analysis of solutions of Cp$_2$TiCl$_2$ in other alcohols using ESI-MS

The analysis of the spectra of Cp$_2$TiCl$_2$ dissolved in other alcohols, namely in ethanol, propan-1-ol and butan-1-ol solution can also help to confirm the identity of some species and explore the behaviour in larger chain alcohols. Spectra of Cp$_2$TiCl$_2$ in various alcohols at a capillary exit voltage of 60 V are shown in Figure 2.18. For example, one major species observed in methanol was [Cp$_2$Ti(OCH$_3$)]$_{[+]}$ (m/z 209.10); when the spectrum was recorded in ethanol as the solvent, the analogous species [Cp$_2$Ti(OCH$_2$CH$_3$)]$_{[+]}$ was observed at m/z 223.10. The corresponding species [Cp$_2$Ti(OR)]$_{[+]}$ can also be observed in propan-1-ol at m/z 237.05 and in butan-1-ol at m/z 251.07.
Figure 2.18: Positive-ion ESI mass spectra of a freshly-prepared solution of
\(\text{Cp}_2\text{TiCl}_2 \) in (A) methanol, (B) ethanol, (C) propan-1-ol and (D) butan-1-ol at a
capillary exit voltage of 60 V

All the major species observed at a capillary exit voltage of 60 V with low and wide
range methods in various alcohols are summarised in Table 2.7. Some of these
species are not present in the propan-1-ol and butan-1-ol solutions, possibly due to
the greater steric size of these larger alcohols.
Table 2.7: Summary of corresponding species of \(\text{Cp}_2\text{TiCl}_2 \) in various alcohols at a capillary exit voltage of 60 V with low and wide range methods. (---- not observed)

<table>
<thead>
<tr>
<th>Species</th>
<th>Methanol ((m/z))</th>
<th>Ethanol ((m/z))</th>
<th>Propan-1-ol ((m/z))</th>
<th>Butan-1-ol ((m/z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cp}_2\text{Ti}(\text{OR})]^+)</td>
<td>209.07</td>
<td>223.10</td>
<td>237.05</td>
<td>251.07</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti}(\text{OR})\text{OH}+\text{H}]^+)</td>
<td>227.08</td>
<td>241.11</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti}(\text{OR})_2+\text{H}]^+)</td>
<td>241.10</td>
<td>269.14</td>
<td>297.11</td>
<td>325.15</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti}\text{Cl}+\text{H}]^+)</td>
<td>245.05</td>
<td>259.08</td>
<td>273.03</td>
<td>287.05</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{TiCl}_2+\text{ROH}+\text{H}]^+)</td>
<td>281.03</td>
<td>295.06</td>
<td>309.01</td>
<td>323.04</td>
</tr>
<tr>
<td>([\text{Cp}_4\text{Ti}_2(\text{OR})_2\text{Cl}]^+)</td>
<td>453.13</td>
<td>481.17</td>
<td>509.15</td>
<td>537.15</td>
</tr>
<tr>
<td>([\text{Cp}_4\text{Ti}_2(\text{OR})\text{Cl}_2]^+)</td>
<td>457.08</td>
<td>471.10</td>
<td>485.03</td>
<td>499.05</td>
</tr>
<tr>
<td>([\text{Cp}_4\text{Ti}_2(\text{OR})(\text{OH})\text{Cl}_2+\text{H}]^+)</td>
<td>475.07</td>
<td>489.10</td>
<td>503.04</td>
<td>517.07</td>
</tr>
<tr>
<td>([\text{Cp}_4\text{Ti}_2(\text{OR})_3\text{Cl}+\text{H}]^+)</td>
<td>485.13</td>
<td>527.20</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>([\text{Cp}_4\text{Ti}_2(\text{OR})_2\text{Cl}_2+\text{H}]^+)</td>
<td>489.10</td>
<td>517.14</td>
<td>545.02</td>
<td>----</td>
</tr>
<tr>
<td>([((\text{Cp}_2\text{Ti}(\text{OR})_2+\text{H})^+)_2+\text{Cl}]^-)</td>
<td>517.17</td>
<td>573.26</td>
<td>629.25</td>
<td>----</td>
</tr>
</tbody>
</table>

The intensities of different ions change when the alcohol is changed. Solutions of \(\text{Cp}_2\text{TiCl}_2 \) in various alcohols (methanol, ethanol, propan-1-ol and butan-1-ol) at concentration of 2 mg mL\(^{-1}\) at a capillary exit voltage of 150 V were analysed on same day, intensity of \([\text{Cp}_2\text{Ti}(\text{OR})]^+\) ion in various alcohols are given in Table 2.8.

The result shown that \([\text{Cp}_2\text{Ti}(\text{OR})]^+\) ion has highest intensity in \(\text{CH}_3\text{OH} \) at capillary exit voltage of 150 V with low range method and in ethanol its intensity will decreased by a half. Intensities of this ion in propan-1-ol also dropped by half compared to it in ethanol. The literature reports that butanols are much less volatile than ethanol [107] and volatility could affect ion production [108], therefore why the lowest intensities in butan-1-ol.

Table 2.8: Intensity of \(\text{Cp}_2\text{Ti}(\text{OR})^+ \) in various alcohols at a capillary exit voltage of 50 V with low range method

<table>
<thead>
<tr>
<th>Species</th>
<th>Methanol ((m/z))</th>
<th>Ethanol ((m/z))</th>
<th>Propan-1-ol ((m/z))</th>
<th>Butan-1-ol ((m/z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cp}_2\text{Ti}(\text{OR})]^+)</td>
<td>((m/z 209))</td>
<td>((m/z 223))</td>
<td>((m/z 237))</td>
<td>((m/z 251))</td>
</tr>
<tr>
<td>Intensity (counts per second)</td>
<td>1.76x10(^6)</td>
<td>9.18x10(^5)</td>
<td>4.68x10(^5)</td>
<td>2.79x10(^4)</td>
</tr>
</tbody>
</table>
2.3.10 Analysis of freshly-prepared solutions of Cp₂TiCl₂ and (EtCp)₂TiCl₂ in a non-protic solvent using ESI-MS

The mass spectra of freshly-prepared solutions of Cp₂TiCl₂ and (EtCp)₂TiCl₂ in a non-protic solvent were also investigated during this research. Acetonitrile was used as the non-protic solvent because it is a coordinating solvent but without alkoxide groups to complicate the spectra. Positive-ion ESI mass spectra of freshly-prepared solutions of Cp₂TiCl₂ and (EtCp)₂TiCl₂ in acetonitrile with low range method at a capillary exit voltage of 60 V are shown in Figure 2.19 and Figure 2.20 respectively.

![Figure 2.19: Positive-ion ESI mass spectrum of Cp₂TiCl₂ in acetonitrile at a capillary exit voltage of 60 V with low range method](image-url)
Figure 2.20: Positive-ion ESI mass spectrum of \((\text{EtCp})_2\text{TiCl}_2\) in acetonitrile at a capillary exit voltage of 60 V with low range method. \(m/z\) 353.10 ion does not contain Ti.

The results indicate that acetonitrile can easily react with \(\text{Cp}_2\text{TiCl}_2\) and \((\text{EtCp})_2\text{TiCl}_2\). Referring to Section 2.3.1, the result clearly shows that some isotope pattern of Cl-containing ions had been observed. For instance, the ion \([\text{Cp}_2\text{Ti(Cl)NCMe}]^+\) at \(m/z\) 253.98 in Figure 2.19, the isotope pattern at \(m/z\) 253.98 and \(m/z\) 255.98 that represent the M and M+2 in a 3:1 ratio which indicates the presence of one Cl atom. Mass-shifted corresponding species \([(\text{EtCp})_2\text{Ti(Cl)NCMe}]^+\) at \(m/z\) 310.05 in Figure 2.20 also observed in the ESI mass spectra of \((\text{EtCp})_2\text{TiCl}_2\) in acetonitrile. In Figure 2.20, a high intensity ion at \(m/z\) 353.10 was observed and this ion does not contain Ti.

The \([\text{Cp}_2\text{Ti(Cl)NCMe}]^+\) complex has been previously characterised by an X-ray structure determination which shows the Ti atom and acetonitrile ligand are nearly collinear and the Ti atom exhibits a distorted tetrahedral coordination [109]. The crystal and molecular structure of Ti(III) complex \([\text{Cp}_2\text{Ti(NCMe)}_2]^+\) has also been established. The coordination geometry of the Ti atom is pseudotetrahedral from an X-ray structure determination [110]. The other example of cationic Ti(III) acetonitrile complex is \([\text{Cp}_2\text{Ti(NCMe)(THF)})]^+\), which has been characterised by X-
ray crystallography, this complex adopts a pseudotetrahedral structure similar to \([\text{Cp}_2\text{Ti(NCMe)}_2]^+\) and the acetonitrile ligand is nearly linear [111].

2.3.11 Analysis of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2\) in deuterated methanol using ESI-MS

The analysis of the spectra of \(\text{Cp}_2\text{TiCl}_2\) dissolved in deuterated methanol (CD\(_3\)OD) was also investigated to confirm the identity of some species. Spectra of \(\text{Cp}_2\text{TiCl}_2\) in CD\(_3\)OD at a capillary exit voltage of 90 V are given in Figure 2.21a.

![Figure 2.21: Positive-ion ESI mass spectra of \(\text{Cp}_2\text{TiCl}_2\) a) in CD\(_3\)OD b) in CH\(_3\)OH at a capillary exit voltage of 90 V with low range method](image-url)
All the major species in the mass spectra of Cp₂TiCl₂ in CH₃OH can also observed in mass spectra of Cp₂TiCl₂ in CD₃OD and with the latter mass-shifted in CD₃OD mass spectra. The species with -OCH₃ group will shift by \(m/z \) 3 i.e. -OCH₃ and -OCD₃ differ by 3 mass units. For example, one major species observed in CH₃OH was \(\text{Cp}_2\text{Ti(OCH}_3\text{)}^+ \ (m/z \ 209.11) \); when the spectrum was recorded in CD₃OD as the solvent, the analogous species \(\text{Cp}_2\text{Ti(OCD}_3\text{)}^+ \) was observed at the expected \(m/z \) 212.14.

Table 2.9 summarises all the corresponding species which were observed in CH₃OH and CD₃OD.

Table 2.9: Summary of corresponding species of Cp₂TiCl₂ in CH₃OH and CD₃OD at a capillary exit voltage of 90 V with low range method

<table>
<thead>
<tr>
<th>(\text{Cp}_2\text{TiCl}_2 \text{ in CH₃OH})</th>
<th>(m/z)</th>
<th>(\text{Cp}_2\text{TiCl}_2 \text{ in CD₃OD})</th>
<th>(m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{[Cp}_2\text{TiH]}^+)</td>
<td>179.09</td>
<td>(\text{[Cp}_2\text{TiD]}^+)</td>
<td>180.11</td>
</tr>
<tr>
<td>(\text{[Cp}_2\text{Ti(OCH}_3\text{)]}^+)</td>
<td>209.11</td>
<td>(\text{[Cp}_2\text{Ti(OCD}_3\text{)]}^+)</td>
<td>212.14</td>
</tr>
<tr>
<td>(\text{[Cp}_2\text{Ti(OCH}_3\text{)}_2\text{+H]}^+)</td>
<td>241.14</td>
<td>(\text{[Cp}_2\text{Ti(OCD}_3\text{)}_2\text{+D]}^+)</td>
<td>248.20</td>
</tr>
<tr>
<td>(\text{[Cp}_4\text{Ti}_2\text{Cl(OCH}_3\text{)}_2\text{]}^+)</td>
<td>453.18</td>
<td>(\text{[Cp}_4\text{Ti}_2\text{Cl(OCD}_3\text{)}_2\text{]}^+)</td>
<td>459.22</td>
</tr>
<tr>
<td>(\text{[Cp}_4\text{Ti}_2\text{Cl(OCH}_3\text{)}_3\text{+H]}^+)</td>
<td>485.20</td>
<td>(\text{[Cp}_4\text{Ti}_2\text{Cl(OCD}_3\text{)}_3\text{+D]}^+)</td>
<td>495.29</td>
</tr>
<tr>
<td>(\text{[(Cp}_2\text{Ti(OCH}_3\text{)}_2\text{+(H)}^+\text{)}_2\text{+Cl}]}^+)</td>
<td>517.23</td>
<td>(\text{[(Cp}_2\text{Ti(OCD}_3\text{)}_2\text{+(D)}^+\text{)}_2\text{+Cl}]}^+)</td>
<td>531.35</td>
</tr>
</tbody>
</table>

At a capillary exit voltage of 180 V, a new species at \(m/z \) 211 was observed (Figure 2.22B). Compared to the species \(\text{[Cp}_2\text{Ti(OCD}_3\text{)]}^+ \ (m/z \ 212) \) observed at low voltages, this species has decreased by 1 \(m/z \) unit.
Figure 2.22: Positive-ion ESI mass spectra of m/z 212 and 211 peaks of a freshly-prepared solution of Cp$_2$TiCl$_2$ in CD$_3$OD at a capillary exit voltage of (A) 150 V and (B) 180 V with low range method.

Since in CH$_3$OH, the species $[\text{Cp}_2\text{Ti(OCH}_3\text{)}]^+$ at m/z 209 is observed at a capillary exit voltage of 150 V which corresponds to the species $[\text{Cp}_2\text{Ti(OCD}_3\text{)}]^+$ at m/z 212 in CD$_3$OD. As the capillary exit voltage increased to 180 V, titanocene(III) species $[\text{Cp}_2\text{Ti(CH}_3\text{OH})]^+$ at m/z 210 was proposed to be observed (Section 2.3.4). However, the m/z unit increased by 1 as the capillary exit voltage increased (Figure 2.23).
Another possible explanation is the ion at m/z 210 in CH₃OH could be a superoxo complex Cp₂TiO₂⁺ and the ion at m/z 211 in CD₃OD is a protonated peroxo species (Isotope pattern comparison provided by Ryland Fortney-Zirker) (Figure 2.24). The source of H⁺ ions could be from residual water in the instrument (e.g. drying gas).
The source of oxygen in the protonated peroxo species could be from the nitrogen generator. There would be oxygen in the nitrogen feed for the ESI-MS from the nitrogen generator. The nitrogen generator unit used during this research has the practical oxygen ranges from about 2.5% to 5%.

There are no reports on Cp₂Ti(peroxy) species, but a similar complex (C₅Me₄Pr)₂TiO₂ has been synthesised and characterised by the NMR spectroscopy and X-ray diffraction and confirms the side-on hapticity of the peroxide ligand [112].

Overall, compared to the ESI mass spectra of Cp₂TiCl₂ in CH₃OH at low capillary exit voltage, mass-shifted corresponding species can be observed in the ESI mass spectra of Cp₂TiCl₂ in CD₃OD, but the presence of m/z 211 in CH₃OH and m/z 210 in CD₃OD at a capillary exit voltage of 180 V, looks like Cp₂TiCl₂ in CH₃OH and CD₃OD behave differently at high capillary exit voltage. The further experiment was done to run the spectrum of Cp₂TiCl₂ in CH₃OH with 1 drop of dilute hydrogen peroxide, but the peroxy species was not observed at low capillary exit voltages.

2.4 Discussion

The positive-ion ESI-MS spectra for Cp₂TiCl₂ and (EtCp)₂TiCl₂ in methanol, ethanol, propan-1-ol or butan-1-ol, recorded at a range of capillary exit voltages, have identified some major species containing one or two Ti centres, but these species containing two Ti centres disappeared when the capillary exit voltage was greater than 150 V. Larger Ti clusters which contain three or more Ti centres were not observed. The presence of Ti species containing OH groups indicated that rapid hydrolysis of the Cp₂TiCl₂ occurred and OR groups indicated alcoholysis of the Cp₂TiCl₂ occurred. The hydrolysis of the Cp ligands is much slower than that hydrolysis of the Cl ligands.

To confirm the identity of some species observed in the mass spectra of Cp₂TiCl₂ in methanol, various alcohols, deuterated methanol and (EtCp)₂TiCl₂ have been used. Most of corresponding species can be observed. The relative intensity of major species can be influenced by the capillary exit voltage and aging of the sample in the solvent. Reduction of titanium(IV) during ESI-MS analysis was also observed when the capillary exit voltage was greater than 150 V and other tentative
suggestion is that a protonated peroxo species is formed at a high capillary exit voltage.
Chapter 3
An investigation of the ESI-MS behaviour of Cp$_2$Ti(SC$_6$H$_4$CO$_2$)

3.1 Introduction

3.1.1 Review of the previous investigation of Cp$_2$Ti(tsal)

Bis(cyclopentadienyl) thiosalicylatotitanium(IV) is the organotitanium compound with the formula Cp$_2$Ti(SC$_6$H$_4$CO$_2$), commonly abbreviated as Cp$_2$Ti(tsal). Cp$_2$Ti(tsal) exists as a deep green coloured solid and has been characterised by NMR and IR spectroscopies [92]. Cp$_2$Ti(tsal) has been previously synthesised by reaction of Cp$_2$TiCl$_2$ with thiosalicylic acid in benzene and with anhydrous ammonia gas as base (Scheme 3.1) [113].

$$\text{Cp}_2\text{TiCl}_2 + \text{HSC}_6\text{H}_4\text{COOH} + 2\text{NH}_3 \rightarrow \text{Cp}_2\text{Ti(SC}_6\text{H}_4\text{COO}) + 2\text{NH}_4\text{Cl}$$

Scheme 3.1: Formation of Cp$_2$Ti(tsal) from Cp$_2$TiCl$_2$ and thiosalicylic acid

Cp$_2$Ti(tsal) can be also synthesised by reaction of Cp$_2$TiCl$_2$ with thiosalicylic acid in a water-chloroform mixture with β-cyclodextrin [13].

The thiosalicylate in Cp$_2$Ti(tsal) acts as a bidentate ligand and forms a puckered six-membered ring with the titanium atom as shown by the X-ray structure determination (Figure 3.1) [92]. The coordination geometry of the Ti atom is pseudotetrahedral and the distances between the Ti and two Cp rings are different; presumably from Ti to the centroid of the Cp rings are 2.0707 Å and 2.0627 Å [114]. This complex exhibits a 3D framework constructed through weak interactions, which are four intermolecular C-H…π interactions and two types of intermolecular hydrogen bonds (C13-H13…O2 and C8-H8…S1) [92].
The electron ionisation mass spectrum of this compound was reported in 1969 [113]. The metal-containing ion peaks are summarised in Table 3.1.

Table 3.1: Metal-containing ions recorded in the mass spectrum of Cp₂Ti(tsal)

<table>
<thead>
<tr>
<th>Ions</th>
<th>m/z</th>
<th>Relative intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁₃H₁₄O₂STi⁺</td>
<td>330</td>
<td>79</td>
</tr>
<tr>
<td>C₁₆H₁₃STi⁺</td>
<td>285</td>
<td>2.7</td>
</tr>
<tr>
<td>C₁₁H₉STi⁺</td>
<td>221</td>
<td>100</td>
</tr>
<tr>
<td>C₉H₇STi⁺</td>
<td>195</td>
<td>9</td>
</tr>
<tr>
<td>C₁₀H₁₀Ti⁺</td>
<td>178</td>
<td>35</td>
</tr>
<tr>
<td>C₃H₅STi⁺</td>
<td>145</td>
<td>10.3</td>
</tr>
<tr>
<td>C₅H₅Ti⁺</td>
<td>113</td>
<td>8</td>
</tr>
</tbody>
</table>

The electron ionisation mass spectrum of Cp₂Ti(tsal) gave a molecular ion peak at m/z 330 which showed the compound to be monomeric with a closed ring structure [113]. The proposed fragmentation pattern for Cp₂Ti(tsal) is shown in Figure 3.2.
Figure 3.2: The proposed fragmentation pattern for Cp₂Ti(tsal)

3.1.2 Project outline

Titanium is normally considered to be a chemically very hard metal centre [115]. Because the high polarisability of the chalcogen atoms, thiolate is generally soft [116], so it is interesting that Cp₂Ti(tsal) is a rare example which contains a Ti-S bond and it is very stable and can even be made in water [117]. This research project carried out a much more in-depth investigation into the ESI-MS behaviour of the Cp₂Ti(tsal) complex. At the same time, a new complex bis(ethylcyclopentadienyl) thiosalicylatotitanium(IV) (EtCp)₂Ti(tsal) (EtCp = C₅H₄CH₂CH₃) (Figure 3.3) was synthesised and also studied by ESI-MS. Comparison of the ESI-MS spectra of Cp₂Ti(tsal) with those of (EtCp)₂Ti(tsal) was used to confirm the identity of some unknown species. The further experiment was done to run the spectrum of the mixed solution of Cp₂TiCl₂ and Cp₂Ti(tsal) in CH₃OH, to investigate the possibility of the tsal ligand bridging two Cp₂Ti centres. Characterisation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of added alkali metal salts and the reactivity of Cp₂Ti(tsal) towards soft electrophiles have also been studied.
3.2 Experimental

The chemicals, solvents and instruments used during this research are listed in sections 3.2.1 to 3.2.4.

3.2.1 Chemicals and solvents

Powdered bis(cyclopentadienyl)titanium(IV) dichloride was obtained from Ralph N. Emanuel Ltd, Alperton, Middlesex, UK and bis(ethylcyclopentadienyl) titanium(IV) dichloride was purchased from Alfa Aesar, alkali metal salts: LiCl, KCl, RbCl and CsCl were all purchased from Ajax Finechem. NaCl was purchased from Dominion Salt Limited. PhHgCl was purchased from BDH. FeHgCl was synthesised according to the literature method [118]. Univar grade methanol used was distilled. Ethanol used was of laboratory reagent grade. Dichloromethane was obtained from Merck KGaA. Petroleum spirits and toluene were purchased from Ajax Finechem with analytical reagent grade.

3.2.2 ESI-MS instrumentation

As described for the ESI-MS investigation of Cp₂TiCl₂ (Section 2.2.2), ESI-MS instrumentation was the same as in this previous chapter.

3.2.3 NMR instrumentation

¹H NMR spectroscopy was performed on the University of Waikato School of Sciences Bruker AVIII (400) NMR spectrometer running Topspin 3.5 pl 7 software. The spectrometer was fitted with a 5 mm ATMA BBI probe operating at 300 MHz for ¹H spectroscopy and spectra were recorded using deuterated chloroform (CDCl₃) as the solvent.
3.2.4 Melting point and IR instrumentation

Melting point was recorded using Buchi M-560 Melting Point instrument. IR spectrum was recorded in the 4000-400 cm\(^{-1}\) region as KBr discs on a Perkin Elmer Spectrum 100 FT-IR spectrometer.

3.2.5 Experimental procedures

3.2.5.1 Synthesis of Cp\(_2\)Ti(tsal)

Cp\(_2\)Ti(tsal) was synthesised by a modification of literature methods \[13\]. Cp\(_2\)TiCl\(_2\) (1094 mg, 4.39 mmol) and thiosalicylic acid (680 mg, 4.41 mmol) were suspended in ethanol (30 mL) in a 50 mL round bottom flask with a magnetic stirrer, resulting in a red suspension. KOH (493 mg, 8.79 mmol) was added and the red suspension quickly changed into a deep green suspension. The mixture was stirred for 4 hours, then allowed to evaporate to dryness. The solid residue was extracted with 60 mL of a 1:1 mixture of toluene and CH\(_2\)Cl\(_2\), the resulting deep green solution was filtered to remove KCl, washed successively with CH\(_2\)Cl\(_2\) (10 mL) and the filtrate evaporated to dryness in a fumehood. The dark green residue was recrystallised by dissolving in CH\(_2\)Cl\(_2\) (30 mL) followed by addition of petroleum spirits (50 mL). The solid was filtered off, washed with 10 mL of petroleum spirits, and dried under vacuum to give a dark green, almost black, microcrystalline Cp\(_2\)Ti(tsal) solid (yield ca. 770 mg, 53%) \[92\].

3.2.5.2 Synthesis of (EtCp)\(_2\)Ti(tsal)

Equimolar amounts of (EtCp)\(_2\)TiCl\(_2\) (100 mg, 0.328 mmol) and thiosalicylic acid (50.5 mg, 0.328 mmol) were suspended in ethanol (30 mL) in a 50 mL round bottom flask with a magnetic stirrer, resulting in a red suspension. KOH (36.8 mg, 0.656 mmol) was added and the red suspension quickly changed into a deep green suspension. The mixture was stirred for 4 hours, then allowed to evaporate to dryness. The solid was extracted with 60 mL of a 1:1 mixture of toluene and CH\(_2\)Cl\(_2\). The resulting deep green solution was filtered to remove KCl, washed successively with 10 mL of CH\(_2\)Cl\(_2\), and then the solvent evaporated in a fumehood to give final dark green solid (yield ca. 70 mg, 55%). Melting point of (EtCp)\(_2\)Ti(tsal) 115-118 °C.
3.2.5.3 Investigation of the possibility of the tsal ligand bridging two Cp₂Ti centres

Equimolar amounts of Cp₂TiCl₂ (18.9 mg, 0.076 mmol) and Cp₂Ti(tsal) (25 mg, 0.076 mmol) were dissolved in dichloromethane (25 mL) in a 50 mL round bottom flask with a magnetic stirrer and stirred for 24 hours, giving a clear deep green solution. The solution was diluted with methanol and then analysed by positive-ion ESI-MS. The same experimental procedure was performed but using pure methanol as the solvent.

3.2.5.4 Characterisation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of added alkali metal salt

Cp₂Ti(tsal) (10 mg, 0.030 mmol) was dissolved in 10 mL of CH₃OH in a 25 mL glass vial and shaken gently for about one minute. Alkali metal chloride MCl (10 mg) (M= Li, Na, K, Rb, Cs) respectively were added into the Cp₂Ti(tsal) CH₃OH solution. Then, several drops of water were added to help dissolve alkali metal chloride. The resulting deep green solutions were respectively analysed by positive-ion ESI-MS.

3.2.5.5 Investigation of the reactivity of Cp₂Ti(tsal) towards soft electrophiles

Equimolar amounts of Cp₂Ti(tsal) (5 mg, 0.015 mmol) and PhHgCl (4.7 mg, 0.015 mmol) were suspended in CH₃OH (20 mL) in a 50 mL round bottom flask with a magnetic stirrer and stirred for 2 hours. The resulting brown precipitate was filtered and then extracted with 60 mL of a 1:1 mixture of toluene and CH₂Cl₂ and then analysed by ESI-MS.

3.3 Results and discussion

3.3.1 An investigation of the ESI-MS behaviour of Cp₂Ti(tsal)

3.3.1.1 Analysis of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with low range method

The positive-ion ESI-MS spectrum for Cp₂Ti(tsal) in methanol solution using the low range method, recorded at a capillary exit voltage of 150 V, is given in Figure 3.4.
Figure 3.4: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with low range method at a capillary exit voltage of 150 V

The results show that species at m/z 100-300 do not contain the tsal group and these species were also observed in the spectrum of Cp₂TiCl₂ in methanol solution using the low range method (Section 2.3.2). At m/z 300-800, all the major species contain the tsal group. An ion at m/z 331.06 is assigned as [Cp₂Ti(tsal)+H]⁺ (calculated m/z 331.03) (Figure 3.5).
Figure 3.5: An isotope pattern comparison for $[\text{Cp}_2\text{Ti(tsal)}+\text{H}]^+$ (a) experimental (m/z 331.06) and (b) calculated (m/z 331.03)

Table 3.2 summarises all the major species contain the tsal group which were observed at a capillary exit voltage of 150 V with low method.

Table 3.2: Summary of species containing the tsal group observed at a capillary exit voltage of 150 V in a freshly-prepared solution of $\text{Cp}_2\text{Ti(tsal)}$ in methanol with low range method

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental (m/z)</th>
<th>Calculated (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{Cp}_2\text{Ti(tsal)}+\text{H}]^+$</td>
<td>331.06</td>
<td>331.03</td>
</tr>
<tr>
<td>$[\text{Cp}_2\text{Ti(tsal)}+\text{Na}]^+$</td>
<td>353.09</td>
<td>353.01</td>
</tr>
<tr>
<td>$[\text{Cp}_2\text{Ti(tsal)}+\text{CpTi(OCH}_3_2)]^+$</td>
<td>505.15</td>
<td>505.04</td>
</tr>
<tr>
<td>$[\text{Cp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3)]^+$</td>
<td>539.18</td>
<td>539.06</td>
</tr>
<tr>
<td>$[2(\text{Cp}_2\text{Ti(tsal)})+\text{Na}]^+$</td>
<td>683.17</td>
<td>683.03</td>
</tr>
</tbody>
</table>

The positive-ion ESI-MS spectrum for $\text{Cp}_2\text{Ti(tsal)}$ in methanol solution using the low range method, recorded at a capillary exit voltage of 180 V, are given in Figure 3.6.
Figure 3.6: Positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{Ti(tsal)} \) in methanol with low range method at a capillary exit voltage of 180 V

The result shows that the intensities of species at \(m/z \) 100-300 increased as the capillary exit voltage increased. All the major species containing the tsal group were also observed at a capillary exit voltage of 150 V, but their intensities decreased as the capillary exit voltage increased. Table 3.3 summarises all the major species containing the tsal group which were observed at a capillary exit voltage of 180 V with low method.
Table 3.3: Summary of species containing the tsal group observed at a capillary exit voltage of 180 V in a freshly-prepared solution of Cp₂Ti(tsal) in methanol with low range method

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental (m/z)</th>
<th>Calculated (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cp₂Ti(tsal)+H]⁺</td>
<td>331.11</td>
<td>331.03</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+Na]⁺</td>
<td>353.09</td>
<td>353.01</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+CpTi(OCH₃)₂⁺]</td>
<td>505.17</td>
<td>505.04</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+Cp₂Ti(OCH₃)]⁺</td>
<td>539.18</td>
<td>539.06</td>
</tr>
<tr>
<td>[2(Cp₂Ti(tsal))+Na]⁺</td>
<td>683.18</td>
<td>683.03</td>
</tr>
</tbody>
</table>

The positive-ion ESI-MS spectrum for Cp₂Ti(tsal) in methanol solution using the low range method, recorded at a capillary exit voltage of 220 V, are given in Figure 3.7.

![ESI-MS spectrum](image)

Figure 3.7: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with low range method at a capillary exit voltage of 220 V

The results show that only two major species contain the tsal group; [Cp₂Ti(tsal)+H]⁺ and [Cp₂Ti(tsal)+Na]⁺ were observed at m/z 331.11 and m/z 353.10 at the capillary exit voltage of 220 V.
Overall, as the capillary exit voltage increases, the intensity of the low m/z range species increases and high m/z range species which contain the tsal group decrease.

3.3.1.2 Analysis of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with wide range method

In this research, the wide range method has a maximum at m/z 1500. Positive-ion ESI-MS spectra for Cp₂Ti(tsal) in methanol solution using the wide range method, recorded at a capillary exit voltage of 100 V, are given in Figure 3.8

![Figure 3.8: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with wide range method at a capillary exit voltage of 100 V](image)

The result shows that some of these species were also observed with the low range method. Some new species like [2(Cp₂Ti(tsal))+Cp₂Ti(OCH₃)(OH)+H]⁺ (m/z 887.00) and [3(Cp₂Ti(tsal))+Na]⁺ (m/z 1012.94) were observed when using the wide range method. Table 3.4 summarises all the major species contain the tsal group which were observed at a capillary exit voltage of 100 V with wide method.
Table 3.4: Summary of species containing the tsal group observed at a capillary exit voltage of 100 V of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with wide range method

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental (m/z)</th>
<th>Calculated (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}]+\text{CpTi(OCH}_3)\text{)}_2])^+</td>
<td>504.98</td>
<td>505.04</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}]+\text{Cp}_2\text{Ti(OCH}_3\text{)}])^+</td>
<td>539.00</td>
<td>539.06</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}]+\text{Cp}_2\text{Ti(OCH}_3\text{)}_2\text{+H})^+</td>
<td>571.02</td>
<td>571.09</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}]+\text{CpTi(OCH}_3\text{)}\text{(tsal)+H})^+</td>
<td>626.95</td>
<td>627.03</td>
</tr>
<tr>
<td>([2(\text{Cp}_2\text{Ti(tsal)))+H}]^+</td>
<td>660.97</td>
<td>661.05</td>
</tr>
<tr>
<td>([2(\text{Cp}_2\text{Ti(tsal))}]+\text{Cp}_2\text{Ti(OCH}_3\text{)}\text{(OH)+H})^+</td>
<td>887.00</td>
<td>887.10</td>
</tr>
<tr>
<td>([3(\text{Cp}_2\text{Ti(tsal))}]+\text{Na})^+</td>
<td>1012.94</td>
<td>1013.05</td>
</tr>
</tbody>
</table>

Positive-ion ESI-MS spectrum for \(\text{Cp}_2\text{Ti(tsal)}\) in methanol solution using the wide range method, recorded at a capillary exit voltage of 180 V, are given in Figure 3.9.

![Figure 3.9: Positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{Ti(tsal)}\) in methanol with wide range method at a capillary exit voltage of 180 V](image)

The results show that \([\text{Cp}_2\text{Ti(tsal)}]+\text{CpTi(OCH}_3\text{)}_2\])\(^+ (m/z \ 504.98)\) and \([\text{Cp}_2\text{Ti(tsal)}]+\text{Cp}_2\text{Ti(OCH}_3\text{)}])\(^+ (m/z \ 539.00)\) were also observed with the low range method. Some new species like \([\text{Cp}_2\text{Ti(tsal)}]+\text{CpTi(tsal})])\(^+ (m/z \ 594.93)\), \([2(\text{Cp}_2\text{Ti(tsal)))+Na}]^+ (m/z \ 682.95)\) and \([2(\text{Cp}_2\text{Ti(tsal))}]+\text{Cp}_2\text{Ti(OCH}_3\text{)}\])\(^+ (m/z \ 868.88)\)
were observed when using higher voltage. Table 3.5 summarises all the major species that contain the tsal group which were observed at a capillary exit voltage of 180 V with wide method.

Table 3.5: Summary of species containing the tsal group observed at a capillary exit voltage of 180 V of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with wide range method

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental (m/z)</th>
<th>Calculated (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cp₂Ti(tsal)+CpTi(OCH₃)₂]⁺</td>
<td>504.98</td>
<td>505.04</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+Cp₂Ti(OCH₃)]⁺</td>
<td>539.00</td>
<td>539.06</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+CpTi(tsal)]⁺</td>
<td>594.93</td>
<td>595.00</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+CpTi(OCH₃)(tsal)+H]⁺</td>
<td>626.95</td>
<td>627.03</td>
</tr>
<tr>
<td>[2(Cp₂Ti(tsal))+Na]⁺</td>
<td>682.95</td>
<td>683.03</td>
</tr>
<tr>
<td>[2(Cp₂Ti(tsal))+Cp₂Ti(OCH₃)]⁺</td>
<td>868.88</td>
<td>869.09</td>
</tr>
</tbody>
</table>

The positive-ion ESI-MS spectrum for Cp₂Ti(tsal) in methanol solution using the wide range method, recorded at a capillary exit voltage of 240 V, is given in Figure 3.10.

![Figure 3.10](image)

Figure 3.10: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂Ti(tsal) in methanol with wide range method at a capillary exit voltage of 240 V
The result shows that \([\text{Cp}_2\text{Ti(tsal)}]^{+} (m/z 538.89)\) and \([\text{Cp}_2\text{Ti(tsal)}]+\text{CpTi(tsal)}]^{+} (m/z 594.93)\) were also observed at low capillary exit voltages. As for the low range method, when the capillary exit voltage increases, the intensity of the major species with high \(m/z\) will decrease.

3.3.1.3 **Analysis of a freshly-prepared solution of Cp\(_2\)Ti(tsal) in ethanol using ESI-MS**

The analysis of the spectra of Cp\(_2\)Ti(tsal) dissolved in ethanol solution can also help to confirm the identity of some species and explore the behaviour in larger chain alcohols. Spectra of Cp\(_2\)Ti(tsal) in ethanol at various capillary exit voltages are shown in Figure 3.11. For example, one major species observed in methanol was \([\text{Cp}_2\text{Ti(tsal)}]+\text{Cp}_2\text{Ti(OCH}_3)\] \(^{+} (m/z 539.12)\); when the spectrum was recorded in ethanol as the solvent, the analogous species \([\text{Cp}_2\text{Ti(tsal)}]+\text{Cp}_2\text{Ti(OCH}_2\text{CH}_3)\] \(^{+}\) was observed at \(m/z\) 553.18.

Figure 3.11: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp\(_2\)Ti(tsal) in ethanol with low range method at capillary exit voltages of (a) 100 V, (b) 180 V and (c) 240 V

All the corresponding major species observed at various capillary exit voltages with low method in methanol and ethanol are summarised in Table 3.6.
Table 3.6: Summary of corresponding species of Cp₂Ti(tsal) in methanol and ethanol at a capillary exit voltage of 100 V with low range method

<table>
<thead>
<tr>
<th>Species</th>
<th>Methanol (m/z)</th>
<th>Ethanol (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cp₂Ti(OR)]⁺</td>
<td>209.07</td>
<td>223.10</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+CpTi(OR)₂]⁺</td>
<td>505.09</td>
<td>533.17</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+Cp₂Ti(OR)]⁺</td>
<td>539.12</td>
<td>553.18</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+Cp₂Ti(OR)(OH)+H]⁺</td>
<td>557.13</td>
<td>571.19</td>
</tr>
<tr>
<td>[Cp₂Ti(tsal)+Cp₂Ti(OR)₂+H]⁺</td>
<td>571.15</td>
<td>599.23</td>
</tr>
</tbody>
</table>

3.3.2 An investigation of the ESI-MS behaviour of (EtCp)₂Ti(tsal)

3.3.2.1 Introduction

(EtCp)₂Ti(tsal) is a new compound that has never been synthesised before. During this research, (EtCp)₂Ti(tsal) was synthesised using the same method for Cp₂Ti(tsal). Experimental procedures have been described in section 3.2.5.2. This new complex was characterised by elemental analysis, ESI-MS, melting point, ¹H NMR and Infra-red (IR) spectroscopy.

Elemental analysis were completed in duplicate by the University of Otago Chemistry Department Microanalytical Laboratory. Found: C, 62.93% and H, 5.88%. (EtCp)₂Ti(tsal) requires C, 65.29% and H, 5.74%. The percentage compositions obtained in the elemental analyses of this complex did not match those required within experimental error limits 1%. This inconsistency may have been due to unreacted (EtCp)₂TiCl₂ in the final product. The presence of (EtCp)₂TiCl₂ was confirmed in the proton NMR spectrum. Integration showed the ratio of (EtCp)₂TiCl₂ : (EtCp)₂Ti(tsal) was approximately 1:4. The calculated percentages of carbon in (EtCp)₂TiCl₂ and (EtCp)₂Ti(tsal) are 55.12% and 65.29% respectively, but if 20% of (EtCp)₂TiCl₂ is present in the final product (EtCp)₂Ti(tsal), the calculated carbon percentage should be (55.12%×20%) + (65.29%×80%) = 63.26%. Likewise, the percentages of hydrogen in (EtCp)₂TiCl₂ and (EtCp)₂Ti(tsal) are 5.95% and 5.74%, but if there is 20% of (EtCp)₂TiCl₂ in the final product (EtCp)₂Ti(tsal), the calculated percentages of hydrogen in (EtCp)₂Ti(tsal) should be (5.95%×20%) + (5.74%×80%) = 5.78%. The calculated C, 63.26% and H, 5.78% now compare well with experimental results C, 62.93%.
and H, 5.88%, confirming 20% of starting material (EtCp)$_2$TiCl$_2$ in the final product (EtCp)$_2$Ti(tsal).

The 1H NMR spectrum for (EtCp)$_2$Ti(tsal) is shown in Figure 3.12, showed ten discernible chemical environments. The doublet of doublets at 8.4 ppm and 7.5 ppm were assigned to the benzene ring protons close to the S and O. The other two protons on the benzene ring were assigned at 7.4 ppm and 7.2 ppm as the triplets. The protons on the Cp rings were assigned at 6.2 ppm. CH$_2$ and CH$_3$ groups from (EtCp)$_2$Ti(tsal) were assigned at 2.5 ppm and 1.1 ppm. The correct chemical shift for these protons in starting material (EtCp)$_2$TiCl$_2$ were also observed. The signal at 6.4 ppm was assigned as the protons on the Cp rings of contaminant (EtCp)$_2$TiCl$_2$. CH$_2$ and CH$_3$ groups from (EtCp)$_2$TiCl$_2$ were assigned at 2.8 ppm and 1.2 ppm. The ratio of (EtCp)$_2$TiCl$_2$ integration to (EtCp)$_2$Ti(tsal) integration was 1:4.

![Figure 3.12: 1H NMR spectrum for (EtCp)$_2$Ti(tsal)](image)

IR spectroscopy shows that strong bands observed at 1624 and 1293 cm$^{-1}$ are attributed to the C=O and C-O stretching vibrations which are characteristic absorptions of the COO group [119]. The C-H stretching frequency at 2970 cm$^{-1}$ is indicative of the cyclopentadienyl ring and 1428 cm$^{-1}$ due to C-C stretching of π-bond further confirm the presence of the Cp group [119,120]. The weak bands at 1600-1300 cm$^{-1}$ region that characterises the benzene ring [121].
3.3.2.2 Analysis of a freshly-prepared solution of (EtCp)$_2$Ti(tsal) in methanol with low range method

The major species containing Cp groups observed in positive-ion ESI mass spectrum of Cp$_2$Ti(tsal) were confirmed by running the spectrum of (EtCp)$_2$Ti(tsal) in methanol solution. Mass-shifted corresponding species should be seen in the ESI mass spectrum of (EtCp)$_2$Ti(tsal) if the assignments are correct. Figure 3.13 shows mass spectra of Cp$_2$Ti(tsal) and (EtCp)$_2$Ti(tsal) with low range method at a capillary exit voltage of 100 V.

![Mass spectra of Cp$_2$Ti(tsal) and (EtCp)$_2$Ti(tsal)](image)

Figure 3.13: ESI mass spectra of (EtCp)$_2$Ti(tsal) (Top) and Cp$_2$Ti(tsal) (Bottom) with low range method at a capillary exit voltage of 100 V

Some analogues of the major species in Cp$_2$Ti(tsal) mass spectra can also be observed in ESI mass spectra of (EtCp)$_2$Ti(tsal), with the latter mass-shifted in (EtCp)$_2$Ti(tsal) mass spectra. For example [Cp$_2$Ti(tsal)+H]$^+$ (m/z 331.06) and
[(EtCp)_2Ti(tsal)+H]^+ (m/z 387.11); the intensity of this ion was larger for the Cp compound. At higher \(m/z\) values, major species increase in mass by 112 units as they contain four Cp groups, such as \([\text{Cp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}_2+\text{H}]^+ (m/z 571.15)\) and \([(\text{EtCp})_2\text{Ti(tsal)}+(\text{EtCp})_2\text{Ti(OCH}_3\text{)}_2+\text{H}]^+ (m/z 683.24)\).

Different capillary exit voltages were also used to record the spectra of \((\text{EtCp})_2\text{Ti(tsal)}\). As the capillary exit voltage increased to 180 V, a weak peak at \(m/z 305.00\) was observed and assigned to the \([\text{EtCp}_2\text{TiCl}_2+\text{H}]^+\) ion which confirmed impurity in the sample of \((\text{EtCp})_2\text{Ti(tsal)}\). Table 3.7 summarises all the corresponding species which were observed at various voltages.

<table>
<thead>
<tr>
<th>(\text{Cp}_2\text{Ti(tsal)}) species</th>
<th>(m/z)</th>
<th>((\text{EtCp})_2\text{Ti(tsal)}) species</th>
<th>(m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ti ([\text{Cp}_2\text{Ti(OH)}]^+)</td>
<td>195.05</td>
<td>([\text{EtCp}_2\text{Ti(OH)}]^+)</td>
<td>251.10</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(OCH}_3\text{)}]^+)</td>
<td>209.07</td>
<td>([\text{EtCp}_2\text{Ti(OCH}_3\text{)}]^+)</td>
<td>265.12</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}+\text{H}]^+)</td>
<td>331.06</td>
<td>([\text{EtCp}_2\text{Ti(tsal)}+\text{H}]^+)</td>
<td>387.11</td>
</tr>
<tr>
<td>2 Ti ([\text{Cp}_2\text{Ti(tsal)}+\text{H}]^+)</td>
<td>481.13</td>
<td>([\text{EtCp}_2\text{Ti(OCH}_3\text{)}_2+\text{H}]^+)</td>
<td>593.26</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}_2]^+)</td>
<td>505.09</td>
<td>([\text{EtCp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}_2]^+)</td>
<td>589.16</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}]^+)</td>
<td>539.12</td>
<td>([\text{EtCp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}]^+)</td>
<td>651.21</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}(\text{OH})+\text{H}]^+)</td>
<td>557.13</td>
<td>([\text{EtCp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}(\text{OH})+\text{H}]^+)</td>
<td>669.22</td>
</tr>
<tr>
<td>([\text{Cp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}_2+\text{H}]^+)</td>
<td>571.15</td>
<td>([\text{EtCp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}_2+\text{H}]^+)</td>
<td>683.24</td>
</tr>
</tbody>
</table>

3.3.3 Investigation of the possibility of the tsal ligand bridging two \(\text{Cp}_2\text{Ti}\) centres

Positive-ion ESI-MS spectra for \(\text{Cp}_2\text{Ti(tsal)}\) in methanol solution using the low range method, recorded at a capillary exit voltage of 150 V, shows the species \([\text{Cp}_2\text{Ti(tsal)}+\text{Cp}_2\text{Ti(OCH}_3\text{)}_2]^+\) at \(m/z 505.15\). This suggests a dinuclear species, because one of the Ti centres \([\text{Cp}_2\text{Ti(OCH}_3\text{)}_2]^+\) is not coordinatively saturated, as it is in \(\text{Cp}_2\text{Ti(tsal)}\). Therefore mixtures of \(\text{Cp}_2\text{Ti(tsal)}\) and \(\text{Cp}_2\text{TiCl}_2\) were investigated,
by reacting \(\text{Cp}_2\text{Ti(tsal)} \) with \(\text{Cp}_2\text{TiCl}_2 \) in a 1:1 molar ratio and analysing the resulting reaction mixture by ESI-MS. Experimental procedures are described in section 3.2.5.3. One possibility for the tsal ligand bridging two \(\text{Cp}_2\text{Ti} \) centres is shown in Figure 3.14.

In the positive-ion ESI-MS spectrum for the mixture of \(\text{Cp}_2\text{Ti(tsal)} \) with \(\text{Cp}_2\text{TiCl}_2 \) using dichloromethane as solvent and then diluted with methanol, recorded at a capillary exit voltage of 150 V with low range method (Figure 3.15), a very weak ion at \(m/z \) 543.14 was assigned to the \(\text{Cp}_2\text{Ti(tsal)}\text{Cp}_2\text{TiCl}^+ \) ion (calculated \(m/z \) 543.02). The isotope pattern of this ion is significantly different than others due to the presence of Cl isotopes (Figure 3.16).
Figure 3.15: Positive-ion ESI mass spectrum (low range method) of a freshly-prepared solution of Cp₂Ti(tsal) with Cp₂TiCl₂ in dichloromethane and diluted with methanol at a capillary exit voltage of 150 V.

Figure 3.16: An isotope pattern comparison for Cp₂Ti(tsal)Cp₂TiCl⁺ (a) experimental (m/z 543.14) and (b) calculated (m/z 543.02)

When the solvent was changed to methanol, Cp₂Ti(tsal)Cp₂Ti(OH)⁺ (m/z 525.14) and Cp₂Ti(tsal)Cp₂Ti(OCH₃)⁺ (m/z 539.16) ions were observed at a capillary exit voltage of 150 V using the low range method. The intensity of
$\text{Cp}_2\text{Ti(tsal)}\text{Cp}_2\text{Ti(OCH}_3\text{)}^+$ ion was much higher than the $\text{Cp}_2\text{Ti(tsal)}\text{Cp}_2\text{Ti(OH)}^+$ ion (Figure 3.17).

Figure 3.17: Positive-ion ESI mass spectrum of a freshly-prepared solution of $\text{Cp}_2\text{Ti(tsal)}$ with Cp_2TiCl_2 in methanol with low range method at a capillary exit voltage of 150 V.

Figure 3.18 (a) shows the experimental isotope pattern of $\text{Cp}_2\text{Ti(tsal)}\text{Cp}_2\text{Ti(OCH}_3\text{)}^+$ and (b) is the calculated isotope pattern of $\text{Cp}_2\text{Ti(tsal)}\text{Cp}_2\text{Ti(OCH}_3\text{)}^+$.

71
Comparing Figure 3.15 and 3.17, when using dichloromethane as the solvent, the ESI mass spectrum is much cleaner and doesn’t show the multitude of hydrolysis or solvolysis species. When methanol is used as a solvent, more species can be observed.

3.3.4 Investigation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of added alkali metal salts

Alkali metal cations can promote the formation of aggregate ions from a wide range of neutral molecules in MS. For example, in the presence of alkali metal cations, the self-aggregation of the nucleobases and nucleosides has been studied by the ESI-MS [122,123]. Therefore, it is significant to investigate the ESI-MS spectrum of Cp₂Ti(tsal) in the presence of alkali metal salts. Experimental procedures have been described in section 3.2.5.4.
3.3.4.1 Investigation of Cp₂Ti(tsal) using ESI mass spectrometry in the presence of LiCl

Figure 3.19 compares ESI-MS spectra of Cp₂Ti(tsal) in the presence and absence of LiCl. The LiCl ionisation aid is clearly very effective at forming lithiated ions in the spectrum.

![Positive-ion ESI mass spectra of a freshly-prepared solution of Cp₂Ti(tsal) without (a) and with LiCl (b) in methanol using low range method at a capillary exit voltage of 180 V](image)

Positive-ion ESI mass spectra for Cp₂Ti(tsal) with LiCl in methanol solution using the wide range method, recorded at capillary exit voltages of 60 V, 90 V and 180 V, and using the low range method, recorded at a capillary exit voltage of 180 V, are given in Figure 3.20.
Figure 3.20: Positive-ion ESI mass spectra of a freshly-prepared solution of \(\text{Cp}_2\text{Ti(tsal)} \) with LiCl in methanol with wide range method at capillary exit voltages of (a) 60 V, (b) 90 V and (c) 180 V. Low range method at capillary exit voltage of (d) 180 V.

The results show that the \([\text{Cp}_2\text{Ti(tsal)}]+\text{Li}]^+ \ (m/z \ 337.11)\) ion was observed at a capillary exit voltage of 180 V with low range method. The larger ions \([2\text{Cp}_2\text{Ti(tsal)}]+\text{Li}]^+\) and \([3\text{Cp}_2\text{Ti(tsal)}]+\text{Li}]^+\) can be observed using wide range
method. The intensity of \([2(\text{Cp}_2\text{Ti(tsal))}+\text{Li}]^+\) ion increased and \([3(\text{Cp}_2\text{Ti(tsal))}+\text{Li}]^+\) ion decreased as the capillary exit voltage increased.

3.3.4.2 Investigation of \(\text{Cp}_2\text{Ti(tsal)}\) using ESI mass spectrometry in the presence of \(\text{NaCl}\) and \(\text{KCl}\)

Positive-ion ESI-MS spectra for \(\text{Cp}_2\text{Ti(tsal)}\) with \(\text{NaCl}\) and \(\text{KCl}\) in methanol solution using the wide range method, recorded at a capillary exit voltages of 60 V and 180 V, are given in Figure 3.21.

The results show that the \([\text{(Cp}_2\text{Ti(tsal))}+\text{Na}]^+\) ion was observed at low capillary exit voltages with low intensities. The larger ions \([2(\text{Cp}_2\text{Ti(tsal))}+\text{Na}]^+\), \([3(\text{Cp}_2\text{Ti(tsal))}+\text{Na}]^+\) and \([4(\text{Cp}_2\text{Ti(tsal))}+\text{Na}]^+\) can be observed at a capillary exit voltage of 60 V using wide range method. As the capillary exit voltage increased to 180 V, only \([2(\text{Cp}_2\text{Ti(tsal))}+\text{Na}]^+\) ion can be observed.

In the case of \(\text{KCl}\), the \([\text{(Cp}_2\text{Ti(tsal))}+\text{K}]^+\) ion was observed at various capillary exit voltages with low intensities. The larger ion \([2(\text{Cp}_2\text{Ti(tsal))}+\text{K}]^+\) was the major ion at various capillary exit voltages with relatively high intensities. The larger ions \([3(\text{Cp}_2\text{Ti(tsal))}+\text{K}]^+\) (\(m/z\ 1029.02\)) and \([4(\text{Cp}_2\text{Ti(tsal))}+\text{K}]^+\) (\(m/z\ 1359.03\)) can be observed at a capillary exit voltage of 60 V and they will disappear at high capillary exit voltages.

Overall, the spectra become much simpler compared to the spectra without \(\text{NaCl}\) and \(\text{KCl}\) added.
Figure 3.21: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp₂Ti(tsal) with NaCl in methanol with wide range method at capillary exit voltages of (a) 60 V and (b) 180 V. Cp₂Ti(tsal) with KCl in methanol with wide range method at capillary exit voltages of (c) 60 V and (d) 180 V
3.3.4.3 Investigation of Cp$_2$Ti(tsal) using ESI mass spectrometry in the presence of RbCl and CsCl

Positive-ion ESI-MS spectra for Cp$_2$Ti(tsal) with RbCl and CsCl in methanol solution using the wide range method, recorded at a capillary exit voltages of 60 V and 180 V, are given in Figure 3.22.

Figure 3.22: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp$_2$Ti(tsal) with RbCl in methanol with wide range method at capillary exit voltages of (a) 60 V and (b) 180 V. Cp$_2$Ti(tsal) with CsCl in methanol with wide range method at capillary exit voltages of (c) 60 V and (d) 180 V.
The results show that the \([\text{Cp}_2\text{Ti(tsai)}]+\text{Rb}\)^+ ion was observed at various capillary exit voltages and it will become a major ion as the voltage increased. The larger ion \([2(\text{Cp}_2\text{Ti(tsai)})]+\text{Rb}\)^+ was the major ion at a capillary exit voltage of 60 V. The largest \([4(\text{Cp}_2\text{Ti(tsai)})]+\text{Rb}\)^+ \((m/z\ 1404.95)\) ion can be observed at a capillary exit voltage of 60 V and it will disappear at high capillary exit voltages. As the capillary exit voltage increased to 180 V, only \([\text{Cp}_2\text{Ti(tsai)}]+\text{Rb}\)^+ \((m/z\ 414.91)\) and \([2(\text{Cp}_2\text{Ti(tsai)})]+\text{Rb}\)^+ \((m/z\ 744.92)\) ions can be observed.

In the case of CsCl, the results show that the only \([\text{Cp}_2\text{Ti(tsai)}]+\text{Cs}\)^+ and \([2(\text{Cp}_2\text{Ti(tsai)})]+\text{Cs}\)^+ ions were observed at various capillary exit voltages. As the capillary exit voltage increased, the larger ion \([2(\text{Cp}_2\text{Ti(tsai)})]+\text{Cs}\)^+ intensities decreased and only \([\text{Cp}_2\text{Ti(tsai)}]+\text{Cs}\)^+ \((m/z\ 462.92)\) ion can be observed at a capillary exit voltage of 180 V.

3.3.4.4 Summary of \text{Cp}_2\text{Ti(tsai)} using ESI mass spectrometry in the presence of added alkali metal salts

The formation of aggregate ions with alkali metal cations was observed during this research. In the case of NaCl, KCl and RbCl, the larger ions \([4(\text{Cp}_2\text{Ti(tsai)})]+\text{Na}\)^+ \((m/z\ 1343.04)\), \([4(\text{Cp}_2\text{Ti(tsai)})]+\text{K}\)^+ \((m/z\ 1359.03)\) and \([4(\text{Cp}_2\text{Ti(tsai)})]+\text{Rb}\)^+ \((m/z\ 1404.95)\) ions were observed at a capillary exit voltage of 60 V with wide range method. \([4(\text{Cp}_2\text{Ti(tsai)})]+\text{Li}\)^+ was not observed because it is hard to aggregate around small Li^+ ion. For Cs^+ the charge density is very low therefore there will be less electrostatic attraction for \text{Cp}_2\text{Ti(tsai)} compared to other alkali metal cations like Na^+, where charge density is higher. The large ions like \([3(\text{Cp}_2\text{Ti(tsai)})]+\text{Cs}\)^+ or \([4(\text{Cp}_2\text{Ti(tsai)})]+\text{Cs}\)^+ were also not observed in the CsCl case.

3.3.5 Investigation of the reactivity of \text{Cp}_2\text{Ti(tsai)} towards soft electrophiles

The reactivity of \text{Cp}_2\text{Ti(tsai)} was investigated towards soft electrophiles E^+ which would be expected to have an affinity for the sulfur [124]. A preliminary investigation in this area used PhHg^+ (from readily available PhHgCl) [125]. Reaction products were identified by positive ion ESI-MS. Experimental procedures are described in section 3.2.5.5. Figure 3.23 shows the positive-ion ESI-
MS spectrum for Cp₂Ti(tsal) reacted with one mole equivalent of PhHgCl in methanol solution using the low range method at a capillary exit voltage of 150 V.

Figure 3.23: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂Ti(tsal) with PhHgCl in methanol with low range method at a capillary exit voltage of 150 V

The [Cp₂Ti(PhHgSC₆H₄COO)]⁺ ion was observed at a range of capillary exit voltages. At a capillary exit voltage of 150 V, an ion at m/z 609.06 was assigned as [Cp₂Ti(PhHgSC₆H₄COO)]⁺ (calculated m/z 609.03) (Figure 3.24).

Figure 3.24: An isotope pattern comparison for [Cp₂Ti(PhHgSC₆H₄COO)]⁺ (a) experimental (m/z 609.06) at a capillary exit voltage of 150 V and (b) calculated (m/z 609.03)
Two proposed structures of the \([\text{Cp}_2\text{Ti(PhHgSC}_6\text{H}_4\text{COO})]^+\) ion are shown in Figure 3.25.

![Figure 3.25: The proposed structures of \([\text{Cp}_2\text{Ti(PhHgSC}_6\text{H}_4\text{COO})]^+\) from the reaction of \(\text{Cp}_2\text{Ti(tsal)}\) with one mole equivalent of \(\text{PhHgCl}\)](image)

In (a) the thiosalicylate ligand is O,O-chelating and the S is uncoordinated but in (b) the \(\text{PhHg}^+\) cation has coordinated to the chelating tsal ligand, which is S,O chelated to Ti, as in the starting complex.

The intensity of the \([\text{Cp}_2\text{Ti(PhHgSC}_6\text{H}_4\text{COO})]^+\) ion can be affected by the capillary exit voltage; as the capillary exit voltage increases, the intensity ratio of \([\text{Cp}_2\text{Ti(PhHgSC}_6\text{H}_4\text{COO})]^+\) ion peak to the base peak (the highest peak in the spectrum e.g. \(m/z\) 541.10 \([\text{Cp}_3\text{Ti}_3\text{O(OCH}_3)_6]^+\) at 60 V, \(m/z\) 209.06 \([\text{Cp}_2\text{Ti(OCH}_3)]^+\) at 90 V, \(m/z\) 335.05 \([\text{Cp}_2\text{Ti}_2\text{O(OCH}_3)_3]^+\) at 120 V and 150 V and \(m/z\) 210.03 \([\text{Cp}_2\text{Ti(CH}_3\text{OH})]^+\) at 180 V) increases. (The ion at \(m/z\) 335.05 is proposed to have the formula \([\text{Cp}_2\text{Ti}_2\text{O(OCH}_3)_3]^+.\) \(m/z\) 541.10 \([\text{Cp}_3\text{Ti}_3\text{O(OCH}_3)_6]^+\) ion is equivalent to the \([\text{Cp}_3\text{Ti}_3\text{O(OCH}_3)_6]_3\) complex see Section 2.3.2). Figure 3.26 shows the relationship between this relative intensity and capillary exit voltage of \([\text{Cp}_2\text{Ti(PhHgSC}_6\text{H}_4\text{COO})]^+\) ion.
3.4 Discussion

The positive-ion ESI-MS spectra for Cp₂Ti(tsal) in methanol, recorded at a range of capillary exit voltages, have identified some major species containing one or two Ti centres. Larger Ti clusters which contain three Ti centres like [2(Cp₂Ti(tsal))+Cp₂Ti(OCH₃)]⁺ was observed using the wide range method.

The positive-ion ESI-MS spectra for Cp₂Ti(tsal) in ethanol and (EtCp)₂Ti(tsal) in methanol have been used to confirm the identity of some species observed in the mass spectra of Cp₂Ti(tsal) in methanol. Most of the corresponding species were observed. The relative intensity of major species can be influenced by the capillary exit voltage.

During this research the possibility of the tsal ligand bridging two Cp₂Ti centres was also investigated. Cp₂Ti(tsal)Cp₂Ti(OH)⁺ and Cp₂Ti(tsal)Cp₂Ti(OCH₃)⁺ ions were observed in the Cp₂Ti(tsal) and Cp₂TiCl₂ mixture at a capillary exit voltage of 150 V in methanol solution using the low range method. A very weak ion at m/z 543.14 assigned to the Cp₂Ti(tsal)Cp₂TiCl⁺ ion was observed in this mixture at a capillary exit voltage of 150 V using dichloromethane as solvent and diluted in methanol with the low range method.
The investigation of presence of added alkali metal salts to Cp₂Ti(tsal) in methanol shown the formation of aggregate ions with alkali metal cations. The literature recorded that a higher ions concentration must appear in solution when the alkali metal salt addition increased the system ionic strength [126]. The results are in agreement with these literature results. The larger ions \([4(\text{Cp}_2\text{Ti(tsal)})+\text{Na}]^+\), \([4(\text{Cp}_2\text{Ti(tsal)})+\text{K}]^+\) and \([4(\text{Cp}_2\text{Ti(tsal)})+\text{Rb}]^+\) were observed during this research. The large ions \([4(\text{Cp}_2\text{Ti(tsal)})+\text{Cs}]^+\) and \([4(\text{Cp}_2\text{Ti(tsal)})+\text{Li}]^+\) were not observed due to the low charge density of the Cs⁺ ion, and the small size of Li⁺.

In an investigation of Cp₂Ti(tsal) towards soft electrophiles E⁺ which used PhHg⁺ (from PhHgCl), the expected species \([\text{Cp}_2\text{Ti(PhHgSC}_6\text{H}_4\text{COO})]^+\) was observed. The intensity of \([\text{Cp}_2\text{Ti(PhHgSC}_6\text{H}_4\text{COO})]^+\) ion can be affected by the capillary exit voltage. As the capillary exit voltage increases, the intensity of \([\text{Cp}_2\text{Ti(PhHgSC}_6\text{H}_4\text{COO})]^+\) species increases.
Chapter 4

An investigation of the ESI-MS behaviour of
Cp$_2$MoCl$_2$ and Cp$_2$Mo(tsal)

4.1 Introduction

4.1.1 Review of the previous investigation of molybdocene dichloride

Molybdocene dichloride was first reported by Green and Cooper in 1964 [127], it is an organomolybdenum compound, which belongs to the class of metallocene dihalides Cp$_2$MX$_2$ (Cp = cyclopentadienyl, M = Ti, Mo, Nb, V and X = halide) [128]. This compound contains two chloride ligands and two η5-coordinated cyclopentadienyl ligands bound to the central molybdenum(IV) in a pseudo-tetrahedral environment (Figure 4.1) [127].

![Chemical structure of molybdocene dichloride](image)

Figure 4.1: Chemical structure of molybdocene dichloride

The hydrolysis chemistry of Cp$_2$MoCl$_2$ has been studied and first characterised by Marks and Toney in 1985 [129]. Cp$_2$MoCl$_2$ has poor solubility in organic solvents and water [127]. The rate of hydrolysis of both Cl and Cp ligands has been studied. The hydrolysis of the Cp rings is negligible. Dark-red [Cp$_2$Mo(OH)(OH$_2$)]$^+$ and [Cp$_2$Mo(OH$_2$)$_2$]$^{2+}$ cations are formed during the hydrolysis [128]. Figure 4.2 shows the halide hydrolysis chemistry of Cp$_2$MoCl$_2$.

83
Like Cp$_2$TiCl$_2$, Cp$_2$MoCl$_2$ can act as an antitumor agent against a variety of human tumors and has less toxic effects than *cis*-platin, but its coordination chemistry and mechanism of antitumor actions are significantly different from Cp$_2$TiCl$_2$ [130,131]. The studies of Cp$_2$MoCl$_2$ have emerged only in the last decade[1]. In contrast to Cp$_2$TiCl$_2$, the biochemical and chemical properties of Cp$_2$MoCl$_2$ have not been studied in detail [127]. Binding studies between Cp$_2$MoCl$_2$ and oligonucleotides and calf-thymus DNA has been initially investigated by Marks’ group and later pursued by Harding’s and Meléndez’s groups [132]. 31P NMR spectroscopy showed that the terminal phosphates of DNA will bind to Cp$_2$Mo$_2^{2+}$ [132]. Research has proved that the interactions of Cp$_2$MoCl$_2$ with DNA is not directly related to anticancer activity [82]. The mechanism of action of Cp$_2$MoCl$_2$ is still unclear and has not been confirmed by any studies [133].

4.1.2 Project outline

This research project carried out a much more in-depth investigation on solutions of Cp$_2$MoCl$_2$ in alcohols. An ESI source coupled with a high resolution TOF mass spectrometer was used for investigating the ESI-MS behaviour of the Cp$_2$MoCl$_2$ complex. A suitable solvent is very important for the ESI-MS studies; in this study...
Cp₂MoCl₂ was dissolved in methanol. At the same time, bis(cyclopentadienyl) thiosalicylamolybdenum(IV) Cp₂Mo(tsal) (Figure 4.3) was synthesised and also studied by ESI-MS.

![Chemical structure of Cp₂Mo(tsal)](image)

Figure 4.3: Chemical structure of Cp₂Mo(tsal)

4.2 Experimental

The chemicals, solvents and instruments used during this research are listed in sections 4.2.1 to 4.2.4.

4.2.1 Chemicals and solvents

Powdered bis(cyclopentadienyl)molybdenum(IV) dichloride and liquid pyridine were obtained from Aldrich Chemical company. Thiosalicylic acid was purchased from Sigma. Univar grade methanol used was distilled. Dichloromethane was obtained from Merck KGaA.

4.2.2 ESI-MS instrumentation

ESI-MS instrumentation was as described for the ESI-MS investigation of Cp₂TiCl₂ (Section 2.2.2).

4.2.3 NMR instrumentation

NMR instrumentation was as described for the ESI-MS investigation of Cp₂Ti(SC₆H₄CO₂) (Section 3.2.3).

4.2.4 Melting point and IR instrumentations

Melting point and IR instrumentations were as described for the ESI-MS investigation of Cp₂Ti(SC₆H₄CO₂) (Section 3.2.4).
4.2.5 Experimental procedures

4.2.5.1 Synthesis of Cp2Mo(tsal)

Cp₂MoCl₂ (50 mg, 0.168 mmol) and thiosalicylic acid (25.9 mg, 0.168 mmol) were suspended in methanol (50 mL) with 3 drops of pyridine and 2 mL of distilled water in a 50 mL round bottom flask with a magnetic stirrer, resulting in a brown suspension. The mixture was stirred for 3 hours, then allowed to evaporate to dryness. The dark green residue was recrystallised by dissolving in CH₂Cl₂ (5 mL) and filtered into a small vial, through a Pasteur pipette containing a small plug of cotton wool. The smaller vial was placed into a larger vial. Ether was added to the outer vial. Which was then capped and stored in the dark for 2 days to give final dark brown solid (yield ca. 46 mg, 72%). Melting point of Cp₂Mo(tsal) 155-158 °C.

4.3 Results and discussion

4.3.1 An investigation of the ESI-MS behaviour of Cp₂MoCl₂

4.3.1.1 Analysis of a freshly-prepared solution of Cp₂MoCl₂ in methanol with low range method

The positive-ion ESI-MS spectrum for Cp₂MoCl₂ in methanol solution using the low range method, recorded at a capillary exit voltage of 90 V, is given in Figure 4.4.

![Figure 4.4: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂MoCl₂ in methanol with low range method at a capillary exit voltage of 90 V](image-url)
The results show that there are two main groups of ions, one group of species at \(m/z\) 250-300 and the other group of species at \(m/z\) 550-600. The major species at low \(m/z\) range containing one molybdenum centre are \([\text{Cp}_2\text{MoCl}]^+\) \((m/z 263.00)\) (Figure 4.5) and \([\text{Cp}_2\text{Mo(OCH}_3\text{)Cl}+\text{H}]^+\) \((m/z 294.99)\) (Figure 4.6). Ion at \(m/z\) 294.99 can be also assigned as \([\text{Cp}_2\text{MoCl(CH}_3\text{OH})]^+\), because protonation will be on oxygen.

Figure 4.5: An isotope pattern comparison for \([\text{Cp}_2\text{MoCl}]^+\) (A) experimental \((m/z 263.00)\) and (B) calculated \((m/z 262.95)\)
Figure 4.6: An isotope pattern comparison for \([\text{Cp}_2\text{Mo(OCH}_3\text{)}\text{Cl}+\text{H}]^+\) (A) experimental (\(m/z\ 294.99\)) and (B) calculated (\(m/z\ 294.98\)).

At high \(m/z\) region two molybdenum centre species were observed at \(m/z\ 556.98\) and \(m/z\ 585.06\) are assigned as \([\text{Cp}_2\text{MoCl}_2+\text{Cp}_2\text{Mo(OH)}_2+\text{H}]^+\) (Figure 4.7) and \([\text{Cp}_2\text{MoCl}_2+\text{Cp}_2\text{Mo(OCH}_3\text{)}_2+\text{H}]^+\) (Figure 4.8).

Figure 4.7: An isotope pattern comparison for \([\text{Cp}_2\text{MoCl}_2+\text{Cp}_2\text{Mo(OH)}_2+\text{H}]^+\) (A) experimental (\(m/z\ 556.98\)) and (B) calculated (\(m/z\ 556.92\)).
Figure 4.8: An isotope pattern comparison for $[\text{Cp}_2\text{MoCl}_2+\text{Cp}_2\text{Mo(OCH}_3)_2+\text{H}]^+$ (A) experimental (m/z 585.06) and (B) calculated (m/z 584.95)

Table 4.1 summarises all the major species which were observed at a capillary exit voltage of 90 V with low method.

Table 4.1: Summary of species observed at a capillary exit voltage of 90 V in a freshly-prepared solution of Cp$_2$MoCl$_2$ in methanol with low range method

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental (m/z)</th>
<th>Calculated (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{Cp}_2\text{MoCl}]^+$</td>
<td>263.00</td>
<td>262.95</td>
</tr>
<tr>
<td>$[\text{Cp}_2\text{Mo(OCH}_3)_2\text{Cl}+\text{H}]^+$</td>
<td>295.00</td>
<td>294.98</td>
</tr>
<tr>
<td>$[\text{Cp}_2\text{MoCl}_2+\text{Cp}_2\text{Mo(OH)}_2+\text{H}]^+$</td>
<td>556.98</td>
<td>556.92</td>
</tr>
<tr>
<td>$[\text{Cp}_2\text{MoCl}_2+\text{Cp}_2\text{Mo(OCH}_3)_2+\text{H}]^+$</td>
<td>585.06</td>
<td>584.95</td>
</tr>
</tbody>
</table>

The positive-ion ESI-MS spectrum for Cp$_2$MoCl$_2$ in methanol solution using the low range method, recorded at a capillary exit voltage of 150 V, is given in Figure 4.9.
Figure 4.9: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂MoCl₂ in methanol with low range method at a capillary exit voltage of 150 V

The result shows that as the capillary exit voltage increases, the intensity of the low m/z range species increases and high m/z range species decrease. Two molybdenum centre species also disappeared. The major species at low m/z range containing one molybdenum centre are [Cp₂MoH]^+ (m/z 229.03) (Figure 4.10) and [Cp₂MoCl]^+ (m/z 263.00).
Figure 4.10: An isotope pattern comparison for $[\text{Cp}_2\text{MoH}]^+$ (A) experimental (m/z 229.03) and (B) calculated (m/z 228.99)

$[\text{Cp}_2\text{MoH}]^+$ is one of the major species at low m/z range containing one molybdenum centre, this ion is proposed to be formed by β-hydride elimination (Figure 4.11) which is same as the formation of $[\text{Cp}_2\text{TiH}]^+$.

Figure 4.11: Formation of $[\text{Cp}_2\text{MoH}]^+$ from $[\text{Cp}_2\text{Mo(OCH}_3\text{)}]_2^+$ species by β-hydride elimination

91
4.3.1.2 Analysis of a freshly-prepared solution of \(\text{Cp}_2\text{MoCl}_2 \) in methanol with wide range method

To investigate larger Mo clusters which contain three or more Mo required the use of the wide range method. In this research, the wide range method has a maximum at \(m/z \) 1500. The positive-ion ESI-MS spectrum for \(\text{Cp}_2\text{MoCl}_2 \) in methanol solution using the wide range method, recorded at a capillary exit voltage of 90 V, is given in Figure 4.12.

![Positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{MoCl}_2 \) in methanol with wide range method at a capillary exit voltage of 90 V](image)

Figure 4.12: Positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{MoCl}_2 \) in methanol with wide range method at a capillary exit voltage of 90 V

The result shows that some of these species were also observed with the low range method. One new species \([\text{Cp}_2\text{MoCl}_2+\text{Cp}_2\text{MoCl}]^+ \) \((m/z \text{ 558.91}) \) (Figure 4.13) was observed when using the wide range method.
Figure 4.13: An isotope pattern comparison for \([\text{Cp}_2\text{MoCl}_2 + \text{Cp}_2\text{MoCl}]^+\) (A) experimental \((m/z\ 558.91)\) and (B) calculated \((m/z\ 558.87)\)

Table 4.2 summarises all the major species which were observed at a capillary exit voltage of 90 V with wide method.

<table>
<thead>
<tr>
<th>Species</th>
<th>Experimental ((m/z))</th>
<th>Calculated ((m/z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{Cp}_2\text{MoCl}]^+</td>
<td>262.96</td>
<td>262.95</td>
</tr>
<tr>
<td>[\text{Cp}_2\text{Mo(OCH}_3\text{)Cl+H}]^+</td>
<td>294.95</td>
<td>294.98</td>
</tr>
<tr>
<td>[\text{Cp}_2\text{MoCl}_2 + \text{Cp}_2\text{MoCl}]^+</td>
<td>558.91</td>
<td>558.87</td>
</tr>
<tr>
<td>[\text{Cp}_2\text{MoCl}_2 + \text{Cp}_2\text{Mo(OCH}_3\text{)Cl+H}]^+</td>
<td>584.97</td>
<td>584.95</td>
</tr>
</tbody>
</table>

The positive-ion ESI-MS spectrum for \(\text{Cp}_2\text{MoCl}_2\) in methanol solution using the wide range method, recorded at a capillary exit voltage of 150 V, is given in Figure 4.14.
Figure 4.14: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂MoCl₂ in methanol with wide range method at a capillary exit voltage of 150 V

Same as using the low range method, only two species were observed at \(m/z \) 228.99 and \(m/z \) 262.95 which are assigned as \([\text{Cp}_2\text{MoH}]^+\) and \([\text{Cp}_2\text{MoCl}]^+\). Compare with Figure 4.12, where Mo₂ species were seen, but larger Mo clusters which contain three or more Mo centres were not observed using the wide range method.

4.3.2 An investigation of the ESI-MS behaviour of Cp₂Mo(tsal)

4.3.2.1 Introduction

Cp₂Mo(tsal) is a new compound that has never been synthesised before. During this research, Cp₂Mo(tsal) was synthesised by the reaction of Cp₂MoCl₂ with thiosalicylic acid and then recrystallised by the vapour diffusion method. Experimental procedures have been described in section 4.2.5.1. This new complex was characterised by ESI-MS, melting point, \(^1\text{H}\) NMR and Infra-red (IR) spectroscopy.

The \(^1\text{H}\) NMR spectrum for Cp₂Mo(tsal) is shown in Figure 4.15. The doublet of doublets at 7.90 ppm and 7.33 ppm were assigned to the benzene ring protons close to the S and O. The other two protons on the benzene ring were assigned at 7.11
ppm and 7.06 ppm as the triplets. The protons on the Cp rings were assigned at 5.48 ppm.

![NMR Spectrum](image)

Figure 4.15: ^1H NMR spectrum for Cp₂Mo(tsal)

Strong bands observed at 1584 and 1377 cm⁻¹ are attributed to the C=O and C-O stretching vibrations which are characteristic absorptions of the COO group [119]. The C-H stretching frequency at 3107 cm⁻¹ is indicative of the cyclopentadienyl ring and 1428 cm⁻¹ due to C-C stretching of π-bond further confirm the presence of the Cp group [119,120].
4.3.2.2 Analysis of a freshly-prepared solution of $\text{Cp}_2\text{Mo(tsal)}$ in methanol with low range method

The positive-ion ESI-MS spectrum for $\text{Cp}_2\text{Mo(tsal)}$ in methanol solution using the low range method, recorded at a capillary exit voltage of 90 V, is given in Figure 4.16.

![Figure 4.16: Positive-ion ESI mass spectrum of a freshly-prepared solution of $\text{Cp}_2\text{Mo(tsal)}$ in methanol with low range method at a capillary exit voltage of 90 V](image)

The mass spectrum contains two main peaks, with the base peak of the spectrum at m/z 381.03 assigned as $[\text{Cp}_2\text{Mo(tsal)}+\text{H}]^+$ (Figure 4.17). The second peak at m/z 757.08 is assigned as $[2(\text{Cp}_2\text{Mo(tsal)})+\text{H}]^+$ (Figure 4.18).
Figure 4.17: An isotope pattern comparison for $[\text{Cp}_2\text{Mo(tsal)}+\text{H}]^+$ (A) experimental (m/z 381.03) and (B) calculated (m/z 380.99)

Figure 4.18: An isotope pattern comparison for $[2(\text{Cp}_2\text{Mo(tsal)})+\text{H}]^+$ (A) experimental (m/z 757.08) and (B) calculated (m/z 756.96)
The positive-ion ESI-MS spectrum for Cp₂Mo(tsal) in methanol solution using the low range method, recorded at a capillary exit voltage of 150 V, is given in Figure 4.19.

![Figure 4.19: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp₂Mo(tsal) in methanol with low range method at a capillary exit voltage of 150 V](image)

As the capillary exit voltage increased to 150 V, the species in the high m/z region disappeared. As for the low capillary exit voltage, the base peak of the spectrum at m/z 381.04 is assigned as \([\text{Cp}_2\text{Mo(tsal)}+\text{H}]^+\). A grouping of low intensity species were observed at low m/z region. Of the two lower intensity ions, that at m/z 245.02 was identified as \([\text{Cp}_2\text{Mo(OH)}]^+\) (Figure 4.20). The other ion at m/z 262.99 was identified as \([\text{Cp}_2\text{Mo(OH)}_2+\text{H}]^+\) (Figure 4.21).
Figure 4.20: An isotope pattern comparison for $[\text{Cp}_2\text{Mo(OH)}]^+$ (A) experimental (m/z 245.02) and (B) calculated (m/z 244.99)

Figure 4.21: An isotope pattern comparison for $[\text{Cp}_2\text{Mo(OH)}_2\text{+H}]^+$ (A) experimental (m/z 262.99) and (B) calculated (m/z 263.00)
4.3.2.3 Analysis of a freshly-prepared solution of Cp$_2$Mo(tsal) in methanol with wide range method

The positive-ion ESI-MS spectrum for Cp$_2$Mo(tsal) in methanol solution using the wide range method, recorded at a capillary exit voltage of 90 V, is given in Figure 4.22.

![Figure 4.22](image)

Figure 4.22: Positive-ion ESI mass spectrum of a freshly-prepared solution of Cp$_2$Mo(tsal) in methanol with wide range method at a capillary exit voltage of 90 V

Same as the low range method, two major ions were observed and assigned as [Cp$_2$Mo(tsal)+H]$^+$ (m/z 380.99) and [2(Cp$_2$Mo(tsal))+H]$^+$ (m/z 756.98). An ion of low intensity at m/z 638.95 is assigned as [Cp$_2$Mo(tsal)+Cp$_2$Mo(OH)$_2$+H]$^+$ (calculated m/z 638.98) (Figure 4.23).
Figure 4.23: An isotope pattern comparison for \([\text{Cp}_2\text{Mo(tsal)}]+\text{Cp}_2\text{Mo(OH)}_2+\text{H}]^+\) (A) experimental \((m/z \, 638.95)\) and (B) calculated \((m/z \, 638.98)\)

The positive-ion ESI-MS spectrum for \(\text{Cp}_2\text{Mo(tsal)}\) in methanol solution using the wide range method, recorded at a capillary exit voltage of 150 V, is given in Figure 4.24.

Figure 4.24: Positive-ion ESI mass spectrum of a freshly-prepared solution of \(\text{Cp}_2\text{Mo(tsal)}\) in methanol with wide range method at a capillary exit voltage of 150 V
Same as using the low range method, only two major species were observed at m/z 244.98 and m/z 380.99 which are assigned as $[\text{Cp}_2\text{Mo(OH)}]^+$ and $[\text{Cp}_2\text{Mo(tsal)}+\text{H}]^+$. Larger Mo clusters which contain three or more Mo centres were not observed using the wide range method.

4.3.3 Comparison of Cp_2TiCl_2/Cp$_2$Ti(tsal) systems with Cp_2MoCl_2/Cp$_2$Mo(tsal) systems

4.3.3.1 Comparison of the ESI-MS spectra of Cp_2TiCl_2 with those of Cp_2MoCl_2

The positive-ion ESI-MS spectra for Cp_2TiCl_2 and Cp_2MoCl_2 in methanol solution using the low range method, recorded at a capillary exit voltage of 90 V are shown in Figure 4.25.

![Figure 4.25: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp_2TiCl_2 (A) and Cp_2MoCl_2 (B) in methanol with low range method at a capillary exit voltage of 90 V](image-url)
The results show that there are two main groups of ions for both mass spectra, one group of species at \(m/z \) 150-300 and the other group of species were observed at \(m/z \) 400-600. Interestingly, the major species were observed in reaction of \(\text{Cp}_2\text{TiCl}_2 \) with methanol at low \(m/z \) range without Cl group, but all the major species in \(\text{Cp}_2\text{MoCl}_2 \) mass spectrum contain a Cl ligand. At high \(m/z \) range, one Cl ligand observed for each major species in \(\text{Cp}_2\text{TiCl}_2 \) mass spectrum, but in \(\text{Cp}_2\text{MoCl}_2 \) mass spectrum each major species with two Cl ligands. This result indicates alcoholysis of the \(\text{Cp}_2\text{TiCl}_2 \) is easier than alcoholysis of \(\text{Cp}_2\text{MoCl}_2 \). Another reason Mo is softer than Ti, therefore Mo will have more affinity for slightly softer Cl than slightly harder O.

![Figure 4.26: Positive-ion ESI mass spectra of a freshly-prepared solution of \(\text{Cp}_2\text{TiCl}_2 \) (A) and \(\text{Cp}_2\text{MoCl}_2 \) (B) in methanol with low range method at a capillary exit voltage of 150 V](image-url)
As the capillary exit voltage increased to 150 V, both spectra just contain two main peaks and all the species at high m/z range disappeared (Figure 4.26). Their base peaks as for the low capillary exit voltage, at m/z 209.11 assigned as $\text{Cp}_2\text{Ti(OCH}_3\text{)}^+$ and at m/z 263.00 assigned as Cp_2MoCl^+. Also Cp_2TiH^+ ion is more significant at this voltage than Cp_2MoH^+ ion.

4.3.3.2 Comparison of $\text{Cp}_2\text{Ti(tsal)}$ system with $\text{Cp}_2\text{Mo(tsal)}$ system

The ^1H NMR and IR spectra of $\text{Cp}_2\text{Ti(tsal)}$ have been reported in the literature [92,113]. ^1H NMR spectrum of $\text{Cp}_2\text{Ti(tsal)}$ in CDCl$_3$ shows resonances in the range 7.22 ppm-8.42 ppm for protons on the benzene ring. Ten protons on the Cp rings were assigned at 6.48 ppm [92]. In $\text{Cp}_2\text{Mo(tsal)}$ case, the chemical shift range is between 7.00 ppm and 7.90 ppm for the protons on the benzene ring and protons on the Cp rings were assigned at 5.48 ppm.

The IR spectrum of $\text{Cp}_2\text{Ti(tsal)}$ showed absorption bands for Cp rings at 3050 cm$^{-1}$ (C-H stretch), 1455 cm$^{-1}$ (C-C stretch), 1015 cm$^{-1}$ (C-H bending in plane) and 825 cm$^{-1}$ (C-H bending out of plane). The strong carbonyl absorption band of the thiosalicylate ligand is observed at 1600 cm$^{-1}$ [113]. All the corresponding absorption bands also observed for $\text{Cp}_2\text{Mo(tsal)}$; a strong band at 1584 cm$^{-1}$ is from the carbonyl group of the thiosalicylate ligand. The bands at 3107 cm$^{-1}$ (C-H stretch), 1428 cm$^{-1}$ (C-C stretch), 1035 cm$^{-1}$ (C-H bending in plane) and 833 cm$^{-1}$ (C-H bending out of plane) are attributed to Cp rings.

The positive-ion ESI-MS spectra for $\text{Cp}_2\text{Ti(tsal)}$ and $\text{Cp}_2\text{Mo(tsal)}$ in methanol solution using the low range method, recorded at a capillary exit voltage of 90 V are shown in Figure 4.27.
Figure 4.27: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp₂Ti(tsal) (A) and Cp₂Mo(tsal) (B) in methanol with low range method at a capillary exit voltage of 90 V

The results show that Cp₂Mo(tsal) ESI-MS spectrum much simpler than the ESI-MS spectrum of Cp₂Ti(tsal) at capillary exit voltage of 90 V. A lot of species containing two Ti centres can be observed in the ESI mass spectrum of Cp₂Ti(tsal), but in the ESI mass spectrum of Cp₂Mo(tsal) only [M+H]⁺ and [2M+H]⁺ ions are observed, with [M+H]⁺ ion as the base peak for both spectra.
The positive-ion ESI-MS spectra for Cp₂Ti(tsal) and Cp₂Mo(tsal) in methanol solution using the low range method, recorded at a capillary exit voltage of 150 V are shown in Figure 4.28.

![Positive-ion ESI mass spectra for Cp₂Ti(tsal) and Cp₂Mo(tsal) in methanol solution using the low range method at a capillary exit voltage of 150 V](image)

Figure 4.28: Positive-ion ESI mass spectra of a freshly-prepared solution of Cp₂Ti(tsal) (A) and Cp₂Mo(tsal) (B) in methanol with low range method at a capillary exit voltage of 150 V

As for the low capillary exit voltage, more species can be observed on the ESI-MS spectrum for Cp₂Ti(tsal), the base peak is still the [M+H]⁺ ion. The larger ion
[2M+H]^+ was absent from both spectra. The major species at low m/z range containing OH groups in both spectra indicated that rapid hydrolysis of the Cp₂Ti(tsal) and Cp₂Mo(tsal) occurred.

4.4 Discussion

During this research a new complex Cp₂Mo(tsal) was synthesised by the reaction of Cp₂MoCl₂ with thiosalicylic acid and then recrystallised by the vapour diffusion method. This complex was characterised by ESI-MS, melting point, ^1^H NMR and IR spectroscopy.

The positive-ion ESI-MS spectra for Cp₂MoCl₂ and Cp₂Mo(tsal) in methanol, recorded at a range of capillary exit voltages, have identified some major species containing one or two Mo centres. Larger Mo clusters which contain three or more Mo centres were not observed using the wide range method.

In methanol at various capillary exit voltages, the ESI-MS spectra of Cp₂TiCl₂ were compared to those of Cp₂MoCl₂. This comparison showed that most species observed in Cp₂MoCl₂ ESI-MS spectra contained a Cl ligand. This results indicate that hydrolysis of the Cl ligands in Cp₂MoCl₂ is harder than that in the Cp₂TiCl₂ and the alcoholysis of the Cp₂TiCl₂ is easier than the alcoholysis of Cp₂MoCl₂. Reduction of molybdenum(IV) was not observed when increased capillary exit voltage.

A comparison of the ^1^H NMR and IR spectra of Cp₂Ti(tsal) and Cp₂Mo(tsal) showed corresponding chemical shift and absorption bands. Comparing ESI-MS behaviour of those two complexes, the results show that the ESI-MS spectra of Cp₂Mo(tsal) are much simpler than that of Cp₂Ti(tsal). Using the same capillary exit voltage, more species can be observed in the ESI-MS spectra of Cp₂Ti(tsal) which possibly means Cp₂Ti(tsal) undergoes a range of reactions and formation of adducts compared with Cp₂Mo(tsal) or Cp₂Ti(tsal) is less pure.
Chapter 5

Conclusions and recommendations for further work

Some metallocene complexes of titanium and molybdenum were investigated by ESI-MS during this research. Mass spectra of these complexes were collected in positive-ion mode with a range of capillary exit voltages, and low range and wide range methods were used. In this research Ti and Mo systems were investigated. In the future, investigation of some other metallocene complexes like Cp₂ZrCl₂, Cp₂HfCl₂ and Cp₂VCl₂ can be done to more comparisons.

Various alcohols were used as solvents to investigate the ESI-MS behaviour of Cp₂TiCl₂ and (EtCp)₂TiCl₂. The results of Cp₂TiCl₂ in methanol showed some major species like Cp₂TiH⁺, [Cp₂Ti(OCH₃)]⁺, [Cp₂Ti(OCH₃)₂+H]⁺ and [(Cp₂Ti(OCH₃)₂+H⁺)₂+Cl⁺] containing one or two Ti centres. When the capillary exit voltage was greater than 150 V, these species containing two Ti centres like [(Cp₂Ti(OCH₃)₂+H⁺)₂+Cl⁺], [Cp₂Ti₂(OCH₃)₄H⁺], [Cp₂Ti₂(OCH₃)₂Cl⁺], [Cp₂Ti₂(OCH₃)₂(OH)⁺] and [Cp₂Ti₂(OCH₃)₂(OH)₂H⁺] disappeared. Larger Ti clusters which contain three or more Ti centres were not observed. During ESI-MS analysis, reduction of titanium(IV) was observed when the capillary exit voltage was greater than 150 V. This was confirmed by the titanocene(III) species [Cp₂Ti(CH₃OH)]⁺ observed.

In the positive-ion ESI-MS spectra of Cp₂Ti(tsal), larger Ti clusters which contain two Ti centres like [Cp₂Ti(tsal)+Cp₂Ti(OCH₃)₃]⁺, [Cp₂Ti(tsal)+Cp₂Ti(OCH₃)]⁺ and [2(Cp₂Ti(tsal))+Na]⁺ were observed using the wide range method. The new complex (EtCp)₂Ti(tsal) was also synthesised and characterised by ESI-MS, elemental analysis, melting point, ¹H NMR and IR. The presence of starting material (EtCp)₂TiCl₂ was confirmed in the ¹H NMR and IR spectra. In the future, the synthesis of this complex would need to be repeated with less amount of starting material (EtCp)₂TiCl₂, which increases the molar ratio of thiosalicylic acid to (EtCp)₂TiCl₂, or by stirring the mixture longer to make sure a pure final product is obtained without the starting material. Some analogues of the major species in
Cp\textsubscript{2}Ti(tsal) mass spectra can also be observed in ESI mass spectra of (EtCp\textsubscript{2})Ti(tsal).

Cp\textsubscript{2}Ti(tsal)Cp\textsubscript{2}Ti(OH)+, Cp\textsubscript{2}Ti(tsal)Cp\textsubscript{2}Ti(OCH\textsubscript{3})+ and Cp\textsubscript{2}Ti(tsal)Cp\textsubscript{2}TiCl+ ions were observed during the investigation of the possibility of the tsal ligand bridging two Cp\textsubscript{2}Ti centres. The expected species [Cp\textsubscript{2}Ti(PhHgSC\textsubscript{6}H\textsubscript{4}COO)]+ was also observed during the investigation of Cp\textsubscript{2}Ti(tsal)’s behaviour towards the soft electrophile PhHg+ from PhHgCl. [Cp\textsubscript{2}Ti(PhHgSC\textsubscript{6}H\textsubscript{4}COO)]+ ion should be a promising target for future synthesis investigations and subsequent characterisation by NMR and IR etc.

The formation of aggregate ions with alkali metal cations were observed when investigated of presence of added alkali metal salts to Cp\textsubscript{2}Ti(tsal). Large Cs cluster [4(Cp\textsubscript{2}Ti(tsal))+Cs]+ was not observed possibly because the Cs+ ion has a low charge density.

The closely related compounds Cp\textsubscript{2}MoCl\textsubscript{2} and Cp\textsubscript{2}Mo(tsal) were also characterised by ESI-MS. Comparing ESI-MS behaviour of Ti systems and that of Mo systems, the results showed that less species were observed in Mo spectra and most of them contained a Cl ligand. Reduction was not observed in the Mo system. In the Mo system, the new complex Cp\textsubscript{2}Mo(tsal) was synthesised. It is of future interest to determine the crystal structure of complex Cp\textsubscript{2}Mo(tsal). Biological testing of complex Cp\textsubscript{2}Mo(tsal) has not yet been carried out. Therefore, determination of Cp\textsubscript{2}Mo(tsal)’s anticancer activity would be of interest in the future.

In this research, all the data were collected using positive ion ESI-MS mode, in the future negative ion ESI-MS mode can be used to investigate the reactivity of Cp\textsubscript{2}Ti(tsal) towards added fluoride ions to explore relative binding affinities of the Cp\textsubscript{2}Ti centre for tsal versus F donor ligands.

Further investigation could investigate some ligands similar to thiosalicylate ligand and how they react with Cp\textsubscript{2}TiCl\textsubscript{2}. There are similarities between thiosulfate and thiosalicylate in that both are S/O chelating ligands. The reactivity of Cp\textsubscript{2}TiCl\textsubscript{2} towards thiosulfate can be investigated in the future research.
References

[19] Ramakrishna, R. S.; Fernandopulle, M. E. Complexes of thallium(I) and thallium(III) with thiosalicylic acid (o-mercaptobenzoic acid) and salicylic acid. Journal of Inorganic and Nuclear Chemistry 1971, 33, 1940-1942.

[38] Bodini, M. E.; Del Valle, M. A. Redox chemistry and spectroscopy of 2-mercaptobenzoic acid and its manganese(II) and (III) complexes in dimethylsulphoxide. Polyhedron 1990, 9, 1181-1186.

[42] Sokolov, M.; Fyodorova, N.; Pervukhina, N.; Fedorov, V. Re(V) thiosalicylate complexes. Crystal structure of (Ph$_3$As)[ReO(SC$_6$H$_4$CO$_2$)$_2$py]·H$_2$O. Inorganic Chemistry Communications 2001, 4, 261-263.

[46] Chan, S. L.-F.; Sun, R. W.-Y.; Choi, M.-Y.; Zeng, Y.; Shek, L.; Chui, S. S.-Y.; Che, C.-M. An anti-cancer trinuclear ruthenium(III) complex with 2-

Qin, K.; Yan, Y.; Zhang, Y.; Tang, Y. Direct production of levulinic acid in high yield from cellulose: joint effect of high ion strength and microwave field. *RSC Adv.* 2016, 6, 39131-39136.

