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Abstract 

The language µ-Charts is one of many Statechart-like languages, a family of 
visual languages that are used for designing reactive systems. We introduce 
a logic for reasoning about and constructing refinements for µ-charts. The 
logic itself is interesting and important because it allows reasoning about 
µ-charts in terms of partial relations rather than the more traditional traces 
approach. The method of derivation of the logic is also worthy of report. A 
Z-based model for the language µ-Charts is constructed and the existing logic 
and refinement calculus of Z is used as the basis for the logic of µ-Charts. As 
well as describing the logic we introduce some of the ways such a logic can be 
used to reason about properties of µ-Charts and the refinement of abstract 
specifications into concrete realisations of reactive systems. 

A refinement theory for Statechart-like languages is an important contri­
bution because it allows us to formally investigate and reason about proper­
ties of the object language µ-Charts. In particular, we can conjecture and 
prove general properties required of the object language. This allows us 
to contrast possible language design decisions and comment on their conse­
quences with respect to the design of Statechart-like languages. 

This thesis gives a comprehensive description of the µ-Charts language 
and details the development of a partial relations based logic and refinement 
calculus for the language. The logic and refinement calculus are presented 
as natural deduction style proof rules that allow us to give formal proofs of 
language properties and provide the basis for a formal program development 
framework. The notion of refinement that is encoded by the refinement rules 
is also extensively investigated. 
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Chapter 1 

Introduction 

The language µ-Charts [65, 67, 66, 72, 74, 77, 78] is one of many Statechart­

like languages: a family of visual languages that are used for designing reac­

tive systems. 

In the following, we introduce and investigate a logic for reasoning about 

and constructing refinements for µ-Charts. We give a "proof-theoretic" treat­

ment of the language, in that we present the logic in terms of a series of 

introduction and elimination rules that can be used in proofs about reactive 

system specifications. 

The reported work fulfils two primary tasks. Firstly, we aim to provide 

a complete core framework that will stand alone as the latest definition of 

the evolving language µ-Charts. This includes the core logic that should be 

used for future conservative extensions to the language. In this sense, one 

might view the work as a rational reconstruction of the language which was 

originally introduced by Scholz, most recently in [78]. The logic and therefore 

the meaning of the language have been reconstructed using a methodology 

more common to the world of state-based system specification than to the 

usual traces of behaviour semantics for reactive systems. The second purpose 

of this work is to show how we can use an existing logical framework and 

methodology to induce a logic for another language, the significant advantage 

of this approach being the ability to investigate properties of the language in 

terms of other well-known formalisms. 

Investigating refinement theories for Statechart-like languages is an im­

portant contribution because it allows us to formally investigate and reason 

about properties of the object language µ-Charts. In particular, we can con­

jecture and prove general properties required of the object language. This 

allows us to contrast possible language design decisions and comment on 
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their consequences with respect to the design of Statechart-like languages. 

Developing systems and providing correctness proofs hand-in-hand has 

not yet been widely adopted in practice, though the results from attempting 

to build such frameworks have. For example, the idea of using formal tools 

for checking an implementation's behaviour with respect to a specification is 

becoming common in practical software development. Adding specification­

like statements, e.g. "assert" statements (or assertions), to software code and 

therefore allowing more sophisticated correctness checking is also becoming 

commonplace. This practice is often attributed to the work of Hoare [40] in 

the late 1960s. 

In the future, a robust framework for using refinement to guide design is 

necessary, at least, to provide proper empirical evidence to support or deny 

the claim that using such a design methodology is a practical alternative. 

The most common way to use refinement theories to date is in a "posit 

and prove" role; i.e., specification and implementation are developed and 

then refinement is used to show, after the fact, that the implementation 

implements the specification. 

In the remainder of this chapter we provide a broad outline of the context 

in which the research belongs and the additional contributions presented here. 

Section 1.1 gives more general motivation as to why we consider this research 

to be important and interesting. Sections 1.2 through 1.4 give an overview of 

relevant literature. In particular: Section 1.2 describes the part of computer 

science covering reactive systems; Section 1.3 introduces the specification 

language Z and gives a detailed introduction to the work that formulated 

the methodology employed here; Section 1.4 describes the foundations of 

the notion of refinement. Finally, sections 1.5 and 1.6 list the significant 

contributions of the work presented and outline the contents of the remaining 

chapters. 

1.1 Why formalise? 

In computer science we often use the term refinement to refer to a step-wise 

process of transforming an abstract specification of desired system behaviour 

into an executable implementation of that behaviour. The resulting program 

must embody or implement the functionality described by the specification, 

by definition. 

To allow formal refinement, i.e., refinement by application of formal rules, 

guaranteeing the retention of specified behaviour, i.e. system verification, we 
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must start with a suitable formal specification. To obtain a formal specifica­

tion, a formal mathematical language must be used that allows unambigu­

ous descriptions of requirements to be formulated at an appropriate level 

of abstraction. Not only does this facilitate formal refinement, but it can 

also help to minimise misunderstanding between the client and developer. 

Importantly, a formal specification allows the developer to have a rigorous 

methodology for analysing the specification and help to detect differences 

between a client's requirements and the formal specification early in the de­

velopment life-cycle; that is, it allows more rigorous specification validation. 

Though unambiguous in its statements, typically we require a language that 

allows partial or "loose" specification, generally through the use of nondeter­

minism or under-specification. This enables details which are unimportant 

to the client or outside of the problem domain that requires a formal treat­

ment to be left unspecified and the choice of their implementation can be 

left to later stages in the program derivation. Also, the ability to abstract 

from low-level implementation details allows a lucid description of required 

behaviour without the complexity and constraints of implementation details. 

While the above description of a formal development should be considered 

the ideal for software engineers, it is difficult to deny that this theoretically 

appealing idea of development is still not widely adopted in practical soft­

ware development. It is clear, however, that some of the results from the 

extensive formal methods research are becoming common practice in soft­

ware development, such as the use of assert statements and model-checking 

technology. There is also an increasing number of well-known successful ex­

amples of large-scale uses of highly formal development, such as the driverless 

line 14 of the Paris Metro where the "driver" is a fully-proved 87,000 line Ada 

control program. This development included roughly 100,000 lines of specifi­

cation and refinement, together with 28,000 proofs all fully proved ( about 10 

percent of them interactively). Another example is the software developed 

for smart cards. 

There are several accounts that outline the benefits of a formal approach 

to development available in the literature, for examples see [9, 10, 24, 34, 44, 

85]. It also appears that there is significantly less effort expended in refuting 

these arguments; e.g., see [27]. However, it still appears that the uptake 

of formal methods-proper is minimal, particularly considering the effort and 

people involved in the research developing these formal methods. Rather 

than reconsidering the existing arguments that discuss why the adoption 

of formal methods has been surprisingly slow, we outline why we find this 
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particularly surprising. That is, we consider some of the observed problems 

with existing alternative software development methods. 

One such common development approach is to adopt an informal ap­

proach to gathering and documenting requirements. For example consider 

the following scenario. A project begins with a specification written in natu­

ral language developed through consultation with a client. This specification 

is taken and refined by an informal design process and "coded" into a program 

written in a popular programming language. The program is debugged and 

tested, and then presented to the client ( often still containing unfound errors) 

for their acceptance. Some of the significant problems with this process stem 

from the fact that the client and the developer typically have different expec­

tations and motivations. The informal nature of the specification allows it to 

be ambiguous; that is, it can be interpreted differently depending on "how 

you look at it". Significantly, the first formal description of the functionality 

is typically the program itself (i.e. described in the programming language of 

the eventual implementation). An adverse effect of this is that the complex­

ity of implementing the functionality described in the informal specification 

is not realised until near the end of the first implementation.1 The resources 

expended by this stage of development are generally too substantial to allow 

major changes in the specification. Therefore, if the client and developer 

have different expectations of the requirements, it is difficult to resolve who 

will bear the additional costs required to align their expectations. 

Again considering natural language specifications as an example, most 

natural language is prone to being ambiguous and open to interpretation. 

The more precise the specification, the more wordy the specification, for ex­

ample consider prose used in legal jargon-it is often particularly verbose in 

an attempt to be unambiguous. The verbose nature of unambiguous require­

ments specifications is one of the likely factors that contributes to insufficient 

requirements documentation. This, in turn, contributes to the phenomenon 

common to software development known as "project explosion", where a soft­

ware development project gets to the implementation stage of development, 

or further, before it is realised that unexpected complexity of the required 

solution has caused or will cause expenditure of resources well exceeding the 

1 We use the term "first implementation" here because it is commonly believed that 

most current program development practices spend a large percentage of the development 

time "debugging" or rewriting the initial program code. For example, during an invited 

talk at FME97 Robin Bloomfield (of Adelard [70]) said that their long-range data showed 

that testing accounts for about 50% of development costs 
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budgeted amount. This is the point at which a lot of program developments 

currently fail [43]. 

Given this situation it is not surprising that there is increasingly more ef­

fort being made to integrate more rigorous methods into the formal abstract 

specification of requirements. When viewed in the context of being able 

to help prevent "project explosion", the often criticised "additional" effort 

required to produce formal specifications of requirements no longer appear 

economically infeasible. The complexity of formal specification can be jus­

tified because the complexity of the eventual solution is displayed from the 

very beginning for both developer and client [22]. According to Turski (83], 

"the specification's 'resistance' to change ( expressed in the effort needed to 

do so properly) is. not an obstacle, but a warning about the real magnitude 

of effort required to accommodate a change in the application domain." 

In [45], Chapter 4, Horrocks gives a good description and supporting ex­

ample that outlines some of the problems with natural language specifications 

for graphical user interface design. 

Another adverse consequence of the program code being the first formal 

description of the required functionality2 is the inability to guarantee pro­

gram correctness given the size and complexity of most realistic code-based 

programs. This situation generally leads to the client, and often even the de­

veloper, relying on the operational characteristics of programs to test whether 

or not their functionality respects the functionality that is required. Again 

this relies on having a specification of the requirements to test against. Also, 

it is well-known that testing can only confirm the presence of program errors, 

not their absence [23]. 

Jacky [49] suggested that one of the barriers to the introduction of more 

formalisation at the beginning of a software project may be that the for­

malisation of behaviour from the outset is harder than the alternatives, for 

example "letting testers or users figure it out for themselves". Jacky also 

suggests several significant benefits that are offered by elucidating complex­

ity from the beginning of project development. One such advantage is that 

a significant investment at the start of a software project can produce signif­

icant savings in the time required for tasks, such as debugging, testing and 

21n fact it could be argued that some of the popular programming languages currently 

used to describe programs are not completely formal, considering formal to at least mean 

completely unambiguous, because they often lack a proper formal semantics. Therefore 

their operational semantics depends on which (of many) compilers are used to interpret 

the program statements. 
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refactoring, that are almost always required after implementation. 

In [44], Holloway presents a compelling argument that supports the sug­

gestion that "formality will eventually become the norm in software devel­

opment". Briefly his rationale is as follows: 

Software engineers strive to be true engineers; true engineers use 

appropriate mathematics; therefore, software engineers should 

use appropriate mathematics. Thus, given that formal meth­

ods is the mathematics of software, software engineers should use 

appropriate formal methods. 

Examples such as the recent Model Driven Architecture (MDA) initia­

tive of the Object Management Group (OMG) [63] demonstrate that it is 

true that formalism is becoming an important consideration of practising 

engineers. 

1.2 Specification languages for reactive sys­

tems 

When designing computer systems, it is common (if not essential) to break 

down the task that we wish the system to perform into subtasks. This is 

generally done repeatedly until we are left with manageable pieces of "the 

puzzle" to solve. Once the pieces have been solved then they are recombined 

to solve the whole problem. 

Obviously this process requires considerable care and a careful eye to 

ensure that the parts can be smoothly recombined. This type of activity has 

led to at least two conceptual models of computing systems. These models 

were derived by considering the way in which the parts or processes interact 

with one another. 

The first model is that of sequential systems-where the individual parts 

that make up a program are assumed to carry out computation in some 

predefined order; i.e., one after the other or one calls another waiting for 

termination before continuing. The second is the concurrent model. In this 

model the processes that combine to create the system are assumed to be 

able to carry out their computations at the same time as other processes. 

The concurrent notion may be considered more powerful because it allows 

the introduction of parallelism, and also sequential computation can easily be 

characterised in a concurrent model but not necessarily vice versa. As usual 
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there is a trade off between expressibility and complexity: the addition of 

concurrency may allow increases in the efficiency of solutions; however these 

solutions are generally more complex and so harder to think about. Hence 

the need for formal modelling to deal with the added complexity is even more 

prevalent. 

A common characterisation of computing systems is to say they are one of 

the following types: transformational-the system has all of its input at the 

beginning of execution; reactive-the system's computation is determined 

nondeterministically (in time) by input from its environment; or interac­

tive-the system prompts the environment for input as necessary. The term 

reactive system was introduced by Harel and Pnueli and originally was used 

to refer to what are now commonly divided into reactive and interactive sys­

tems [33]. Most modern computer-driven systems can be broken down into 

a mixture of reactive and interactive concurrent parts [5]. 

While the concurrent model of computation was initially introduced to 

help with the complexity of modelling parallelism it was later realised that 

the same model was useful, if not essential, for modelling reactive systems. 

The sequential model is good for describing transformational systems but 

is difficult to extend to reactive systems whose timing characteristics are 

determined by their environment. 

This thesis will concentrate on reactive systems and therefore this sec­

tion concentrates on formalisms that have been introduced that allow us to 

describe, reason about and implement systems using a concurrent model. 

Similar results may hold for interactive systems, however these are outside 

of the scope of this work. 

We discuss a further choice of model that is introduced when consid­

ering concurrency and describe how the literature motivates the choice of 

one model over the other for describing and constructing reactive systems. 

Also we briefly introduce and contrast some of the existing formalisms for 

describing reactive systems using a concurrent model. 

When considering a concurrent model of systems, often the processes 

described above are termed agents [57]. Such a process can be thought of as 

an autonomous deterministic "black box" that has some input and output 

interface. A reaction [6] is some finite collection of interactions between 

these processes that performs some desired task in the system. From these 

assumptions it seems natural that we should model the behaviour of the 

system or program by considering only the way in which these processes 

interact, i.e. their communication. 
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Milner (57] presents this model of the communication between concurrent 

processes as describing each subtask of a system by describing its observable 

characteristics, where to observe a process is exactly to communicate with it. 

He formalised this notion when describing the concurrent formalism process 

calculus which was based on the earlier and well known Calculus of Com­

municating Processes (CCS) [56]. Milner also defines several equivalence re­

lations for agents: the two main equivalences that are introduced are strong 

bisimilarity and weak bisimilarity. Strong bisimilarity requires not only in­

put/ output equivalence, i.e. two agents have the same external behaviour, 

but also requires the internal transitions of the two agents to simulate one 

another exactly. Weak bisimilarity is more liberal in that an internal transi­

tion of one agent can be matched by zero or more internal transitions of the 

other agent. 

As we shall see in Section 1.4, having a notion of equivalence between 

processes is important to allow us to prove that replacing an abstract de­

scription of a process with a more concrete description is a valid refinement 

of the overall system. Milner (57] also introduces instantaneous communica­

tion between processes which will be explored below. 

The process calculus encodes asynchronous agents or processes that syn­

chronise via communication. As in (57], we will use the term asynchronous 

processes to refer to concurrent processes or agents that proceed at inde­

terminate relative speeds, and synchronous processes to refer to concurrent 

processes that proceed in lock-step. 

In [6], Berry and Gonthier describe why the synchronous processes model 

is essential for the construction of reactive systems by giving the failings of the 

alternative asynchronous approach. These criticisms, which were formulated 

through practical considerations whilst developing the language Esterel for 

reactive programs, are broadly as follows: processes or reactions can compete 

with each other, e.g. new inputs can arrive from another process before the 

current reaction is finished and therefore the behaviour of the reaction is 

not atomic, i.e. it can depend on the timing characteristics of concurrent 

reactions; reasoning about temporal properties of a program can be arduous 

and never completely rigorous-there is no completely accurate way (in terms 

of time) to determine when a process is finished; finally, each process has its 

own perception of the entire system, i.e. processors may see the system in 

different states during the same reaction: for example, a single sensor, read by 

two concurrent processes in the same reaction, could differ in value because 

it is read at different times. These problems are claimed to be resolved by 

8 



using a strong synchronous model, which claim Berry and Gonthier describe 

as the synchrony hypothesis. 

In [78] Scholz gives a different categorisation of the notion of synchrony 

where he describes three distinct types of synchrony. Firstly, clock synchrony 

refers to a system where any concurrent components or parallel processes ad­

vance in lock-step with a common clock, e.g. a "tick" of the processors' global 

system clock. Clock synchrony is the same as the synchronous processes de­

scribed above. The second form is termed 1/0 synchrony and refers to a 

system where it is assumed that no time elapses between receiving input and 

sending output, that is the processes' internal computation is assumed to 

take no time, and the output is available at the same instant as the input. 

Finally message synchrony refers to a system in which the initiating source of 

a message is blocked until the recipient is ready-to-receive, that is, message 

synchrony is what we have referred to as 'synchronising via communication' 

above but it is also commonly referred to in the process algebra world as 

synchronous communication. The term perfect synchrony, which is related 

to the synchrony hypothesis described above, refers to a system that obeys 

both clock synchrony and //0 synchrony. 

Another notable formalisation based on an asynchronous processes model 

is Communicating Sequential Processes (CSP) that was introduced by Hoare 

in [42]. CSP is also based on the communicating process model of concur­

rency. The work that led to the creation of CSP was born out of the re­

alisation that the traditional method of implementing concurrency through 

the use of a shared-store was inadequate because it could lead to severe 

implementation problems with the prevailing hardware technology. Also, 

Hoare identified [41] that a shared store implementation made attempting 

to construct correct programs difficult. CSP uses handshake communication 

as does CCS, described above, as a means of enforcing synchronisation via 

communication, therefore processes are asynchronous but the communication 

between them can force synchronisation. 

The difference between CCS and CSP is so subtle that a detailed expla­

nation is outside of the scope of this work. Briefly, the CCS composition 

operator implements private point to point communication and has a spe­

cific operator that enforces synchronisation whereas the CSP composition 

operator enforces synchronisation between like-labelled transitions and has a 

separate operator that makes that communication private. 

Clearly, there are significant differences between the asynchronous pro­

cesses approach of CCS and CSP and the perfect synchrony approach of 

9 



Esterel. The synchrony hypothesis described in (6], i.e. assuming reactions 

take no time and that processors adhere to a global clock, was developed as 

a high-level abstraction technique for describing low-level reactive systems. 

Some of the observations in (6], which justify the synchrony hypothesis as 

a reasonable abstraction, include: "synchrony is a natural abstraction from 

a user's point of view: the user of a watch does not worry about internal 

reaction times, as long as he perceives that his watch reacts instantly to 

his commands."; "that synchrony hypotheses are very classical in physics: 

instantaneous body interaction is the basis of Newtonian Mechanics, instan­

taneous propagation of electricity is the basis of Kirchoff's laws." 

More specifically Scholz (78] explains that the abstraction made by I/0 

synchrony, i.e. that input and output are available at exactly the same time, 

can be reduced to assuming that the computation of any reaction can be 

carried out before the next input arrives. This argument is less convincing 

when one is considering how to ensure the correct implementation behaviour 

of executing arbitrary sequential communicating programs in parallel on dif­

ferent processors. In [56] Section 9.3, however, Milner also investigates giving 

a calculus similar to that for CCS that assumes process synchrony. Some 

interesting observations that he makes are: that this synchronous process 

calculus, i.e. based on the assumption that processes proceed in lock-step, 

"has a greater claim to completeness of expression [than CCS itself]-and 

hence a claim to be less arbitrary"; and that the assumption of synchronous 

processes "somewhat offends the popular relativistic view, since it suggests 

the idea of a global clock"; also "the synchronous view leads to a delight­

fully simple calculus, and in fact asynchrony can be achieved within it just 

by introducing an explicit waiting action." Milner also points out that the 

asynchronous calculus does suffer from excessive expansion in the context of 

n-way composition, see [56] for details. 

According to Huizing and Gerth [46], some of the benefits that the prin­

ciple of perfect synchrony give when specifying reactive systems are that: 

concrete reaction times (i.e. 0) are known and therefore we can still correctly 

model the important timing characteristics of a reactive system; we do not 

need to fix any of the eventual implementation reaction times at this level 

of abstraction, therefore the reaction time is as short as possible, and we 

do not need to introduce artificial delays; reactions can be refined to several 

sub-reactions without changing the timing behaviour of the specification, 

i.e. 0 + 0 = 0. Huizing and Gerth also formalise three properties or criteria 

that describe useful semantic properties of languages for describing reactive 
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systems. They have labelled these properties responsiveness, modularisation 

and causality. We will briefly summarise each of these in turn and then 

present a more detailed description of causality. 

Responsiveness refers to the language having the abstraction that allows 

a reaction to take no time. A system's output is available simultaneously 

with the input that caused it. When breaking the description of a reactive 

system into parts the parts or processes should be symmetric in their view 

of events, i.e. they should be clock synchronous and communication between 

a system and its environment happens in the same way as communication 

between the parts of the system. This property is labelled modularisation. 

The final formal property, causality, insists that a collection of events that 

constitute a system reaction must be causal. That is, there must be some 

external event that directly or indirectly causes a reaction and there must be 

no causal loops, e.g. the output from one process in the reaction must not 

eventually cause another transition in the same process or prevent the initial 

transition from happening. Huizing and Gerth go on to prove that these 

three properties cannot be present together in one semantics for a language 

for describing reactive systems. 

Because of this result it is common for languages designed for describing 

reactive systems to incorporate responsiveness and modularisation and to 

deal with causality separately. Causality is often identified [33, 46, 65, 84] 

as a problem with the synchronous model of concurrency, but because it is 

a static semantic problem, that is it can be identified by static analysis of 

the description of the reactive system, it is tolerable. One suggested method 

for dealing with reactive system descriptions containing causality problems 

is to perform static analysis on the description of a system and reject it 

if it is possible that it contains a causality problem, e.g. Esterel takes this 

approach [6]. The problem with this is that it may rule out some descriptions 

of reactive systems that do not actually contain causality problems and static 

analysis requires a thorough state exploration which, even with current model 

checking technology, could be intractable [65]. Another method described 

in [78] is to ignore causality in the description of reactive systems and remove 

it during refinement. This is also the approach that we take here. For a 

more in-depth discussion about how causality affects the semantics of µ­

Charts given by the Z model presented here, the interested reader should 

consult [73]. 

Apart from the formalisms CCS, Esterel and CSP, another method for 
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describing reactive systems is Statecharts.3 Statecharts were introduced by 

Harel in (14] and according to Berry [5] it is a "quasi-synchronous formalism", 

i.e. based on a model for reactive systems that assumes processes behave 

periodically, they all have nearly the same period but no common clock and 

they communicate by means of shared memory [2, 12]. Because Statecharts 

are based on finite-state automata, which are easily represented in a graphical 

form, they were the first of many "visual" specification languages. It is 

commonly claimed (e.g. (31]) that the ability to use diagrams to represent 

specifications has made Statecharts a popular specification tool for software 

engineers. 

The well-known Unified Modelling Language (UML) [64] adopted "object­

based variants of Harel Statecharts that incorporate several concepts defined 

in ROOMcharts, a variant of the Statechart defined in the real-time object­

oriented modelling (ROOM) language" [79] known as UML statecharts or 

UML state machines [69]. 
The invention of Statecharts marked the beginning of extensive research 

into making precise their semantics, given informally in [14]. In particular, 

some of this research led to the creation of another visual specification lan­

guage for reactive systems called µ-Charts. µ-Charts is a simplified version 

of Statecharts and is the language that is the basis of the reported research. 

Section 1.2.1 introduces the formalism µ-Charts and Section 1.2.2 gives a 

brief comparison of µ-Charts with respect to the original Harel-Statecharts. 

1.2.1 µ-Charts 

The pedigree of µ-Charts is a chain of formalisms starting with Statecharts, 

as described above, and includes Mini-Statecharts [62], an extended version 

of Mini-Statecharts [76], the µ-Charts of [65], the µ-Charts of [78] and the 

µ-Charts of [74]. More specifically, µ-Charts was created and developed by 

Philipps and Scholz in (65, 66] with the aim of showing how to give it a 

proper denotational semantics, and also to use these results to generalise to 

Statecharts, hence showing how to give a denotational semantics to State­

charts and where problems occur with the original description. Later in [78], 

Scholz continued to develop µ-Charts and, as expected, gives some program 

development rules and a notion of implementation. Subsequently a transla-

3Hereafter we follow a common naming convention, similar to that used by Andre 

in [l], where we use "Statecharts" and "µ-charts" to refer both to several charts and (with 

a capital 'C' in the case of µ-Charts) to name the language in which the charts are written. 

12 



tion method from µ-Charts into the Z specification language has been de­

veloped [72, 73, 74] (also included in Appendices) in conjunction with the 

ISuRF and ZA research projects [48, 55]. 

Like Statecharts, µ-Charts allows the description of a reactive system 

via a Mealy-like finite-state automaton such as that of Figure 1.1. The 

description of the chart contains states denoted by ovals, including an initial 

state which is distinguished by a double ring, and transitions denoted by 

arrowed lines. The transitions are labelled with a trigger and an action 

separated by a"/". The trigger is a boolean expression over the input set. For 

example, in Figure 1.1, the transition label s / p means the labelled transition 

can occur if the chart is in its initial state A and the signal s is in the input. 

When this transition occurs its action is to output the signal p and move 

into state B . For completeness, the other trigger featured in Figure 1.1, i.e. 

-s, means the appropriate transition can occur when the chart is in state B 

and the signal s is not in the input set. 

IO._...___,_..-A----------sip 

• ·SIO 

B 

Figure 1.1: Simple sequential µ-chart 

Given the basic building block for charts, complex specifications of reac­

tive systems are constructed by composing charts together and allowing them 

to communicate by the instantaneous broadcast of particular output signals. 

The most general type of composition is demonstrated in Figure 1.2 where 

the charts named A and B are assumed to react in perfect synchrony and 

communicate by broadcasting the signal b. The other type of composition 

allowed is a special case that is often referred to as decomposition. Decom­

position is visually denoted by replacing an atomic state of one chart with 

another µ-chart. The meaning of decomposition is the same as composition 

except that the "embedded" chart has additional conditions implicitly on all 

of its transitions that will only allow them to fire when the chart in which it 

is embedded is in the "enclosing" state. 

A detailed account of µ-Charts' syntax and semantics is given in chap­

ters 2 and 3. 

It is important to remember that when we write specifications describing 

systems we may want to write them in an abstract manner so as to remove 
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Figure 1.2: Composed µ-charts 

low-level implementation details such as architecture dependent information, 

communication timing considerations, etc. We want to concentrate on fully 

capturing user requirements and developing a high-level knowledge of the 

functionality required in the proposed reactive system. µ-Charts provides 

such a specification language partly by allowing nondeterminism-choices 

can be left unspecified or nondeterministic in order that decisions can be 

made later in the design process. Also µ-Charts allows the abstraction mech­

anism often identified as a strength of Statecharts where we can describe an 

entire system as an abstract process and then decompose each of the states 

as though they are subprocesses of the system. 

The semantics for µ-Charts was designed to obey perfect synchrony, that 

is, it employs the synchrony hypothesis and therefore, according to Berry [6], 

is suited to describing reactive systems. The synchrony hypothesis means 

that a µ-chart's transitions are assumed to take no time, i.e. time only passes 

when a µ-chart is in a particular state, and instantaneous feedback is used 

as the model of signal broadcasting. Because output signals are available at 

the same instant as input, broadcast outputs from one chart are available to 

all other charts in scope.4 Importantly, subscribing to the principle of per­

fect synchrony allows µ-charts to capture the required timing characteristics 

of a reactive system, as identified above, by abstracting on the communica­

tion timing characteristics of the eventual implementation. This abstraction 

also allows us to give a (reasonably) eloquent Z model to charts based on Z 

descriptions of their transitions. This Z model of charts provides the foun-

4 Signals that can be broadcast from a µ-chart are represented in the graphical represen­

tation (see Figure 1.2) by attaching a rectangle, containing the set of feedback signals, to 

the box surrounding a µ-chart. Any broadcast output from any sequential chart enclosed 

by this box is in scope, i.e. can see the output and consider it as input. 
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dations of the Z semantics for charts which includes a logic and refinement 
rules. 

Other important reasons for choosing the µ-Charts formalism include: 

µ-charts are simple in construction and allow structuring of specifications 

through composition operators; the formalism was originally conceived with 

the aim of providing both a formal denotational semantics and a notion of 

formal refinement; finally, there was an existing link between µ-Charts and 

the specification language Z. 

Initially this link between µ-Charts and Z [72, 7 4] was considered as a 

translation of the existing language µ-Charts into the language Z. Now we 

consider the Z model of µ-Charts and the resulting logic and refinement 

notion as giving the semantics of the language. 

1.2.2 µ-Charts and Statecharts 

We give a brief overview of the difference between the language µ-Charts that 

is the topic of this dissertation and the original Statecharts language ( that is, 

the account, see [35], of the semantics of the orignal Statecharts developed by 

Harel in [14]). From [35], the interested reader can find numerous papers that 

describe all of the Statecharts variants and how they differ. This includes the 

state machines that are part of the Unified Modelling Language (UML) and 

a survey paper by von der Beeck [84] that discusses around twenty variants 

of Statecharts. 

First we make the important observation that the language µ-Charts is, 

by design [78], assumed to be an extremely cut-down, and therefore sim­

ple, language based on the original Statecharts language. This decision was 

intentionally made (initially by Scholz) to allow a formal semantic investi­

gation of the defined language, without the complication of considering an 

excessive number of language constructs. The investigation presented in this 

thesis does not go any further in terms of defining new "syntactic sugar" 

for the simplified language, instead the emphasis is placed on an extensive 

investigation of the refinement notion that is part of the language definition. 

The complication of considering the refinement notion for just the simplified 

language suggests that a formal investigation should indeed begin with this 

small core language. The idea being that once the core language is under­

stood and has a suitable set of formal tools allowing us to reason formally 

about language design decisions then the core language can be extended by 

a series of conservative extensions towards something that may, or may not, 
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allow all of the constructs that are part of the language Statecharts and its 

associated variants. This is the point at which all of the useful practical 

considerations that have been made for these languages can be considered 

for the future development of µ-Charts. 

We note that one essential extension that will be needed, in order that 

the core language µ-Charts scales to allow specification of realistic reactive 

systems, is the addition of local variables, along with the associated notions 

of assignment and variable-dependent guards. Work to this effect can be 

found in [7]. Also, [29] describes an approach that may be taken towards 

constructing other high-level language constructs. 

An attribute that is common to Statecharts-like languages is the duality 

between "states" and "charts" that commonly occurs when describing the 

behaviour of a Statechart. We note that the description of Statecharts given 

in [35] deals with this duality by considering all "charts" as being themselves 

states; one of which is denoted the root state and therefore could be consid­

ered "the" Statechart. In Statecharts-speak [35], µ-Charts does implement 

the three core language constructs of Statecharts, which are: OR-states­

a state of a "chart" that is itself a "chart" description of behaviour, i.e. a 

decomposed µ-chart; AND-states-"states that have orthogonal components 

that are related by and" [35], i.e. composed µ-charts; and basic states-states 

that contain no substates, i.e. sequential µ-charts. 

Statecharts have several additional features that are not part of the lan­

guage µ-Charts presented here (referred to simply as µ-Charts henceforth). 

We briefly discuss some of these differences in the following. 

The label on a transition in a Statecharts state has the form e[c]/a, where 

e is an event that triggers the transition, c is a condition that must evaluate 

to true before the transition can happen, and a is the action that happens 

when the transition is taken. µ-Charts implements transition triggers whose 

truth value depends just on an evaluation of the signals that are present ( and 

absent) at the moment that a step is evaluated. In the µ-Charts there are 

no conditional statements, at least in the sense of the expression [c] of the 

Statecharts transition trigger above, because there is no state-based informa­

tion on which such a condition could be evaluated. However, the previously 

mentioned work of [7] adds a similar conditional expression language to the 

transition triggers of µ-Charts. Also, Statecharts implements more sophisti­

cated events, for example, the special event timeout( e, d) occurs d time units 

after the most recent occurrence of the event e. 

Similarly, the transition actions implemented by Statecharts allow a more 
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expressive language of actions, for example, allowing a transition to update 

local variables and more sophisticated actions like schedule( a, d)-action a 

can be scheduled for d time units later. 

Statecharts allows activities to be associated with states for example 
' ' 

static reactions take the form of a transition label but "are carried out ( when-

ever enabled) as long as the system is in (and is not exiting) the state in 

question" [35]. Static reactions are described as syntactic sugar that are 

described semantically by orthogonality. Other state-based activities can, 

however, be explicitly associated to be active throughout state S or active 

within state S. 

Statecharts allow transitions to cross state boundaries, that is, a tran­

sition can go directly from a state in one chart C to a particular state ( or 

states) of a subchart (or substate) of chart C. Related to this, Statecharts 

defines several types of transition connectors, for example joint, fork and two 

types of history connectors, that allow the user to specify different ways to 

join transitions. fork allow a transition to split to have multiple destination 

states (in an orthogonal substate). Two transitions can join together to have 

an equal destination in the parent of an orthogonal substate. And a transi­

tion can enter the history connector for a substate which is taken to mean 

that the last state, in which the substate resided, is entered. 

The differences discussed so far appear to be additional functionality that 

could be defined as conservative extensions to the language µ-Charts. How­

ever, more significantly there is a fundamental difference between the se­

mantics of Statecharts and the semantics of µ-Charts. The step semantics 

of µ-Charts is based on the perfect synchrony hypothesis as discussed. Im­

portantly a µ-Charts step is restricted so that each chart ( or in Statecharts­

speak, each state) must make one and only one transition. Also, the time 

between instantaneous transitions is not necessarily uniform. The State­

charts semantics, according to [35], has two models of time. The first is 

named the asynchronous model and obeys the perfect synchrony hypothesis. 

However, in this asynchronous model any chart ( or state) can make several 

transitions in a single step-until there are no longer any valid transitions 

left-and is therefore different to the µ-Charts semantics. The second model 

of time is name the synchrony model and does not obey the perfect synchrony 

hypothesis. Therefore, the Statecharts semantics and the µ-Charts semantics 

must be fundamentally different. 

The obvious question of whether the different semantic models of Stat­

echarts and µ-Charts can be defined in terms of one another is outside of 
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the scope of this thesis. To prove this hypothesis will require defining both 

semantic models in the same formal framework, or inter-defining them. 

1.3 Zand Zc 

The specification language Z is based upon typed set theory and first-order 

predicate calculus and includes the notion of schemas used to encapsulate 

mathematical objects and their properties by declaration and constraint. Z 

is a model-based notation usually used to represent abstract specifications of 

systems by describing observations of their state and some operations that 

can change that state. One of many (see [36, 49, 68, 71, 81, 88, 90]) examples 

of using Z is given in [8]. 

Though Spivey [80] demonstrated the use of a logic for Z, the first at­

tempt to give a provably sound logic for Z was the account of the Z-logic 

W by Brien and Woodcock in [89]. Martin (incorporating changes due to 

the criticisms of Henson [37]) gave a logic for standard Z in [54]. An inter­

national Z standardisation effort was completed in 2002 (see [47] and [82]). 

This includes a denotational semantics for Z but not the proposed standard 

logic for Z; to reason about "standard" Z specifications requires reasoning at 

the semantic level. 

Henson and Reeves [38] provide a rational reconstruction of Z that they 

called Zc (standing for "Z core"), which provides a sound logic for Z. This 

is the foundation of the Z-logic that we use to derive a logic for µ-Charts. 

1.3.1 Zc 

The language Zc is a typed set theory that includes schema types which 

describe unordered, label-indexed tuples called bindings. The logic given for 

Zc (see [38]) is presented as a natural deduction system. A proof of the 

soundness of the logic is given by supplying an interpretation of Zc in ZF, 

where schemas are considered to represent sets of bindings. The schema 

calculus of traditional Z is then reconstructed by conservative extensions to 

Zc. The rules of the logic were developed by taking all of the usual rules for 

set theory and adding rules for schemas. An overview of the Zc logic that is 

prevalent throughout the following is given in Appendix A. 

Now, given a sound logic for Zc, correct reasoning about Zc specifications, 

and therefore Z specifications, can be carried out in Zc using rules at the 

level of the language itself. This has several advantages among which is 
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the ability for a user of Zc to reason about a specification syntactically, i.e. 

without needing to know its semantics. After reconstructing Z from a formal 

foundation Henson and Reeves go on to develop refinement and program 

derivation rules for Zc. 

1.4 Refinement 

The principal idea of formal refinement is to allow program development 

which, by definition, guarantees that an implementation respects the be­

haviour described by a formal specification. 

In Section 1.4.1 we describe some of the historical research that focused on 

giving meanings to programs and which led to the idea of program develop­

ment via stepwise refinement. Section 1.4.2 deals specifically with refinement 

as it relates to the Z specification language, that is, we describe the context 

of the refinement notion that is employed in this work. 

1.4.1 From proving programs to stepwise refinement 

As early as 1966, Naur [61] described the lack of influence of mathematics 

and proof in the way that computer programs are constructed. He illustrated 

a method of proving the correctness of algorithms by taking snapshots of 

the state on which the algorithm is being executed. These snapshots allow 

the description of static properties that exist whenever the execution of an 

algorithm reaches a particular point and therefore allows us to prove that an 

algorithm respects the expected behaviour (that it describes) correctly. 

In 1967, Floyd [25] published work on giving meanings to programs. Floyd 

showed that we could give a proper meaning to a program by describing, 

for each statement of a program, a relation that is true of the program 

variables or program state before an operation and a similar relation after the 

operation. Together these relations give a mathematical model that exactly 

defines the meaning of program statements and allows the proof of program 

properties. This was demonstrated by annotating flow charts with assertions. 

Closely following this work, Hoare [40] gave a set of axioms and rules 

of inference that can be used, following methods first applied in the study 

of geometry, i.e. axiomatic methods, to prove the correctness of programs. 

This paper presented the axiomatic system as a way to prove properties of 

existing programs, and it gave the foundation which can be seen to be one of 

the bases for formal methods of program development as it is known today. 
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This axiomatisation of computation led to the idea of axiomatic semantics for 

programming languages, as opposed to the traditional operational semantics, 

and Hoare later described using the proof of a program in conjunction with 

the program's construction as a sound program development method. A 

particularly insightful comment in [40] describes how the proof of a program 

in a machine-independent axiomatic system can illustrate machine-dependent 

features of an algorithm and alleviate the burden of porting a program from 

one platform to another, a problem which is to this day being addressed by 

the software development community. 

In [23], Dijkstra introduced the notion of predicate transformers and gave 

the weakest precondition meaning to a small programming language. Pred­

icate transformers are defined to give the weakest precondition for which a 

program will terminate and satisfy a stated postcondition. He also shows how 

predicate transformers can be used as a calculus to aid in program develop­

ment. While Floyd introduced the idea of invariant based programming, i.e. 

defining the invariant property for loops in the program, and Hoare empha­

sised its usefulness, Gries [30] states that it was Dijkstra [23] who presented 

the first useful technique for developing loop invariants before loops. 

These early works, together with others not mentioned and all that fol­

lowed, made it possible to give a proper, i.e. not operational, semantics to 

programs. It now seems an obvious progression that leads to abstract speci­

fication followed by provably consistent implementation. 

In the early 1970s, Dijkstra [22] and Wirth [86] proposed the idea of step­

wise refinement as a way to develop programs. Dijkstra [22] describes step­

wise refinement to be the cognitive composition process of a well-structured 

program, given in great detail. In particular he points out the advantages 

of allowing the programmer to make one decision at a time and to be able 

to leave other choices to a later stage of refinement. This work introduces 

the inspirational idea of using the proof of a program in conjunction with its 

creation as a way to ensure correct program construction. Dijkstra described 

this idea as stemming from the formalisation of the process undertaken by a 

programmer whilst convincing themselves of program correctness during an 

informal development of code. 

This notion is acknowledged in similar work by Hoare mentioned previ­

ously. Importantly Dijkstra identifies notions of data refinement, where the 

programmer must make more concrete the data structures to be used to store 

the program's data, and operation refinement, where the programmer refines 

the actions that are taken on that data. Wirth [86] also describes by example 
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the process of developing a program by a sequence of refinement steps where 

at each step one or several instructions are decomposed into more detailed 

instructions. Wirth also makes the distinction between data refinement and 

program refinement and states that it is natural to refine program and data 

specifications in parallel. Wirth's treatment of stepwise refinement is much 

less formal than that of Dijkstra. 

In the mid 1970s, Burstall and Darlington (11] and Gerhart (26] identified 

a trade off between writing comprehensible programs and efficient programs. 

This lead them to introduce a transformational approach to programming. 

They give rules for transforming inefficient programs into more efficient pro­

grams correctly, thus allowing a programmer to write their program without 

considering efficiency concerns but rather with an eye to eloquence and un­

derstandability. 

In (3], Back combines the ideas of stepwise refinement, the program trans­

formation approach and the invariant-based approach to program construc­

tion to define the Refinement Calculus. The Refinement Calculus is based on 

earlier work by Back in which he added the notion of a specification statement 

to Dijkstra's Guarded Command Language. Hence the Refinement Calculus 

then allows the specification of a program to be given by possibly nondeter­

ministic program statements that are not necessarily executable. Also the 

calculus defines rules that allow the (possibly non-executable) specification to 

be transformed, stepwise, into a program that is necessarily executable and 

by definition correctly refines the initial specification. Back describes the 

notion of correct refinement by a satisfaction relation. This relation allows 

the definition of correct refinement to be as follows: 

A program S is said to be correctly refined by another program S' 

if S' preserves the correctness of S, in the sense that S' satisfies 

any specification that S satisfies. 

Morgan [58] and Morris [60] also developed a Refinement Calculus. Mor­

gan published a comprehensive guide to programming using the Refinement 

Calculus [59] in which he emphasises the view that all specifications and im­

plementations are programs and that there is a refinement order between pro­

grams. Like Back's, Morgan's Refinement Calculus uses Dijkstra's Guarded 

Command Language, extended to include specification constructs, to write 

programs. 

In [4], Back describes two differences between Morgan's and his own work. 

The first is that the Morgan's Refinement Calculus introduces different spec-
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ification statements and the second is that the calculus presented in [59] 

reformulates the original refinement calculus in a way that is influenced by 

the Z specification language. 

To summarise: this section described the conception of formal stepwise 

refinement. Firstly we described the inspiring work of researchers such as (in 

no particular order) Floyd, Naur, Hoare and Dijkstra, whose work, among 

many others not mentioned, made it possible to reason about programs using 

mathematical logic as opposed to the insufficient methods of testing the oper­

ational characteristics of programs. We then described a change in traditional 

thinking which introduced the idea of a satisfaction relation, as opposed to a 

stricter equivalence relation, between programs. This change led to the cul­

mination of the notion of formal program semantics and the idea of a formal 

refinement calculus. Most importantly, the satisfaction relation allows the 

partial specification of a problem to be refined in manageable steps into a 

computable function. Presuming correct instantiation of the calculus rules, 

this function or algorithm is guaranteed to satisfy all functional constraints 

of the specification. 

Clearly this overview acknowledges only a few of the core publications 

whose work contributed to the formulation of the notion of program refine­

ment. 

1.4.2 Specification and stepwise refinement 

We start the second thread of the development of refinement with the con­

ception of the Z specification language (see Section 1.3). The reasons that 

we divide the discussion in this way is because Z is used as the meta-notation 

for the semantics of µ-Charts given here, and Z was developed as a dedicated 

specification language for which it was later realised a notion of refinement 

was required [13]. In comparison, the Refinement Calculus notion of speci­

fication was derived from studying the transformations that allow successful 

implementation, as described in the previous section. The Refinement Calcu­

lus is not renowned for having an algebra of constructs that allows high level 

structuring of specifications ( though it does in fact have sequential compo­

sition, demonic and angelic choice, if-then-else statements and loops as part 

of the programming constructs of the language-these along with the mono­

tonic algebra could be used to structure and reason about specifications). 

When the Z specification language was created the connection between 

the specification and the implementation was informal. In [80] Spivey gives a 
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semantics to Z using set-theoretic structures and describes a z specification as 

giving a description (possibly a "loose" description) of the behaviour to which 

the eventual implementation must adhere, i.e. the Z specification describes a 

nondeterministic mechanism or abstract data type whose behaviour can be 

interpreted from the set-theoretic model given by the semantics. The onus is 

then on the implementor to ensure that the eventual implementation is one 

which satisfies the mechanism described by the specification. 

Later, in [81] Spivey describes the notions of operation refinement and 

data refinement as separate design decisions that must be made during pro­

gram development. Rules are given that allow the simplest form of operation 

refinement, which is to show that one operation (given in Z) is a refinement 

of another Z operation. He also points out that operation refinement must be 

extended in two ways to be useful in program development, one of which is 

adding programming constructs (which is not attempted), the other is data 

refinement. The simple operation refinement given reduces nondeterminism 

in the specification by weakening preconditions and/or strengthening post­

conditions while data refinement can be used to change the data structures 

described in the specification. 

The precondition/postcondition approach described above can be consid­

ered proof-theoretic [20] because we use the predicates defining operations to 

show that one operation is a refinement of another, i.e. to define the refine­

ment relation. Another approach is the model-theoretic approach, i.e. the 

refinement relation is defined in terms of the relationship between the set­

theoretic models that give the semantics of the operations. This approach is 

suggested in [88] and [16]. Here the relations represented by a specification 

are lifted with the special element 1-, which represents undefined or non­

termination, and totalised (turned from a partial relation to a total relation) 

to represent chaotic behaviour outside of the precondition. Now the data 

refinement part of refining operations is defined in terms of set containment, 

i.e. one operation is considered a refinement of another if and only if the lifted 

relation describing the first operation, i.e. its model, is a subset of the lifted 

relation of the original operation. In [20], it is shown that the proof-theoretic 

and model-theoretic approaches described are the same. 

Again, no Z-based code introduction method is given in [88] or [16], 

though the program derivation process suggested in [88] is to perform data 

refinement as described above until a concrete Z specification is reached and 

then translate that specification into a Refinement Calculus program state­

ment. This translation is based on work presented by King in [50] and later 
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extended by Cavalcanti and Woodcock [13]. [50] gives rules for translating Z 

specifications into a Z Refinement Calculus program statement from which 

implementations can then be derived. This paper gives a general rule for 

the translation and also attempts to utilise the structure provided by the Z 

specification calculus to derive more sophisticated rules of translation. Un­

like King, Cavalcanti and Woodcock have defined a new language called ZRC 

that has a notation compatible with Z and encompasses many of the rules 

of the Refinement Calculus. More recently, this work has been extended to 

include executable commands from Dijkstra's guarded command language, 

like assignments, conditionals, and loops, and with reactive behaviour from 

CSP, including communication, parallelism, and choice, to define a new pro­

gramming language known as Circus [87]. 

1.4.3 Z>.. and program derivation 

The language Z>.. [39] is an extension of the language Zc. Z>.. incorporates 

a notion of implementation of operation schemas into the logic for Zc in 

order to provide program derivation and refinement rules for the existing 

logic. The notion of implementation that is the basis of these rules is to 

model a specification as a set of legitimate implementations, i.e. the meaning 

of a specification is given by the set of all of the programs that correctly 

implement it. Now, given a program p and a specification U, the relationship 

where p correctly implements U is expressed as: 

p ff. u 

where the meaning of this proposition is given by:5 

that is p correctly implements U when the meaning of p (a function in the 

A-notation) is one of the functions that correctly implements the specification 

u. 
Given this notion of implementation, refinement is defined simply as set 

containment, i.e. a specification U0 is a refinement of a specification U1 as 

long as the set of functions [ Uot is a subset of the set of functions [ U1t. 
That is, we have: 

5Note that the semantic functions, i.e. [.D, are annotated to denote the presence of 

three different semantic functions, where [.t is the semantics of implementation, [J is 

the semantics of functions, and [.Ds is the semantics of specification. 
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Therefore a development from specification to implementation is a finite 

sequence of design steps or refinements where each nontrivial step eliminates 

some of the possible implementations of the previous specification. Each step 

in the development process is verified as a correct refinement using the rules 

of the logic for Z;... The development ends when the set of implementations 

has been reduced sufficiently so that all remaining implementations are ac­

ceptable. If the set of implementations is empty then the developer must 

review the design steps, possibly all the way back to the original specifica­

tion. In some cases the original specification itself may have been infeasible 

and therefore changes may be required of the specification itself. 

Contrary to the other program derivation methods discussed, when de­

riving programs in Z;.. each step happens at the level of the specification 

language, therefore one must conceptualise a two-dimensional process of pro­

gram derivation. One dimension consists of the sequence of refinements from 

abstract specifications to more concrete specifications (i.e. no program state­

ments). This process often entails introducing more refined structure to the 

specification as well as reducing nondeterminism. For example, splitting an 

operation schema into the composition of more specific operation schemas. 

Another example is making the described data types more concrete, i.e. the 

activities associated with traditional data refinement. On the other dimen­

sion, at any point in the refinement sequence there may be a program that 

clearly implements part of the specification. For instance consider the re­

finement sequence Sn ;;;;) . . . ;;;;) SI that results in the specification Sn that 

implements the specification SI. Now assuming Sn =def Sn.I ~ Sn.2, where 

the specification Sn.I represents a program (provable by the implementation 

relation), then we know what part of the eventual program will be, i.e. the im­

plementation of Sn.I· This type of program development is possible because 

Z;.. refinement is monotonic and it allows the structure of the specification to 

be adopted in the implementation. The program derivation is documented, 

and shown correct, by a proof that includes the use of rules that are derived 

from the implementation relation. 

The notion of refinement used in the Z;.. method of program deriva­

tion (i.e. subset of implementations) has been shown equivalent [20] to both 

the proof-theoretic and the model-theoretic notions of refinement introduced 

above. 
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1.4.4 Program development for µ-Charts 

Scholz [77, 78] describes refinement rules for µ-charts that are applicable 

as syntactic transformations and are equipped with syntax-based context 

conditions. He argues that these properties allow a designer to apply a 

refinement rule providing its specific syntactic requirements are met and 

therefore the designer does not need to be aware of the formal semantics 

of µ-Charts to apply the rules. This highlights the emphasis Scholz puts on 

the practical considerations of using these rules in development. 

The refinement rules given are categorised into Behavioural Refinement 

and Interface Refinement which are outlined in the following and discussed 

in detail in Chapter 5. 

Behavioural refinement allows the refinement of the input/output be­

haviour of a µ-Charts specification. A specification S2 is a behavioural re­

finement of a specification S1 if and only if any observable behaviour of S2 

can also be observed of S1. The set of possible inputs, or the input inter­

face, of S1 is equal to the input interface of S2 and the output interfaces 

of S1 and S2 are also equal. Note this allows (and we would generally ex­

pect) S2 to remove behaviour of S1, therefore making S2 more deterministic. 

In other words, behavioural refinement is the restriction of nondeterministic 

behaviour without changing the input/output interfaces for a specification. 

Of course, a chart is trivially a refinement of itself. Formally, behavioural 

refinement is expressed by the predicate, 

where [S]io denotes the trace semantics, with respect to the observable in­

put and output behaviour, for the specification S. In(S) denotes the input 

interface, i.e. the set of possible input signals, for S and Out( S) denotes the 

output interface for S. 

Interface refinement is the refinement of the input/output interfaces of a 

specification by the adding of new signals. Another way to consider interface 

refinement is that it allows a designer to describe new observable behaviour 

that was not described at the previous level of abstraction. In the Scholz 

semantics, a specification S2 is an interface refinement of a specification S1 if 

and only if the input and output interfaces for S1 are proper subsets of the 

respective interfaces for S2 . Any behaviour in S2 , affecting signals present in 

the interfaces of S1 , is behaviour in S1. In other words an interface refinement 

entails adding signals to the input and/or output interfaces without creating 

new I/0 behaviour for previously existing signals. Formally, this can be 
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expressed by the predicate, 

{(ilJn(SI)• olout(SI)l(i, o) E [S2]io} = [Si)io /\ 
ln(S1) ~ In(S2) I\ Out(S1) ~ Out(S2) 

where six denotes the restriction of elements (events) in the trace s to the 

signals in X. 

These two notions of refinement are combined into one single notion of 

refinement. This formal definition now states a specification 82 is a refine­

ment of a specification 81 (represented symbolically by 81 ----+ 82 ) if and only 
if: 

{(i1Jn(S1 )• 0 1out(S1) I (i, o) E [S2]io} ~ (Si]io /\ 
ln(S1) ~ ln(S2) I\ Out(S1) ~ Out(S2) 

Two important properties that Scholz proves for the refinement rules 

given are transitivity and the monotonicity of refinement with respect to 

composition (Scholz chooses to call this compositionality-we prefer the term 

monotonicity). Transitivity allows stepwise refinement to be carried out, 

hence allowing incremental system development. Transitivity gives us, for 

arbitrary specifications 81 , 82 and 83 , if 81 ----+ 82 and 82 ----+ 83 then 81 ----+ 83 . 

Monotonicity ensures that the refinement of part of a system is also a 

refinement of the overall system. Scholz refers to this property as composi­

tionality. To show the refinement rules are monotonic Scholz had to show 

that given arbitrary specifications 81 , 82 and 83 , such that 81 ----+ 82 then the 

composition of the µ-charts 81 and 83 is refined by the composition of the 

µ-charts 82 and 83. 
In his conclusions Scholz states that his notion of refinement for µ-Charts 

is based on the restriction of nondeterministic behaviour. A refinement step 

in this framework is guaranteed to make a µ-Charts specification more con­

crete and never more abstract. The construction of the rules given was based 

on practical, rather than theoretical, considerations. Therefore the calculus 

presented is not complete in a mathematical sense. For example there exist 

pairs of specifications, say 81 and 82 , such that 82 is a legitimate refinement 

of 81, however, 82 cannot be derived from 81, using the syntactic refinement 

rules given. 

1.5 Contributions 

The aim of this thesis is to provide and investigate a new semantics and 

logic for µ-Charts. We extend the logic to include a calculus that allows us 
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to reason about the structure of charts and refinement. We reiterate that 

the work presented has two motivations: to represent a complete description 

of the latest version of µ-Charts; and to report on the process of using an 

existing logical framework to induce a logical framework for µ-Charts. 

We give an extensive description of the language µ-Charts that we as­

sume. This is necessary because it is different from that presented by Scholz 

in [78]. Essentially, where Scholz chose to reduce the language description 

to a minimum by showing that the decomposition operator can be defined, 

as syntactic sugar, in terms of the composition operator, we have chosen 

to include each of the language operators, composition, decomposition and 

interface description, as semantically defined operators, the primary reason 

being that it is as easy to define the decomposition operator directly in the 

semantics as it is to introduce it in terms of composition. There are also 

semantic differences between the language definitions. The definition given 

here was guided both by what Scholz described as the language µ-Charts 

(recall there are several versions of this work also, e.g., [62, 65, 78, 76]) and 

by the task of encoding the semantics in Z. 

For the logic and refinement rules we closely follow the methodology in­

troduced by Deutsch, Henson and Reeves. That is, we begin by formally 

modelling µ-Charts in an appropriate meta-language, Zc, and then use the 

logic of Zc to derive a logic for µ-Charts. Because Zc itself was developed 

in this fashion, i.e. via a model in ZF set theory, we have shown how a se­

mantics and logic for µ-Charts can be constructed based on set theory. A 

chart's semantics is denoted by a set of bindings. Each binding represents 

an allowable transition of the chart. 

Given this semantics we develop a calculus, in the form of introduction 

and elimination rules, that allows us to reason (via proof) over the structure 

of the language. That is, given a composite chart we can deduce properties of 

its parts, and given propositions about parts of a chart we can reason about 

a chart as the structured composition of those parts. 

We extend the logic further to include rules that allow us to reason about 

the refinement of µ-Charts. Together, the rules of the logic and those for 

refinement give us a refinement calculus that is a basis for a formal frame­

work allowing formal developments of reactive systems. Naturally, the re­

finement rules for charts are given in the same style and language (i.e. nat­

ural deduction-style introduction and elimination rules using the language 

Zc) as the core logic. The derivation of these rules (given in detail in Chap­

ter 6) closely follows similar derivations of refinement rules for Z presented by 
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Woodcock and Davies in [88] and later in a similar presentation by Boiten and 

Derrick in [16]. We rely on the extensive work of Deutsch, showing how each 

of the existing refinement notions for Z-that appear to differ significantly­

are in fact strongly related, to ensure that the result of our derivation gives 

a sensible notion of refinement. A significant difference between the refine­

ment that we derive for charts and the derivations on which the refinement 

notion is based is that we allow refinements that change the input/output 

characteristics of the respective abstract and concrete specifications. 

This extension to the traditional Z data refinement treatments is due to 

the notion of interface refinement (as opposed to the more traditional be­

havioural refinement) that was suggested by Scholz in [78]. We discuss this 

distinction in detail in Chapter 5. Apart from introducing this distinction, 

the detailed account of the refinement notion for µ-Charts serves another sig­

nificant purpose. This account of refinement is given using a more traditional 

trace semantics approach. That is, we discuss the meaning of refinement in 

terms of the "traces of input/output behaviour" of charts. While we consider 

that a logic based framework is superior for reasoning about refinements, it 

is still the case that the more traditional trace semantic interpretation of 

reactive systems is a useful tool for describing what the provable refinements 

actually mean. 

Part of the construction of the model for charts is the description of charts 

in Z; the semantics for charts is derived via the Zc semantics of that Z. A side­

effect of this process is that the presentation of the required Z in Chapter 3 

provides a concise description of the Z-model, in general, for µ-Charts. This 

provides a definitive account of what in previous published work (formally 

considered a translation from µ-Charts into Z) was introduced via specific 

examples. This ties in another body of work that shows how traditional Z 

techniques and tools can be used to reason about µ-Chart specifications of 

reactive systems. 

Finally, the "experimental" work presented is a brief investigation of the 

monotonicity properties of the resulting notion of refinement for charts pre­

sented in Chapter 7. We consider this a form of experiment because it is the 

first example of integrated proofs using the rules of the developed logic. The 

development of this chapter provided significant insight into decisions about 

the form of the rules of the logic. 
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1.6 Outline 

Chapter 2 presents the syntax of µ-Charts. A textual syntactic definition is 

given in parallel with describing the graphical representation of the language. 

The textual syntax is defined formally using a context free grammar. The de­

scription of the syntax is broken down into sections based on the structuring 

operators of the language. 

Chapter 3 introduces the formal semantics for µ-Charts. The structure 

of the semantic definition follows that of the syntactic definition. For each of 

the language constructs we give an informal description of the language, the 

Z that is used to model the construct and the introduction and elimination 

rules that follow from the Z model and form the logic for µ-Charts. Also, 

some general rules ( that hold over all charts) are presented. 

In Chapter 4, we introduce and contrast some possible trace semantic 

interpretations that can be assigned to the language. The definition of each 

of these trace semantic notions provides a necessary link between the natural 

traces of observable behaviour semantics for charts and the rule-based logic 

that is the core of this thesis. 

Chapter 5 provides an extensive investigation of the refinement notion 

for µ-Charts in the traces-of-behaviour model that is common to such for­

malisms. This includes a lattice-based analysis of what refinement for µ­

Charts means. 

The derivation of a refinement calculus for µ-Charts is detailed in Chap­

ter 6. The derivation of the calculus is presented for two of the trace refine­

ment notions of Chapter 5. Along with the derivation this chapter contrasts 

the refinement for charts with more traditional notions of refinement for Z. 

The important monotonicity properties of the resulting refinement calcu­

lus are outlined in Chapter 7. Finally, Chapter 8 summarises the contribu­

tions of this thesis and suggests future work that follows naturally from the 

investigation reported here. 
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Chapter 2 

Introduction to µ-Charts 

This chapter defines the syntax for the language µ-Charts. We present a 

textual syntactic definition in parallel with describing the graphical repre­

sentation of the language. First we define the basic building block for µ­

Charts specifications which are sequential charts. Then we introduce the 

syntactic operators that can be used to combine sequential charts into more 

sophisticated µ-charts. In particular we give the operators for allowing the 

composition of two charts, the decomposition of a chart, i.e. embedding an 

arbitrary chart into a state of a sequential chart, and the interface opemtor 

that allows a chart designer to specify the context of the chart, that is, the 

signals with which a chart interacts with its environment. Unlike the previ­

ous definition of the language by Scholz in [78], we introduce decomposition 

of a µ-chart as a language operator in its own right rather than defining it as 

syntactic sugar using composition. This was done because, from the outset, 

decomposition appeared to warrant a separate semantic treatment, though 

in the end we manage only to treat composition fully. A similar case can be 

made for the interface operator. Both of these operators are key to µ-Charts 

and therefore require a clear and distinct definition. 

We formally define the textual syntax of the language using a context 

free grammar. The graphical syntax is presented using examples. 

The set of all possible syntactically correct µ-charts is given by the set 

µ Charts as defined by the following grammar: 

µCharts 

Charts 

Charts I { Charts ) 

µChart I µCompChart 

µDec Chart I µ Chartio 

In the following we give productions for the non-terminals µChart, 

µCompChart, µDecChart and µChartio: 
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2.1 Sequential µ-Charts 

The smallest unit of µ-Charts is a sequential µ-chart. In general a simple se­

quential chart is the specification of the allowable behaviour of a named finite 

state automaton that takes input from its environment and instantaneously 

produces output accordingly. 

A sequential chart contains the name of the automaton, a nonempty set of 

control states, including a special start state ( denoted by a double outline in 

the graphical notation) , a feedback set (described in Section 2.2), and labelled 

transitions between states. For example, Figure 2.l(a) shows a sequential 

chart named A Chart_x_y. It contains two control states A and B, of which 

A is uniquely identified as the initial state. Chart A CharLx_y contains one 

transition which has the guard in_x and action ouLy. Informally we could 

describe this transition as follows: "if the chart ACharLx_y is in state A 

and the current input event contains the signal in_x then we instantaneously 

move to control state B outputting signal ouLy" . 

AChart_x_y 
in_x /out_y in_a /out_b 

(a) (b) 

Figure 2.1: Examples of simple sequential µ-charts 

Notice that we have also introduced a naming convention for charts. Due 

to the form of the name AChart_x_y it is understood that the chart is pa­

rameterised on the labels x and y. Because we never use or refer to the 

abstraction A Chart itself, it is not necessary to define this mechanism in 

terms of usual abstraction, that is using variables, definitions and instantia­

tions. Rather we assume the convention that, when given a chart definition 

such as AChart_x_y, we are free to consider the chart AChart_a_b with the 

understanding that it is defined as A Chart_x_y where all occurrences of x 

are replaced by a and similarly y by b. The chart ACharLa_b is pictured in 

Figure 2.l(b). 

To describe the attributes of charts formally, we introduce the following 

lexical classes: Signal, Name , State and Param, each of which denotes an 

abstract set of terminals that appear in the syntax grammar. These sets are 

assumed to contain all labels used to identify signals, chart names, control 

states, variables and parameters respectively. 
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We also introduce the sets Chartname and µSignal whose elements are 

defined using the following grammar: 1 

Chartname .. - class-name [_param-list J 

µSignal .. - signal-name [_param-list J 

param-list .. - Param{ _Param} 

class-name .. - Name 

signal-name ··- Signal .. 

Now, consider the reactive systems that we might want or be able to 

specify using a µ-chart. The set Chartname is the set of labels used to name 

sequential charts. The set µSignal contains labels that name (possible pa­

rameterised) signals that these reactive systems can use to interact with their 

environment, and/or use for internal communication between their compo­

nents.2 Similarly, State is the set of labels used to name control states. 

Each sequential chart contains a set of transitions. Each transition is 

a member of the set µ Transition and is made up of a tuple of the form 

(81, St, label) where s1 represents the state from which the transition origi­

nated, St represents the destination state of the transition and label defines 

under what conditions the transition can be taken and the resulting action of 

that transition. The label of the transition is an element of the set Transition. 

We define the necessary sets as follows: 

µ Transition ··- ( State , State , Transition ) .. 

Transition ··- guard / action .. 

guard .. - signal- expr { & signal- expr} 

signal- expr .. - [-]Signal 

action ··- { [signal-list]} .. 

signal-list .. - Signal {, Signal} 

Now we can define the set µChart of all allowable sequential charts: 

1 The context free grammar presented here uses the bracket notation [ ... ] to represent 

the optional inclusion of the term enclosed in the bracket. The repetition construct { ... } , 

e.g. {_Param}, means zero or more occurrences of the enclosed expression, e.g. _Param. 

Also, the tokens of µ-Charts are given in bold font, in particular the construct { ... } is 

distinct from the language tokens '{' and '}' used for example to enclose a list of signals 

in a transitions action. 
2Context permitting, we use the elements of each of these sets to refer to both the label 

itself and the object that the label represents. 
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µChart .. - ( Chartname, control-states, initial-state, 

feedback-set, transitions[, signal-list] ) 

control-states .. - { initial-state [, states-list] } 

initial-state ··- State .. 

states-list .. - State [, states-list] 

feedback-set .. - { [signal-list]} 

transitions { [transition-list] } 

transition-list .. - µ Transition {, µTransition} 

According to this definition, sequential charts, i.e. elements of the set µChart 

above, are described as a tuple that has the fields ( C, E, a, '11, 6) where: 

• C is the name of the chart 

• E represents the finite set of control states 

• a names the initial state, noting a E E 

• \JI represents the finite set of feedback signals 

• 8 represents the finite set of transitions that are defined in the chart 

Notice that every sequential chart must have at least one state (the initial 

state) but can have empty sets of feedback signals and transitions. 

Each sequential chart has an input and output interface. These interfaces 

represent the sets of signals that the chart can react to and output respec­

tively. From the definition of a chart (either textual or graphical) we can 

typically derive these interfaces from the signals that appear in the triggers 

of transitions and the signals that appear in the actions of the transitions 

respectively. Henceforth, we refer to these derived interfaces as the natural 

input/output interface of a chart. We do so because it proves useful if the 

designer of a chart can specify the interfaces of a chart that differs from the 

natural interface. The interface definition operator is described in Section 2.5. 

There is a clear relation between the textual form of the syntax that 

is presented here and the graphical presentation of sequential charts, for 

example Figure 2.l(b). The chart name is presented in the upper-left corner 

of the chart and each of the control state are labelled ovals etc. However it is 

worth noting that the textual definition of charts does not suppose to encode 

any spatial layout of a graphical chart. Hence, for any "textual chart" there 

are a great number of equivalent but different looking "graphical charts" . 
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Though we have not yet discussed how the input and output of a chart 

can interact, it is possible for a sequential chart to contain a feedback loop 

that causes some of the output of the chart to be instantaneously fed back 

and act as input. As introduced, the description of sequential charts contains 

a feedback set IV. This is used to specify which output signals can be instan­

taneously fed back and hence act as input. The following section introduces 

sequential charts with feedback. 

2. 2 Feed back signals 

The feedback set in sequential charts allows us to model the instantaneous 

feedback of designated output signals in sequential charts. For example the 

chart (AChart_a_b,{A,B},A,{in_a,ouLb},8) for 8 = {(A,B,in_a/ouLb)} is 

pictured in Figure 2.2. 

AChart_a_b 

in_a I out_b 
A B 

( in_a , out_b ) 

Figure 2.2: Sequential chart AChart_a_b with feedback set { in_a, ouLb} 

If a signal is in the feedback set then whenever that signal is output by 

the chart it is also instantaneously available as input. If we consider the 

input/output behaviour that a sequential chart describes as a black box that 

has a wire carrying input and a wire carrying output then the feedback of 

signals can be considered as a loop-back wire that connects the output to 

the input and carries only the signals designated by the feedback set. 

In the graphical representation of charts the feedback set is presented 

in a box attached to the outline that encloses the chart. Notice that the 

diagrammatic representation, e.g. Figure 2.2, allows the shorthand which is 

to omit the feedback box to represent a symbolic chart with the empty set 

in place of feedback IV. On the other hand Figure 2.2 shows a sequential 

chart A Chart_a_b that feeds back all of its signals, i . e. it has the feedback set 

containing in_a and ouLb . 

It is also worth noting that, in a fashion similar to CSP, the output 

signals that are feedback are not hidden from the environment, i.e. they can 

still control the environment like normal output. 
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2.3 Composition of µ-charts 

Now that we have introduced the basic building block of the language, i.e. 

sequential charts, we present the operators that can be used to combine 

arbitrary charts into more sophisticated µ-charts . 

Given any two charts C1 E µCharts and C2 E µCharts and a set of signals 

\JI, we denote the composition of these charts in parallel by an expression of 

the form C1 I \JI I C2 . The set of all such charts formed using the composition 

operator is defined by the set µCompChart: 

µCompChart µCharts I { [signal-list] } I µCharts 

From this definition we can see, as one might expect, the feedback of 

signals is intimately coupled with the composition of charts. When you 

compose two charts you need to specify how they interact; because of this, 

the feedback set is included in the composition operator. The feedback set 

can be empty, in which case the composition would represent two charts that 

proceed in lock-step but do not affect one another in any way. 

The graphical notation, like the case for sequential charts, uses two con­

ventions for feedback between composed charts, i.e. a composed chart with 

no feedback box represents a composition with the empty feedback set . Con­

sider the two composed charts in Figure 2.3. 

AChart_a_b AChart_a_b 

A 
in_a/out_b 

B 
in_a / out_b 

A B 

C 
out_b/ sigc 

D C 
out_b/ sigc 

D 

( out_b} 

(a) (b) 

Figure 2.3: Composed charts with and without feedback 

The chart in Figure 2.3(a) represents the chart AChart_a_b I{} I BChart_b 

where AChart_a_b is (AChart_a_b, {A, B}, A , {}, {(A,B,in_a/ouLb)}) and 

BChart_b is similarly defined . The chart of Figure 2.3(b) represents the chart 

AChart_a_b I { out_b} I BChart_b . 
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2.4 Decomposition of a µ-chart 

A decomposed µ-chart is a sequential chart that has other charts embedded 

into some or possibly all of its states. The purpose of decomposing a state in 

a sequential chart is to mimic a master/slave relationship between the charts. 

The sequential chart that has its states decomposed can be considered the 

master in the relationship because it effectively allows the decomposing chart, 

i.e. the slave, to react to input from the environment only when the master is 

in the state that the slave decomposes. Of course a master can have several 

slaves. A slave, however, has only one master which is always a sequential 

chart. The master may itself be a slave, i.e. there can be more than one level 

of decomposition. 

The syntax for decomposition is defined by the following grammar: 

µDeeCharl 

dee-states 

Dec µChart by { dee-states } 

( State , µ Charis ) [, dee-states ] 

In the graphical representation of a decomposed chart the decomposed 

states of the master are written as rectangles (rather than the usual oval state 

representation). The slave chart is then given in a separate chart diagram. 

Figure 2.4 presents an example of a decomposed chart given by the textual 

expression 

Dec (AChart_a_b, {A,BChart_b}, A, {(A,BCharLb,in_a/ouLb)}) 
by {(BChart_b , (BChart_b, { C, D}, C, {( C, D, ouLb/ sige)} ))} 

AChart_a_b C A ::) in_a / out_b • I BChart_b 
out_b / sigc 

(a) l\1aster (b) Slave 

Figure 2.4: Simple decomposed µ-chart 

Notice that unlike Statecharts the µ-chart that decomposes a state is 

always given in a separate diagram. This is due to the tool AMuZed [55] 

used to create the diagrams rather than being a significant property of µ­

Charts. Drawing chart BChart_b inside of its enclosing state BChart_b would 

be an acceptable graphical presentation of a µ-chart. 
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2.5 The interface operator 

We refer to the final chart operator that we introduce as the interface opera­

tor. As we discussed above each sequential chart has a natural input/output 

interface associated with it. That is, the signals that occur on the triggers 

of transitions together make up the input interface while the signals that 

appear in the actions of transitions form the natural output interface. 

However, it is often the case that the natural interfaces of a chart are 

not those that are intended by the designer. The most common situations 

where explicit interfaces are required is when a chart designer wishes to 

hide signals. A complex specification is (in general) constructed by com­

bining several sub-charts using the operators that we have already intro­

duced in this chapter. We can consider each sub-chart as sharing an ob­

servable interface with its environment. For example consider the composi­

tion (with feedback) of the sequential charts ACharLa_b and BCharLb pic­

tured in Figure 2.3(b). The "effective" environment, i.e. what a chart sees 

and allows to be seen, for the respective charts ACharLa_b, BCharLb and 

A CharLa_b I { ouLb} I BChart_b are all different things. It is usually the case 

that we wish to distinguish between the way that one part of the specifica­

tion, e.g. AChart_a_b, interacts with its environment and the way that the 

overall specification, e.g. AChart_a_b I { ouLb} I BCharLb interacts with its en­

vironment. In this example we may want the signal ouLb to be used only for 

internal communication between AChart_a_b and BChart_b. Hence the inter­

face that these charts share individually must contain signal ouLb, however 

we want to hide this signal from the observable interface of the specification 

AChart_a_b I { ouLb} I BChart_b. This can be achieved using the interface 

operator. 

Another way that the interface operator can be used is to specify that the 

output interface of the chart is larger than its natural output interface. The 

reason a designer would wish to do this becomes clearer when we consider 

the entire definition of the language, in particular the refinement calculus 

for µ-Charts. In brief, the µ-Charts language makes the assumption that the 

output interface of a chart ( whether left unspecified, i.e. the natural interface, 

or explicitly defined) specifies the context in which the chart designer expects 

the reactive system to reside. The refinement calculus for charts allows us 

to extend this output context using refinement. Such refinements allow new 

output behaviour over the added signals of the new context. Hence, specify­

ing an output context that is larger than the natural output interface of the 
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chart allows a designer to indicate that a chart chooses not to output some 

signals that control its environment. 

As we have seen, there are two interfaces for any chart, the input interface 

and the output interface. The interface operator allows us to explicitly specify 

either or both of these sets of signals. Restricting the input interface, i.e. 

defining an explicit input interface that is a subset of the natural interface, 

can be considered as filtering input from the environment, that is, these 

filtered signals are never received as input from the environment. Restricting 

the output interface means the hidden signals, i.e. signals that are in the 

natural output interface but not in the explicit output interface, are not 

observable as output from the specified reactive system. 

The set of syntactically correct charts that contain hiding are given by 

µChartio which is defined as follows: 

µChartio ··- [ input/) ( µ Charts ] [ output/) .. 

input! .. - { [signal-list] } 

output! .. - { [signal-list] } 

signal-list .. - Signal [, signal-list] 

Notice that both the explicit input interface (on the left) and the explicit 

output interface (right) are optional. This allows the obvious shorthand 

notation such that x( C) =def x( C) outc and ( C) Y =def inc ( C]y · 

The graphical notation includes the explicit definition of interfaces in the 

box attached for feedback. The feedback box for a chart that employs the 

interface operator can be written as "in = input-interface ( feedback-set ] out = 
output-interface". For example the chart {in_a} [AChart_a_b I { o_b} I BChart_b] 

pictured in Figure 2.5 hides the signal o_b from the input interface of the 

chart. This means that the only way that chart BChart_b can be affected 

by the input signal o_b is if that signal is output from the chart AChart_a_b. 

Note, however, that the signal o_b is still observable output from this speci­

fication. 

in = (in_a} ( (o_b}} out = (o_b,sigc} 

Figure 2.5: Example use of the interface operator 
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Again, we define some common shorthand notation that is useful when 

using the graphical notation for charts. Given inc and outc are the respective 

natural input/output interfaces for some chart C then we are free to use the 

following shorthand conventions: 

in = l [ \JI ] =def in = l [ \JI ] out = outc 

[\JI] out= o =def in = inc [ \JI ] out = o 

\JI =def in = inc [ \JI ] out = outc 

in= l out= o =def in = l [ 0] out = o 

where \JI, t, and o represent arbitrary sets of signals. 

2.6 µ-chart names 

We often find that we wish to refer both to a chart's name and the chart itself 

using the same identifier. When the context does not make this distinction 

precise we use the function w that has the following signature. 

w : Chartname .- µ Charts 

We assume that w is defined such that when it is applied to some chart 

name it returns the full symbolic definition of the chart with the same name. 

Also, we will often introduce a complex µ-Charts specification and give it 

a simpler name, for example the expression C12 = C1 I F I C2 defines the 

function w such that w C12 =def w C1 IF I w C2. Again context permitting we 

use the name C12 to refer to the chart w C12 . 
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Chapter 3 

Language Semantics 

Our formal semantics for µ-Charts is given by a method for constructing a 

Z model for an arbitrary chart. The kernel logic Zc for Z [38], introduced 

in Appendix A, gives the Z model a meaning grounded in typed set theory. 

Hence, the combination of these gives us a semantics for µ-Charts grounded 

in typed set theory. 

As we have already seen a µ-chart, specifying the behaviour of a reactive 

system, can be { and in most interesting cases is) made up by using language 

operators to combine simple sequential charts into more complex specifica­

tions. We present the semantics by giving an informal account of the meaning 

of the language constructs in parallel with describing the general method for 

creating the Z model and hence the formal semantics. 

A core assumption of the semantics for µ-charts is that all constituent 

sequential sub-charts, that are combined to describe a reactive system, pro­

ceed in lock-step. When a step happens is determined by the environment 

in which the chart resides. That is, when the environment produces input 

each sequential chart makes a transition. Note that we distinguish between 

an input signal and input {or an input event), which is a set of input signals. 

Initially, we give a step semantics for charts. This describes the behaviour 

of a chart in terms of the output that the chart produces in response to input 

from the environment assuming a given state. The step semantics essentially 

relates the current configuration of a chart1 and input to a new configuration 

and the resulting output. This relation describes every possible step that a 

chart can take. 

Later we show how this step semantics can be lifted to give a trace se-

1 The term configuration is used to refer to the "state" of a chart because a µ-chart 

that has several sequential sub-charts can be in several states at the same time, that is, 

each sequential sub-chart has its own current state. 
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mantics that abstracts away the information about the chart's configuration. 

This gives the meaning of charts in terms of sets of observable input/output 

traces that an implementation of the specification can exhibit over time. The 

trace semantics is given (see Chapter 4) primarily to relate the account of 

µ-Charts refinement given here back to the previous work describing refine­

ment [78]. The notion of chart refinement presented here is characterised 

in terms of the step semantics. Hence it is not strictly necessary to have 

the trace semantics at all, though the trace semantics helps to give a more 

intuitive understanding of the resulting refinement relation. 

Building the Z model for charts requires two separate tasks. The first part 

of the process is to create a general model for each of the separate constituent 

sub-charts in the µ-chart being described. We call this the transition model. 

As one might expect given the language, this process is recursive in nature 

and follows exactly the structure of the chart being modelled. The overall 

transition model is built up by initially describing the model for each of the 

sequential sub-charts followed by the description of each of the new sub-charts 

created using the language operators. The final model describes the entire 

chart which is the specification of a reactive system. The modular nature 

of the language is such that the model of an arbitrary sub-chart can be 

considered as a "black-box". The following diagram demonstrates both the 

informal "circuit diagrams" that we use to motivate the semantic description 

and the "black-box" characteristics of the transition model for an arbitrary 

chart C. 

1 active 

0 
C 

The circuit diagram gives the structure of the general transition model 

for a chart. That is, we can consider the model of any chart with arbitrary 

structure as a circuit that has two inputs and one output. The chart model 

defines a relation between the two inputs and the output along with the 

associated change of state. 

Sections 3.1 to 3.6 give both an informal description and a formal treat­

ment that introduces the transition model for each of the language constructs. 

The formal treatment has two parts. The first gives a generic process for cre­

ating a Z model for an arbitrary µ-chart. The Z description of the chart 

can be used in the standard Z fashion to investigate the behaviour of the 
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chart. Using available proof assistant and Z animation tools is a useful way 

to perform some validation of the µ-chart's behaviour. The second part of 

the formal treatment uses the meaning of the Z itself, via the Z-logic of (38), 

to give a logic for reasoning about µ-charts. This logic is presented in terms 

of introduction and elimination rules for each of the language constructs. It 

can be used to reason about the model of a µ-chart. The rules are presented 

in a natural deduction style, closely following the work of Deutsch, Henson 

and Reeves [20, 21]. 

The final step (Section 3. 7) in building the model for a µ-chart is to hide 

the machinery that is present in the transition model, that is, the additional 

constructs required to model the inherent structure of charts. We refer to 

this model of a chart as the step semantics or partial relations semantics for 

a chart. 

3.1 Sequential charts 

A sequential chart is essentially a finite state automaton that describes the 

set of output signals that results from reacting to a set of inputs in a given 

state. The general transition model of a sequential chart has two notions of 

state, the first being the usual automaton notion of state which is determined 

by the transitions that have happened due to input since the automaton was 

initialised. This state is denoted in a chart diagram by labelled ovals or rect­

angles. The second notion of state represents whether or not the sequential 

chart is active. The reason that a chart can be active or inactive is because 

it may be the slave of another chart in the specification via decomposition. 

Finally, a sequential chart can instantaneously feed back output signals. This 

means that, during any step of the chart, fed back output is also considered 

as input. 

The structure of the transition model of a sequential chart ( C, :E, a, \JI, 8) 

is demonstrated by the following circuit diagram. 

active 

l:,6 

'I' 0 

This diagram can be separated into three logical parts as described above. 

The finite state automaton specification of the input/output relationship is 
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denoted by the component labelled I:, 8. The active/inactive state mechanism 

is denoted by the input labelled active. And the feedback mechanism is 

represented by the line labelled \JI. 

Consider the chart ( C, {A, B}, A,{}, 8) (where 8 is the appropriate transi­

tion description) pictured in Figure 3.i. 

Figure 3.1: A simple sequential µ-chart 

We can clearly see the finite state description of the input and output 

behaviour from this typical sequential µ-chart. Informally the behaviour 

that this chart captures can be described as: the chart starts in state A; if it 

is in state A and the signal a is input then signal b is output and the chart 

changes to state B; and similarly if it is in state B and c is input then d is 

output and the new state is A. Notice that we have not yet described what 

happens when the actions on the transitions are not satisfied. Hence the 

term partial relations semantics. We consider the meaning of a chart outside 

of its defined transitions after we introduce the Z semantics. 

The ability of a sub-chart to be active or inactive is necessary for a chart 

that is embedded in the state of (i.e. a slave of) some other chart in a 

decomposition. When a chart is active it reacts to input as specified by its 

finite state description. When it is inactive it ignores input, remains in the 

same state and gives no output. In fact, no output actually means the output 

is the empty set of signals. 

The behaviour of the feedback mechanism is uninteresting in this example 

because there are no signals fed back. However, in general, a sequential chart 

can feed back its output signals which then instantaneously act as input. This 

is represented in the circuit diagram by the link labelled \JI that creates a loop 

between output and input and is assumed to carry only the specified feedback 

signals. We discuss in more detail exactly what feedback in sequential charts 

means semantically in Section 3.3. 
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3.2 The Z transition model for sequential µ­

Charts 

The essence of the general transition model for a sequential µ-chart is the 

description of each of its transitions using a separate Z operation schema. 

These operation schemas (one for each transition in the chart) are combined 

using Z schema disjunction to give one schema that describes the abstract 

transition behaviour of the chart. The Z state of the model has an observa­

tion that determines the current configuration of the chart. The operation 

schema describing a transition describes how and when that state changes. 

We proceed by introducing the Z that is given as the transition semantics of 

a chart and then discussing the meaning of that Z. 

For a general sequential chart ( C, E, u0 , '11, 6) we introduce the following 

definitions (left) that encode the chart's states, input interface and output 

interface in Z. 

statesc : IPµ State 

inc : IP µSignal 

outc : IP µSignal 

'11 : IP µSignal 

statesc = E 
inc= in C 
outc = out C 

Chane == [ cc : statesc] 

cnitc 
Chane 

cc= O"Q 

The general state schema Chane ( top right) models the automaton state 

for the chart C. And the initial state of the chart is modelled by the schema 

lnitc (bottom right). 

A separate state schema is also given for each automaton state in the 

chart. So for all u E E there exists a schema such that 

Ca== [Chane I cc= u] 

Now we give an operation schema for each chart transition. That is, 

for all (S1, St, guard/action) E 6 we define an operation schema that has the 

following structure. 
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fl sf St-------------------------
CSJ 
CS' t 
ic : IP inc 

act : IP µ State 

o~ : IP outc 

CE act 

p(guard) 
I t. oc = ac ion 

Note that part of the definition of atomic charts-the observation act­

allows for the definition of the decomposition operator. Here it is sufficient 

to understand that a chart can be active or inactive. Defined transitions only 

happen when an atomic chart is active, hence the predicate CE act is part 

of the precondition of the operation schema fls1st. 

The predicate p(guard), introduced in schema fls1sti stands for the Z 

predicate that models the syntactic guard of a chart transition. If we consider 

a transition's guard in general as a (possibly empty) list of signal expressions, 

separated by the conjunction symbol&, then each of the elements in the list 

can be classified into two categories: either a positive signal expression­

simply the name of a signal; or a negative signal expression-the signal name 

is prefixed with a minus sign. A positive signal expression, say sig where 

sig E inc, is denoted by the Z expression sig E ic u (o~ n w). A negative 

signal expression, say - sig, is denoted by the Z expression sig ¢ ic U ( o~ n w). 

The syntactic construction process denoted by p determines the appropriate 

predicate for each signal expression and connects them together using the Z 

logical conjunction operator /\. If the list is empty the predicate (produced 

by the process p) would be true. So, for the transition labelled a/bin chart 

C of Figure 3.1 the predicate produced would be a E ic U ( o~ n {}) since 

the guard of this transition is just a and there is no feedback associated with 

chart C. 

This general scheme for giving the Z for a transition defines the semantic 

function [.] 2, such that for an arbitrary transition (S1, St, guard/ action) 

where the schema fls1s, results from the method described above. 

Along with the schemas for each transition we also need a single schema 

that models the behaviour of the chart when it is inactive. For the general 

sequential chart ( C, ~. u0 , w, fl), the inactive schema is given as follows. 
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Inactivec------------------------
3Chartc 
ic : IP inc 

act : ]p> µ State 

Oc : ]p> OUtc 
C </. act 
Oc = {} 

The transition model for a sequential chart can now be given by the 
following definition.2 

[(C,E,ao,'11,6)]z, =def 6c 

where 

6c == (V {[ t]z, I t E 6}) V Inactivec 

This concludes the presentation of the Z that is used to give the transition 

model for a sequential chart. We now consider the meaning of this Zin terms 

of the particular example that is pictured in Figure 3.1. 

The following Z schemas result from giving the transition model for this 

chart.3 

()AB---------~ 
CA 
CB' 
ic : IP inc 
act : ]p> µ State 

Oc : ]p> outc 

CE act 
a E ic U ( Oc n W) 
Oc = {b} 

Inactivec --------
3Chartc 
ic : IP inc 
act : ]p> µ State 

Oc : ]p> outc 

C </. act 
Oc = {} 

The transition in chart C from state A to B results in the Z schema &AB· 

Rather than describing the schema in terms of its syntax we proceed directly 

to describing the set [&AB]zc; in the theory Zc [38] the meaning of a schema 

is given as a set of bindings (see Appendix A). The schema &AB is denoted 

by the following set comprehension.4 

2We use the notation V X to denote the schema disjunction of all the schemas in the 

set X. 
3We assume that all of the entities given in the presented Z whose definitions are 

omitted have the appropriate type and obvious definitions. 
4The schema type Ta follows the type notation conventions outlined in Section A.2. 
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[6ABB~}'0 =def { ~ cc~A, ic~i, act ~active, Cc~B, Oc~{ b} ~ I 
i ~ inc I\ active ~ µ State • C E active I\ a E i} 

We can see from this definition that each binding in the semantic set has 

five labelled observations. The meanings of these are: 

• cc-the state of the chart before the transition happens, in this case 

the state A; 

• ic-the set of input signals which are offered by the environment that 

are in the input inteerface of the chart; 

• act-a set that denotes all currently active charts; 

• cc-the state of the chart after the transition happens, in this case 

state B; 

• oc-the output generated by this sequential chart, in this case the set 

containing the signal b. 

Hence each transition description is "parameterised" on the current con­

figuration of the chart cc, the input from the environment ic and whether 

or not this chart is active. If the precondition of the schema holds, i.e. the 

chart is active and a transition's guard evaluates to true, then the output 

contributed by this sequential chart is defined by the set Oc. Note that in 

the schema itself the expression ( Oc n \JI) models the feedback mechanism for 

the sequential chart. In this case \II={}, that is the feedback set is empty. A 

similar schema to 1'AB, that models the transition from state B to A, called 

1'BA, would also be given. 

The second schema Inactivec describes the behaviour of the sequential 

chart when it is inactive. We can see from the following set of bindings that 

the schema Inactivec faithfully models the inactive behaviour of the chart as 

described above. 

[Inactivec ]~}' 0 = 
{ ~ cc~s, ic~i, act ~active, Cc~s, Oc~n ~ I 

s E {A, B} I\ active~ µState I\ i ~inc• C </. active} 

Now the complete transition model for chart C is defined as the disjunc­

tion of each of the individual transition schemas to be 6c == 1'AB V 68 A V 

Inactivec. By definition of schema disjunction the set [6c] 2 " contains all of 

the bindings from the sets [6AB]ze' [6BA]zc and [Inactivec] 2 , .. 
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This method of investigating the semantics of the transition model for 

charts, that is, considering the meaning of schemas as sets of bindings, is 

somewhat informative in the simple example presented above. However, in 

general we do not want to resort to complex set definitions and manipulations 

to reason about the meaning of charts. Therefore we give a set of rules that 

characterise and allow us to reason about the Z semantic model for charts. 

These and other rules, presented later, give us a logic for charts. 

First, we formalise what it means for a binding of the transition model to 

satisfy a specific (syntactic) transition of the chart. Given an arbitrary tran­

sition of the form t = (Sf, St, guard/action), from the chart C, and assuming 

[[t]z,t,, has type IP Ta, we have, 

Tmns t zT" =def z.cc = t.Sf I\ p(t.guard)[aT/z.aT] I\ 

Z,Cc = t.St I\ Z,Oc = t.action 

The terms t.Sf etc. are assumed to be defined in the obvious way such 

that t.Sf gives the "from state" of a transition, t.guard gives the guard com­

ponent of a transition, t.St gives the "to state" and t.action returns the action 

component. p is as defined above, i.e. it constructs an appropriate predicate 

from the transition's guard. 

Now we give the formal definition of the transition model for charts di­

rectly in terms of the meaning of the Z model. 5 

Definition 3.2.1 For the arbitrary sequential chart (C,E,ao, '11,8), we have, 

[8c]~,~" =def {z T" I C ¢ z.act I\ z E '2.Chartc I\ i,Oc = {} V 

C E z. act I\ 3 t E 8 • Trans t z} 

From this definition we derive the following introduction and elimination 

rules. Note that, while these rules may initially appear to be non symmetri­

cal, when taken in conjunction with the rules of Proposition 3.2.2, they are 

symmetrical as expected. 

Proposition 3.2.1 Given the sequential chart ( C, E, ao, \JI, 8), where [8c]~}'", 

for arbitrary binding z T3 we have, 

z E. 8c actv C z t E 8, Trans t z I- P 
p (zt-) 

actv C z t 7 8 Trans t z (z
1
+) 

z E 8c 

where Ta ::5 T3 and assuming the usual conditions for t and P ( due to the elimi­

nation of an existential quantifier). 

5The notation E is defined in Appendix A.2, page 172. 
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Proofs of these rules are given in Appendix B.l. For an atomic chart C 

the predicates actv C z and inactv C z are defined as follows: 

actv C z =def CE z.act 

inactv C z =def -, actv C z 

We also introduce useful rules that allow us to reason about inactive 

charts. Eventually we show that these rules hold in general for charts with 

arbitrary structure. 

Proposition 3.2.2 Given the sequential chart ( C, :E, ao, \JI, 8), where [8c]~}'0
, 

for arbitrary binding z T3 we have, 

z E. 8e inactv C z 
------- (iact1 ) 

z E. =.Charle 
z E. 8e inactv C z 
------- (iactij) 

Z.OC = {} 

inactv C z z E. '3 Charle 

z E 8e 

z o' - {} 
· e - (iact+) 

Given these rules we can start to investigate some of the properties of the 

transition model. In particular, the following propositions allow us to reason 

about which bindings are in the transition model and which are not. 

Firstly, we make the observation that the transition model given makes 

a distinction between two sources of input that can contribute to the signals 

that trigger a transition. The external input to the chart generated by the 

environment ie and the fed back output from the chart itself, i.e. for the 

chart ( C, :E, ao, w, 8) the set denoted by Oc n w. We formalise this observation 

in the following proposition. 6 

Proposition 3.2.3 For the arbitrary sequential chart ( C, :E, ao, w, 8) and bind­

ings z T3 and x T3 we have, 

z E. 8e x =r, z z.ie U fbz = x.ie U fbx ---------------- czn 
XE. 8e 

where [8c]:}' 0
, T; =def Ta - Vi and Ta ~ T 3 • 

The term fbz is a shorthand for the expression denoting the feedback that 

is applicable to a chart. That is, fbz = Z.Oc n w in the case above. 

6We use the expression Ta - Vi to represent the exclusion of the input observation 

ie from the schema type Ta. This is equivalent to defining T; = U Y V O , except the 

former is more indicative of the notion of this proposition. 
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Here we give the rule (Z,E) just for sequential charts. In the following 

sections we prove the same rule for charts that are constructed using each 

of the chart operators. Together these proofs are an example of a proof by 

induction over the structure of the language. The proof for sequential charts 

here, provides the base case for the induction. Hence, eventually, we have 

that this property holds in general for charts. 

3.3 Feedback of signals in µ-Charts 

The semantics of feedback in sequential charts is encoded in the transition 

model as given in the previous section. In this section we give two patho­

logical examples that demonstrate exactly the semantics of sequential charts 

with feedback. 

The examples C1 = (C1,E,a,{a},61 ) and Ci= (C2,E,a,{a},62) (for appro­

priate E, a, 61 and 62 ) are given in Figure 3.2. The only syntactic difference 

between these two µ-charts is that the transition in the chart C1 is triggered 

by the presence of the signal a whereas the transition in chart Ci is triggered 

by the absence of the signal a. Both examples output and feed back a. 

,,_, -A-~~a/a-+t ___ B_ I 1'2_ -A-~~~/a-+t ___ B_ 

...._ ____ """"T!E!..J.,..,ta}~-------' IE!..J 

(a) (b) 

Figure 3.2: Pathological sequential charts with feedback 

The encoding of feedback is present in the schemas that describe the 

respective transitions in these charts. 

61s~~~~~~~~~~ 
C1A 
C1B' 
ic1 : IP inc1 

act : IPµ State 

oc/ : IP outc1 

C1 E act 
a E ic1 u (oci' n \JI) 
oc/ = {a} 

6~s~~~~~~~~~~ 
C2A 
C2B' 
ic2 : IP' inc2 

act : IP' µState 

oc; : IP' outc2 

C2 E act 
a¢ ic2 U (oc; n \JI) 
oc; = {a} 

Given \JI = {a}, the respective predicates a E ic1 U ( oci' n \JI) and a f/. ic2 U 
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( oc; n \JI) mean that both of the transitions' guards rely not only on the 

environment's input, e.g. ic1, but also on the fed back output, e.g. (oc/n{a}). 

Now we can state and prove lemmas that describe exactly the meaning 

of the two examples. 

Firstly, for the chart pictured in Figure 3.2(a), we show that the transition 

from state A to B happens regardless of the input from the environment. For 

simplicity we make the assumption that the charts are active. 7 

Lemma 3.3.1 Given (C1,E,a,\Jl,8i), where E = {A,B}, a= A, \JI= {a} and 

81 = {(A, B, a/a)}, for arbitrary zT3 and input i ~ inc we have, 

actv C1 z z == q ec1 =$A, ic1=$i, e01 =$B, oc/=${a} ~ 

z E 8c1 

Therefore, the transition from state A to state B always happens in the 

first step of the chart C1 , regardless of the input that the environment offers­

the signal a is output and fed back. This also implies that this chart has 

identical behaviour to a similar chart in which the transition is labelled / a, 

i.e. it has an always true trigger. 

Likewise, we show that the transition model for the chart C2 pictured in 

Figure 3.2(b) does not contain any bindings, and therefore does not model 

any transitions from state A to B. This is because the single candidate 

transition in chart C2 never happens in the presence of feed back. Essentially, 

the presence of signal a, instantaneously fed back from the output, means 

that the trigger - a is always false. This is expressed by the following lemma. 

Lemma 3.3.2 Given (C2,E,a, '11,82 ), where E = {A,B}, a= A, \JI= {a} and 

82 = {(A,B,-a/a)}, for all zra, 

In this simple example the set of bindings, modelling the chart's transi­

tions, is empty because the only candidate transition's guard is inconsistent 

with its own fed back output, and therefore it is not part of the transition 

model. 

7The notation - is defined in Appendix A.2, page 172. 
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3.4 The composition operator 

The composition operator allows us to take two µ-charts C1 and Ci and join 

them together to form a new more complex chart C1 I w I Ci where w is 
a set of signals. As mentioned, we assume that the charts run separately 

but synchronously, i.e. in lock-step with one and other. Their only medium 

of communication is asynchronous via the multicast of signals. The set w 
denotes the signals that the charts C1 and C2 can use to communicate. The 

communication is asynchronous in that output is always enabled; a chart 

can always broadcast signals. However there is no guarantee that the other 

chart in the composition is listening ( that is, ready to react on the signals 

broadcast). Signals persist only during one step of the chart. 

The following diagram demonstrates the structure of the composed chart 

(C1,:E1,a1,W1,81) I WI (C2,:E2,a2,W2,82). 

'+'1 

0 

Notice that any signals that the sets w and '11 1 (respectively w and '112 ) 

have in common will be fed back on two separate paths in this diagram. 

Also, the composition operator not only allows C1 to communicate with C2 

using the signals in w but effectively changes the feedback characteristics of 

C1 itself. The output that C1 treats as input via feedback is now all of the 

signals in '11 1 U w. 
Both charts in the composition have an equivalent active state, i.e. one 

chart is active if and only if the other is active. In the circuit diagram we 

use dotted lines as a shorthand to indicate that the single active input to 

the composition is linked to both of the active inputs from the parts of the 

composition. 

This example of the composition operator assumes that C1 and C2 are 

sequential charts. The operator in general, however, is defined over arbitrary 

charts. That the transition model of a composed chart takes the same type 

of inputs and produces the same type of outputs as that of a sequential chart 
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demonstrates the modular nature of the model; the model of a composed 

chart can be "plugged in" to replace one of the sequential charts in the 

above diagram. 

The general picture for a composed chart C1 I w I C2, where C1 and C2 

are arbitrary charts, is as follows: 
I active 

i i 

I 1 c, 

- ~ 'I' 0 

; 

I C2 

The transition model for composed charts is constructed by recursively 

constructing transition models for the two constituent parts of the composi­

tion. The base case being when the parts are themselves sequential charts. 

The models of the parts are then combined to create the transition model 

for the composition. 

The transition model for the composed chart C = ( C1 I w I C2) contains 

the following Z definitions and schemas. This Z makes the obvious assump­

tion that any entity subscripted with C1 comes from the transition model of 

the chart C1 and similarly for C2 . 

statesc : IPµ State 

inc : IP µSignal 

outc : IP µSignal 

w : IP µSignal 

statesc = 
statesc1 U statesc2 

inc = inc1 U inc2 

outc = outc1 U outc2 

Charle--------­

~ Charle, L Chartc2 

Initc---------­

~Initc, 
Llnitc2 

6c---------------------------
~Chartc 
ic : IP inc 

act : IPµ State 

Oc : IP outc 

C1 E act ¢> C E act 
C2 E act ¢> C E act 
3 ic1, ic21 oci'' oc; : IP µSignal • ic1 = ( ic u ( Oc n w)) n incl I\ 

ic2 = (ic LJ (oc n \JI)) n inc2 I\ Oc = oc/ LJ oc; I\ 6c1 /\ 6c2 
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Importantly, the bindings that inhabit the set (6c] 2 c (i.e. the semantics of 

the schema 6c) have a similar signature to those in both [60 ) and [60 ) . 
1 Zc 2 Zc 

This shows that the Z model is consistent with the modular nature of charts 

demonstrated by the informal circuit diagrams. 

As with sequential charts we give the definition of the transition model 

for composed charts directly in terms of the meaning of the Z model.8 

Definition 3.4.1 Given an arbitrary composed chart C = C1 I \II I G.i we have, 

[6 ]IP T" _ { T" c 2 ,, -def z I C1 E z.act <=:} CE z.act I\ 
C2 E z.act <=:} CE z.act I\ 
3 01, 02 • z. 0~ = 01 u 02 /\ 

where fbz = z.o~ n \II. 

z * 0 ic1~(z.ic U fbz) n inc1 , oc/~01 ~ E 601 I\ 

z * -0 ic#(z.ic U fbz) n inc2 , 00;~02 ~ E 602 } 

The following introd:uction and elimination rules for composed charts are 

derived from this definition. The proofs of these rules are given in Ap­

pendix B.3. 

Proposition 3.4.1 Given C = C1 I \II I C2, for the binding zT3 and arbitrary 

sets 03 and 04, we have, 9 

, - u z.oc - 01 02, 

z * -0 ic1~(z.ic U fbz) n inc1 , oc/~01 ~ E 601 , 

z * -0 ic#(z.ic U fbz) n inc2 , 00;~02 ~ E 602 I- Q 

, - u z.oc - 03 04 

Q 

z * -0 ic1~(z.ic U fbz) n inc1 , oci'~OJ ~ E 601 

z * 0 ic#(z.ic Ufbz) n inc2 , 00;~04 ~ E 602 

actv C z V inactv C z 
----------------- (1-1+) 

z E 6c 

where the usual conditions hold for 01, 02 and Q, [6c]_;; and T 0 j T3. 

8The binding, binding concatenation and typing notation used in the following defini­

tions is defined in Appendix A.2, page 171. 
9 Note that there is an implicit typing constraint for rule (1- i-). The type T3 must 

be disjoint with respect to each of the types V/, V1°, V2i and V2°-the operands of the 

binding concatenation operator * must be of disjoint type. 
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The predicates actv C z and inactv C z are defined for the composed chart 

C = Ci I 111 I C2 as: 

actv C z =def actv Ci z I\ actv C2 z I\ CE z.act 

inactv C z =def inactv Ci z I\ inactv C2 z I\ C ¢ z.act 

Notice that the property inactv C z {::} -, ( actv C z) does not hold in gen­

eral for all bindings z in the type of the semantics of composed chart C. This 

is why the fourth assumption is required in the introduction rule-we cannot 

use the law of the excluded middle to show actv C z V inactv C z. However, we 

do have that the weaker property, z E 8c f- inactv C z V actv C z holds. This 

weaker property is stated and proved in Lemma B.3.3 of Appendix B.3. The 

proofrelies on other properties (lemmas B.3.1 and B.3.2), which are interest­

ing because they demonstrate more examples of rules that are (eventually) 

proved in general for any chart regardless of structure. Like for the rule (ztE) 

of Proposition 3.2.3, this is achieved using structural induction over each of 

the µ-Chart operators where the base case is again that the property holds 

for sequential charts. 

Now, from (1-i-l and (1-1+), we give other useful introduction and elimina­

tion rules. Again these rules are proved in general using structural induction. 

Proposition 3.4.2 Given C = Ci I 111 I C2, for arbitraz:y binding z T3 , we have, 

z E 8c inactv C z 
------- (iact1 ) 

z E 3Chartc 
z E 8c inactv C z 

, {} (iactji) 
z.oc = 

inactv C z z E 3Chartc z.o~ = {} c· +) 
iact 

z E 8c 

Proposition 3.4.3 shows that the basic requirement of symmetry holds for 

the introduced composition operator. 

Proposition 3.4.3 

Proposition 3.4.4 shows that the show property cz1E) holds for composed 

charts. 

Proposition 3.4.4 Given C = Ci I 111 I C2, for arbitrary bindings z T3 and x T3 . 
we have, 
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z E fJc x =r; z z.ic U fbz = x.ic U fbx _____ ..,;__ _________ (Z1E) 

x E fJc 

[~ ]p ra . where uc Z,: , T; =def Ta - vi and Ta ~ T3. 

As expected, given the instantaneous feed back of signals in charts, when­

ever the fed back output from one part of the composition, say C1, triggers a 

transition in the other part, say C2 , there is a corresponding binding in the 

transition model of the composition. This binding represents a transition of 

the composition that is triggered by the same input as the transition in C1 

and outputs the combination of the outputs from the respective parts. That 

this is the case follows directly from Proposition 3.4.4. 

We give a concrete example of using this rule. Consider the following 

µ-chart. 

(bl 

Figure 3.3: Composed µ-chart with feedback { b} 

Given this chart we can easily show that 

(3.1) q cc1=tA, Ccl=tB, ic1=t{a},act=t{Ci, C2}, oc/=t{b} DE Oc1 

(3.2) q CC2 =t C, Cc2=tD, ic2=t{ b }, act =t{ Ci, 02}, oc/=t{ C} D E Oc2 

From (3.1) and (3.2) by <1-1+) we have, 

q CC1=tA, CC2=tC, cc,=tB, Cc2=tD, 
(3-3) ic=t{ a, b }, act =t{ Ci, C2}, Oc=t{ b, c} ~ E Oc. 

Now from (3.3) and Proposition 3.4.4, given that {a} U { b} = { a, b} U { b }, 

we can show that 

q cc, =tA, cc2=t c, cc, =tB, cc2=tD, 

ic=t{ a}, act =t{ Ci, C2}, Oc=t{ b, C} ~ E Oc. 
(3.4) 

also holds. This binding realises the behaviour of the composed chart C, 

which is: assuming initial states, on input a, both charts C1 and C2 make 

a transition. Clearly the transition in C1 is triggered by the input a. The 

transition in C2 , however, is triggered by the instantaneous feedback of the 

output signal b. 
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This example demonstrates that the transition model essentially recur­

sively "sequentialises" composed charts. By "sequentialise" we refer to the 

process of taking the cross product of all of the transitions in each part of the 

composition and creating a transition in the composition model that repre­

sents both of these transitions happening together. This process is recursive 

whenever the parts of the composition are not sequential µ-charts. Consider 

the following illustration of this process. 

C_1 

A B 

C D 

L~- _ "' ~ _c f .......................................... 
. C_3 

E 

(a) 

c_s 

ACE 

C_4 

in={a.b,c) [ {b,c) J 

(c) 

(b) 

BDF 

Figure 3.4: The sequentialisation of a composed chart 

The chart C4 of Figure 3.4(b) is the sequential representation of C1 

{ a, b} I C2. Chart C5 is the sequential representation of C4 I { a, b} I C3 . That 
the following holds, 

~ cc1~A, Cc2~c, cc3~E, Cc1~B, Cc2~D, CC3~F, 

ic~{ a, b, C }, act~{ Ci, C2, C3}, Oc~{ b, c, d} ~ E 8c. 

and hence, 

~ cc,~A, Cc2~C, CC3~E, cc,~B, Cc2~D, Cc3~F, 

ic~{a}, act~{ Ci, C2, C3}, Oc~{b, c, d} ~ E 8c. 

is trivial to show, given C = (C1 I {b, c} I C2) I {b, c} I C3 ) (i.e. the chart in 

Figure 3.4(a)), using the same proof method as that demonstrated for the 

example chart in Figure 3.3. 

Of course, that this process works correctly, that is models our intuition 
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for charts that contain negated signals, requires that the combination of 

inconsistent transitions is not represented in the transition model. Take for 

example the following chart: 

c_, 

Figure 3.5: Composed chart with inconsistent transitions 

The following lemma states, assuming the charts C1 and C2 are active, 

that the transition model for this chart contains no bindings that represent 

a transition from the configuration A, C. Hence, even though there are ex­

plicitly defined transitions in charts C1 and C2 respectively, the result of 

combining these two charts using composition is that the composed chart 

has no transitions that can be made. 

Lemma 3.4.5 Given C = C1 I { b} I C2, where C1 and C2 are the sequential 

charts of Figure 3.5, for arbitrary z ra we have, 

actv C z 
z </. be 

In this example we prove that there are no bindings in the model that 

represent active transitions. This is because the example has only two can­

didate transitions that can combine to become an explicit transition that 

the composition can make. Because these transitions cannot occur together 

in the presence of feedback, i.e. the output b from C1 makes the trigger of 

the transition in C2 false, means the resulting model contains no bindings 

representing active transitions. 

3.5 The decomposition operator 

Another of the useful structuring mechanisms of µ-charts is the decomposi­

tion operator. The decomposition of a sequential chart refers to replacing 

a state in the chart with another µ-chart. This creates a master/slave rela­

tionship between a sequential chart (master) and an arbitrary chart (slave) 

that replaces a state in the master. 
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Intuitively, we can consider the behaviour of a master and a slave in such 

a chart as though they are composed in parallel. Consider the following cir­

cuit diagram representing the chart: 

Dec (Master,r:1,0"1,'11 1,8i) by {(l71,(Slave,r:2,C12,'112,62))}, that is, a decom­

posed chart called Master with a state called 0"1, which itself contains a chart 

called Slave 

0 

Slave 

There are two subtle but significant differences between this diagram and 

the corresponding circuit diagram for the composition operator. The first 

being that the active state of the slave is determined by the master and not 

by the active input to the overall decomposition. This is because the state 

of the master determines whether or not the slave is active. The second 

difference is that the feedback signals that the master and slave share or 

communicate on are determined by the feedback set that is present in the 

definition of the master, i.e. denoted by the links labelled '11 1 in the diagram. 

Hence when the master is in the state decomposed by the slave, that is 

both charts are active, then the decomposition is exactly the same as the 

composition of the master and slave with the feedback set equivalent to that 

of the master chart. 

Again, the structure of the circuit diagram assumes both the master and 

slave are sequential charts; in general the slave can have arbitrary structure. 

However, unlike composition, the master must be a sequential chart. 

The semantics that results from adhering exactly to this model of de­

composition produces some "unexpected" behaviour ( at least behaviour that 

may be considered somewhat counter to intuition). For example consider the 

decomposed chart C = Dec (w Ci) by {( C2 , w C2)} pictured in Figure 3.6. 
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c_, 
C_2 

C_2 
C 

c/d 

ell g/h 

A B 

-al 

Figure 3.6: Decomposed chart C1 

The semantics of the example decomposed chart is demonstrated by the 

composed chart C' ={a,c,e,g} [ C1 I { activeC2} I C2]{b,d,f,h} pictured in Fig­

ure 3.7(a). The chart C3 (Figure 3.7(b)) is the sequential equivalent of C'. 

Therefore, the chart C3 exhibits identical behaviour to the original decom­

posed chart C. 

c_, 

C_2 

A B 
C_3 

C_20 

C_2 
-activeC2 / 

a&e/{b,f} -activeC2 / 

activeC2 & e / I C & g / {d.h) 

activeC2 & g / h AC BC 

(a) (b) 

Figure 3. 7: Sequential equivalent of composition 

The behaviour of the chart C3 does not appear to capture the intention 

of the decomposed chart C under any standard interpretation. However, 

consider the following examples of complimentary interpretations that we 

may wish, in the future, to capture using the decomposition operator. Under 

some situations we may wish that the slave chart C2 is initialised each time 

a transition in the master enters the slave. On the other hand we may wish 

that the slave remembers what state it was in when it was last exited by the 
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master. It may be the case that the master should be idle, that is remain 

in the slave's state and produce no output, while the slave is free to make 

transitions or we may wish to allow the master to perform some task in 

parallel with the slave, for example counting the number of transitions the 

slave makes. Importantly, each of these interpretations can be implemented 

using explicit transitions in the original decomposed chart, such that, the 

new behaviour is a refinement of the behaviour that is assigned to chart 

C. To make explicit in the semantic model one of these interpretations for 

the chart C would have the side-effect that the alternate interpretation is 

no longer expressible at all. By giving the most general semantics we allow 

different interpretations to be assigned in the future without modifying the 

core language. 

The transition model for the decomposed chart C where 

C = Dec (w M) by {(S,w S)} and w M = (M, E,o-, '11,6) and arbitrary S, 

contains the following Z definitions and schemas: 

statesc : IPµ State 

inc : IP µSignal 

outc : IP µSignal 

statesc = 
statesM U statess 

inc = inM U ins 

outc = outM U outs 

[Chartc 
ChartM 
Charts 

[lnitc 
InitM 

!nits 

6c~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~Charle 

ic : IP inc 

act : IP µ State 

Oc : IP outc 

M E act ¢:? C E act 

SE act¢:? {CE act I\ (MS VMS')) 

:3 iM, is, o~, Os: IP µSignal • iM = (ic u (oc n w)) n inM I\ 

is = ( ic LJ ( Oc n '¥)) n ins I\ Oc = 0~ U Os I\ d M I\ d S 

Again we give the definition of the transition model in terms of sets of 

bindings. 

Definition 3.5.1 Given the decomposed chart C = Dec (w M) by {(S,w S)}, 

where w M = ( M, E, o-, W, 6) and arbitrary S we have, 
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[8cJ:ta =def {zra IM E z.act #CE z.act I\ 

SE z.act # (CE z.act I\ (z.cM = S V z.cM = S)) /\ 
3 Om, Os• Z.OC = Om U Os I\ 

z * q iM:$-(z.ic u /bz) n inM, OM:$-Om ~ E dM I\ 

z * -0 is:$-(z.ic U/bz) n ins, Os:$-Os ~ E 8s} 

Now the introduction and elimination rules for decomposed charts are as 
follows. 

Proposition 3.5.1 Given C = Dec (w M) by {(S,w S)}, where 

w M = ( M, l:, a, 'V, 8), for the binding z T3 and arbitrary sets o1 and 02 we have, 10 

'- u z.o0 - Om Os, 

z * q iM:$-(z.ic u fbz) n inM, OM:$-Om ~ E dM, 

z * -0 is:$-(z.ic u /bz) n ins, Os:$-Os ~ E 8s, 

actv C z V inactv C z I- Q 
-------------=------------ (Mi) 

Q 

Z.OC = 01 U 02 

Z * q iM:$-(z.ic U fbz) n inM, OM:$-01 ~ E dM 

z * q is:$-(z.ic u fbz) n ins, Os:$-02 ~ Eds 

actv C z V inactv C z 
----------------- (Mt) 

z e 8c 

where the usual conditions hold for Om, Os and Q, [8c]~;0 and T 0 ~ T3 • 

The predicates actv C z and inactv C z, for decomposed charts, are defined 

as follows: 

actv C z =def actv M z I\ (actv S z # (z.cM = S V z.cM = S)) I\ CE z.act 

inactv C z =def inactv M z I\ inactv S z I\ C </. z.act 

Appendix B.4 presents proofs for all propositions in this section, includ­

ing showing that the property actLEM of Lemma B.3.3 and other associated 

properties hold for decomposed charts. 

When the master is not in a decomposed state the slave contributes no 

output and does not change state, that is, the slave makes no transition. 

Hence we derive further elimination rules as follows. 

10 As for composed charts, there is again an implicit typing constraint on type T3 for 

rule (M8 ). 
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Proposition 3.5.2 Given C = Dec (w M) by {(S,w S)}, for arbitrary S and 

w M = (M, E,a, \J!,6) and zT3 we have, 

z E. 6c z.cM # S z.cM' # S 
-----------"...;;..._- (M- ) 

inactv S z 8 ll 

z E. 6c z.cM # S z.c~ # S 
--------------- (Miiw) 
z * q iM=??Z.ic n inM, O~=??Z.Oc ~ E dM 

z E. 6c z.cM # S z.c~ # S 
I • (Msrv) 

z * q is=??z.ic n ins, 08 =??{} ~ E d's 

The rules (iact1 ), (iactij) and (iact+) hold for decomposed charts. 

Proposition 3.5.3 Given C = Dec (w M) by {(S,w S)}, for arbitrary S, w M = 
(M,E,a, \J!,6), and binding zT3 we have 

z E. 6c inactv C z 
• (iact1 ) 

z E 2:Chartc 
z E. 6c inactv C z 
------- (iactij) 

z.oc = {} 

z E. 2:Chartc z.oc = {} 
-------------- (iact+) 

z E 6c 

inactv C z 

Also, like sequential and composed charts, simple decompositions do not 

distinguish between the source of input, that is, the rule (z1e) holds for de­

composed charts. 

Proposition 3.5.4 Given C = Dec (w M) by {(S,w S)}, for arbitrary S, w M = 
(M, E, a, \JI, 6) and bindings z T3 and x T3 we have, 

X =r Z Z.ic U fbz = X.ic U fbx 
• (z1E) 

XE. de 

where [6c]~c~ 0
, T; =def T 0 - Vi and T 0 :::5 T3 • 

Until now we have assumed that all decomposed charts have just one state 

replaced by another chart. Of course, in general any subset of a chart's states 

can be decomposed. This more general case of the decomposition operator 

requires additional definition in the Z model of decomposition. 

First, the Z definition of a general chart requires additional definitions 

and schemas. Suppose that we have the generic decomposed chart C = 
Dec (w M) by {(81,w 81),(82,w 82), ... ,(Sn,w Sn)} where w M = (M,E,a,\J!,6) 
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and {S1, S2, ... , Sn} ~ ~- From the simple transition model above we can gener­

ate the transition model for the master chart M paired individually with each 

of the respective slaves. That is, we get the schemas 8M51 , 8M52 , ... , 8Msn by 

modelling each of the respective charts Ms1 = Dec (w M) by {(S1,w S1)}, Ms2 = 
Dec (w M) by {(S2,w S2)}, ... , Msn = Dec (w M) by {(Sn,w Sn)}. Now the generic 

Z definition of the transition model for decomposed chart C is as follows: 

statesc : IPµ State 

inc : IP µSignal 

outc : IP µSignal 

statesc = statesM51 U statesM52 U ... U statesMsn 
inc = inM51 U inM82 U ... U inMsn 
outc = outM51 U outM52 U ... U outMsn 

Charlc--------­
CharlM81 
CharlM82 

Initc---------­
InitM51 
InitM52 

8c---------------------------
LlCharlc 
ic : IP inc 
act : IP µ State 

Oc : IP outc 

The semantic definition for the general case of the decomposition operator 

is given in terms of a recursive scheme. The relationship between the defini­

tion and the generic schema given above is not trivially equivalent. However, 

unwinding the recursion, using the specific case of one decomposed state as 

the base case, will always result in a definition that looks like the encoding 

given by the generic Z schema 6c above. 
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Definition 3.5.2 Given the decomposed chart Mn= (Dec (w M) by TI), where 

w M = (M,E,u,\Jl,8), TI 1 ~ E and #TI~ 2, for arbitrary SE TI and M<1> = 
(Dec (w M) by (TI\ { (S, wS)}) we have, 11 

[8MnD~ta =def {zra I M<I> E z.act ¢:} Mn E z.act I\ 
SE z.act <=} (Mn E z.act I\ (z.cM = S V z.c'.w = S)) I\ 

3 Om.z,, 08 • z.o'.wn = Om.z, U Os I\ 

z * q iM~~(z.iMn Ufbz) n inM~, o'.w~~om.z. ~ E dM~ I\ 

z * q is~(z.iMn U fbz) n ins, o~~os ~ E 8s} 

The chart M<1> is the result of removing the decomposition of just one 

state, namely state S, from the decomposed chart Mn. Thus applying this 

definition recursively results in the case where just one state is decomposed, 

that is, the base case described earlier. 

Because this recursive definition for charts with multiple decomposed 

states has the same form as the definition of the base case, that is Defi­

nition 3.5.1, all of the rules described in propositions 3.5.1 to 3.5.4, and their 

respective proofs, generalise to decomposed charts in which multiple states 

are decomposed. 

3.6 Chart context and signal hiding 

The final structuring mechanism of µ-Charts is the interface operator. As we 

have already mentioned, the interface operator allows the designer to specify 

the assumed context for a chart. This operator allows two conceptually 

different types of behaviour to be specified. The first is signal filtering and 

signal hiding. The second is choosing not to output particular signals. 

Signal filtering and signal hiding is typically used to internalise the com­

munication between parts of a complex specification. Often it is a require­

ment that two sub-charts composed together communicate with each other 

privately. Private communication between the parts can neither be observed 

or interfered with from outside of the composition. This type of behaviour 

can be modelled by specifying the internal communication between the sub­

charts and then using the interface operator to localise the signals used for 

the internal communication. 

Alternately, a designer may wish to identify that the context can be con­

trolled by some signal but choose not to output that signal. This is modelled 

11 The set TI 1 represents the set containing all of the first elements from the set of pairs 

TI. 
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using µ-Charts by specifying an output interface that contains more signals 

than the natural output interface for a chart. It is not until we consider re­

finement of µ-charts that the justification for this subtle distinction between 

the natural and explicit output interfaces of a chart becomes apparent. Given 

the finite state machine nature of charts, it is tempting to think that the nat­

ural output interface of a µ-chart describes all of the signals that the chart 

can output regardless of what context it is placed in. In fact, the ability to 

specify an explicit interfaces for a chart allows a designer to specify both the 

assumed context of a chart plus the input output behaviour of the reactive 

system in that context. The refinement calculus that we define for charts 

then allows refinements that both refine the behaviour described as well as 

change the assumed context of the chart. 

The respective roles of the input and output interfaces for charts is dis­

cussed in detail in Section 5.3.3. The following diagram demonstrates the 

general structure of the model for a chart C = x [ Ci] y, that is, chart C1 with 

explicitly defined input interface X and output interface Y. 

active 

.---- -
i x~ 0 o" Y 

C1 - y 

- -

The following Z definitions and schemas provide the transition model for 

the chart C = x [ Ci] y. 

statesc : IPµ State 

inc : IP µSignal 

outc : IP µSignal 

statesc = statesc1 

inc= X 
outc = Y 

Charle == Chartc1 

Initc == Initc1 

&c~~~~~~~~~~~~~~~~~~~~~~~~~-

~Chartc 
ic : IP inc 

act : IP µ State 

o~ : IP outc 

C E act <=> C1 E act 
3 ic1, oc/ : IP µSignal • ic n inc1 = ic1 I\ o~ = oc/ n outc I\ 6c1 

67 



Notice that apart from the obvious distinction between the schema 8c 

and the existing 8c1 , i.e. the new predicate that restricts the output, there 

are some more subtle differences introduced using the Z type system. In 

particular the input observation ic has the type IP inc rather than IP inc1 • 

When reasoning about the schema 8c this observation gets normalised so 

that its type, as for the input observation ic1 in 8c1 , is IP µSignal. However, the 

normalisation also adds the additional constraint ic ~ inc to the predicate 

part of the normalised version of the schema 8c. Thus restricting the set of 

binding from 8c1 to those that take input from the new input interface for 

the chart C and hence modelling the hiding of input. 

Interestingly, the process of hiding input restricts the set of binding that 

is the model of the original chart, whereas, output hiding requires that we 

modify the bindings that inhabit the model of the original chart. When we 

restrict the input interface of a chart we are making the specified reactive 

system less reactive. That is, there are less signals that the environment can 

use to effect a reaction from the system in question. On the other hand, 

hiding output does not affect the reactivity of the specified system, rather it 

lessens the ability of system to affect its environment. 

Once again, we give the definition of the transition model in terms of the 

meaning of the Z. Given the chart C = x [ Ci] y we have, 

[8 ]IP'Ta -
C Zc: -def {zT 0 I C1 E z.act ~CE z.act I\ 

3 01 • Z. Oc = 01 n outc I\ 
z * ~ ic1~z.ic n inc1 , oc/~01 ~ E 8c1 } 

Notice that the definition of the type ra implies that z.ic ~ inc. This 

demonstrates how important the type system of Zc is in the description of 

the logic for µ-charts presented. 

The following introduction and elimination rules follow trivially from this 

definition. 

Proposition 3.6.1 Given C = x [ Ci] y, for the binding z T3 we have, 12 

Z.OC = 01 n outc, 
z E 8c 

z * ~ ic1~z.ic n incl' oc/~01 ~ E 8c1 I- P 
----------p---------- (x[]y) 

12 Again type T3 is implicitly constrained, such that it is disjoint with respect to each 

of the types v/' Vl0 , so that the use of the operator * is well defined. 
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I z.oc = o1 n outc, 

z * q ic1~z.ic n inc1 , oc/~01 ~ E dc1 , 

actv C z V inactv C z 
---------------- (xDt) 

z Ede 

where the usual conditions hold for o1 and P, [dcJ:t0 and T 0 j T3 • 

The predicates actv C z and inactv C z are defined for charts with hiding as, 

actv C z =def actv C1 z I\ CE z.act 

inactv C z =def inactv C1 z I\ C ¢ z.act 

The rules (iact1 ), (iactij) and (iact+) hold for charts that contain hiding. 

Proposition 3.6.2 Given C = x [ Ci] y, for arbitrary binding z T3 we have, 

z E de inactv C z 
------- (iact1 ) 

z E 3Chartc 
z Ede inactv C z 
------- (iactij) Z.OC = {} 

inactv C z z E 3 Cha rte 

z Ede 

z o' - {} 
· C - (iact+) 

And finally the rule (z,e) holds for charts with hiding. 

Proposition 3.6.3 Given C = x [ Ci] y for arbitrary bindings z T3 and x T3 we 

have, 
z Ede x =r,· z z.ic U fbz = x.ic U fbx 
-------'----------- (ztE) 

x Ede 
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3. 7 Partial relations semantics 

In this section we give the general method for defining the step semantics for 

a chart. 

The step semantics is no more than the transition model of the top-most 

subchart of a µ-chart with the active state machinery hidden. Given an 

arbitrary µ-chart called C, the step behaviour of C is defined by another 

schema which, by convention, we call CSys. 

CSys ________________________ ~ 

!:l. Charle 
ic : IP inc 
Oc : IP outc 

3 act : IP µState • C E act I\ 8c 

The schema CSys hides the active state observation and specifies that the 

top-most chart of any hierarchical structure is active. Now we have that the 

Z model for an arbitrary chart C is defined as: 

[C] 2 =de/ CSys 

The meaning of the model is given as usual as a set of bindings. 

Definition 3. 7 .1 For arbitrary chart C we have, 

Note that, for the sake of presentation, we typically refer to [[ CDzDzc 
simply as C whenever the context makes clear the intended meaning. From 

this definition we derive introduction and elimination rules. 

Proposition 3. 7 .1 For arbitrary chart C, and bindings z T3 , we have, 

z E C z * Za E 8 c, actv C z * Za f- P 
-------------- (z.-) p 

z * Xa E 8 c actv C z * Xa + 
, (Z, ) 

z EC 

T [ ra t T"ct where [ C] 2 c, 8c] 2 r:, T j T3 , rac t_ T3 , and the usual conditions hold for Za 

and P. 

The schema CSys and its meaning describes the step semantics for µ­

Charts. We often refer to the step semantics as the partial relations seman­

tics. This is because the meaning of the schema CSys can be considered 
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as a relation that maps the before state of a chart and input to its after 

state and output. This relation is often partial because an abstract µ-Chart 

specification describes the reaction to some input events and not others. 

We now give lifted versions of the introduction and elimination rules for 

each of the chart operators. 13 Using these lifted rules we can reason about 

complex charts using just their partial relations semantics, i.e. without re­

verting to the transition model. 

For the composition operator we have, 

Proposition 3.7.2 Given arbitrary charts C1, C2 and C = Ci I '11 I ~' and 
b" d" U1 U2 yio Vi" Vt U 1 U2 yio Vt° VJ0 • m mgs z1 , 22 , Xe , u1 , ~ , y1 , y2 , Ve , wi and ~ , for arbitrary 

01 and 02 we have, 

' ' . zi * xi * Yi * v1 E Ci, 
' ' . Z2 * X2 * Y2 * V2 E ~' 

' ' ' . Zi * z2 *Xe* Yi* Y2 * Ve E C xi.ic1 = (xe.ic LJ fbvJ n incl, 

3:2.ic2 = (xe.ic U fbvJ n inc2 , 

Ve.OC = Vi.OC1 U t>i,Oc2 I- p 
-----------p----------- (Zl=I) 

' ' . z1 * u1 * y1 * w1 E Ci 
' ' . Z2*U2*Y2*W2 E C2 

u1.ic1 = (xe.ic UfbvJ n inc1 

U2. ic2 = (Xe. ic U fbvr.) n inc2 

Ve.OC = WI .Oc1 U W2,0C2 

------, --, --,-.-- (Zl~I) (t) 
zi * z2 * Xe * y1 * y2 * Ve E C 

where fbvr. =def Ve.ocnw, [ C]:t, [ Ci]~<~1, [ ~B~;\ and the usual conditions hold 
yio ll'.io yio yio 

for Xi 1 , Li 2 , v1 1 , v2 1 and P. This rule contains a side-condition (labelled t) 
which requires that we can show that 'v z Tio • 3 z[ar.t • actv C z * z0 • 

The form of these introduction and elimination rules is motivated by the 

refinement rules introduced later. Also, notice that the side-condition of this 

rule is not given as one of the assumptions of the rule itself. This presentation 

of the rule is chosen because this side-condition is considered a syntactic 

restraint that should be placed on µ-Charts. It describes a desirable global 

property of a specification which ensures that the Z model is sensible rather 

than a property related to individual transitions. Consider the following 

example chart which illustrates the category of charts for which this side­

condition fails. 

13See Appendix B.6 for the proofs of the introduction and elimination rules in this 

section. 
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c, 

X y C2 

C2 

This is an example where the chart C2 appears both as part of the com­

posite chart C = w C1 I {} I w C2 and as the decomposition of state C2 in 

chart w C1. The Z model of this chart contains no bindings that represent 

the chart starting a transition from its initial states. This is because it is 

not possible for chart C2 to be both active (as part of the composition) and 

inactive (as part of the decomposition) at the same time. The reason that 

we present the property as a side-condition rather than an assumption of the 

rule is because this situation is likely to never arise in practice. In terms of 

"charts as an engineering tool" it would be easier to restrict the language 

with the stronger condition requiring that one of the examples of chart C2 

be renamed, i.e. distinguished from the other. However, in terms of "charts 

as an eloquent formalism" we may wish to prove properties of the language 

such as S ;;;:)rf S I {} I S and S I {} I S ;;;:)rf S. 

For the interface operator we have, 

Proposition 3.7.3 Given chart C =x [Ci]y for arbitrary C1 and bindings zu, 
yio u yio v;u x , y , v and x1 , we have, 

I I • 
Z* X1 * y * U1 E C1, 

v.oc = u1.oc1 n outc I- P 
-------------p------------- (ZII) 

I I • 
Z*U1*Y*w1 EC1 u1.ic1 =x.icninc1 v.oc=w1.oc1 noutc + (t) 
------------------------- (ZII) 

z * x * y' * v' E C 

IP T IP T yio 
where [C] 2 c and [C1] 2 '" 1 the usual conditions hold for u1 1 , and P. The side-

condition t requires that we can show that 'r;/ z T"' • :3 z[act • actv C z * z0 • 

We conclude this chapter by examining the relationship between compo­

sition and decomposition. As expected, given the definition of decomposed 

charts, we can show that two charts that share a master/slave relationship 

react in the same way as if they are composed in parallel whenever the mas­

ter is in the decomposed state and vice versa. This gives us another useful 

introduction and elimination rule. 
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Proposition 3.7.4 Given Ms= (Dec (w M) by {(S,w S)}), for arbitrary S, 

w M = (M,E,a, '11,8), and MSw = [w MI '111 w S]z,, then for arbitrary zT3 we 

have, 
z.cM = S V z.c~ = S z E 0Ms _____ --.:..;;;....._ ____ __::_ (Ms V) 

z E 8Ms>l! 

z.cM = S V z.c~ = S z E OMs>ll 
------------ (Mtu) 

z E 0M5 

The Z model presented in this chapter gives a full account of the assumed 

semantics of µ-Charts. The introduction and elimination rules for each of the 

language constructs give a logic that can be used to reason about µ-Charts. 

In Chapter 4, we investigate further the semantics of charts using the 

more common-to-reactive-systems view of a trace semantics. 
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Chapter 4 

Trace Semantics 

This chapter introduces a trace semantics for µ-Charts. First we consider 

what we mean by "trace semantics". A trace semantics for µ-Charts gives 

a meaning to charts in terms of their observable input/output behaviour. 

Hence it is an abstraction on a state-based view, in that the state informa­

tion explicit in a chart diagram is not present at all in the trace semantics. 

The trace semantics considers only the interactions of the chart with its en­

vironment and therefore is a record of the sequence of outputs that a chart 

produces given a sequence of inputs. 

We use infinite traces to model the behaviour of charts. The reason for us­

ing infinite traces is solely because this work closely follows that of Scholz [78] 

where infinite traces are used. An alternative approach, introduced by Hoare 

in [42], is to use finite traces without saying how long they are. This entails 

constructing subsequence complete ( or "prefix complete") sets of finite traces. 

For example, the well known CSP process CLOCK = ( tick -+ CLOCK) has 

a finite trace behaviour described by the set {(),(tick), (tick, tick), ... }. We 

could, and in some respects do, use this method to encode each of the infi­

nite traces that together give a chart its trace meaning. However, there is no 

simple congruence between the "trace semantics" that one would associate 

with a process algebra such as CSP and the trace semantics that we give 

here for charts. 

Roscoe ([75], page 172) points out that the only situation under which an 

infinite trace model conveys more information than the alternate finite trace 

model for CSP is when a process can exhibit all of the finite prefixes of an 

infinite trace but not the infinite trace itself. By the same reasoning, we could 

use prefix closed sets of finite traces in place of infinite sequences. Charts are 

finite in state and transition and therefore cannot rule out an infinite trace 
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for which all of the finite prefixes are possible. In fact, in Section 4.6 we use 

the limit of the prefix closed sets of finite traces to define infinite traces. 

For an example of a trace semantics for µ-Charts that closely follows 

Hoare's approach see [28]. 

In fact, the trace semantics presented plays a reasonably minor role in this 

work-our ultimate goal is to investigate the possibility of giving a partial 

relations-based refinement framework for µ-Charts. 

However, so that we can attempt to relate the investigation presented here 

back to previous work done on charts [78], we describe, not one, but several, 

trace semantics. The difference between them is not due to differences in the 

objects that we use to formalise the meaning but rather differences in the 

meaning assigned to charts. Specifically, we consider the implicit behaviour 

of a chart when explicit behaviour is not defined for some input sequence. 

Also, we introduce the different trace semantics so that we can use the 

intuitive operational nature of traces to informally discuss the different no­

tions of refinement. This gives us another view from which we can consider 

the defined notions of refinement. That the traces view of these types of 

formalisms provide an intuitive way to talk about reactive systems is best 

described by Hoare's description [42] of what a trace semantics represents: 

consider an observer with a note book recording the behaviour of the system 

as it is running. 

In the following we show that the choice of how we totalise the partial 

relations that describe charts can be considered synonymous with choosing a 

different trace semantic interpretation for charts. In particular, if we define 

refinement via the partial relations semantics, the necessary choice of total­

isation is related to the choice of trace interpretation. We introduce four 

different trace interpretations to help motivate where each of the commonly­

known partial relation completion models, and hence refinement notions, fits 

into our treatment of µ-Charts. 

The ability to use the same partial relations to describe different trace 

interpretations via refinement could be considered one of the significant ben­

efits of this type of partial definition of behaviour. The idea being that, given 

the partial relations semantics, the user simply picks the set of tools (i.e., the 

appropriate refinement rules) to suit their required trace interpretation. The 

denotational semantics of charts is actually the partial relations semantics 

plus a set of refinement rules. Each of the different sets of rules assign a 

different denotation to charts. 

We begin to outline the alternatives by considering the example chart 
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pictured in Figure 4.1. 

I' a/(s.t} 

Figure 4.1: µ-chart description of a simple reactive system 

The question is: what output should this chart give when reacting to the 

input ( {a}, {a}, {a}, ... ) ? To answer this we outline four different choices. For 

each choice we give examples of: the traces that will inhabit the semantics 

of the chart; a chart that makes explicit the transitions encoded by the 

given trace semantics; and the necessary completion of the partial relation 

semantics so that the partial relations based refinement and traces notion of 

refinement match. To accord with the formalisation of the semantics that 

follows, the trace semantics of a chart can be considered a total relation 

between input traces and output traces. 

Finally, Section 4.6 gives formal definitions for each of the discussed trace 

semantic interpretations. 

4.1 Do-nothing semantics 

The first choice we consider is the do-nothing semantics that we denote as 

[Ctn for the chart C. The do-nothing semantics states that if no transition 

is defined for an input then the chart outputs nothing, i.e. outputs the empty 

set, and remains in its current state. Hence the resulting output trace for the 

input ({a}, {a}, {a}, ... ) is ({s, t}, {}, {}, ... ). Alternatively, we could write,1 

(({a}, {a}, {a}, ... ), ({s, t}, {}, {}, ... )) E [CB;n 

Recalling that the trace semantics must contain at least one trace for all 

input sequences, we can give a more general scheme that illustrates the do­

nothing trace semantics of chart C. Assuming that the sequence v is an 

1 Note that the ... notation used to demonstrate trace behaviour means the trace con­

tinues indefinitely as it was most recently, rather than repeating all of the previous sets of 

signals. 
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infinite sequence of inputs i such that each i ~ {a} then we have, 

[CD:n = {(({}, {}, ... ), ({}, {}, ... )), 
(({a})"'v, ({s,t},{},{}, ... )), 
(({},{a})'"'v, ({},{s,t},{},{}, ... )), 
(({}, {}, {a})'"'v, ({}, {}, {s, t}, {}, {}, ... )), 

} 

Note that the first pair of sequences in this set demonstrates that we cannot 

assume that the environment will ever produce signal a as input. 

The explicit encoding of this semantics is demonstrated by the chart C1 

as follows where the two additional loop-transitions explicitly encode the 

do-nothing interpretation for the original chart C in Figure 4.1. 

a/(s,t} 

The following diagram represents ( using solid black lines) the partial re­

lation interpretation of the chart C and (using dotted lines) the necessary 

completion of the partial relation to give the required semantics. Note that 

the domain of the relation is a tuple consisting of the current state of the 

chart and the input, the range is the tuple containing the resulting state and 

the output. 

(X, {}) •· .. 

(X, {a}) 

(Y,{})• 

(Y, {a}) • 

• (X, {}) 

• (X, {s}) 

• (X, {t}) 

... . . • (X, {s, t}) 
· ..... :. : ··•(Y,{}) 

• (Y,{s}) 

• (Y,{t}) 

(Y,{s,t}) 

Again, the reason we give the relational view of the different semantic 

encodings is that it begins to make obvious the link between the choice of 

trace semantics and the partial relation completions, some of which, are 

related to well-known state-based refinement techniques. 

4.2 Partial-chaotic semantics 

Another possible interpretation, that we will call the partial-chaotic seman­

tics, [ CD;-c1 .... ,., is the first of the so-called chaotic interpretations. Under the 
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do-nothing semantics, when there is no defined transition for an input, the 

only acceptable reaction of an implementation is to do nothing. In other 

words, ignore unexpected input until an appropriate input is present. Hence 

leaving behaviour undefined in the specification is saying something about 

the suitable implementations. Under a chaotic interpretation any reaction 

that an implementation chooses, when a specific reaction is not stated, is 

acceptable. That is, leaving behaviour undefined should be taken to mean 

the specifier does not care what happens in this situation. 

The partiality of this chaotic semantics is due to the fact that during the 

step in which chaotic behaviour is permitted, the implementation is free to 

choose the reaction, including the state to which the chart moves. However, 

at the next step the implementation is again constrained to react as the 

specified chart. 

Some of the possible output traces for the example chart C resulting from 

the input ({a}, {a}, {a}, ... ) include, 

({s,t},{},{}, ... ) 
({s,t},{s},{}, ... ) 
({s,t},{t},{}, ... ) 
({s,t},{s,t},{}, ... ) 
({s,t},{},{s,t}, ... ) 

The explicit encoding of this semantics is demonstrated by the chart C2 as 

follows. Note that the output label AO is used as a shorthand to represent 

an arbitrary output such that AO ~ {s, t}, i.e. some subset of outc2 ; the 

output interface of the chart. Each transition that has output AO actually 

represents four separate transitions. 

C2 
-a/AO 

-a/AO y /AO 

The appropriate completion of the partial relation semantics is as follows. 

(X,{}) 
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4.3 Total chaotic semantics 

Another form of chaotic semantics for charts is the total chaotic semantics 

denoted by [ Ct_,.haos. This semantic interpretation encodes behaviour that is 

not only chaotic at one step where no behaviour is described but is chaotic 

for that step and any steps following. 

The actual difference between this and the partial-chaotic semantics is 

very subtle but significant none the less. Sections 5.2 and 6.3 give a detailed 

account of this difference and how it arises. From the outset the given en­

coding of the total chaotic semantics makes the difference between it and 

the partial-chaotic semantics obvious. It may appear that the difference is 

itself caused by the choice of model for the respective trace semantics rather 

than more fundamental differences between the two models. In fact, the op­

posite is true. The original encoding was modified to properly capture the 

difference. First we explain what the total chaotic semantics is and how it 

is modelled, then we explain the trace model for the total chaotic semantics. 

Consider again chart C of Figure 4.1 with input ({a}, {a}, {a}, ... ). The 

output traces that are part of the total chaotic model for this chart include 

all of those from the partial-chaotic model and some new output traces such 

as the following. 

({s, t}, {l.}, {l.}, ... ) 
({s,t},{s,l.},{l.}, ... ) 
({s,t},{t,l.},{l.}, ... ) 
({s, t}, {s, t, l.}, {l.}, ... ) 
({s,t},{l.},{s,t,l.}, ... ) 

The signal 1. denotes a special output value that is used implicitly in the 

semantic model to indicate that the chart has begun acting chaotically. It 

cannot be explicitly used as an output signal in the chart itself. 

We give two charts that explicitly encode this semantic interpretation 

in Figure 4.2, both of which exhibit the appropriate traces. Note we again 

use the label AO as a shorthand for arbitrary output. We also introduce 

A0_1_ which is shorthand for arbitrary output from the set outc U {l.}, that 

is A0_1_ ~ {s, t, l.}. Regardless of which completion we choose the explicit 

encoding of a total chaotic semantics requires an additional state. This state 

is necessary in general to model the behaviour where the chart continues to 

act chaotically from the first undefined step on. The encoding demonstrated 

in Figure 4.2(a) realises both the partial chaos, as described above, as well as 
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the ability to continue reacting chaotically indefinitely. The second encoding, 

demonstrated in Figure 4.2(b), shows that, when we ignore state (i.e. consider 

only traces), the observable behaviour of a chart reacting chaotically is a 

superset of the behaviour that is to recover and resume reacting in a defined 
manner. 

C3 
-a/AO 

C4 

(a) {b) 

Figure 4.2: Alternative explicit encodings of the total chaotic semantic model 

Not surprisingly, the completion of the partial relation semantics also has 

two possibilities. 

(X {}) e,,,... ·· · ·· .. ,,• (X,{}) 

(X,{a}) '\:/:·. • ,,• (X,{s}) 
(Y {}) •i· :-:_·.· · , .... ,. ··.·. •• (X {t}) 

( :,~~: :\ii,ij?L:5/ :: :: : : : : ;? 
·.".·.'. 

·,,. ( y. { s}) 

,,. ( y. { t}) 

(Y,{s,t}) 
•• j~ -. .l r.hao., 

(X, {}) ~ 

(X, {a}) 

(Y,{}) • .. 

(Y, {a}) • .. ·· .. . 

.lchao• •-. ·· ... ·· ... 
. ·. 

• (X, {}) 

• (X, {s}) 

• (X,{t}) 

• (X,{s,t}) 

• (Y,{}) 

• (Y,{s}) 

• (Y,{t}) 

·.-... (Y,{s,t}) 
<-\._• .lr.haos 

That these two alternatives for completing the partial relation semantics 

coincide may initially seem surprising. Given the existing literature that 

describes the completion of partial relation semantics for abstract data types 

(ADTs) described in Z, one might expect these different completions to give 

significantly different semantics. However, the apparent difference can be 

explained by the interpretation that we assign to the special value .lchaos. 

We can see from the two charts above that the state .l simulates all of 

the other states in the chart. That is, if we ignore state information, any 

behaviour that could be observed in any of the defined states can also be 

observed from the state .l. Hence, the fact that these two completion models 
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coincide is not unexpected when we consider chart refinement in terms of 

simulation relations, as we will see later. 

Notice that we have made an assumption in the relational diagrams. The 

value ..lchaos not only stands for a state but also represents arbitrary input 

and arbitrary output. Moreover, this arbitrary output can contain the spe­

cial output ..l. From a trace semantic point of view it is difficult to give a 

satisfactory argument that justifies the inclusion of this special output ..l. 

The necessity of ..l stems from allowing chaotic behaviour to be implicit 

in the chart description of a reactive system. Implicit chaos is an important 

abstraction mechanism of µ-Charts. The user can choose to leave parts of 

the design undefined ( or rather "to be defined later") in a chart specification. 

Also recall that the chart semantics defined in Chapter 3 is designed such 

that any µ-chart which is made up by the composition of other charts can be 

equally described by a non-composed chart. Due to implicit chaos, a property 

of this semantics is that chaotic behaviour in one part of a composition affects 

the other part of the composition. That is, if one part of the composition acts 

chaotically then the composition itself also acts chaotically. Now consider the 

following two charts. 

Given the "intrusive" nature of chaos, for arbitrary chart C and set of 

signals w, the following properties hold. 

( C I W I Chaos) = Chaos 
( C I W I True) = C 

From this observation it is clear that [Chaost_chaos -I- [Truet_chaos' at least 

its clear that the language would have undesirable compositionality proper­

ties if [ Chaos t_chaos and [ True t.c1""'" were equated. Hence the output value 

..l is used to distinguish Chaos from True. 

4.4 Firing conditions semantics 

If we want to describe the total chaotic semantics for charts, as we do here, 

then we need the stated interpretation of ..lchaos· That is, the state ..l simu­

lates being in any of the defined states as we describe above. Alternatively, 

there is another possible semantic model. When the specifier does not define 
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a specific behaviour for an input in a given state, the interpretation is neither 

"do-nothing" (i.e. ignore the input until another significant event occurs) nor 

is it that the specifier does not care what happens (i.e. chaotic behaviour). 

Rather the interpretation is that this behaviour is disallowed. While this 

interpretation may not seem natural for specifying reactive systems-where 

the underlying assumption is that the behaviour of the environment is out­

side of the control of the specified system-it is a natural interpretation for 

abstract data types where allowing the environment to apply an operation 

may be deemed unsuitable at the time of specification. This interpretation 

of ADT specifications is often termed the firing condition semantics or the 

guarded interpretation of specified operations. That is, the precondition of 

an operation determines when it can be applied. 

Despite the fact that this semantic interpretation may not seem natural 

for the specification of reactive systems, we describe it here as a possible 

semantic model. This is partly for completeness and partly because it may 

in the future prove to be another useful way of using chart specifications. We 

call it the firing condition semantics for chart C, which is denoted [ c];.. 
This model may be considered as a way of modelling termination of a re­

active system. That is, after an event occurs that was not expected, i.e. not 

defined in the specification, the reactive system stops reacting. To encode 

this semantics using the same infinite trace framework that we have for the 

other semantics requires that we decide what it means for a reactive system 

to stop reacting. When considering a chart itself, changing the previous in­

terpretation of the state .l to represent a trap state from which, the chart 

cannot leave, nor output any further signals, appears to be a reasonable way 

to encode termination. If one was able to observe the state of a reactive sys­

tem as it was running it would be obvious when the system had terminated. 

The trace semantics of a chart, however, describes the behaviour of a reactive 

system without any reference to state. Encoding termination as a continu­

ous trace of empty output does not capture enough information to properly 

encode termination either. In particular, a chart that is intentionally out­

putting no signals cannot be distinguished from a chart that has terminated. 

Therefore, to encode termination of charts in the trace semantics we again 

use the special output value .l. The output .l is used in this case to indicate 

that a chart has terminated. 

Now the allowable behaviour of our original example chart C of Figure 4.1 

can be defined in a similar (but not equal) fashion to the do-nothing trace 

semantics. Assuming again that the sequence v is an infinite sequence of 
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inputs i such that each i ~ {a} then we have, 

[C]% = {(({})'"'v, ({1.},{l.}, ... )), 
(({a})'"'v, ({s,t},{l.},{l.}, ... ))} 

The explicit encoding of this semantics is demonstrated by the chart C5. 

cs 

X y 

The completion of the partial relation semantics looks the same as one 

of the alternatives for the total chaotic semantics (Figure 4.2(b) ). However, 

we reiterate that the value l.Jc used here is to be read as a special value that 

indicates termination, that is, the output resulting from a transition to state 

l. is the special signal 1.. 

(X, {}) • 

(X, {a}) 

(Y,{}) • .. 

(Y,{a}) • ·. 

..Lfc •- .. ·· .. 

• (X, {}) 

• (X, {s}) 

• (X, {t}) 

• (X, {s, t}) 

• (Y,{}) 

• (Y,{s}) 

• (Y,{t}) 

(Y,{s,t}) 
·'.,~ •• ..Ljc 

Notice that the completion is strict. That is, once an undefined event 

has occurred, the chart will never again output any useful control signals. 

A chart that makes a transition to state l. then it must remain in state l.. 

Unlike the total chaotic completion for charts, here the state l. does not 

simulate all other states in the chart. It represents a special state that, when 

entered, stops the chart from partaking in any further interesting interaction 

with its environment. 

4.5 Discussion 

From the different possible semantics that we have described in this section 

we can see that two quite separate views of what a specification actually is 

have emerged. This is not only true for charts but for formal specification in 

general. One view is that a specification is partial. That is, it describes just 
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the parts of the system that the specifier is interested in. An assumption that 

appears to underlie this approach is that some sort of formal step-wise design 

will follow specification. This design process ends either in a specification 

that is deterministic and therefore easily implemented or, in the case of some 

languages, with the implementation itself. In each step more and more of 

the previously unspecified behaviour is decided. It appears to fit with this 

view that refinement will be used as a tool to guide design. Also, this view 

appears to coincide with the assumption that the environment in which the 

specified system will reside is outside of the control of the system, that is the 

environment is considered to be completely nondeterministic in its behaviour. 

The total chaotic semantics described above is an example of this paradigm. 

The alternative view generally treats a specification as a total description 

of the behaviour of the resulting system. That is not to say that nonde­

terministic specifications are necessarily disallowed, but any nondeterminism 

is explicit. This view seems to coincide with the assumption that the sys­

tem under consideration can inflict control upon its environment, i.e. rather 

than being completely passive it can choose to which of the environment's 

requests it will react. Here it is typical for design to be a process of con­

structing alternate, possibly more possibly less implementable, specifications 

and using refinement to check that one is valid with respect to the other. 

The do-nothing and firing conditions semantic interpretations given here fit 

well into this form of formal system design. 

4.6 Defining the trace interpretations 

Finally, we give formal definitions of each of the trace semantic interpre­

tations that we have outlined above. We have already identified that our 

semantics will map all infinite input sequences to infinite output sequences 

( assuming the appropriate interfaces for the chart). 

In order to use and prove results about infinite sequences we define them 

in a manner similar to that suggested by de Bakker and de Vink in [15], 

namely using the theory of ultmmetric spaces. As is usual we assume that 

the set A* denotes the set of finite sequences over the alphabet A while Aw 

denotes the set of infinite sequences over the alphabet A. Of course, in our 

case the alphabet A will represent all the subsets of some finite set of signals. 

The set of all sequences, i.e. of finite and infinite length, is then denoted 

by A 00 • Like [ 15], we assume all sequences in A 00 are functions that map 

contiguous natural numbers (excluding 0) to elements of A. That is we have, 
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Definition 4.6.1 Given a set of signals S, 

Aw =def {N1 -+ A I N1 = N \ {O} /\A= IP S} 

A* =def {(l.. n) -+ A I n EN/\ A= IP S} 

A 00 =def A* UAW 

We continue to use the literal () for the empty sequence, (e1, e2, ... , en) 

for a sequence containing n elements, and (e1, e2, ... ) for an infinite sequence. 

The truncation of an infinite sequence s E Aw, denoted s r n, gives a finite 

sequence of length n, i.e. s r n E A*. The truncation operator is defined as 

follows: 

Definition 4.6.2 Given a set of signals S, e ~ S and the sequences w E A00 

and (e)'"'w E A 00 , we have, 

wfO 

() r n 

=de/ () 

=de/ () 

((e)'"'w) f (n + 1) =def (e)'"'(w r n) 

assuming the concatenation operation '"' is defined as usual and n E N. 

We define the required ultrametric d using the so-called Haire-distance [15]. 

Definition 4.6.3 Given two sequences v, w E A00 , 

d(v, w) =def { 0 
2-n 

if V = W 

where n = max { k I V r k = w r k} 

Now we have the important result, as shown in [15], that the ultramet­

ric space (A00 , d) is complete. From this we can guarantee that any prefix 

complete set of finite sequences has a limit or a least upper bound in A00 • In 

fact, the sequence that is the least upper bound of such a set will be infinite, 

i.e. a member of Aw. Hence, we describe infinite sequences as the least up­

per bounds of sets of finite approximations. For example, consider the finite 

sequence Xn of length n defined as, 

where en represents some set of signals. We can now describe the infi­

nite sequence (eo, e1 , e2 , ... ,en, ... ) = LJ {xn In EN}, that is, the limit of the 

set of finite sequences that converge to the infinite sequence. Furthermore, 

we can give this type of description for all infinite sequences w E Aw as 

LJ{wfnlnEN}. 
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Henceforth, we freely use the notation { xn I n E N} w to represent such 

converging chains of finite sequences. Note that the subscripted W repre­

sents a set of signals, each element in the respective sequences ( denoted Xn 

above) is some subset of the signals W. Now we have that the set of in­

finite sequences Aw = LJ {X IX~ A* I\ X = {xn In E N}uA}· This assumes 

that each element in the alphabet A is a set of signals and that, in this case, 

LJ{e1,e2, ... } = {LJe1,LJe2, ... }. 

Recall that the input interface of chart C is the set of signals denoted by 

inc and similarly the output interface as outc. For convenience, assuming 

an alphabet I = l?( inc), we define the additional sets: I'c-the set of infinite 

input traces over I; Ia-the set of finite sequences of length n over I; I'c­
the set of finite sequences over I and Ic = Ic u Ic. The sets O'c, Oc, 
Oc and O'cf are similarly defined over the output interface. For convenience 

we introduce the set out-h =def outcU{1-}. Also, Oc1-' Oc1-' Oc1- and Oc1-
defined over the alphabet out-h. 

Notice, while the sets inc and outc can be empty, the respective sets 

Ic, 0c and O'c1- cannot. We use another result from [15], given (Ic, d1 ) 

and (Oc, d2) are complete ultrametric spaces then so is (Ic X Oc, d,,), where 

dp( (x, y ), (x', y')) =def max{ d1 (x, x'), d2(Y, y')}. 

We extend the definition of the truncation operator over infinite relations. 

Definition 4.6.4 Given a relation R ~ I'c x O'c1- and n E N then R t n ~ 

Ic X Oc.L such that, 

R t n = def { ( i t n, o t n) I ( i, o) E R} 

Using all of the introduced machinery we give the general form of the 

trace semantics for charts [ Ct as follows: 

[ CTiw C IW X ow I\ <lorn [CTIW = IW 
]x - C C.1_ ]x C 

To give the definitions of the four alternate trace semantics in terms of 

relations between infinite sequences we use the same method as above. That 

is, we describe how to build the semantic relation for a chart over equi-length 

finite sequences and use the least upper bound of a chain of such relations 

as the meaning for infinite sequences. Intuitively, this can be considered as 

describing the input/output behaviour of a chart after one step, and then 

after two steps and then after three steps, etc. Clearly, the infinite behaviour 

can be considered as the limit to which the relation tends as we take more 

and more steps. That such a limit exists is guaranteed by the metric space 

results. Essentially, since the sequences (representing a chart's behaviour) 
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do not change once fixed "in the past" they get "closer and closer" towards 

a limit. This "closer and closer" is what the Baire-distance of the metric 

space measures. That the distances tends towards zero demonstrates that 

the chain is tending towards a limit. 

As with the linear case all appropriate chains over finite relations { A ~ 

Ic x 02,.L In EN} have a least upper bound which is a member of I'c x Oc.L. 

Now, given the finite semantics [c]; ~ Ic x 02,.L x Charle (which will be 

defined shortly) 2 we have, 

Definition 4.6.5 Assuming Sn= {(i, o) I :3 c • (i, o, c) E [C];}, 

[C]; =def LJ {sn In EN} 

Finally we define each of the alternate trace semantic relations in the finite 

case. Note we use the precondition operator as defined in Appendix A.3. 

4.6.1 Do-nothing semantics 

Definition 4.6.6 For arbitrary si E Ic, so E 02,, i C me, o ~ oute and 

c E Charle, 

[ C]~n =def {( (), (), c') I c E Inite} 

[c]:/ 1 =def {(si"""i,so"""o,c') I ::lei e (si,so,ci') E [c]:n /\ 
( Pre C Zi /\ Zi * z~ E C V -, Pre C Zi /\ o = {})} 

4.6.2 Partial chaotic semantics 

Definition 4.6.7 For arbitrary si E Ic, so E 02,, i C me, o ~ oute and 

c E Charle, 

[ C]~-chaos =def {( (), (), c') I CE Inite} 

[ C]~~.!,,. =def {( si"""i, so'"" o, C) I :3 ci • ( si, so, ci') E [ c];_chao.• /\ 

Pre C Zi =* Zi * z~ E C} 

where Zi = ci * 0 ie~i ~ and z0 = q oe~o ~ * c 

2The x in [ C]; represents a place holder for any of dn for do-nothing semantics, 

~chaos for partial-chaotic semantics, T-chaos-for total chaotic semantics, or Jc for the 

firing conditions semantics. 
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4.6.3 Total chaotic semantics 

As we identified earlier on page 80, the encoding of the total chaotic semantics 

in terms of partial relations requires the addition of a distinguished state .1 

and distinguished output .1. Adding state .1 is commonly referred to as 

lifting the relation. 

We extend the type Charle to include the distinguished binding .1 as 
follows: 

Definition 4.6.8 

Charla =def Charle U { .1} 

Now the total chaotic definition is the same as that for the partial chaotic 

semantics with the exception that elements outside of the precondition of the 

partial relation (including state .1 with any input) are mapped to the target 

of the relation (including both the state and output .1). Hence the type of 

[ c];_r.haos s;;; Ic X Oc.L X Charla. 

Definition 4.6.9 For arbitrary si E Ic, so E Oc.L, i s;;; inc, o s;;; outa and 

CE Charla, 

[ C]~-r.haos =def {( (), (), c') I C E lnitc} 

[ c];_~h:o. =def { ( si""'i, so'"' o, c) I 3 ci • ( si, so, ci') E [ c];_r.haos I\ 

Pre C Zi => Zi * z~ E C} 

4.6.4 Firing conditions semantics 

Definition 4.6.10 For arbitrary si E Ic, so E Oc.L, i s;;; inc, o s;;; outa) and 

CE Charla, 

[ C]~r. =def {( (), (), c') I c E lnitc} 

[ c];/ 1 =def {( si""'i, so'"' o, c) I 3 ci • ( si, so, ci') E [ c];r. /\ 
(Pre C Zi I\ Zi * z~ E C V 

-, Pre C Zi I\ o = { .1} /\ c = .1) } 

where Zi = ci * q ic~i ~ and Zo = q oc~o ~ * c 

This completes the description and definition of the trace semantics for 

µ-Charts. In the following chapter, we introduce the notion of formal refine­

ment and use the trace semantics introduced here to investigate a notion of 

formal refinement for µ-Charts. 
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Chapter 5 

Trace Refinement 

This chapter describes the different notions of refinement for µ-charts. First 

we describe exactly what we mean by the term "refinement". Unlike some 

formal languages, such as the refinement calculus [59], that contain syntax 

to describe both specifications and implementations, µ-Charts contains only 

one type of construct which is a µ-chart (or simply a chart). One way to 

view a µ-chart is to consider it as the description of a function ( or several 

functions in the nondeterministic case). Each function is a description of 

the output trace that results from each possible input trace or in other words 

a reactive system. 

When we talk about a chart specification we typically mean a high-level 

description of the behaviour of a reactive system. It is considered high-level 

because it will describe some set of important behaviours and ignore other 

behaviours; it is a partial description of the required reactive system. A chart 

that describes several functions is typically considered a specification; there 

are many reactive systems that implement the specification. At the other end 

of the spectrum a chart that describes just one function could be considered 

an implementation. Though µ-Charts is not an implementation language as 

such, when a chart describes just one trace function then there is no longer 

any choice involved in implementing the correct reactive system. Of course, 

in practice it may not be necessary to reduce the set of functions described 

to just one. It may be the case that there are in fact several reactive systems 

that are suitable, in which case the implementor simply chooses one. 

µ-Charts refinement is a relation between a specification and an imple­

mentation. In fact, there is likely to be a long chain of charts between a 

specification and an implementation. Each chart in this chain is in turn 

linked by the refinement relation. The transitivity of the relation then guar-
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antees that the implementation is correct with respect to the specification. 

This is a formalisation of the common software engineering notion of step­

wise development; each step progresses down this chain. If we consider the 

specification as describing a set of trace functions then the refinement rela­

tion is one of subset. That is, at each step in the development we reduce 

the number of functions that implement the specification. The development 

is complete when the set of trace functions is sufficiently small that we can 

choose one of them as the implementation of the specified reactive system. 

It is one thing to define the refinement relation informally but our goal is 

to define tools that we can use to reason about refinements between charts. 

That is, we wish to define a refinement calculus for µ-Charts. As we alluded 

to in Chapter 4, there are two ways that this calculus will typically be used. 

The first is to use the rules to guide the design decisions made when trans­

forming or refining a chart specification into an implementation. This form 

of using the refinement calculus closely follows Dijkstra's notion that "we 

develop program and correctness proof hand in hand" [23]. From the point 

of view of developing such rules, this is the ideal because the usefulness of 

the rules can be measured by their eloquence rather than their completeness. 

The rules guide the developer in the design of a reactive system rather than 

each particular development needing a new set of rules. 

The second type of use, and probably more common, is to take two spec­

ifications and show that one is a refinement of the other. This form of devel­

opment follows more closely the practice against which Dijkstra warns, that 

is, "first designing the program and then trying to prove its correctness". 

Given two arbitrary specifications, finding the appropriate proof is likely to 

be difficult. Also if a proof can be found it is less likely to give insight into 

or help document design decisions. 

Before introducing formal definitions of refinement we split refinement 

into three distinguishable types-behaviour, input and output interface re­

finement. 

5.1 Behaviour refinement and interface re­

finement 

There are two distinct methods of abstraction that can be employed in a 

chart specification. The first is the common notion of using nondeterminism 

to represent choices that have yet to be made about system behaviour. The 
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second is the description of some important subset of the total behaviour of 

the reactive system. It is from this observation that the distinction between 

behaviour and interface refinement arises. 

In [78], Scholz introduces this useful distinction but does little by way 

of investigating or describing exactly what interface refinement is. Interface 

refinement allows the designer to introduce new interaction between a chart 

and its environment via refinement. That is, where a specification identifies 

the set of signals used to interact with the environment (the input and output 

interface of a chart), there is an assumption that part of the design process 

may be to extend these signals. Another way to consider this is that the 

context for which the specification is designed may not be the same as the 

context in which the eventual system will reside. The specification may have 

chosen to ignore some interaction as an abstraction method for dealing with 

complexity or the design process may wish to introduce new features that 

were not specified in the early stages of design. 

We begin by investigating the two separate types of refinement, that is, 

removing nondeterminism and changing the interface with the environment, 

separately. Then, like Scholz, we give one definition of the refinement relation 

that incorporates both activities. As we will see it is almost always the case 

that interface refinement by itself is uninteresting until we consider it in 

conjunction with removing nondeterminism. 

In fact, the interface refinement that we define is, by itself, not really 

refinement at all. Changing the interface of a chart in isolation is defined in 

terms of observational equivalence in terms of context. We will use the sym­

bol :::::: to denote that an observational equivalence exists between two charts. 

We still use the phrase interface refinement to describe such observational 

equivalences. 

Scholz comments that "in general, interface refinements could allow an 

arbitrary modification of both input and output interfaces", that is, to allow 

the interfaces to get larger or smaller. The interface refinement that we define 

here does allow both increasing and decreasing of interfaces, though not in 

general. Unlike Scholz we do not use the definition to restrict refinements 

to just those that increase the interfaces of a chart. Rather the definition 

requires that refinements only ever increase the reactivity of a chart. From 

such definitions, we show that this does impose some restrictions on how the 

interfaces of a chart can be changed via refinement. In particular, given an 

abstract chart A, it is always possible to increase A's interfaces. However, 

there are only limited situations when the interfaces can be decreased whilst 
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maintaining A's reactivity. 

Two of the reasons that Scholz gives for allowing only increasing interfaces 

are: refinement via combining sequential charts using the chart operators 

only ever increases the interface, and allowing both increasing and decreasing 

interfaces does not result in a transitive refinement relation. We will comment 

on these reasons in Section 5.4. 

Now that we have informally introduced our notion of refinement for 

charts we introduce some formal structures to help describe refinement and 

as a tool for comparing the different types of refinement presented. 

5.2 The refinement semilattice 

In order to discuss the trace definition of chart refinement more formally, we 

consider refinement in terms of a semilattice. First we will deal with just be­

haviour refinement and then we will show how this framework is extended to 

cope with interface refinement. We split chart refinement into three separate 

types as follows: behaviour refinement ~b; input refinement ::::::z; and output 

refinement ::::::o. 

As defined in Section 4.6, the infinite trace semantics for a chart C is 

such that,1 

[Ct ~ Ic x O'c.L A <lorn [Ct= Ic 
Notice that the informal discussion above talks about charts as being the 

description of a set of trace functions but our formalisation of a chart's trace 

behaviour gives the meaning of a chart as a total relation between input 

and output traces. In fact, there is a one-to-one correspondence between 

such a relation and a set of total functions. When the total relation is itself 

functional then the corresponding set of total functions contains just one 

function (i.e. the relation itself). Hence a chart whose semantics is a function 

would be considered an implementation. Whenever the total relation is not 

functional then the corresponding set of total functions contains a different 

total function for each of the non-functional behaviours in the relation. Hence 

a non-functional relation represents a chart that is a specification, i.e. "not 

yet" an implementation. This correspondence between total relations and 

sets of total functions is monotonic with respect to subset. Therefore taking 

1Note we again use x in [C]; represents a place holder for any of dn-for do-nothing 

semantics, rrchaos-for partial-chaotic semantics, T-chaos-for total chaotic semantics, 

or Jc for the firing conditions semantics. 
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the subset of the relation that represents a chart is the same as reducing the 

number of total functions that can be said to implement that chart. 

Regardless of the particular semantic model that we pick, e.g. the do­

nothing semantics, the total chaotic sematic model etc., the trace semantics 

of chart C will be a total relation that is a subset of Ic x Oc1.. In three 

of the four semantic interpretations the reactivity of a chart is inferred by 

the totality of its trace semantic relation. Of course, the firing conditions 

semantics introduced in Section 4.4 allows us to use charts to model a system 

that terminates, i.e. a system that is not guaranteed to be reactive. The 

semantic relation is still total but the behaviour, which is to output just the 

signal 1- forever, is arguably not reactive. In any case, charts cannot refuse 

input under any of the semantic interpretations. 

Behaviour refinement of charts is defined in Definition 5.2.1. In this defini­

tion ( and most of the definitions that follow in this chapter) we have omitted 

mention of the parameter x from the left hand side. This is done to simplify 

an already cluttered notation. The omission does not cause problems since 

we never mix instantiations of x in in any future definitions, propositions 

or proofs, e.g. we never consider both "C -;;;;J;n A" and "C -;;;;J; A" as distinct 

statements within a single definition, proposition or proof. Of course, when­

ever a statement like C Jb A is replaced by its definition all occurrences of 

x that then appear follow the usual rules for bound definition variables, i.e. 

all occurrences of x have to be substituted for by the same value from the 

set of values that x property x properly ranges over. The variable x is rein­

troduced in Definition 5.4.1 because this is the generalisation of all of the 

separate notions that we discuss in this chapter. As such the refinement re­

lation J~ is used to link the trace semantics-based refinement to the partial 

relations-based refinement later. 

Definition 5.2.1 For arbitrary charts A and C we have, 

C Jb A =def Vi; o • inc = inA I\ outc = outA I\ 

(il>(inc), Ol>(out~)) E [Ct=> (~(inA), Ol>(outj) E [At 

where lc.(S) restricts the range of the sequence t {pointwise) to the signals in the 

set S. C J b A is pronounced "C refines the behaviour of A" . 

Informally this definition states that the chart C refines (the behaviour) 

of chart A if and only if chart C's observable behaviour is a subset of A's, 

in any input providing context. We introduce this notion of observation and 

context in more detail in the following. We derive the following introduction 

95 



and elimination rules for behaviour refinement.2 

Proposition 5.2.1 For arbitrary charts A,C, and infinite sequences i and owe 

have, 
C;;;hA 

outc = outA Gl~H) 

( it>(inc), OC>(outh )) E [ Ct f-
inc = inA outc = outA 

( iC>(inA) • OC>(outf)) E [At 
--------------------'-'----- C;)t ,) 

C;;;hA 

Given this definition, behaviour refinement of charts can now be consid­

ered in terms of the following meet semilattice. Given the set 8 = { x I x ~ 

I't; x ~.1. /\ <lorn x = I't; }, the refinement semilattice 'RA is defined by the 

following partial order. 

Notice that this semilattice is unusual because the largest element is the 

bottom element. Hence the meet of any two elements in the lattice (or their 

greatest lower bound) is the same as their union. The reason it appears to be 

upside down is so that the discussion here accords with other lattice-based 

descriptions of refinement where it is typical that a refinement is described as 

moving up the lattice. That is, the least element represents the least refined 

chart. 

Now we can consider 'RA as a model into which all possible behaviour 

refinements for chart A fit. The properties that hold of 'RA allow us to 

describe properties of behaviour refinement. Note that the subscript A in 

'RA is used only to denote that the semilattice is parameterised by A's input 

and output interface. That is, if C ;;;;ib A then 'RA = 'Re 

A useful way to visualise a partially ordered set is by considering its Hasse 

diagram. (See [51] for a description of Hasse diagrams for partially ordered 

sets.) 

The simple Hasse diagram of Figure 5.1 gives the general idea. Note that 

this diagram represents a semilattice whose elements are total relations, such 

2See Section B. 7 for the proofs of all propositions in this section. 
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Figure 5.1: Hasse diagram for a simple subset partially ordered set 

that / = {(x, y) I x E { e1, e2}, y E { e3, e4}} for some elements e1 ... f4, and has 

the order 2. Given that each element is a total relation, the elements k, l, 

m and n are functions. As one can imagine, actually drawing this type of 

diagram for a chart specification is not feasible. We use them here as an 

aid to description rather than suggesting that they could be used to reason 

about chart refinements. 

For any chart C, 'Re contains a unique least element that we will call 

chaosc such that chaosc = Ia x O'c.1. All reactive systems are valid imple­

mentations of chaosc. It is at this point that we need to consider again each 

of the different trace semantic interpretations introduced. The behaviour 

chaosc can only be captured by a chart under the total chaotic semantics. 

Consider the following chart. 

Figure 5.2: Chart C: inc = {a} and outc = { s} 

The total chaotic interpretation of this chart is chaosc and therefore 

[ ct-chaos = I'c X O'c .l • The partial chaotic interpretation of this chart is 

Truec, where [ c];chaus = I'c X q.. Note that none of the output traces of 

C contain the output ..l in this case. Under both the do-nothing and firing 

conditions semantics this chart represents a chart that does nothing for any 

inputs. That is, it either outputs nothing for ever input, or "terminates" 

( outputs just ..l) respectively. In both cases the semantics are functional 

relations over C's interfaces and therefore cannot be (behaviourally) refined. 

Hence, the refinement semilattice 'Re is general enough to represent each 
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of the semantic interpretations, but the chosen interpretation determines 

which element, of the lattice, any chart describes. For any chart that is totally 

defined the trace semantics is the same under any of the interpretations. 

Consider chart B of Figure 5.3. 

B 
-alb 

-a/{} a/{} 

a/b 

Figure 5.3: Chart B: inB = {a} and outB = { b} 

We have that [Bt = I 8 x 0 8 = TrueB under all four semantic interpre­

tations. Any total trace function that maps all input traces over the set {a} 

to arbitrary output traces over the set { b} is a valid implementation of the 

chart B. 

In general, we can say that specifying a reactive system using a chart C 

is analogous to picking a particular element in the order 'Re. Refinement of 

that chart is then the process of following the edges in the Hasse diagram 

of 'Re from that point upwards. For example, a chart that specifies the 

point a in our example Hasse diagram (Figure 5.1) is implemented by any 

of the functional relations k, l and m. If the first design step is a refinement 

analogous to taking the edge from point a to point f, then the effect is to 

reduce the possible implementations to just those represented by k and m. 

The final design step is then a choice between the implementations k and m 

themselves. 

Note that 'Re is not a complete lattice, it does not contain a top element. 

If it was complete we could show that for any two specifications A and B 

there exists a least upper bound T. This T would itself be a specification 

in the refinement order and therefore any implementation of T would also 

be a valid implementation of A and B. In other words, if 'Re was a com­

plete lattice then there would be at least one implementation that satisfied 

any two specifications. That 'Re is not complete highlights the fact that the 

chart trace refinement is quite different from the trace refinement of process 

algebras such as CSP [42]. In such refinement theories trace semantics are 

often defined as the prefix closed set of finite observable traces that a pro­

cess can exhibit. Trace refinement is then defined as a subset relation over 
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these sets. Hence the set containing the empty trace, i.e. the process that 

does nothing, is a valid refinement of any process. This is not the case for 

charts. By definition, all charts are reactive and therefore their semantics are 

defined over all input sequences. Recall that each element in the semilattice 

'Re represents a total relation with domain equal to the set of input traces 

Ic. Thus refinement allows us to reduce nondeterminism, thereby removing 

output sequences for an input sequence that is mapped to several output 

sequences, but never remove all output sequences mapped to a given input. 

Another attribute of the refinement order 'Re is that it contains points 

that cannot be described by any chart. While there are examples such as 

chaosc that can be described in one interpretation but not others there are 

other elements in the lattice that cannot be described in any of the semantic 

interpretations. This can be shown using the following arguments. 

There is an infinite number of subsets of zit: x ~.i. and therefore an 

infinite number of points in the refinement semilattice. Charts, however, are 

finite in state and transition and therefore there is only a finite number of 

charts one can write down. The remaining elements of the lattice cannot 

be described by a chart. The subset relation used to define refinement can 

distinguish between individual infinite sequences. Charts on the other hand 

can at best distinguish between a class of infinite sequences with common 

finite subsequences. Consider for example the following chart C. 

, I 

Figure 5.4: Chart C: inc = {} and outB = {a} 

Now using the notational convention 0w= ({},{}, ... ), aw= ({a},{a}, ... ) 

and a*= {({a}i, {ah, ... {a}n) In EN} we have that, 

Now consider the relation R = {0w} x {x'"'0* I x E aw}, i.e. a similar 

relation to [ Ct with the exception that there is no mapping to the infinite 

sequence of a 's. It is the case that R ~ [Ct, and therefore R represents a 

point in 'Re. However, there does not exist a chart (with finite states) that 

has the same meaning as R. This is clear from the definition of the chart 

trace semantics and because the relation R cannot be the limit of any chain of 

finite relations. The only possible candidate chain would be {R t n I n EN}. 
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However, the least upper bound of this chain must contain 0w 1-+ aw and 

therefore is not equal to R itself. 

Yet another way to explain these points in the refinement order is as the 

limits of infinite chains. That is, we can have a refinement sequence of the 

form C :;;;)b Ci :;;;)b C2 :;;;)b ••• where C1 has more states than C and C2 has more 

states than C1 and so forth. This sequence can represent an infinite chain in 

the refinement order. The limit of such a chain would represent a chart with 

an infinite number of states and therefore is another example of a point in 

the refinement order that is not representable by a chart. 

As we have said, assigning different semantic interpretations to the same 

syntactic chart C can be thought of, in general, as picking a different point 

in the refinement semilattice 'Re. Hence even though the definition of re­

finement in terms of the partial relations semantics appears very different 

for each of the alternate semantics, the differences can be attributed to the 

implicit encoding of the specific trace interpretation using a single partial 

relation semantics. 

On the other hand, in terms of trace semantics, refinement under each 

of the alternative interpretations is defined by the same relation. Therefore 

in the following we can investigate this trace refinement relation in general. 

The results apply to each of the semantic interpretations because the inter­

pretation is already encoded in the traces of the chart. 

Naturally it follows that if we start from a chart for which each of the trace 

semantic encodings agree, such as chart B of Figure 5.3 then the refinements 

available under each interpretation are equivalent. More generally though, 

we can describe how each of the trace semantic interpretations fit into the 

lattice framework using the following diagram: 

I 
ff c];_duws 

~ 
chaosc 

That chaosc = I'tJ x O'c.1. is the least element in this order demonstrates 

that each of the possible trace interpretations of the chart C picks an element 
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from the semilattice 'Re. The order represented by the diagram is the same as 

Re itself. Hence, we can see that the do-nothing meaning of C can always be 

considered a refinement of the partial chaotic meaning. The partial chaotic 

meaning is in turn always a refinement of the total chaotic meaning of C. 

The firing conditions interpretation, however, is in general unrelated to any 

of the other interpretations. 

This order between the alternate semantics demonstrates that ( Ct_chao• 

is the greatest lower bound of [ C];n and [ C];r.hao• in Re. Thus it is the most 

general semantic model of the three. In particular, if we assign the total 

chaotic semantics to chart C, there always exists a valid refinement of C 

that is to change its meaning (explicitly) to have behaviour consistent with 

one of the other two. The firing conditions semantics, however, allows us to 

describe behaviour that is quite different to the other three interpretations. 

5.3 Interface refinement and 'R 

As we have already identified, the interface refinement of a chart changes 

the input and/or output interface of the chart. This is considered a useful 

form of refinement because the partial specification of a reactive system may 

ignore some signals. Hence during design the chart's behaviour with respect 

to these previously ignored signals is defined. 

While behaviour refinement ;;;;J b allows only the reduction of nondetermin­

ism, interface refinement may or may not allow the introduction of additional 

nondeterminism. In the following we we make more precise the concept of 

nondeterminism with respect to charts; we extend the semilattice framework 

to encompass interface refinement; and then consider each of the interface 

refinement relations ,:;;:,z and ,:;;:,o in turn. 

Process algebras, such as CSP, often distinguish processes that model 

internal choice from processes that offer external choice. In a similar fashion 

we say that a chart contains internal choice ( or is nondeterministic) when, 

given some input, the chart has a choice between different resulting states 

and/or different outputs. For example consider the chart in Figure 5.5(a). 

When chart C is in state X and is presented with an input {a} the chart 

can nondeterministically choose to give the output { s} or the output { t}. 

This is an example of internal choice. We define external choice to mean 

that the environment can make the choice between two transitions. For 

example consider the chart in Figure 5.5(b). When chart C' is in state X the 

environment can choose the transition taken by giving either the input {a} 
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or the input { b }. Note that in process algebras it is also common to refer to 

a process that exhibits no internal choice as deterministic. We use the term 

deterministic in the same fashion. 

C C' 

X 

(a) Internal nondeterminism (b) External nondeterminism 

Figure 5.5: Internal vs External Nondeterminism 

Notice that the chart C' of Figure 5.5(b) actually demonstrates a situation 

where the environment can make the choice (by giving input {a} or { b}) or 

allow an internal choice by giving the input { a, b }. That is, chart C' contains 

both internal and external choice. We use this distinction between internal 

and external choice in describing the effects of interface refinements. 

We extend the ~b semilattice framework to encompass interface refine­

ment. When the input and/or output interface of a chart is increased the 

size of the relation chaose (i.e. the relation I'c x O'c.L) increases. Because 'Re 

is similar to a subset semilattice with respect to chaosc, it is clear that both 

the number of elements in the refinement semilattice and the number of rela­

tionships between those elements increase when the size of chaose increases. 

In simpler terms, when we increase the interface(s) of a chart the Hasse di­

agram gets bigger. A nice way to consider interface refinement with respect 

to the Hasse diagram model is to imagine the two dimensional diagram for 

'Re, which we have already described, and add to this a third dimension (out 

of the page). As before, following an edge up the diagram is a behaviour re­

finement. Also, we can now follow an edge that moves further away from the 

page that represents an interface refinement. Hence if we have that C ~I A 

(assuming chart C increases the input interface of chart A) then this three 

dimensional diagram has an edge that moves us from 'RA to 'Re where 'Re is 

a larger semilattice defined over chart C's interfaces. Hence we can imagine 

this more general model as a series of Hasse diagrams one behind the other. 

Each of these gets progressively bigger as we move further into the page. 

Refinement, i.e. of behaviour and interface, can typically be considered as 

moving from one point in this diagram ( the specification) through a series 
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of upwards and forward edges to another point (the implementation). We 

denote this more general model, i.e. the set of semilattices 'Re for all charts 

C, simply as 'R. 

This framework can be used to describe all possible µ-chart refinements. 

Consider yet again the chart Chaos of Figure 5.6 under a total chaotic seman­

tic interpretation. This chart represents the bottom element of the refinement 

order 'R. 

Figure 5.6: Chaos: inc = {} and outc = {} 

The reason that this appears to be a very strange type of chaos, i.e. its 

only input trace is an infinite sequence containing the empty input while 

its output traces represent all combinations of outputting nothing or the 

output .l, is because it has an empty input and output interface. In fact, 

this chart is both refined by and a refinement of the chaotic chart over any 

input and output interfaces. The reason that we consider it the bottom of the 

refinement semilattice 'R is because it is the least description of chaos. For 

example we demonstrate that the chart Chaos is equivalent to the chart C of 

Figure 5.2 on page 97. Consider the refinement sequence C ~o A ~I Chaos. 

Here we assume that chart A refines the input interface of Chaos by adding 

the signal a to the input interface. Then chart C refines the output interface 

of A by adding the signal s to A's output interface. The net effect of these two 

interface refinements moves us from the bottom element of 'R to the point 

that is the bottom element of 'Re. The semilattice 'Re has several elements 

and therefore several possible behaviour refinements. 

Another reason why Chaos is considered the bottom element of 'R is that 

almost all practical refinement steps will entail increasing the number of 

signals in a chart's interface. As we will see, increasing reactivity is the 

fundamental requirement of chart refinement. 

5.3.1 Input refinement 

From the outset interface refinement is easily mistaken for the common notion 

of weakening preconditions that is found in other refinement theories such as 

that for Z. This weakening of preconditions refers to extending the number 
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of states (in the original state space) over which the operation is defined. 

In Z, this means reducing the number of states in which nondeterminism is 

exhibited by chaotic behaviour. 

This, however, is not the correct analogy for interface refinement. The 

correct analogy in a Z refinement theory would be a refinement that extends 

the state space itself. In other words, one might say we are applying an 

operation in a state that has more observables than the operation originally 

considered. Rather than the simpler notion of weakening preconditions this 

type of refinement can be considered as simulating each of the original states 

by a set of states. In terms of the relational view of an operation, this means 

that the relation is uniformly expanded at each point of the domain and 

range. For example consider the following relations, 

81------81 

82 82 

Assuming the left hand relation describes some operation over the obser­

vations of state S, then the right hand relation is representative of applying 

that operation over an extended state in which observations can be made of 

both states S and T, noting that S and T are assumed to be disjoint. 

Returning to input refinement defined over the trace semantics of a chart 

we see a similar effect. Increasing the signals in the input interface of a 

chart C extends the relation [ Ct at each point in its domain. The shape of 

the relation changes in a similar fashion to the relation demonstrated in our 

example above, with the exception that the range remains constant. Hence, 

each of the new input sequences introduced by extending the input interface 

can be uniformly related back to one of the original input sequences by the 

pointwise restriction of each element of the sequence. 

Input refinement is defined as follows. 

Definition 5.3.1 For arbitrary charts A and C we have, 

C ~I A =def Vi; o • (ic:,.(inc), o) E [Ct¢:? (ic:,.(inA), o) E [At 
I\ outc = outA 

where ic:,.(inx) restricts the range of the sequence i (pointwise) to the signals in the 

set inx. 

Until now we have considered the trace semantics for a chart C, formally, 

as a relation between input and output traces such that [ Ct ~ I'c x Oc.1. 
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and <lorn [ Ct = Tc. That is, we have really described only the extension 

of the relation. For the purpose of proving the following rules we point out 

that [ Ct is a proper relation with target and source sets that are Tc and 

Oc:1- respectively. Therefore, it follows from the equality [ Ct = [At that 

outc = out A, and similarly for the respective input interfaces. 

From Definition 5.3.1 we can derive the following introduction and elim­

ination rules. The proofs for these rules are given in Section B.8. 

Proposition 5.3.1 For arbitrary charts A and C, signal set ins and infinite 

sequences i, i' and o we have, 

c~1A 
outc = out A Gli 1 ) 

C ~I A (~(inc), at>( outt)) E [ Ct 
----------=---=---- (;;:Jiu) 

(~(inA), Ot>(out{)) E [At 

C ~I A (it>(inA), Ot>(out,i)) E [At 
--------)---::[,-----::],----- (;;:Ji Ill) 

(it>(inc), ot>(outt) E C: 

ins C inA 

C ~I A ins = inA n inc 
] ( ) [A]w (;;:Ji v1) 

(it>(inA)• a) E [A : {:} it>(ins), O E x 

inB = ins, 

outB = outA, 

B ~I A I- p 
-------p=------- Gli vm) 

(it>(inA),o) E [A];{:} 

( it>(ins), 0) E [At 

p 

inB = ins, 

outB = outA, 

B ~I A I- P 
(;;:Ji IX) 

where we assume the usual conditions for B and Pin (;;:Ji 6 ) and (;;:Ji 7 ). 

outc = outA 
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Notice in our discussion we commonly refer to input refinement as though 

there is a proper order imposed by the definition. That is, an input refinement 

A ~I C only increases the signals in A's input interface. Yet the definition 

does not necessarily impose any such order. Interface refinement is defined 

specifically to capture an observational equivalence. The input and output 

interfaces define the context or environment that we assume for the chart. 

The definition of input refinement is given precisely to model the fact that 

placing a chart in a new (input providing) context should not change the 

chart's observable behaviour. The notional order of input refinement comes 

from the fact that you can always increase the input interface, and doing so 

allows for new interesting behaviour refinement. It is not always possible to 

decrease a chart's input interface and when it is, the result is typically unin­

teresting. Also, assuming C ~I A where the input interfaces of A and Care 

not strongly related, then there always exists another observably equivalent 

chart whose input interface contains just those input signals common to both 

A and C. We formalise these three observations in the following lemma. 

Lemma 5.3.2 For arbitrary charts A and C, traces i and o, and signal set ins, 

:3 B • ins = ins I\ B ~I A 

ins C inA 
(:3 B •ins= ins I\ B ~I A)<=} ((iC>(inA)• o) E [At<=} {iC>(ins), o) E [At) 

C~zA 
:3 B • ins = ( inc n inA) I\ C ~I B I\ B ~I A 

Consider the example in Figure 5. 7 that is representative of all situations 

in which a valid input refinement decreases the input interface. 

A 
a&-b/s 

a& bis -a&b/t 

-a&-b/t 

(a) inA = {a, b}, outA = {s, t} (b) inc= {a}, outc = {s, t} 

Figure 5.7: Decreasing an input interface 
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We can see from this example, in which C refines A and inc c in A, that 

decreasing the input interface of A merely captures the fact that the input 

signal b had no bearing on the output produced by chart A. 

Now we describe some further implications of the definition of ~I in 

terms of the nondeterminism that the chart under refinement contains. The 

following definition formalises what it means for a chart to be deterministic. 

Definition 5.3.2 For the arbitrary chart C, 

<let C =def Vi, o, o' • (i, o) E [Ct/\ (i, o') E [CJ;=> o = o' 

The first situation that we consider is taking an arbitrary chart A that is 

deterministic and increasing its input interface to give a new chart C, i.e. we 

have that C ~I A. As expected the relation ~I guarantees that chart C will 

also be deterministic. Recall that a deterministic chart can be considered 

a reactive system implementation. That increasing the input interface of 

an implementation does not change its behaviour demonstrates that we can 

place the implementation in any (input providing) context and it remains 

deterministic. This is particularly important for µ-Charts because they allow 

negated signals in their transition guard. That this property holds guarantees 

that the guard -a means the signal a does not occur as input. Consider again 

chart C pictured in Figure 5.7(b). It is clear that an implementation of C 

should give the output t for any input that does not include a. 

We formalise this property in the following lemma. 

Lemma 5.3.3 For arbitrary charts A and C we have, 

detA C ~I A 
<let C 

The situation in which chart A is nondeterministic is more complicated. 

Here the refined chart C has the same internal choice as A but has the ability 

to offer additional external choice (see for example Figure 5.9). In order to 

explain exactly what this means we need to consider input refinement and 

behaviour refinement together. To do so we introduce two additional types 

of refinement that distinguish the order in which respective refinements are 

performed. 

The first of these is weak input refinement which is defined as follows. 

Definition 5.3.3 For arbitrary charts A and C we have, 

C ~i A =def 3 B • C ~I BI\ B ~b A 
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The reason we term this type of interface refinement weak is because, 

like behaviour refinement, it allows only the reduction of internal choice (see 

Lemma 5.3.10 for proof). Using input refinement in this fashion achieves no 

more than using just behaviour refinement itself. We can see from the defi­

nition that the chart B is observationally equivalent to chart C. That is, in 

any context chart B and chart C are indistinguishable-any implementation 

of chart B is an acceptable implementation for chart C. Moreover, given the 

nontrivial refinement C ;;;;it A such that inA c inc, the chart B is preferable 

to chart C. Chart B has a simpler definition because it mentions only signals 

in the smaller signal set in A. 

Not surprisingly, the class of available refinement is larger if we increase 

a chart's input interface and then eliminate internal choice rather than elim­

inate choice and then increase the interface. 

Figure 5.8 illustrates this relationship. 

B A 

( 
' ' 

j N 
: Increasing 

N : input interface 
... ... ' ' ' ' ' • ' C 

;;;)6 
B' 

Figure 5.8: Commuting diagram of behaviour and input refinement 

That this implication holds is shown by the proof of Lemma 5.3.4 in Appen­

dex B, page 226. 

Lemma 5.3.4 For arbitrary charts A, B and C we have, 

inA C inc C ~I B B ;;;;)b A 

:l B' • C ;;;;) b B' I\ B' ~I A 

Weak input refinement describes just those refinements that can be de­

rived by following the top path in this semi-commuting diagram. Of course, 

this implies that there is also an equal derivation following the bottom path. 

The other category of input refinement that we introduce is angelic re­

finement. Angelic refinement describes just those refinements for which there 

exists a bottom path but no associated top path. Angelic refinement is de­

fined as follows: 

Definition 5.3.4 For arbitrary charts A and C we have, 

C ;;;;)A A =def {:l B • C ;;;;)b B I\ B ~I A) I\ -, ( C ;;;;)t A) 
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The reason we term this angelic refinement is because the original internal 

nondeterminism, which is being removed, can be considered intentional. That 

is, the inclusion of internal choice is used intentionally in the specification 

as a method of abstraction. Thus one might consider its meaning as angelic 

in that it is assumed that any implementation of the specification will make 

the appropriate choice depending on the context. Angelic refinement is then 

the process of defining exactly how that choice is made externally. 

While weak input refinement allows only the reduction of internal choice, 

angelic refinement transforms internal choice into external choice. For exam­

ple consider the refinement sequence (which reads right to left in Figure 5.9). 

C B A 
a/I a/s /s 

9 
-a/s 

9 ~b 9 ';:::jI 

-a/s II 
a/I 
-a/I 

Figure 5.9: Changing internal choice into external choice 

We see from this sequence that the internal choice in chart A has become 

an external choice in chart C. In fact, angelic refinement always treats in­

ternal choice as intentional, that is, it does not allow internal choice to be 

implemented by simply choosing one of the branches. 

From the definition of angelic refinement we derive the following intro­

duction and elimination rules. 

Proposition 5.3.5 For arbitrary charts A and C, and infinite sequences i and 

owe have, 

C ~b B, B ';:::jI A 1-- P 
p (;;;)A I) 

C ~A A (~(inc)• OC>(out~)) E [Ct 
-------------- (;;;J.A1vl 

( iC>(inA), OC>(outf)) E [At 

C ~A A (iC>(inA), OC>(outf)) ¢ [At 
-------------- c;;;i.A v,> 

( iC>( inc), OC>( out~)) ¢ [ Ct 

assuming the usual conditions for B and P. 
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To prove that angelic refinement coincides precisely with changing inter­

nal into external choice we return to considering the semilattice 'R. For all 

charts A and C, such that inA c inc, the observational equivalence relation 

between such charts (i.e. C ~I A) can be considered a relation between the 

respective semilattices 'Re and 'RA. That is, just as we described previously, 

all input refinements link a point in 'Re to a point in 'RA. 

First we show that this relation is injective, i.e. functional and one-to-one. 

Lemma 5.3.6 For arbitrary charts A, A', C and C' we have, 

inc = inc, C ~z A C' ~z A inA = inA, C ~I A C ~I A' 
[Ct= [C']: [At= [A't 

We have already shown in the first property of Lemma 5.3.2 that the 

relation is surjective. That is, each point in 'RA is related to a point in 

'Re. Moreover, by definition the semilattice 'Re contains more elements than 

the corresponding 'RA. Therefore, it follows that ~I is not a total relation 

between the points in 'Re and 'RA. That is, there are some points in 'Re 

that are not related by ~I to 'RA. 

Now we show that the domain of the relation ~I is equal to the domain 

of the weak input refinement relation ~i. 

Lemma 5.3.7 For the arbitrary charts A and C we have, 

C~zA 
C ~i A 

C ~i A 

3A' • C ~I A' 

Hence, ~i is not a total relation either. However, each chart C in 'Re, 

which is neither an input nor weak input refinement of some chart A, is 

nevertheless an angelic refinement of some chart A in 'RA. That is, A is 

derived from C by changing internal choice into external choice. 

To prove this is the case, we start by showing that any chart C is related 

by refinement to some chart with a smaller interface. That is, chart refine­

ment in general is a total relation between 'Re and 'RA. It is trivial to show 

that for any chart C, C ~b chaosc (where chaosc = I'f: x I'f:). Furthermore, 

for any chart A, that chaosc ~I chaosA is also easily shown. Hence, chart C 

always refines chaosA for any A. 

Following from this we can easily show that ~i U ~A is a total relation 

between 'Re and 'RA (at least between those points that represent charts). 

Lemma 5.3.8 For an arbitrary chart C and signal set ins, 

ins~ inc 
3 A• inA = ins A { C ~i AV C ~A A) 
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By definition angelic refinement and weak input refinement do not coin­

cide. Also, we have shown that ,;:;;:,z u ;;;;)A is a total relation from 'Re to 'RA 

where both ,;:;;:,z and ;;;;Ji are not. Therefore, it follows that the relation ;;;;)A 

allows refinements that cannot be achieved using either input or weak input 
refinement. 

The set of angelic refinements is exactly those refinements that can be 

characterised as transforming internal choice into external choice. 

Lemma 5.3.9 formalises the fact that any angelic refinement introduces ad­

ditional external choice. 

Lemma 5.3.9 For arbitrary charts A, C we have that, 

:3 i, i', O • 'ic>(inA) = i' t>(inA) I\ ( 'ic>(inc ), O) E [ CB; /\ { i' t>(inc)• O) f/. [ Ct 

In words, given C ;;;;)A A, the environment has more choice about the 

output from chart C than it did about the output from chart A. This is 

represented by the fact that two different input sequences i and i', which 

cause different outputs in chart C, are considered equivalent by chart A. 

Since, by definition [Ct, is a total relation it follows from Lemma 5.3.9 that 

chart C is defined over the input sequence i' but must give output that differs 

from o. Therefore the environment can ask the output o of chart C using 

input sequence i or alternatively, it can choose output o' using the input i'. 

This choice was not available in the chart A. 

Finally, weak input refinement ( and therefore input refinement) cannot 

introduce additional external choice. 

Lemma 5.3.10 For arbitrary charts A, C, input sequences i and i', and all 

output sequences o we have, 

C ;;;;Ji A 

Now we have shown that weak input refinement and angelic refinement 

are both disjoint and together describe the entire class of input refinements. 

Therefore, we can characterise input refinement by saying that it is useful 

exactly ( and only) when we wish to change internal choice into external 

choice, i.e. for angelic refinement. As we demonstrated with the introduction 

of weak input refinement, if angelic refinement is not intended then input 

refinement is not necessary. 

111 



5.3.2 Output refinement 

Like input refinement, we give the definition of output refinement based on 

a notion of observational equivalence. Unlike input refinement, we cannot 

claim observational equivalence in all contexts; by definition the observations 

that one can make of a chart are precisely the outputs that the chart gives 

for some input. While input refinement did not change the nature of those 

outputs, clearly, increasing the output interface of a chart must. 

The choice of the appropriate observational equivalence, on which we 

base our definition of output refinement, is again motivated by ensuring 

that refinement never decreases reactivity of a chart. Hence, for any input 

sequence, a refined chart must exhibit at least the same amount of output 

information as the original specification. This simple restriction may appear 

to require that refinement never decreases the output interface. There is 

however one special case where the defined output refinement allows the 

output interface to decrease. This type of refinement maintains reactivity 

at the level of the control information that a chart provides rather than at 

the level of individual signals. We give an example and explain this in more 

detail in the following. 

Now, C ~o A implies charts A and C are observably equivalent in a 

context that can observe the signals in outA n outc. In words, A and C 

are observably equivalent if we observe just those output signals that are 

common to both A and C. Because refinement only allows an output signal 

to be removed from a chart's interface when the chart's behaviour is totally 

chaotic with respect to that signal-in practice, we assume that a designer 

will rarely write such a specification-output refinement will predominantly 

be used to increase the output interface. In this case, C ~ 0 A implies there 

is no observable difference between A and Cina context expecting A. That 

is, C and A are indistinguishable in an environment that recognises only the 

signals that A could output. 

In terms of existing internal choice, no subtle behaviour arises from ex­

tending the output interface of a chart. As expected, when one adds a new 

output signal to a chart each transition can either output that signal or not. 

That is, adding a new signal is the same as adding an additional copy of 

each existing transition to the chart and then adding the new output to each 

of these new transitions. The new transitions output their original signals 

together with the new signal. The chart can now choose either the new or 

old transition nondeterministically. The refined chart contains more internal 
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choice regardless of whether the original chart was deterministic or not. 

We define output refinement as follows. 

Definition 5.3.5 For arbitrary charts A and C we have, 

C ~O A =def Vi; o • (i, oC>(outa-)) E [Ct¢:? (i, OC>(outi)) E [A]; 

where oC>(out;) restricts the range of the sequence o (pointwise) to the signals in 

the set outf 

From this definition we derive introduction and elimination rules. 

Proposition 5.3.11 For arbitrary charts A and C, signal set outs and infinite 

sequences i, o and o' we have, 

C ~O A (~(inA)• OC>(outi)) E [At 
-----------=---=--- (;;;Jc, m) 

( iC>( inc), OC>( outa-)) E [ Ct 

C ~ 0 B B ~ 0 A C ~o A outs = outA n outc (::r ) 

c~oA (;;;!c,y) (i,oC>(out.t))E[At¢:?(i,oC>(outs.l))E[AJ; -OV/ 

outA ~ outs 

outB = outs, 

inB = inA, 

B ~o A I- P C~oA 
C (;;;Jc, VII) ~o 

-------,p=-------- (;;;Jc, vm) 

outs C outA 
(i, oC>(outi)) E [At¢:? 

( i, OC>(outs.l )) E [At 

outB = outs, 

inB = inA, 

B ~o A I- P 
-----------p-;:;------------ (;;;Jc,,x) 

where we assume the usual conditions for B and P. 

( iC>( inc), OC>( outa-)) E [ Ct ¢:? 

(iC>(inA)• OC>(outi)) E [A]; 
------------::c=-~-o-A~-------- (;;;Jii I) 
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Our definition of output interface refinement again differs from that of 

Scholz. Similar to input refinement, the definition of output refinement has 

no explicit constraint that restricts refinements to those that increase the out­

put interface of a chart. However, there is a similar implicit order imposed on 

output refinements. Consider the following properties that are consequences 

of the definition of output refinement. 

Lemma 5.3.12 For any arbitrary abstract chart specification A and signal set 

outs, 
outA ~ outs 

3 B • outB = outs I\ B ~o A 

C~oA 
3 B • outB = outA n outc I\ C ~o B I\ B ~o A 

outc C outA C ~o A 
[At= [CI{} I Truet 

where True is a chart that allows any output behaviour over the additional outputs 

of chart A. That is, inTrue = inc and outTrue = outA \ outc. 

In words, the first property demonstrates that there always exists a valid 

output refinement that increases the number of signals that the chart can 

use to control its environment. 

The second property shows that, when C ~ 0 A, there exists a chart B 

that is observationally equivalent to both charts A and C (in the context 

of B's output interface). Recall that output refinement, e.g. C ~ 0 A, cap­

tures observational equivalence in a context that is concerned with just those 

signals that are common to both charts, i.e. in A n inc. 

The last property shows that two charts C and A, related by output 

refinement where one interface is a subset of the other, can be considered as 

adding or removing completely nondeterministic behaviour over some signals. 

We give an example where C ~o A and [At = [CI{} I Truet in Fig­

ure 5.10. 

C 

-a/~a/s 

True 

/~It 

(a) 

A 

-al 

a/s 

a/{s,t} 

-alt 

(b) 

Figure 5.10: Output interface refinement and nondeterministic behaviour 

114 



This property demonstrates the notion of maintaining reactivity at the 

level of control information. Output refinement can only ever be used to 

remove a signal from the output interface of a chart if that signal encodes no 

extra information. That is, the chart without that signal conveys the same 

amount of information to its environment as the chart with the signal. 

5.3.3 Discussion 

The dichotomy of interface refinement demonstrates that there is a signif­

icant conceptual difference between input and output refinement of charts. 

Considering both of these refinements together as one larger class of refine­

ment appears to make the definition of an intuitive notion of chart refinement 

difficult. An outcome of the investigation presented is a clearer understand­

ing of the respective roles of the input and output interfaces of a chart in 

terms of both specification and refinement. We discuss these in the following 

subsections. 

Not surprisingly we can discuss the effect of changing the input and/or 

output interface of a chart by considering the context or environment into 

which the reactive system will be placed. The only pieces of information 

that a chart contains about its context are its input and output interfaces. 

Therefore changing the signals contained in one or other of these, which is 

interface refinement, is analogous to considering the meaning of the chart 

assuming a new context. This analogy allows a plausible description of why 

input refinement is quite different to output refinement. 

The interaction between a chart and its context, input and output, can 

be equally described (from a chart's or chart designer's perspective) as events 

that are observable and events that are controllable respectively. Following 

this analogy input refinement can be considered as increasing the amount of 

information that a chart can observe of its context. Output refinement can 

be consider as increasing the events that the chart can control. 

5.3.3.1 The Input Interface and Refinement 

The syntax of µ-Charts (Section 2.1) allows both the implicit and explicit 

definition of an input interface for a sequential chart. When left implicit the 

input interface is assumed to contain all of the signals that appear in the 

triggers of the chart's transitions. We will refer to this implicit input inter­

face as the natuml input interface for a chart. This presents three situations 

that we need consider in order to describe the role of the input interface. 
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The case where explicit input interface is a subset of the natural input inter­

face. The case where the input interface is the natural input interface. And 

finally where the interface contains additional signals to those in the natural 

interface. 

The first situation is an example of input filtering; that is some of the sig­

nals that are used as trigger conditions on transitions will never actually be 

seen as input to the chart. The simplest way to describe the semantic effect 

of input signal filtering is to consider a semantically equivalent chart that 

can be derived by replacing all positive occurrences of a filtered signal with 

the trigger false and all negated occurrences with the trigger true. There­

fore, as expected, a chart that implements input filtering is, in general, not 

semantically equivalent to the same chart with its natural input interface. 

The second and third situations can be considered as forming a be­

havioural equivalence class. That is, the behaviour of a chart that has an 

explicit input interface with more signals than its natural input interface is 

equivalent ( according to our definition of input refinement) to the behaviour 

of the chart with its natural interface. This was initially surprising because 

it is trivial to show that the following property holds. 

Lemma 5.3.13 For arbitrary chart C, where Cy =def incu{y}[ C), for some signal 

y ¢ inc, we have, 

This inequality arises because the two semantic relations [ Ct and [ Cyt 

are not defined over the same domain and therefore comparing them seman­

tically using equality is not meaningful. Input refinement however, compares 

the two charts over arbitrary input sequences (that is, sequences that contain, 

at least, signals from the union of the respective interfaces). 

Hence, we consider two charts A and C equivalent if they are inter­

refinable, for example C ~I A. Moreover, we can argue that the ability 

to define an explicit input interface for charts is necessary only for signal 

filtering. 

In terms of refinement, recall that input refinement of a deterministic 

chart produces another deterministic chart. By definition, a deterministic 

chart has determined behaviour based on what it can observe of its context. 

For example a chart that has a transition with the guard a means that this 

transition happens if the signal a is present in the input. To be deterministic, 

there must also be another transition (or other transitions) that describes the 
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chart's action when signal a is not in the input. That signal a is either present 

or not present is equally determinable in a context that can only produce 

signal a as it is in a context that can produce signals a and b. Therefore it is 

reasonable that input refinement does not introduce new internal choice to 

a deterministic chart. 

On the other hand, consider input refinement of a chart that does have in­

ternal choice. In this case, the extra information that the chart can observe 

of its context can be used to determine which of the previously nondeter­

ministic transitions is taken. This refinement technique was dubbed angelic 

refinement earlier. Of course, if we make the choice between nondeterminis­

tic transitions before increasing the interface, that is weak input refinement, 

then the extra observable contextual information can have no bearing on that 

choice. 

5.3.3.2 The Output Interface and Refinement 

The output interface for a chart can also be stated explicitly. Again we use 

the term natural output interface to refer to an interface that contains just 

those signals mentioned on the actions of transitions in the chart. 

Like for the input interface, defining an explicit output interface that is 

a subset of the natural output interface can be considered as signal hiding. 

The case where the explicit output interface contains additional signals to 

the natural interface, however, is significantly different. In general a chart 

that has an expanded explicit output interface is not semantically equivalent 

to the same chart with the natural interface. Consider the following charts: 

A 

0 0 /s II 

0 0 
(a) inA = {}, outA = {s, t} (b) ins = {}, (c) inc = {}, 

outs= {s} outc = {s, t} 

Figure 5.11: Natural and explicit output interfaces 

For these particular charts we have that A ~o C (i.e., A and C can 

be considered semantically equivalent), however, B feoC (and consequently 

B feoA). 
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This demonstrates that the explicit output interface of a chart allows 

the designer to encode more specific behaviour for a chart than the default 

natural interface. In particular, the specification of chart C stipulates that 

the output context of C is one that can be controlled using signal t but the 

specified reactive system does not output t. 

The original µ-Charts language [78] identifies that charts B and C should 

not be semantically equivalent (i.e., inter-refinable). It is conjectured that the 

additional condition that restricted the original refinement theory to those 

refinements that strictly increase the interface of a chart, was introduced 

precisely to ensure this property holds. Like the original language, it holds 

of this refinement theory that C ;;;;!~ B3 and B ,,Q~ C. However, there is no 

explicit condition that requires refinement increase the interface of charts. 

In the refinement theory presented here, refinement is a judgement made 

assuming a context that is controllable by ( at least) the signals in the union of 

the respective output interfaces. That is, the charts A and C of our example 

above are compared assuming the environment is controlled by both signals s 

and t. To consider the behaviour of chart Bin a context that is controlled by 

signals s and t requires that we find a semantically equivalent chart B' such 

that B' ~ 0 Band outB' = {s, t}. Given the presented refinement, this means 

that the chart B' has the additional internal choice of outputting signal t, 

or not, at each transition. That is, B' is a chart like B with the additional 

transition that outputs {s, t}. Chart C is then the behavioural refinement 

of this B'. Moreover, this chart B' describes the only observably equivalent 

behaviour to chart B in a context controllable by signals s and t. Because 

chart B' contains more internal choice (or contains more nondeterminism) 

than chart C we have that B Q~ A. 

The separate investigation of input, output and behavioural refinement 

has identified three important properties of the refinement theory presented. 

The explicit definition of the input interface of a chart increases the express­

ibility of the language only in the case where the natural input interface is 

restricted. The explicit definition of the output interface, however, increases 

the expressibility of the language in both cases, i.e. extending or restricting 

the output interface. Provided we accept that semantic equality is defined 

by inter-refinability, and that the observational equivalences ~I and ~ 0 are 

acceptable ways of considering the semantics of a chart when placed in a 

new context, then the (seemingly arbitrary) restriction of increasing inter-

3Note that the relation ;;;;!~ -the combination of each of the separate notions of refine­

ment presented-is defined in Definition 5.4.1. 
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faces placed on the original refinement theory is not necessary. Similarly, 

the definition of the partial relations refinement theory must assume refine­

ment is a judgement made in the broadest output context with the proviso 

that a chart can freely choose to output signals outside of its defined output 

interface. 

As we see later (see Definition 6.6.2 in Section 6.6.1), it turns out that any 

refinement step that removes signals from a chart's output interface cannot 

be derived using a forward simulation relation alone. 

5.4 Behaviour and interface refinement 

combined 

While it is useful for the sake of investigation to split refinement into three 

categories, it is typical to use interface and behaviour refinement together. 

Therefore we give a definition and associated rules that unifies the two. 

Definition 5.4.1 For arbitrary charts A and C we have, 

C ;;;;!~ A =def 'vi; O • (iC>(inc)• OC>(outh)) E [CJ;=> 
(~(inA)• OC>(outj) E [At 

where sC>(X) restricts the range of the sequence s (pointwise) to the signals in the 

set X. 

From this definition we derive introduction and elimination rules. 

Proposition 5.4.1 For arbitrary charts A and C, and infinite sequences i, owe 

have, 
C ;;;;)~ A (iC>(inc)• OC>(outh)) E [Ct 
----------,----------:::----=--- CT) 

(~(inA), OC>(outf)) E [At 

Aside from these two obvious rules we give additional rules that demon­

strate that the refinement relation ;;;;!~ of Definition 5.4.1 is sound and com­

plete with respect to the three separate refinement relations ;;;;!b, ~I and 

For presentation, these rules are split into four disjoint cases based on the 

relationship between the respective input and output interfaces of the charts. 

119 



Proposition 5.4.2 For arbitrary charts A and C we have, 

Case 1: inA ~ inc I\ outA ~ outc 

C ::iw A C ~b B', 

B' ~o B, B ~I A I- P 
------------- Glri) p 

-x 

Case 2: inA ~ inc I\ outc C outA 

C ~o B', 

B' ~ b B, B ~I A I- P _______ p ______ Glii) 

Case 3: inc C inA I\ outc C outA 

C ~o B', 

B' ~I B, B ~ b A I- P ______ p ______ (;)ii) 

Case 4: inc C inA I\ outA ~ outc 

C ~I B', 

B' ~ b B, B ~o A I- P _______ p _______ (:;Ji"r) 

3 B·, B' • C :J B' I\ -b 

B' ~o B I\ B ~I A 
------------ (;)+TI) 

C ::iw A -x 

3 B; B' • C ~o B' I\ 

B' ~ b B I\ B ~I A 
_____ C_:J_w_A _____ c:;it) 

-x 

3 B; B' • C ~o B' I\ 

B' ~I B I\ B ~ b A 
------------ c:;i+u) 

C ::iw A 
-x 

3 B; B' • C ~I B' I\ 

B' ~ b B I\ B ~o A 
_____ C_:J_w_A _____ c:;it) 

-x 

where we assume the usual conditions for B, B' and P. 

Now we return to consider the reasons given by Scholz in [78] for only 

allowing, by definition, refinements that strictly increase the interface of a 

chart. 

Firstly, that combining sequential charts using the chart operators always 

increases the interface of a chart is certainly something that the refinement 

notion cannot disallow. However, we do not consider this a motivation for 

unduly restricting the definition of refinement. 

More importantly, that refinement is transitive is a critical property for 

any stepwise refinement theory. Lemma 5.4.3 (and its proof in Appendix B.9, 

page 244) shows that the refinement we define is indeed transitive. 
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Lemma 5.4.3 For arbitrary charts A, Band C, 

C ::::Jw B B ::::Jw A -x -x 

This concludes our investigation and description of µ-Charts refinement 

in terms of traces of behaviour. Next in Chapter 6 we show how this notion 

of refinement can be defined in terms of just the partial relations semantics 

for charts as given in Chapter 3 
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Chapter 6 

Defining Refinement via Partial 

Relation Semantics 

Now that we have defined exactly what refinement is in terms of the trace 

behaviour of a chart, we show how this refinement can be equivalently defined 

in terms of just the partial relations semantics of charts given in Chapter 3. 

Where the trace refinement described in the last chapter was defined as one 

notion that could be applied to each of the different trace interpretations, 

the partial relations refinement theory requires a separate logic (set of rules) 

for each of the trace interpretations. This is because, for trace refinement, 

the trace interpretation was assigned to a chart and then the single trace 

refinement notion applied to those traces. The partial relations refinement 

theory combines both of these tasks, that is, the refinements allowed by the 

particular set of rules determine the trace interpretation. The designer uses 

just the partial relation description of a chart and the appropriate set of 

refinement rules for the required trace interpretation. 

In fact, the exercise of deriving these rules indicates that, for the language 

µ-Charts defined here, where composition is defined in terms of the partial 

relations of the composite parts, only two of the four trace semantics intro­

duced are sensible interpretations. The total chaotic and firing conditions 

semantics for charts are sensible, the partial chaotic and do-nothing seman­

tics are not. Therefore we derive refinement rules for the total chaotic and 

firing conditions semantics only. Section 6.3 outline why the partial chaotic 

and do-nothing semantics are not sensible interpretations for the µ-Charts 

presented. 

Before giving the rules for chart refinement in terms of partial relations, 

we first describe how an existing partial relations refinement theory is related 
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to the trace semantics refinement. This gives us the required link to demon­

strate that the rules we give for partial relations refinement are related to the 

different trace semantics models and the resulting trace refinement that we 

outline in Chapter 4. Rather than reconstructing this link from scratch, we 

use the link that exists between charts and Z and existing work that relates 

Z refinement to abstract data types (ADTs). 

In [16, 88], a framework for considering Z specifications and Z refine­

ment in terms of ADTs is introduced. The idea is to map a "standard" Z 

specification, i.e. state schema, initialisation schema and operation schemas, 

into a relational setting. Broadly a relational ADT is a tuple of the form 

(X, xi, xf, Ops) such that: X is a state space; xi is an initialisation relation; 

xf is a corresponding finalisation relation; and Ops is an indexed set of rela­

tional operations. The initialisation and finalisation relations map a global 

observable state into the ADTs private state and vice versa. A program of 

an ADT is defined as a particular sequence of the indexed operations upon 

a data type, preceded by initialisation and ended by finalisation. This map­

ping is used to derive a data refinement theory for Z specifications from the 

existing refinement notion for partial relations ADTs. 

Given that the partial relation semantics for µ-Charts is defined via Z 

we can fit charts into the same framework. Recall from Section 3.7 that 

the translation of a chart into its "Z meaning" gives us a state space, an 

initialisation schema and one operation schema, the operation schema being 

the description of every step that the chart can take. So, if we view this Z 

description of a chart in the ADT framework we can say that any program 

allowed by the chart is an example of composing the step operation together 

with itself again and again. Of course, since we want to compare this with the 

trace semantics what we are really interested in is the sequences of inputs and 

outputs that result from such programs. If we imagine running this program 

over all possible input sequences and recording the resulting output sequences 

then we have exactly the trace semantics of the chart. In fact, because we 

have defined the trace semantics over infinite sequences of input and output 

we need to imagine composing the step operation with itself indefinitely. 

In the following we show how the Z / ADT results generalise to charts. 

In particular we show that the ADT view of a chart can be considered as 

giving the trace semantics of that chart. Then we define the two notions of 

partial relations refinement for charts based on the existing notions of partial 

relation refinement for Z. 
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6.1 Relational ADTs with IO 

In [16], Derrick and Boiten give a description of the ADT framework that 

allows operations to deal with inputs and outputs. The central idea is that 
there exists some global state G such that: 

G = seq Input x seq Output 

A program of an ADT can then be considered as a relationship between two 

global states. The definition of refinement is given by comparing programs 

from two different ADTs. It is typical to talk about an abstract and a 

concrete ADT, where the assumption is that the concrete ADT is a refinement 

of the abstract. 

Consider the following diagram that is common to most descriptions of 

ADT refinement. 

/-
.................. 

AOpl A0p2 AOpn 

!~ 
(is,<>) ,R R R R :R 

~ 17 
(is",os) 

COpl COp2 COpn 
...................... 

Figure 6.1: ADT Refinement Illustration 

This diagram represents two ADTs, A= (AState, Alnit, {AOpi}iEN, AFin) 

and C = ( CState, Clnit, { COpi}iEN, CFin) respectively. 

We define the programs P'{; = Alnit 9 AOpi 9 AOP2 9 ... 9 AOpn 9 AFin and 

P~ = Clnit 9 COp1 9 COP2 9 ... 9 COpn 9 CFin over the respective ADTs A and 

C. P'{; and P~ are conformal programs because they have the same length 

and comparable operations. For example, it is assumed that the operation 

COpi simulates the abstract operation A Opi in the concrete ADT. The data 

type C is said to be a refinement of A when, for any pair of conformal 

programs, any observation that can be made of the concrete program is a 

possible observation of the abstract program. By observation we mean a 

pair of global states that consists of the global state we start the program 

in and the global state in which the program ends, in our case input and 

output sequences. In this input/output sequence model, assuming that C 

is a refinement of A, we have that any sequence of outputs os of length n 

that the program P~ can produce whilst consuming n elements of the input 

sequence is is also a sequence of outputs that the program P'{; can produce 
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whilst consuming the same input sequence. 

Now we represent the meaning of the programs P; and P-:; respectively 

as a relation between input sequences and output sequences of length n. 

Assuming the global input sequences range over some type Input (modelling 

the appropriate input context as described in Section 5.3) and similarly the 

output sequences over some type Output, then the meaning[.]~ of the program 

pn is given as follows. 1 

With respect to the diagram of Figure 6.1 we have that [P-;;];; is a relation 

between the input sequence is and the resulting output sequence os. Notice 

that there is an implicit assumption in the original ADT framework which is 

that the sequence is has at least n elements. That is, applying the program 

P-:; (assuming n > 0) from a state that represents an empty sequence of 

inputs is not well defined. Also, the output sequence os always has exactly 

n elements. We assume that the sequences in both the domain and range 

of the relation [Pn]~ have exactly length n. In the original ADT framework 

applying a program from a state that has more than n inputs takes us to the 

same state as applying the program from a state that has exactly the first 

n inputs only. Hence, that the relation [Pn]~ only considers input sequences 

of exactly length n captures all of the necessary information of the original 

framework. The final assumption that we make is that [Pn]~ is a total 

relation. That is, it is defined over all sequences of inputs of length n. 

From the standard account of data refinement we have the following def­

inition. 

Definition 6.1.1 Given two abstract data types A and C as described above, 

for all pairs of conformal programs P-:; and P; of length n we have, 

In words, this definition states that the ADT A is a data refinement of 

the ADT C if and only if the observable behaviour of running any program · 

in the concrete ADT is a subset of the behaviour observed when running 

the conformal program in the abstract ADT. This definition follows directly 

from the definition of data refinement where each different input sequence 

represents a different state from which the program is started. 

1 We generalise the sequences that we introduced in Section 4.6 such that I* denotes 

the set of all finite sequences ranging over elements of the type Input and similarly O* 
denotes all finite sequences ranging over Output. The infinite sequences Iw and 0-V are 

similarly defined. 
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We have omitted an important detail so far, which is that the data re­

finement framework presented in both [88) and [16) assumes that the rela­

tional semantics of operations are total. Embedding Z-based ADTs into this 

data refinement framework therefore requires the definition of a totalisation 

scheme to make the partial relations semantics for Z schemas total. There are 

several well-known [16, 88) and well-investigated [18, 19, 53, 20, 17) schemes 

for totalising the partial relations. The two that we are interested in here are 

the total chaotic completion and the firing conditions2 totalisation models as 

discussed in Chapter 4. Importantly, this means that we are using the d in 

the relation ;;;;id of Definition 6.1.1 and in the operator [-B~ as a place holder 

for two different notions of refinement. In particular, the d can be replaced 

with r-chaos to represent the total chaotic totalisation or Jc to represent the 

firing conditions model of data refinement. 

Here we chose to deal with infinite input and output sequences. Recall 

that the length of the output sequence is determined by the number of op­

erations in the program, that is, output is defined by performing one of the 

program's operations on an input. Therefore, to consider infinite output se­

quences, we need also consider programs that contain an infinite number of 

operations. Fortunately, we only require programs that apply one of a finite 

set of operations infinitely many times. In fact, our case is even simpler in 

that there is only the one step operation of a chart to consider. Moreover, an 

assumption of the relational ADT framework is that each relational operation 

is total. These conditions mean that there is no unbounded nondeterminism 

present in the programs and that we do not need to consider nontermina­

tion of an operation. Henceforth, we will refer to such programs as infinite 

programs. 

Now, given an arbitrary infinite program P = !nit 9 Op1 9 OP2 9 ... , such 

that for all i Opi is an element of a finite set of operations, we have that the 

meaning [.]~w of P is such that, 

where parameter d is used again as described above. 

We introduce notation to represent the finite truncation of an infinite 

program. For the arbitrary infinite program P = !nit 9 Op1 9 OP2 9 ... the 

expression P f n = !nit 9 Op1 9 OP2 9 ... 9 Opn 9 Fin, that is, the program P f n 

represents interrupting the infinite program P (i.e., applying finalisation) 

2In the work presented by Derrick and Boiten [16] the firing conditions semantic inter­

pretation is referred to as the behavioural interpretation. 
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after the first n operations. Because of this finalisation we also have that 

P r n = pn for all infinite programs P and associated finite programs pn. 

Now we can define [.]~w in terms of[.]~ as follows. 

Definition 6.1.2 For the arbitrary infinite sequences i and o, and infinite pro­

gram P = !nit 9 Op1 9 OP2 g ... , 

(i,o) E [P]~w =def '<In• (if n,o f n) E [Pf n]~ 

where the truncation operator s f n is defined as in Definition 4.6.2 of Section 4.6. 

Given this definition for the relation [P]~w, we can show that the Propo­

sition 6.1.1 holds for all infinite sequences of input and output, i.e. Defini­

tion 6.1.2 is monotonic with respect to subset.3 

Proposition 6.1.1 For all conformal infinite programs Pa = Alnit 9 AOp1 9 
A OP2 9 ... and Pc = Cl nit 9 COp1 9 COP2 9 ... we have, 

Proposition 6.1.2 follows trivially from Definition 6.1.1 and Proposition 

6.1.1. 

Proposition 6.1.2 Given two abstract data types A and C as described above, 

for all pairs of conformal infinite programs Pa and Pc we have, 

Given Proposition 6.1.2, if we can show a data refinement holds between 

an abstract and concrete ADT then we have shown that any observation of an 

infinite program over the concrete ADT must also be a possible observation 

of its conformal program in the abstract ADT. 

6.2 Charts and ADTs 

We show how the partial relations semantics for charts fits into the relational 

data type model. 

The account of ADT refinement that we gave in the previous section made 

the simplifying assumption that the types of inputs and outputs associated 

with the two programs P'{; and P'{; are the same. For our purposes this simpli­

fying assumption is too strict. Recall that the input and output interface of 

3See Appendix B.10, page 245 for proof. 
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a chart can be changed via refinement. Weakening the assumption of equiv­

alently typed input and output for both abstract and concrete programs is 

achieved using the respective initialisation and finalisation relations in con­

junction with the notion of an observable context for charts. Recall that 

our exposition of input and output refinement in Section 5.3 identified that 

refinement is a judgement made in the broadest input/output context with 

the proviso that a chart can choose nondeterministically to output signals 

outside of its defined output interface. 

We use the respective initialisation and finalisation relations to make 

the ADT's global state model the appropriate input/output context. The 

observable behaviour of the ADT (i.e., the global state) is a context in which 

the abstract and concrete charts share the same inputs and outputs. The 

initialisation relation maps the global input sequences into appropriate input 

sequences for the respective charts. Similarly, the finalisation relation maps 

the outputs from the respective charts into the global output sequences. 

From this we make the necessary link between the semantics for a chart 

C given by embedding the Z model of a chart in an ADT framework, that 

is, [Pc]~w where Pc = Inita ~ CSys1. ~ CSys1. ~ ... ,4 and the trace semantics that 

we defined in Section 4.6 (page 85), i.e. [C]:. 

Proposition 6.2.1 For arbitrary chart C and sequences i E Iw and o E OW, 

(i, o) E [Pc]~w {:} (~(inc), Ot>(outt)) E [C]; 

Note that we use the variable din the operator [.t instead of the x that 

was introduced in chapters 4 and 5 (in particular in Definition 5.4.1, page 

119) to ensure that both the left and right hand side of Proposition 6.2.1 are 

parameterised by the same semantic interpretation, i.e. the variable d binds 

properly. We rely on the careful construction of the framework presented and 

the demonstration of the different possible trace semantic interpretations of 

charts given in Chapter 4 as proof of proposition 6.2.1. 

Now using Definition 5.4.1 and propositions 6.1.2 and 6.2.1 it is trivial to 

show that the trace refinement defined in Section 5.4 (page 119) is equivalent 

to data refinement between the appropriate ADTs for two charts. 

Proposition 6.2.2 For arbitrary charts A and C, 

C -;;J~ A {:} C -;;J d A 

4The notation lnita and CSys1. is used to denote a suitable totalisation of the par­

tial relations described by the schemas Initc and CSys, respectively. The appropriate 

totalisation is determined by the semantic model assumed for the charts as described in 

sections 4.3 and 4.4. 

129 



As demonstrated in Chapter 4, the choice of the ADT refinement notion 

(i.e., depending on how the partial relations-based operations and simula­

tions are made total) determines which of the total chaotic or firing condi­

tions trace interpretations is assumed. 

The remainder of this Chapter shows how we are able to follow the well­

known relational ADT approach (for example see (16, 88]) to derive refine­

ment rules for charts in terms of their partial relations semantics. 

6.3 Implicit chaos vs. explicit permission to 

behave 

It is well known that the special value 1- is required for the standard em­

bedding of a partial relations semantics in a relational ADT framework for 

refinement. This is also true for the µ-charts partial relations semantics. 

While the need for the special value 1- is well documented in the existing 

literature, the exact role of this value is less clear. 

In (88], and more recently [20], the use of .l to lift the partial relations 

semantics of Z is introduced and investigated. 

Woodcock and Davies (88] illustrate that lifted totalisation (totalisation 

after adding 1-) ensures that undefinedness is propagated through relational 

composition. Conversely, non-lifted totalisation ( totalisation without adding 

1-) can lead to non-strict recovery from chaos. That is, if we consider rela­

tional composition in computing terms as applying one operation after an­

other, then chaotic behaviour by one operation can be recovered by applying 

the next operation. This property is formalised in the following proposition. 

Proposition 6.3.1 There exists a schema"" such that: 

• • • 
Chaos 8 K = Chaos 

O O 0 
Chaos 8 K = K 

0 • 

where S is the non-lifted totalisation of the relation S and S represents the lifted 

( with 1-) and totalised relation S. 

From [88] it appears that this is the significant role of 1- in giving a partial 

relations refinement theory. This role of 1- is clearly significant when we 

consider refinement of conformal programs over respective ADTs. However, 

it is not made clear that the additional refinements allowed by 1-, i.e. those 

that allow chaos to persist, require that the concrete state space is extended 
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to include a state that essentially simulates .L That is, the generality of 

data refinement is required to extend the abstract domain of the ADT. We 

explain the notion of simulating 1- in terms of charts in the following. Also, 

the Woodcock and Davies account (88] does not identify the other significant 

role played by J_. 

Deutsch, Henson and Reeves (20] show that introducing .l to a partial 

relations semantics allows a distinction to be made between implicit chaotic 

behaviour and the explicit permission to behave chaotically. Using the nota­

tion of [20], this can be formalised as: 

Proposition 6.3.2 

• • 
True f- Chaos 

• 
where True= [TI true], Chaos= [TI false] and S represents the lifted (with 1-) 

and totalised relation S. 

The investigation of [19] is concerned with the role of 1- in defining a 

partial relations theory for opemtion refinement (i.e. a subset of data refine­

ment where all simulations are identity relations). In operation refinement 

the essential role of 1- is clearly not the propagation of undefinedness because 

refinements that realise this role of 1- require the more general framework of 

data refinement. For operation refinement the essential role of 1- is related 

to the preconditions of operations, in particular distinguishing implicit chaos 

from explicit permission to behave chaotically. 

In terms of encoding chaotic behaviour in µ-Charts, the value 1- also plays 

two roles. The first is to allow chaotic behaviour to persist in general. That 

is, after seeing an input for which no specific behaviour is defined, a chart is 

free to behave in a chaotic manner indefinitely. This role can be seen clearly 

in Section 4.3 where the name .l is used for the additional state required to 

encode total chaotic behaviour in charts. This role of 1- as a special "unde­

fined" state corresponds closely to the justification for 1- given by Woodcock 

and Davies [88] outlined above. In chart terms, the state 1- models a state 

that is reached when no defined transition can be taken. This state can 

then be simulated by a new chart state during refinement. This new state 

allows the refined chart to have behaviour that represents a refinement of 

persistent chaos. In practice, undefined behaviour in a chart often represents 

exceptional circumstances. The state 1- allows this exceptional or undefined 

behaviour to persist. For example, consider charts A and C of Figure 6.2. 
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C 
ok / bllnkGreen --ok / bllnkRed 

A 
ok / blinkGreen 

X 

Ok / blinkRed 

Figure 6.2: Refining Persistent Chaos 

In this example we have that C ~Tf A ( that is, C refines A using a 

forward simulation). This refinement holds because the state Y simulates 

the "state" .l. 

A model without the state .l would allow only refinements that resolve 

this unexpected behaviour in one step. This would rule out the refinement 

demonstrated in the example in Figure 6.2. In particular, any refinement 

would be constrained to output blinkGreen whenever the input ok was present. 

The partial chaotic trace semantics for charts is an example of a seman­

tic interpretation that allows just one-step resolution of chaotic behaviour. 

This one-step chaos was identified by Scholz [78] when attempting to give 

a relational semantics to charts for the purpose of using model checking for 

verifying chart properties. Scholz did not consider using any mechanism such 

as .l. 

The second role of .l in charts is to distinguish between undefined be­

haviour and explicit permission to behave chaotically. This is a requirement 

of µ-Charts because of the definition of the language operators. The def­

inition of composition is given in terms of the partial relations semantics 

of the composed charts. Chaotic (i.e. undefined) behaviour in one part of a 

composite chart causes chaotic behaviour in the composition itself. However, 

composition of defined behaviour {in particular explicit permission to behave 

chaotically) in one part of a composite chart does not force the composition 

to behave chaotically. Because the semantics differentiates between Chaos 

and True then the refinement notion for charts must also. Proposition 6.3.3 

demonstrates that the composition operator dictates that Chaos and True 

are distinguishable. 

Proposition 6.3.3 For the arbitrary chart C and signal set \JI, we have 

[ Chaos I \JI I Ct = [ Chaosc t 
[True I \JI I Ct = [Ct 

where Chaosc is similar to Chaos except that inchaosc = inc and outchaosc 

132 



outc. 

Therefore, the mechanism 1. ensures that the refinement notion for charts 

accords with the partial relations semantic definition. In particular, it ensures 

that True -;;JTJ Chaos (i.e. True refines Chaos) but Chaos l)_Tf True ( Chaos is 

not a refinement of True). 

Of course, it is possible to give an alternative definition of the semantics 

of composition that does not require this distinction between True and Chaos. 

We discuss this possibility and the associated trade-offs in Section 7.2. 

Now we consider this observation about the role of 1. in terms of the four 

semantic interpretations for charts that we outlined in Chapter 4. For the 

total chaos and firing conditions semantics, implicit (Chaos) is distinguishable 

from explicit (True). That is by definition, 

[ Chaos t-c1,aos =I- [ True t-chao, and, 

[ Chaos]; =I- [True]; 

Moreover, in both of these models the composition operator behaves sen­

sibly. That is, the following lemma holds in general. 

Lemma 6.3.4 For arbitrary charts A, Band C, and signal set \JI we have, 

[At-chaos = [Bt_chaos :::;, [A I \JI I Ct_chaos = [B I \JI I Ct_chaos 

However, for the partial chaotic trace semantics we have, 

Definition 6.3.1 

[ Chaos];_chaos = [True];chaos 

Hence, it follows from our general argument that the composition op­

erator for charts does not always behave sensibly. Under the do-nothing 

interpretation we have a similar situation because the following property 

holds. 

Definition 6.3.2 

[DoNothingt., 

where the chart DoNothing explicitly encodes a chart that never outputs any 

signals. 

An interesting observation is that, given the defined semantics of compo­

sition, the firing conditions semantics relates to the do-nothing semantics in 

the same way that the total chaotic semantics relates to the partial chaotic 
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semantics. The chart Chaos introduced above behaves like Abort under the 

firing conditions semantics. In particular, if the behaviour of one part of a 

composite chart "aborts" then the composed chart itself "aborts". In the 

same situation, the do-nothing semantics behaves like a "one-step" abortive 

process. That is, undefined behaviour (and therefore do-nothing behaviour) 

in one part of a composite chart causes the composed chart itself to do­

nothing, but just for that particular input or step. 

Two significant outcomes result from the investigation presented in this 

section. The first is the identification of the purpose of the (somewhat mys­

tical) value J_ in the definition of the µ-Charts language presented. That 

is, the value J_ is firstly a technical device used so that implicit chaos is 

distinguishable from explicit permission to behave chaotically. This is nec­

essary because the language operators encode an "intrusive" chaos due to 

their definition in terms of partial relations. Secondly, J_ is required (in the 

more general data refinement framework) so that charts can model persistent 

chaotic behaviour. 

We also note that the partial chaotic and do-nothing semantic interpre­

tations are not useful under the given definition of charts. In particular, 

following the "usual" ADT embedding will not result in a refinement theory 

that is comparable to the respective trace semantics. Any such refinement 

theory will distinguish implicit (True) from explicit (Chaos) where these trace 

semantics do not. Therefore, attempting to derive such refinement theories 

for these two semantic interpretations is not useful. 

6.4 Simulation and corresponding states 

Before we derive the refinement rules for the two relevant trace refinement 

notions we briefly introduce and discuss the concept of simulation. When 

comparing two charts based on input and output traces, that is, checking for 

or calculating trace refinements, the state information of the charts is already 

abstracted away. This is not the case, however, when working with the partial 

relations semantics. We must have a way of comparing the states of one 

chart with another. This is exactly the task of simulations, sometimes also 

known as retrieve relations, abstraction relations, or coupling invariants [16]. 

Something as simple as changing the names of the states from the abstract 

chart to the concrete one requires that we have a simulation relation that 

maps the abstract state names into the new concrete state names. 

Figure 6.1 of Section 6.1 (page 125) illustrates a simulation relation which 
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is labelled R. A simulation relation encodes the relationship between the 

states of the abstract specification and the states of the concrete specification. 

As this figure illustrates, the simulation R creates a series of commuting 

squares. This allows us to prove the necessary refinement properties for 

each of the associated operations (in our case there is only one) and use 

an inductive argument to show that the refinement holds when we compose 

(in an appropriate order) operations together into programs. Because the 

simulation R is a relation, it can be used in either direction. That is, we 

can assume that R relates the abstract states to the concrete states or vice 

versa. Except to say that we use the terms forward simulation and backward 

simulation respectively to represent this notional order, we refer the reader 

to [16] for a detailed description of the concepts of data type refinement. 

According to the theme that has been common throughout this disserta­

tion, there are two ways in which simulation relations are used or created. 

A simulation relation can be created in order to guide a refinement of one 

chart into another. This type of simulation is common in the ADT world 

where it is typical to consider data refinement as a way of refining some data 

representation into another, for example refining sets into lists. 

Alternatively, a designer may have created two charts and wish to show 

that one refines the other. In this case, the importance of the simulation 

relation is its existence. That is, given the two existing charts, we can show 

that they are related by refinement by showing that a simulation relation 

exists between them. 

In the first case the relation is designed for a specific transformation 

that the designer wishes to make to a specification. The new corresponding 

operations can often then be calculated to ensure that programs (in our case 

input/output traces) over the new state space have a refinement relationship 

to those over the existing state space. 

In the case of pre-existing abstract and concrete charts it is typical to 

calculate the relation and then show that it is indeed a simulation. This again 

means the relation itself is less likely be illustrative of the design decisions 

that it captures. This type of use of simulation, however, is predominant in 

process algebra refinement theories, for example the use of simulation in IO 

Automata [52]. 

As discussed in Section 6.2, the initialisation and finalisation relations are 

used to modify the observable input and output sequences to allow for the 

interface refinement introduced in Section 5.3 (page 101). The simulation 

relation must also account for interface refinement. We split the definition 
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of the simulation relation into two separate parts. The first part is the 

simulation between states of the respective abstract and concrete charts. We 

will refer to this part of the simulation as the corresponding relation or Corrj 

for a simulation between charts A and C. The following Z schema gives the 

general scheme for the corresponding relation: 

CorrA _______________________ _ 

~

Chart~ 

_ Charle 

The predicate P defines the simulation relationship between the states of the 

respective charts A and C. 

Note that we use the notational convention Corri assuming: 

Corri =def [Charle; ChartA I P[aCharlA/aChartA,aCharlc/aChartc]] 

The second part of the simulation relation accounts for interface refine­

ment as described in Section 5.3. Unlike the previous part of the simulation 

relation, where the predicate P differs for each refinement application, the 

relationship between input and output can be given in general for all refine­

ments. Using this general relationship in the framework presented guarantees 

that the allowable interface refinements accord with those described in Sec­

tion 5.3. 

For arbitrary input interfaces mA and inc, and output interfaces outA 

and outc, we have, 

IOj ________________________ ~ 

iA : inA ., . 
ic: me 
OA: outA 
Oc: outc 

iA n inc = ic n inA 
0A n outc = Oc n OUtA 

The schema IO is constructed so that [J0] 2 ,. represents a relation from 

bindings of type Vj0 to bindings of type Vj0 '. Importantly, when this relation 

is combined with the corresponding relation we get a schema representing the 

simulation relation between charts A and C that has type JP>( Tj0 Y Tt).5 

5The schema /Of is also defined in the obvious way. 
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Definition 6.4.1 For charts A and C we have , 

IP(T"'yTi0 ') 

where [R~z,. A c . 

Significantly, when using the refinement theory presented the developer 

need only define the relationship between states of the "refining" and "re­

fined" charts. The input/output relationship or interface refinement is always 

constrained by the general relationship identified by the schema IO. 

Given this inherent structure that is present in all simulations required 

by the partial relations refinement calculus for charts we give the following 

useful introduction and elimination rules. 

Proposition 6.4.1 Given arbitrary charts C1, C2, related simulation S, and 

bindings z{3 , z{4 , we have 

The related proofs are given in Appendix B.11 (page 247). Also, lem­

mas B.14.1 and B.14.2 give specialised rules for dealing with simulations 

between composed charts and charts that use the interface operator respec­

tively. 

6.5 Partial relation refinement 

Finally, we derive partial relations refinement rules that capture the total 

chaotic and firing conditions trace semantic interpretations for charts. The 

derivation of the different sets of rules closely follows a similar treatment by 

Derrick and Boiten in [16]. 

We embed the Z-based chart ADT presented so far into a relational data 

type as follows: 
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Definition 6.5.1 For an arbitrary chart C and all sequences si and so, the Z 

ADT semantics (Charle, Inite, { CSys}) is embedded in the relational data type 

( CState, Clnit, { CStep }, CFin), such that, 

estate =def It; X Oc X Uc 

CI nit =def {( si 1--+ ( sit>(inc), (), z)) I z E Inite} 

CFin =def {(sit>(inc)• sot>(outc)• z) 1---+ so I z E Charle} 

CStep =def {(i'"'si,so,z1) 1--+ (si,so'"'o,z2) I 
Z1 * ~ ie~i, Oc~O ~ * ~ E C} 

The embedding of the simulation R gives the simulation relation S between 

the ADTs representing charts A and C. 

For arbitrary sequences si and so, and bindings z?c and ~UA we have, 

S =def {(sit>(inA)• sot>(outA)• z1) 1--+ (sit>(inc)• sot>(outc)• z2) I z1 * ~ E Corr~} 

Note, the sequence so may represent the empty sequence when Sis used 

to relate the abstract ADT to the concrete ADT directly after initialisation. 

The sequence si is an infinite sequence and therefore cannot be empty. 

We show how the simulation relation S relates to the simulation R in 

propositions 6.5.1, 6.5.1 and 6.5.2. 

Proposition 6.5.1 For arbitrary sequences si and so, and bindings z?c, z?\ 
Tin Tin 

x1 A and x.i c we have, 

{::} [See Appendix B.12 (page 248) for details] 

Proposition 6.5.2 For arbitrary sequences si and so, and bindings z?c, ~uA, 
T"ut T"ut 
~ A and x4 c we have, 

{::} [See Appendix B.12 for details] 

Proposition 6.5.3 For the arbitrary sequence si, and bindings z?c and ~uA we 

have, 

(sic,(inA)• (), z1) ..._. (sic,(inc)• (), z2) ES 

{::} [See Appendix B.12 for details] 

z1 * ~ E Corrt 
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6.6 Total chaos refinement 

6.6.1 Forward simulation 

We start by deriving the rules for the total chaotic interpretation. Derrick 

and Boiten [16] give five refinement conditions that are necessary to show 

that a relational data type C refines a relational data type A using a for­

ward simulation S. They begin by lifting and totalising the relations of the 

respective data types. As expected, this lifting and totalising is the same as 

the completion of the partial relations semantics that we outlined in Chap­

ter 5. Derrick and Boiten refer to the total chaotic interpretation as the 

contract approach. After giving the necessary lifted totalised relations they 

show how the five refinement conditions, referred to as initialisation, finalisa­

tion, finalisation applicability, applicability and correctness, can be simplified 

("relaxed") to remove any reference to the introduce value 1-. We give the 

five relaxed conditions and refer to [88] for their derivations. 

Definition 6.6.1 Assuming data types A= (AState, Alnit, {AStep }, AFin) and 

C = ( CState, Clnit, { CStep }, CFin), a forward simulation S is a relation from 

AState to CState satisfying the following conditions: 

Clnit ~ Alnit 8 S 

S 8 CFin ~ AFin 

ran( ( <lorn A Fin) <l S) ~ <lorn CFin 

ran( ( <lorn A Step) <l S) ~ <lorn CStep 

( ( <lorn A Step) <l S) 8 CStep ~ A Step 8 S 

(initialisation) 

(finalisation) 

( finalisation applicability) 

(applicability) 

(correctness) 

Now we use each of these conditions along with the relational embedding 

defined in Definition 6.5.1 (page 138) to derive corresponding conditions ex­

pressed in Z. 

Proposition 6.6.1 gives the Z condition related to initialisation: 

Proposition 6.6.1 

Clnit ~ A/nit O S 

{::} [See Appendix B.13 for details] 
• • I 

V Ye • Ye E lnitc => :l t1 • t1 E lnitA I\ t1 * Ye E R 

Unlike the derivation provided by Derrick and Boiten [16], the finalisation 

condition does not hold trivially for charts. This difference arises because 

the derivation for Z refinement makes the assumption that both the abstract 
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and concrete ADTs have equivalently typed input and output, whereas the 

derivations required here do not. In Section 5.3.3.2 (page 117) we discussed 

in detail the subtleties of the definition of the output interface of a chart. 

Also, recall that the refinement for charts is a judgement made in the broadest 

input/output context (i.e., an environment that can be controlled by at least 

the signals from the output interfaces of both the abstract and concrete 

specifications). Here the finalisation relation is used to map the behaviour of 

each chart into this so-called "broad" context. This ensures that the derived 

refinement notion accords with the trace refinement outlined in Section 5. 

Now, if the output interface outA of the abstract chart A is not a subset 

of the output interface outc of the chart C, then the finalisation condition 

fails. Take for example the case where outc c out A: the simulation maps 

the larger output interface of A into the smaller interface of C; the concrete 

finalisation maps this smaller interface of C back into the "broad" interface 

(in this case the interface of A); the composition of the simulation and the 

concrete finalisation results in a non-functional relation, whereas the abstract 

finalisation is the identity relation. That is, the case where outc is a subset of 

outA is a counter-example that demonstrates why the finalisation condition 

does not hold trivially for µ-Charts. 

Proposition 6.6.2 

S ii CFin ~ AFin 

~ [See Appendix B.13 for details] 

outA ~ outc 

Because the given finalisation relation is total over all output sequences 

and states of the respective charts, the finalisation applicability condition 

holds. 

Proposition 6.6.3 

ran( <lorn AFin <l S) ~ <lorn CFin 

~ [AFin is total: <lorn S ~ <lorn AFin] 

ran S ~ <lorn CFin 

~ [ CFin is total over the target set of SJ 
true 

Unlike the derivations given in [16], we can show that Pre and "<lorn" 

do coincide in the relational embedding given here. This is because, in this 
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embedding, the relational operation CStep relates infinite input sequences to 

finite output sequences. Hence it is never the case that ( (), os, z) Edom CStep. 

In other words, there is always an input available in the head of the input 

sequence. That an empty input sequence is a possibility in the derivation of 

the Z refinement rules ( from the assumption that programs and hence their 

respective input and output sequences are finite) is the reason that Pre and 

dam do not coincide in the derivation given in [16]. 

For an arbitrary chart C we have: 

Proposition 6.6.4 

(xic.ic,.....siC>(inc), so, z) E <lorn CStep 

{::} [See Appendix B.13 for details] 

Pre C (z *Xie* Xoe) 

Now for the applicability condition we have: 

Proposition 6.6.5 

ran( ( <lorn A Step) <J S) ~ <lorn CStep 

{::} [See Appendix B.13 for details] 

\/ Ya, Ye • Pre ASys Ya I\ Ya* y~ E R => Pre CSys Ye 

And finally, for correctness we have: 

Proposition 6.6.6 

( ( <lorn A Step) <J S) ;; CStep ~ A Step 9 S 

{::} [See Appendix B.13 for details] 

\/ya, Ye,f--zc • (Pre A Ya I\ Ya* y~ ER I\ Ye* f--z/ EC)=> 

:3 t • Ya * t' E A I\ t * f-- Zc I E R 

The derivations of propositions 6.6.1, 6.6.2, 6.6.5 and 6.6.6 give us the 

Z conditions necessary to show that a relation R is a forward simulation be­

tween two charts A and C under the total chaotic interpretation of the partial 

relations semantics. As we have shown (see Section 4.3 and Proposition 6.2), 

it follows that chart C refines A in the total chaotic trace interpretation for 

charts. In line with the natural deduction style presentation that we have 

adopted, Definition 6.6.2 gives introduction and elimination rules for forward 

simulation total chaotic refinement: 
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T10 T10 T10 
Definition 6.6.2 For arbitrary charts A and C, and bindings Ya A, Ye c, and f-zc c, 

we have, 

f-- outA ~ outc 

Ye E Initc f-- a1 E InitA 

Ye E Initc f-- a1 * y~ E R 

Pre A Ya, Ya* y~ E R f-- Pre C Ye 

Pre A Ya, Ya* Y~ ER, Ye* f--zc' E C f-- Ya* b~ EA 
Pre A Ya, Ya*Y~ ER, Ye*f--z/ EC f-- b1 *f-z/ ER 
--------------------- ( ;;;J;f) 

C -;J_T/ A 

C -;J_T/ A 
utA ~ outc ( ·:;;r;J 1 ) 

C -;J.r/ A Ye E lnitc 

C -;J.T/ A Pre A Ya Ya* Y~ ER 
-----P-re------,C-ye _____ ( ;;;i;f Ill) 

I • Ya* b~ EA, 
b1 * f- Zc E R f-- P 

--------------p-------------- (;;;J;f IV) 

C -;J.T/ A Pre A Ya Ya* Y~ E R Ye* f--zc E C 

where the usual conditions hold for a1, b1 and P. 

Notice, the rules for forward simulation refinement presented here are 

( with the exception of the additional initialisation and finalisation conditions) 

very similar to the rules presented by Deutsch and Henson in [19] for SF­

refinement. 

6.6.2 Backward simulation 

For backward simulation we introduce a simulation R-1 which is defined in 

the same way as the simulation R, introduced in Definition 6.4.1 (i.e., using 

schemas Corrf and !Of). R-1 is defined in the obvious way such that the 

following proposition holds: 

Proposition 6.6. 7 For arbitrary bindings z1 and z2 we have, 

z1 * ~ E R-1 <=} z2 * z{ E R 

Ti"yTi"' T"'YTi 0 ' 

where [R] 2 : c and [ R-1] z,~ A • 

Now the embedding of the simulation R-1 in the relational ADT gives the 

backward simulation relation T ~ CState x AState. 
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The relationship between T and R-1 is described by Propositions 6.6.8 and 

6.6.9. These propositions correspond closely to those of Propositions 6.5.1 

and 6.5.2 for forward simulations. 

Proposition 6.6.8 For arbitrary sequences si and so, and bindings ztc, z-iuA, 
rm rm 

x1 c and Xi A we have, 

( (x1. ic) '""sil>( in,:), SOI>( outc), zi) 1-+ ( (2:2. iA) '"'sil>(in.4), sol>(out.4), Z2) E T 

<=> [See Appendix B.13 (page 255) for details] 

V X3 • :3 X4 • z1 * x1 * X3 * ~ * ~ * x~ E R·1 

Proposition 6.6.9 For arbitrary sequences si and so, and bindings ztc, z-iuA, 
rout rout 
~ c and x4 A we have, 

<=> [See Appendix B.13 (page 256) for details] 

w :::i ' ' ' R-1 vX2•:::i~•~*~*~*~*~*~E 

The five conditions necessary to show that a relation is a backward sim­

ulation, again taken from [16], are as follows. 

Definition 6.6.3 Assuming data types A= (AState, A/nit, {AStep }, AFin) and 

C = ( CState, Clnit, { CStep }, CFin), a backward simulation S is a relation from 

CState to AState satisfying the following conditions: 

Cf nit 3 T ~ A/nit 

CFin ~ T 3 A Fin 

V c • cQ T D ~ dom AFin => c E dom CFin 

dom CStep ~ dom( T e,.. dom A Step) 

dom( T e,.. dom AStep) ~ CStep 3 T ~ T 3 A Step 

{initialisation) 

(finalisation) 

( finalisation applicability) 

(applicability) 

(correctness) 

From these conditions we derive the necessary rules in terms of the partial 

relations semantics for charts. 

For initialisation we have: 

Proposition 6.6.10 For arbitrary charts A and C we have, 

C/nit ;; T ~ A/nit 

<=> [See Appendix B.13 (page 257) for details] 

inA ~ inc I\ Vy,z • (y E lnitc I\ Y*Z 1 E R"1 ) => z E InitA 
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Again the finalisation condition for backward simulation refinement does 

not hold trivially. As expected, the derivation that follows shows that, in 

order for a relation to be a backward simulation between two charts, it must 

be total over the states of the concrete chart. 

Proposition 6.6.11 For arbitrary charts A and C we have, 

CFin s;;; T O AFin 

<=:} [See Appendix B.13 for details] 

\I Ye • :l t1 • Ye * t; E K1 

Finalisation applicability, on the other hand, holds trivially because the 

relation CFin is total. 

The following lemma is used in the respective derivations for both appli­

cability and correctness. 

Lemma 6.6.12 For arbitrary sequences si and so, and bindings xi~c, z?c, we 
have, 

(xie·ic,....,si, so, z1) </. dom( Te,,.. dom AStep) 

<=:} [ See Section B.13 (page 260) for proof] 

V Xim, Z2, Xom, Xoe • Z1 *Xie* Xoe * ~ * xim * X~m E R-1 ::::} Pre A (z2 * Xim * Xom) 

Now for applicability we have: 

Proposition 6.6.13 For arbitrary charts A and C we have, 

dom CStep s;;; dom( T e,,.. dom A Step) 

<=:} [See Appendix B.13 (page 261) for details] 

\I Ye • (V Va • Ye * v: E R-1 ::::} Pre A Va) ::::} Pre C Ye 

And finally for correctness: 

Proposition 6.6.14 For arbitrary charts A and C we have, 

dom( T e,,.. dom A Step) -E3 CStep O T s;;; T O A Step 

<=:} [See Appendix B.13 (page 262) for details] 

\I Ye, f-- Zc, Ya • ( {V Va • Ye * v: E R-l ::::} Pre A Va) /\ 
t • 1 1) 1 1 , • 

Ye* f--zc E C I\ f--zc * Ya E n- ::::} :l t2 • Ye* f:i E n- I\ t2 * Ya E A 
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Following from these derivations, Definition 6.6.4 gives the introduction 

and elimination rules for backward simulation refinement: 

D fl ·t· 6 6 4 r•• r•• e Ill IOD . . For arbitrary charts A and C, and arbitrary bindings Ye c, Ya A , 
Tm T"' 

Va A, and 1-zc c, we have, 

I- inA ~ inc 

f-- Ye* a~ E R-1 

Ye E lnitc, Ye * Y~ E R-1 I- Ya E. /nit A 

Ye * V~ E R-1 ::::} Pre A Va f-- Pre C Ye 

Ye * V~ E R-l ::::} Pre A Va, Ye * I-zc' E C, f-- Zc * y~ E R-1 I- Ye * b~ E R-1 

Ye * V~ E R-l ::::} Pre A Va, Ye * I-zc' E C, I-Zc * y~ E R-1 I- b1 * y~ E A 
--------------------------- (;J;b) 

C ;;;)Tb A 

C ;;;)Tb A Ye * a' E R-1 I- P 
1 (::r ) p -Tb/ 

C ;;;)Tb A Ye E lnitc Ye* y~ E R-1 
------------- ( ;;i:;:-b m> 

Ya E lnitA 

Ve * v~ E R-1 I- Pre A Va 

Pre C Ve c;;i:;:-b 1v> 

Ye * v~ E R-1 I­

Pre A Va 

Ye* b~ E R-1, 

bi * y~ EA I- p ______________ p ______________ c;;i:;:-b ,v> 

where the usual conditions hold for a1, b1 and P. 

Again, these rules are very similar to the introduction and elimination 

rules presented by Deutsch and Henson [19] for SB-refinement. 

6. 7 Firing conditions refinement 

6. 7 .1 Forward simulation 

To derive appropriate refinement rules for the firing condition semantic in­

terpretation, we need only strengthen the correctness refinement condition. 

Again following the work of Derrick and Boiten [16] we strengthen the cor­

rectness condition of Definition 6.6.1 to the following. 

S ~ CStep ~ A Step~ S 
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Using a similar derivation to that for the correctness condition for forward 

simulation refinement under the total chaotic interpretation we have, 

S O CStep ~ AStep 9 S 

I I • I • I 
'<I Ya, Ye, f--zc • (Ya* Ye E R I\ Ye* f--zc E C) ::::} 3 t-i • Ya*~ E A I\ t2 * f--zc E R 

Now we define the introduction and elimination rules for forward simula­

tion refinement assuming a firing conditions semantic interpretation. 

Definition 6. 7.1 For arbitrary charts A and C, and arbitrary bindings y;'7, yJ'A, 
T'o T'o 

Va A, and f-zc c, we have, 

f-- outA ~ outc 

Ye E Initc f-- a1 E lnitA 

Ye E Initc f-- a1 * y~ E R 

Pre A Ya, Ya* y~ E R f-- Pre C Ye 

Ya * Y~ E R, Ye * f-- zc' E C f-- Ya * b~ E A 

Ya* Y~ E R, Ye* f--zc' E C f-- b1 * f-z/ E R 
----------------- (-;;Jt,f) 

C ~/cf A 

a1 E /nit A, a1 * y~ E R f-- P C ~/cf A 
utA ~ outc (-;;Jfa:f ,) 

C ~/cf A Ye E Initc 
p ( -;;Jfa:f II) 

C ~ /cf A Pre A Ya Ya * y~ E R 
----'--'----P-re_C_yc _____ ( -;;Jfa:f 111) 

I • Ya* b~ EA, 
b1 * f-z/ E R f-- P 

-----------p----------- (-;;Jfa:f ,v) 

C ~ /cf A Ya * y~ E R Ye* f--zc E C 

where the usual conditions hold for a1 , b1 and P. 

6.7.2 Backward simulation 

To derive the appropriate rules for backward simulation refinement assuming 

a firing conditions semantics we need again only strengthen the associated 

correctness condition of Definition 6.6.3. That is, for correctness we need to 

show the following holds. 

CStep 8 T ~ T 8 AStep 

146 



From the obvious derivation we now have 
' 

CStep O T ~ T O AStep 

<=} 

\/ Ye, Ya, I-Zc • Ye * I-Zc I E C I\ I-Zc * y~ E R-1 => 3 ~ • Ye * ~ E R I\ ~ * y~ E A 

The introduction and elimination rules for backward simulation refine­

ment assuming a firing conditions semantic interpretation are defined as fol­

lows. 

D fi T'o T'o 
e nition 6. 7.2 For arbitrary charts A and C, and arbitrary bindings Ye c, Ya A, 

T'o T'o 
Va A, and 1-zc c, we have, 

1- inA ~ inc 

I- Ye * af E R-1 

Ye E lnitc, Ye* y~ E R-1 I- Ya E InitA 

Ye * v~ E R-1 => Pre A Va I- Pre C Ye 
' " I 1 Ye * I-Zc E C, I-Zc * Y~ E R- I- Ye * bf E R-

Ye * I-zc' E C, I-Zc * Y~ E R-1 I- b1 * y~ E A 
--------C-:::J--A-------- ( :;;Jj;,b) 

-feb 

C -;;;Jfeb A 

C -;;;Jfeb A Ye E lnitc Ye* y~ E R-1 

-------------- (:;;Jft:bm) 
Ya E lnitA 

Ye * v~ E R-1 I- Pre A Va 

Pre C Ye ( :;;Jft:b1v> 

C -;;;Jfeb A Ye* 1-zc' E C 1-zc * y~ E R-1 
Ye* bf E R-1 , 

bi* y~ EA 1- P _____________ p ___________ ( :;;Jft:bv> 

where the usual conditions hold for a1, b1 and P. 

Notice that, unlike the trace semantics for charts, we do not have to add 

any extra machinery, for example the special output signal .1, to the partial 

relations semantics to encode the abortive behaviour of charts. 

The rules for both forward and backward simulation refinement assuming 

a firing conditions semantic interpretation correspond respectively to the 

SPF-refinement and SPB-refinement of Deutsch presented in [17]. 

147 



In the following section we demonstrate how the refinement rules for 

µ-Charts, described here, can be used to reason about properties of the lan­

guage itself. In particular, we use the rules to derive the necessary side­

conditions that guarantee that a refinement of a chart is monotonic with 

respect to composition. 
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Chapter 7 

Monotonicity 

As with any language that provides operators allowing modular specifications 

and a refinement calculus for step-wise development, the monotonicity prop­

erties of the µ-Charts operators needs to be considered. These monotonicity 

properties are important for µ-Charts so that the language supports modular 

development that compliments the modular specification of reactive systems. 

Refinement is considered monotonic with respect to a language operator if 

a refinement of one part of a composite specification implies a refinement of 

the specification as a whole. 

Both Deutsch, Henson, and Reeves [21] and Groves [32] show that in gen­

eral the "usual" Z schema calculus has poor monotonicity properties. Recall 

that the semantics of µ-Charts is defined using the Z schema calculus and the 

refinement calculus for µ-Charts is derived using two of the standard notions 

of refinement for Z. Therefore, we expect that the refinement notion for µ­

Charts will also have poor monotonicity properties. Section 7 .1 describes the 

side-conditions that are necessary to guarantee that refinement is monotonic 

with respect to the chart composition operator. 

Even though the monotonicity side-conditions described in Proposition 

7.1.1 are presented before the monotonicity result itself, the conditions were 

formulated and refined from the proof of the monotonicity property (see 

Appendix B.14 page 264). That the process of proving the monotonicity 

property allows us to state ( and prove) these necessary side-conditions is 

evidence that the goals of this thesis have been met. That is, the formal 

framework presented allows us to formulate precise descriptions of general, 

and typically non-obvious, language properties. In the case of the mono­

tonicity result presented here, the first of the three required side-conditions 

is particularly non-obvious and at first reading may appear incorrect. How-
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ever, the proof of monotonicity and careful evaluation of what this condition 

actually entails, makes the significance of the restriction clear. 

Section 7.2, outlines the most significant difference between the original 

µ-Charts [78] and the semantics and refinement notion presented here. This 

follows on from the observations made in Section 6.3 (page 130) where we 

excluded the do-nothing and partial chaotic trace semantic interpretations 

for the given chart semantics. Finally, Section 7.3 argues some conclusions. 

7.1 Monotonicity of the µ-Charts composi­

tion operator 

We begin by showing that the composition operator of µ-Charts is monotonic 

with respect to forward simulation refinement only when appropriate side­

conditions hold. Like the investigation of [21], the monotonicity proof itself 

is used to establish the necessary side-conditions. After ascertaining the 

required side-conditions an intuitive (in chart terms) justification for their 

necessity is given. 

Recall that, by definition (Section 6.6.1, page 142), to show that a forward 

simulation refinement holds between two charts requires that we show that 

an appropriate simulation exists between the charts. The proof of mono­

tonicity relies heavily on splitting the definition of the simulation into two 

parts, the simulation between the respective charts' configurations using the 

corresponding relation and the simulation between the allowable input and 

output signals using the relation IO (see Section 6.4, page 136). This notion 

of splitting the simulation relation was introduced in Section 6.4 where we 

define the corresponding relation between two charts A and C as Corr~ and 

the input/output relation as IO~. Where previously we have denoted (to­

tal chaotic) forward simulation refinement between two charts C and A as 

C ~rf A, here we supplement the relation with an explicit label that names 

the simulation required for refinement. So, assuming that chart C refines 

chart A using the simulation S, we will write C ~;1 A. 

7 .1.1 Monotonicity result for forward simulation re­

finement 

Proposition 7.1.1 states the monotonicity result for forward simulation re­

finement. The proof is given in Appendix B.14, page 269. 
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Proposition 7.1.1 If, for arbitrary charts A1, Oz, and signal set '11, we have 
that, 

-----------s~ outA 1 n outs = outc2 n outs 

where T =def Corrf: I\ Iof; for Gil! = (C2k, and Ail! = (A1k,, then for arbitrary 

chart B, we have the monotonicity result, 

C2 ;J~ A1 SC1 SG.z SC3 

( C2 I \JI I B) ;;i:f (A1 I \JI I B) 

where S =def Corr~2
1 /\ CorrB I\ IO~, and R =def Corr~; I\ Jo~;. 

Despite the intricate appearance of the three side-conditions required for 

monotonic refinement of composed charts, these conditions are not unex­

pected when described in terms of charts themselves. 

First consider the following property that holds in general for arbitrary 

charts A1 and C2 , and feedback set '11. 

Lemma 7.1.2 

C2 ;J~f A1 outA 1 n '11 = outc2 n '11 
T' [ C2k, ;;)Tf (A1k, 

where T' =def Corr~; I\ IO~; 

Given this property holds it follows that, in the context of the monotonic­

ity proof of Proposition 7.1.1, i.e. where SC1 holds, the charts A1 and Oz are 

output equivalent with respect to the signals in the set '11, i.e. (C2k, ~o (A1k,. 
In words, an environment that reacts to just those signals in the set '11 could 

not tell the difference between the charts A1 and C2 . Therefore, we see 

that one of the properties required to guarantee monotonic refinement ( with 

respect to composition) is that refining one part of the composition, say re­

fining chart A1 into C2 , cannot change the behaviour of A1 with respect to 

the signals in '11 that are used to communicate with the other part of the 

composition, e.g. chart B. 

To explain the role of the side-condition SC1 more specifically, with regard 

to the monotonicity proof (Section 8.14, page 269), we describe two distinct 

parts that SC1 plays in the proof. 

151 



Firstly, SC1 enforces that the precondition of the chart, i.e. the set of 

state/input pairs for which the chart has explicitly defined behaviour, can 

not be weakened. Note that here we use the term weakening of the precondi­

tion in a very strict sense; side-condition SC1 restricts any weakening of the 

precondition within the domain defined by the input interface of the abstract 

specification. Extending the domain of definition for a chart specification, 

i.e. increasing the input interface and weakening the precondition outside of 

the original domain, is still permitted in general. 

This first aspect of the side-condition SC1 is required for the part of 

the monotonicity proof related to the correctness property introduced in 

Section 6.6.1, page 139. 

Figure 7.1 presents a counter-example that illustrates why this part of 

side-condition SC1 is necessary in terms of charts. Given the charts A and 

C we clearly have that C2 --;Jr/ A1, yet it is not the case that C --;Jr/ A. 

That is, even though C2 refines A1 , the composed chart C is not a valid 

refinement of A. The defined reaction of chart A given input {a} is to output 

{w, t}, i.e. the two left hand transitions of chart A combine with respect to 

feedback to create an overall chart transition triggered by just the input {a}. 

However, chart C can nondeterministically choose to output { w, t} or { w, s} 

given input {a}, i.e. both the respective left hand and right hand transitions 

combine to give this nondeterministic behaviour. Therefore, C has additional 

nondeterministic behaviour to A and no valid refinement holds. 

A1 

;a&t/w~ 

B 

w/t~w/s 

C2 

a&t/w~a&-t/w 

: B 

w/t~w/s 

(w,t} 

Figure 7.1: SC1,partl: Charts A= (A 1 I {w, t} I B) and C = (C2 I {w, t} I B) 

The second aspect of SC1 is that it insists that the output behaviour, with 

respect to feedback, of an abstract specification is not changed via refinement. 

In the monotonicity proof, this aspect of SC1 is represented by Lemma B.14.3 

(see Appendix B.14, page 267). The property is required to prove the part 

of the monotonicity result related to the applicability condition. 

In terms of charts, Figure 7.2 illustrates another counter-example that 

demonstrates why this second aspect of SC1 is a necessary requirement for 

monotonic refinement. Note that the output interface of the chart C2 is 
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assumed to contain the signal w, i.e. we assume Ci is a behavioural refinement 

of Ai rather than an interface refinement. Again we have that the composed 

chart C does not refine the chart A. This is because A is defined for input {a} 

due to feedback on w where chart C is not. Therefore chart C acts chaotically 

for input {a} and the resulting additional nondeterminism invalidates the 

refinement relation. 

A1 

aiw~ai 

.................................. , 
B 

wit~ 

I C2 I 
I I 
r ~ail 
'~I 
!································· 
. B I 

wit~ 

Figure 7.2: SCi and SC2: Charts A= (Ai I { w} I B) and C = ( Ci I { w} I B) 

The same charts from Figure 7.2 can be used to demonstrate why the 

side-condition SC2 is required for monotonicity. In this case, however, we 

assume that the output interface of chart C2 is reduced to the empty set 

of signals, that is, in this case C2 is an interface refinement of Ai rather 

than a behavioural refinement as above. Given this assumption SCi holds, 

that is, [Ai)111 is a valid refinement of [C2k,. However, from inspection it is 

obvious that SC2 does not hold in this case, that is, outA 1 n '11 i- outc2 n '11, 

specifically, { w} n { w, t} i- {} n { w, t}. The side condition SC2 is required to 

prove monotonicity in relation to the correctness condition. 

Finally, the side-condition SC3 is required because µ-Charts refinement 

allows the designer to change the output context of a chart using interface 

refinement. If an interface refinement of one chart in a composition extends 

the control that the chart has over the environment using signals that were 

originally used just by the other part of the composition, then there is the 

possibility that this new behaviour, from both charts, will be inconsistent 

when the charts are recombined in composition. For example, consider the 

counter example illustrated by the charts of Figure 7.3. 

A1 

B 

wit~-wis 

C2 

C::X)ait 

B 

wit~-wis 

Figure 7.3: SC2(ii): Charts A= (Ai II B) and C = (C2 II B) 
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Here the valid interface refinement ~ ~rf A1 allows C2 to control its 

environment over signals previously dealt with by the chart B, i.e. the signal 

t. The result is that the composed chart C can output {s, t} for input {a} 

where chart A could only output { s} for input {a}. Hence, chart C has new 

behaviour that was not specified by chart A and therefore C is not a valid 

refinement of A. 

Similar arguments can be used to show that the same side-conditions, 

SC1, SC2 and SC3 , are sufficient to guarantee monotonic refinement with 

respect to the composition operator for charts in the backward simulation 

case. 

7.1.2 The firing conditions interpretation of µ-Charts 

A requirement for monotonic refinement is that the preconditions remain un­

changed over the domain of definition of an abstract chart. This requirement 

may cause an observant reader to question whether the total chaotic and fir­

ing conditions notions of refinement coincide in the case where refinements 

adhere to the monotonicity conditions. In particular, the work of Deutsch, 

Henson and Reeves in [17] shows that refinement based on a firing conditions 

approach can be considered as a notion that insists on the stability of the pre­

condition. That is, refinement that allows the reduction of nondeterminism 

but insists that the precondition is neither strengthened nor weakened. 

In fact, we can show that total chaotic refinement is both sound and 

complete with respect to firing conditions refinement when we insist that just 

the first condition SC1, for monotonic refinement, is met. Any (guaranteed) 

monotonic refinement that we can prove using the total chaotic rules can also 

be proved using the rules for firing conditions refinement. 

This is expressed by Proposition 7.1.3 which is proved in Section B.14, 

page 276. 

Proposition 7.1.3 For arbitrary charts A, C and signal set '1>' we have, 

C ~;f A [Ak, ~0 [C]w 

C ~]cf A 

C ~]cf A 

C =i 8 A -Tf 

where S =def Corrj I\ IOj and T =def Corrf I\ Iof: for Cw = [C]w and 

Aw = [A1w· 

Notice that the second aspect of the side-condition SC1 and the condi­

tions SC2 and SC3 are still a necessary requirement to guarantee that firing 
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conditions-based refinements are monotonic with respect to composition. In 

particular, the property described by Lemma B.14.3 (Section 8.14, page 267) 

still needs to be shown to ensure a monotonic firing conditions refinement. 

Therefore, while it is the case that using -;;Jfcf for chart refinement implies 

a "more monotonic" refinement calculus, the difference in reality is slight. 

The exact difference between the two notions of refinement is that the 

total chaotic model allows a refinement to weaken the precondition over the 

abstract domain of definition where the firing conditions model does not. The 

choice of the appropriate model can only be determined by the context of 

the refinement application. We do point out, though, that the total chaotic 

model provides the most general refinement framework. 

7 .2 Total correctness vs. partial correctness 

Here we outline and investigate the most significant difference between the 

original semantics for µ-Charts, in [78], and that given here. Apart from 

the obvious difference, that is, the original operators were defined in terms 

of infinite traces, the significant semantic difference is the meaning given 

to charts that use structuring operators in their definition. In the previous 

definition [78], the meaning of a composed chart is given in terms of the 

"totalised" meaning of the two composite charts. Here the meaning of a 

composed chart is given using the partial definition of the two composite 

charts. "Totalisation" then happens to the partial meaning of the composite 

chart. 

First we give some examples that makes clearer exactly what is meant 

by totalising before or after composition, then we discuss how the original 

semantics might be encoded in a relational framework similar to the relational 

framework used here. This allows us to consider further the divergence of 

the two language definitions in terms of the notional charts Chaos and True 

introduced in Section 6.3 , page 130. Finally, we will outline the some of 

the ramifications, in terms of refinement, of choosing one or other language 

definition. This includes further consideration of monotonicity concerns. 

To illustrate the difference between the respective definitions of µ-Charts, 

we use the three so-called pathological examples of composition, introduced 

by Scholz in Chapter 2 of [78]. For each of the examples we use a type of 

chart "meta-notation" to describe the meaning of the example compositions 

in terms of sequential charts. This "sequentialisation" of the composed charts 

makes it easier to see the differences between the two semantic definitions. 
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y 

V 

Figure 7.4: General form of "pathological" examples 

The idea of the "meta-notation" is that it allows us to encode explicitly the 

chaotic totalisation that occurs under both of the semantic definitions. Recall 

that the significant difference between the two definitions is due to when this 

totalisation occurs. 

Each of the three examples have the same form, which is described by 

the generic chart Sn= C1 I { a, b} I C2 of Figure 7.4. 

The three example charts S1, S2 and S3 follow from the generic chart by 

replacing the transition labels t1 , t2 , r1 and r2 as follows: 

In the following we refer to the semantics given here as the total correct­

ness semantics and the original semantics ( from Scholz [78]) as the partial 

correctness semantics. These phrases are not suggesting that one semantics 

is more "correct" than the other, simply that they differ in the meaning as­

signed to composed charts. We describe in the following exactly why one 

may be considered "total" and the other "partial". 

Figure 7 .5 demonstrates the total correctness semantic interpretation of 

chart S1. 

tcS_1 

XU / a,b YV 

-a& -b/ 

tcS_1' 

XU 

·a& ·b/ 

I 
/a 
/b 
/{a,b} 

/ ab 

Figure 7.5: Total correctness interpretation of pathological chart SC1 
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The chart tc81 is derived from chart 81 by using the sequentialisation 

technique described in Section 3.4. Chart tc8{ is then the total-chaotic to­

talisation of chart tc81 using our so-called meta-notation. This includes the 

special state labelled l., the new signal l. and four extra transitions. Note, 

the labels on these transitions are a shorthand for four individual nondeter­

ministic transitions labelled " / ", " /a", " / b" and " / { a, b }" respectively. 

The transition label " / " denotes a transition with a true trigger condition, 

i.e. it is triggered by any input, and the command that outputs the empty 

set of signals. 

Now consider the partial correctness interpretation of chart 81, demon­

strated in Figure 7 .6. Here the partial correctness semantics is encoded 

by totalising the two original sequential charts to give C{ and q (left) 

and then using the same sequentialisation technique to give the sequential 

chart pc8{ (right). 

c_.-,·---­
x 

·a/ 

I 
/b 

·········································---~ / ab YV 

I 
/a 
/b 
/(a,b 

Figure 7.6: Partial correctness interpretation of pathological chart 8C1 

The partial correctness meaning is essentially the same as the total cor­

rectness meaning. At least, in both cases tc8{ and pc8{, we could remove the 

introduced meta-notion constructs and rely on the implicit chaotic semantic 

interpretation to encode the meaning in each case. 1 

Now consider chart 82 , the second example of the chart in Figure 7.4. 

The total correctness interpretation of chart 82 is demonstrated in Figure 7. 7. 

Chart tc82 is the result of sequentialising 82 and chart tc8~ gives the total 

1 Note that the examples in [78] on which these are based appear to assume implicitly 

the behaviour we have encoded explicitly using the generic transitions labelled ~ and 72. 

That is, it appears that Scholz is assuming a "do-nothing" interpretation for the empty 

input in the initial states. 
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meaning of 82 • 

tcS_2'8 & b / 

tcS_2 a & b/ 

xv ·a/ 
I 
!g 
/{a,bJ 

YU 

Figure 7.7: Total correctness interpretation of pathological chart 8C2 

Alternatively, Figure 7.8 demonstrates the partial correctness interpreta­

tion of 82 . Here we see that pc8~ is significantly different from tc8~. Where 

tc8~ represents persistent chaotic behaviour for any input after the chart 

reaches one of states XV or YU, the chart pc8~ does not. For instance, from 

state XV, given the input {a}, chart pc8~ gives exactly the output {a}. 

C_1' 
a/ pcS_2' a & b/ 

y 

C 2' 
' - b/ 

V 

x_i_ 

-at 

VJ_ 

I 
/a 
/b 
/{a, 

I 
/a 
/b 
/{a,b} 

Figure 7.8: Partial correctness interpretation of pathological chart 8C2 

This example demonstrates that the original partial correctness semantics 

encodes unobservable chaotic behaviour. That is, one part of the composition 

behaving chaotically does not affect the other part of the composition. This 

is in contrast to the total correctness semantics given here that encodes in-
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trusive chaotic behaviour as described in sections 4.3 and 6.3 (pages 80 and 

130) . 

Significantly, unlike the first example, we can no longer remove all of 

the meta-notion from the chart pcS2 and rely on an implicit encoding of the 

required chaotic semantics. That is, if we were to remove the "meta-states", 

for example state .l U, and the associated transitions leading to and leaving 

from those states, the implicit encoding of chaotic behaviour thereafter would 

no longer have the same meaning as the chart pcS~ as pictured. However, 

given that refinement uses simulation, we could still show that the original 

example chart S2 is equivalent (by a refinement relation in both directions) 

to a chart like pcS2 without state .l.l. 

Finally, for the example chart S3 , the total correctness interpretation is 

demonstrated in Figure 7.9: 

tcS_3 

XU YU 

·a& bi 

Figure 7.9: Total correctness interpretation of pathological chart SC3 

y 

c_2· 
V 

pcS_3' 

XU 

·8& b/ 

_i_v 

I 
/a 
/b 
/(a,b 

YU 

b/ 
I 

Figure 7.10: Partial correctness interpretation of pathological chart SC3 

The partial correctness interpretation however, given in Figure 7.10, 
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demonstrates that in cases where composed charts have transitions that con­

flict for some input, the specification is essentially unimplementable as a 

reactive system, for that input. In particular, chart pcS~, given the empty 

input while in state XU, is undefined. Because the totalisation of undefined 

behaviour happens before the composition in the partial correctness case the 

point at which transitions conflict has no implicit meaning, it is simply un­

defined. Hence, there are no valid refinements that reintroduce behaviour for 

that particular input, and therefore, there are no "reactive" implementations 

for this specification. We discuss the ramifications of this in the following 

section. 

7.2.1 Refining composition 

It is possible to define the composition operators for the language µ-Charts, 

using the methodology and framework presented here, so that it encodes 

unobservable chaos, i.e. the partial correctness approach discussed above. A 

simple approach would be to explicitly encode the necessary machinery, i.e. 

the special state .l and related transitions, directly in the model of charts. 

Deriving refinement rules that encode this model implicitly is, however, still 

an open research question. 

While we cannot describe the exact form of a partial relations-based re­

finement calculus which implements a partial correctness semantics, we have 

shown that one significant difference between the two approaches (partial 

correctness and total correctness) will be the ability to resolve conflicting 

behaviour introduced via the composition of two charts. 

In the context of monotonicity concerns, this difference will impact on 

the way that reactive systems can be developed from specifications to imple­

mentations via refinement. For example, consider the case where each part of 

a composite specification is been developed separately using refinement, i.e. 

the situation in which monotonic refinement is of concern. When the separate 

developments are recombined to represent a more concrete implementation 

of the original specification, the choice between a partial correctness model 

and a total correctness model will become apparent if both of the separate 

developments have defined behaviours over some previously undefined input 

which turn out to be conflicting. 

First, for the total correctness refinement model the point at which the 

conflicting behaviour occurs will be represented by total nondeterministic 

behaviour, i.e. chaotic behaviour. This chaotic behaviour remains to be 

160 



refined to the appropriate deterministic implementation. That the conflicting 

behaviour is represented as chaos means that the behaviour must have been 

undefined, and therefore chaotic, in the specification itself. This is why the 

conditions necessary for monotonicity are quite strong in the total chaotic 

model. 

On the other hand, assuming a partial correctness model, the conflicting 

behaviour introduced by recombining the separate developments will be rep­

resented as an unimplementable point in the specification. This will require 

that the designer( s) decide and fix the appropriate development so that the 

conflicting behaviour is not introduced. Then the development can continue 

to the implementation. Given that the conflicting behaviour will be rep­

resented as an undefined point in the domain of the specification suggests 

that the conditions necessary to ensure monotonic refinement in the partial 

correctness model will be significantly weaker than those described above. 

7.3 Discussion 

In this section we have shown how the formal framework presented in this 

thesis can be used to prove general non-obvious properties that hold of µ­

Charts. 

In particular, we formulated and proved the side-conditions necessary 

to guarantee monotonic refinement with respect to one side of a composed 

µ-chart. Also, we discuss the significant difference between the semantic 

definition of µ-Charts given here and the original definition given by Scholz 

in [78]. That is, the semantic definition that we give encodes an "infectious 

chaos" or "observable chaos" through chart composition where the original 

semantic definition captured a "restricted-to-one-chart chaos" or "unobserv­

able chaos" . 

More generally, this section demonstrates the purpose of the formal frame­

work for µ-Charts which is the contribution of this thesis. That is, firstly, the 

ability to investigate properties of the language with a high level of confidence 

that the properties are correct in general. We can see from the justification 

of the monotonicity property by examples, that to formulate such proper­

ties using a case-by-case examples-based approach is at least difficult if not 

impossible. Obviously it is impossible to prove general properties correct 

by example. This frailty of formulating properties by example is reinforced 

again in Section 7.2 where we discuss the differences between the respective 

semantic definitions of µ-Charts. Here we reconstruct three specific repre-
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sentative examples in an attempt to highlight these differences; however it 

is almost certainly the case that the subtleties involved are difficult to see 

using limited examples. 

The second strength of a formal language is the ability to compare and 

comment on language design issues. Though we have done little here by 

way of a formal comparison of the different definitions of µ-Charts, we have 

shown that it is at least possible to give a similar notion of refinement for 

charts using a partial relations-based formulation rather than the more usual 

traces of behaviour approach. Also, the process of formalisation has allowed 

us to make some insightful comments on the significant differences between 

the respective language definitions; that these differences became clear was 

strictly due to the process of formalising the language definition (including 

refinement). In the literature there are several comprehensive examples of 

comparing the significance of language design using the respective languages' 

formal semantics; for examples see [20, 53]. 
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Chapter 8 

Conclusions 

The aim of this thesis was to provide a rational reconstruction of µ-Charts via 

a "proof-theoretic" treatment of the language. The intention of the work pre­

sented was to provide a thorough account of the language definition, including 

a logic for reasoning over the structure of reactive system specifications and 

about formal (i.e., including proofs) program development using refinement. 

The work is meant to facilitate ongoing research that results in a formal 

program development framework that can be used by practising engineers to 

develop correct implementations of reactive system specifications. 

The method that we employ in this research closely follows that intro­

duced by Deutsch, Henson and Reeves in their investigation of the speci­

fication language Z via set theory. That is, we take the existing language 

µ-Charts and model it in another well-known formal language Z. From the 

model and the existing logic for Z we deduce a logic specifically for µ-Charts. 

The process of using the logic to investigate properties of the language is used 

to guide the design (i.e., the form of the logic rules required) of the logic itself. 

The proofs of these properties are considered to be the experiments which 

determine that the logic is sufficient for proving useful properties about the 

language. 

An outline of the contributions of this thesis is as follows: 

• We provide a detailed syntactic and semantic description of the lan­

guage µ-Charts. This includes the formulation of a set of rules that 

provide a logic for µ-Charts. The rules of the logic are given as a se­

ries of introduction and elimination rules that allows natural deduction 

style proofs of language properties; 

• We contrast several possible semantic interpretations that can be as­

signed to µ-charts in the case where a specific definition of required 
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behaviour is left unstated; 

• We discuss in detail (in terms of the usual traces of behaviour semantics 

for communicating systems) the notion of refinement that we assign to 

the language via the definition of a calculus for refinement; 

• We derive a calculus for the refinement of µ-charts. This calculus 

consists of introduction and elimination rules that allow a natural 

deduction-style proof of correctness to be formulated to show that the 

required refinement relationship holds between two µ-Charts specifica­

tions; 

• We briefly consider the important monotonicity properties of the re­

sulting notion of refinement. This includes outlining the significant 

difference between the language described here compared with the def­

inition of µ-Charts given by Scholz in [78]. 

8.1 Outcomes 

Here we discuss several outcomes of the presented research that we consider 

significant. 

The examination of µ-Charts presented here is a comprehensively docu­

mented reconstruction of a variant of the original language. We describe in 

detail what µ-Chart specifications denote and what it means when we prove 

that a refinement relation holds between two specifications. The reconstruc­

tion of the language demonstrates the complexity of the language. This 

complexity is easily forgotten given the graphical nature of the formalism. 

That is, it is easy to convince oneself (wrongly) that required behaviour is 

captured by a µ-Charts specification. This emphasises the necessity of formal 

specification verification and formal refinement for visual representations of 

system requirements. 

We have demonstrated how a partial relations-based semantics for charts 

can be constructed that captures properly the behaviour of a µ-Chart speci­

fication. This was identified as important in the original specification of the 

language, by Scholz, as a practical means to aid in the formal verification 

of reactive system specifications via model checking. However, the original 

relational encoding gave denotations to a limited set of µ-Chart specifica­

tions only. Here we show how we can define the language strictly in terms of 

the denotational semantics provided by the Z model of charts. Rather than 
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considering model checking as a means of formal verification, we concentrate 

on allowing the formulation of formal natural deduction style proofs as a 

method for formal verification. 

We show how a well-known method for deriving data refinement rules for 

Z can be extended to deal with a particular type of interface refinement. That 

is, refinements that allow changes to the input and output characteristics of 

a specification, as well as the usual changes in the state representation from 

abstract to concrete specification. 

Our investigation of the monotonicity properties of refinement highlighted 

the significant difference between the µ-Charts described here and the µ­

Charts previously described by Scholz. The chart semantics described here 

encodes an intrusive form of chaotic behaviour. If one chart in a composition 

is considered chaotic the entire specification is considered chaotic. This is in 

contrast to the previous semantics of Scholz [78) that allowed isolated chaos. 

That is, chaos in one chart of a complex specification does not affect any 

other charts. Significantly, this difference in the semantic definition of the 

chart structuring operators affects the monotonicity of the resulting notion 

of refinement. The side conditions required to guarantee refinement is mono­

tonic are stronger for the refinement described here than they are for the 

refinement defined in the isolated chaos semantics. On the other hand, it is 

possible, given the semantics defined here, to translate any complex specifi­

cation into a simple sequential specification, whereas, in the Scholz semantics 

there exist complex charts that do not have an equivalent sequential chart. 

Therefore, improvements in the monotonicity properties are offset by a loss of 

the ability to reason using equality. We chose to retain the ability to reason 

with equality, i.e. allowing a designer to conceptualise the behaviour of com­

posed charts as though they behave in the same manner as some sequential 

chart, at the expense of stronger side-conditions for monotonic refinement. 

Also, related to the previous observation, the given definitions of the 

composition operators and refinement notion for charts presents a total cor­

rectness semantics. That is, if the composition of two charts is undefined, 

from some state given some input, the result is that this undefined behaviour 

is considered chaotic and therefore it can be correctly refined into any be­

haviour. On the other hand, the original semantics might be considered a 

partial correctness semantics because a designer can specify a reactive sys­

tem that is not implementable. In some cases, given the semantics of the 

composition operator, composing two inconsistent specifications can result 

in a specification for which there exists no reactive system implementation. 
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Of course, this remark assumes a context where a reactive system implemen­

tation is considered to be an implementation that is prepared to react to any 

input provided by the environment. 

8.2 What we have not done (Future work) 

The following description of why the work presented is not yet complete is 

the motivation for the future research questions that we propose. 

At best the work presented here represents a core logic for µ-Charts. 

Unfortunately, it does not represent a "practical" tool that could be easily 

adopted by practising engineers building reactive systems. The intention of 

this work is to provide a solid foundation from which a formal framework 

for reactive system development, including correctness proofs of program 

derivations, can be constructed. 

Significantly, we note that the only "experiments" that have been con­

ducted using the presented logic prove properties of the object language. 

Though important from a language construction point of view, this does not 

provide significant insight into how the logic should be developed further to 

become a practical tool for its intended purpose, i.e. formal program devel­

opment of reliable reactive systems. While it is possible to prove that given 

refinement steps are valid using the logic presented, it is not yet developed 

enough to be considered a practical development tool. As Scholz suggested 

in [78], the logic for refinement needs to be lifted into the object language. 

This lifting of the logic should be developed carefully based on both the­

oretical and practical considerations. The logic should provide an extensible 

"refinement toolkit" that is formed by practical attempts to develop reactive 

systems from formal requirements. Several case studies that involve the re­

alistic development of reactive systems should provide the motivation for the 

initial rules. Common program derivation steps should be encoded in the 

logic. Like the well-understood notion of "software reuse" -common to the 

development of large software systems-a similar concept of refinement reuse 

should be adopted. In other words, refinement strategies can be developed 

for particular, common program development tasks. The core logic here can 

be used to ensure that the lifted logic is sound. 

Another relevant question that remains to be answered is: does the for­

malisation of refinement itself suggest useful methods for developing reactive 

systems? For example, it is common in presentations of data refinement to 

consider the simulation relation, required to prove that a refinement exists, 
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as a part of the design process. That is, the simulation relation is chosen 

precisely to represent a particular type of refinement, for example chang­

ing abstract data types such as sets into more concrete data types such as 

sequences. Identifying particular types of simulations that provide useful 

program developments for reactive system could provide significant ways to 

enrich the "refinement toolkit" for reactive systems. 

Tool support will be a necessity for any practical formal development 

framework. It is clear that tools that provide simple facilities, such as type 

checking for Z specifications, offer significant benefits in user satisfaction. It 

is almost certainly the case that even such small enhancements, offered by 

tool support, significantly increased the usability of the language. Before we 

can accurately determine whether working engineers can benefit from the 

process of providing proofs of correctness for their program developments, 

significant tool support would be required. The tools need to be built with 

the eventual user in mind rather than considering just the technical aspects 

of theorem proving. A significant requirement initially is a tool that aids 

in providing natural deduction-style proofs using Zc. It should allow the 

formulation of proofs in a manner natural to this style of proof. Some of 

the obvious facilities required include: allowing both top-down and bottom­

up reasoning; managing undischarged assumptions that are introduced by 

application of proof rules; facilitating subproof construction, including the 

ability to contract or hide the details of subproofs leaving visible just the 

assumptions and conclusion; the ability to easily rearrange proofs to allowing 

whole subproofs to be selected and moved. The tools should be specific to 

the object language-translating the object language into a "tool-suitable" 

language is a significant overhead and source of mistrust and introduction of 

errors. 

The monotonicity properties of the language need to be investigated from 

a user's point of view. As we outlined above, the choice of model for the 

language makes a significant difference to the monotonicity properties of the 

language. The choice of the most appropriate model needs to be made by 

investigating the effect of the monotonicity side-conditions and the ability to 

reason using equality on "typical" reactive system designs. The monotonicity 

side-conditions are strongly related to the interface between two parts of a 

composite chart. It is not clear how this interface will be managed when 

formal program development follows the structure of the specification, nor 

whether it is sensible to expect that the structure of the specification should 

guide the structure of the design. Using a semantics that provides monotonic 
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schema operators for Z to model µ-Charts and deriving a related logic, using 

the method demonstrated here, will be necessary to contrast the alternative 

monotonic chart operators in the same meta-language. 

Finally, the integration of program development into the µ-Charts lan­

guage needs to be considered. Currently, the language only deals with spec­

ification statements. Refinement is the process of transforming an abstract 

specification into a concrete specification. As it stands the formal develop­

ment is complete when there is an obvious implementation of the concrete 

specification. However, integrating program constructs into the language 

should allow for formal development from specification to implementation. 

In summary, necessary future work includes: 

• Lifting the Zc-based logic into a logic that allows useful "high-level" 

refinements specifically designed for the development of reactive sys­

tems using the object language µ-Charts. The logic, for the formal 

program development of reactive systems, should be developed using 

case study-based experiments to guide the design of appropriate logic 

rules and completeness of the language. That the language is sound 

can be proved using the logic presented here. 

• An investigation into what parts of the formal design of the logic for 

refinement, based on existing data refinement techniques, can be used 

to identify useful formal development strategies for reactive systems. 

In particular, the possibility that the simulation relation may be used 

to guide and document design; 

• Tool support should be developed for the formal program development 

framework. The tools should obviously encode the formal semantics of 

the framework properly, but also be constructed with the user in mind. 

Integration with the object language should be seamless, and usability 

concerns a significant objective. 

• An investigation into the way in which the monotonicity properties of 

refinement affect formal design. In particular, what strategies are use­

ful for dealing with the interfaces (communication) between parts of 

complex reactive system specifications during formal program devel­

opment. Providing another logic for µ-Charts, based on a monotonic 

logic for Z, will be necessary for comparison. 

• Investigating the integration of reactive system program constructs, 
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and related program derivation rules, into the specification language 

µ-Charts. 

8.3 Concluding the conclusions 

The task of providing a reconstruction of the language µ-Charts itself pro­

vides significant insight into the task of developing complex systems. Several 

analogies can be made between the task of a formal investigation of the lan­

guage, presented here, and the task for which the language is meant to be 

used, that is, formal development of reactive systems. The specification of the 

language µ-Charts was taken primarily from the work of Scholz (78]. While 

this language specification was concise and well-investigated, the subtleties of 

the language itself were not fully understood until the task of formalising ( or 

implementing a logic for) the specification was undertaken. A rigorous for­

mal investigation of the language specification enforces a clear understanding 

of the problem and resolution of unclear characteristics of the system. Also, 

the formalisation provides clear documentation of design decisions. 

If we view the task of implementing complex systems as ultimately a 

formal encoding of an informal specification, then it is clear that the process 

of implementing reactive systems will entail the same complexities as the 

formal definition of the language itself. Formal program development must 

then offer the same benefits as those identified in this investigation of the 

language µ-Charts. 
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Appendix A 

Z c and Type Conventions 

In this appendix we give a brief introduction to the kernel Z-logic Zc. The 

introduction is very similar to that given in (19]. For a detailed description of 

the logic Zc and examples of its use we suggest that the reader consults [19] 

and (38]. We also introduce several conventions that are used throughout 

this thesis. In particular, due to the uniform nature of the Z that is used to 

give the semantics to µ-Charts, we introduce several notational coventions 

that are assumed when using the type system of Zc. 

A.I The logic Zc 

Zc is a typed theory in which the types of higher-order logic are extended 

with schema types. Schema type values are unordered, label-indexed tuples 

called bindings. For example, given the indexed types T; and labels 4 then 

schema types take the form: 

[ ... li : T; ... ] 

The bindings that inhabit this type are of the form: 

where each labelled observation li takes the value denoted by the term ti of 

appropriate type T;. 

The symbols j, .A. and Y denote the schema subtype relation and the 

schema type intersection and schema type union operators. The Zc meta­

operator a returns the alphabet set of labels for a schema type. That is, 

given the schema types T0 = [ ... 4 : T; ... ] and T1 = [ ... 71li : T1 ••• ], the expres­

sion a(T0 Y Ti) returns the set of labels { ... li···Tn.i···}- In particular, we write 

[o:T/z.o:T] to indicate the family of substitutions ... [lif z.li] ... where z is some 
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term and o:T = { ... 4 ... }. For example, given the schema type T = [m: NJ and 

binding zT, we have (m < O)[o:T/z.o:11 =def z.m < 0. 

The binding operator select, denoted by '. ', allows selection of the value of 

a specific labelled observation from a binding instance, that is~ l~t ~-l =def t. 

The operator filter, denoted by 'f' restricts a binding to include just those 

observations in a specified schema type. For arbitrary binding z and schema 

types T2 ~ T1 we have, zT1 f T2 =def yT2 where z.ti = y.ti for all ti E o:T2. 

We also make extensive use of the binding concatenation operator, written 

x * y with the assumption that the respective bindings x and y are of disjoint 

type. 

Now the interpretation of traditional Z schemas in Zc is simply sets of 

bindings as follows: 

[[SI Pl]zc =def {z E [S]zc I [P[o:S/z.o:SJ]zJ 

In using the logic Zc we omit typing information and the semantic brack­

ets whenever the context permits. That is, we often write predicates of the 

form z E S, where z is a binding and S is the name of a schema such that 

S ~[DI PJ or more commonly: 

That the semantic brackets are omitted is clear from the use of the mem­

bership relation E. The typing information can be recovered from the decla­

ration part of the schema S (in our example the meta-variable D). That is, 

assuming the schema type T = [DJ then [S]~<~ and zT. 

In order to reduce excessive use of the binding operator filter, we use 

the Zc notational conventions dotted membership, dotted equality and typed 

equality which are defined respectively as follows: 

Z To E S 1 Ti =def Z r Ti E s 
ZoTo ~ zt1 =def to f (To .A. T1) = ti f (To .A. T1) 

ZoTo =r zt1 =def to r T = ti r T [ T ~ T0 and T ~ Ti] 

Finally, we recapitulate the Zc definitions for schema renaming and hence 

schema priming and binding priming. Renaming refers to the systematic 

substitution of labels ( e.g. [lo - li]- label lo is renamed li) and is defined by 

the following rules: 

t ES (S~) 

t[/o - li] E S[/o - Li] 
t[fo - li] E S 
t E S[/o - Li] (S;_) 

172 



All occurrences of labels are systematically replaced, for example: 

(i) ~ ... li~ti··· D[l - mJ ~ ... 4[l +- m]~~[l +- m] D 

(ii) t./o[l +- m] = t[l +- m]./o[l +- m] 
(iii} l[l +- m] = m 

(iv) /o[li +- m] = lo when lo=/: l1 

Now, schema and binding priming are defined simply in terms of renam­

ing. That is, given the generic schema type T = [ .. .li···l, for schema sP T and 
binding z T we have: 

S' =def S[ ... 4 +- ( .. ] 

z' =def z[ ... li +- z: ... J 

The corresponding typing convention, that is T' = [ ... z: ... J, is also assumed. 

Importantly, the Proposition A.1.1 can be proved trivially using the def­

inition of priming and the rule (S±_). 

Proposition A.1.1 For the arbitrary schema Sand binding z we have, 

z E S <=} z' E S' 

In the following section we introduce µ-Chart specific notational conven­

tions, including a restricted form of the priming operator. 

A.2 Type notation conventions 

The previous section introduced some of the Z-logic Zc in all its generality. 

The use of the logic in this dissertation, however, is much more restricted due 

to the uniform nature of the types of schemas required to give the meaning of 

µ-Charts. Therefore, we introduce typing conventions here that are assumed 

throughout the investigation of the Z-based semantics for charts. 

Firstly, the schemas that describe the meaning of a chart can be consid­

ered, in general, as a relation between the before-state and input, and the 

after-state and output of each transition. Therefore, we are able to introduce 

the following typing conventions. 

For arbitrary chart C we assume that the schema type U contains the ob­

servation( s) that describe the chart's state information. That is, we assume, 

where the schema Charle is defined, as in Chapter 3, to capture the state 

information for chart C with arbitrary structure. 
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The schema types Vi, V 0 , Tact, Ti, T 0 and Tio, in relation to a chart 

C, are then defined as: 

vi =def [ic : inc] 

V 0 =def [oc : outc] 

vio =def vi y vo 

Tact =def [act: IP µState] 

Ti =def UY Vi 

T 0 =def UY V 0 

Tio =def UY Ti Y T 0 

Now we can easily describe the uniform relational type of the Z-meaning of 

both the transition semantics ( of sections 3.1 to 3.6) and the partial relation 

semantics (of sections 3.7 onwards) for µ-Chart C. We have: 

[ ] IP(Tar.tyTiYT"') 
[C]z, Zc 

[[ CB]~i Ti y T"') 

We abbreviate the two uniform relational types further by defining types 
Ta and T as: 

Ta =def Tact y Ti y To' 

. ' T =def T' y To 

Other, common notational conventions include using indexed meta-labels 

8c in place of [C]z, and C in place of [8c] 2 ", for chart C. 

Now, context permitting, we omit the type superscripts in most places 

and assume freely that types of the form T, Vi, V 0 , Ti and T 0 are defined 

appropriately. For example, given [ C]~}', the Z-semantics for chart C, the 

predicate x * z' E C is a well-typed abbreviation for: 

where the binding concatenation operator * is as previously defined on page 

172. 

Finally, we define the schema operator~ for schema types such that: 

A.3 The precondition operator 

The notion of the precondition of an operation schema U is formalised in a 

similar fashion to (20]. That is, the precondition of and operation schema 
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UJP(T;YT"') is a set of bindings whose type contains (at least) the input obser­

vations of U, i.e. those observations in the type Ti. If we again consider the 

operation U as a relation, then the set representing the precondition captures 

all input values of type Ti for which the relation is defined. The operator is 
defined as follows. 

Definition A.3.1 Given a schema UIP r, we have, 

Pre U x T3 =def 3 z • x * z' E U 

Note that, as m [20], the operator Pre is generalised such that the set 

of bindings that represents the precondition contains both binding of type 

Ti and related bindings whose type is an extension of Ti. The type of the 

binding z is restricted only so that it is disjoint from the type T3 of binding x 

(by application of*). Binding z may even be a binding with an empty type, 

in which case it must hold that T :5 T3 and therefore that x E U. Like for 

the operators E and == defined above, this generalisation is made to reduce 

excessive use of the filtering operator in the presentation of proofs. 

The precondition of the Z-semantics of a µ-chart represents the set of all 

before-state, input event pairs for which a transition is defined in the given 

chart. While this is simple for the specific case of sequential charts, the pre­

condition of charts that contain structure and interaction via signals becomes 

more cumbersome. We introduce the following rules for preconditions that 

follow directly from Definition A.3.1. 

Proposition A.3.1 Given the arbitrary chart C and the binding xr3 , we have, 

Pre C x x * z' E C I- P 
p (Pre-) 

X* z' EC 
Pre C x (Pre+) 

IPT · T where [ C]z, , Ti :5 T3 , T 0 :5 T4 and the usual conditions apply to z 4 and P. 

We give the following specialised rules that deal with the preconditions 

of composed charts. 
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Proposition A.3.2 Given arbitrary charts C1, C2 and C = C1 I \II I C2, and 

bindings z?1 , z.iu2 , x yio, we have, 

I I • 
Z1 * X1 * Y1 * V1 E C1, 

I I • 
z2 * x2 * y2 * v2 E C2, 

Pre C (z1 * z2 * x) x1.ic1 = (x.ic U fbv) n inc1 , 

x2.ic2 = (x.ic U fbv) n inc2 , 

V.OC = V1.0C1 U V2-0C2 I- p 
----------p------------ (Prel=I) 

I I • 
Z1 * X1 * Y1 * V1 E C1 

I I ' 
Z2*X2*Y2*V2 E C2 

x1. ic1 = ( x. ic U fbv) n inc1 

3:2.ic2 = (x.ic U fbv) n inc2 

v.oc = V1.0C1 U V2-0C2 
----------- (Prel~I) 

Pre C ( z1 * z:i * x) 

where fbv =def v. oc n '11, [ C]~,:, [ C1]~,:1 , [ C2]~}'2 , and the usual conditions hold 
£ V{" Vl" u 1 u2 V{" V:' 0 yio or x1 , Li , y1 , y2 , v1 , v2 2 , v and P. 

Proof A.3.1 
The proof for (Pre1=1) is trivial using (Pre-) and (Z1=1). Similarly, (Pre~1) follows directly 

using (Z1~ 1) and (Pre+). 

Also, rules (Pre11 ) and (Preij) are used to reason about the preconditions of 

charts that use the interface operator. 

Proposition A.3.3 Given arbitrary chart C, bindings 1-zc u'I!, u Vl0
, x yio, and 

signal set '11, for C'ill =def [ Ck, we have, 

Proof A.3.2 
For (Pre11 ) we have, 

Pre C'ill 1-Zc * u x.ic = u.ic'I! 
------------ (Prell) 

Pre C 1-Zc * x 

Pre C rzc * X u.ic\fl = x.ic 
------------ (Pre1t) 

Pre C'ill 1-zc * u 

--------2 
I- I I. G 

Zc * X* Y,t, * a E 
I I ' 

I-Zc * u * Y,t, * w E Gill x. ic = u. ic"' n inc Pre G I- Zc * X 
Pre Gill 1--zc*U __________ P_re_G_l--_zc_*_X __________ (Z11H2) 

------------------- (Pre-)(1) 
Pre G 1--zc *X 
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where (1 is: 

(d/) 
inc.,,= inc 

. C . (Vt.-d/) . . 
u.ic.,, _ inc. x.ic = u.ic. 

x. ic = u. ic. n inc. 
x.ic = u.ic.,, n inc 

1-- ' ' • C ------------- ( y:io_d/) Zc * u *Ye* w E \JI v•o \JI 
:3 w ,i, • w.oc.,, = a.oc n outc.,, Pre C\JI 1--zc * u 

Pre C 1--zc * X Pre cl}, 1--zc * u 
----'------:::----:---------.;;...._- (Pre-)(1) 

Pre C\JI 1--zc * u 

where (1 is: 

. . . C . ( vio-d/) 
_u_.i_c_.,,_=_x_._i_c __ u_.i_c_._-_i_n_c_. -,----...,.....-- (d/) 

u. ic.,, n inc.,, = x. ic inc. = inc 
, , C 1 ------::----,,- 2 

1--zc * X* Ye* a E u.ic. n inc= x.ic w.oc.,, = a.oc n outc.,, + 
------------------------------ (Zll) 

1--Zc * u * y~ * w' E cl}, 
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Appendix B 

Proofs 

This section presents the proofs for the various propositions and lemmas 

presented throughout this thesis. 

B.1 Proofs for Section 3.2: The Z transition 

model for sequential µ-Charts 

In order to prove Proposition 3.2.3 we introduce and prove the following 

lemmas. 

Lemma B.1.1 Given the arbitrary sequential chart ( C, I:, a, '11, 8) and transition 

t = (SJ, St, guard/ action), such that t E 8. For all bindings z T3 and x T3 we have, 

p(guard)[o:T0 / z.o:T0 ] z.ic U fbz = x.ic U fbx 
p(guard) [o: T 0 IX .0: T 0 l 

Recall that the function p (see Section 3.2) is defined recursively over 

the syntactic structure of transition guards. A transition guard (as defined 

in Section 2.1) is a list of signal expressions (either positive or negative) 

separated by the symbol&. Hence we prove this lemma by an induction over 

the number of signals in the guard. 

When the guard is empty the function p returns the predicate true. Hence 

lemma B.1.1 holds trivially. 

Given an arbitrary signal expression sig_expr and a well formed guard 

sigs containing zero or more signal expressions, assuming lemma B .1.1 holds 

for the guard sigs, then we prove it holds for the guard sigs & sig_expr. 

From the definition of p we know that p(sigs & sig_expr) =def p(sigs) A 
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p(sig_expr). Hence, using the induction hypothesis, the proof is reduce to 

showing lemma 8.1.1 holds where guard = sig_expr. We split this into two 

cases: one for a positive signal expression sig_expr; and one for a negative 

signal expression. 
For a positive signal expression we have, 

p( sig_expr) [o T 0 / z .a T 0 J 
-------------- (p-df) 
(sig_expr E ic u ( Oc n \Jl))[oT 0 / z.o T 0 ] 

-------------- (o.-df) 
z.ic Ufbz = x.ic Ufbx sig_expr E z.ic U (z.oc n \JI) 

sig_expr E x.ic U (x.oc n \JI) 
-----------''------ (o.-df) 
(sig_expr E ic U (o0 n \Jl))[oT 0 /x.oT 0 ] 

-------------- (p-df) 
p(sig_expr)[aT0 /x.aT 0 ] 

(Jbz, fbx-df) 

The case where the signal expression is negative can be proved in the 

same way where each occurrence of E is replaced with (/.. 

Therefore, by induction, we have shown that lemma 8.1.1 holds. Now 

using Lemma 8.1.1 we can show the following lemma holds. 

Lemma B.1.2 Given the arbitrary chart (C,E,u,\Jt,6), and bindings zT3 and 

xT3 , for all t E 6 we have, 

Trans t z x =r z z.ic U fbz = x.ic U fbx • 
Tmns t x 

where [6cD~<~a, Ta j T3 and T; = Ta - [ic : IP µSignal] 

Proof B.1.2 

Trans t z ______ ....;::..;...;;;.;.;;.;;......;;....;.;__ ______ ( Tro.ns-df)(I\ -) 

z.cc = t.S1 I\ Z.Cc = t.St I\ Z.Oc = t.action X =r; Z 

x.cc = t.S1 I\ X.Cc = t.St I\ x.oc = t.action 
------------------------ (A+) 
x.cc = t.S1 I\ p(t.guard)[aT/x.aTJ I\ X.Cc = t.St I\ x.oc = t.action 
------------------------ (Tro.ns-df) 

Trans t x 

where ( 1 is: 

Trans t z ( Tro.ns-df)(I\ _) 
p(t.guard)[aT 0 /z.aT 0 ] z.ic Ufbz = x.ic Ufbx ------'-----..:...._ _____________ (lem B.1.1) 

p(t.guard)[aT 0 /x.aT 0 ] 

We also introduce the following properties for dealing with the predicates 

act and inact. 
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Lemma B.1.3 Given the arbitrary sequential chart ( C, l:, a, \JI, 8), for arbitrary 

z and z1 we have, 

z = r3 z1 actv C z 
actv C z1 

Proof B.1.3 

( act1) 

actv C z (df) 

Z =r Z1 
-,----a - ( ract -< T ) 
Z =r•c• Z1 - 3 

CE z.act z1.act = z.act 

CE z1.act (df) 
actv C z1 

z =r3 z1 inactv C z 

inactv C z1 
(inactJ) 

inactv C z Z =r Z1 
___ 3--:- (Tact-< T3) 

-, actv C z z = r•ct z1 -
--:--:--- ( df) 
C (/. z.act z1 .act = z.act 

C (/. z1 .act 
-, actv C z1 

inactv C z1 ( df) 

Lemma B.1.4 Given the chart (C,l:,u, \J!,8), for arbitrary zT3 we have, 

CE z.act 
actv C z 

Proof B.1.4 

( actu) 
z E. 8c C ¢ z.act 
-------,--- ( inactu) 

inactv C z 

Trivial from the definitions of actv C z and inactv C z. 

Lemma B.1.5 Given the chart {C,l:,u, \J!,8), for arbitrary zT3 we have, 

z E. 8c 
--------- (actLEM) 
actv C z V inactv C z 

Proof B.1.5 

---- 1 C n z.act 1 
CE z.act (actu) . ?" (actu) 

________ (LEM) actv C z (v+) znactv C z (v+) 
CE z.act V C (/. z.act actv C z V inactv C z actv C z V inactv C z 
---------------------------- (v-)(1) 

actv C z V inactv C z 
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Lemma B.1.6 Given the arbitrary sequential chart ( C, E, a, w, 8), for arbitrary 

z we have, 

Proof B.1.6 

actv C z ~;...:....:....~"-- ( actm) 
CE z.act 

inactv C z -'-'----'----''--- ( inact 111 ) 
C ¢ z.act 

Trivial from the definitions of actv C z and inactv C z. 

Proposition 3.2.1 Given the sequential chart ( C, E, ao, W, 8), where [8c]:<~a, 

for arbitrary binding z T3 we have, 

z E 8c actv C z t E 8, Trans t z f- P 
-----------'------- (Z, -) p 

actv C z t : 8 Trans t z (Z, +) 

z E 8c 

where Ta j T3 and assuming the usual conditions for t and P ( due to the elimi­

nation of an existential quantifier). 

Proof 3.2.1 
For (Zt -) we have, 

z E 8c (di) 
XE 8c ________ .....;;_ ______ (d/) 

( C ¢ x.act I\ x E 'E.Chartc I\ x.oc = {}) V p p 
( C E x. act I\ :3 t E 8 • Trans t x) 

-----------p----------- (v-)(1) 

where X =def Z f Ta. 
(1 is: 

_Tra_n_s -t -x 2 _z_=_r_• -x ( d/) 

Trans t z ( Trans-di) 
-----------1 
C E x. act I\ :3 t E 8 • Trans t x 

:3 t E 8 • Trans t x p 
p (r)(2) 

and (2 is: 

C ¢ x.act I\ x E 'E.Chartc I\ x.oc = {} z =r· x (d/) 

C ¢ x.act (A-) z.act = x.act 

C ¢ z.act 
actv C z 

CE z.act (di) 
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For (Z1 +) we have, 

t E 8 1rans t z (A+) 

actv C z t E 8 I\ 1rans t z 
( actm) (3+) 

C E z. act 3 t E 8 • 1rans t z 
-----=------:::---:---=----- (A+) 

C E z. act I\ 3 t E 8 • 1rans t z 
--------:--------------------- (v+) 
(C (/. z.act I\ z E =.Chartc I\ Z.Oc = {}) v (CE z.act I\ 3 t E 8 • 1rans t z) 

(di) 
z [ T 0 E 8c 

z E 8c 

Proposition 3.2.2 Given the sequential chart ( C, E, O"o, \JI, 8), where [od:;a, 
for arbitrary binding z T3 we have, 

z E 8c inactv C z 
-------- (iact1 ) 

z E 2Chartc 
z E 8c inactv C z 
-------- (iactij) 

z.o~ = {} 

inactv C z z E 2 Cha rte 

z E 8c 

z o' - {} 
· C - (iact+) 

Proof 3.2.2 
For (iact1 ) we have, 

z E oc (di) 
x E oc 

( C (/. x.act I\ x E =.Chartc I\ x.oc = {}) V 

( C E x. act I\ 3 t E o • Trans t x) 

(di) 

z E '2 Cha rte z E '2 Chartc 

------------------------- (v-)(1) 
z E =.Chartc 

where X =def Z f Ta. 
(1 is: 

C (/. x.act I\ x E =.Chartc I\ x.oc = {} _;__ _________ ....:..._ __ (A-) X =r• Z (d/) 
_X_=_6_u_Z (6.U ::5 Ta) 

and (2 is: 

inactv C z ( di) 
C (/. z.act 

x E =.Chartc 

z E =.Chartc 

1 
C E x. act I\ 3 t E 8 • Trans t x 
-----=-------- (A-) 

CE x.act 

___ 1-__ (.L -J 
z E =.Chartc 
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Similarly, for (iact11 ) we have, 

z E 8e (di} 

_______ x_E_8_e ______ ~ (df} 

( C ¢ x.act I\ XE =.Charle I\ X.Oc = {}) V 

(CE x.act I\ 3 t E 8 • Trans t x) 
z.oc = {} z.oc = {} 

------------------------- (v-)(1) 
Z.OC = {} 

where X =def Z f T 0 • 

(1 is: 

C ¢ x.act I\ x E =.Charle I\ x.oc = {} z =r• x (di} 
-------------- (A-) 

X.Oc = {} Z.Oc = X.Oc 
Z.OC = {} 

and (2 is: 

-----------1 

inactv C z ---- (actm) 
C ¢ z.act 

C E x. act I\ 3 t E 8 • Trans t x 
----------- (A-) 

CE x.act 
CE z.act 

Z =r• X (di} 

z.act = x.act 

..l -
Z.Oc = {} (1- ) 

For (iact+) we have, 

z E =.Charle Z.Oc = {} 
inactv C z --------- (A+) ---- (act,u) " 
C ¢ z.act z E =.Charle I\ Z.Oc = {} 
---------------- (A+) 

C ¢ z.act I\ z E =.Charle I\ Z.Oc = {} _________________ ___;;. _________ (v+) 

( C ¢ z. act I\ z E 3 Charle I\ z. Oc = {}) V ( C E z. act I\ 3 t E 8 • Trans t z) 
-------------------------- (df) 

z f T 0 E 8e 

z E 8e 

Proposition 3.2.3 For the arbitrary sequential chart ( C, E, a0 , \JI, 8) and bind­

ings z T3 and x T3 we have, 

z E 8c x =r, z z.ic Ufbz = x.ic Ufbx 
------'----------- (ztE) 

x E 8c 

where [8c]:c~a, T; =def T 0 - Vi and T 0 j T3 • 

Proof 3.2.3 

z E 8e 
----~--- (actLEM) 
actv C z V inactv C z 

---1 
z E 8e actv C z x E 8e 
---------- (z1 -)(2) 

x E 8e x E 8e 
------------------------- (v-)(1) 

x E 8e 
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( 1 is: 

(1.1 is: 

(2 is: 

(1.1 

Trans t1 x 
--2 
t1 E t5 

x E. t5c 

C l X =r. z actv z • (act1 ) 

actv C x (Zt +) 

2 x -T- z z.ic U/bz = x.ic Ufbx (lemB.1.2) Trans t1 z , 

Trans t1 x 

1 
zE.t5c inactvCz (iact,i) 

Z.OC = {} X =r; Z (Tout j T;) (~.1 
X =rout Z 

1 
· t C z x =r z ) mac V • (inactr 

inactv C x (iact+) X.OC {} 
x E '5c 

(2.1 is: 
1 

z E '5c inactv C z (iact1 ) 
z E '2Chartc 

X =r; Z ((.1.U j T;) 
x =cau> z 

x E. '2Chartc 
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B.2 Proofs for Section 3.3: Feedback of sig­

nals in µ-Charts 

Lemma 3.3.1 Given (C1,E,o-,'11,61), where E = {A,B}, o- = A, \JI= {a} and 

61 = {(A, B, a/ a)}, for arbitrary z T3 and input i ~ inc we have, 

actvC1z z=~ cc1 ~A,ic1~i,c~1 ~B,oc/~{a} ~ 

z E <>c1 

IP T 0 

where [<>ci] 2 <: and Ta ~ T3 

Proof 3.3.1 

-----(di) 
actv C1 z (A, B, a/ a) E 81 Trans (A, B, a/ a) z 
----------------- (Zt +) 

z E 8c1 

where (1 is: 

z.cc1 =AI\ z.cc1 =BI\ z.oc/ = {a} A p(a)[aTa /z.aTa] 
------------------ (Thms-df) 

Trans (A,B,a/a) z 

where (2 is: 

Z ~ q eel =?A, ic1=?i, Ccl =?B, oc/=?{ ll} ~ 
a E z. ic1 U ( {a} n {a}) z. oci' = {a} 

a E z.ic1 U (z.oc/ n {a}) 
p(a)[aTa /z.aTa] 

Lemma 3.3.2 Given (C2 ,E,o-,'11,62 ), where E = {A,B}, o- = A, \JI= {a} and 

<>2 = {(A, B, -a/ a)}, for all z T", 

IP Ta 
where [<>c2 ] 2 " 

Proof 3.3.2 

t E {(A,B,-a/a)} _Tra_n_s -t -z 2 

Trans (A,B,-a/a) z 
------- (Tmns-df) 
p(-a)[aTa /z.aTa] 

;: . (1rdf) 
_z _E _u c_2 ( di) a ¢ z. ic u ( {a} n {a}) 
z E 8c2 actv C z 1-
-------1-------- (Z1 -)(2) 

z ¢ 8c
2 

(1- -)(1) 
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B.3 Proofs for Section 3.4: The composition 

operator 

Before giving the proofs of the propositions of Section 3.4 we introduce and 

prove some useful lemmas. 

Lemma B.3.1 Given C = C1 I W I C2, for arbitrary z and z1 we have, 

z = r3 z1 actv C z 

actv C z1 
( act1) 

IP' ra where [6c] 2 ,. , Ll U j T3 and yact j T3. 

Proof B.3.1 

z =r3 z1 inactv C z 

inactv C z1 
( inact1) 

The base case for properties ( act1) and ( inactl), that is, that they hold for any sequential 

chart, is given in Lemma B.1.3. 1 

The induction case for the left hand property is, 

actv C z (di) actv C z (df) 
actv C1 z z =r3 z1 actv C2 z z =r3 z1 
-------=---- (I.H.) (I.H.) C 

actv C1 z1 actv C2 z1 E z1. act 
----------------------~ (df) 

actv C z1 

where (1 is: 
actv C z z = T3 z1 

(di) (Tact j T3) 
CE z.act z.act = z1.act 

CE z1.act 

Similarly, for the right hand property we have, 

tnactv C z ( di) inactv C z ( df) 
znactv C1 z z = r3 z1 inactv C2 z z = r3 z1 

(I. H.) ---:-----::::----- (I .H.) C d 
inactv C1 z1 inactv Ci z1 'F- z1. act 
--------------------------~ (df) inactv C z1 

where (1 is: 
inactv C z ---- ( inactm) 
C (/_ z. act z. act = z1 . act 

C (/_ z1.act 

Lemma B.3.2 Given C = C1 I W I C2, for arbitrary z T3 , we have, 

zE6c CEz.act 
-------- (act11) 

actv C z 
C </:. z.act 

inactv C z 
( inact11) 

1Note that each use of the induction hypothesis (I.H.) is well typed because, by defini­

tion, Ll U1 j Ll U and T1act j yact. Therefore it follows from Ll U j T3 and yact j T3 

that Ll U1 j T3 and T1act j T3. A similar argument holds for the types related to <5c2 . 
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Proof B.3.2 
The base case for the properties (actu) and (inactu) is given in Lemma B.1.4. 

The induction case for the property on the left is, 

z E 8c (di) 
XE 8c 

---------- (d/) 

Z =r• X (d/) 

z.act = x.act CE z.act 
:3 01 ~ outc1 ; 02 ~ outc2 • actv C 1 x CE x.act (di) 

X. Oc = 01 U 02 /\ 

x1 E 8c1 /\ x2 E 8c2 

actv C x 

----------ac_t_v_C_x _________ <3-)(l) -z -=-r-· -x ( d/) 
-------------------- (act1) 

actv C z 

where X =def Z f T 0 , X1 =def X * q ic1~(x.ic Ufbx) n incl' oc/~01 ~ and 

x2 =def x * q ic~(x.ic U fbx) n inc2 , oc;~02 ~-
(1 is: 

X1 =r• X (d/) 

x1.act = x.act 

X1 =r• X (d/) 

z E 8c (di) 
XE 8c (di) 

X =r• Z (d/) 

CE x.act x.act = z.act 
CE x.act 

C1 E x.act ¢=> 

CE x.act 

C1 Ex.act 
C1 E x1.act x1 E 8c1 _________ C ________ (I.H.) 

actv 1 x1 
-------------------- (act1) 

actv C1 x 

and (2 is: 

X2 =r• X (d/) 

x2.act = x.act 

X2 =r•" X (d/) 

z E 8c (di) 
XE 8c (di) 

X =r• Z (di) 

CE z.act x.act = z.act 
CE x.act 

C2 Ex.act¢=> 

CE x.act 

C2 Ex.act ---1 
C2 E x2.act x2 E 8c2 ---------G.,....--------- (I.H.) 

actv 2 x2 
--------------------- (act1) 

actv C2 x 

Similarly, for the right hand property, assuming the same definitions for x, X1 and x2, 
we have, 

z E 8c (di) 
XE 8c 

---------- (d/) 
:3 01 ~ outc1 ; 02 ~ outc2 • 

X.OC = 01 U 02 /\ 

x1 E 8c1 /\ x2 E 8c2 

inactv C1 x inactv C2 x C </. x. act 
_____ i_n_a-ct_v_C_x----~ (d/) 

----------in_a_c-tv_C_x _________ (r )(l) --- (d/) 
X =r•'' Z 

--------------------- (inact1) 
inactv C z 
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(1 is: 

X1 =r• X (di) 

X1 .act = x.act 

z E 6c (di) 

XE 6c (di) 
Z =r• X (di) 

C ¢ z.act z.act = x.act 
C ¢ x.act 

C1 E x.act <=} 

CE x.act 

C1 ¢ x.act ---1 
Ci ¢ xi.act xi E 6c1 

XI =r• X (di) ----------------~ (I.H.) 
inactv Ci xi 

--------------------- (inact1) 
inactv Ci x 

and (2 is: 

X2 =r• X (di) 

x2.act = x.act 

z E 6c (di) 

XE 6c (di) 
Z =r• X (di) 

C ¢ z.act z.act = x.act 
C ¢ x.act 

C2 E x.act <=} 

CE x.act 

~ ¢ x.act ---1 
C2 ¢ x2.act X2 E 6c2 

X2 =r• X (di) 
----------------- (I.H.) 

inactv C2 X2 
----------------------- (inact1) 

inactv C2 x 

Lemma B.3.3 Given C = C1 I '11 I C2, for arbitrary z T3 , we have, 

z E. be 
--------- (actLEM) 

Proof B.3.3 

-----(LEM) 
CE z.act V 

C ¢ z.act 

actv C z V inactv C z 

z E 6c C E z.act (1 ) 
act11 

actv C z (v+) 
actv C z V inactv C z 

----1 
z E 6c C ¢ z.act 

. C (inact11) 
inactv z (v+) 

actv C z V inactv C z 

-----------ac_t_v_C_z_V-in_a_c-tv_C_z ___________ (v-)(l) 

Lemma B.3.4 Given C = Ci I '11 I C2, for arbitrary binding z T3 we have, 

Proof B.3.4 

actv C z ( t ) ac 111 
CE z.act 

inactv C z ( . t ) 
C d mac 111 

'F- z .act 

Trivial from the respective definitions of act and inact. 
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Proposition 3.4.1 Given C = C1 I w I C2, for the binding zT3 and arbitrary 

sets OJ and o4 , we have, 

z.o~ = 01 U 02, 

z E <Sc z * q ic1~(z.ic Ufbz) n inc1 , oc/~01 ~ E 8c1 , 

z * q ic.fo(z.ic U fbz) n inc2 , oc;~02 ~ E 8c2 I- Q _________ Q _________ (1-i-> 

, - u z.oc - 03 04 

z * q ic1~(z.ic U fbz) n inc1 , oc/~03 ~ E 8c1 

z * q ic.fo(z.ic Ufbz) n inc2 , oc;~o4 ~ E 8c2 

actv C z V inactv C z 
---------------- (1-1+) 

z E <Sc 

where the usual conditions hold for o1 , 02 and Q, [<5c]J; and T 0 j T3 • 

Proof 3.4.1 
For (I _ i-> we have, 

z E 8c (di) 
XE 8c 

-----,------.----.- (d/) 
301,02. x.oc = 01 u 02 /\ X1 E 8c, I\ X2 E 8c2 Q 
----------Q---------- (r)(1) 

(1 is: 
Z =r• X (di) 

' 1 X.OC = 01 U 02 Z.Oc = X.Oc 

z.oc = 01 U 02 

(3 is: 

(2 is: 
Z =r- X (di) 
--- (di) 
Z1 =r1 X1 

where X =def z r T°, Zn =def z * q icn~(x.ic Ufbx) n incn, ocn'~on ~- and 

Xn =def x * q icn~(x.ic U fbx) n incn, ocn'~on ~ for n = I, 2. 
For (1-1+) we have, 

(1 

actv C z V inactv C z 
---------- (v-)(1) Z.Oc = 03 u 04 Z1 E 8c1 Z2 E 8c2 

C1 E z.act <==} CE z.act I\ ---------------- (3+) 
3 03, 04 • z.oc = 03 u 04 I\ z1 E 8c1 /\ z2 E 8c2 

C2 E z.act <==} CE z.act 
-------------z-r_T_a_E_8_c _____________ (d/) 

---- (di) 
z E 8c 
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where z1 =def z * q ic1=1(z.ic Ufbz) n incl' oc/=tOJ ~ and 

z2 =def z * q icp(z.ic U fbz) n inc2 , oc;=104 ~-
(1 is: 

(2 is: 

---1 1 
actv C z (df) actv C z (df) 1 
actv C1 z actv C2 z actv C z 

C E t (actm) C t (actm) C t (df) 
1 z.ac 2 E z.ac E z.ac + 

C1 E z.act I\ C2 E z.act I\ CE z.act (A ) 
---------------- (v+) 

( C1 E z.act I\ C2 E z.act I\ CE z.act) V 

( C1 (/. z.act I\ C2 (/. z.act I\ C (/. z.act) 
------------------ (prop logic) 
C1 E z.act {::} CE z.act I\ G.i E z.act {::} CE z.act 

. tC 1 . C 1 
inac v z ( df) inactv z ( df) 
inactv C1 z inactv C2 z inactv C z 1 

C 17 ( inactm) C d ( inactm) ( df) 
1 "" z.act 2 "" z.act C (/. z.act + 

-----------'---------'---- (t\ ) 
C1 (/. z.act I\ C2 (/. z.act I\ C (/. z.act 

---------------- (v+) 
( C1 E z.act I\ C2 E z.act I\ CE z.act) V 

( C1 (/. z.act I\ C2 (/. z.act I\ C (/. z.act) 
------------------ (prop logic) 
C1 E z.act {::} CE z.act I\ C2 E z.act {::}CE z.act 

Proposition 3.4.2 Given C = C1 I W I C2, for arbitrary binding z T3 , we have, 

z E 8c inactv C z 
-------- (iact1 ) 

z E 3Chartc 
z E 8c inactv C z 
-------- (iactji) 

z.o~ = {} 

Proof 3.4.2 
For (iact1 ) we have, 

inactv C z z E 3Chartc z.o~ = {} 
-------------'--- (iact+) 

z E 8c 

inactv C z ( df) 
inactv C1 z -z1-=-r3-z ( df) 

(inact1) 
z1 E 8e1 inactv C1 z1 -z1-=-r

3
-z (df) 

------------ (l.H.) 
z1 E =.Charle1 z1 =c6 u1J z ((LlUi) j T3 ) 

z E =.Charle1 z E =.Charlc2 + 
-------------------- (S,,.) 

z E (=.Charle1 I\ =.Charle2 ) 

. (df) 
z E oe z E =.Charle -----"----------------- (I - i-)(1) 

z E =.Charle 

where z1 =def z * q ic1=1(z.ic U fbz) n inc1 , oc/=101 ~ and 

z2 =def z * q icp(z.ic U fbz) n inc2 , oc;=1D2 ~-
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(1 is: 

~nactv C z (di) ___ (di) 
___ 1 znactv C2 z z2 = r 3 z 

( inact1) 
Z2 E 8c2 inactv C2 Z2 

• (I.H.) 
Z2 E 3 Chartc2 

For (iactij) we have, 

z E 8c z o' - {} ___________ ·_c'---- <1-1-)(1) 
Z.OC = {} 

where z1 =def z * q ic1~(z.ic U fbz) n inc1 , oc/~01 ~ and 

z2 =def z * q ic.fo(z.ic U fbz) n inc2 , oc;~02 ~-
(1 is: 

inactv C z (di) 
inactv Ci z Zt =r3 Z 

(di) 
1 (inact1) 

z1 E 8c1 inactv Ci z1 

z1 .oc/ = {} 
(I.H.) 

(2 is: 
inactv C z (di) 
inactv C2 z Z2 =r3 Z 

(di) 
1 (inact1) 

z2 E 8c2 inactv C2 z2 

z2.oc/ = {} 
(I.H.) 

And for ( iact+) we have, 

Z,Oc = {} inactv C z --~~_;:_.;.:__ __ (v+) 
Z,Oc = {} u {} Z1 E 8c1 Z2 E 8c2 actv C z V inactv C z 
------------------ (1-1+) 

z E 8c 

where z1 = def z * q ic1~ ( z. ic U fbz) n incll oc/ ~ {} ~ and 

z2 =def z * q ic,fo(z.ic Ufbz) n inc2 , oc2'~{} ~-

(1 is: 

tnactv C z ( di) 
z E =.Chartc znactv C1 z _z_=_r_3_z_1 (di) 
----- ((fl.U1) j (fl.U)) --------- (inact1) ---- (di) 
z1 E 3 Chartc1 inactv Ci z1 z1. oc/ = {} 
---------------------------- (I.H.) 

z1 E 8c1 

and (2 is: 

~nactv C z ( di) 
z E =.Chartc znactv C2 z _z_=_r_3_z_2 (di) 
----- ((fl.U2) j (fl.U)) --------- (inact1) ---- (di) 
z2 E =.Chartc2 inactv C2 z2 z2.oc/ = {} 
-----------------------------"- (I.H.) 

z2 E 8c2 
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Proposition 3.4.3 

Proof 3.4.3 
Trivial given the bindings in the respective sets [8c111111c2 ] 2 c and [8c2 11111c1 ] 2 c are un­
ordered. 

Proposition 3.4.4 Given C = C1 I \JI I ~' for arbitrary bindings z T3 and x T3 

we have, 

z E 8c x =T; z z.ic Ufbz = x.ic Ufbx 
--------'----------- (zte) 

x E 8c 

where [8c]~t0
, T; =def Ta - Vi and Ta ::5 T3 • 

Proof 3.4.4 
The base case for this structural induction, that czn holds for sequential charts, is given 

in Proposition 3.2.3. 

For the inductive case we have, 

X =T; Z (3 

X.Oc = 01 LJ 02 X1 E Oc1 X2 E Oc2 actv C XV inactv C X 
----------------------- (1-1+) 

_z_E_O_c _____________ x_E_o_c (I - l-)(l) 

x E 5c 

(1 is: 

(1.1 

z1.ic1 LJ fbz1 = 
X1 · ic1 U fbx1 

------------------------- (I.H.) 
x1 E 5c1 

(1.1 is, 

z.ic U /bz = x.ic U fbx 
(z.ic U/bz) n inc1 = (x.ic Ufbx) n inc1 
------------- (df) z1.ic1 = x1.ic1 
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where X1 =def X * q ic1=$-(x.ic u fbx) n incl' oc/:$-01 ~. [6ci]~(;f, T1, = Tia - r/n 
and z1 =def z * ~ ic1=$-(z.ic U fbz) n inc1, oc/=$-01 ~-
(2 is: 

(2.1 

z2.ic2 U fbz2 = 
x2. ic2 u fbx2 

------------------------- (J.H.) 
x2 E 8c2 

(2.1 is, 

z.ic Ufbz = x.ic Ufbx 
z2.oc/ n iii = x2.oc/ n iii 

fbz2 = fbx2 

where X2 =def X * q ic-Ft(X.ic U fbx) n inc2, oc;:$-02 ~, [6c2 ]~tl', 
and z2 =def z * q ic-Ft(z.ic U fbz) n inc2, oc;:$-02 ~-

T =ya_ yin 
2, 2 2 

(3 is: 

---2 . C 2 
actv C z x =r. z znactv z x =r. z 
______ ___;_, - (act1) . ' (inact1) 

actv? x (v+) znactv C x ( +) 
actv C x V znactv C x actv C x V inactv C x v 

. 1 
actv C z V znactv C z 
-----------ac_t_v_C_x_V-in_a_c-tv_C_x __________ (v-)(2) 

Lemma 3.4.5 Given C = C1 I { b} I C2, where C1 and C2 are the sequential 

charts of Figure 3.5, for arbitrary z ra we have, 

actv C z 
z </. 6c 

Proof 3.4.5 
Assuming z1 and z2 are defined as expected, we have, 

actv C z (di) 
actv C1 z -z1_=_r_• -z ( di) 

-- 1 --- 2 --------,---- (act1) 
J_ z E 8c z1 E 8c1 actv C1 z1 z E 8c _________ 1-_________ (Z1 -)(3) 

------------ (I_ l-)(2) 

where ( 1 is: 

_1-_ (..L-)(1) 
z ¢ 8c 

-------3 3 
t1 E {(A, B, a/b)} Trans t1 z1 

Trans (A, B, a/b) z1 
------- (p-df) 

z1.oc/ = {b} 
J_ 
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(2 is: 

(3 

' ' 2 actv C z (di) b ¢ z.oc z.oc = 01 U 02 

actv C2 z z1 =T· z (di) b ¢ 01 (d'f) 
--- 2 -------- (act1) 
Z2 E 802 actv C2 z2 b d z1 oc' ----=-----------------'ll':.....__·_:.1 (Zt -)(4) 

b ¢ z1.oci' 

and (3 is: 

-------4 4 
~ E {( C, D, - b / c)} Trans ~ Z2 

Trans ( C, D, - b / c) Z2 
. ' (1rd/) 

b ¢ z2.zc2 U(z.i..oc2 n{}) • ( • ( f ,T,)) . (d/) z2.zc2 = z.zc u z.oc n 'I! n znc2 

Z2. ic2 = ( Z. ic U ( Z. Oc n { b})) n { b} 
b fl (z.ic u (z.oc n {b})) n {b} 
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B.4 Proofs for Section 3.5: The decomposi­

tion operator 

Before giving the proofs of the propositions of Section 3.5 we show that the 

properties introduced in lemmas B.3.1 to B.3.4 of the previous section also 

hold for decomposed charts. 

Lemma B.4.1 Given C = Dec (w C1) by {( C2,w C2)}, for arbitrary C2, w C1 = 
( C1, E, a, '11, 8), and bindings z and z1, we have, 

z = r3 z1 actv C z 

actv C z1 
( act1) 

z =r3 z1 inactv C z 
(inact1) 

inactv C z1 

Proof B.4.1 
Lemma B.1.3 shows that (act1) and (inact1) hold for sequential charts.2 

The induction case for the left hand property is, 

actv C z (d'f) actv C z z =r3 z1 
--- (di) (Tact j T3) (1 

actv C1 z z =r3 z1 C E z.act z.act = z1 .act 
C (I.H.) 

actv 1 z1 CE z1.act ___ ....;_ ________ ac_t_v_C_z1----=----------- (df) 

where (1 is: 

____ a~ct~v_C'--'"z ____ (df) ---1 
actv C2 z1 z =r3 z1 

(1.1 is: 

(1.2 is: 

actv C2 z ¢=? G (I.H.) 

(z.cc1 = C2 V Z.Ccl = C2) 
actv 2 z 

(1.1 

z.cc1 = C2 V z.cc1 = C2 ______ ....;_ ______________ (v-)(2) 

z1.CC1 = C2 V z1.Cc1 = C2 
--------------- (=>+)(1) 
actv C2 Z1::::} (z1.CC1 = C2 V Z1.Cc1 = C2) 

Z =r3 Z1 
0 2 (t:!i.Uj T3) z.cc1 = 2 z.cc1 = z1.cc1 

Z1.CC1 = C2 

2 As with the proof of Lemma B.3.1 each use of the induction hypothesis (I.H.) is well 

typed. 
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(2 is: 

(2.1 is: 

z.cc1 = C2 V 

z.cc1 = C2 

------2 

Z1.CC1 = C2 V 

Z1.cc, = C2 
------------------------- (v-)(3) 

z.cc1 = C2 V z.cc1 = C2 

(2.2 is: 

For the right hand property we have, 

~nactv C z ( di) inactv C z ( di) 
inactv C1 z z =r3 z1 inactv C2 z z =r3 z1 

C (l.H.) C (l.H.) Cd 
inactv 1 z1 inactv 2 z1 y:. z1. act 
---------------------~ (df) 

inactv C z1 

where (1 is: 
inactv C z z =r3 z1 
---- (inactm) (Tact j T3 ) 
C (/. z.act z.act = z1.act 

C (/. z1.act 

Lemma B.4.2 Given C = Dec (w C1) by {( C2,w C2)}, for arbitrary C2, w C1 = 

( C1, I:, CT, \JI, 5), and binding x T3, we have, 

zE.5c CEz.act 
------,,---- ( actu) 

actv C z 

Proof B.4.2 

z E. 5c C ¢ z.act 
-------- (inactu) 

inactv C z 

Again the base case for both properties follows trivially from the definition of actv C1 z 

and inactv C1 z for any sequential chart C1. 
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The induction case for the left hand property is, 

z E 8c (di) 
____ x_E_8~c ____ (d/) 

3 01 ~ outc1 ; o:i ~ outc2 • actv C1 x CE x.act 
actv C x (di) X.OC = 01 U O:J /\ 

x1 E 8c1 /\ x2 E 8c2 
---------a-c-tv_C_x ________ (r )(l) -z -=-r-· -x ( d/) 

-------------------- (act1) 
actv C z 

where x =def z f Ta, xi =def x * q ic1~(x.ic Ufbx) n incll oc/~01 ~ and 

x2 =def x * q ic~(x.ic U fbx) n inc2 , oc2'~02 ~-

(1 is: 

X1 =r• X (di) 

xi.act= x.act 

z E 8c (di) 

XE Oc (d/) 
X =r• Z (d/) 

CE x.act x.act = z.act 
CE x.act 

C1 E x.act ¢:> 

CE x.act 

C1 Ex.act ---1 
C1 E xi.act x1 E 8c1 

X1 =r• X (d/) 
--------0-------- (l.H.) 

actv 1 x1 
-------------------- (act1) 

actv C1 x 

(2 is: 

(x.cc1 = C2 V x.cc1 = C2) 

actv C2 x => 
(x.cc1 = C2 V x.cc1 = C2) 

and (2.1 is: 

and (2.2 is: 

actv C2 x ______ _;;;;_ _____ (=>+)(3) 

(x.ccl = C2 V X.Ccl = C2) => 
actv C2 x 

---2 
actv C2 x ( ) 

act111 
C2 Ex.act 

actv C2 x ¢:> 

(x.cc1 = C2 V x.cc1 = C2) 

C2 Ex.act 
C2 E x2.act x2 E 8c2 
--------------------- (l.H.) 

X2 =r- X (d/) actv C2 x2 
-------------------- (act,) 

actv C2 x 
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(3 is: 

X -r• Z (di) 

CE z.act x.act = z.act 
CE x.act 

z E. 5c (di) 
_______ x_E_5c _______ {d/) 

C2 E x.act <=} 

(CE x.act I\ (x.cc1 = C2 V x.cc, = C2)) 

For the right hand property, assuming the same definitions for x, xi and X2, we have, 

z E. 8c (di) 
XE 5c 

3 01 ~ outc1 ; 02 ~ outc2 • 

x.oc = 01 U 02 /\ 

x1 E 8c1 /\ x2 E 8c2 

{d/) 

(1 (2 

inactv Ci x inactv G.i x 
inactv C x 

C rt x.act (di) 

----------in_a_c-tv_C_x _________ (r)(i) 
X -r•ct Z (di) 

--------------------- (inactt) 
inactv C z 

(1 is: 

X1 =r• X (di) 

xi .act = x.act 

X1 =r• X (d/) 

and (2 is: 

X2 =r• X (di) 

x2.act = x.act 

z E. 5c (di) 

XE 8c (di) 
Z =r• X (di) 

C rt z.act z.act = x.act 
C rt x.act 

C1 E x.act <=} 

CE x.act 

C1 rt x.act 
C1 rt xi.act x1 E 5c1 
-------------------- (I.H.) 

inactv Ci xi 

inactv Ci x 
( inact,) 

z E. 5c (di) 

XE 5c {d/} 
Z =r• X (di) 

C rt z.act z.act = x.act 
C rt x.act 

C2 E x.act <=} 

CE x.act 

C2 rt x.act 
C2 rt x2.act x2 E 8c2 
-----------::,--------- (/.H.) 

inactv C2 x2 x2 =r• x (di) 
-----------=---------- (inact,) 

inactv G.i x 

Lemma B.4.3 Given C = Dec (w Ci) by {( C2,w C2)}, for arbitrary C2, w C1 = 

( C1, ~. a, \JI, 8), and binding z ra, we have, 

z E. 8c 
--------- (actLEM) 
actv C z V inactv C z 
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Proof B.4.3 
For an arbitrary decomposed chart C = Dec ( w C1) by {( C2, w C2)}, we have, 

----1 
z E 8c CE z.act ( ) 

----1 
z E 8c C (/. z.act 

----- (LEM) 
CE z.act V 

act11 
actv C z (v+) 

. (inact11) 
inactv C z (v+) 

actv C z V inactv C z actv C z V inactv C z 
C (/. z.act 

__________ a_c_t_v_C_z_V_z-.n-ac_t_v_C_z __________ (v-)(l) 

Lemma B.4.4 Given C = Dec (w C1) by {(C2,w C2)}, for arbitrary C2, w C1 = 
(C1,E,a, '\Jl,8), and binding zra, for n E {1,2} we have, 

actv C z ( t ) ac 111 
CE z.act 

inactv C z ( . t ) 
C d znac 111 

,,:. z.act 

Proof B.4.4 
Trivial from the respective definitions of actv C z and inactv C z. 

Proposition 3.5.1 Given C = Dec (w M) by {(S,w S)}, where 

w M = ( M, E, a, \JI, 8), for the binding z T3 and arbitrary sets o1 and 02 we have, 

'- u Z.OC - Om Os, 

z * ~ iM~(z.ic u fbz) n inM' o~~Om ~ E dM' 

z * ~ is~(z.ic U fbz) n ins, o8~os ~ E 8s, 

actv C z V inactv C z 

Q 

Z.OC = 01 LJ 02 

Z * ~ iM~(z.ic Ufbz) n inM, 0~~01 ~ E dM 

z * ~ is~(z.ic U fbz) n ins, 08~02 ~ E 8s 

actv C z V inactv C z 

f- Q 

------------------ (M/) 
z E &c 

where the usual conditions hold for Om, Os and Q, [&c]~}'a and T 0 j T3 • 

Proof 3.5.1 
For (M8 ) we have, 

z E 8c (di) 
XE 8c 

------~ (df) 
:3 01, 02 • 

X. Oc = 01 U 02 /\ 

x1 E 8M /\ x2 E 8s 

z E 8c 
-------- (actLEM) 
actv C z V inactv C z ( 1 

Q 

---------Q--------- (3-)(1) 
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(1 is: 

(3 is: 

Z =r0 X (di) 

' 1 X,Oc = 01 U 02 Z,Oc = X,Oc 

Z,Oc = 01 U 02 

---1 
X2 E &s 

Z =ro X (di) 

Z2 =r• X2 (d/) 
• 

Z =ro X (di) 
---(d/) 
Z1 =r;:. X1 

where X =def z r T°, Zn =def z * q icn~(x.ic Ufbx) n incn, ocn'~on D, and 

Xn =def x * q icn~(x.ic U fbx) n incn, ocn'~on D for n = 1, 2. 
For (Mt) we have, 

ME x.act ¢:? CE x.act I\ 

S E x.act ¢:? (CE x.act I\ 

(x.cM = S V x.cM = S)) 
-------------------------- (df) 

X := 8c (d/) 

z E 8c 

where X =def Z f ra, xi =def X * q iM~(x.ic LJ fbx) n inM, 0~~01 D and 

X2 =def X * q is~(x.ic U fbx) n ins, 0~~02 D, 
(1 is: 

(1.1 is: 

(1.1 (1.2 

actv C x V inactv C x 
----------------- (v-)(1) 
ME x.act ¢:? CE x.act I\ 

S E x.act ¢:? (CE x.act I\ (x.cM = S V x.cM = S)) 

(1.1.1 

---1 
S E x.act ¢:? actv C x (di) 

--.,..-- 1 
actv C x (di) 
actvMx ( t) 

M E x.act ac 111 CE x.act 
(x.cM = S V x.cM = S) 

----------------------- (A+) 
ME x.act I\ (SE x.act ¢:? (x.cM = S V x.cM = S)) I\ CE x.act 

------------------------- (v+) 
(ME x.act I\ (SE x.act ¢:? (x.cM = S V x.cM = S)) I\ CE x.act) V 

(M ¢ x.act I\ S ¢ x.act I\ C ¢ x.act) 
------------------------- (prop logic) 

ME x.act ¢:? CE x.act I\ 

SE x.act ¢:? (CE x.act I\ (x.cM = S V x.cM = S)) 

where (1.1.1 is: 

---1 
actv C x (di) 

SE x.act ¢:? (CE x.act I\ (x.cM = S V x.cM = S)) 

SE x.act ¢:? (x.cM = S V x.cM = S) 
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(1.2 is: 

. C 1 . tC 1 
inactv x (di) inac v x (di) 1 
inactv M x ( . t ) inactv S x ( . t ) inactv C x (d'f) mac 111 mac 111 
M ff. x.act S ff. x.act C ff. x.act + ------------------- (/\ ) 

M ff. x.act I\ S ff. x.act I\ C ff. x.act 
------------------------- (v+) 
(ME x.act I\ (SE x.act {::} (x.cM = S V x.cM = S)) I\ CE x.act) V 

(M ff. x.act I\ S ff. x.act I\ C ff. x.act) 
------------------------- (prop logic) 

ME x.act {::} CE x.act I\ 

SE x.act {::}(CE x.act I\ (x.cM = S V x.cM = S)) 

Proposition 3.5.2 Given C = Dec (w M) by {(S,w S)}, for arbitrary Sand 

w M = (M, :E, a, \JI, 6) and z T3 we have, 

z E 6c z.cM =I= S z.cM =I= S 
-----in_a_c-tv_S_z ____ (Msu> 

z.cM =I= S z.cM =I= S 
--------------- (Msm) 
z * q iM~z.ic n inM, oM~z.o~ ~ E 6M 

z E 6c z.cM =I= S z.cM =/:- S 
------------.- (M::,--:,v) 
z * q is~z.ic n ins, 08~{} ~ E 6s 

where Ta j T3 • 

Proof 3.5.2 
For (M811 ) we have, 

. C 2 ________ 1 inactv z (di) 

actv C z V inactv C z inactv S z inactv S z 
z E 8c --------in_a_c-tv-S-,--z __ )_) _____ (v-)(2) 

------i-n-ac_t_v_S_z ______ (Ms (l 

(1 is: 

z2 E 8s 1- (.l _)(3) 
z2 f T2° E 8s S ff. (z2 f T2°).act . 
----------"---- (mactu) ----- (d/) 

inactv s (z2 r T2°) Z2 r T2° =r2 z 
----------,::---------"--- (inact,) 

inactv S z 

where z1 =def z * q iM~(z.ic Ufbz) n inM, oM~om ~ and 

Z2 =def Z * q is~(z.ic U fbz) n ins, 05~0s ~-

(2 is: 
1 3 

z2 E 8s S E z2.act ( ) 
--- ( d/) actu 
z2 =r3 z actv S z2 
----------- (act,) 

actv S z -, actv S z 
J_ 
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(3 is: 

---2 
actv C z 

actv S z ¢=> (z.cM = S V z.cM = S) (di) 

, actv S z 

Z.CM f. s Z.CM f. s 
--------- (I\+) 
Z.CM f. s /\ Z.CM f. s 

-------,--- (prop logic) 
-, (Z.CM = S V Z.CM = S) 

For (M8111 ), assuming the usual definitions for bindings z1 and z2 (as above), we have, 

z2 E 8s inact~ S z2 
----------c:. ( iactii) 

Z2.05 = {} 

------1 
Z.OC = 01 U 02 

~~~~~~- (d/) 
z.oc = Z1.0M U z2.05 

Z.Oc = z1.0M -~~~~~~~~~~~_.:::_~~..:..::... (d/) 

z * q iM~Z.ic n inM, OM~Z.Oc ~ E 8M z E 8c _______ ___::..:___....::......:......_ ____________ ~ (M8 )(1) 

z * q iM~Z.ic n inM, OM~Z.Oc ~ E 8M 

where ( 1 is: 

. C 2 inactv z (di) 
inactv S z z =r3 z2 (d/) 

-------- 1 . S (inact1) 
actvCzV~actvCz ~actvS~ inactv ~ _________ i_n_a-ct_v_S_z2 _________ (v-)(2) 

(2 is: 3 

, actv S z z = T ~ ( di) 

S 
3 (inacti-r.ontra) 

-, actv z2 . s (actLEM) 
inactv z2 

and (3 is: 

z.cM f. S z.cM f. S 

actv C z 2 (d/) z.cM f. S /\ z.cM f. S 
actv S z ¢=> (z.cM = S V z.cM = S) , (z.cM = S V z.cM = S) 

-, actv S z 

Similarly, for (Ms1v> we have, 

. C 2 i_nactv z ( d/) 
inactv S z z =r z2 (d/) 

. S 3 (inact1) 
inactv z2 actv C z V inactv C z inactv S z2 

z2 E 8s _________ i_n_a_ct_v_S-z2 _________ (v-)(2) 

----------------- (iactii) 
z2.05 = {} Z2 E 8M _.....;;_ ____________________ ~ (d/) 

z E 8c z * q is~z.ic n ins, 08~{} ~ E 8s 
------------------------ (M8 )(1) 

z * q is~z.ic n ins, 08~{} ~ E 8s 

3Here, and in the following, we freely use an alternate form for the rule (actLEM ). Given 

the original rule has the form f I-act V inact it follows that f,-, act 1-inact. Also, the 

rule labelled (inact1-contra) represents using the contrapositive proposition r,-, B I- -, A 
where proposition ( inact1 > has the form r, A I-B. 
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(1 is: 

-, actv S z z =r Z2 (di) 
--. - 1 -----s--3- (inact1-r.ontm) 
z2 E Os , actv Z2 --=--..:::.._------=---~ ( actiEM) 

inactv S z2 

and (2 is: 

Z.CM -1- s Z.CM -1- s 
actv c z 2 (d/) z.cM -:/-SI\ z.cM -:/- S 

actv S z <=:} (z.cM = S V z.cM = S) , (z.cM = S V z.cM = S) 
-, actv S z 

Proposition 3.5.3 Given C = Dec (w M) by {(S,w S)}, for arbitrary S, w M = 

(M, E,a, '11,8), and binding zT3 we have 

z E 8e inactv C z 
-------- (iact1 ) 

z E ='.Charle 
z E 8e inactv C z 
-------- (iactji) z.oc = {} 

inactv C z z E 2 Charle 

z E 8e 

z o' - {} 
· e - (iact+) 

IP T" where [8e] 2 c and ya~ T3 • 

Proof 3.5.3 
For (iact1 ), assuming the usual definitions for z1 and z2, we have, 

~nactv C z ( di) ___ ( di) 
___ 1 mactv M z z1 =r3 z 

( inact,) 
z1 E o M inactv M z1 ( ) 

l.H. 
z1 E '2.ChartM 

z E '2.ChartM z E =.Charts ____ ..;..;._ _______________ .c.,. cs:) 
z E ('2.ChartM I\ =.Charts) 

• ( ehartc-d/) 
z E oc z E '2.Chartc _____________________ __c_ (A1s")(l) 

where ( 1 is: 

z E '2. Chartc 

i_nactv C z ( di) ___ ( di) 
mactv S z z2 =r3 z 

(inact,) 
inactv S z2 ( ) 

l.H. 
z2 E =.Charts 

Z2 =r3 Z (d/) 
-z2-=-c~-u-.-> -z ((~ u.) j T3) 

------------------
z E '2. Charts 

For (iactji) we have, 

' 1 Z.OC = 01 U 02 __ ...;;__ ____ (di) . . 

z.oc = z1.0M U z2.08 z1.0M = {} z1.0M = {} 

z E oc z o' - {} ___________ ._c.;;.__-_ (1- i-)(1) 

Z.OC = {} 
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where (1 is: 
~nactv C z ( di) 

(di) znactv M z z1 =r3 z 1 (inact1) 
Z1 E OM inactv M z1 

Z1.0M = {} 
(I.H.) 

(2 is: 
inactv C z 

(di) 
inactv S z Z2 =r3 z (di) 

1 (inact1) 
Z2 E os inactv S Z2 

z2.08 = {} 
(/.H.) 

And for (iact+), we have, 

Z.Oc = {} inactv C z __ .;;.;.;;.;;;;.;;....;..;;__;;_....;.._ __ (v+) 
z.oc = {} U {} z1 E OM z2 E Os actv C z V inactv C z 
--'-------------------- (1-1+) 

z E oe 
(1 is: 

~nactv C z ( di) 
z E =.Charle inactv M z _z_=_r_3_z_1 (di) 
----'- ((fl.Um) j (fl.U)) ---------'~ (inacti) ---- (di) 
z1 E =.ChartM inactv M z1 z1.0M = {} 
---------------------------- (/.H.) 

Z1 E OM 

and (2 is: 

i'!1'actv C z ( di) 
z E =.Charle znactv S z _z_=_r_3_z_2 (di) 
----- ((fl.U,) j (fl.U)) --------- (inact1) ---- (di) 
Z2 E '3 Charts inactv S Z2 z2. 08 = {} 
--------------------------- (I.H.) 

z2 E os 

where [oMD~;m' [osD~;·. 

Proposition 3.5.4 Given C = Dec (w M) by {(S,w S)}, for arbitrary S, w M = 
( M, E, a, '11, 8) and bindings z T3 and x T3 we have, 

z E 8c x =r; z z.ic Ufbz = x.ic Ufbx 
---------------- (z1E) 

XE. 8c 

IP T" · where [8dz,. , T; =def Ta - V' and Taj T3 • 

Proof 3.5.4 
The proof of this proposition is identical in structure to the proof of Proposition 3.4.4 (i.e. 

that czn holds for composed charts), replacing the applications of the rules (1-1-) and 

(1-1+) with (M8 ) and (Mt) respectively. Apart from this, the significant difference between 

the two proofs is hidden by the application of the rule (acti). This divergence amounts to 

the difference between the proof of Lemma B.3.1 (that (acti) holds for composed charts) 

and Lemma B.4.1 (that (acti) holds for decomposed charts). 
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B.5 Proofs for Section 3.6: 

and signal hiding 

Chart context 

Again we show that the properties introduced in lemmas B.3.1 to B.3.4 hold 

for charts that contain signal hiding. 

Lemma B.5.1 Given C =x [C1]y, for arbitrary z and z1 we have, 

z = r3 z1 actv C z 

actv C z1 

Proof B.5.1 
For the left hand property we have, 

actv C z (di) 
actv C1 z z =r3 z1 

actv C1 z1 
(I.H.) 

z =r3 z1 inactv C z 
inactv C z1 

t C z - z ac v z ( d/) - T3 1 

CE z.act z.act = z1.act 

actv C z1 

CE z1.act (di) 

Similarly, for the right hand property we have, 

Z =ract Z1 ~nactv C z ( d/) =in=a=c=tv'-C=---=-z ( inactm) 
inactv C1 z z =r3 z1 C (/. z.act z.act = z1.act 

(I.H.) 
inactv C1 z1 C </. z1 . act 
----------------'--~ (df) 

inactv C z1 

Lemma B.5.2 Given C = x [ Ci] y, for arbitrary z T3 , we have, 

zE8c CEz.act 
------- (actu) 

actv C z 

Proof B.5.2 
For the property on the left we have, 

z E 8c (di) 

______ x_E_8_c;__ ___ ~ (d/) 

301. X,Oc = 01 n outc I\ X1 E 8c, 
actv C x 

C </. z.act 
inactv C z 

( inactu) 

actv C1 x 

Z =r• X (d/) 

z.act = x.act CE z.act 
CE x.act (di) 

actv C x 
(T)(l) (d/) 

Z =r• X 
------------------- (act1) 

actv C z 
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where X =def Z f T°, xi =def X * q ic1=$x.ic, oc/=$01 D­
(1 is: 

X1 =ra X (d/) 

xi.act= x.act 

z E 60 (di) 

XE 60 (di) 
X =ra Z (d/) 

CE x.act x.act = z.act 
CE x.act 

C1 E x.act <=} 

CE x.act 

C1 Ex.act ---1 
C1 E xi.act x1 E 601 
-------------------- (I.H.) 

actv C1 x1 
-------------------- (act,) 

actv C1 x 

For the right hand property, with x and x1 defined as above, we have, 

z E 60 (di) 

x E 60 (di) inactv ?ix C (/. x.act (di) 

:3 01 • X.Oc = 01 n outo I\ X1 E 601 mactv C X 

inactv C x (3-)(l) x =roe• z (di) 

(1 is: 

X1 =r• X (d/) 

xi.act= x.act 

-------------------- (inact1) 
inactv C z 

z E 60 (di) 

XE 60 (di) 
Z =ra X (di) 

C (/. z.act z.act = x.act 
C (/. x.act 

C1 E x.act <=} 

CE x.act 

C1 (/. x.act ---1 
C1 (/. xi.act x1 E 601 

(d'f) -------------------C. (I.H.) 
x 1 = r• x inactv C1 x1 
--------------------- (inact,) 

inactv C1 x 

Lemma B.5.3 Given C =x [Ci]y, for arbitrary zT3 , we have, 

z E. 8c 
--------- (actLEM) 
actv C z V inactv C z 

ra 
where [8c]zc and Ta :::::5 T3 • 

Proof B.5.3 

-----(LEM) 
CE z.act V 

C (/. z.act 

• 1 
z E 60 C E z.act ( ) 

act11 
actv C z ( +) 

actv C z V inactv C z v 

----1 
z E 60 C (/. z.act 

. ( inact11) 
znactv C z (v+) 

actv C z V inactv C z 

-----------ac_t_v_C_z_V-in_a_c-tv_C_z ___________ (v-)(l) 
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Lemma B.5.4 Given C =x [Ci]y, for arbitrary binding zT3 we have, 

actvCz ( t) ac 111 
CE z.act 

inactv C z 
---- (inact111) 
Cr/. z.act 

Proof B.5.4 
Trivial from the respective definitions of act and inact. 

Proposition 3.6.1 Given C =x [Ci]y, for the binding zT3 we have, 

Z.OC = 01 n OUtc, 
z E 8c 

z * q ic1~z.ic n inc11 oc/~01 ~ E 8c1 f- P 
----------P---------- (x[Jy) 

Z.OC = 01 n outc, 

z * q ic1~z.ic n inc11 oc/~01 ~ E 8c11 

actv C z V inactv C z 
---------------- (x[Jt) 

z E 8c 

where the usual conditions hold for 01 and P, [8cD:ta and Ta ~ T3 • 

Proof 3.6.1 
For (x [] y) we have, 

z E 8c 
z f Ta E 8c (1 

------------ (df) 
:J 01 • Z.OC = 01 n OUtc I\ 

z * q ic1~z.ic n inc1 , oc/~01 D E 8c1 

p 

________ p ________ (3-)(1) 

where (1 is: 

------1 
Z.OC = 01 n OUtc 

------p------ (ass) 

For (x[]t) we have, 

z.oc = 01 n outc q ic1~z.ic n incl' oc.'~01 D E 8c1 

( / A • • • I ~ " (A+) 
1 z.oc = 01 n outc I\~ zc1~z.zc n mc1 , oc1 ~01 v E 8c1 

• (3+) 
:3 01 • z.oc = 01 n outc I\ q ic1~z.ic n incl' oc.'~01 D E 8c1 

------------------------------ (A+) 
C1 E z.act <==} CE z.act I\ :3 01 • z.oc = 01 n outc I\ q ic,~z.ic, oc.'~01 DE 8c1 
--------------------------~ (d/) 

z E 8c 
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where (1 is: 

actv C z V inactv C z 

--~1 
actv C z 

actv Ci z I\ CE z.act (di) actv C z 1 (A-) 
actv Ci z I\ CE z.act actv Ci z -=----- (actm) 

C1 E z.act C E z.act 
C1 E z.act I\ CE z.act 
C1 E z.act ¢:? CE z.act 

-------------:C:-1-E-z.-a-ct_¢:?_C_E_z-.a-c_t ___________ (v-}(I} 

(1.2 is: 

. C I 
inactv z (di) 

inactv Ci z I\ C ¢ z. act inactv C z 1 

inactv C1 z inactv Ci z I\ C ¢ z. act 
C d (actm) 

1 'F- z.act C ¢ z.act 
C1 ¢ z.act I\ C ¢ z.act 
C1 ¢ z.act ¢:? C ¢ z.act 

(contrapositive) 
C1 E z.act ¢:? CE z.act 

Proposition 3.6.2 Given C = x [ C1] y, for arbitrary binding z Ta we have, 

z E 8c inactv C z 
-------- (iact1 ) 

z E BChartc 
z E 8c inactv C z 
-------- (iactji) 

z.oc = {} 

inactv C z z E BChartc z.o0 = {} 
--------------- (iact+) 

z E 8c 

where [8c]:<~a and T 0 :5 Ta. 

Proof 3.6.2 
For (iact1 ) we have, 

___ 1 inactv C z ( di) 

z1 E oe1 inactv Ci z (di) 
--------- (/.H.) Z1 =ra z (( ) ) 

z1 E =.Charle1 z1 =cau1 i z 6.Ui ::::; Ta 
--------------

z E '2. Charle1 

------ (d/) 
Charle1 = Charle 

z E oe z E =.Charle 
------------------- (x0y}(l} 

z E =.Charle 

For (iactij) we have, 

~nactv C z ( di) ___ ( di) 
inactv Ci z z1 = Ta z 

, 1 • ------,----- (inact,) 
z.oe = 01 n oute z1 E oe1 inactv Ci z1 

------- (di) (/.H.) 
Z.OC = Z1.oe.' n Oute Z1.oe.' = {} 

z E oe z o' - {} __________ ._e_-_ (x0y}(l) 

Z.Oc = {} 
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And for (iact+) we have, 

z.oc = {} inactv C z 
-------- (v+) 

z.oc = {} n outc z1 E 8c1 actv C z V inactv C z --=------------------- (xOt) 
z E oc 

where z1 =def z * ~ ic1~z.ic, oc/~{} ~-
(1 is: 

inactv C z (d') 
z E0 '2.Chartc · t C ~ --- (df) _____ ((t::.Ui) -<_ (t::.U)) inac v 1 z z =r3 z1 

---------- (inact1) ---- (df) 
z1 E '3 Chartc1 inactv C1 z1 z1. oci' = {} 
---------------------------- (l.H.) 

z1 E 8c1 

Proposition 3.6.3 Given C = x [ C1] y for arbitrary bindings z T3 and x T3 we 

have, 
z E 8c x =r; z z.ic Ufbz = x.ic Ufbx --------'----------- czn 

x E 8c 

where [8c]:c~a, T; =def Ta - Vi and Ta ~ T3 • 

Proof 3.6.3 

X =r; Z 
/ 1 / / 

z.oc = o1 n outc x.oc = z.oc 

X.Oc = 01 n outc X1 E 8c1 actv C XV inactv C X 
---------------------- <xOtl 

_z_E._8_c _____________ x_E_· _8_c (x[];; )(l) 

x E 8c 

(1 is: 

I I (df) 
X =r; Z Z1.0C1 = X1.0C1 

X1 =er· y T 0 " 1 ) Z1 
• I (T1 -< (T· y rout)) 

X1 =r z1 • - ' I 1, 

(1.1 

z1.ic1 LJ fbz1 = 
X1 • ic1 U fbx1 

------------------------- (I.H.) 
x1 E 8c1 

(1.1 is: 

I I (d/) 
Z1.0C1 = X1.0C1 

(1.1.l z1.oci' n \JI= x1.oci' n \JI 

: . fbz1_ = fbx1 (U-df) ( df) 
z.ic U /bz1 = x.ic U fbx1 z1.ic1 = z.ic 
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(1.1.1 is: 

X =r, Z 
---- (T"ut j T;) 
X =r•u• Z ------- {n-d/) 

x.od n \JI = z.od n \JI 

fbx = Jbz 
z.ic Ufbz = 

x.ic Ufbz 

-------1 
z.od = 01 n outc 

z.od n \JI ~ 01 n \JI 
~~~~~~- (df) 
z.od n \JI~ z1.oc.' n \JI 

z.ic Ufbz = x.ic Ufbz Jbz ~ fbz1 

---2 2 
actv C z x =r. z inactv C z x =r; z 
---------'-'- (act1 ) --------- (inact,) 

actv C x (v+) inactv C x (v+) 
actv C x V inactv C x actv C x V inactv C x 

. 1 
actv C z V znactv C z 
-------------------------- (v-)(2) 

actv C x V inactv C x 
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B.6 Proofs for Section 3. 7: Partial relations 

semantics 

Proposition 3.7.1 For arbitrary chart C, and bindings zT3 , we have, 

z E. C z * Za E fie, actv CZ* Za I- P --------------- cz.-) p 

z * Xa E fie actv C z * Xa + 
• (Z, ) 

z EC 

where [C];c, [fie];,~, T ~ T3 , Tact -f. T3 , and the usual conditions hold for z[ 0
c1 

and P. 

Proof 3.7.1 
For (Z.;) we have, 

1 1 
X1 * Za E 8 C X1 * Za = T X 

--- (df) 
x = z r T x * Za E 8c 

z r T * Za E 8c ract ~ T3 

z * Za E 8c actv CZ* Za 
z E. 8c 
XE 8c --T-.------- (d/) 

:J Z1 • Zl = T X I\ -----p----- (ass) 

actv C z1 I\ z1 E 8c ___________ p ___________ (3-)(1) 

where X =def z r T. 
(1 is: 

x = z r r (dn 

----1 X * Za = Z r T * Za ract ~ T3 
actv C X* Za X * Za = T" Z * Za 

actv CZ* Za 

For (Z/) we have, 

Z*Xa E 8c 
----- (df) 

ract j ra (df) 

(act1) 

z r T * Xa = r z actv C ( z r T * Xa) z r T * Xa E 8 c 
----------------'------- (/\+) 

z r T * Xa = r z I\ actv C ( z r T * Xa) I\ z r T * Xa E 8 c 

where (1 is: 

T" 
:3 z1 • z1 =r z I\ actv C z1 I\ z1 E 8c 
------------- (d/) 

z E. C 

--------- (d/) 
actv C z * Xa z r T * Xa = t!;. u y T"'' z * Xa 
-------------- (act1) 

actv C ( z r T * Xa) 
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Before continuing the proofs of the logic rules for the partial relations 

semantics we introduce another property of the transition model. In the 

given transition model, for an arbitrary chart C, there is typically several 

bindings that model a single transition that a chart can make. This is an 

important property of the model that allows us to build a general model 

of the composition operators. One of the reasons for this is that there is 

typically several bindings for which the predicate actv C z evaluates to true. 

That is, there are several possible values for the observation act (i.e. sets of 

chart names) for which a chart is considered active. Essentially, the property 

allows us to show that there is a separate binding in the transition model 

for each set of chart names that represent a state in which chart C is active. 

The similar property holds for the inactive state. 

ract ract 
Lemma B.6.2 For arbitrary chart C and bindings z T3 , Za and zb , we have, 

z * Za E 6c actv C z * Za actv C z * Zb 
( aet1v) 

z* zb E 6c 

z * Za E 6c inactv C z * Za inactv C z * Zb (inaet1v) 
Z* zb E 6c 

where [&c]~t and T j T3 

Proof B.6.2 
Like the respective proofs for ( act1) to ( aetm) this property is easily proved using structural 

induction over the language operators. 

Proposition 3.7.2 Given arbitrary charts C1, C2 and C = C1 I \JI I C2, and 
. . U1 U2 V"' Vt" V{' U1 U2 vio Vt' d V:io C b" bmdmgs z1 , 22 , Xe , u1 , ~ , y1 , y2 , Ve , w1 an w2 , 1or ar 1trary 

01 and 02 we have, 

I I ' 
z1 * X1 * y1 * v1 E C1, 

I I ' 
z2 * x2 * y2 * v2 E C2, 

XI , ic1 = (Xe. ic LJ fbvc) n inc1 , 

X2.ic2 = (Xc.ic LJ fbvc) n inc2 , 

Vc.OC = V1.0C1 U ~-Oc2 I- p 
------------p------------ (Zl=I) 
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I I • 
z1 * u1 * y1 * w1 E C1 

I I • 
Z2*U2*Y2*W2 E ~ 

U1.ic1 = (xe.ic UfbvJ n inc1 

u2.ic2 = (xe.ic LJ fbvr.) n inc2 

Ve.OC = W1.0C1 U Ui2,0C2 
------,--,--,-. - <z1:1> (t) 

z1 * z2 * Xe * Y1 * Y2 * Ve E C 

wherefbvr. =def Ve.ocn\JI, [C]~,~' [C1]:}\ [C2]~,~2, and the usual conditions hold 
vio vio vio vio 

for x1 1 , 3:-i 2 , v1 1 , v2 1 and P. This rule contains a side-condition (labelled t) 

which requires that we can show that ',;/ z Tio • :3 z[ar.t • actv C z * Za. 

Proof 3.7.2 
For ( z1=1), assuming 

vio vio 
v1 1 == q ic1~(z.ic U /bz) n inc1 ~. u1 1 == q oc1~01 ~. 

vt~0 == q ic#(z.ic U /bz) n inc2 ~. u.J'~0 == q oc#D2 ~. 
Tj" - I I Ti" - I I 

x1 - z1 * v1 * y1 * u1, 3:-i - z2 * V2 * y2 * ~ and 
Tio I I I 

z = z1 * Z2 *Xe* y1 * y2 * Ve, we have, 

. ( . : /b ) . (s 'IJ2.ZC2 = Xc.ZC U t1, n znc2 : 

V1.ic1 = (xc.ic Ufb.,J n inc1 

----1 -----------p---------- (ass) 
z * Za E Oc --------p------=--=- (1-1-)(2) 

z E oc 
---------P--------- (z.-)(1) 

where (1 is: 

-----------2 
Z * Za * V1 f V/ * uf f Vt E Ocl 

-----1 
actv C z * Za (di) 
actv C1 Z* Za X1 f T1 * Za E Ocl 

X1 * Za E Ocl 

-------- (df) 
Xt *Za =(Ll.U1 vr•ct) Z*Za ___________ ___;;.__ ___ (aet1) 

actv C1 X1 * Za 
(Z;) 

(2 is: 

-----------2 
z * Za * 'V2 r v; * ~ r vt E 8c2 t C l ac v z * Za ( di) 

(3 is: 

(4 is: 

X2 f T2 * Za E O C2 actv C2 Z * Za -X-2 _*_Z_a_=_(_Ll._U_2 Y-T-.-et-) _Z_*_Z_a ( di) 
· ---------------- (aet1) 

X2 * Za E Oc2 actv C2 X2 * Za ____ ....:_ _______________ (Z;) 

fbz = fbv, ( di) 

fbz = fbv, (di) 

X2 E C2 

. ( . fb ) . (d/) V1.ZC1 = z.zc LJ z n incl 

Vt .ic1 = (xc.ic U fbv,) n inc1 

. ( . fb ) . ( d/) 'IJ2.zc2 = z.zc u z n znc2 
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(5 is: 

' 2 Z,Oc=01UD2 . 
-v-._o_c_=_o-1"""'U-,--02- (\1'0 -df) 

C (df} 
Vc,OC = U1.0c1 U tl2,0C2 

( 

. -----3 
z * Za E 8 c actv C z * Za 
---------- (Z.+} 

z EC 

T'o Tact 
\/ z • 3 Za • actv C z * Za 

T"ct ('r) 
3 Za • actv C z * Za 

, (3-)(3) 
z EC 

(Z.-)(2) 
Z EC X1 E C1 
----------------- (Z;}(l} 

zE C 

where ( is: 

-----3 
actv CZ* Za 

(v+) 
actv C z * Za V inactv C z * Za 

(1 is: 

(1.1 is: 

(1.2 is: 

z * Za E 8c 

U1,ic1 = 

(xc.ic U fbvJ n inc, 

----(df) 
Xc.ic = z.ic 

u1.ic1 = (z.ic UfbvJ n inc1 

---(df} 
fbvc = Jbz 

u1.ic1 = (z.ic Ufbz) n inc, (1.1 (1.2 

I ' ; 
Z * Za 1 * V1 * W1 E UC1 
---------------------- (act1v) 

I ' 
Z * Za * V1 * W1 E Oc, 

------1 (df) 
actv C1 (x1 * Za1 ) X1 * Za, =c6u1 y T"ct) z * Za 1 * V1 * w{ 

actv C1 (z * Za1 * V1 * w{) 

-------3 
actv C (z r T* Za) 

actv C1 (z r T* Za) 
(df} (df} 

Z f T * Za =(6 U1 y r•ct) Z * Za * V1 * w{ 
(act1} 

actv C1 ( z * Za * V1 * w{) 
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(2 is: 

-----2 

(2.1 is: 

U2-ic2 = 
(xc.ic U fbvJ n inc2 

----(di) 
Xc.ic = z.ic 

--- (di) 
fbvc = Jbz 

-----2 (di) 
actv C2 (x2 * Za2) X2 * Za2 =c~u2 y T"c'> Z * Za2 * 'l>i * w~ 

actv C2 (z * Za2 * 'l>i * ~) 

(2.2 is: 
-------3 
actv C ( z r T * Za) 
------ (d/) ------------ (d/) 
actv C2 (z f T* Za) Z f T* Za =c~u2 y T"c') Z* Za * 'l>i * w~ 
----------------------- (act,) 

actv C2 (z* Za * 'l>i * w~) 

Proposition 3. 7 .3 Given chart C = x [ Ci] y for arbitrary C1 and bindings z u, 
yio U V'" Vj" x , , y , v and x1 , we have, 

I I • 
Z * X1 * y * U1 E C1, 

v.oc = u1.oc1 n outc I- P 
-------------p------------- (Zll) 

I I • 
Z* u1 * y * w1 E C1 u1.ic1 = x.ic n inc1 v.oc = w1.oc1 n outc + (t) _____ ..::...._ _______________ ____;; ___ (Z[[ ) 

z * x * y' * v' E C 

where [ CD~t and [ C1D~}'1 the usual conditions hold for uti°, and P. The side­

condition t requires that we can show that \;/ z Tio • 3 z[ar.t • actv C z * Za. 

Proof 3.7.3 
For ( z11 ), assuming 

Tio I I 
1-.zc =Z*X*Y *V, 

yio 

x1 1 = q ic1~l-zc.ic n inc1 ~' 
yio 

u1 1 = q oc1~01 ~ and 
Ti" 

z1 1 = z * x1 * y' * u', we have, 

-----(di) 
v.oc = u1.oc1 n outc 

I- . . (di) 
zc.ic = x.ic 

X1.ic, = 

X1.ic, = 
1-zc.ic n inc, . ___ p ___ (ass) 

1-zc * Za E fJc 
-----p----- (x0y)(2) 

1-zc E C 
x.ic n inc, 

-----------P----------- cz.-)(1) 
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where (1: 

--------------------- 2 
r-zc * Za * q ic1~(r-zc * za).ic n inc., oc.'~01 ~ E oc1 

z * Za * X1 r Tl* y' * u~ r rt E oc. 
(1.1 

Z1 * Za E Oc1 actv C1 z1 * Za 

Z1 * Za E Oc1 /1. actv C1 z1 * Za 
-------------- (3+) 

Toct • 

3 Za • z1 * Za E Oc1 /1. actv C1 z1 * Za --------------- cz:) 
Z1 E C1 

(1.1 is: 

(2 is: 

1 
actv C r- Zc * Za 
----::,--,---- (d/) --------- (d/) 
actv C1 r-zc * Za r-zc * Za =c.o.u1 y Toe') Z1 * Za 
------------------- (act1) 

actv C1 z1 * Za 

--------2 
r-zc.OC = 01 n outc 

v.oc = 01 n outc (di) u1.oc1 - 01 (di) 

v.oc = u1.oc1 n outc 

For ( z1j>, assuming 
T~ I I 

Z1 = Z * U1 * y * W1 , 

Vi JI • • n. I\ v1 = \J ic1~x.ic mc1 v, 
U Tio = Z * X * y1 * V 1, we have, 

Vu r·· • 3 z[Bct • actv C u * Za 
rBcl cv-> 

----- 2 
actv Cu* Za 

UE. C 3 Za • actv C z * Za 
(r)(2) 

~E~ uE.C 
-------------- (z.-)(1) 

u EC 

where (1 is: 

-a-ct_v_C_u_*_Z_a 2 ( 2 v.oc = w1.oc1 n outc v.oc = u * z11 .oc (di) 
------------ (v+) 
actv Cu* Za V inactv Cu* Za u * z11 .oc = w1.oc1 n outc + 
--------------------------- (x0y) 

U* Za E Oc 

(2 is: 

--=--- 2 
actv Cu* Za (d'f) 

C -:-:--:-------:--:- (d/) 
actv 1 U * Za U * Za =c.o.u1 y Ti'') Z1 * Za 

----- 1 ----- 1 ---------:---------- (act1) 
Z1 * Zb E Oc1 actv C1 z1 * Zb actv C1 z1 * Za 
-----'--------------------- (act1v) 

Z1 * Za E Oc1 
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Proposition 3.7.4 Given Ms= (Dec (w M) by {(S,w S)}), for arbitrary S, 

w M = (M,E,u, w,6), and MS~= [w MI 111 I w S)z,, then for arbitrary zT3 we 

have, 

Proof 3.7.4 

z.CM = S V z.cM = S z E 6Ms 
------------- (Ms v) 

z E 6Ms"' 

z.cM = S V z.cM = S z E 6Ms"' ______ .;;,..;;_ ______ (MJu) 

z E dMs 

Given that the following holds from the respective definitions of the predicates act and 

inact, 
z.cM = S V z.cM = S actv MSw z V inactv MSw z 

actv Ms z V inactv Ms z 

The proof of (Miu) follows trivially using the rules (M8) and (1-1+). 

Similarly given, 

z.cM = S V z.cM = S actv Ms z V inactv Ms z 
actv MSw z V inactv MSq, z 

The rule (MJu) holds trivially using (1- i-> and (MJ}. 
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B.7 Proofs for Section 5.2: The refinement 

semilattice 

Proposition 5.2.1 For arbitrary charts A,C, and infinite sequences i and owe 

have, 
C;;;;!bA 
c=outA G!iju) 

(~(inc)• o~(outa)) E [C); f-
inc = inA outc = outA 

(~(inA)• O~(outf )) E [AJ; 
------------------------ (;;;!ti) 

C;;;;!bA 

Proof 5.2.1 
The proofs of (;;;!ij 1 ), (;;;!ij 11 ) and (;;;!ij 111 ) are trivial from Definition 5.2.1 using (A-). 

Now for the introduction rule. For (;;;it 1 ) we have, 

inc = inA outc = outA 

inc = inA I\ outc = outA I\ 

(~(inc)• Ol>(outt)) E [CD; 

(~(inA)• Ol>(out})) E [AD; 
----------- (=>+)(1) 

(~(inc)• Ol>(outt)) E [CB;=> 
{~(inA)• Ol>(out})) E [AD; 

(~(inc)• Ol>(outf-)) E [CD;=> (~(inA)• Ol>(out,t)) E [AD; 
--------------------- (d/) c;;;hA 

And for (;;;it 11 ) we have, 

{~(inA)• Ol>(out})) E (AD; 
inA = inA outA = outA (~(inA)• ol>(out})) E [AD; 
------------------- (;;;it 1H1) 

A;;;hA 
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B.8 Proofs for Section 5.3: Interface refine­

ment and R 

B.8.1 Input interface refinement 

Proposition 5.3.1 For arbitrary charts A and C, signal set ins and infinite 

sequences i, i' and owe have, 

C~zA 
outc = out A CJi 1 ) 

C ~I B B ~I A 
C ~I A Glivl 

C ~I A ins = inA n inc 
Gliv1l 

(~(inA)• o) E [At¢=? (iC>(ins), o) E [At 

. . 
inB = ins, 

outB = outA, 

B ~I A I- P C~zA 
A ~IC Gli vnl 

_______ p _______ Gli VIII) 

ins C inA 
( iC>(inA), O) E [At ¢:} 

( iC>(ins), 0) E [At 

p 

. . 
inB = ins, 

outB = outA, 

B ~I A I- p 
Gli1xl 

where we assume the usual conditions for Band Pin (;;J76) and (;;J77 ). 

Proof 5.3.1 
The rule (;;J71 ) follows trivially from Definition 5.3.1 using (A-). 

For Gl 711 ) we have, 

c~z A 
( •- o ) E [ATiw outc -- outA G!i 1) ""D"(inA), C>(outt) ~x 

where (1 is: 

c~z A _____ ....::_ ____ (~z -di) 

( ic:, (in<:), OC> ( outt)) E [ q; ==> 

(ic,(inA)• OC>(outf)) E [AD; 
-------------------- (=>-) 

(ic,(inA)• OC>(out/:)) E [AD; 
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For (;;;Ji Ill) we have, 

C:=::::zA 
( •- o ) E [ CTI"' outc -- outA (;;;Ji 1) v(inc), !>(out;(-) h 

where ( 1 is: 

C:=::::zA 
----------- (:=:::z -di) 

(11>(inA)> Ol>(out;(-)) E [AD;::::} 
( 11>(inc), Ol>(out±)) E [ CD; 

-------------------- (=>-) 
(11>(inc)> Ol>(out;(-)) E [CD; 

Along with the rules (;;;Ji 11 ) and (;;;Ji Ill) we introduce and prove two useful variants of 

these rules. We give a proof of these rule here in order to freely use these variants in the 

following. 

Firstly, we have that, 

Correspondingly, 

___ C_:=::::_z_A ___ (:=:::z -di) 

( [ TI"' (11>(inc)> o) E [CD;::::} 
11>(inc), o) E Cnx 

(11>(inA), o) E [AD; 
---------------- (=>-) 

(ii>(inA), o) E [AD; 

C:=::::z A ____ ....;;;.... ___ (:=:::z -di) 

( ) [ATI"' (ii>(inA), o) E [AD;::::} 
11>(in11 ), 0 E nx [ TI"' 

(11>(inc)> o) E Cnx 
--------------- (=>-) 

(11>(inc), o) E [CD; 

Now for (;;;Ji iv) we have, 

where (1 is: 

---------- (=>+)(1) 
(i, o) E [CD;¢:> (i, o) E [AD; 

------------- ('v'+) 
'vi, o • (i, o) E [CD;¢:> (i, o) E [AD; 

[CD;= [AD; 

[ TIW 1 
(i_, o) _E Cnx ([.B'.;'-df) 

C:=::::z A 
( ) [ CTIW l outA = outc (;;;)ii) 

i,..::_ E nx (f.JWx -d'f) 
i = ~(inc) inA = inc o o a outA~ = outc~ - l>(outt) 

and (2 is: 

i = 11>( in,1) 0 = 01>(out±) 

(i, o) E [AD; 
---------- (=> +)(1) 
(i, o) E [CD;::::} (i, o) E [AD; 
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The proof labelled (3 is symmetric to (1 using (;;;!i 111 ), 

For (;;;!i v) we have, 

(3 

(1-c,(inc)• o) E [en;=? (1-c,(inA)• o) E [Ae =? 
(1-c,(inA)• o) E [AD; (1-c,(inc)• o) E [CD; 

where (1 is: 

-------1 
(1-c,(inc)• o) E [ en; 

-------- ([.D'.;'-d/) 
(1-c,(inc)• OC>(outt,)) E [CD; C ~I B 

where (2 is: 

(;;;!i u> B A ~I 

C~xB 
OUtc = OUtB (;;;!z I) 

B~zA 
OUtB = OUtA (;;;!z 1 ) 

( ic.(in~), o) E [ en; ~[.D~ -d/) 
0 - OC>(outb) 

0 = OC>(out;}) 

outc = outA 

out"fj = out{ 

Once again, the proof labelled (3 is symmetric to (1 using (;;;!i 111 ). 

For (;;;!i vi) we have, 

ins= inA n inc (1-c,(ins), o) E [AD; 1 

C A (( . ) ) [ATIW (c,(.)-d/) 
~I 'tc>(inc) C>(inA)' O E Ix 

(( · . ) ) E [CTIW (;;;!i 111> 
'tc>(mc) C>(inc:)' O Ix d 

C A ( . ) [CTIW (c,(.)- !/) 
~I 'tc>(in,:)• 0 E Ix 

( . ) [ATiw (;;;!iu) ( 1 
'tc>(inA)• 0 E Ix + 

(1-c,(ins), o) E [AD;=? (ic.(inA)• o) E [AD; (~ )(l) 

where (1 is: 

ins= inA n inc 
(1-c,(ins), o) E [CD; ins~ inc 

(( . ) ) [CTIW (c,(.)-d/) C~zA ins= inA n inc 'tc>(ins) C>(inc), 0 E Ix 
----------------- (;;;!iul 

((1-c,(ins))C>(inA)' o) E [AD; 
-------------------- (c,(.)-d/) 

(1-c,(ins), o) E [AD; + 
( . ) [ nw . [ TIW ( ~ )(2) 

'tc>(inA), 0 E Alx =? ( 'tc>(ins)' 0) E Alx 
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and (2 is: 

ins = inA n inc 

(ic,(inA)• o) E [AD; 2 
--------- ([>(.}-d/} 
({ ic,c inA) )C>(inA), 0) E (AB; 
------'------------- (;Ji Ill) 

((ic,(inA))C>(inc)' o) E [ en; 
C~zA 

_____________ ....:_...:....:.... ____ {r,(.)-d/} 

(ic,(ins),o) E (CD; 

The proof for (;Ji vul is trivial given the definition of ~I (Definition 5.3.1) and that<=> is 

commutative. 

For (;Ji vm) we have, 

inA ~ ins ----------t 
:l B • ina = ins I\ 

ina = ins outa = outA 

p 
outa = outA I\ B ~I A _________ p _________ (3-){l) 

1 
B~z A 

We still need to prove the step labelled t above. That is, for any chart A and set of 

signals ins, where inA ~ ins, there exists a chart B that has input interface ins, an output 

interface equal to outA and is an interface refinement of chart A. To do so we give an 

informal account of an algorithm that takes an arbitrary chart and extends its interface 

one signal at a time to give a new chart that has exactly the properties required of B. 

This algorithm is guaranteed to terminate because of the assumption that the set ins is 

finite. 

Briefly this algorithm is as follows. For the first new signal, say x where x is not already 

in in A, we take chart A and add to it a copy of each of the existing transitions. We then 

add to the trigger of one of these transitions the signal x and to the other the negation 

of the signal -x. This gives us a new chart Ai such that Ai ~I A. We then proceed to 

add the next new signal, in the same fashion, to the chart Ai giving yet another chart A2. 

The transitivity of ~I gives us that A2 ~I A. Continuing this chain until each of the new 

signals in ins are accounted for, will give us the chart B as required. 

For (;Ji ix) we have, 

outa = outA 
ins C inA 1 . 

ina = ins B ~I A 
(ic,(inA)• o) E [AD;<=> 

( ic,(ins), 0) E [AD; 
------------ t 

:l B • ina = ins I\ p 
outa = outA I\ B ~I A 

---------p--------- (T){l) 

Again we prove the step labelled t by giving an informal account of an algorithm that 

creates an appropriate chart B from the given chart A. This algorithm is as follows. Take 

the specific chart A and remove from it any reference to the signals (i.e. positive and / 

or negative) that are not in the set ins. Ensure the input interface of this new chart is 

equal to ins. Because (ic,(inA)• o) E [AD; <=> (ic,(ins), o) E [AD; the resulting chart will 

have exactly the attributes required to prove the existence of the chart B. 

Now for the introduction rules: 
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outc = outA 

[Ct= [At 
C ~I A (;;;J!I/) 

Proof 5.3.1 ( continued) 
The proof of (;;;J! 1) is split into two cases as follows. 

Case 1: Assuming o = Oc:,.(outt,) we have, 

outc = outA 

(ic:,.(inc), Oc:,.(outt,)) E [C]; {::} (ic:,.(inA)• Oc:,.(outj) E [A]; out-/J = out{ 

(ic:,.(inc), Oc:,.(outt,)) E [ c]; ¢:} (ic:,.(inA)• Oc:,.(outt,)) E [A]; outc = outA 

(ic:,.(inc)• o) E [c]; ¢:} (ic:.(inA)• o) E [A];/\ outc = outA 
C ~I A (::::::z -di) 

Case 2: Assuming o =/:- Oc:,.(outt,) we have, 

o =/:- ot>(outt,) outc = outA 

O =/:- Oc:,.(out.L) O =/:- Oc:,.(out.L) 
. C w ([.B~ -d/) . A w ([.)~ -d/) 

(Zc:,.(inc), o) </. [Ct (Zc>(inA)• o) </. [At + 

(ic:,.(inc), o) E [C]; {::} (ic:,.(inA)• o) E [A]; (A ) outc = outA + 

(ic:,.(inc), o) E [C]; {::} (ic:,.(inA), o) E [A];/\ outc = outA (A ) 
C~zA (::::::z-df) 

And finally for (;;;J!II), 

[C]wx = [A]wx Vi, o • (i, o) E [C]w {::} (i, o) E [Ar [C]w - [A]w 
________ x ______ x_ (\/-) X X ([.)~-d/) 

inc= inA (ic:,.(inc), o) E [C]; {::} (ic:,.(inc), o) E [A]; out-/J = out{ 

(ic:,.(inc), o) E [C]; {::} (ic:,.(inA), o) E [A]; outc = outA + 

(ic:,.(inc), o) E [C]; {::} (ic:,.(inA)• o) E [A];/\ outc = outA (A ) 
C ~I A (::::::z -df) 

Lemma 5.3.2 For arbitrary charts A and C, traces i and o, and signal set ins, 

inA ~ ins 
3 B • ina = ins I\ B ~I A 

ins C inA 
(3 B • ina = ins I\ B ~I A)¢:? ((it>(inA)• o) E [At¢:? (it>(ins), o) E [At) 

C~zA 
3 B • ina = ( inc n in A) I\ C ~z B I\ B ~z A 
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Proof 5.3.2 
For the first property in this lemma we have: 

. . 1 B A 1 znB = ins ::::::z + 
. . B A (A ) znB = zns I\ ::::::z 

---------- (3+) 
inA ~ ins :3 B • inB = ins I\ B ::::::z A 
--------------- (dz vm)(l) 

:3 B • inB = ins I\ B ::::::z A 

The second property requires that we prove an implication in both directions. For the 

=> direction we have: 

----1 
ins = inB ins C inA 

----1 
inB = inA n inB ins = inB 

:3 B • inB = ins I\ 
B ::::::z A 1 ins= inA n inB (:r ) 

(ic-(inA)• o) E [A];¢:} (ic-(ins), o) E [A]; -z VI 
B::::::zA 

-------------------- (r)(1) 
(ic,(inA)• o) E [A];¢:} (ic-(ins), o) E [A]; 

For the <= direction we have: 

(ic-(inA)• o) E [A];¢:} 
. . 1 B A I znB = zns ::::::z 

(ic-(ins), o) E [A]; 
----------------------- (dz IX)(l) 

:3 B • inB = ins I\ B ::::::z A 

ins c inA :3 B • inB = ins I\ B ::::::z A 

Finally for the third property we split the proof into two cases. 

Case 1: Assuming inA ~ inc we have, 

inA c_ inc [A]w _ [A]w 
X X p+ ) 

inA = (inc n inA) C ::::::z A A ::::::z A -zu 
inA = (inc n inA) I\ C ::::::z A I\ A ::::::z A (A+) 

--------------- (3+) 
:3 B • inB = ( inc n inA) /\ C ::::::z B I\ B ::::::z A 

Case 2: Assuming-, (inA ~ inc), 

C ::::::z A inc n inA = inc n inA ( 1 _ _.;:: __ _____:;___c..;;_ _ __;:;. _ __;.c_ (dz VI) 

(ic-(inA)• o) E [A];¢:} 
-, (inA ~ inc) 

inc n inA c inA 
(ic,(in,4ninc)• o) E [A]; 

----------------------- (dz IX)(l) 
:3 B • inB = (inc n inA) I\ C ::::::z BI\ B ::::::z A 

where ( 1 is: 

---1 
B::::::zA 

c ::::::z A A ::::::z B (dz v11 > 
-in_B_=_( z-_n_c_n_i_n_A_) l C ::::::z B (dz v) _B_::::::_z_A_ l 

-----'--------------------- (I\+) 
inB = (inc n inA) I\ C ::::::z BI\ B ::::::z A 

:3B • inB = (inc ninA) I\ C ::::::z BI\ B ::::::z A (3+) 
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Lemma 5.3.3 For arbitrary charts A and C we have, 

detA C ~I A 
det C 

Proof 5.3.3 

________ d_e~t_A ________ (d/) 

Vi,o,o' • (i,o) E [AD;/\ (i,o') E [AD;=> o = o' 
cv-) 

(ic,(in,1), o) E [AD;/\ (ic,(in,1), o') E [AD;=> o = o' 
-----------_-,--------- (=>-) 

0 - 0 (=>+)(1) 
(i,o) E [CD;/\ (i,o') E [CD;=> o = o' + 

Vi,o,o' • (i,o) E [CD;/\ (i,o') E [CD;=> o = o' (\f ) 

det C (di) 

where (1 is, 

(i, o) E [CD; 1 (i, o') E [CD; 1 

(ic,(inc:), o) E [CD; C ~I A (ic,(inc:)• o') E [CD; C ~I A 
----------- Pi II) (;Ji II) 

(ic,(in11 ), o) E [AD; - (ic,(in11 ), o') E [AD; 
(ic,(in,1), o) E [AD;/\ (ic,(in,1), o') E [AD; 

Lemma 5.3.4 For arbitrary charts A, B and C we have, 

inA c inc C ~I B B ~b A 

3 B' • C ~ b B' I\ B' ~I A 

Proof 5.3.4 

----1 
inB, = inc outB' = outc (ic,(in!J'), ol>(outi!-,)) E [B'D; 

c ::i B' c;i; I )(2) B' ~z A 1 
-b (/\ +) 

inA c inc 
---- (s;;-df) 
inA ~ inc 

C ;;;;i b B' I\ B' ~I A __ ___;; ______ (3+) 

3 B' • C ;;;;i b B' I\ B' ~I A 
3 B' • C ;;;;ib B' I\ B' ~z A (;Ji vmH 1) 

where (1 is: 

B ;;;;ib A C ~I B 
outB = outA (;;Jij" II) outc = out8 (;Ji 1) 

outc = outA 
-----1 
outB, = outA 

outB' = outc 

and (2 is: 

---------2 
(ic,(inc:)• Ol>(outt)) E [CD; C ~I B 

( . ) [BTIW (;Ji II) B :J A 
Zc>(inu), Ol>(out;}) E ~x -b 

B' ~I A 1 (ic,(in,1), Ol>(out;)) E [AD; 
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Proposition 5.3.5 For arbitrary charts A and C, and infinite sequences i and 

owe have, 

C ;;;;) b B, B ~z A I- P 

C;;;;JAA 
outc = outA (~::;im) 

C ;;;;)A A (~(inc)• OC>(outa)) E [Ct 
--------------- (~::;i,v) 

(~(inA)• OC>(outf )) E [At 

C ;;;;)A A (~(inA)• OC>(outj-)) ¢ [A]; 
-------------------- C~::;; v,) 

( ~(inc)• OC>(outa )) ¢_ [ C); 

assuming the usual conditions for B and P. 

Proof 5.3.5 
For (~::;i 1 ) we have, 

C :::J.A A 
- (:l .A -di) 

(3 B • C ;;;lb B I\ B ~I A) I\ , C ;;;J. A -
-------------- (/\-) 

---1 
B~zA 

3 B • C ;;;) b B I\ B ~I A P 
----'-------P--------- (r)(1) 

The proof of (~::;i 11 ) is trivial from the definition of ;;;).A using (/\ -). 

For (~::;i 111 ) we have, 

---1 1 
C;;;Jb B B ~I A 

outc = outB (~~ 11 ) outB = out A Pr,) 
C ;;;).A A outc = outA 
____ o_u_t_c_=_o-ut.,...A ____ (~::;i 1 )(l) 

For (~::;i ,v) we have, 

-----,-1 
B~z A 

For (~::;i v) we have, 
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---2 
B~z C 
C ~I B Gl7 vu) B ::Jb A 

- (A+) 
C ~I BI\ B ;;;Jb A 

---- 1 (3+) 
inc ~ in A 3 B • C ~I B I\ B ;;;J b A 

3 B • C ~I BI\ B ;;;Jb A Gl7 v1I1)(2) 

C ::J A Gt -di) -· 
where (1 is: 

(2 is: 
---2 
B~z C 

outB = outc (;;;!7 1) 
C ;;;J.A A 

outc = out A (;;)_A III) 

For (;;;!:;;_ vi) we have, 

-, (~(inc}> ol>(outt)) (/. [c]; 

C ;;;J.A A (~(inc), 01>(outt)) E [C]; 
-------------- (;;;!::i.1v) 

(~(inA), Ol>(outj) E [A]; (~(inA), Ol>(outf)) </. [A]; 

. 1- w c.1-)(1) 
(zt:.(inc}, Ol>(outi-)) </. [ Ct 

Lemma 5.3.6 For arbitrary charts A, A', C and C' we have, 

inc = inc, C ~I A C' ~I A inA = inA' C ~I A C ~I A' 
[Ct= [C']; [A];= [A']; 

Proof 5.3.6 
For the left hand side we have: 

---------- 1 
(~(inc,)• Ol>(outt,)) E [C']; C' ~I A 

(~(inA), Ol>(out_t)) E [A]; 
------------------ (;;;)7 III) 

(~(inc:}, ol>(outt)) E [C]; 
----------- (=>+)(1) 

C~zA 

(~(inc:,)• Ol>(outt,)) E [C']; => 

(~(inc}, Ol>(outt)) E [C]; 

outc = outc, 
(~(inc), ol>(outt)) E [ C]; <=> 
(~(inc,), Ol>(outt, )) E [ C']; 

----------C----.-1-C-, --------- (;;;!! 1 ) 
inc= inc, ·--------[ C_]_:_=_[ C-']_; ______ (;;;!7 IV) 
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where ( 1 is: 

( · ) [C]w (·. ) [C']w (=>+)(2) 
Zc:,.(inc), OC>(outb) E x => Zc:,.(inc,)> OC>(outt,) E x 

And (2 is: 

C~zA 
outc = out A G::!i 1) 

C'~zA 
outc, = out A Gli 1) 

outc = outc, 

The proof of the right hand rule is easily derived using the symmetry of the proof 

above. 

Lemma 5.3. 7 For the arbitrary charts A and C we have, 

Proof 5.3.7 

C~zA 
C ;;;;i, A 

c;;;;i, A 

3A' • C ~I A' 

For the left hand side we have: 

C ~I A A :::J A CJtu) 
-b 

3 B • C ~I B I\ B ;;;)b A 
C :::J A Gl, -di) -· 

And for the right hand side we have, 

C :::J A I 
-· (:::J d'f) C ~I B (3+) 

3 B • C ~I B I\ B ;;;)b A -, - 3 A' • C ~I A' 
-------3-A-,-.-c-~-z-A-, ------ (r)(i) 

Lemma 5.3.8 For an arbitrary chart C and signal set ins, 

ins~ inc 
3 A• in A= ins I\ ( C ;;;;i, AV C ;;;;iA A) 

Proof 5.3.8 

------- (Chaos-df) 
3 A• inA = ins I\ 

[A]; = [chaosA]; 

----- (LEM) 

3 A . . ( C A C A) (v-)(2) 
• 2nA = ins I\ ;;;), V ;;;)A 

---------------------- (r)(1) 
3 A • inA = ins I\ ( C ;;;), A V C ;;;)A A) 
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where (1 is: 

And (2 is: 

C:::J A 2 

--- 1 -• (v+) 
inA = ins C :::J A V C :::J .A A 

-· - (3+) 
inA = ins I\ ( C ;;;;J. A V C ;;;;).A A) 

-------------- (3+) 
3 A • inA = ins I\ ( C ;;;;J. A V C ;;;;).A A) 

[ TI"' [ TI"' l chaosAn = An 
------ (~:r -df) X X p+ ) 

( :::J d'f) chaosc ~I chaosA chaosA ~I A _-:r 11 
----- -b- P:rv> 
C ;;;;) b chaosc chaosc ~I A -_ __;;_ _________________ (3+) ---- 2 

3 B • C ;;;;)b BI\ B ~I A , ( C ;;;;J. A) 
(A+) 

(3 B • C ;;;;)b BI\ B ~I A) I\, ( C ;;;;J. A) 
-------------- Gl.A -df) 

C ;;;;).A A + 
inA = ins C :::J A V C :::J A (v ) 

-· -.A (3+) 
inA = ins I\ ( C ;;;;J. A V C ;;;;).A A) 

------------- (3+) 
3 A• inA = ins I\ ( C ;;;;J. AV C ;;;;).A A) 

Lemma 5.3.9 For arbitrary charts A, C we have that, 

3i,i',o • ic.(inA) = i't>(inA) A. (it>(inc),o) E [Ct A. (i't>(inc),o) ¢ [Ct 

Proof 5.3.9 

--------- (A+) 
( 

(~(inc), o) E [CD;{::} 
..l 

(~(inAninc), o) E [CD; 
-----------..1----------- Gli 1xH2) 
--------------------- (.l -)(1) 

inA n inc c inc 

-, Vi,i',o • ~(inA} = i'l>(inA}::::} ((~(inc),o) E [CD;)::::} 
( i' l>(inc)> 0) E [ CD;) 

3i,i',o •-, (~(inA) = i'l>(inA)::::} ((~(inc),o) E [CD;::::} 
(i'l>(inc), o) E [CD;)) 

3 i, i', 0 • ~(inA) = i' l>(inA) /\ (~(inc), 0) E [ CD; I\ ( i' l>(inc), 0) </. [ CD; 

where ( is: 

C ;;;;).A A 
2 (df) -, (C ::::i_. A) C:JA11> C ::::i_. A inB' = inA n inc inA n inc ~ inA 

..l inB' ~ inA 
--------..1-------- Gli vmH5) 
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(1 is: 

(2 

C ;;;).A A 
outB, = outc 2 outc = outA G::l:;.m) 

-----5 
----5 
inB = inA 

outB = outB, outB, = outA 

(2 is: 

outB = out A (;it 1 )(6) ---2 
c~zB 

B' C 2 B B' 5 ~I ~I 
--- (:r 1) (;Jr- VII) C ~I B' -I VI B' ~I B ----c-~-7- 8---- Gli v) 

{ic,.(inu), Oc,.(outj}-)) E [B]; 6 
_____ ....::_ ___________ (;Ji 111) 

{ic,.(inc),Oc,.(outa-)) E [C]; C ;;;).A A 
------------------------ (;JAIV) 

{ic,.(inA)• Oc,.(outf)) E [AD; 

Now for (3, assuming inAc = inA n inc and ixy = (ic,.(inx))c,.(iny) we have, 

------------------- 1 

Vi,i',o • ic,.(in,4) = i'c,.(inA) => 
{{ic,.(inc)• o) E [CD;=> {i'c,.(inc)• o) E [CD;) 

------------------ ('v'-) 

----- (r:,(.i-d/) 
iA,1 = ic,.(in,1) 

iA,1 = ic,.( in,4) => 
((iAc, o) E [C]; => 
{ic,.(inc)• o) E [CD;) 

----- (r:,(.)-d/) 
(iAc, o) E [cD; => {ic,.(inc), o) E [CD; iAc = ic,.(in,1c) 

{ic,.(in,1c)• o) E [c]; => (ic,.(inc)• o) E (CD; 

And for (4, again assuming inAc = inA n inc and ixy = {ic,.(inx))c,.(iny) we have, 

------------------- 1 
Vi, i', 0 • ic,.(in,1) = i' C>(in,1) => 

{{ic,.(inc)• o) E [CD;=> {i1c,.(inc), o) E [CD;) 
------------------ cv-) 

----- (r:,(.)-d/) 
iA,1 = ic,.(inA) 

ic,.(in,1) = iA,1 => 
({ic,.(inc)• o) E [C]; => 
(iAr:i o) E [C];) 

----- (r:,(.)-d/) 
{ic,.(inc:), o) E [C]; => (iAc, o) E (C]; iAc = ic,.(in,1c:) 

(ic,.(inc:)• o) E [CD;=> (ic,.(in,1c)• o) E [c]; 

Lemma 5.3.10 For arbitrary charts A, C, input sequences z and i', and all 

output sequences owe have, 

C ;ii A 
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Proof 5.3.10 

( 

C;;;J.A (:::J d') (i't>(inJJ),~)E[B]; C~zB 3 

3 B • C ~I B I\ B ;;;ib A -L - ~ ( , p- ) i t>(inc), o) E [ CD; -rm 

(i't>(inc), o) E [CD; (r)(3) 

(~(inc), o) E [C]; =} (i't>(inc}, o) E [C]; (=>+)(2) 

~(inA) - i't>(inA) =} ((~(inc), o) E [CD;=} (i't>(inc), o) E [c];) (=>+)(!) 

where ( is: 

(1 is: 

C ~I B 3 (~(inc), o) E [CD; 2 

(~(in,,), o) E [B]; Gli ul (~(in1J), o) E [B]; =} 
(i't>(in1J), o) E [B]; 

(i't>(in,,), o) E [B]; 

Vi, o • (i, o) E [B]; <=> 

(i, o) E [B]; 

(~(inJJ), o) E [B]; <=> 

(~(in1J), o) E [B]; 
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B:::J A 3 
-b p- ) 

inB = inA -/3 1 

. ., 
"tt>(inA) = Z t>(inA) =} 

. ., 
"tt>(in1J) = Z t>(in1J) 

. ., 
"tt>( inlJ) = Z t>(inu) 



B.8.2 Output interface refinement 

Proposition 5.3.11 For arbitrary charts A and C, signal set outs and infinite 

sequences i, o and o' we have, 

C~oA 
---- (;;:i;;,) 
inc= inA 

C ~O A (~(inc), 01>( outa)) E [ C]; 
( ) [A] (;;:Jo II) 

ii>( out}), 0 1>( out}) E ; 

C ~O A (~(inA), 0 1>(outf )) E [At _________ ..;.;.._ ___ (;;:Joml C ~o A outc = outA 
[CD;= [At G!o,vl ( il>(inc), 01>(outa )) E [ Ct 

C ~o B B ~o A C ~o A outs = outA n outc 
------- c:r ) G!ov,l 

C ~O A -o v (i, ol>(outf)) E [AD;{:} (i, ol>(outsL)) E [A]; 

C~oA 
A C (;;:i;; vu) ~o 

outA ~ outs 

outB = outs, 

inB = inA, 

B ~o A I- P 
-------p---------- (;;:Jo VI/I) 

outs C outA 
(i, ol>(outf )) E [A);{:} 
( i, Ol>(outsl. )) E [AB; 

outB = outs, 

B ~o A I- P 
-----------P----------- (;;:i;;,x) 

where we assume the usual conditions for B and P. 

Proof 5.3.11 
For (;;:J0 1 ) we have, 

(i, ot>(outt-)) E [q; 2 C ~o A 
· (:=::;o -df) 

i E dorn[CD; 1 
------------,- (dom-df) 

(i, ot>(out.1.)) E [Ar 
A x + 

3o' • (i,o') E [AD; <3 ) 
. u Tiw (dom-df) 
i E <lorn tAnx 3 o • (i, ot>(outt,)) E [Ce 

--------i _E_d_o_rn_[_A_Tiw _______ <3-H2) 

Dx (=>+)(l) 
i E <lorn [ cD; => i E <lorn [AD; 

<lorn ( CD; = <lorn [AD; w 
'TW _ zw ((.):,: -df) 
.Le - A 
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where (1 is: 

(i, ot>(outt)) E [All: 4 C ~O A 
----------- (;:,;,o -df) 

( i, Ot>(out-!) E [ en: 

i E dom[All; 3 
( (3+) 

::lo'• (i, o') E [en: 
i E dom [ en: (<lorn -df) 

::lo• (i, Ot>(out~) E [All; 
____ _.:..:. ____ =--=-,------- (r)(4) 

For Glo II) we have, 

where (1 is: 

i Edom [en: 
----------- (=>+)(3) 
i Edom [All: ==> i Edom [ en: 

C~o A 
----------- (;:,;,o-df),(A-) 

(~(inc), Ot>(out/,;) E [en;==> 
(~(inc), Ot>(out})) E [All: 

--------------------- (=>-) 
(~(inc), Ot>(out} )) E [All: 

For (;;;;10 m) we have, 

where (1 is: 

C~oA 
---- (;;;;i;/) 
inc= inA 

c~z A 
---------- (;:,;,o-df),(A-) 

(~(inA), Ot>(out})) E [All:==> 
(~(inA), ot>(outt)) E [en: 

--------------------- (=>-) 
(~(inA), Ot>(outt)) E [CTI: 

As with the rules (;;;Ji II) and (;;;Jim) we again introduce and prove two less general 

variants of the rules (;;;;10 II) and (;;;;10 m). 

Firstly, we have that, 

c~oA 
--------- (;:,;,o-df),(A-) 

(i, Ot>(outt)) E [en;==> 
(i, Ot>(out})) E [All: 

----------------- (=>-) 
(i, Ot>(outx)) E [All; 

Correspondingly, 

c~z A 
--------- (;:,;,o-df),(A-) 

(i, ot>(out})) E [All;==> 
( i, ot>(outt)) E [ en: 

----------------- (=>-) 
(i, Ot>(outt)) E [en; 
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For (;;J0 iv) we have, 

where (1 is: 

(1 (2 

(i', o) E [CD;<=>(~', o) E (AD; (A+) 

Vi, o • (i, o) E [CD;<=> (i, o) E [AD; ('v'+) 

[CD;= [AD; 

( . ') [CTIW 1 
. ,i, o E nx w ([.)~ -di) 

( . ') E r CTiw 1 outA = outc 
~~~~ (~-d/) 
outx = out-/5 C ~o A (i, o t>(outt)) E [Ct 

( . I ) ,[ATIW (;;)011> 

:• 0 I l nx ([.)~ -d/) 
0 = 0 C>(outt) 
----'----------1 I_ I i, o t>(out}) E nx 0 - O C>(out}) 

(i, o') E [ADw 
( i, o') E [ CD; :::} ( i, ;,) E [AD; c~+)(l) 

and (2 is: 

( . ') [ADW 1 i o E 
• I ' X W ([.)~ -di) 

C ~o A (i, o t>(out})) E [At 

(i o') E [ATiw 1 
I' I h ([.D~ -di) 

0 = 0 C>(out}) 

outA = outc 
~~~~ (~-df) 
outx = out-/5 

( • I ) [CTIW (;;Jom> i, o t>(outt) E nx I I 
O = O C>(outt) 

(i, o') E [Cr 
(i, o') E [AD;:::} (i, o:) E [CD; c~+)(l) 

where (1 is: 

C~oB 

For (;;Jo VI) we have, 

(3 

.1 .1 .1 ( . ) [ATIW 1 outs = out A n outc i, OC>(outs.L) E a nx d 
C A ((. ) ) [ATIW (1>(.)- 'f) 

~O i, OC>(outt) C>(out}) E nx 
---------------- (;)om> 

(i, (oC>(outf)C>(outt)) E [CD; d 

C A ( . ) A"CTIW (1>(.)- 'f) 
~o i,ot>(out1c) E [ nx 

(, (::r ) 
(i,0C>(out.1))E[AD; -Oll (1 

[ TIW A [ TIW c~+><1> 
(i, OC>(outs.i)) E Anx =} (i, OC>(out})) E Anx 
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where (1 is: 

outs.l. = out; n out-l: 

(i, Ot>(outs~)) E [C]; outs.l. ~ out"fj 
---'--------'--------:c---::-:w-:--- (c, (.)-d/) 

C ::::lo A ( i, ( OC>(outs.L) )t>(outt )) E [ Ct 
--------------------- (;;;Jc,11) 

outs.l. ~ out; (i,(ot>(outs.L))t>(outf)) E [A]; 

(2 is: 

(i, Ot>(:uts)) E [A]; w (=>+)(2) 

(i, Ot>(out})) E [At::::} (i, Ot>(outs.L)) E [At 

(i, Ot>(out})) E [A]; 2 

--------"----- (c,(.)-d/) 
(i, (ot>(out}))t>(outj) E [A]; 
------------------ (;;;i;;I//) 

( ( ot>( outf)) t>(outt)) E [ C]; 
------------------,-------- (c,(.)-d/) 

(i, Ot>(outs.L)) E [C]; 

outs.l. = out; n out-l: 

and (3 is: 

For (;;;J0 vu) we have, 

outs= outA n outc 
------- (.l-d/) 
outs.l. = out; n out-l: 

C ::::lo A (i, ot>(outf)) E [A]; C ::::lo A (i, ot>(out..1,-J} E [C]; 2 

------------ (;;;i;;I//) · c w (;;;Jc,11) 
(i, ot>(outt)) E [C]; (i, ot>(out.L)) E [At 

--------- (=>+)(1) A (=>+)(2) 

( i, ot>{outf )) E [A]; ::::} ( i, ot>(outt,) E [ C]; ::::} 
(i,ot>{outt)) E [C]; (i,ot>{out})) E [A]; 

For (;;;J0 vm) we have, 

-----1 
outB = outs inB = inA 

outA ~ outs -------t 
3 B • outB = outs A p 

inB = inA A B ::::lo A _________ p _________ (3-)(1) 

---1 
B ::::lo A 

As in the analogous proof of rule (;Ji vml, the existence of a suitable chart B to 

discharge the step labelled t is shown by describing a simple algorithm as follows. For 

the first new signal, say x where x is not already in out A, we take chart A and add to 

it a copy of each of the existing transitions. We then add to the action (i.e. the set of 

output signals) of each of these duplicate transitions the signal x. That is, the new chart 

generated, say A1, has each of A's original transitions plus an additional copy, each of 

which outputs the additional signal x. Now A1 is such that A1 :::::lCJ A. We then proceed 

to add the next new signal, in the same fashion, to the chart A1 giving yet another chart 
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A2. The transitivity of ::::::c, gives us that A2 ::::::c, A. Continuing this chain until each of 

the signals in outs\ outA are added will give us the chart B as required. 

For (;;;!0 ix) we have, 

-----1 
outB = outA 

outs c outA 
(i, ol>(out_t)) E [AD;¢:} 
(i, Ol>(outs.!.)} E [AD; 

-----1 : 1 
outB = outs B ::::::c, A 

------------t 
3B • outB = outs I\ p 

outB = outA I\ B ::::::c, A 
----------P---------- (r)(1) 

Again we prove the proof step labelled t by giving an informal account of an algorithm 

that creates an appropriate chart B from the given chart A. Take the specific chart A and 

remove from it any output reference to the signals that are not in the set outs. Change 

the output interface of this chart to be equal to outs as required. Because (i, 01>(out_t)) E 

[AD; <::} (i, 01>(outs)) E [AD; holds the resulting chart will have exactly the attributes 

required to prove the existence of the chart B. 

Now for the introduction rules: 

(~(inc), ot>( outa)) E [ C]: ~ 
(~(inA), Ot>(outf)) E [A]: 

C~oA 

Proof 5.3.11 (cont.) 
The proof of (;;;J;!j 1 ) is split into two cases as follows. 

Case 1: Assuming i = ~(inc) we have, 

(~(inc),Ol>(outt,)} E [CD;¢:} (~(in,1),01>(out_t)} E [AD; inc= inA 

(~(inc), Ol>(outt,)} E (CD;¢:} (~(inc), Ol>(out.t)} E [AD; 
(i, ol>(outt,J) E [cD; ¢:} (i, ol>(outf)) E [AD; 

C ::::::c, A <~o -di) 

Case 2: Assuming if:. ~(inc) we have, 

i f:. ~(inc) 
------ ([.)~ -d/) 
(i, Ol>(outt,)} </. [CD; 
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And finally for C:::!~ 11 ), 

[CD.., - [AD.., [ CD; = [AD; 
X X ([.B~ -di) 

outc = outA (1--d/) Vi, o • {i, o) E [CD;<=:} {i, o) E [AD; 
OUt'?j = outf {i, Oc,.(outt)) E [CD;¢:} {i, Oc,.(outt)) E [AD; 

(i, Oc,.(outt)) E [CD;¢:} (i, Oc,.(out})) E [AD; 
C ::::::o A (:::::o -di) 

Lemma 5.3.12 For any arbitrary abstract chart specification A and signal set 

outs, 
outA ~ outs 

3 B • outB = outs I\ B ~o A 

C~oA 
3 B • outB = outA n outc I\ C ~o B I\ B ~o A 

outc C outA C ~o A 
[At= [CI{} I True]; 

where True is a chart that allows any output behaviour over the additional outputs 

of chart A. That is, in1rue = inc and out1rue = outA \ outc. 

Proof 5.3.12 
For the first property in this lemma we have: 

-----1 1 
outB = outs B ::::::o A + _....;;.._ _____ ___,e_ (I\ ) 
outB = outs I\ B ::::::o A 

---------- (3+) 
outA ~ outs 3 B • outB = outs I\ B ::::::o A 
---------------- (;;Jo vmHl) 

3 B • outB = outs I\ B ::::::o A 

We split the second property into two cases. 

Case 1: Assuming outA ~ outc we have, 

outA C outc [AD; = [AD; + 
outA = (o;tc n outA) C ::::::o A A ::::::o A (;;Jou) 
----------------- (I\+) 

outA = (outc n outA) I\ C ::::::o A I\ A ::::::o A 
------------------ (3+) 
3B • outB = (outc n outA) I\ C ::::::o BI\ B ::::::o A 

Case 2: Assuming-, (outA ~ outc), 

, ( out A ~ outc) 

outc n outA = 
outc n outA 

---------- (;;Jov1) (I 
(i, Oc,.(outf )) E [AD; ¢:} 

outc n outA c outA 
(i, Oc,.(outfnoutt)) E [AD; 

----------------------- (;;Jo /X){l) 
3 B • outB = ( outc n out A) /\ C ::::::o B I\ B ::::::o A 
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where (1 is: 

B~o A 1 

C ~o A A ~o B (;Jo VII) 

outB = (outc n outA) l C ~o B (;Joy) B ~o A l 
------------------------ (A+) 

outB = (outc n outA) I\ C ~o BI\ B ~o A 
----------'---------- (3+) 
:3 B • outB = (outc n outA) I\ C ~o BI\ B ~o A 

For the third property we give an informal proof. To give a formal proof would require 

lifting the semantic definition of chart composition (Section 3.4) into the the trace semantic 

interpretation of charts. This would require using induction over each of the trace semantic 

recursive definitions. 

In the following we refer freely to the arbitrary charts A and C that appear in the 

definition of this property. We also refer to the signal set outs that occurs in the rule 

(;Jo Vlll ). 

Consider again the algorithm that we describe as part of the proof for the rule (;;J0 vm>· 
If we were to apply this algorithm to chart C, attempting to find an output refinement 

with an interface equal to out A, the chart that the algorithm produces would be exactly 

chart A. That is, the algorithm that we described could equally be described as composing 

chart C with chart TI-ue where out1rue =outs\ outc. 
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B.9 Proofs for Section 5.4: Behavioural and 

interface refinement combined 

Proposition 5.4.1 For arbitrary charts A and C, and infinite sequences i, owe 

have, 
C ~~ A (it>(inc), Ot>(outt)) E [Ct 
------------=------ (T) 

( it>( in A), Ot>( out{) E [A]; 

Proof 5.4.1 
The proof of both Gr) and c;;i+) are trivial from definition 5.4.1. 

Proposition 5.4.2 For arbitrary charts A and C we have, 

Case 1: inA ~ inc I\ outA ~ outc 

C ~b B', 

B' ~o B, B ~I A I- P 
p 

Proof 5.4.2 ( Case 1) 
For (;;;Jri) we have, 

3 B; B' • C ;:;;Jb B' A 

B' ~C) B I\ B ~I A 

3 B·, B' • C =i B' I\ -b 

B' ~o B I\ B ~I A 
------------ (;;;i+TT) 

C =iw A -x 

( 

--------------------- (r)(2) 
(ic,(inA), OC>(out})) E [A~; 

c;;;i+ H l} 

where ( is: 

For (;;;Jfi) we have, 

(1 

C:::J B' -b 
---2 
B' ~o B 

p 

p 

C:::Jw A 
-x 

p 
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---2 
B~I A 

1 
outA C outc outB = outA 

outB C outc 
(;;;Jo VJ// }(2} 



where (1 is: 

and (2 is: 

----1 
inB = inc 

----2 
inB 1 = inB 

-----2 
inc = inB' outc = outB, --==-----=------~----==------ (;;;Jt I )(3) 

C;;;JbB' 

Proposition 5.4.2 Case 2: inA ~ inc I\ outc C outA 

C ~o B', 3 B; B' • C ~o B' I\ 
C:::Jw A -x B' ;;;;) b B, B ~I A I- P B' ;;;;)b B I\ B ~I A 

_____ C_:::J_w_A _____ c;;;itJ 
p 

Proof 5.4.2 ( Case 2) 
For Glii) we have, 

3 B; B' • C ~o B' A 

B' ;;;) b B I\ B ~z A 

-x 

( 

--------------------- (3-)(2) 
(~(inA)• Ol>(out})) E (A!: 

where ( is: 

B' ::J B -b 

--------'""----- c;;;i+>c1i 
C ::Jw A 

-x 

( . ) [BTIW (;;;Jj; Ill) 
2t>(inu)• Ol>(outj}-) E ~x 

-B-~-z-A- 2 

(;;;Ji 11l 

For (;;Jt) we have, 

B' C 2 ~(? 

p 
outc c outA 
outc C outA 

in A ~ inc -------p---~-=--....:..:. (;;Jo VIII )(2) 

--------p-------- (;;Ji VIII }(l) 
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where (1 is: 
----2 

inB = inc 
----2 
in3, = inc 

out3 = 
outA 

inB' = in3 outB' = out3 
__:;___--=-------B-,-=i----'B=-----=--------- c;::i; I )(3) 

-b 

and (2 is: 

(ic,(inJJ,), o~(out;!-,)) E [B']; 3 B' ~O C 2 

C =iw A 
-x 

( . ) [C]w (;:::JOII) 
Zi>(inc:), O~(out(.l,) E x 

. (T) ---2 
B~z A (ic,(inA), O~(outx)) E [A]; -

_____ __:_:__(-.------)--[-B_]_w _______ G;Ji m) 
Zi:>(inJJ), O~(outi/-) E x 

Proposition 5.4.2 Case 3: inc c inA I\ outc c outA 

C :=iw A 
C ~o B', :3 B; B' • C ~o B' I\ 

-x B' ~I B, B ;;;) b A f- P B' ~I B I\ B ;;;)b A 
------------- c;::i+ll) 

C =iw A p 

Proof 5.4.2 ( Case 3) 
For Glii) we have, 

( 

-x 

:3 B; B' • C ~o B' I\ 

B' ~I B I\ B ;;;;)b A 
--------------------- (r)(2) 

(ic,(inA), O~(outx)) E [A]; ____ ____.;.;__ ___ c;::1+)(1) 
C;;;;)~ A 

where ( is: 

( , ) [B]w GJi II) -B--A 2 
Zi>(inJJ), O~(outi/-) E x ;;;;)b _____ _::._ ________________ (;;::i~ Ill) 

(ic,(inA), o~(out.n) E [A]; 

For c;::it) we have, 

B'~o C 
C Bl Gl;; VII) 

~o 

outc C outA 

---2 
B ~I B' 
B' ~I B (;;::ii VII) 

inc C inA 

inc <;;; inA inB' = inc 
p inB' C inA 
---------p-------==---=------=...:. Qi Vlll )(2) 

outc <;;; outA 
---------p=--------- (;;::i;; Vlll )(l) 
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where ( 1 is: 

------2 1 
outB = outB' outB' = outA 

----2 
inB = inA outB = outA ___;:'--_...:..:..._ ______ ____:::._ _ __:_:. ________ (Jt I )(3) 

B ;;;:ib A 

and (2 is: 

B'~o C 

( . ) [ TIW 3 / 2 
'lc>(inJJ), Oc:,.(outl.) E BDx B ~I B 

1 IJ (~- ) 
( . ) [B'TIW -I II 

'lc>(inw), Oc:,.(outl.,) E Dx 
. ~ (Jou> C:::Jw A 

-x ( 'li>(inc), Oc:,.(outl1 )} E [ Ct 
---------------------- (T) 

(ic:,.(inA), Oc:,.(outf )} E [AD; 

Proposition 5.4.2 Case 4: inc c inA I\ outA s;;; outc 

C:::Jw A C~xB', :3 B; B' • C ~I B' I\ 
-x 

B' ;lb B, B ~o A 1- P _______ p _______ (J!T) 
B' ;) b B I\ B ~o A 

-------w------ (J!+T) 
C:::J A -x 

where we assume the usual conditions for B, B' and P. 

Proof 5.4.2 ( Case 4) 
For (Ji"r) we have, 

( 

:3 B; B'. C ~I B' I\ 

B' ;;;:i b B I\ B ~o A 
---------------------- (r)(2) 

(ic:,.(inA), Oc:,.(outt)} E [AD; 
--------- (J+)(1) 

C:::Jw A 
-x 

where ( is: 

(ic:,.(in,:), Oc:,.(out/;) E [CD; 1 C ~I B' 2 

B l B 2 ( · ) [B'TIW (Ji II) 
;;;)b 'lc>(in/J,),OC>(out1-)-,) E Dx 

( . ) [BTIW (J; 111> -------,- 2 
B~o A 'lc>(inu), OC>(out1f) E Dx 

--------------------- (Jou> 
(ic:,.(inA), Oc:,.(outf )} E [AD; 

For (Jt) we have, 

---2 
B' ~IC (::r ) 
C ~I B' -I VII B' ;;;:ib B B ~o A (Ji vu> 

inc C inA 

inc~ inA 
--------=p------- (Ji vmH2} 
p 

outA ~ outc 
---------p-------- {JO Vlll )(1) 
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where (1 is: 

----2 1 
outB, = outB = 

----2 1 
inB' = inA inB = inA outc outc 

inB' = inB outB' = outB -------------------- c;;i; /)(3) 
B';;;Jb B 

and (2 is: 

( . ) [ ']w 3 B' - C 2 
Zc:,(in11,), OC>(outt,) E B x -z 

C :::Jw A ( · ) [ C]w Gli II) 
-x Zc>(inc:), Oc:,(out1c) E x 

(, (::r) 
B:::::::o A (ic:,(inA), Oc:,(outf )) E [A]; -

---------------------- Gloml 
( ic:,c ina)' Oc:,( out;;) E [ B]; 

Lemma 5.4.3 For arbitrary charts A, Band C, 

C :::iw B B :::iw A -x -x 

Proof 5.4.3 
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B.10 Proofs for Section 6.1: Relational ADTs 

with IO 

Proposition 6.1.1 For all conformal infinite programs Pa = Alnit 9 AOp1 9 
A 0112 9 ... and Pc = Cf nit 9 COp1 9 C0112 9 ... we have, 

Proof 6.1.1 
For the => direction we have, 

(i r n, 0 r n) E [Pc r nD~ l ___________ __;;_ ____ t 
3se'vm•(i rm,((o rn('s) rm) E [Pc rmD~ 
------------------- (r)(2) 

(i r n, 0 r n) E (Pa r nD~ ----------------- c~+><1> 
(i r n, 0 r n) E [Pc r nD~ => (i r n, 0 r n) E [Pa r nD~ 

[Pc r nD~ ~ [Pa r nD~ + 
Vn•[PcfnD~~[PafnD~ (V) 

We justify the proof step labelled dagger informally by considering two cases. 

Case 1: Supposing m ~ n, we need to show that (ifn, ofn) E Pcfn => (ifm, ofm) E Pcfm. 

In this case, truncating the sequence o to length m results in a shorter sequence than 

truncating o to length n. Therefore, we are free to choose any sequence s. That any 

sequence s is suitable certainly implies there exists such an s. To show that this simpler 

implication holds we revisit the informal discussion presented about ADTs in Section 6.2-

in particular Figure 6.1. Truncating a program after n steps is defined to be applying the 

finalisation operation after performing n operations. Applying finalisation after n steps 

of a program, e.g. Pc [ n, can be considered in this framework as stopping the program 

and observing then outputs that the program Pc has produced after consuming n inputs. 

Now consider stopping the program after it has consumed n + l inputs, e.g. Pc [ (n + 1). 

Clearly, then+ l outputs that we observe from Pc [ (n + 1) are made up of then outputs 

that we could observe from Pc [ n plus one extra output that resulted from the n + l th 

operation. In other words, the n + l th operation cannot change any of the previous n 

outputs. Now, consider building the set {Pc r 0, Pc [ 1, ... , Pc f n}. It follows from the 

argument above that this set is going to be "prefix complete". Thus, given m ~ n we can 

see that (i [ n, o [ n) E Pc [ n => (i [ m, o [ m) E Pc f m. 

Case 2: Where m > n we can infer the existence of a suitable sequence s from the 

assumption that the program Pc is defined over all input sequences. It follows from this 

assumption, that we could use the program Pc itself to calculate the sequence s (or at 

least a suitable prefix for s ). In other words, we could run the program Pc [ m on the input 

i [ m and record the output o. Now, for any infinite sequence so, o'"' so is an appropriate 

witness to the existence of s. 
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Now (1 is, 

(i, (or n)'"'s) E [PaD~"' (d/) 

'v'm. (i rm, ((or n)'"'s) rm) E [Par mD~ (\f-) (di) 

(i r n, ((or n)'"'s) r n) E [Pa r nD~ }Co r n)'"'s) r n = 0 r n 

(i rn,o fn) E [Pa rnDd 

And (2 is: 

------------ 2 

'v'm •(if m, ((of n)'"'s) f m) E 

[Pc r mD~ 
----------- (df) 

(i, (or n)'"'s) E [PcD~"' 

'v'i, o • (i, o) E [PcD~"'::::} (i, o) E [PaD~"' (\f-) 

(i, (or n)'"'s) E [PcD~"'::::} 

(i, (or n)'"'s) E [PaD~"' 

(i, (or n)'"'s) E [PaD~"' 

For the ~ direction we have, 

'v' n. [Pc r nD~ ~ [Pa r nD~ 
Drw 1 [ Dr (i,o) E [Pc d r (di) [Pc rnD~ C Pa rn d 

'v'n• (i rn,o fn) E [Pc r,nDd (\f-) (i rn,o rn) E [Pc rnD~::::} 

(i rn,o rn) E [Pc rnDd (i rn,o rn) E [Pa rnD~ 
---------:-:-:-------;:-~~~~----- (=?-) 

(i f n, O f n) E [Pa f nD~ r (\f+) 

'v'n•(ifn,ofn)E[PafnDd (di) 

(i, o) E [PaD~"' (=?+)(1) 

(i, o) E [PcD~"'::::} (i, o) E [PaD~"' 

[PcD~"' ~ [PaD~"' 
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B.11 Proofs for Section 6.4: Simulation and 

corresponding states 

Proposition 6.4.1 Given arbitrary charts C1, C2, related simulation S, and 

bindings z{3 , z.[4 , we have 

z1 *~Es 

• C , • C 
z1 * ~ E Corr 1 z1 * Z:2 E JO 1 

C2 C2 (S+) 

Z1 * ~ E 8 '" 

Proof 6.4.1 

Z1 *~ES 

Z1 *~ES 
-------- (S-df} 
z * ,,!. E° Corrc1 A /Oc1 

1 -.l C2 C2 --------- (S_::) 
Z1 * ~ E 10g; 

And for (S;!) we have, 

Z1 *~ES 

Z1 * ~ E 8 
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B.12 Proofs for Section 6.5: Partial relation 

refinement 

Proposition 6.5.1 For arbitrary sequences si and so, and bindings ztc, ~uA, 
rm rm 

x1 A and Xi c we have, 

( (x1. iA) "'siC>(inA), SOC>(outA), zi) i--+ ( (x2.ic) "'siC>(inc), soC>(oute), z2) E S 

{::} [See proof below for detailed derivation] 

Proof 6.5.1 
For the => case we have: 

{::} [Definition of SJ 

z1 * ~ E Corrj I\ :3 i • x1.iA =in inA I\ x2.ic =in inc 

~ [n-d~ 

Z1 * ~ E Corrj I\ :3 i • x,.iA n inc= in inA n inc I\ X2.ic n inA =in inc n inA 

¢:} [in inA n inc = in inA n inc holds for all i] 

z1 * ~ E Corrj I\ x,.iA n inc = x2.ic n inA 

[x3 E r;ut: x3.0A n outc = (x3.0A n outc) n outA holds for all outA 
¢:} 

and outc] 

z1*~ E Corrj I\ \:/x3 • 3x4 • x1.iAninc = x2.icninA I\ x3.0Anoutc = X4.ocnoutA 

{::} [Definition of JO~] 

z1 * ~ E Corrj I\ V X3 • :3 X4 • xi* X3 * ~ * x~ E /Oj 

{::} [Definition of RJ 
:3 X3, X4 • z1 * xi * X3 * ~ * ~ * x~ E R 

And for the ~ case we have: 

{::} [From the last three steps of the previous proo~ 

z, * ~ E Corrj I\ x1.iA n inc = x2.ic n inA 

~ [ n-df, =-df, U-d~ 

z, * ~ E Corrj I\ x,.iA = x2.ic n inA u x1.iA I\ x2.ic = x1.iA n inc u x2.ic 

{::} [x1 E TJn: X1.iA = X1.iA n inA, X2 E T~n: x2.ic = X2.ic n inc] 

z1 * ~ E Corrj I\ x,.iA = (x2.ic u x1.iA) n inA I\ x2.ic = (x,.iA u x2.ic) n inc 

~ [Using (3+)] 
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z1 * ~ E Corrt /\ 3i • x1.iA =in inA /\ x-i.ic =in inc 

{:} (Definition of SJ 

( (x1 · iA) "'sic,.(in11 ), SOc,.(out,1), z1) 1-+ ( (x2. ic) "'sic,.( inc), SOc,.(outc), z2) E S 

Proposition 6.5.2 For arbitrary sequences si and so, and bindings ztc, z-iuA, 
T""'· T""1 
~ A and x4 c we have, 

(sic,.(in11 ), SOc,.(out,1) "'(x3.0A), zi) 1-+ (sic,.(inc), SOc,.(outc) "'(:1:4.oc), z2) E S 

{:} [See proof below for detailed derivation] 

Proof 6.5.2 
The proof of this proposition has the same form as that for Proposition 6.5.1 above with 

the appropriate changes to reflect that this proposition deals with the output interface of 

the respective charts rather than the input interfaces. 

Proposition 6.5.3 For the arbitrary sequence si, and bindings ztc and z-iuA we 

have, 

(sic,.(in,1), (}, z1) 1-+ ( sic,.(inc), (), z2) E S 

{:} (See proof below for detailed derivation] 

z1 * ~ E Corrt 

Proof 6.5.3 
Follows trivially from the definition of S. 
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B.13 Proofs for Section 6.6: Total chaos re­

finement 

For the forward simulation initialisation condition we have: 

Proposition 6.6.1 

Clnit ~ A/nit;; S 

{cc} [Detailed derivation below] 

'v' Ye • Ye E Initc => :3 t1 • t1 E lnitA I\ t1 * y~ E R 

Proof 6.6.1 

Clnit ~ A/nit 9 S 

{cc} [~-d~ 

'v' si, z, ssi, so• (si, (ssi, so, z)) E Clnit => (si, (ssi, so, z)) EA/nit 9 S 

{cc} [ Clnit pointwise restricts si to signals in inc and deletes output] 

'v' si, z • (si, (sic,(inc), (), z)) E Clnit => (si, (sic,(inc), (), z)) EA/nit 9 S 

{cc} [o-d~ 

'v' si, z • (si, (sic,(in,·), (), z)) E Clnit => :3 ssi, t, so• (si, (ssi, so, t)) EA/nit I\ 

((ssi, so, t), (sic,(inc), (), z)) ES 

{cc} [A/nit pointwise restricts si to signals in inA and deletes output] 

'v' si, z • (si, (sic,(inc), (), z)) E Clnit => :3 t • (si, (sic,(inA), (), t)) EA/nit I\ 

((sic,(inA), (), t), (sic,(inc), (), z)) ES 

{cc} [Definitions of Clnit and Alnit, and Proposition 6.5.3] 

'v' z • z E Initc => :3 t • t E InitA I\ t * z' E CoT"T}; 

{cc} [Definitions of R and E] 
'v' z, Xie, X0 e • Z *Xie* Xoe E Jnitc => :3 t, Xia, X0 a • t *Xia* X0 a E !nit A I\ 

t * Xia * X0 a * z' * xfe * X~e E R 

{cc} [Let Ye= Z *Xie* X0 e, t1 = t *Xia* Xoa] 

'v' Ye • Ye E Initc => :3 t1 • t1 E InitA I\ t1 * y~ E R 

The condition for finalisation holds iff out A ~ outc. 

Proposition 6.6.2 

S" CFin ~ A Fin 
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<=} [Detailed derivation below] 

outA ~ outc 

Proof 6.6.2 
We split the proof into cases and prove the contrapositive property in both cases. For the 

::::} case we have: 4 

, outA ~ outc 

<=} [Definition of pointwise restriction] 

3 SO • SOt;,(outA) i= SOt;,(outc)t;,(outA) 

<=} [Definition of AFin] 

V si, Z1 • 3 so• ((sit>(inA), (sot>(outc))t>(outA)' zi), so)(/. AFin 

<=} [DefinitionofCFin: Vsi,z2,so • ((si1>(inc),S01>(outc),z2),so) E CFin] 

V si, z1, z2 • 3 so• ((sit>(inA), (sot>(outc))t>(outA)' zi), so)(/. AFin I\ 

((sit>(inc), sot>(outc), z2), so) E CFin 

[Definition of S: 

=> 3 z1 , z2 • V si, so • 

((sit>(inA), SOt>(outA), z1), (sit>(inc), SOl>(outc), z2)) E SJ 
3 si, z1, z2, so• ((sit>(inA), (sot>(outc))t>(outA)' zi), so)(/. AFin I\ 

((sit>(inc), SOt;,(outc), z2), so) E CFin 

((sit>(inA), (sot>(outc))t>(outA)' zi), (sit>(inc)> (sot>(outc))t>(outc)' z2)) ES 

<=} [Definition of 1>(-): ( sot>( outc)) 1>( outc) = SOI>( outc)] 

3 si, Z1, z2, so• ((sit>(inA), (sot>(outc)t(outA)' z1), so)(/. AFin I\ 

((sit>(inc)> SOt;,(outc), z2), so) E CFin 

((sit>(in,1), (sot>(outc))t>(outA)' zi), (sit>(inc), SOt;,(outc), z2)) ES 

<=} [Definition of ~] 

3 si, z1, so• ((sit>(inA), (sot>(outc))t>(outA)' zi), so)(/. AFin I\ 

((sit>(inA), (sot>(outr:)t(out.-1)' zi), so) ES 9 CFin 

=> [~-d~ 

, S 9 CFin ~ AFin 

And for the ¢:: case we have: 

, S " CFin ~ AFin 

4 Notice that the justification for the forth step in this proof assumes that the relation 

S is not the empty relation. By definition charts must have at least one state (an initial 

state). Moreover, the corresponding relation Corr~ always relates the initial states of 

charts A and C. Therefore, by definition, S cannot be the empty relation. 
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~ [~-df, Predicate calculus] 

3si,so,sso,z1 • ((si,so,z1),sso) E 8 0 CFin /1. ((si,so,zi),sso) (/. AFin 

~ [ii-d~ 

3si,so,sso,ti,to,z1,z2 • ((si,so,zi),(ti, to,Z2)) ES /1. ((ti, to,z2),sso) E CFin /1. 

(( si, so, z1), sso) (/. A Fin 

=> [Definitions of S, CFin and AFin] 

3 vo, si, so • VOC>(outA) = so /1. VOC>(outc) = to /1. SSOC>(outc) = to /1. , SSOC>(outA) = so 

=> [Definitions of S, CFin and AFin] 

3 VO, SSO • VOC>(outc) = SSO[>(outc) /1.-, VO[>(outA) = SSOC>(outA) 

~ [Definition of pointwise restriction] 

-, outA ~ outc 

The precondition of C coincides with the domain of relation CStep.5 

Proposition 6.6.4 

(Xie·ic'''siC>(inc)• so, z) Edom CStep 

~ [Detailed derivation below] 

Pre C (z *Xie* Xoe) 

Proof 6.6.4 

(Xie':'siC>(inc), so, z) Edom CStep 

~ [dom-d~ 

3 ssi, sso, Xoe, t • (Xie':'siC>(inc)• so, z) 1-+ (ssi, SSO,-..Xoe·, t) E CStep 

~ [Definition of CStep] 

3 Xoe, t • Z * Xie * t' * X~e E C 

~ [E-d~ 
I I • 

V Xoe • 3 Xoe, t • Z *Xie* X0 e * t * X0 e E C 

~ [Pre-d~ 

5We introduce the notational convenience that is to use a binding followed by a full 

stop to represent the value of the binding's single observation, for example Xie· is used 

in place of Xic-ic. Also, when concatenating a single element to a sequence we omit the 

sequence brackets, that is i,-..si represents (i),-..si. 
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For the applicability condition we have: 

Proposition 6.6.5 

ran( ( dom A Step) <l S) ~ dom CStep 

{:} [Detailed derivation below] 

V Ya, Ye • Pre ASys Ya I\ Ya * y~ E R => Pre CSys Ye 

Proof 6.6.5 

ran( ( dom A Step) <l S) ~ dom CStep 

¢} [~-dfj 

V Xie, si, so, z2 • (Xie':' siC>(inc), SOC>(outc), 22) E ran(( dom AStep) <l S) => 

(Xic':""siC>(inc)• SOC>(outc), 22) Edom CStep 

{:} [ran-dfj 

V Xie, si, so, z2 • (3 Xia, ssi, sso, Z1 • 

(xia':""ssiC>(inA)• SSOC>(out,1), z1) 1-+ 

(Xie':""siC>(inc),SOC>(outc),22) E (domAStep) <l S) => 

(.:i;e':""siC>(inc), SOC>(outc), 22) Edom CStep 

{:} [Predicate calculus] 

V Xie, si, so, z2, Xia, ssi, sso, Z1 • 

(xia':""ssiC>(inA), SSOC>(outA), z1) 1-+ 

(.:i;e':""siC>(inc), SOC>(outc), z2) E (dom AStep) <l S => 

(Xic':""siC>(inc), SOC>(outc), 22) Edom CStep 

¢} [Definition of S: ssic:,(inA) = sic:,(inA) and SSOc:,(ou.tA) = SOc:,(ou.tA)] 

¢} [<l-dfj 

(Xie':""siC>(inc:), SOC>(outc), z2) E (dom AStep) <l S => 

(xi;.'siC>(inc), SOC>(outc), z2) Edom CStep 

Vxie,si,so,z2,Xia,Z1 • ((xia':""siC>(inA),SOC>(outA),Z1) E domAStep I\ 

(Xia':""siC>(inA), SOC>(outA), z1) 1-+ (Xie':""siC>(inc), SOC>(outc), z2) ES)=> 

(Xie':""siC>(inc), SOC>(outc), z2) Edom CStep 

{:} [Pre and dom coincide, Proposition 6.5.1, Predicate calculus] 
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V Xie, Xoe, Z2, Xia, Xoa, Z1 • (Pre ASys (z1 *Xia* Xoa) I\ 

z1 *Xia* Xoa * ~ * xie * X~e E R) => Pre CSys (z2 * Xie) 

¢:> [Let Ya = Z1 * Xia * Xoa, Ye = Z2 * Xie * Xoe] 

Vya, Ye • Pre ASys Ya I\ Ya* y~ E R => Pre CSys Ye 

Finally, for the correctness condition we have: 

Proposition 6.6.6 

( ( dom A Step) <J S) ii CStep ~ A Step ii S 

<=> [Detailed derivation below] 

V Ya, Ye, I-Zc • ( Pre A Ya I\ Ya * Y~ E R I\ Ye * I-Zc I E C) => 

3 t • Ya * t' E A I\ t * I-Zc I E R 

Proof 6.6.6 

((dom AStep) <JS) ii CStep ~ AStep ii S 

¢:> [~-dfj 

V Xia, si, so, z1, ssi, Xoe, sso, Z3 • 

(Xia":' si, so, z1) 1-+ (ssi, ssor-Xoe·, Z3) E ( ( dom A Step) <J S) 9 CStep => 

(Xia":'si, so, z1) 1-+ (ssi, ssor-Xoe·, Z3) E AStep 9 S 

¢:> [;;-dfj 

V Xia, si, so, Z1, ssi, Xoe, sso, Z3 • (3 Xim, ti, to, z2 • 

(xia":'si,so,z1) 1-+ (xim":'ti, to,z2) E (domAStep) <JS I\ 

(Xim":'ti, to, z2) 1-+ (ssi, ssor-Xoe·, Z3) E CStep) => 

3 tti, Xoe, tto, y • (Xia":' si, so, Z1) 1-+ ( tti, ttor-Xoe·, y) E A Step I\ 

(tti, ttor-Xoe·, y') 1-+ (ssi, ssor-Xoe·, Z3) ES 

<=> [Predicate calculus] 

V Xia, si, so, z1, ssi, Xoe, sso, Z3, Xim, ti, to, z2 • 

((xia":'si, so, zi) 1-+ (xim":'ti, to, z2) E (dom AStep) <JS I\ 

(xim":'ti, to, z2) 1-+ (ssi, ssor-Xoc·, Z3) E CStep) => 

3 tti, Xoe, tto, y • (xia":'si, so, z1) 1-+ (tti, ttor-Xoe·, y) E AStep I\ 

(tti, ttor-Xoe·, y) 1-+ (ssi, ssor-Xoc·, z3) ES 

¢:> [<J-dfj 
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V Xia, si, so, Z1, ssi, Xoc, sso, Z3, Xim, ti, to, Z2 • 

((xia':'si, so, z1) E <lorn AStep I\ ((Xia':'si, so, zi) 1--+ (:i;m':'ti, to, Z2) E SI\ 

(xim':'ti, to, Z2) 1--+ (ssi, sso"Xoc·, z3) E CStep)::::} 

:3 tti, Xoe, tto, y • (xia':'si, so, z1) 1--+ (tti, tto"xoe·, y) E AStep I\ 

(tti, tto"xoe·, y) 1--+ (ssi, sso"xoc·, Z3) ES 

<=> [Definitions of S and CStep] 

V Xia, si, so, z1, X0 e, Z3, Xim, Z2 • ((Xia':' sil>(inA), SOl>(outA), z1) E <lorn A Step I\ 

((Xia':' sil>(inA), SOl>(outA), zi) 1--+ (xim':' sil>( inc), SOI>( outc), z2) E S I\ 

(Xim':'sil>(inc)• SOl>(outc), z2) 1--+ (sil>(inc)• SOl>(outc)Xoe·, Z3) E CStep)::::} 

:3 tti, Xoe, tto, y • (xia':'sil>(inA)• SOl>(outA)• z1) 1--+ (tti, tto"Xoe·, y) E AStep I\ 

(tti, tto"Xoe·, y) 1--+ (sil>(inc), SOl>(outc)"Xoe·, Z3) E S 

<=> [Definition of AStep] 

(Xia':'sil>(inA)• SOl>(outA)• z1) 1--+ (Xim':'sil>(inc)• SOl>(outc), Z2) E SI\ 

(Xim':'sil>(inc)• SOl>(outc)• z2) 1--+ (sil>(inc)• SOl>(outc)Xoe·, Z3) E CStep)::::} 

:3 Xoe, Y • 

(Xia':'sil>(inA)• SOl>(outA)• z1) 1--+ (sil>(inA)• SOl>(outA)Xoe·, y) E AStep I\ 

(sil>(inA)• SOl>(outA)Xoe·, y) 1--+ (sil>(inc)• SOl>(outc)Xoe·, Z3) ES 

[Pre and <lorn coincide, Proposition 6.5.1, definitions of CStep and A Step, 

Proposition 6.5.2] 

V Xia, Xim, Xie, Xoe, Xoa, Zt, z2, Z3 • :3 Xom • (Pre A (z1 *Xia* Xoa) I\ 

Zt * Xia * X0 a * ~ * xim * X~m E R I\ Z2 * Xim * ~ * X~e E C) ::::} 

:3 X0 e, Xie, Y • Z1 * Xia * y' * X~e E A I\ Y * Xie * Xoe * Z~ * x:e * X~e E R 

<=> [Predicate calculus, definition of E] 
V Xia, Xim, Xie, Xoe, Xoa, Xom, Z1, Z2, Z3 • (Pre A (z1 * Xia * Xoa) I\ 

I I I R I\ I I I • C) Zt * Xia * Xoa * ~ * Xim * X0 m E z2 * Xim * Xom * Za * Xie * X0 c E ::::} 

"] ' ' ' . Al\ I I I R 
:::J Xoe, Xie, Y • Zt *Xia *Xoa *Y *Xie *Xoe E Y*Xie*Xoe* Za *Xie *Xoe E 

[Let Ya = Z1 * Xia * Xoa, Ye = Z2 * Xim * Xom, f--zc = Z3 * Xie * X0 e and 
<=> 

t = Y * Xie * Xoe] 

Vya, Ye, f--zc • (Pre A Ya I\ Ya* y~ E RI\ Ye* f--z/ E C) ::::} 

:3 t • Ya * t' E A I\ t * f-- Zc I E R 

Proposition 6.6.8 For arbitrary sequences si and so, and bindings z?c, z-iuA, 
Tin Tin 

x1 c and Li A we have, 
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# [See proof below] 

\.J 3 ' ' 'R-1 v~• ~·~·~·~·~·~·~e 
Proof 6.6.8 
The proof of this proposition has identical form to the proof for Proposition 6.5.1, replacing 

all occurrences of S with T, R with R-1, Corr~ with Corrf and /0~ with /Of 

Proposition 6.6.9 For arbitrary sequences si and so, and bindings z1Uc, Z:luA, 
rout rout 
~ c and x4 A we have, 

# [] 

Proof 6.6.9 
For the => case we have: 

# [Definition of T] 

z1 * ~ E Corrf t\ 3 o • x3.0A = on outA t\ x4.oc = on outc 

::} [n-d~ 

z1 * ~ E Corrf t\ 

3 o • x3.0A n outc = on outA n outc t\ ~.oc n outA = on outc n outA 

<=> [on outA n outc =on outA n outc holds for all o] 
z1 * ~ E Corrf t\ X3.0A n outc = ~-oc n outA 

[x3 E r;ut: x3.0A n outc = (x3.0A n outc) n outA holds for all outA 
# 

and outc] 

z1 * ~ E Corrf t\ 

V x3 • 3 x4 • x3.0A n outc = x4.oc n outA t\ x3.0A n outc = x4.oc n outA 

# [Definition of /Of] 

z1 * ~ E Corrf t\ V X3 • 3 ~ • X3 * X3 * x~ * x~ E /Of 

# [Definition of R-1] 

3 ' ' ' R-1 X3, X4 • Z1 * X3 * X3 * ~ * X4 * X4 E 

And for the ~ case we have: 
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{:} [From the last three steps of the previous proo~ 

z1 * ~ E Corri I\ x3.0A n outc = :1:4.oc n outA 

=> [n-df, =-df, U-d~ 

Z1 * ~ E Corri I\ X3.0A = X4.0c n outA U X3.0A I\ X4.0c = X3.0A n outc U X4.0c 

{:} [x3 E TJut : X3.0A = X3.0AnoutA, X4 E Tgut : X4.0c = X4.ocnoutc] 

z1 * ~ E Corri I\ x3.0A = (x4.oc u x3.oA) n outA I\ X4.oc = (x3.0A U x4.oc) n outc 

=> [Using (3+)] 

z1 * ~ E Corri I\ :3 o • x3.0A = on outA I\ x4.oc = on outc 

{:} [Definition of T] 

(siC>(out,:), SOC>(outc:) ,....,.(x4.oc), z2) 1-+ (siC>(out,1), SOC>(out,1) ,....,.(x3.0A), zi) E T 

Proposition 6.6.10 states that the initialisation condition for backwards 

simulation refinement, in a relational ADT embedding for charts, holds if 

and only if the input interface of the abstract chart is a subset of the input 

interface of the concrete chart. 

Proposition 6.6.10 For arbitrary charts A and C we have, 

Clnit ii T <:;;; A/nit 

{:} [Detailed derivation below] 

inA <:;;; inc I\ 'vy,z • (y E Initc I\ Y*Z 1 E R-1) => z E InitA 

Proof 6.6.10 
Again, the proof is split into cases and we prove the contrapositive property in both cases. 

For the => case we have: 

, (inA <:;;; inc I\ 'vy,z • (y E Initc I\ Y*Z 1 E K 1) => z E lnitA) 

{:} [Predicate calculus] 

, inA <:;;; inc V :3 y, z • y E Initc I\ y * z' E K 1 /\ --, z E InitA 

Using a similar proof to the first case for Lemma 6.6.2, we have 

--, inA <:;;; inc 

{:} [Definition of pointwise restriction] 
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:3 si • sil>( inA) =/- ( sil>( inc) )l>( inA) 

{::} [Definition of Alnit] 

'v z1 • :3 si • (si, ((sil>(inc))l>(inA)' (), z1)) ¢ A/nit 

{::} [Definition of Clnit] 

'v z1, z2 • :3 si • (si, ((sil>(inc))l>(inA)' (), zi)) ¢ A/nit I\ (si, (sil>(inc), (), z2)) E Clnit 

::::} [Definition of T] 

:3 z1, Z2, si • (si, ((sil>(inc))l>(inA)' (), z1)) ¢ A/nit I\ (si, (sil>(inc), (), z2)) E Clnit I\ 

(((sil>(inc:))l>(inc)' (), z2), (((sil>(inc))t>(inA)' (), Z1)) E T 

{::} [Definition of t>(-f (sit>(inc)t(inc) = sit>(inc)l 

:3 Z1, z2, si • (si, ((sit>(inc))t>(inA)' (), z1)) ¢ A/nit I\ (si, (sil>(inc), (), z2)) E Clnit I\ 

((sit>(inc)• (), z2), ((sit>(inc))l>(inA)' (), zi)) E T 

{::} [Definition of ~] 

:3 z1, si • (si, ((sil>(inc))l>(inA)' (), z1)) ¢ A/nit I\ 

(si, ((sit>(inc))t>(inA)' (), z1)) E Clnit 9 T 

::::} [~-d~ 

-, Clnit 9 T ~ A/nit 

Also, we have: 

:3 y, z • y E lnitc I\ y * z' E K 1 /\ -, z E lnitA 

::::} [Definitions of Clnit, R-1, T and Alnit] 

:3 si, y, z • (si, (sit>(inc), (), y f Uc)) E Clnit I\ 

((sil>(inc), (),yr Uc), (sil>(inA)• (), z r UA)) E TI\ 

(si, (sit>(inA)• (), z r UA)) ¢ Alnit 

::::} [~-df and ~-d~ 

-, Clnit O T ~ A/nit 

Now, using disjunction elimination, we have, 

, (inA ~ inc I\ \/y,z • (y E Initc I\ Y* z' E K 1)::::} z E InitA) 

::::} 

, Clnit O T ~ A/nit 

For the {::: case we have: 

, Clnit O T ~ A/nit 
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3 si, so, ssi, z2 • (si, (ssi, so, Z2)) E Clnit ii TI\ (si, (ssi, so, Z2)) ¢ A/nit 

¢:} [~-dfj 

3 si, so, ssi, ti, to, z1, z2 • (si, (ti, to, z1)) E Clnit I\ ((ti, to, z1), (ssi, so, Z2)) E T 

I\ (si,(ssi,so,Z2)) ¢ A/nit 

:::} [Definitions of Clnit, T and A/nit] 

3 vi, si, so, ssi, ti, to, z1, z2 • 

(sic:,.(inc:) = ti I\ vic:,.(inc:) = ti I\ vic:,.(in,d = ssi I\ sic:,.(inA) f. ssi) V 

(z1 E /nitc I\ z1 * z2 E Corrf I\ z2 ¢ InitA) 

:::} [Definitions of R-1 and E] 

3 vi, si, • (sic:,.(inc:) = vic:,.(inc:) I\ vic:,.(inA) f. sic:,.(inA)) V 

3 y, z • y E Initc I\ y * z E R-1 /\ -, z E InitA 

¢:} 

-, iniA ~ inc v 3 y, z • y E /nitc I\ y * z E R-1 /\ -, z E InitA 

{:} [Predicate calculus] 

-, (inA ~ inc I\ Vy,z • (y E Initc I\ (y,z) E R-1):::} z E InitA) 

For the backwards simulation finalisation condition we have: 

Proposition 6.6.11 For arbitrary charts A and C we have, 

CFin ~ T 9 AFin 

{:} [Detailed derivation below] 

V Ye • 3 t1 • Ye * t~ E R-1 

Proof 6.6.11 

CFin ~ T 9 AFin 

¢:} [~-dfj 

Vsi,z,so,sso • ((si,so,z),sso) E CFin =} ((si,so,z),sso) E T 11 AFin 

V si, z, so, sso • ((si, so, z), sso) E CFin =} 

3 ti, to, y • (si, so, z) 1--+ (ti, to, y) E TI\ ((ti, to, y), sso) E AFin 

{:} [Definition of CFin] 

V si, z, so• ((sic:,.(inc:)• SOc:,.(out,,), z), so) E CFin =} 

3 ti, to, y • (sic:,.(inc:), SOc:,.(outc:), z) 1--+ (ti, to, y) E TI\ 

((ti, to, y), so) E AFin 
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<::} (Definition of T] 

V si, z, so• ((sic,.(inc)• SOc,.(outc)• z), so) E CFin => 

3 y • (sic,.(inc)• SOc,.(outc)• z) 1--+ (sic,.(inA)• SOc,.(outA)• y) E TI\ 

((sic,.(inA)• SOc,.(outA)• y), so) E AFin 

<::} [ CFin and AFin are total] 

V Z • 3 y • (sic,.(inc)• SOc,.(outc), z) t-+ (sic,.(inA)• SOc,.(outA)• y) E T 

<::} (Definition of T] 

V z • 3 y • z * y' E Corr,f 

<::} (Definition of /0] 

Vy1,z1 • 3712,z2 • z1 *~ E Corr'j I\ Y1 *Y~ E /Of 

<::} [Definition of R-1 J 

V Yl , Z1 • 3 1/2, Z2 • Z1 * Y1 * ~ * y~ E R-1 

<::} (Let Ye = z1 * YI and t1 = 'Y2 * z2] 

V Ye • 3 t1 • Ye * t~ E R-1 

Lemma 6.6.12 For arbitrary sequences si and so, and bindings xi~P:', z?c, we 
have, 

(xie-ic""'si, so, z1) </. dom( TB>- dom AStep) 

Proof 6.6.12 

(xie~si, so, z1) </. dom{ TB>- dom AStep) 

<::} (dom-d~ 

-, 3 Xim, ssi, sso, z2 • (xie~si, so, z1) 1--+ (Xim~ssi, sso, z2) E TB>- dom AStep 

-, 3 Xim, ssi, sso, z2 • (Xie~ si, so, Z1) 1--+ {xim~ ssi, sso, z2) E T I\ 

(Xim~ssi, sso, z2) </. dom AStep 

<::} [Predicate calculus] 

Vxim,ssi,sso,z2 • (xie~si,so,z1) 1--+ (xim~ssi,sso,z2) ET=> 

(xim~ssi, sso, z2) Edom AStep 
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{::} [definition of TJ 

{::} [Proposition 6.6.8] 

(xim':'sil>(in,1), sot>(out,1), z2) E <lorn AStep 

{::} [Predicate calculus) 

w ' ' ' R~ v Xim, Z2, Xom, Xoe • Z1 *Xie* Xoe * Z:i * Xim * X0 m E => 

(Xim':'sit>(in,1), sot>(out,1), z2) E domAStep 

{::} [Pre and <lorn coincide] 

V Xim, Z2, Xom, X0 e • Z1 *Xie* X0 e * ~ * x:m * X~m E R-l => Pre A (Z2 * Xim * Xom) 

For the backwards simulation applicability we have: 

Proposition 6.6.13 For arbitrary charts A and C we have, 

dom CStep ~ dom( T e,.. <lorn A Step) 

{::} [Detailed derivation belowj 

Vye • (Vva •Ye* v: E R-1 => Pre Ava)=> Pre C Ye 

Proof 6.6.13 

dom CStep ~ dom( T e,.. <lorn A Step) 

{::} [~-df and definition of set compliment) 

V Xie, si, so, z1 • (Xie':' si, so, z1) f/. <lorn CStep => 

(xie':'si, so, z1) E <lorn( Te,.. <lorn AStep) 

{::} [contrapositionJ 

V Xie, si, so, z1 • (Xie':' si, so, z1) f/. <lorn( Te,.. <lorn AStep) => 

(Xie':' si, so, z1 ) E <lorn CStep 

{::} [Lemma 6.6.12J 

w · (w , , , R-1 
v Xie, si, so, Z1 • v Xim, Z2, Xom, X0 e • Z1 *Xie* X0 e * Z:i * Xim * X0 m E => 

Pre A (z2 * Xim * X0 m)) => (Xie':'si, so, z1) E <lorn CStep 

{::} [Pre and <lorn coincide) 

w (w , , , R-1 
v Xie, Xoe, Z1 • v Xim, Z2, Xom • Z1 *Xie* Xoe * Z:i * Xim * X0 m E => 

Pre A (z2 * Xim * Xom)) => Pre C (z1 *Xie* Xoe) 
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# [Let Ye = Z1 * Xie * X0 e and Va = Z2 * Xim * Xom] 

\t' Ye • (\t' Va • Ye * v~ E R-1 => Pre A Va) => Pre C Ye 

Finally, for the backwards simulation correctness we have: 

Proposition 6.6.14 For arbitrary charts A and C we have, 

dom( T e,,. dom A Step) ~ CStep ii T ~ T ii A Step 

# [Detailed derivation below] 

\t' Ye, I-Zc, Ya • ((\t' Va • Ye * V~ E R-l => Pre A Va) I\ 

Ye * I-Zc I E C I\ I-Zc * Y~ E R-l) => :3 ~ • Ye * ~ E R-l /\ ~ * y~ E A 

Proof 6.6.14 

dom( T e,,. dom A Step) ~ CStep ii T ~ T il A Step 

¢:} [~-dfj 

\t' Xie, si, so, z1, ssi, Xoa, soo, z2 • 

(xic':"" si, so, Z1) 1--+ (ssi, sso"'x0 a,, z2) E dom( Ti,,. dom AStep) ~ CStep 9 T => 

(xie':""si,so,z1) 1--+ (ssi,sso"'x0 a,,z2) E T 9AStep 

¢:} h:-dfj 

\t' Xie, si, so, z1, ssi, Xoa, soo, Z2 • (:3 ti, Xoe, to, Z3 • 

(Xie':"" si, so, zi) 1--+ ( ti, to"'xoe·, z~) E dom( Ti,,. dom AStep) ~ CStep I\ 

(ti, to"'xoe·, Z3) 1--+ (ssi, sso"'xoa·, z2) E T) => 

(xic':""si,so,z1) 1--+ (ssi,sso"'x0 a,,z2) E T;;AStep 

# [Predicate calculus, ~-dfj 

\t' Xie, si, so, Z1, ssi, Xoa, soo, z2, ti, Xoe, to, Z3 • 

((Xie':"" si, so, zi) 1--+ ( ti, to"'xoe·, Z3) E CStep I\ 

(Xie':"" si, so, z1) ¢ dom( Ti,,. dom A Step) /\ 

(ti, to"'xoe,,z3) 1--+ (ssi,sso"'x0 a,,z2) ET)=> 

(xie':""si, so, z1) 1--+ (ssi, sso"'x0 a,, z2) E T 9 AStep 

# [Lemma 6.6.12, Predicate calculus] 
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V Xie, si, so, Z1, ssi, X0 a, soo, z2, ti, Xoe, to, Z3, Xoe • 

( (V Xim, Z4, X0 m • Z1 * Xie * X0 e * Z~ * x:m * X~m E R-1 => Pre A ( Z4 * Xim * Xom)) /\ 

(Xie':' si, so, z1) 1-+ ( ti, to'""xoe·, za) E CStep I\ 

(ti, to'""xoe·, za) 1-+ (ssi, sso'""xoa·, z2) E T) => 

(Xie':"'si, so, zt) 1-+ (ssi, sso'xoa·, z:z) E T 9 AStep 

¢:? [definitions of CStep, AStep and T] 

V Xie, si, so, Z1, Xoa, z2, Xoe, Z3, X0 e • 

((V Xim, Z4, X0 m • Z1 *Xie* Xoe * Z~ * x:m * X~m E R-l => Pre A (Z4 * Xim * Xom)) I\ 

(Xie':"'siC>(inc), SOC>(outr:), z1) 1-+ (siC>(inc)• SOC>(outc)'""Xoe·, Z3) E CStep I\ 

(siC>(inc)• SOC>(outc),.....Xoe·, za) 1-+ (siC>(in,1), SOC>(out,1),.....Xoa·, z2) E T) => 

(Xie':"'siC>(inc)• SOC>(outc)• z1) 1-+ (siC>(in,1), SOC>(out,1),.....Xoa·, z2) E T 9 AStep 

¢:? [Definition of CStep, Proposition 6.6.9] 

V Xie, si, so, Z1, Xoa, Z2, Xoe, Z3, Xoe • 

((V Xim, Z4, Xom • Zt *Xie* X0 e * Z~ * x:m * X~m E R-l => Pre A (Z4 * Xim * Xom)) I\ 

Z1 * Xie * Z~ * X~e E C I\ V Xia • 3 Xie • Z3 * Xie * X0 e * ~ * x:a * X~a E R-1) => 

(Xie':"'siC>(inc)• SOC>(outc), zt) 1-+ (siC>(in,1), SOC>(out,1),.....Xoa·, z2) E T 9 AStep 

¢:? [Predicate calculus] 

V Xie, si, so, Zt, Xoa, z2, Xoe, Z3, Xoe, Xie, Xia• 

( (V Xim, Z4, Xom • Z1 * Xie * Xoe * Z~ * x:m * X~m E R-1 => Pre A ( Z4 * Xim * X0 m)) /\ 

1 1 CI\ 1 1 1 R-1) 
Z1 * Xie * ZJ * X0 e E Z3 * Xie * X0 e * Z:i * Xia * X0 a E => 

¢:? [0-df, definition of T] 

V Xie, si, SO, Z1, X0 a, z2, Xoe, Z3, Xoe, Xie, Xia• 

((V Xim, Z4, Xom • Zt *Xie* Xoe * Z~ * x:m * X~m E R-l => Pre A (Z4 * Xim * Xom)) I\ 

1 1 C I\ 1 1 1 R-1) :::i 
Zt * Xie * ZJ * X0 e E Z3 * Xie * Xoe * Z:i * Xia * X0 a E => :i Xin, Y • 

(Xie':"'siC>(inc)• SOC>(outc), z1) 1-+ (Xin':"'siC>(inc)• SOC>(outc)• y) E TI\ 

(Xin':"'siC>(inc)• SOC>(outc), y) 1-+ (siC>(in,1), SOC>(out,1),.....Xoa·, z2) E AStep 

¢:? [Proposition 6.6.8, definition of AStep] 

\/ Xie, Z1, Xoa, Z2, Xoe, Z3, Xoe, Xie, Xia • 

((V Xim, Z4, X0 m • Z1 *Xie* X0 e * Z~ * x:m * X~m E R-1 => Pre A (Z4 * Xim * X0 m)) I\ 

1 1 C 1 1 1 R-1) 
Z1 * Xie * ZJ * X0 e E /\ Z3 * Xie * X0 e * Z:i * Xia * X0 a E => 

3 Xin, Y • ( 3 X0 n • Z1 * Xie * X0 e * y' * x:n * X~n E R-l ) /\ Y * Xie * ~ * X~a E A 

[Let Ye = Zt *Xie*Xoe, Va = Z4*Xim*Xom, f-zc = Z3*Xie*Xoe, Ya = Z2*Xia*Xoa 

<=} and t2 = y * Xin * X0 n, E-d~ 

Vye, f-zc, Ya• ((V Va• Ye* V~ E R-1 => Pre A Va) I\ 

I " I 1 / 1 / " 
Ye* f-zc E CI\ f-zc * Ya ER-)=> 3 t2 •Ye*~ E R- I\ ~*Ya EA 
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B.14 Proofs for Section 7 .1: Monotonicity of 

the µ-Charts composition operator 

Before proving the monotonicity result of Proposition 7.1.1 we prove the 

following elimination rules that are specific to the simulation relations used 

in the proof of the monotonicity property. 

Lemma B.14.1 Given arbitrary charts A1, C2, B, C = C2 I \Ji I Band A= A1 I 
\Ji I B; related simulations S =def Corr~; /\ CorrB /\ IO~ and R =def Corr~; /\ 

OA1 · · · U1 U2 V~" U2 V)" Vi0 V;'' I c2 ; arbitrary bmdmg Za , zb , Xa I-Zc , Xe · , Xi and Ve · , we have, 

I- I I I s 
Za * Zb * Xa * Zc * Zb * Xe E 

a1.iA 1 = (xa.iA U fbvJ n inAi, 

a1.0A 1 = X2.oc2 n OUtAi, 
X2.ic2 = (Xe.ic U fbvJ n inc2 

Za * a1 * I-zc' * ~ E R I- P 
-------------p------------- (81=\i) 

where [AD~}'a, [ CJ:<~", [A1D:,~1, [ C2)~<~2, [BD:<~3, and the usual conditions hold 
yio 

for a1 1 and P. 

Similarly the obvious counterpart to this rule holds for arbitrary xtt', assuming 
v.io 

the usual conditions for b2 2 • 

I- I I I s 
Za * Zb * Xa * Zc * Zb * Xe E 

X1.iA 1 = (xa.iA UfbvJ n inA 1 

~-ic2 = (xe.ic LJ fbv.) n inc2, 

b2.oc2 = x1 .oc1 n outc2, 

Za * X1 * I-zc' * b~ E R I- P _____________ p _____________ (81=1) 

Proof B.14.1 
For (81=1, ), letting t Vj" =def ~ iA 1~(xa.iA U fbvJ n inA 1 , OA 1~x2.outA 1 ~ we have, 

t.iA, = 
(xa.iA U fbvJ n inA, 

p 3xtj" •x1.iA 1 =(Xa,iAUfbv,)ninA 1 I\ 

X1.0A 1 = X2,0C2 n OUtA, I\ X1 * ~ E Joi; __________ p ___ .:__ ______ (3-)(1) 

264 



where (1 is: 

~~~~~~~ (d/) 
t.0A 1 = x2.oc2 n outA 1 

x2.oc2 n outA 1 n outc2 = 
X2.0c2 n OUtA 1 

(1.1 

: (d/) 

t.iA1 n inc2 = 3:2.ic2 n inA 

(1.1 is: 

Xa.iA n inc2 n inA 1 = Xc.ic n inc2 n inA 1 

Xa.iA n inA1 n inc2 = Xc,ic n inc2 n inA 1 
~~~~~~~ (df)~~~~~~~~~~~~~-

t.iA1 = (Xa,iA U fbvJ n inA 1 n inc2 = 
Xa,iA U fbvJ n inA 1 (Xc.ic U fbvJ n inc2 n inA 1 

------------------------ :1:2.ic2 = 
t.iA1 n inc2 = (Xc,ic U fbvJ n inc2 n inA1 

(xc.ic U fbvJ n inc2 

(2 is: 

p 

(3 is: 

The proof of (S1=12 ) has the same form and can be derived in the obvious way from the 

proof for (S1=1t) above. 

Lemma B.14.2 Given arbitrary charts A and C, simulation relation R =def 

A A · · U yio U yitJ • Corre I\ IOc, bmdmgs z0 °, x1 a , 1-.zc C., x..z c , and signal set \JI, for A111 =def [A]111 , 

C111 =def [ C)111 and T =def Corr~ /\ 1oi: we have, 

Za * x1 * I-zc' * ~ E R 

<Lit,·iA,i, = X1.iA, 

f<t>.iC,i, = :Di-ic, 

f<t>.OC,i, = °"1,·0A,i,, 

Za *Clip* 1-.zc' * /J E TI- P 
P (s,,) 
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PT PT Vio 
where [A);;,, [CJ;~, [Aw]zc "', [Cw]zc <P, and the usual conditions hold for a.,/, 

vio 

ft/> <P and P. 

Proof B.14.2 

yio 

3 a "' • \/1 
a,p.iA"' = X1,iA n inAil! I\ 

a,p.OA"' = X1.0A n outAi/! 

(VJ0 -d/) 
p 

---------- (VJ"-d/) 3/t~·. 
/<1>.ic"' = x2.ic n inc"' I\ 

/<1>.oc"' = x2.0A n outc"' ______ P _____ (r)(2) 

__________ p _________ (3-)(1) 

where (1 is: 

Za * X1 * f-Zc 1 * ~ E R (2 

x1.iA n inc"' = 3:2.ic n inA"' (s;-;;i) (3 

(2 is: 

(3 is: 

(4 is: 

(5 is: 

L / f' T (S1) 
Za * a.t, * r Zc * <I> E 

p 

/<1>.ic"' = x2.ic n inc"' 1 inc"' = inc (di) 

/<1>.ic.,, = x2.ic n inc 
( V'"-d'f) 

x2.ic ~ inc r. 

/<1>.ic"' = x2.ic 

(s 

l (df) 
J</>·oc"' n outA"' = a,p.oA"' n outA"' outA"' = outc"' 

/<1>.oc"' n outA"' = a,p.oA"' n outc"' 

1 , 2 (d/) 
a,p.oA"' = x1.0A n outA"' J<f>·OC"' = x1.0A n outc"' outA"' = outc.,, 

/<f,,OC"' = a.J,,OA"' 
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The property of Lemma B.14.3 follows directly from the side-condition 

SC1 that is part of the monotonicity result of Proposition 7.1.1. This gives 

us a rule that can be used more concisely in the proof of Proposition 7.1.1 

that follows. 

L B 14 3 D b" h A C b" d" U1 vr U1 v;o U2 emma . . ror ar 1trary c arts 1, 2, m mgs z1 , x1 , y1 , v1 , ~ , 
v:io 

x.;i 2 , and signal set \JI, we have, 

Pre C2 (z2 * x2) 
I I ' 

Z1 * X1 * Y1 * Vi E A 1 

I I ' 
z2 * X2 * b2 * ~ E C2, 
v1.0A 1 n \JI= e2.oc2 n \JI I- P 

Z1 * X1 * ~ * ~ E R 
---------------p-------------- (Sc1-,) 

Proof B.14.3 
yio 

Lettings ~ =def q oc"'~v.oc2 n outc"' ~ and 
vio 

t ,J, =def q OA,i,~V1.0A 1 n OUtA,i, ~' 

we have, 

where (1 is: 

----SC1 
A -,T C 

W =Tf W 
(1.1 

Z1 * X1 * ~ * ~ E R 
p 

p 
(Sil )(1) 

z1 *°"I,* y: * t' E A,i, Pre C,i, (z2 * e,;,) z2 * e,;, * z{ * a~ E T P ____________ ....... p ____________ ( ;;;i:;, ,)(2) 

(1.1 is: 

----- 1 . . (VX~-d/) 
°"J,•iA,i, = X1.iA 1 °"J,•ZA,i, ~ znA,i, 

---- (di) 
inA"' = inA 1 

-------- (d/) 
t.OA,i, = V1.0A1 n outA,i, 

----------------------------- (zl+I) 
I I ' 

Z1 *°"I,* Y1 * t E A,i, 
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(1.2 is: 

----- 1 . . (df) 
4.ic(t = x2.ic2 4, ic(t <; me(/ 

---- (df) 
inc(! = inc2 

--------3 

---------------------------- (Zit) 
z2 * e.;, * y' * s' E Cw 
-------- (Pre+) 

Pre C2 (z2 * x2) Pre Cw (z2 * e.;,) __ ___; __ _:__ ___________ (Pre-)(3) 

Pre Cw (z2 * e.;,) 

where (1.3 is: 

(2 is: 

---- (#) 4 
outc(t = \JI c,p.oc(t = v-i.oc2 n outc(t 

c,p.oc(t = v-i.oc2 n \JI --------4 
Z2*X2*b~*V~ E C2 

--------2 --------p-------- (ass) bl I • C 
Z2 * e.t, * 2 * C,t, E w 
---------p-------- (Zll)(4) 

(3 is: 

----- (df) 
outc(t = outA(t 

--------2 
b2 * c,p * y~ * t' E T 
-------- (Si~2) 

c,p.oc(t n outA(t = 
t.oA(t n outc(t 

t.OAil' = 
v,.oA, n outA(t 

Lemma B.14.4 For arbitrary charts A, C and signal set \JI we have, 

I • 
Ye* f-zc E C [A],i, ~~ [ C),i, Ya * y~ E R 

------------------ (SC1-II) 
Pre A Ya 

where R =def Corr~ I\ IO~ and T =def CorrJ I\ !Of! for C,i, 

A,i, = [A),i,. 
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Proof B.14.4 
Assuming S = Corr~ I\ 1oi: we have, 

Ye* f-zc' E. C 
_O,t,_*_f_1_E_S i p C (Pre+) t . . i 

; (di) re Ye J<J,,Zc~ = Ye·ZC (Preif) 

A.i, ;;;i!1 C.i, fq, * a"' E T Pre C.i, fq, __ __;._ _________________ c;;;i;f Ill) · . i 

Pre A.i, a.t, Ya·ZA = ll,j,,ZA~ 

Ya* y~ ER 
----'------------------ (Pre11 ) 

Pre A Ya (S11Hi) 
Pre A Ya 

Proposition 7.1.1 If, for arbitrary charts Ai, C2, and signal set '11, we have 

that, 

-----------s~ outA 1 n outB = outc2 n outB 

where T =def Corrf: I\ Iof; for C..-p = [ C2)..-p and A..-p = [Ai)..-p, then for arbitrary 

chart B, we have the monotonicity result, 

C2 ;J~ Ai SCi SC2 SC3 

( C2 I W I B) ;J;f (Ai I W I B) 

where S =def Corri; I\ CorrB I\ IO~, and R =def Corri; I\ 1oi;. 

Proof 7.1.1 
To prove Proposition 7 .1.1 we give separate proofs for each of the following five properties. 

T'o Tio 
Assuming C = G,i I W I B and A = Ai I W I B, for arbitrary bindings Ya A, Ye c, and 

T'" 
Ze c, we show that, . 

C2 ;;;i:1 A1 
utA ~ outc fin 

SC1 Pre A Ya Ya * y~ E S 
---------- app 

Pre C Ye 

C2 ;;;i:f A1 SC2 SC3 Pre A Ya Ya*Y~ ES Ye*f-z/ EC 
----------------------~ corr 

:3 t2 • Ya * ~ E. A I\ t2 * f- Zc I E S 

Given these four properties hold, Proposition 7.1.1 follows trivially using the rule (-;J;1 ). 
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init fin app corr 

_____ s _____ C ·;;r;:1) 
C ::J A -T/ 

Each of the local assumptions, that is, all except C2 ~:! Ai, SC1, SC2 and SC3, are 

discharged by the invocation of the rule C -;i;:1 ). 

Now for the property init, given arbitrary bindings zt3 ,I-Zc u2 and xtfY, we have, 

Zb * I-Zc * Xe E Jnitc . 
Zb * I-Zc E Jnitc CE -d/) 

----~----- (Jnitc-d/) 
Zb * 1-zc E JnitB A Jnitc2 cs-) 

f-Zc E Jnitc2 • "0 

R • CE -d/) • 1 

C2 ~T/ Ai 1-zc * X3 E Initc2 3 t • t E JnitA A t * z{, * I-Zc * x~ E S 
__ ....:..._ _________ ------------------ C -;i:;J 1/)(1) 

3 t • t E JnitA A t * z{, * I-Zc' * x~ E S 

where (1 is: 

Zb * 1-zc * Xe E Jnitc __ ....:._ ___ ~ CE-d/) 
Zb * I-zc E Jnitc 

---------- (Jnitc-d/) ------ 1 
Zb * 1-zc E JnitB A Jnitc2 cs-) ti* xi E JnitA 1 

Zb E JnitB "0 ti E JnitA 1 CE -d/) 
-----------------=- CS_:t) 

Zb * ti E JnitB A JnitA 1 

l . (/nitA-d/) 
Zb * ti E nitA . 

• CE -d/) 
Zb * ti * Xa E JnitA Zb * ti * Xa * z{, * I-Zc' * X~ E S 

• CA+) 
Zb * ti * Xa E JnitA A Zb * ti * Xa * z{, * I-Zc 1 * x~ E S 

v·· Cd!) . (3+) 
3 Xa A • Xa * Xe E Jot 3 t • t E JnitA A t * z{, * I-Zc' * x~ E S ----------'------------......::....---=---=--- cr )(2) 

3 t • t E. JnitA A t * z{, * I-zc' * x~ E S 

(2 is: 

ti * Xi * I-Zc 1 * X3 E R 1 
-------=----='------- (R-df) 
ti* xi* 1-z/ * ~ E Corr~; A JO~; 
-----------=-----=- (s;:) ----- 2 

ti* 1-zc' E Corr~; Xa * x~ E JOt ------ (d/) ______ .:...:.... __________ ---=- (S_:t) 

Zb * z{, E CorrB ti* Xa * 1-zc' * x~ E Corr~2
1 A JOt ____________________ ;__ __ ..:..:._ __ .=_ (S_:t) 

Zb *ti* Xa * z{, * 1-zc' * x~ E CorrB A Corr~; A Jo~; ----------------='-----~ (S-df) 
Zb * ti * Xa * z{, * I-Zc' * x~ E S 

For the property fin we have, 

C2 ~~I Ai 
----=--- (::r ) outA 1 ~ outc2 -Tf J 

-,------.:........... _ ___::___~ (C-df) 
outA 1 U outB ~ outc2 U outB -

t C t (outA-df), (outc-df) 
OU A_ OU C 

For the property app, where fbva = Va.OA n \JI and fbxc = Xe.DC n \JI and [A1D;,1.. 
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[C2);~. and [BB;!, we have, 

---------------- (Vt-di) 
"'.] v20 . ( . fb ) . 
:::i ~ • J:2.tc2 = Xe.tC U v. n mc2 /\ 

--v-.. ----- cv:0 -d/) 
:lve O •Ve.DC= 

x2.oc2 = xi.OA 1 n outc2 

--------------- (3-)(2) 
Pre C (f--zc * Zb * Xe) 

'IJ2.0C2 U '1Ja.0B 
--------------------- (3-)(1) 

Pre C (f--zc * Zb * Xe) 

where (1 is: 

--------3 
I I • 

Za * Xi * Ya * Vi E Ai 
(1.1 

Za * Xi * f--Zc 1 * :z:4 E R 

SCi PreC2f--zc*X2 PreC(f--zc*Zb*Xe) 
---------------------------- (SC1- 1 )(4) 

Pre C (f--zc * Zb * Xe) 

Pre A ( Za * Zb * Xa) 
---------------- (Prej=:1(3)) 

(1.1 is: 

(1.2 is: 

(1.2.1 is: 

(1.2.2 is: 

Pre C (f--zc * Zb * Xe) 

--------3 
I I • 

Za * Xi * Ya * Vi E Ai ---=---,------ (Pre+) 
Pre Ai Za * xi C2 ;;;)~/ Ai Za *xi* f--zc' * :z:4 E R ________ P __ c_L ___________ c·;;r;1 ml 

re 2•Zc*X2 

L I I I s ;- Za * Zb * Xa * , Zc * Zb * Xe E _ 
'>1.2.i (S ) 

L I I C A io4 
Za * Zb * , Zc * zb E orr c 

I A (d/) 
xi* x4 E 1ot; Za * f--zc E Corre; 

f- , , R est) 
Za*Xi* Zc *:t:iE 

L I I I s 
Za * Zb * Xa * , Zc * Zb * Xe E _ . . . n . (S; i) . C . (Vc'-d/) 

Xa.ZA n znc = Xe.ZC ZnA " Xe.ic _ inc 

---- (d/) 
inc2 ~ inc 

----- ( vio-d/) 
Xa.iA ~ inA 

(1.2.3 is: 

(xa.iA Ufbv.) n inA 1 n inc2 = 
(xe.ic U fbv.) n inc2 n inA 1 

---------2 x2.oc2 = xi.0A 1 n outc2 
----- ( Vt'-d/) 

x2.oc2 n outA 1 = xi.OA 1 n outc2 n outA 1 xi.iA 1 ~ outA, 

xi.OA 1 n outc2 = x2.oc2 n outA 1 
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(2 is: 

(2.1 (2.2 
--------3 --------- 4 

I I • 
Zb * X3 * Yb * V3 E B 

Pre C (f--zc * Zb * Xe) 

(2.1 is: 

Za * Zb * Xa * f-- Zc 1 * z{, * x; E S _ . . . n . (S;,,1) 
Xa.ZA n inc= Xe.ZC ZnA ---- (d/) 

Xa.iA n inc n inB = Xe.ic n inA n inB inB C inc 

and (2.2 is: 

and (3 is: 

Xa.iA n inB = Xe.ic n inA n inB 

(xa.iA Ufbv.) n inB = 
(xe.ic Ufbv.) n inB 

X3.iB = (Xe.ic Ufbv.) n inB 

(3 

-----------2 
X2 · ic2 = (Xe· ic U fbv.) n inc2 fbv, = fbv. 

X2. ic2 = (Xe· ic U fbvJ n inc2 

(df) 
fbv, = Ve.OC n \JI Ve.OC = ~-0C2 U V3.0B 

fbvc = ( ~-0C2 U VJ.OB) n \JI 
---------4 
V1 .0A 1 n \JI = ~-0C2 n \JI fbv, = ( ~-0C2 n \JI) U ( VJ.OB n \JI) 

fbvc = ( V1 .0A 1 n \JI) U ( VJ.OB n \JI) 

(df) 
inB <:;; inA 

(3 

fbv, = fbv. 

---------3 
Va.OA = V1.0A 1 U VJ.OB 

And finally for the property corr we have, 

I / / / • 
r Zc * Zb *Xe* Ye* Yb* Ve E C 

fbv, = Va.OA n \JI 
------(df) 

fbv, = fbv. 

:3 t • Za * Zb * Xa * t' E A I\ t * y~ * Y1, * V~ E S 

where (1 is: 

Za * Zb * Xa* :3 t • Za * Zb * Xa * t E A I\ 

t * y~ * Y1, * v~ E S f-- zc' * z;, * x~ E S 

(2 is: 

C -,R A 
2 ='-r/ I 

:3 t • Za * Zb * Xa * t' E A I\ t * y~ * Y1, * V~ E S 

2 
Za * X1 * f-- Zc 1 * zj E R 

:3 t • Za * Zb * Xa * t' E A I\ t * Y~ * Yt, * V~ E S 
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(2.1 is: 

I- , , R 2 T (SCI) --------- l 
Za * X1 * Zc * ~ E A,i, -;;JT/ C,i, 1-zc * X2 * y~ * !12 E C2 
---------------'-------------- (lem B.14.4) 

Pre A1 Za * X1 

(3 is: 

-------------- (VAio_df) 
V'" 

3 Va A • Va.DA = V1.0A 1 U VJ.OB I\ 

Va.iA = Vc.ic n inA 

3 t • Za * Zb * Xa * t E A I\ 

t * y~ * Y1, * v~ E S 
------------------------ (r)(5) 

3 t • Za * Zb * Xa * t' E A I\ t * y~ * Y1, * V~ E S 

(4 is: 
(5 

(5 is: 

--------1 
I I • 

Zb * X3 * Yb * V3 E B (s.1 (s.2 
--------3 : , , • A --------- 5 
Za * X1 *Ya* V1 E 1 Va.DA = V1.0A 1 U VJ.OB 
------''----"-----------,--,--,-.---'---------- (1-1+) 

Za * Zb * Xa * Ya * Yb * Va E A 

(5.1 is: 

(5.2 is: 

(s.3 

-----------2 
X1.iA 1 = (xa.iA UfbvJ n inA 1 

I- / / / s 
Za * Zb * Xa * Zc * Zb * Xe E _ . n . . n. cs,.01> 

Xa.tA inc = Xc.ic inA 
---- (d/) 

Xa.iA n inc n inB = Xc.ic n inA n inB inB ~ inc 
---(d/) 
inB ~ inA 

----------1 
X3.iB = (xc.ic U fbvJ n inB 

(xa.iA U fbvJ n inB = 
(xc.ic UfbvJ n inB 

(5.3 is: 

(s.3.1 
---------1 
Ve.DC = t>;i.Oc2 U VJ.OB 
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(s.3.1 is: 

v1.0A1 n outA1 n \JI= 

t>;i.o02 n outc2 n \JI 
------ (VJ0 -d/) 
VJ.002 ~ outc2 v1.0A1 n \JI= VJ.oc2 n outc2 n \JI 

V1 .OA1 n \V = VJ.Oc2 n \JI 

(6 is: 

I I R 3 
Ya * V1 * Ye * ~ E 

I r, A1 B (d/) 
Ya* Ye E vorr01 Yb* Yb E Corr8 

I IE C A1 I\ G B Ya* Yb* Ye* Yb orrc orrB , , c1 A (di) , 10A 
Ya* Yb* Ye* Yb E orrc Va* Ve E C --------'-------:-,--:,--,:---8----- (S;!) 

Ya * Yb * Va * Ye * Yb * Ve E 

(6.1 is: 

--------5 
Va.iA = Ve.ic n inA 

. C . ( V/JO-d/) 
Ve.ic _ znc 

(6.2 

(6.2 is: 

(6.3 is: 

(6.4 

----- (Viad/) 
'IJ3.0B ~ out8 8 - Ve.oc n outA = ((v1.0A1 n outc2) U (v1.0A1 n outB)) U 'IJ3.0B 

'IJ3.0B ~ (outc2 U outB) Ve.oc n outA = (v1.0A, n (outc2 U outB)) U 'IJ3.0B 

Ve.oc n outA = (v1.0A1 n (outc2 U outB)) U ('IJ3.0B n (outc2 U outB)) 

Ve.OC n OUtA = ( V1 .0A 1 n outc) U ( 'IJ3.0B n outc) 

Ve.OC n OUtA = (v1.0A 1 U 'IJ3.0B) n outc 

(6.4 is: 

(6.4.1 
(6.4.2 

v1.0A 1 n outB ~ t>;i.oc2 n outB ve.oc n outA = (v1.0A 1 n outc2 ) u (VJ.oc2 n out8 ) u 'IJ3.o8 

Ve.OC n OUtA = (( V1 .0A 1 n outc2 ) U ( V1 .OA 1 n outa )) U 'IJ3.0B 
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(6.4.1 is: 

and (6.4.2 is: 

VJ,0A 1 n OUtA 1 n OUtB = 
vi.oc2 n outc2 n outB 

outA 1 n outB = 
outc2 n outB 

Vc,OC n OUtA = (t>i,Oc2 U '113,0B) n OUtA 
--------'--___;;._---'----- (d/) ---- (Vi" d') 
Vc.oc n outA = (vi.oc2 n outA) U ('113.0B n outA) t13.08 ~ out8 3 - ~ 

Vc.oc n outA = (vi.oc2 n outA) U ('113.0B n (outA 1 U outB) '113,0B ~ (outA 1 U outB) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~- (d/) 

Vc,OC n OUtA = (t>i,Oc2 n OUtA) U '113,0B 
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Proposition 7.1.3 For arbitrary charts A, C and signal set \II we have, 

C ~~! A (Ak, ~~ (Ck, 

C ~lct A 

where S =def Corr~ /\ IO~ and T =def Corrf /\ /Of! for C\11 = (Ck, and 

A\11 =(A}q,. 

Proof 7.1.3 
We begin by showing that the firing conditions refinement relation ~ /cf satisfies the total 

chaos elimination rule ( ·;;;r;1 iv>' i.e. the elimination rule due to the correctness condition 

as outlined in Section 6.6. 

----1 

b1 * f-zc E R 

p C ;;;) /cf A Ya. * Y~ E R Ye * f-Zc I E. C 
----------p---------- (-;;Jfr.f /V}(l) 

The remaining elimination rules, (-;;J;11 ), (-;;J;1 u> and (-;;J;1 w> are trivially satisfied by 

(-;;J;11 ). Therefore, that C ~lct A I= C ~~! A holds (i.e. the right-hand property of 

Proposition 7.1.3) follows trivially using the introduction rule (-;;J;1 ). 

We use a similar argument for the left-hand property of Proposition 7.1.3. First we 

show that total chaos refinement relation ~rf , along with the side-condition SC1, satisfies 

the firing conditions elimination rule (-;;J;11 ). 

p C ;;;Jr/ A Pre A Ya Ya* Y~ E R Ye* f- zc' E C 
---'-------------p------------ ( -;;J;/ /V}(l) 

where (1 is: 

[A],i, ;;;!~ (C],i, Ya.* y~ ES Ye* f-2/ E C 
----'---------------- (lem 8.14.4) 

Pre A Ya. 

Again the remaining elimination rules for firing conditions refinement are trivially 

satisfied by ~rf. Therefore, using this and the introduction rule for firing conditions 

refinement (-;;Jt.1> gives us a trivial proof of the completeness property (left-hand side) of 

Proposition 7.1.3. 
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