Using paleoseismology and tephrochronology to reconstruct fault rupturing and hydrothermal activity since c. 40 ka in Taupo Rift, New Zealand

Remedy C. Loamea, Pilar Villamorb, David J. Lowea,*, Sarah D. Milicichb, Adrian Pittaria, Shaun L.L. Barkerc, Andrew Rae, Martha G. Gómez-Vasconcelose, Manuel Martinez-Martosf, William F. Riesg

a School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
b GNS Science, P.O. Box 30368, Lower Hutt, 5040, New Zealand
c School of Natural Sciences, University of Tasmania, Private Bag 79, Hobart, 7001, Australia
d GNS Science, Private Bag 2000, Taupo, 3352, New Zealand
e Cátedras CONACYT, Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
f Dpto. de Geodinámica, Universidad de Granada, 18071, Granada, Spain
g Department of Geography and Regional Research, University of Vienna, A-1010, Vienna, Austria

ARTICLE INFO

Keywords:
Tephrostratigraphy
Active normal fault
Paleoseismology
Geothermal sinter
Volcanism
Late Quaternary

ABSTRACT

The Taupo Volcanic Zone (TVZ) in North Island, New Zealand, is the on-land continuation of the Tonga-Kermadec arc formed in the Quaternary at the obliquely convergent boundary of the Pacific and Australian tectonic plates. The central TVZ is a region of intense silicic volcanism and active rifting with a very high heat flux. Within this zone is a dynamic landscape affected by a dense, active fault network, the Taupo Rift. In this rift, the Ngakuru graben hosts fossil hydrothermal systems in an area parallel to numerous active faults including the east strand of Whirinaki Fault that forms a major structure. Using various geoscientific techniques including mapping, stratigraphy, paleoseismic trenching, and tephrostratigraphy, in conjunction with LiDAR-derived DEMs, we reconstruct and date the fault’s rupture history along with hydrothermal activity (including silica-sinter development) since c. 40,000 calendar years ago (40 cal. ka) at a site near Hossack Road called “Meade”. Ages for Kawakawa (c. 25.4 cal. ka), Okareka (c. 21.8 cal. ka), Rotorua (c.15.6 cal. ka), Rotoma (c. 9.4 cal. ka), and Taupo (c. 1.7 cal. ka) tephras enabled us to date five identified fault rupture events using the Meade trench excavation. Slip rates of 2.66 ± 0.77 mm/yr (pre-Kawakawa tephra), 0.28 ± 0.04 mm/yr (between c.25.4 ka and Taupo) and 0.51 ± 0.19 mm/yr (post-Taupo), and the recurrence interval of ∼5500 cal. yr during the last c. 25.4 cal. ky, all correlate with events of similar ages determined from studies on other trenches on Whirinaki Fault. Intercalated with Tahuna tephra (c. 39.3 cal. ka) and additionally dated at c. 38.9 cal. ka using radiocarbon, the hydrothermal sinter began developing at the Meade site at c. 39 cal. ka and ceased by c. 21.8 cal. ka (marked by Okareka tephra). We examine the causative relationship between fault activity and the development of sinter by comparing the chronology of volcanic eruptions and fault rupturing events with that of sinter formation as recorded in three neighbouring sites, Mangatete, Matthews, and Fitzpatrick. The findings improve understanding of the complex rupture behaviour of faulting and provide evidence for relationships between tectonic and hydrothermal activities, which were additionally influenced by the impacts of climatic change and geomorphic processes on landscape evolution, within the late Quaternary period. The study also exemplifies the unique value of tephrochronology in helping to disentangle complex geological deposits and events in an extremely dynamic part of the Earth’s surface (the Taupo Rift).

1. Introduction

World economies are under increasing pressure to become carbon neutral, and hence interest in exploiting geothermal energy as a sustainable renewable resource, both for industrial-domestic heating purposes and for electricity power generation, is generally increasing (e.g., Adams et al., 2015; Nogrady, 2017). Focussing on the natural sustainability and life-cycle of a geothermal system leads to questions...
regarding the mechanisms for maintaining geothermal activity, and considerations about the interplay between hydrothermal activity, active faulting, and volcanism. The central Taupo Volcanic Zone (TVZ) of northern New Zealand is a region of intense volcanism and rift ing, and is a unique location for these considerations (Chambefort and Bignall, 2016 and references therein). The central TVZ consists of a rifted-arc within continental lithosphere that has formed in response to the oblique subduction of the Pacific Plate beneath North Island on the Australian Plate (Fig. 1; Wilson et al., 1995). It comprises a dynamic and rapidly evolving landscape affected by a dense active fault network, the Taupo Rift—a zone of extensional faulting superimposed on the volcanoes of the TVZ (Villamor and Berryman, 2001; Villamor et al., 2011) —with high extension rates (~7–12 mm/yr; Wallace et al., 2004), time-variable fault slip rates (Nicol et al., 2006), and rapid fault spatial migration/evolution (Villamor et al., 2017). The same region has been impacted by voluminous and very frequent silicic eruptions (Wilson et al., 2009; Leonard et al., 2010; Cole et al., 2014) and associated volcanogenic sedimentary influxes from reworking (e.g., Manville and Wilson, 2004; Manville et al., 2009). Volcanism has also undergone fast spatial evolution (Wilson et al., 2009; Cole et al., 2010; Villamor et al., 2017), indicating a variability of location of heat source (magmatism) with time. The convective heat output from geothermal systems in the central TVZ is exceptionally high at 4200 ± 500 MW (Heise et al., 2007), a heat flux comparable to that in Iceland and Yellowstone, USA (Heise et al., 2010). Several fossil silica sinter sites within the Taupo Rift (Campbell et al., 2001, 2004; Brathwaite, 2003; Kissling et al., 2018), isolated from known areas of geothermal activity, are a consequence of active geological processes. Therefore, the rapidly changing landscape in the central TVZ enhances the possibility of successfully determining the underlying natural sustainability of geothermal activity in the central TVZ and the Taupo Rift. The analysis of fossil sinter areas distributed along the study region offers the opportunity to study the interactive processes between hydrothermal activity (including sinter deposition), active faulting, and volcanism.

In this study, we determine the rupture history of the Whirinaki Fault (Canora-Catalán et al. 2008) within the Taupo Rift at a location where fossil sinter deposits have been displaced by the fault (Holland, 2000). We integrate multiple Quaternary geoscientific techniques to examine possible variability in rates of fault activity to assess whether there is a causative relationship between fault activity and sinter development. Our approach is strengthened by the extraordinarily clear geomorphic expression of active faults in the landscape. We have mapped such faults using high resolution digital elevation models (DEMs) derived from LiDAR data (e.g., Langridge et al., 2014). We use paleoseismic trenching and vibrocoring, together with fault deformation restoration techniques, to assess the number of fault rupture events and fault slip rates (e.g., Berryman et al., 2008). We apply tephrochronology, coupled with radiocarbon dating, to reconstruct and date the fault rupture history and hydrothermal activity since c. 40,000 calendar years ago at a single location (the Meade site). At this site, a number of tephras intercalated with sinter deposits have been identified using their stratigraphy, physical character, mafic mineralogy, and glass-shard compositions (e.g., Lowe et al., 2017), thus enabling their correlation with well-dated tephas elsewhere. Such application of tephrochronology is being increasingly recognised as a powerful tool for addressing a wide range of global Quaternary research problems (e.g., Lowe and Alloway, 2015; Lane et al., 2017; Lowe et al., 2017). Very few studies have used tephrochronology to date sinter previously (e.g., Campbell et al., 2004, in New Zealand; Jones et al., 2007, in Iceland), and our study is the first to use the method to constrain ages for both fault rupture and hydrothermal activity (generating sinter formation) at a single site. This integrated approach has helped us to establish potential causative relationships between sinter evolution and the landscape-modifying processes presently active in the central TVZ, including fault rupture, volcanism, and late Quaternary climate change.

Note that all ages in this paper are reported in calendar (calibrated, cal.) years before present (BP), with present taken as AD 1950, unless specified otherwise. In many instances we use the abbreviation ‘cal. ka’, meaning thousands of calendar years BP, or ‘cal. kyr’, meaning thousands of calendar years.

1.1. Tectonic setting and paleoseismicity

The Meade trench site at Hossack Road is located within the Ngaru Graben in the Taupo Rift (Villamor et al., 2011; Fig. 1). The earthquake activity of the Taupo Rift is characterised by small to moderate size earthquake swarms (Hurst et al., 2008), as well as moderate to large earthquakes with a typical main shock-aftershock sequence (e.g., Beanland et al., 1989). Seismicity occurs within a thinned seismogenic crust of 8 km thickness (Bryan et al., 1999; Reynolds et al., 2007). The largest historic earthquake had a magnitude of Mw 6.3 (1987 Edgecumbe Earthquake; Beanland et al., 1989), and paleoseismic studies suggest that earthquakes could be as large as Mw 7.0 (Berryman et al., 2008; Canora-Catalán et al. 2008).

The Ngaru Graben is a 14-km-wide structure formed by active faults which mainly strike 040° (Fig. 1A and E). As faults approach the Okataina caldera margin to the northeast, the strike bends to 060° (Fig. 1B) (Villamor et al., 2011). These normal faults displace late Quaternary pyroclastic fall and flow deposits and reworked volcanogenic sediments (Nairn, 2002). Several studies have examined fault activity in the Ngaru Graben to inform earthquake hazard assessment (Berryman et al., 2008; Canora-Catalán et al. 2008) and provide data on fault behaviour (i.e., slip rate, size, and recurrence interval variability; e.g., Nicol et al., 2009). Villamor et al. (2011) examined relationships between the timing of fault rupture within the Ngaru Graben and eruptive episodes in the Okataina Volcanic Centre (OVC) (see Fig. 13, below), using tephrostratigraphy to constrain fault timing. They concluded that faulting in the Ngaru Graben is mainly tectonic, whereas dike intrusion (with minor tectonic faulting) dominates the OVC itself.
However, dike intrusion plays a role within the Ngakuru Graben in only some cases, notably at sites < 5 km from volcanic vents. Villamor et al. (2011) also suggested that near-failure faults may have been triggered to rupture by magmatic activity in the area through static stress transfer.

1.2. Whirinaki Fault

The Whirinaki Fault is a north-east-trending, north-west-dipping normal fault on the eastern flank of the Ngakuru Graben (Fig. 1A). Canora-Catalán et al. (2008) described the fault as consisting of two segments, east and west (the latter segment was previously named Puaiti Fault; e.g., Villamor and Berryman, 2001), that merge in depth, which allows for both segments to also rupture together.

Fault single-event displacements vary from 0.2 to 4 m over the past c. 25,400 cal. years, with the overall slip rate increasing from 0.3 mm/yr to 1.3 mm/yr and the rupture recurrence interval decreasing in the last 2000 years (Canora-Catalán et al. 2008). The displacement rates on the Whirinaki Fault, south of the Hossack Road area, have varied over the past 18,000 cal. years, with a range of 0.1–3.6 mm/yr (Canora-Catalán et al. 2008).

In our study area (the Meade site, Figs. 1B and 2A), the Whirinaki Fault displaces thick deposits of the Ohakuri Formation and an overlying sequence of late Quaternary tephras (described below) derived from multiple rhyolitic volcanic eruptions in the central TVZ. The abundance of correlatable tephras of known ages allows for relatively good constraints on fault rupture events because the ‘soft’ pyroclastic deposits were deformed then covered by further deposits, usually preserving evidence of rupture. At the Meade site, detailed tephra identification was aided by mineralogical and geochemical data because several of the individual tephra layers found in this area were difficult to identify in the field with certainty.

1.3. Paleohydrothermal features

Siliceous sinters are surface features typically associated with geothermal systems that occur as aprons around hot springs and geysers, and form by precipitation of non-crystalline opal-A as silica-

Fig. 1. Location of the study area in central North Island, New Zealand, and newly mapped main faults. A DEM of part of the Ngakuru Graben and location of the Meade trench and sinter of this study, and the locations of the Fitzpatrick and Matthews trenches of Canora-Catalán et al. (2008). Locations of the Mangatete sinters (Drake et al., 2014), and the Otamakokore sinters (Holland 2000), are also shown. B Location of the Meade trench and sinter and ages (cal. yr BP) with detail of local faults. C Location of the Fitzpatrick trench (from Canora-Catalán et al. 2008) and ages (cal. yr BP) of the Mangatete sinters (from Drake et al., 2014) with local fault detail. D New Zealand general plate tectonic setting (after Leonard et al., 2010) and location of the Taupo Volcanic Zone (TVZ; Wilson et al., 1995). E Context map of the study area (the orange box represents Fig. 1A) within the Taupo Volcanic Zone. The Taupo Rift delineation is from Moshopoulou et al. (2007); the locations of the Okataina (OVC) and Kapenga (KVC) volcanic centres are from Cole et al. (2014; see also Fig. 13, below). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
oversaturated geothermal fluids are discharged and cooled at the
ground surface (Preston et al., 2008). On the west strand of the Whir-
inaki Fault, ~3 km southwest of the Meade site (Fig. 1), sinters at
Mangatete (near Fitzpatrick site, Fig. 1A and C), c. 36 to 3 cal. ka in age,
are exposed on terraces at different elevations, and in association with a
debris-flow breccia and hydrothermal-eruption breccias (Drake et al.,
2014). The Mangatete sinters exhibit a variety of lithofacies indicative
of a range of paleoenvironments and fluid types. Drake et al. (2014)
proposed that paleohydrothermal activity in the Ngakuru Graben is
related to enhanced permeability caused by faulting, as well as mag-
matism, during the past c. 60 cal. kyr.
Holland (2000) mapped and sampled several siliceous sinter de-
posits in the area around Hossack Road, namely the Omatokore
sinters (Fig. 1A). These were tentatively dated to between 160 ka and
60 cal ka based on the stratigraphic juxtapositions of the Ohakuri
Formation and (purportedly) Kawakawa tephra. We note that the age of
‘60 ka’ as reported is inconsistent with the age of c. 25.4 cal. ka that
should normally be associated with Kawakawa tephra, assuming it was
correctly identified by Holland (2000) (alternatively, the age may be
approximately correct but pertains to an occurrence of Rotoiti tephra,
now dated at c. 50 cal. ka).
Sinters observed at the Meade site appeared to be similar to some of
the types found at Mangatete. Sinter units from the trench, the focus of
our study, have thin, wavy grey laminae (Fig. 3A and B) and round,
pore-like structures frequently containing infilled material in a con-
centric radial pattern. These resemble the domal stromatolitic type of
sinter described by Drake et al. (2014) that are inferred to have formed
from near-neutral-pH alkali chloride springs in a mid-apron pool of at
least 1 m depth and at temperatures of ~45–55 °C. Sinters exposed in
an outcrop on the shoulder-slope of a hill ~410 m above sea level and

Fig. 2. A Location of the Meade trench in relation to the surrounding landscape depicted using a DEM. Main streams and drainage systems are shown in blue, faults in
red. B LiDAR-derived DEM showing location of the Whirinaki Fault (red line), sinter outcrops, and positions of topographic profiles (2x exaggeration) across the
hillside outcrop and trench. C Topographic profiles A−A′ and B−B′. The profiles also show an abbreviated stratigraphy at the hilltop shoulder-slope (near A′) and in
the trench. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

∼50 m northwest of the trench show similarities with the plant-rich
sinters described by Drake et al. (2014), containing many twigs and
silicified reeds in random to subparallel orientations (Fig. 3C).

2. Methods

2.1. Active fault mapping

Previous fault mapping relied on vintage (1940–1965) aerial
photography and field measurements (Canora-Catalán et al., 2008; Villamor
et al., 2010). Our study improves upon the earlier mapping by in-
tegrating more precise fault locations as well as identifying new faults
and fault strands by using a high-resolution DEM. The bare-earth DEM,
cell size 2 m, was calculated from ground returns collected during an
aerial LiDAR survey commissioned by the Bay of Plenty Regional
Council as part of the BOPLASS project 2010 (BOPLASS, 2013). The
DEM and derived products (e.g., hillshade and slope models) were vi-
sually analysed in a GIS and the location of active traces of the Whir-
inaki Fault identified, reviewed, and mapped from their geomorphic
expression, i.e., the identification of fault scarps that displace young
landscape surfaces. In this case, the Whirinaki Fault displaces forma-
tions and surfaces with ages ranging from c. 240 ka to 1.7 cal ka (Nairn,
2002; Leonard et al., 2010).

2.2. Paleoseismic trenching

A north-west–south-east aligned double-bench style paleoseismic
trench was excavated across the north section of the east strand of the
Whirinaki Fault on the Meade property on Hossack Road, Ngakuru
(Fig. 1B), at grid reference U16/1884881, 5754914 (New Zealand
Transverse Mercator). The trench measured 23 m in length, 5 m in
width, and 3 m in depth, with benches up to 1.5 m deep at the deepest
end. Two cores, 1.2 m and 1.1 m long, were extracted using a vibrocorer
from below the floor of the trench on either side of the exposed fault to
examine the sub-trench stratigraphy. The stratigraphy and deformation
in the trench, including the superpositions and physical properties of
tephras and buried soils, were described, measured, and logged onto
drafting paper using a 1 × 1 m reference grid. Further detail on the
methods associated with paleoseismic trenching is available in
McCalpin (2009).

2.3. Tephra sampling/processing, ferromagnesian mineralogy, and electron
microprobe analysis of glass shards

After the trench walls were cleaned back to expose a fresh face,
samples of tephra deposits were taken from the upper and lower parts
of each unit. Each sample was wet sieved and the 63–250 μm fraction
retained. Vertical and tilted Franz electromagnetic separators were used
to isolate ferromagnesian minerals from volcanic glass shards and felsic
minerals (Froggatt and Gosson, 1982). To examine ferromagnesian
mineralogical assemblages, temporary mounts were made using well-
ed (dual cavity) slides, with loose ferromagnesian mineral grains (crystals)
suspended in clove oil. The minerals were identified on the basis of
their optical properties under a polarizing microscope, counted, and
tabulated for later comparison.

The glass shards were mounted in resin blocks, polished, and coated
in carbon prior to their analysis for major elemental composition (the
procedure is described in Lowe, 2011; Hall and Hayward, 2014).
Electron probe microanalysis (EPMA) was conducted using the JEOL
JXA-8200 SuperProbe at Victoria University of Wellington, operating
with a beam diameter of 10 μm, beam voltage of 15 kV, and probe
current of 8 Å, with asynchronous measurement and ZAF correction on
oxides. Peak and background count times for each element were 30 s and
15 s, respectively, except for Na, for which peak and background
count times were each 10 s (Kuehn et al., 2011; Pearce et al., 2014). The
standards used were ATHO-G rhyolitic glass (Jochum et al., 2006) and
VG-568 rhyolitic glass (Jarosewich et al., 1980). Typically, at least 20
shards were analysed from each tephra sample. The resultant glass
analyses, reported as oxides, were normalised (following Lowe et al.,
2017) in Excel and plotted using GCDkit 4.1, an open-source software
package written in R language for use in igneous petrology (Janoušek
et al., 2006, 2011).
2.4. Radiocarbon dating

Silica sinter at \(\sim 5\text{ m depth} \) in the outcrop on the shoulder of the hill adjacent to the trench was sampled and dated using accelerator mass spectrometry after various pre-treatments. Four samples of sinter were soaked in hydrogen peroxide to oxidize exterior organic contamination and then washed with distilled water. These samples were crushed and treated with hot hydrochloric acid (10%), then washed three times with distilled water. The samples were then digested in hydrofluoric acid (50%) and allowed to sit for several days, fresh hydrofluoric acid being added as required. The dissolved residue was washed three times with hot hydrochloric acid (10%), then twice with distilled water, before being centrifuged and filtered at 155 μm. Almost all material went through the 155 μm sieve. The > 155 μm material was examined under a microscope, seen to comprise colourless quartz grains, and hence was discarded. The < 155 μm material was sieved at 6 μm, with the < 6 μm material discarded, and the > 6 μm material collected in centrifuge tubes. Sodium polytungstate with a density of 1.9 g/ml was used to separate minerals and float plant material. The collected plant material was checked under a microscope and found to contain some pollen and plant cell wall material. This plant microfossil material was photographed and loaded into a combustion tube and combusted to CO\(_2\) in evacuated quartz tubes with copper oxide and silver wire. The carbon content of the combusted fractions from each of these sinters was > 40%, confirming that the primary component in the fractions was cellulose. The CO\(_2\) was reduced with H\(_2\) over an iron catalyst and the resulting graphite was analysed in the EN tandem accelerator at the Rafter Radiocarbon Laboratory at GNS Science's National Isotope Centre, Lower Hutt, New Zealand.

2.5. Trench restoration

The deformation observed on the faults in the trench was restored in a similar fashion to that described by Villamor and Berryman (2006) and Berryman et al. (2008). Trench restoration is a form of analysis which involves removing the deformation produced by each rupture event consecutively. The method includes removing the slip along the fault and possible drag folding to juxtapose the same unit across the fault. Because of erosion of the footwall and mantling of tephra-fall deposits in between rupturing events, the original layers do not tend to be horizontal. It is thus important to reconstruct the original thickness and geometry of each stratigraphic unit. The restoration is undertaken in stages (for each rupturing event) and the amount of displacement and degree of unit rotation is recorded as the analysis progresses. Restoration can be used to calculate the single event displacement (henceforth SED) associated with each event and its timing. In volcanic regions, it can also be used to assess time associations between volcanic events, fault rupture events, and, in our case, hydrothermal events that generated silica sinter.

In a previous study on the Whirinaki Fault, Canora-Catalán et al. (2008) used trench restoration to obtain estimates for the SEDs, recurrence intervals, and slip rates on two individual fault strands: the south section of the eastern strand (Matthews trench) and the north section of the western strand (Fitzpatrick trench) (Fig. 1). Adobe Illustrator was used to perform the detailed graphical restoration of deformation in the Meade trench, following protocols given in the data supplements of Villamor and Berryman (2006) and Villamor et al. (2011) and from Berryman et al. (2008). Each step of the restoration was recorded, including the number of events restored, the active fault planes on which the deformation occurred, the amount of deformation associated with each event restored (a SED), and the timing of the event as determined by the ages for the bracketing tephra deposits. Uncertainties of the SED estimates are based on the range of displacement needed for restoration that still match the original scarp pre-event. For well-defined layer contacts, and based on the technique used to produce the trench log (manual grid) and the scale of the map (1: 20), the error value is \(\sim 0.2\text{ m} \).

2.6. Fault parameters: slip rate and rupture recurrence interval

Fault slip rate has been produced by accumulating SEDs from individual fault restorations and the age of the restored units (together with their respective uncertainties). The slip rates are visualised in displacement/time plots and compared with those from other trenches on the Whirinaki Fault.

The average recurrence interval of ruptures (\(T \)) is calculated using the formula

\[
T = N/n
\]

where \(N \) is the number of years in the time period in question, and \(n \) is the number of rupture events recorded within that timeframe. Recurrence intervals have also been estimated as the time in between individual events for the event history in the trench.

3. Results

3.1. Active fault traces of the Whirinaki Fault

The new mapping of the Whirinaki Fault (Fig. 1) does not differ dramatically from that of Canora-Catalán et al. (2008). However, it does provide more detail to spatially relate the paleohydrothermal features to different parts of the fault. The western and eastern strands of the fault are 1 km apart at the surface, except in the vicinity of the Matthews trench where they are separated by only 200 m. North of the Matthews trench (sited on the western fault strand; Canora-Catalán et al. 2008), the western strand strikes 035° and dips to the northeast. The Mangatete sinters and the Fitzpatrick trench of Canora-Catalán et al. (2008) are located on the eastern strand (Fig. 1C). The eastern fault strand strikes at \(\sim 045° \) (a typical strike for this part of the rift) and has a northwest dip up to 200 m south of the Meade site. At that location the strike changes to 060° and the fault splays into two faults that form a narrow graben. The Meade trench (this study) and fossil sinter deposits are located on the northeast splay within the narrow graben, on the fault from the splay that dips southeast (Fig. 1B).

3.2. The Meade site

The Meade site is located in hilly land 15 km south of the currently active OVC (Fig. 3). The hills are underlain by 240-ka-old ignimbrite of the Ohakuri Formation, which was erupted from Ohakuri Caldera (Gravley et al., 2006, 2007; Leonard et al., 2010; see also Fig. 13, below). The fossil sinter studied here is exposed on a farm track close to the top of one of the hills (point A in Fig. 2B) on the upthrown side of the fault, and \(\sim 8-12\text{ m} \) above the valley floor. A small hill in the downthrown side has restricted exposures of sinter that we assume to be correlative to the sinter studied here (Point A’ in Fig. 2B). The trench was sited across the fault and on the valley floor where the escarp, approximately 5.5 m high, was of an appropriate height for excavation of paleoseismic trenches. Fossil sinter was also exposed in the trench (see below).

Near the Meade trench, an exploration mineral well (TH1; Fig. 1B) was drilled in 1988 to investigate the fossil hydrothermal system at this location (Alder and Sharp, 1988). A hydrothermal vent breccia \(\sim 40\text{ m} \) thick is intersected by the drillhole, over lain by a disrupted sinter sheet.

3.3. Tephra identification in the Meade trench

Tephra correlations were determined largely based on a combination of stratigraphic position, physical properties, ferromagnesian mineralogical assemblages, and glass-shard major element compositions (Lawe, 2011). However, neither Kaharoa nor Taupo tephas was analysed geochemically because their distinctive physical properties and
their surface or near-surface positions, respectively, meant they could be easily identified with confidence in the field. Furthermore, Kaharoa pumice clasts contained biotite (identifiable in the field), a key marker mineral associated with this tephra (Lowe et al., 1998, 2008; Nairn, 2002).

The dominance of pyroxene in Taupo tephra, and the presence of cummingtonite in Rotoma Tephra and of biotite in Rotorua and Okareka tephras, are consistent with previous ferromagnesian mineralogical data associated with these tephras (Table 1; Lowe et al., 2008). In addition, the major element glass compositions for the Rotoma, Rotorua, and Okareka tephras at Meade trench (Fig. 4) essentially match those reported for the same tephras by Lowe et al. (2008), indicating that they are correlative. That each of these three tephras has probably derived from more than one magma type (e.g., see Smith et al., 2005; Lowe et al., 2008; Shane et al., 2008) is evident in the glass-shard major element data presented here. For example, the analyses of glass from Rotorua tephra plot in two distinct populations (Fig. 4C and D), indicating that this tephra at Meade trench comprises eruptives of both magma types and thus probably represents their intermingling (Smith et al., 2004; Loame, 2016).

3.4. General stratigraphy and ages of the Meade trench

The generalised stratigraphy of the trench units, including ages, is presented in Fig. 5. It comprises, from top to bottom, Kaharoa, Taupo, Rotoma, Rotorua, and Okareka tephras overlying domalstromatolitic sinter, volcanogenic sediments (denoted as Hinuera Formation), an older domalstromatolitic sinter, and variably-weathered ignimbrite of the Ohakuri Formation. The tephras have well-established ages derived from dendrochronology and radiocarbon dating using both wiggle-matching and Bayesian age-depth modelling (Table 2). The Hinuera Formation in the region generally comprises laminated, commonly cross-bedded fluvial sands and gravels dominated by clasts of pumice and ash together with felsic crystals and rhyolite lithics, the younger part of the formation being derived predominantly from reworking of the Oruanui Formation (Vucetich and Pullar, 1969; Manville and Wilson, 2004; Leonard et al., 2010), equivalent in age to Kawakawa tephra, aged c. 25,400 cal. yr BP (Vandergoes et al., 2013). We suggest therefore that an age between c. 25.4 cal. ka and c. 21.8 cal. ka very likely applies to the Hinuera Formation sediments and the encompassing sinter evidences in the Meade trench (Fig. 5). On this basis, there is an unconformity, probably erosional, between the lowermost sinter and the ignimbrite of the Ohakuri Formation.

Soil horizon development was evident in the upper parts of the tephras (Fig. 5). These now-buried horizons (recorded as paleosols: Lowe and Palmer, 2005) are paraconformities that represent volcanic quiescence.

3.5. Detailed stratigraphic and structural architecture of the Meade trench

In the northern part of the trench (footwall), there is a succession of weakly weathered late Quaternary-age tephras (Okareka, Rotorua, Rotoma) overlying volcanogenic sediments of the Hinuera Formation and/or the Ohakuri Formation (Figs. 5 and 6, and Fig. S1 in Supplementary data). Thin deposits of Taupo lapilli (equivalent to subunit Y5 of Wilson, 1993) and Rotongaio ash (subunit Y4) (collectively referred to as Taupo tephra; see Wilson and Walker, 1985; Froggatt and Lowe, 1990), and Kaharoa tephra, cap the sequence.

In the southern part of the trench (hanging wall), the Taupo tephra is dominant, with up to 2.5 m of (non-welded) Taupo ignimbrite (subunit Y7 of Wilson, 1985, 1993) exposed in the deepest part of the trench and only relatively thin (< 0.5 m) late Quaternary tephras that include Okareka and Rotorua tephras. Cores taken from the deepest part of the trench showed reduced thicknesses of late Quaternary tephras (mainly Okareka and Rotorua) and, at the base, c. 0.5 m of fine to medium sandy deposits uncorrelatable with other units observed in the trench.

Fault deformation is visible in the trench, affecting all of the deposits from the Ohakuri Formation to Taupo tephra. Deposits younger than Taupo are not faulted. Close to the midpoint of the trench, and more prominent on the southwest wall, are siliceous sinters and a highly mixed zone of brecciated and sheared materials, much of which comprises fragments of siliceous sinter (Fig. 7) sheared upwards along the hanging wall of the fault plane. The fault associated with the shear zone has a strike/dip of 025/69 northwest, whereas most of the other faults and fractures along the southwest wall close to the shear zone are dipping to the southeast in the opposite direction and have a strike greater than 040°.

3.6. Contrasting stratigraphy of deposits in section on adjacent hill and their chronology

The section on the shoulder-slope of the adjacent hill comprises a sequence of tephra layers, including five additional to those identified in the trench, namely Kawakawa, Pohipihi, Hauparu, Te Mahoe, and Tahuna tephras, together with one uncorrelated tephra, siliceous sinters, and other deposits and paleosols (Fig. 8; sources of ages are in Table 2). Most of these older tephras were identified using the same criteria used to correlate the tephras in the Meade trench (Loame, 2016). The pink pumice clasts (Hauparu) and the accretionary lapilli and abundant lithics (Te Mahoe) are key diagnostic physical properties for these two tephras (Jurado-Chichay and Walker, 2000; Shane et al., 2005). Although not used for reconstructing the history of fault rupturing, the older tephras provide chronological constraints for sinter development on the hill, especially the Tahuna tephra, which is interbedded with sinter (Fig. 8). The identification of the Tahuna tephra in the hill section was therefore especially important, with selected major elements in glass shards showing they closely matched equivalent analyses for this tephra reported in the literature (Fig. 4G and H), thus confirming its correlation.

The mean age on the entrained plant material collected from within the sinter at ~5 m-depth is 34,360 ± 460 14C yr BP (NZA33105), calibrated at 95% probability range to 38,870 ± 1106 cal. yr BP using SHCAL13 (Hogg et al., 2013). This age, on material immediately above Tahuna tephra, is consistent with a previous age of 39,268 ± 2386 cal yr BP (n = 2) reported by Molloy et al. (2009) for Tahuna tephra in Auckland maar deposits (cf. somewhat younger ages derived from optical dating reported by Lian and Shane, 2000). In turn, the presence of Te Mahoe tephra (c. 36.7 cal. ka) and Hauparu tephra
Using tephra layers and other features as tie points, we have correlated some of the stratigraphic units exposed in the hill section with those in the fault footwall at the trench site (Fig. 9).

3.7. Trench restoration

The progressive displacement in the southwest wall of the trench is displayed in Fig. 10. Four occurrences of SEDs were recorded and designated as Meade-Hossack events (MH1 to 4, from younger to older) (Table 3). Note that although we are naming these as SEDs, some of them could be produced by more than one rupture (see more discussion below). MH1 resulted in an SED of 0.55 m, occurring after Taupō tephra (c. 1.7 cal. ka) and before Kaharoa tephra (Fig. 10B). MH2 resulted in an SED of 0.85 m, occurring after Rotoma tephra (c. 9.4 cal. ka) and before Taupō tephra (Fig. 10C). MH3 resulted in an SED of 1.2 m, occurring after Rotorua tephra (c. 15.6 cal. ka) and before Rotoma tephra (Fig. 10D). MH4 resulted in an SED of 2.4 m, occurring after the deposition of Hinuera Formation sediments (< c. 25.4 cal. ka) and before deposition of the Okareka tephra (c. 21.8 cal. ka). A fifth event, MH5, was observed but is too poorly constrained to be useful, occurring between the deposition of Ohakuri Formation (c. 240 ka) and the Hinuera Formation, and the displacement is difficult to measure because the base of the Ohakuri Formation is not visible and therefore cannot be restored. However, we have been able to measure the geomorphic offset of the sinter on the shoulder-slope of the adjacent hill (hilltop sinter; c. 25–28 cal. ka) with a displacement of ~8.2 m (Fig. 2C; Table 3).

3.8. Slip rates

The slip rates for the Whirinaki Fault estimated for the Meade site are shown in Fig. 11, along with comparative data pertaining to the Matthews and Fitzpatrick trenches, and in Table 3. A uniform probability distribution has been assumed when dealing with uncertainties. The slip rates for the different time periods are based on incremental displacement and the constraining ages for each event (each displacement increment is an event). Slip rates were calculated for each increment in displacement and we used the constraining ages for this displacement. For example, MH3 uses the mean ages of the constraining Rotorua and Rotoma tephas, at 15.6 and 9.4 cal. ka, respectively. The displacement for this event is 1.2 m, giving a mean slip rate of 0.097 ± 0.016 mm/yr.

If our assumption of the age of the geomorphic surface on the downthrown side of the hill is correct, the fault slip rate is in the range of ~2.6–0.1 mm/yr for the time span between the sinter in the outcrop at the top of the hill (c. 28.4 cal. ka) and that of Okareka tephra (c. 21.8 cal. ka). The age for the Hinuera Formation involved in ~4 m of displacement (cumulative for four events) in the Meade trench is uncertain as we do not have an age for the base of the Hinuera Formation exposed in the trench. However, it is probable that the valley incision, and subsequent deposition of Hinuera Formation, occurred after the sinter on the hillside ceased precipitating because it would likely be hydrologically more difficult for sinter to be deposited on the hillside (backslope) if the valley existed (although we acknowledge this is an assumption, cf. Rimstidt and Cole, 1983). Therefore, we have used the youngest age of Hinuera Formation suggested for this area (i.e., younger than Kawakawa tephra, which is c. 25.4 cal. ka). From the time of deposition of the Okareka tephra (c. 21.8 cal. ka) to deposition of Taupo tephra (c. 1.7 cal. ka), the slip rate seems to decrease to values of ~0.1–0.6 mm/yr. The slip rate from the present to Taupo tephra time is not representative because the earthquake cycle is incomplete.

The mean long-term slip rate for the Whirinaki Fault at the Meade trench for the late Quaternary (i.e., since the end of deposition of the
Trench restorations for the Meade trench are better constrained for the last three events, MH1 to MH3 (Fig. 10B, C, and D) than for the older event (MH4, Fig. 10E). However, constraining the inter-seismic interval (or time between consecutive rupturing events) is difficult because, in the Meade trench, the bracketing ages (derived from the known tephra ages, which are expressed as 95%-probability ranges; Table 2) for the events are the same for the youngest possible age of one event and the oldest of the next event in most cases. In these cases, the events could have occurred close in time (just before and after the bracketing tephra) or with a large inter-seismic interval. Maximum inter-seismic intervals are 8,923 years for interval between MH1 and MH2, 14,339 years for interval between MH2 and MH3, and 16,217 years for interval between MH3 and MH4. These intervals are estimated using the oldest likely age of the earlier event and youngest likely age of the later event (e.g., the maximum inter-seismic interval for MH1-MH2 is calculated using the youngest age for Kaharoa tephra and the oldest age for Rotoma tephra). Only for the inter-seismic interval MH3-MH4 can we calculate a minimum value of 5,521 years. It is important to note that if one of the inter-seismic intervals were to have one of the maximum values above, the other intervals would need to be smaller, and thus the recurrence intervals will vary in time. A large SED of 2.4 m for MH4 suggests that the displacement is likely to have been accommodated in more than one event. In that case, the inter-seismic interval between the “two MH4 events” could be of a maximum of 3,000 to 4,000 years. Another way to look at the rupture recurrence interval is through an average value. In this scenario, for the period since ∼25,520 (oldest likely age of Kawakawa tephra), average values of 6,380 years (for 4 events) or 5,100 years (for 5 events) are able to be calculated.

4. Discussion

A summary of events of the past c. 40,000 cal.years is presented in Fig. 12, along with comparisons with other rupture events from the Matthews and Fitzpatrick trenches on the southeast section of the west strand of the Whirinaki Fault studied by Canora-Catalán et al. (2008). Included on the summary diagram, which is based on the tephr stratigraphic framework we have developed, are some of the sinter emplacement intervals observed in the trench and on the upper hillside outcrop at the Meade site, and sinter emplacement intervals on the west strand of the Whirinaki Fault derived from Drake et al. (2014). MHS has been excluded from the summary figure because of poor temporal constraint (> c. 25.4 cal ka, < c. 240 ka).

Table 2

<table>
<thead>
<tr>
<th>Tephra or ignimbrite and source volcano)</th>
<th>Calibrated age (cal. yr BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabaroa Tephra (OVC)</td>
<td>636 ± 12</td>
</tr>
<tr>
<td>Taupo Tephra (TVC)</td>
<td>1718 ± 10</td>
</tr>
<tr>
<td>Rotoma Tephra (OVC)</td>
<td>9423 ± 120</td>
</tr>
<tr>
<td>Rotoma Tephra (OVC)</td>
<td>15,635 ± 412</td>
</tr>
<tr>
<td>Okareka Tephra (OVC)</td>
<td>21,858 ± 290</td>
</tr>
<tr>
<td>Kawakawa Tephra (TVC)</td>
<td>25,358 ± 162</td>
</tr>
<tr>
<td>Pohihi Tephra (TVC)</td>
<td>28,446 ± 670</td>
</tr>
<tr>
<td>Haupuru Tephra (Unit F, Ms5g) (OVC)</td>
<td>c. 36,100</td>
</tr>
<tr>
<td>Te Mahoe (Unit E, Ms5g) (OVC)</td>
<td>c. 36,700</td>
</tr>
<tr>
<td>Tahuna Tephra (TVC)</td>
<td>39,268 ± 2386</td>
</tr>
<tr>
<td>Ohakuri Formation (OHC)</td>
<td>c. 240,000</td>
</tr>
</tbody>
</table>

* OVC, Okataina Volcanic Centre; TVC, Taupo Volcanic Centre; OHC, Ohakuri caldera (after Leonard et al., 2010).
* Radiocarbon wiggle-match calendrical date (on tree-ring sequence) of 1314 ± 12 AD (95% probability range, PR) from Hogg et al. (2003).
* Radiocarbon wiggle-match calendrical date (on tree-ring sequence) of 232 ± 10 AD (95% PR) from Hogg et al. (2012).
* Radiocarbon wiggle-match calendrical date (on tree-ring sequence) of 31,720 ± 37014Cyr BP on Te Mahoe tephra. Calibrating this age using OxCal v4.3.2 (Bronk Ramsey, 2009) and SHCal13 (Hogg et al., 2013) gave an age of 35,975 ± 746 cal yr BP (95% PR). Two imprecise radiocarbon ages on Haupuru tephra, of limited value, are reported in McGlone et al. (1994) and Froggatt and Lowe (1990).
* Radiocarbon wiggle-match calendrical date (on tree-ring sequence) of 31,720 ± 37014Cyr BP on Te Mahoe tephra. Calibrating this age using OxCal v4.3.2 (Bronk Ramsey, 2009) and SHCal13 (Hogg et al., 2013) gave an age of 35,975 ± 746 cal yr BP (95% PR). Two imprecise radiocarbon ages on Haupuru tephra, of limited value, are reported in McGlone et al. (1994) and Froggatt and Lowe (1990).
* Radiocarbon wiggle-match calendrical date (on tree-ring sequence) of 31,720 ± 37014Cyr BP on Te Mahoe tephra. Calibrating this age using OxCal v4.3.2 (Bronk Ramsey, 2009) and SHCal13 (Hogg et al., 2013) gave an age of 35,975 ± 746 cal yr BP (95% PR). Two imprecise radiocarbon ages on Haupuru tephra, of limited value, are reported in McGlone et al. (1994) and Froggatt and Lowe (1990).
* Radiocarbon wiggle-match calendrical date (on tree-ring sequence) of 31,720 ± 37014Cyr BP on Te Mahoe tephra. Calibrating this age using OxCal v4.3.2 (Bronk Ramsey, 2009) and SHCal13 (Hogg et al., 2013) gave an age of 35,975 ± 746 cal yr BP (95% PR). Two imprecise radiocarbon ages on Haupuru tephra, of limited value, are reported in McGlone et al. (1994) and Froggatt and Lowe (1990).
* Radiocarbon wiggle-match calendrical date (on tree-ring sequence) of 31,720 ± 37014Cyr BP on Te Mahoe tephra. Calibrating this age using OxCal v4.3.2 (Bronk Ramsey, 2009) and SHCal13 (Hogg et al., 2013) gave an age of 35,975 ± 746 cal yr BP (95% PR). Two imprecise radiocarbon ages on Haupuru tephra, of limited value, are reported in McGlone et al. (1994) and Froggatt and Lowe (1990).
* Radiocarbon wiggle-match calendrical date (on tree-ring sequence) of 31,720 ± 37014Cyr BP on Te Mahoe tephra. Calibrating this age using OxCal v4.3.2 (Bronk Ramsey, 2009) and SHCal13 (Hogg et al., 2013) gave an age of 35,975 ± 746 cal yr BP (95% PR). Two imprecise radiocarbon ages on Haupuru tephra, of limited value, are reported in McGlone et al. (1994) and Froggatt and Lowe (1990).
The timing of ruptures in these two trenches temporally coincide for the period between the Kawakawa and Rotoma tephras (Fig. 12; events MH3-M3 and MH4-M4; note that the large SED for event 4 in both trenches is likely to represent more than one event). However, they do not seem to coincide during the period from the time of the Rotoma eruption to the present (events 1 and 2 on both trenches). A possible explanation for the lack of correlation is that rupture of the Whirinaki Fault western strand (Fitzpatrick trench) was transferred to the northern part of the eastern strand (Meade trench) through east-west traces during the most recent period but not to the southern parts (Matthews trench), or that the rupture at Meade trench connected to ruptures farther north (on other faults). Alternatively, ruptures might extend from the Matthews site to the eastern strand of the Whirinaki Fault close to the Meade site, rupturing the southern fault strand of the narrow graben at Hossack Road (Figs. 1B and 2), but this strand has not yet been trenched.

The comparison of event timing from the different trenches on the Whirinaki Fault is short of more trenching studies, but we can suggest that defining permanent rupture segment boundaries for faults on this part of the Taupo Rift (as have been defined in the National Seismic Hazard Model; Stirling et al. 2012) may not fully represent fault behaviour (fault rupture length may vary from event to event). In this region, single event displacements are variable for the same trench site (this study; Berryman et al., 2008; Canora-Catalán et al. 2008; Nicol et al., 2009), supporting the idea that a fault may also rupture with different lengths (and thus different magnitudes). Berryman et al. (2008) have also demonstrated that rupture of a fault that splays into multiple traces on the surface can be apparently random in terms of which traces ruptured during each event. Moreover, the complexity (e.g., presence of small transfer faults, fault splays), and the strong physical connectivity of the fault traces that is expressed by the fault map (Fig. 1), could suggest that it is hard to predict which sections of faults may rupture together (i.e., it is difficult to define rupture boundaries).

Despite these limitations, we conclude that it is very probable that some ruptures (e.g., MH3-M3 and MH4-M4) along the Whirinaki Fault may extend to the Meade trench as modelled by Canora-Catalán et al. (2008). The combined fault rupture history also suggests that the western fault strand seems to have been more active (four events and a total of 3.4 m of displacement) since the Rotoma eruption, while the eastern strand has been less active during that time, at least in the middle section (Matthews trench: two very recent events with only 0.7 m of total displacement). The fault activity at the Meade site (northern sector of the eastern strand) seems to have had more constant
activity since deposition of Rotorua tephra (three events with 2.1 m of displacement in total).

4.2. Sinter development and fault activity

The age of the onset of hydrothermal sinter development in the section on the hill at the Meade site, dated at c. 38.9 ± 1.1 cal. ka using radiocarbon, is closely supported by an age (although imprecise) of c. 39.3 ± 2.4 cal. ka on the interbedded Tahuna tephra and by those of the overlying Te Mahoe and Hauparu tephras (c. 36.7 and c. 36.1 cal. ka, respectively; Fig. 8). Sinter formation was discontinuous and stopped before deposition of Kawakawa tephra (c. 25.4 cal. ka; Fig. 9).

In the adjacent trench section, the sinter is younger based on its stratigraphic position in the northeast wall of the trench (Fig. S1). The age of the sinter in the trench is constrained by a maximum of c. 25.4 cal. ka based on the oldest age for Hinuera Formation in the trench, and a minimum of c. 21.8 cal. ka from the overlying Okareka tephra (Fig. 12). Blocks of sinter in between fault planes have not been used to assess its stratigraphic position as these could have been rotated and overturned at the fault plane (Fig. 6).

The timing of this period of sinter development at the Meade site generally mirrors that of the Mangatete sinters on the west strand (Fitzpatrick site) that began forming c. 36 cal. ka (Fig. 1). However, sinter development appears to have ceased entirely at the Meade site by the time Okareka tephra was deposited, while deposition continued between the Rotoma and Taupo eruptive episodes on the west strand near Fitzpatrick trench (Fig. 12).

There are possible connections between the evolution of sinter and fault activity at the Meade site. The fault slip rate analysis (Fig. 11) shows that at the Meade site the Whirinaki Fault decelerated by an order of magnitude at c. 21.8 cal. ka, coincident with the time the sinter deposition ceased. As the fault scarp rapidly grew (> c. 21.8 cal. ka), geothermal activity probably focused around the fault footwall, preferentially depositing sinter at a lower topographic level as the hillside was uplifted, explaining the younger age of the sinter in the trench. Permeability could have been high along this part of the fault through high recurrence in fault rupture (high slip rate) prior to c. 21.8 cal. ka. Deceleration of the slip rate and a subsequent increase in rupture recurrence time (longer time span between events) could have made the fault plane less permeable than other sections of the fault, favouring up-flow somewhere else (e.g., in the Fitzpatrick site area, see below). The Meade fault section ruptured a few times after sinter deposition cessation, but less frequently than at the Fitzpatrick site where fault activity (slip rate) increased after the Rotoma eruption (Fig. 11; Canora-Catalán et al. 2008). A period of quiescence in hydrothermal activity in the Mangatete sinters (close to the Fitzpatrick site; Fig. 12) has been associated with relatively low fault activity (Drake et al., 2014).

4.3. Sinter evolution and general landscape development

The stratigraphy in the trench is largely younger than that in the adjacent hill (Figs. 5 and 8). Deposition of the Ohakuri Formation (c. 240 ka), primarily a massive to cross bedded non-welded ignimbrite (which can be locally hardened by cementation; Leonard et al., 2010), formed an extensive subplanar geomorphic surface (hereafter Ohakuri surface) that is currently represented by the highest hills in the landscape (Fig. 2). At c. 39 cal. ka, prior to fluvial incision and the development of a large Whirinaki Fault scarp, geothermal activity at the Meade site was initiated, depositing sinter onto the Ohakuri surface (or most likely onto an eroded Ohakuri surface given the hiatus between Ohakuri Formation and the sinter), possibly onto both the upper and lower topographic levels concurrently as a cascading fault-stepped terrace (as faulting created an escarpment), analogous to those observed in the Orakeikorako geothermal area to the southwest (e.g., Lloyd, 1972; Rowland and Sibson, 2004). With time, both faulting and fluvial incision, along with mass movement, mainly landslides or earthflows of soil and underlying pyroclastic deposits (triggered usually by intense rainstorms, or earthquakes; e.g., Selby, 1967a; Glade, 1998; Crozier, 2005; Basher, 2013), produced a strongly rolling to hilly landscape in poorly consolidated pyroclastic-dominated materials relatively quickly. Landsliding is a common process in hilly geothermal areas (e.g., Newsom et al., 2002; Campbell et al., 2004). The downthrown block formed the base of a valley fed by orthogonal shorter valleys that cross the fault scarp on both sides of the small graben (formed along the tilt direction of faulted blocks). The Meade trench is located on one of these side valleys (Fig. 2).

During the period of deposition between the Ohakuri Formation (c. 240 cal. ka) and Kawakawa tephra (c. 25.4 cal. ka), active fluvial, lacustrine, and/or geothermal processes may have prevented the preservation of tephras in the valley, eroding and transporting sediments...
away from the lower topographic levels of the landscape, and further
deprofilling the valley despite some aggradation (resulting from infill
with mass movement debris) likely occurring as well as incision (e.g.,
Selby, 1967b). These processes probably accelerated around the time of
the last glacial coldest period (LGCP), dated by Barrell et al. (2013) to c.
30–18 cal. ka, which was characterised by strong fluvial and wind
erosion (Eden and Hammond, 2003; Lorrey et al., 2012; Newham
et al., 2013; Lorrey and Bostock, 2017) and episodes of landscape in-
stability (McGlone et al., 1984). During the later stages of the LGCP, the
Meade site valley was to some extent infilled by the sediments of the
Hinuera Formation, in part derived from remobilisation of Kawakawa
(equivalent to Oruanui) pyroclastic deposits (Manville and Wilson,
2004; Leonard et al., 2010; Vandergoes et al., 2013). Deep incision of
the fluvial drainage along with coeval deposition of Hinuera Formation
may have diverted sinter deposition to the lower topographic levels in
the valley (perhaps together with fault movement as suggested above).
Sinter activity continued for some time after the main fluvial incision
(and concomitant mass movement) occurred. By the time of deposition
of Okareka tephra at c. 21.8 cal. ka, sinter activity had ceased.
By c. 21.8 cal. ka, the processes of valley erosion seem to have less-
ened or ceased, enabling the graben and side valleys to act as a basin,
capturing the Okareka and younger tephras, with intermittent disrup-
tions by faulting (MH4–MH2) contributing to the deepening of the
graben-derived valley and uplifting the side valley. On the adjacent hill,
these younger tephras have been eroded with the exception of the
Taupo and Kaharoa tephras, which are both <2 cal. ka in age. The
graben was then partly infilled by the unconsolidated Taupo ignimbrite
and with subsequent reworked material from the Taupo eruptives
(Wilson, 1985; Manville et al., 2009). The infill process reset the
landscape (and partially the fault scarp) and subsequent fluvial and

Fig. 9. Correlation of units (Kaharoa and Taupo tephras, a domal stromatolitic sinter, and Ohakuri Formation) in the Meade trench and in the outcrop on the shoulder-slope of the adjacent hill.
Fig. 10. Restoration of the southwest (SW) wall of the Meade trench. A Pre-restoration stratigraphy at present. B Restoration of the base of Taupo tephra (unit Y), removing displacement and restoring eroded material from the surface. C Restoration of the base of the Rotoma tephra, removing displacement and restoring eroded material from the surface. D Restoration of the bases of both the Rotorua and Okareka tephras. E Restoration of the base of the Hinuera Formation, removing displacement and sinters, and rotating by 21°. Ages for the tephras (all in cal. ka) are given in Table 2.
In addition to structural controls on the preservation or erosion of deposits, including sinter, regional climatic changes are likely to have played a substantial role in governing the magnitude, frequency, and extent of geomorphic processes occurring at the Meade site, and more widely. Generally cold and windy conditions of the LGCP (comprising New Zealand Climate Events NZce-10, NZce-8, and NZce-6), punctuated by two short interstadials (comprising NZce-9 and NZce-7; Barrel et al., 2013), prevailed in the Rotorua region from c. 30 cal. ka (i.e., from around the time of Poihipi tephra to Kawakawa and Okareka tephras) through to c. 18 cal. ka, just before the deposition of the Rerewhakaaitu tephra (c. 17.6 cal. ka; Vucetich and Pullar, 1969; McGlone et al., 1984; Pillans et al., 1993; Newnham et al., 2003). Gradual warming followed, with widespread stabilisation of the landscape occurring after deposition of Rotorua (c. 15.6 cal. ka) and Waiohau (c. 14.0 cal. ka) tephras when forest-dominated vegetation replaced grass-dominated vegetation (Sase et al., 1988; Kondo et al., 1994; Lowe et al., 2012; Barrell et al., 2013). During climatic periods of enhanced erosion, changes in the local hydrology may have induced changes in the spatial distribution of sinters, as the hydrothermal waters flowed to the newly-formed lower geomorphic surfaces; or temporal changes in sinter deposition as changes in the water table level may have precluded or allowed hydrothermal waters to reach the surface.

4.4. Sinter formation and magmatisms and volcanic eruptions

Spatial variations on deep magmatic heat sources have been suggested as a possible explanation for rapid evolution of hydrothermal activity in the Ngakuru graben (Kissling et al., 2018). The OVC, located to the northeast of the Meade site (Fig. 1E), has hosted numerous eruptions since its initiation c. 650 ka (Nairn, 2002; Leonard et al., 2010; Cole et al., 2010, 2014, Fig. 13). The latest caldera-forming eruption, which generated the Rotoiti Tephra Formation (Froggatt and Lowe, 1990), occurred at c. 50 cal. ka. This age is uncertain: several different radiometric methods put it between c. 45 and 50 cal. ka (Danišík et al., 2012, 2017; Flude and Storey, 2016), or possibly earlier (Wilson et al., 2007). It was followed almost immediately by the eruption of the (unconsolidated) Earthquake Flat Tephra Formation (Nairn and Kohn, 1973; Froggatt and Lowe, 1990; Nairn, 2002) at c. 45 cal. ka (Danišík et al., 2012). The Earthquake Flat eruption occurred at a series of vents in the Kapenga Volcanic Centre (KVC) only c. 8–10 km northeast of the Meade site (Fig. 13), where much of the hilly landscape is underlain by thick non-welded ignimbrite and minor interbedded fall deposits from the Earthquake Flat eruption (Nairn, 2002). The Rotoiti eruption produced ∼80 km3 of erupted material (volume as dense rock equivalent, DRE), and the Earthquake Flat eruption generated ∼7 km3 (DRE) (Wilson et al., 2007, 2009). A short pulse of intense volcanic activity (generating eruptives of the Mangaone Subgroup: Howorth et al., 1981; Froggatt and Lowe, 1990) occurred from c. 40 to 31 cal. ka.

Table 3

Fault rupture events from the restoration of the Meade trench and the known ages of the constraining stratigraphic units and mean slip rates.

<table>
<thead>
<tr>
<th>Fault rupture event</th>
<th>Single event displacement (m)</th>
<th>Constraining units (lower, upper)</th>
<th>Constraining ages (cal. ka)a</th>
<th>Mean slip rate (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH1</td>
<td>0.55 ± 0.2</td>
<td>Taupo tephra, Kaharoa tephra</td>
<td>1.7–0.63</td>
<td>0.508 ± 0.185a</td>
</tr>
<tr>
<td>MH2</td>
<td>0.85 ± 0.2</td>
<td>Rotoma tephra, Taupo tephra</td>
<td>9.4–1.7</td>
<td>0.110 ± 0.026</td>
</tr>
<tr>
<td>MH3</td>
<td>1.2 ± 0.2</td>
<td>Rotoma tephra, Rotoma tephra</td>
<td>15.6–9.4</td>
<td>0.097 ± 0.016</td>
</tr>
<tr>
<td>MH4</td>
<td>2.1 ± 0.2</td>
<td>Hinuera Formation, Okareka tephra</td>
<td>25.4–21.8</td>
<td>0.629 ± 0.083</td>
</tr>
<tr>
<td>Hilltop sinterd</td>
<td>8.2 ± 1.5</td>
<td>Kawakawa tephra, Poihipi tephra</td>
<td>28.4–25.4</td>
<td>2.655 ± 0.766</td>
</tr>
</tbody>
</table>

a The mean age for each tephra is shown (detailed age ranges are given in Table 2).

b Maximum value (incomplete cycle).

c The age of the Kawakawa tephra (25.4 cal. ka) is used here as the maximum age for the sediments designated as Hinuera Formation.

d The displacement of the hilltop sinter is likely to be cumulative of multiple fault ruptures.

Fig. 11. Age-displacement plot for post-Ohakuri Formation units (Hinuera Formation and Okareka, Rotorua, Rotoma, and Taupo tephras) in the Meade trench compared with values for the Matthews and Fitzpatrick trenches (Canora-Catalán et al. 2008) shown as cumulative offset (metres).
following the Rotoiti eruption with some of the vents located in the southern part of the OVC (Jurado-Chichay and Walker, 2000, 2001; Smith et al., 2005). Thus, the magmatic sources of volcanism from c. 50 to 31 cal. ka in the southern end of the OVC, and in the northern end of the KVC (Fig. 13), could have provided the heat source for widespread coeval hydrothermal activity at both Omatokokore (Meade site) and Mangatete (Fitzpatrick site) prior to c. 28 cal. ka. At the Meade site, hydrothermal vent breccias intercalated with sinter and the Tahuna tephra indicate that vigorous surface hydrothermal activity was associated with the initiation of geothermal activity and reorganising of fluid pathways in this region at c. 40 cal. ka. The stratigraphy interpreted from drillhole TH1 (Fig. 1B) that encountered ∼40 m of hydrothermal vent breccia (Alder and Sharp, 1988) suggests that the hydrothermal vent breccia (Fig. 8) in the hillside outcrop may be the distal edge of a more widespread hydrothermal eruption deposit. Hydrothermal eruptions at the initiation of geothermal activity are observed elsewhere and are analogous to widespread hydrothermal eruptions in the Waimangu Valley associated with hydrological changes in the Rotomahana-Waimangu hydrothermal system after the 10 June 1886 Tarawera eruption (Nairn, 1979; Simmons et al., 1993) (although we recognise that hydrothermal eruptions can occur at almost any stage in the evolution of a geothermal system).

In the last c. 25 cal. kyr, most eruptions have been sourced from two linear vent zones, Haroharo and Tarawera, within OVC (Fig. 13; Nairn, 2002; Smith et al., 2005; Cole et al., 2010, 2014). Other vents occur on the periphery of these zones: Okareka and Rotoma embayments lie on the Haroharo Linear Vent Zone, whereas Puhipuhi Embayment and Lake Rotomahana Basin/ Crater lie on the Tarawera Linear Vent Zone (Fig. 13). Drake et al. (2014) suggested that there is a cluster of sinter dates at Mangatete that coincide with the Okareka eruption, which was sourced from the Tarawera lineament (Nairn, 1992, 2002), about 20 km away from Mangatete sinters. However, without further subsurface investigations in the area we cannot preclude the presence of more local magmatism in this period.

4.5. Sinter evolution at the Meade site

We have proposed several potential controls on sinter evolution including tectonic, volcanic (magmatic), or climatic (geomorphic) processes. With the information available it is difficult to select one as the major driver. Although sinter formation was demonstrably discontinuous at the Omatokokore (and Mangatete) site, hydrothermal
activity in the area may have been continuous but with some inter-
ruptions. Findings from our study can only be related to hydrothermal
activity in the local area and, although activity may have ceased at this
specific outcrop, changes in fluid pathways may have resulted in sinter
deposition moving to a location beyond the study area. Hydrothermal
activity may also still be occurring at depth, but with no current surface
manifestation. In light of the multiple controlling factors exposed here,
it is clear that the further understanding of sinter dynamics (changes in
location and causes) requires the construction of high-resolution maps
of sinter distribution in the region, including the areas where the fossil
sinters are covered by Holocene tephas, which may comprise the lar-
gest extent.

For the sinters along the Whirinaki Fault, Omatokokore (Meade
site), and Mangatete (Fitzpatrick site) localities, we tentatively propose
that extensive hydrothermal activity may have been present in asso-
ciation with the Rotoiti caldera-forming eruption and with the sub-
sequent intense and complex magmatic activity through c. 31 cal. ka
(Smith et al., 2005; Charlier and Wilson, 2010). The topography of the
landscape along the fault may have still been controlled by extensive
subhorizontal constructional surfaces (e.g., eroded Ohakuri surface).
More recently control came from the deposition of the non-welded
pyroclastics underlying the Earthquake Flat surface in the area south-
west of OVC and in the northern KVC (Leonard et al., 2010, Fig. 13),
which also favoured widespread sinter deposition. Changes in topo-
graphy, mainly post c. 25.4 cal. ka, including development of deep
valleys (climatic and tectonic controlled), diverted surface hot spring
flows and localised them in topographic lows. Sinter formation at the
surface could even temporarily disappear depending on water table
levels. With waning of the large-scale heat source, and stabilisation of
the landscape soon after the LGCP during the Last Glacial-Interglacial
Transition (LGIT) (e.g., Newnham et al., 2003; Barrell et al., 2013),
reactivation of sinter deposition can be associated with the appearance
of local heat sources or to variation on fault activity rate. For example,
diversion of flow to lower areas or changes in water table once the
landscape is stabilised, may explain why, during the Okareka eruption,
sinter activity was reactivated at the Mangatete site at the surface
(Drake et al., 2014), but not at Omatokokore (despite the latter being
4 km closer to Okareka eruption vents and heat source in the Tarawera
Linear Vent Zone). Higher slip rates on the Meade site prior to c. 21 cal.
ka may have strongly influenced topography at that site (Fig. 2A) and
thus loss of surface flow of hydrothermal waters post-21 cal. ka, whereas
higher slip rates at the Fitzpatrick site after c. 10 cal. ka may

Fig. 13. Simplified volcanic geology of the Okataina Volcanic Centre including lava dome complexes (all of which were deposited in association with multiple
pyroclastic eruptions: Nairn, 2002) and their general ages, and locations of the main faults. The northern part of the adjacent Kapenga Volcanic Centre, which hosts
the Ngakuru Graben and the Meade study site just to the southwest (Fig. 1E), is also indicated. EWF, East Whirinaki Fault. After Nairn (2002), Leonard et al. (2010),
and Cole et al. (2014).
explain the presence of the most recent sinters at Mangatete as a consequence of enhanced crustal permeability (and enhanced fluid upflow). In any event, further evaluation of these earlier trench and sinter study sites using high-resolution topographic maps derived from LiDAR, together with shallow trenching, coring or drilling, near-surface geophysics (and so on), would be appropriate to help link the faulting and sinter development with landscape evolution.

In summary, our study, in combination with the results from prior studies, suggests that the Whirinaki Fault has been an important location for shallow hydrothermal flow at least for the last c. 40 cal. kyr. Surficial sinter activity suggests that shallow hydrothermal activity that could be exploited for geothermal energy lasts between 1000 and 7000, or more, years. However, we do not know whether the activity still persists at depth during times of quiescence in surface deposition of sinters, or whether the whole system switches on and off. Better understanding of past geothermal activity, and the factors that control its evolution (e.g., periods of quiescence, or lack of surface expression), is fundamental in evaluating the viability of geothermal energy exploitation.

5. Conclusions

(1) By combining stratigraphy with mineralogical and geochemical fingerprinting, five late Quaternary tephras of known age were identified at the Meade trench, namely the Kaharoa, Taupo, Rotoma, Rotorua, and Okareka tephras, together with the Ohakuri Formation (a non-welded ignimbrite). In an outcrop on the upper part (shoulder-slope) of an adjacent hill, the Kaharoa, Taupo, Kawakawa, Poihipi, Hauparu, Te Mahoe, and Tahuna tephras, and the Ohakuri Formation, were also identified. The younger tephras especially have well-established ages (Table 2). These ages, together with the newly reported radiocarbon age on plant microfossil material (c. 38.9 cal. ka) entrained in sinter interbedded with Tahuna tephra (c. 39.3 cal. ka) on the hill, were able to be transferred using tephrochronology to the Meade sequences, thereby providing a chronostratigraphic framework to evaluate and date the history of events and deposition inferred at the site including faulting and hydrothermal activity.

(2) A history of displacement was determined in the trench, with five discernible fault rupture events (MH5 to MH1). MH5 is the oldest and most poorly constrained event, occurring after emplacement of Ohakuri Formation (c. 240 ka) and prior to deposition of the Hinuera Formation (c. 25.4 cal. ka). MH4 occurred between deposition of the Hinuera Formation (c. 25.4 cal. ka) and Okareka tephra (c. 21.8 cal. ka). MH3 occurred between the deposition of Rotorua tephra (c. 15.6 cal. ka) and Rotoma tephra (c. 9.4 cal. ka). MH2 occurred between the deposition of Rotoma tephra (c. 9.4 cal. ka) and Taupo tephra (c. 1.7 cal. ka). MH1 is the most recent, occurring after the deposition of Taupo tephra (c. 1.7 cal. ka).

(3) Based on the tephrochronology and the new radiocarbon date, the Omotokokore sinters at the Meade site were deposited between c. 39 cal. ka and c. 21.8 cal. ka. This hydrothermal activity is similar in timing to the early activity – generating the Mangatete sinters – recorded on the west strand of the Whirinaki Fault at the Fitzpatrick site dating from c. 36 cal. ka to c. 21.6 cal. ka. The cessation of activity at the Meade site (c. 21.8 cal. ka) is not known to have been matched at the Fitzpatrick site, where active sinter deposition continued through the late Pleistocene and well into the Holocene. A combination of factors that may explain the different evolution of the surficial sinter activity at both sites is proposed here. Extensive sinter activity at both sites prior to c. 31 cal. ka may be explained by the presence of a large magmatic heat source at the southern end of the Okataina Volcanic Centre (c. 50 to 31 cal. ka), and in the northern end of the adjacent Kapenga Volcanic Centre (c. 45 cal. ka), and a subhorizontal topography related to emplacement of (non-welded) ignimbrites and associated deposits that reset the landscape. During this period, siliceous sinters were being actively deposited at both sites.

(4) Climatic conditions associated with the last glacial coldest period c. 30–18 cal. ka, and general warming and moistening afterwards during the LGIT (Barrell et al., 2013), together with the unconsolidated nature of the pyroclastic eruptions, dictated relatively fast rates of fluvial incision and mass movement events that together helped shape the modern landscape. Fault activity, resulting in the localisation of subsidence, strongly affected the landscape as well, creating topographic low points locally to which surface waters were diverted, and possible changes in water table levels. Once the larger heat source(s) had waned, and the landscape stabilised, deposition of sinters at the surface may be controlled by magmatic heat sources associated with less voluminous eruptions. Previous studies have linked the Okareka eruption (c. 21.8 cal. ka) with the onset of deposition of the Mangatete sinter (Drake et al., 2014), but only if the topographic conditions were favourable (this caveat may explain why no sinter activity occurred at the Omotokokore sinters in association with that eruption). Also, temporal variation of fault activity can be held responsible for enhancement of crustal permeability in the Mangatete sinters area with subsequent sinter deposition occurring after c. 10 cal. ka. During this latest period (post-10 cal. ka), sinters did not form at the surface at the Omotokokore site, coincident with lower levels of fault activity or because of an unfavourable topographic situation, or both.

(5) This study is the first to use tephrochronology to constrain ages for both fault rupture and hydrothermal activity at a single location, reinforcing its usefulness as a chronostratigraphic tool in complex and active geological settings such as the central TVZ. The findings improve understanding of the complex rupture behaviour of the Whirinaki Fault and provide evidence for relationships between tectonic, climatic, and hydrothermal activity. This study contributes to a better understanding of the evolution and life span of important energy resources associated with geothermal systems. The data collected and evaluated from the trench restoration may also be useful for seismic hazard assessment modelling because the Whirinaki Fault is one of the major faults in the Taupo Rift within the central TVZ.

Acknowledgements

We thank the Meade family for access to the field site and John and Catherine Ford for accommodation, Renat Radosinsky and Janine Ryburn (University of Waikato) for help with sample preparation, Dean Sandwell and Annette Rogers (University of Waikato) for vibrocoring, and Ian Chipper (Victoria University of Wellington) for providing setup and guidance for EPMAs. Ian Nairn is especially thanked for his assistance in the field early in the study. Helpful and positive comments by reviewers Pat Browne and Maria Ortuño were greatly appreciated and enabled us to improve the paper considerably. The project was funded by MBIE SSIF funds and the University of Waikato. RCL acknowledges support provided by the Broad Memorial Fund and University of Waikato Summer Research and Masterate Research scholarships. The paper is an output of a Strategic Investment Fund (Research) grant F719 of the University of Waikato and was completed in conjunction with support from the Earthquake Commission of New Zealand for another project (EQC grant 15/U713). It is also an output of the EXTRAS project "EXTending TephRAS as a global geoscientific research tool stratigraphically, spatially, analytically, and temporally" led by the International focus group on tephrochronology and volcanism (INTAV) of the Stratigraphy and Chronology Commission (SACCROM) of the International Union for Quaternary Research (INQUA) for 2015–2019. We especially thank the editor-in-chief of Quaternary International, Prof Thijs van Kolfschoten, for inviting us to contribute this paper to the special 500th volume of the journal.
Supplementary data to this article can be found online at https://doi.org/10.1016/j.quaint.2019.02.031.

References

Supplementary data

Fig. S1.
Trench logs for the southwest and northeast walls of the Meade trench (after Loame, 2016).

Note
The term "cream cakes" in the legend (unit 21a) refers to discontinuous layers or patches of ash of paler colour and appearance than the bed (or soil) that encloses them (e.g. Neall, 1972). They can have a characteristic cakey appearance (Healy 1964, p.10).

References