

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Characterising Sound Visualisations of Specifications using Refinement

A thesis

submitted in fulfilment

of the requirements for the degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

Colin Pilbrow

2019

Abstract

Visualisations can be used to help analyse, explore, and validate Z specifications. However, if

visualisations contain errors or are used incorrectly then they can be misleading and harmful.

The aim of this work is to characterise the soundness of visualisations of Z specifica-

tions. We achieve this by using refinement. We look for a refinement relation between a Z

specification and its (claimed sound) visualisation. If the relation does not hold, then the

visualisation is not sound.

The main type of visualisation we investigate is state diagrams. These diagrams are

useful for visualising the state and operations of Z specifications. We look at a variety

of state diagrams styles before widening the scope to include µ-Chart visualisations and

animated visualisations.

We find that existing refinement methods should not be used for all types of visualisa-

tions. To characterise the soundness of partial visualisations we extend the standard rules

to include unexamined states and restricted specifications.

Finally, we include examples of the refinement rules being used on our visualisations.

This lets us formally show whether each individual visualisation is sound or not.

ii

Acknowledgements

I would like to thank my supervisors, Steve Reeves and Judy Bowen, for the work they

have done and the guidance they have provided. I am grateful to the Computer Science

department and the University of Waikato. The financial support provided has allowed me

to present my research at conferences and has made this work possible. Their encouragement

and support has given me the motivation to finish and made the task enjoyable. Special

thanks to Andrea Haines and the Student Learning team for hosting the Doctoral Writing

Conversations and the invaluable writing retreats. Last but not least, thanks to my friends

and family for their continuous support over the years. I could not have done it without

them.

iii

Contents

1 Introduction 1

2 Literature Review 5

2.1 Why and in what situations are formal specifications important? 5

2.2 Approaches to the validation of formal specifications 6

2.3 Approaches to the visualisation/animation of formal specifications 7

2.4 Visualisation tools for specifications . 10

2.5 Errors in Visualisations . 12

2.6 Other formal methods . 13

2.7 Conclusion . 14

3 Z Specification Language 15

3.1 Z . 15

3.2 Bindings . 20

3.3 Birthday Book . 21

3.4 Using Operations . 22

3.5 Further Schema Calculus . 22

3.6 Precondition Definition . 24

3.7 Introduction to Chaos . 25

3.8 ZC . 26

3.9 Summary . 29

3.10 Filling Jars . 30

3.11 Stopwatch Specification . 31

4 Refinement 33

4.1 Principle of Substitutivity . 34

4.2 Preconditions and Postconditions . 35

4.3 Operation Refinement (Derrick and Boiten) 36

4.4 Woodcock Operation Refinement . 38

4.5 Data Refinement . 40

iv

4.6 Summary . 45

5 Visualisations 46

5.1 Visualisation Users . 46

5.2 Visualising Z Specifications . 47

5.3 Visualisation Soundness . 47

5.4 ProZ . 49

5.5 Graphical Animation . 52

5.6 Conclusion . 55

6 State Diagrams 57

6.1 State diagrams with no current state . 59

6.2 State Diagram Visualisation Definitions . 68

6.3 Summary . 74

7 Restrictions 75

7.1 Proving Soundness with Standard Methods 76

7.2 Proving Soundness with Restrictions . 76

7.3 A New Definition of Soundness . 77

7.4 Restrictions . 77

7.5 Refinement Comparison . 78

7.6 Restriction Strengths . 80

7.7 Examined and Unexamined States . 83

7.8 Using Special State] . 85

7.9 Lifting and Totalising . 87

7.10
•

(UR) . 88

7.11 Refinement . 90

7.12 Summary . 91

8 Microcharts 92

8.1 Microcharts . 92

8.2 Microchart Examples . 93

8.3 The Z Semantics of MicroCharts . 95

8.4 Soundness of Visualisations . 101

8.5 Changes to Microcharts . 102

8.6 Microchart Semantics . 104

8.7 Operation Operator . 105

8.8 Refinement . 109

8.9 Summary . 111

v

9 Animated Visualisations 112

9.1 Aesthetic Animated Visualisations . 112

9.2 Simulation . 113

9.3 Animated Visualisation Definition . 113

9.4 Refinement . 115

9.5 Summary . 119

10 Conclusion 121

10.1 Limitations to our Approach . 123

10.2 Future Work . 125

Bibliography 127

Appendices 136

A Proof Rules 138

B Proofs for Figure 6.1 140

C Proofs for Figure 6.3 144

D Proofs for Figure 6.4 147

E Proofs for Figure 6.10 149

F Proofs for Figure 6.11 151

G Proofs for Figure 6.13 156

H Proofs for Figure 6.15 163

H.1 Initialisation Property . 167

I Proofs for Figure 7.3 169

J Proofs for Figure 7.6 172

K Proofs for Figure 7.7 177

L Proofs for Figure 8.2 181

L.1 State, Init and Axiomatic Definitions for Simple Sequential Charts 182

L.2 Operation Schemas for Tick . 184

L.3 Operation schemas for Pause/Play . 189

L.4 Composed Chart TPP . 191

L.5 Hiding Operator . 192

L.6 Step semantics . 194

vi

M Proofs for Figure 8.3 198

N Construction of a Sound Animation 203

vii

List of Figures

3.1 Example tree . 27

4.1 An operation shown as a partial relation . 38

4.2 Lifting the relation . 39

4.3 Totalising the relation . 39

4.4 Refinement of the relation . 40

4.5 Refinement using downward simulation . 41

5.1 ProZ . 50

5.2 State Properties . 50

5.3 Enabled Operations . 50

5.4 History . 50

5.5 Increase Specification . 51

5.6 2x5 Grid of Images . 53

5.7 Graph of State in Jars . 54

5.8 Graph of State in Birthday Book . 54

5.9 Graph of Explored States in Birthday Book 55

6.1 Empty or not empty . 58

6.2 Visualisation of NOperation . 60

6.3 State Diagram of Jars . 60

6.4 State diagram of birthday book . 62

6.5 Birthday Book States where set size is two . 63

6.6 Birthday Book States where set size is three 64

6.7 Visualisation of birthday book state . 64

6.8 Visualisation of stopwatch . 65

6.9 Add, Edit, and Remove A . 65

6.10 Precondition labels on states . 66

6.11 Alan Turing Visualisation . 67

6.12 Small Visualisation . 67

6.13 Unexplored Alan Turing Visualisation . 68

viii

6.14 State Diagram of IncJump . 69

6.15 These diagram states each represent several specification states 70

7.2 Setting a to 1 . 78

7.3 Filling and emptying the jar 1 . 81

7.4 Filling and emptying the jar 2 . 82

7.6 Add, Edit, Remove without Unexplored . 84

7.7 Filling and emptying the jar 3 . 85

7.8
•

(UR) 1 . 88

7.9
•

(UR) 2 . 89

7.10
•

(UR) 3 . 89

7.11
•

(UR) 4 . 90

7.12 Partial Visualisation of U . 91

8.1 Simple Sequential µ-chart . 93

8.2 Composed Microchart . 94

8.3 Microchart with Local Variable . 95

8.4 aMuZed Microchart . 95

9.1 ProZ Jars Simulation . 114

9.2 ProZ Jars Graphical Animation . 117

ix

Chapter 1

Introduction

Formal specifications are objects based on mathematics and logic that are used to specify

the requirements and behaviour of software before it is built into code. The goal is to

develop a deeper understanding of the system, discover errors, and dispel confusion early in

development. The mathematical foundation of formal specifications allow formal analysis

and requirements that are reliable and unambiguous.

Various abstraction techniques can be used when creating a formal specification. For

example, omission and suppression [94] allow us to hide detail considered to be irrelevant

and describe complex behaviour at an appropriate level of detail. Then, we refine the

abstract design towards a concrete implementation. This changes the focus from describing

what the purpose of a system is to how the system works. There are rules that determine if

a refinement step is valid. These rules allow us to verify that the implementation meets the

requirements of the formal specification.

A specification is invalid if it contains features that are just ‘wrong’ or do not match the

informal requirements. Because the validity depends on the informal requirements, environ-

ment and clients, a specification cannot be ‘proved’ valid. Instead, validation techniques are

used that increase the confidence of the specification’s validity, such as improving commu-

nication with the client and clarifying the logic and mathematics used by the specification.

One validation technique is to visualise the specification. By animating, simulating,

or using visual diagrams, the user can improve their confidence in the specification. The

visualisations can be shown to clients who do not understand the formal language, but

will quickly identify problems in the specification based on the visualisation. Even for

the programmers and developers, visualisations can be used to quickly build an informal

understanding of a specification while using the underlying mathematical foundation for

more formal analysis.

The visualisations can also be incorrect. Unsound visualisations can be misleading,

improve the confidence in invalid specifications, and even suggest bugs and errors that do

1

not in fact exist in the specification being visualised. Clearly, before we use the visualisation,

we want to verify that it is sound. This leads to our research question: Can we use refinement

to characterise the soundness of specification visualisations?

We do not consider visualisation properties such as the aesthetics and usability, instead

choosing to focus on soundness. Although it is clear that an unusable or aesthetically

displeasing visualisation does not help validate the specification, it is not appropriate to

apply formal methods to such properties.

In order to use refinement, we investigate visualisations with formal semantics. However,

we also investigate informal visualisations, and show how the visualisation properties that

are relevant to soundness can be formalised. Using these techniques we can use refinement

to characterise the soundness of a much wider scope of visualisations.

Classic data visualisation types such as bar charts and pie charts are not included in

this investigation as they are not appropriate for validating specifications. Instead, we will

mainly be focusing on state diagrams, although in later chapters we expand beyond this.

Contributions

We show how the soundness of Z visualisations can be characterised using refinement. To

achieve this we develop methods for creating formalisations of visualisations in Z. We inves-

tigate µ-Chart visualisations, many types of state diagram visualisations, animated visuali-

sations, and believe that these methods are applicable to an even wider variety of visualisa-

tion types. We introduce restrictions and show how they can improve the characterisation

of soundness for partial visualisations.

Chapter 2

We begin with a literature review. The most relevant work is primarily formal methods

and visualisations. We also discuss verification and validation techniques and how they are

used to find errors in software, specifications, and visualisations. We also cover a variety of

formal specification languages and visualisation tools.

Chapter 3

We continue by introducing the specification language Z. Z is based on set theory and pred-

icate logic, and this formal language is used to describe what a system does unambiguously

and without inconsistencies. When in the early stages of software development this is used

to carefully analyse the requirements of the system and spot bugs before they are built into

the final implementation. In chapter 3 we present the structure and logic of Z specifications,

and present example specifications that we will be visualising in the following chapters.

2

Chapter 4

Once we have an understanding of Z, we introduce the idea of refinement. When developing a

system, we begin with an abstract specification and build towards a concrete implementation.

Each new step is mathematically related to the previous design, and a set of rules are used to

verify that the refinement is valid. We introduce operation refinement and data refinement,

which will be used later to characterise the soundness of the visualisations.

Chapter 5

Visualisations of specifications can be used for validation of the specification and communi-

cation with the client. There are many different types of visualisation, they can be formal

or informal, static or animated, used to visualise the whole specification or used to visualise

particular aspects. How the visualisation is interpreted changes depending on the context,

content, and previous knowledge. Although visualisations are designed to communicate

information more easily than the specification, it still takes time to fully understand the

visualisation, and an otherwise sound visualisation can still be misleading if is not fully

understood.

In this chapter we give a definition for soundness and decide which visualisations are

within the scope of this investigation. We also introduce two methods we will use to formalise

visualisations.

Chapter 6

The main type of visualisation we investigate is the state diagram. This covers a broad

category of visualisations, suitable for visualising systems with states and operations, such

as typical Z specifications. We give examples of a range of state diagrams, and provide

examples of the formal semantics that can be used to describe them. The state diagrams

we show are examples of visualisations that could be used to help validate a specification.

For example, some visualise the entire state space of the specification, while others focus on

particular states or use-cases. We end the chapter by presenting the semantics we will be

using in the majority of proofs.

Chapter 7

Not all visualisations visualise the entire state space of the specification. In fact, because

of problems such as state space explosion, it is often better to create smaller visualisations

that focus on a particular problem or other aspect of the specification. We call these vi-

sualisations restricted visualisations, because they only visualise a restricted portion of the

specification. Refinement relations cannot typically be found between a restricted visuali-

sation and its specification, which would mean that our method labels an entire category

3

of useful visualisations as unsound. In chapter 7 we show how our method is improved to

include these visualisations. We also formally introduce a special state in the state diagrams,

the unexplored state].

Chapter 8

To help expand the scope of our study, the final two chapters look at visualisations that

are more complex than state diagrams. The first is µ-Chart visualisations. µ-Charts are

an evolution of StateCharts, and are similar to UML state machines. We have chosen to

investigate these visualisations over other types because the language has a formal semantics

given in Z. Visualisations often do not have formal semantics, which can be useful for informal

communication. By using a formal visualisation we can further narrow the gap between the

formal specification and the informal requirements of the client.

In this chapter we begin by introducing the µ-Chart language, and give some examples

of visualisations that use the elements that were not present in the state diagrams we

investigated, such as local variables and composition. We then discuss the challenges of

applying our methods to a different type of visualisation, and how we overcame them. Most

importantly, we introduce the Operation operator to the existing µ-Chart semantics, which

allows us to separate the visualisation into different operations.

Chapter 9

In chapter 9 we discuss animated visualisations. Again, we provide multiple examples to

demonstrate how these visualisations can be used, and how they differ from static visuali-

sations. It is important to note that the examples shown here are not actually animated.

Instead these visualisations are presented as a sequence of images with a brief description.

Appendices

Throughout the thesis we provide many examples of visualisations. The appendices contain

the technical proofs for some of these examples. This includes creating formalisations of

visualisations and using operation or data refinement to show why a visualisation is or is

not sound. In Appendix A we provide some common rules that are useful for our proofs.

4

Chapter 2

Literature Review

In this chapter we introduce the relevant literature related to this work. We begin with

formal specifications and formal methods. Then we investigate how formal specifications

can be validated, with a particular focus on visualisations. We then discuss the soundness of

these visualisations. Finally, although we are focusing on Z specifications, we look at some

of the alternative languages that we could have chosen to use.

2.1 Why and in what situations are formal specifica-

tions important?

Formal specifications are a valuable tool when creating safety-critical or complex systems

[115, 25]. Formal specifications are used to mathematically describe what a system should

do. This has a number of benefits. For example, formalising the high-level requirements of a

system at the start of development reduces ambiguity while helping to improve consistency

and accuracy of the specification and system [39].

During development, the behaviour of the system can be analysed and proof or model

checking techniques can be used to help verification and validation. The formal specification

can also be further refined by adding more low-level requirements.

The formal specification can also help when implementing the software system. To help

ensure the correctness of the final implementation with respect to the specification, model

based testing can be used to automatically generate tests from the specification [110, 85].

Alternatively, the implementation itself can be derived using the specification [40, 81].

Formal specifications have been used to help develop large and safety-critical systems,

including train control systems [35] and avionics software [27]. Woodcock et al. detail

additional examples in their survey of formal methods in industry [115]. Their results

showed a generally positive effect on time, cost, and quality when using formal methods.

However, formal methods are not widely used in industry for a variety of reasons [41,

5

100, 11]. For example, learning how to create and use formal specifications is difficult

and the number of sophisticated tools that support formal specifications is limited. For

programmers creating small apps or websites the benefits that formal methods provide can

seem unnecessary. However, because of the benefits it provides we believe that such methods

should be used where possible. For example, a lightweight approach could be used by only

formally specifying the critical parts of the system [34, 5].

Formal specifications are an important part of formal methods. These techniques can be

very helpful when used during software development.

2.2 Approaches to the validation of formal specifica-

tions

Formal specifications are used to find and remove errors early on in development and ensure

that the requirements of the system are well known and documented. However, they do not

reach the ideal of allowing us to create perfect bug-free software. While we can prove that

a program is correct it is only correct with respect to the specification and the specification

can have its own errors and mistakes.

Firstly, errors in the specification can cause it to behave differently then intended. This

includes misspellings, missing constraints, misunderstandings of the mathematics, and many

more mistakes. For software, verification means checking if the implementation has been

built right with respect to the specification. For formal specifications, verfication also means

checking that the specification has been built right and this can involve checking against

earlier specifications. This includes ensuring that the specification is syntactically and gram-

matically correct. Another problem is ensuring that the specification matches the require-

ments of the client. Have we understood the requirements correctly or has there been a

misunderstanding of what the client wants? Validation of a specification means checking

that the specification correctly matches the user’s needs. There is a well-known gap between

the informal requirements and the formal specification [39] that exists because we cannot

formally compare the two. Additionally, it can be difficult to accurately represent many real

world aspects, such as the environment where the system will be used.

Verification and validation techniques are used to find these errors [4, 112]. Testing

is used to identify defects and to ensure that the specification does what it is expected

to. Many of the techniques used in software engineering [82, 6] can also be applied to

specifications instead of code. Juha Itkonen, Mika V. Mntyl and Casper Lassenius published

a study on manual testing techniques used in industry [53]. For example, programmers will

manually explore weak areas, simulate real usage scenarios, and simulate abnormal and

extreme situations in order to find problems in the software.

6

Because specifications are written using precise mathematical language we can also use

model checking techniques. These techniques allow us to prove various properties of the

specification algorithmically. For example, we can show that a specification correctly pre-

vents the system from entering a state it cannot recover from. These bad states could be

the software crashing or, in avionics, planes crashing. The main limitation to this technique

is the state-space explosion problem, where the number of states in a complex system can

become too large to analyse [1].

We can also use refinement [29] to ensure that our specification is free of errors. This

will be discussed in detail in chapter 4. It essentially allows us to make changes to our

specification, for example by adding more low-level requirements, and then prove that the

modified specification still matches the original.

To help ensure that the specification is correct with respect to the client’s requirements,

communication is important. Because the specification is written formally it can be diffi-

cult for the client to understand. To help avoid this problem, there are various approaches

that may be taken. For example, the clients can use a checklist or informal requirements

document when asking if important requirements have been formalised correctly. Alterna-

tively, a walk-through can be performed where what is described in the formal specification

is explained to the client [105], for example, by simulating a real usage scenario.

By using these techniques and others we can verify and validate specifications. This

will help find errors and ensure that we are creating a specification that the client will be

satisfied with. We can then use the specification with increased confidence when developing

safety-critical systems.

2.3 Approaches to the visualisation/animation of for-

mal specifications

We are investigating visualisations of specifications. Visualisations help aid and assist the

use of formal methods. Visualisations can help assist verification by showing where and why

a specification has not been built correctly and help assist validation by making it easier for

clients to see when the specification does not meet their needs.

Card, Mackinlay, and Shneiderman [22] have summarised [84, 12, 50] how visualisations

can amplify cognition in six major ways:

1. By increasing the memory and processing resources available to the users;

2. By reducing the search for information;

3. By using visual representations to enhance the detection of patterns [99];

4. By enabling perceptual inference to make some problems obvious [63];

7

5. By using perceptual attention mechanisms such as appearance or motion;

6. By encoding information in a manipulable medium [23].

The visualisations we use can incorporate images, icons, symbols, and sketches as part of

the visual form. According to Robert L. Harris [43], some reasons for using these elements

are:

• To make the document more interesting and appealing;

• To make the material more understandable to a greater number of people. (The use of

pictures sometimes helps overcome differences in language, culture, and education.);

• To improve communication in situations where the appearance of an item is better

known than its name or number;

• To facilitate easier reading of a chart or graph by including information to orient the

reader that otherwise might have been shown in a legend or note.

There are many types of visualisation, each with their own strengths and weaknesses. We

are focusing on diagrams which are used for visualising nonquantitative interrelationships.

Flow charts are an example of such a diagram. Some reasons to use flow charts (and other

types of diagrams) are listed below [43]:

• Describe processes, ideas, networks, etc., particularly complex and abstract ones.

• Define, analyze and better explicate processes, procedures, sequences, etc.

• Improve communications.

• Help to clarify ideas.

• Aid in trouble shooting.

• Serve as a tool in planning and forecasting.

• Reduce misunderstandings and conserve time.

The category of diagrams encompasses a wide variety of visualisations with different pur-

poses and aesthetics. For example the Unified Modeling Language (UML) includes Activity,

Sequence, Use Case, and Statechart diagrams [31].

Visualizing Data [26] shows the power of using visualisations for analysing experimental

data. It provides many examples of analysts that did not use visualisations reaching incorrect

conclusions.

Next we look at some of the ways visualisations have been used to help improve formal

method techniques [33].

8

Dulac, Viguier, Leveson, and Storey have investigated the use of visualization in formal

requirements specification [32]. They note “while automated analysis tools can find some

types of errors, detecting many of the most serious semantic errors requires human exper-

tise.” To help aid this human expertise they propose nine principles for designing visualisa-

tions of formal specifications. For example, visualisations should support the most difficult

mental tasks and match the task being performed. For example, a graphical overview of

the entire specification can help support top-down review. However, this visualisation may

hide some dependencies and details. Different notations should be used to support alterna-

tive problem-solving strategies, highlight hidden dependencies, and allow investigation into

different parts of the system.

In [76] Mathijssen and Pretorius create a formal specification of an automated parking

garage and use simulation and visualisation to validate the system. This allowed them to

identify and correct a number of problems early on, including issues that may not have been

noted otherwise.

An initial user study comparing the readability of a graphical coordination model with

Event-B notation [59] tested the effectiveness, efficiency and satisfaction of a Peer Model

visualisation. The participants showed a preference for the visualisation, which allowed

them to understand the system faster.

Testgraphs are directed graphs that partially visualise the specification [78]. States and

transitions that are of interest are included in the testgraph. The testgraphs can be used to

derive test sequences and animations [80].

2.3.1 Animated and static visualisations

A diagram printed onto paper or drawn on a whiteboard is a static visualisation. Computers

allow us to create visualisations that contain more information than can be seen at first

glance.

Including interaction and animation in a visualisation can help the user to interpret the

specification and to amplify cognition [22]. An animated visualisation can provide additional

details about the state by clicking or hovering over elements of the visualisation. The current

state of a state diagram can be highlighted as the specification is simulated. To help visualise

larger specifications users can apply projections to the visualisation [55] that divide the

specification into parts and allow the user to visualise each part in turn.

Animating the visualisation helps the user to interpret the specification. An animation

can allow a non-formal methods expert to interact with the specification and test that

it meets the expected goals [91]. Animating the visualisation helps the user to further

understand how particular operations change the system and identify high level structural

errors [72].

9

A major problem of static visualisations is that their usability decreases as the number of

states and transitions increase. A Z specification can have infinite states and naively trying

to visualise this will create an unusable visualisation. Animated visualisations are a way to

reduce the number of states shown on the screen at any one time.

For animated visualisations the user can use a different method of analysing a large

specification: exploratory analysis [108]. Animated visualisations can allow the user to

focus on a particular sequence of operations of their choice, exploring the full state space of

the specification gradually.

Of course, animated visualisations also have their shortcomings. Many of these problems

are shared with static visualisations and can be addressed with visualisation design. Firstly,

it is difficult to provide examples of animated visualisations in a static environment. Sec-

ondly, animated visualisations are less effective than static visualisations at providing the

“whole picture” view of the specification [83]. To help the user gain a complete understand-

ing of the specification it is best to pair the animation with accompanying text or additional

views of the specification. A consequence of the visualisation not communicating the “whole

picture” effectively is that when the user is exploring the specification they may become lost

or confused. The user may miss parts of the specification or be unsure as to whether they

have sufficiently explored the system to validate any beliefs about the system.

Although animated visualisations try to avoid the state space explosion problem by

focusing on particular states they do not entirely succeed. While a large number of states

are not shown at once they nevertheless still exist and completely exploring an animated

visualisation that has a large state space will take a long time.

Exploration analysis and nondeterminism do not work together smoothly. In Z specifi-

cations nondeterminism in an operation implies that regardless of the result the user will be

satisfied and unable to meaningfully distinguish between the possible outcomes. As such,

nondeterministic transitions in a graphical animation could go unnoticed by the user. One

approach to handling nondeterminism is to split nondeterministic operations into multiple

operations that the user can choose between.

2.4 Visualisation tools for specifications

There are a number a tools that can be used to visualise formal specifications. These tools

can automatically create a visualisation or be used to aid the creation of custom or specific

visualisations.

We start with ProB [67, 68], a visualisation tool and model checker. ProB has a number

of features. For example it can be used to simulate a specification. This allows us to perform

a walk-through of the system. Diagrams visualising the state space of the specification can

be automatically generated. These diagrams can be developed further to help assist human

10

analysis. For example, by using projection diagrams and domain-specific visualisations [62].

Projection diagrams are used to help reduce the size of the state space by both highlighting

particular parts of the system and hiding irrelevant parts [18]. Images and other pictorial

elements that are related to the system can be included to create domain-specific visualisa-

tions. This is particularly helpful for non-formal methods experts to help understand the

specification. Although ProB was originally designed for B, it also supports Event-B, CSP-

M, TLA+, and Z. ProZ is a extension of the ProB animator and model checker designed to

support Z specifications. We discuss ProZ in section 5.4.

B-Motion Studio is another tool used to generate domain specific visualisations for Event-

B [60] and CSP models [61]. These visualisations help the user develop a better under-

standing of the corresponding specification and can be used to identify inconsistencies or

unexpected behaviours within the specification. A user study about the B-Motion Studio

visualisation of a real-life industrial example had positive results [106]. Participants said

they would use these visualisations for “prototyping and validation, impact analysis, replay

of execution logs and predefined sequences”.

Jaza is an animator for the Z specification language. It has been used to help validate

UML and SecureUML class diagrams that have been converted into Z [66, 65, 93]. The

Community Z Tools (CZT) project [75, 74] includes the ZLive animator, which is the suc-

cessor to the Jaza animator [109]. Possum is an animator for the SUM specification language

[44, 79]. SUM is closely related to Z and so Possum can also be used to animate some Z

specifications.

Akram Idani and Nicolas Stouls provide methods for creating visualisations from B

formal models [52]. They have implemented these methods using the GeneSyst tool and

performed a user study to evaluate the understanding of specifications when diagrams are

provided. They found that diagrams significantly reduce the error rate for some questions.

Metric Temporal Logic (MTL) can be used to formalise cyber-physical systems. A graph-

ical formalism for visualising MTL specifications has been proposed [49]. Users can also use

this graphical formalism to create formal MTL specifications using the ViSpec tool [48].

Z specifications can also be visualised using a combination of UML diagrams [58]. This is

done to improve the readability and understandability of the specification. Here, UML Class

Diagrams are used for the state schema, Contract Boxes are used for the operation schemas,

and invariants are visualised using Constraint Diagrams. This helps show the importance

of matching the specification with the appropriate visualisation types.

Automated Abstractions for Contract Validation [24] introduces the CONTRACTOR

tool for automatically generating Finite State Contract Abstractions. They have applied

this tool to an industrial case study and the resulting visualisations “led (them) to discover

previously unknown inconsistencies or omissions in real-life specifications”. They also pro-

11

vide a set of guidelines and heuristics that aim to help improve validation when using their

visualisations.

Z specifications can be translated into executable languages like Haskell [102] and then

animated. For example, PiZa is a tool that translates Z specifications into Prolog [46, 104,

101]. This allows users to find errors that would otherwise be difficult to spot and which

will not be detected by type checkers.

Visualisations are a valuable tool and when used correctly they can help users understand

and debug formal specifications.

2.5 Errors in Visualisations

Validation is important for ensuring our software and specifications are correct. However,

errors in our validation techniques can provide misplaced confidence in our system and delay

the discovery of problems.

A bug in a unit test can also hide a bug in the software. However, it is already expected

that testing will not find every error [117]. A visualisation that is drawn incorrectly or a

misleading specification walk-through can cause a miscommunication with the client or a

misunderstanding of what the correct system should be.

There are many types of visualisation errors, ranging from graphical to semantic. Visu-

alisations can be difficult to read, overly complex or deceptive [107]. A visualisation that

relies on animation or interaction can hide important information.

We have shown that there are many types of visualisation in section 2.3. Many of these

share common graphical elements, however the underlying semantics of these visualisations

are different. For example, for different visualisation types, a circle can represent a particular

system state, an abstract combination of different states, an operation, or input. Problems

can arise if the semantics for the visualisation are not known or misunderstood. For example,

the case study of the Peer model showed that some users misinterpreted the graphical

representation of the invariant assertions and so gave incorrect answers in a questionnaire

about the model [59]. Some visualisation types do not have complete formal semantics, such

as UML [64]. So, the exact meaning of these visualisations can be ambiguous or unclear.

Another possible problem is that the visualisation does not match the specification. This

could be caused by a mistake while drawing or because the visualisation is incomplete. The

specification may have been updated and the changes not reflected in the visualisation. An

error in the formal specification can mean the visualisation matches the informal require-

ments but not the formal.

There are some techniques that can be used to help reduce errors in visualisations. For

example, visualisations should be clear and intuitive [36]. There should be minimal semantic

distance between the visualisation and the users model of how the system works [51], for

12

example, by using notation that the user is familiar with and not changing existing notation.

Computer generated visualisations greatly reduce the human error that can be introduced

when creating a visualisation by hand.

How important is it to prove the soundness of visualisations? Like software tests, a large

number of visualisations can be created, which helps reduce the impact when one is found

to be incorrect. As the specification is developed visualisations will be altered and outdated

which can cause a previously sound visualisation to become unsound. Visualisations are

not the only method of validation and as such are not solely relied upon to find errors. An

obviously unsound visualisation will be quickly discarded, replaced, or fixed, but not used

seriously to help validation.

Despite this however, it can still be useful to prove the soundness of visualisations. For

example, unlike tests which are created in bulk to cover a wide base of the software, some

visualisations can be particularly important. This could be a visualisation that covers the

entire state space of the specification, or a visualisation that shows a particularly complex

constraint in a simple graphic. Ensuring that this visualisation is sound early is important,

before the user can reinforce an unsound mental model of the specification by referring to

the visualisation repeatedly as a guide.

Research that focuses on the soundness of visualisations is limited. As Yaman Barlas

says: “Validity of the results in a model-based study are crucially dependent on the validity

of the model. Yet, there is no single established definition of model validity and validation

in the modeling literature.” [9] We address this gap in knowledge by formally characteris-

ing the soundness of Z visualisations and showing how this can be used identify unsound

visualisations.

2.6 Other formal methods

Although we are focusing on the Z specification language there are many alternative lan-

guages that could have been chosen such as Alloy [55], OCL, VDM [14, 13], StateCharts[42],

or B. We discuss below a range of languages from textual to graphical.

B [3] is a specification language related to Z that is more focused on refinement. Event-B

[2] is an extension of this language. Alloy [54] is influenced by Z, however, it is based on first

order logic. It also includes graphical elements that can express the state of the system. The

Object Constraint Language (OCL) [21] is a textual language that started as a complement

for UML. OCL is more expressive and can specify details more precisely than UML alone.

SOFL (Structured Object based Formal Language) [73] is a specification language that in-

cludes a mixture of natural languages, graphical notation, and formal notation. A condition

data flow diagram (CDFD) is a directed graph that describes the dynamic structure and

gives a graphical view of the system. Petri nets [98] use a formal graphical notation as their

13

specification language. Petri nets are used for distributed systems and other systems that

involve concurrent execution.

We chose a textual language as this allows us to investigate visualisations that are not

already part of the language. Out of these we chose Z as it was most familiar to us. The

methods we use can be applied to other formalisms so a different choice of language could

be investigated. Additionally, it is possible to translate a specification that has been written

in one language to another [38, 81, 16].

2.7 Conclusion

In this chapter we have looked at the literature related to our work. Our first main focus is

formal specifications. Here, precise mathematical language is used to specify exactly what a

system should do. We referenced several industry case studies where this technique has been

used to save time and money. Then we looked at verification and validation and how we

can find problems in our formal specifications. Our next main focus is visualisations. These

are widely used to support a variety of tasks, including formal methods. Visualisations

can help everything from the creation and analysis of specifications to communication with

clients. Because of this some formal languages include graphical notation while others use

visualisation, animation, and simulation tools.

Visualisations can also have errors. We discussed how and why this is important in

section 2.5. Characterising the soundness of a visualisation has not been done outside our

own work. We have previously investigated the soundness of state diagrams [88] and µ-

Chart visualisations [87]. We discuss this in more detail in chapters 6 and 8. Finally in this

chapter, we introduced a variety of formal specification languages we did not use. We will

be focusing on Z specifications which are the topic of the next chapter.

14

Chapter 3

Z Specification Language

Before building a system it is important to first ask what the purpose of the system is. A

specification defines what a system should do. An informal specification can be as simple

as ‘I want a program that can record the birthdays of my friends’. However, informal

specifications can be ambiguous and imprecise, so we can also create formal specifications

that are written in formal specification languages, such as Z. These languages are based

on standard mathematical notation, including set theory and predicate logic. This lets

us create unambiguous specifications, and allows us to use formal verification techniques

such as model checking, invariants, and theorem proving to help prove various properties

of the specification. However, specification languages are more abstract than programming

languages. A specification can be nondeterministic and can include sets of infinite size.

This means a typical specification cannot be executed. Instead they are used as the basis

to create valid programs by using techniques such as refinement and building test suites.

3.1 Z

In this thesis we will be using the Z specification language. Z is a formal specification

language used to specify and model computer systems. Z was developed by a team at the

Programming Research Group of Oxford University. Many books have been written about

Z, from the notation to case studies. We therefore give a very brief introduction and further

information can be found in these texts and others [114, 71, 56, 8].

• We begin by introducing schemas. Schemas are used to specify the state space and

operations of the specification.

• Z is a strongly typed language. In section 3.1.2 we discuss how to create and use types.

• Schema calculus can be used to define and combine schemas. We introduce some of

the operators we use most often, such as schema inclusion and schema disjunction.

15

• Z specifications tend to follow similar layouts. We discuss this in subsection 3.1.4.

• Then, we look at bindings, which are collections of observations, and the elements of

schemas when schemas are viewed as sets.

• In section 3.3 we present an example specification of a birthday book.

• Then, we look at how Z specifications work in a larger environment. We discuss

how specification operations are “used” to change the state of the system, and how a

sequence of operations creates a program.

• Then, we look at operation preconditions and postconditions and provide the defini-

tions of some more complicated schema calculus that will be used to build the formal

definition of preconditions.

• Next, we look at what happens when we use an operation outside its precondition,

and the ⊥ state.

• Finally, we introduce the logic of Z, ZC , which we will be using later in the thesis.

3.1.1 Z Schemas

A Z schema has two main parts, the declarations and the constraints, as well as an optional

name.

Name

Declarations

Constraints

The schema can also be defined horizontally to save space.

Name =̂ [Declarations | Constraints]

The declarations section lists the observations. Each observation has a name, a type,

and possibly some decoration. The decoration is a terminating character after the name of

the observation that distinguishes (by convention) the sort of observation. The ? decoration

indicates that it is an input observation. ! indicates output observations. The ′ decoration

is found in operation schemas and indicates the decorated observation contains the value

of the original observation after the operation is used. For example, the following schema

describes an operation called Increase that takes an input called amount? and increases n

by that amount.

16

Increase

n,n ′ : N

amount? : N

n ′ = n + amount?

In this example, our observations are n,n ′, and amount?, where amount? is an input obser-

vation and n and n ′ are the before and after observations of the number we are increasing.

Observations are local to the schema they are introduced in. Global constants can also be

introduced that all schema have access to and these are introduced by axiomatic definitions.

The constraints section adds constraints to the observations that have been declared.

In a state schema, the constraints section is used to restrict the state space. For example,

we may specify that the value of an observation cannot go beyond some maximum value.

If the afterstate values are restricted, we instead say the afterstate values are set. For

example, in the earlier Increase specification, n ′ is set to the sum of the old value of n plus

amount?. While the constraints section is simply a proposition, to help make the schema

more readable we can split the proposition into different lines, where each new line in the

constraints indicates a hidden ∧ (logical conjunction operator).

3.1.2 Types

Z uses typed set theory. A type is a group of similar common elements, and when we

introduce an observation we also define what type it has. For example, n : N defines n as a

natural number. This helps avoid certain mathematical paradoxes found in logic that is not

strictly typed, while also improving automated checks and proofs about the specification.

However, its primary use is to help clarity. If n was introduced without giving its type

explicitly, we would be missing information that could be valuable to our understanding of

the specification. Perhaps we could infer that n was a number, based on how it was used,

but we would not immediately realise that it can never be negative.

The core language of Z only includes the built-in type Z, which represents the set of

all integers. The mathematical toolkit is an extension to the core language that includes

additional types such as N, the natural numbers, as well as a large number of operations.

If additional types or operations are required, or we choose not to use the toolkit, we may

define our own. Types are built in a way that maximises readability and understanding of

the specification.

Basic types (also called given sets) are declared by writing their name in square brackets,

typically in all caps. For example, the set of all names can be defined as follows:

[NAME]

17

We can now declare a variable n : NAME which can be read as ‘n is a NAME ’. There are

no further restrictions on the form of n : NAME . For example, we do not need to specify

the length of the name or how it is written. This is a useful example of abstraction as we

can use n while leaving this information unspecified. We can add this information later,

when it becomes important.

Alternatively, we can introduce a type by listing its elements. Here we give the general

format and a simple example:

freeType ::= element1 | element2 | . . . | elementn

DIRECTION ::= up | down

These are then used in the same way as the basic types. If d : DIRECTION , then the

value of observation d is either up or down.

3.1.3 Schema Calculus

Schemas can be combined and composed using schema calculus. We will briefly cover the

schema calculus used in this thesis. However, many of the details are omitted, such as when

an operation is illegal and how decorations are handled. We begin by introducing simple

schema calculus, while more complex schema calculus is introduced later in the chapter.

We will be using schema ExampleState for the following examples:

ExampleState

n : Z

n < 100

We can decorate the schema name with a prime, this primes all observations in the

schema. This is used to indicate ExampleState after some operation has been used. ExampleState ′

is the schema:

n ′ : Z

n ′ < 100

The delta notation is used to include both the before and afterstates in one schema. This is

very useful when making operation schema that change the state. The following schema is

∆ExampleState:

18

n,n ′ : Z

n < 100

n ′ < 100

We can include schemas within other schemas, using inclusion. Here, the operation

schema Increase includes the observations of ∆State, and the constraints are conjoined to

the predicate part.

Increase

∆ExampleState

amount? : N

n ′ = n + amount?

If we expand this schema we get the following:

n,n ′ : N

amount? : N

n < 100

n ′ < 100

n ′ = n + amount?

Schema conjunction and schema disjunction are also used similarly to the logical opera-

tors. The schema that is created includes the observations of both schema being combined,

while their predicates are conjoined or disjoined, respectively.

3.1.4 Specification Layout

There is an established strategy used to organise information into schemas and schemas

into specifications. Although Z specifications can be written in different styles, traditionally

Z specifications are constructed as a state space with a set of operations that operate on

the state space. The parts of Z specifications are typically written in a particular order.

First, any given sets and global constants are provided with a description of how they will

be used in the specification. Then, the state schema is presented. This schema includes

the observations we will be using throughout the specification. An initial state schema that

defines the initial state of the system is presented. This is specified using the observations

of the state space with some additional predicates used to set the system to the initial

19

values we want. Operations of the system can be used to change the state and output

values. For each operation, a schema is created. Schema calculus can be used to combine

schemas, so smaller operation schemas can be built and then joined together afterwards. For

example, any error handling can be defined in its own schema, and combined with the main

operation schema later in the specification. Lastly, Z specifications do not consist entirely

of mathematical notation. Instead, they include a large amount of natural language that

informally describes the purpose, meaning and significance of the formal specification. The

informal commentary helps relate the mathematics to real world examples and is vital to

building a clear and understandable specification [116].

3.2 Bindings

The schema can also be considered to be a set of bindings. A binding is a structure that

associates observation names with values. An example of a small binding:

〈n 7→ 0〉

An example of a binding in the Increase schema:

〈n 7→ 1, amount? 7→ 3,n ′ 7→ 4〉

This binding is well-formed because the names and types of the observations match the

Increase schema. Because the observations also satisfy the constraint of Increase, this

binding is in the schema.

The following binding is not in Increase because it is not well-formed, the names of the

observations in the binding do not match the schema.

〈n 7→ 1,m 7→ 4〉

This binding is not in Increase because the values of the observations do not satisfy the

Increase constraints.

〈n 7→ 1, amount? 7→ 0,n ′ 7→ 0〉

The order of the “observation value” pairs in the binding does not matter, but to help

readability, we have first listed the initial observations, followed by the input observations,

and finally the afterstate observations.

If, and only if, the values in the well-formed binding cause the proposition in the con-

straints to be true, the binding will be included in the schema. A schema may contain an

infinite number of bindings.

20

3.3 Birthday Book

We will now look at an example specification. A commonly used example of a Z specification

is a specification of a birthday book [103]. We want to remember the birthdays of our friends

by storing them in a book.

We have two basic types, names and dates. These sets contain all names and all dates,

respectively. How they are represented is not relevant to how the birthday book works, and

does not need to be included. This allows us to work at a higher level of abstraction, without

worrying about strange characters or leap years.

[NAME ,DATE]

The state of the birthday book is specified using two observations. known is a set of the

names we have recorded in the birthday book. birthdaybook is a partial function that maps

names to dates. So each name in the birthday book is associated with the birthday of the

person with that name.

State

birthdaybook : NAME 7→DATE

known : PNAME

known = dom birthdaybook

We start with an empty book. The number of names we initially know is zero. Init does

not appear to have any birthdaybook constraints, so this schema looks nondeterministic.

However, the constraint in State, included in Init , implies birthdaybook is empty too.

Init

State

known = ∅

If we get a new friend we can add their name to the date in the book that is their

birthday. We input a name and a date, and if the name is not already in the birthday book,

we add it. This is done formally using set union.

AddFriend

∆State

name? : NAME

date? : DATE

name? 6∈ known

birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

21

We can remove a name from the birthday book. The name being removed is input, and

if it is in the book, then we remove it using domain restriction.

RemoveFriend

∆State

name? : NAME

name? ∈ known

birthdaybook ′ = {name?} −C birthdaybook

If we need to, we can also edit entries in the book. This changes the date associated with

name being input to the date being input. This can only be done if the name is already in

the book, and uses ⊕ to override the old entry.

EditFriend

∆State

name? : NAME

date? : DATE

name? ∈ known

birthdaybook ′ = birthdaybook ⊕ {name? 7→ date?}

3.4 Using Operations

Operations can be viewed as binary relations over a state space relating a beforestate to an

afterstate. Alternatively we can say that with a given state and inputs, we can apply the

operation and find related afterstates and output. It is possible that multiple afterstates are

related to the same start state. This is because Z operations can be nondeterministic.

We can create an imaginary program that applies the Init schema, followed by a sequence

of operations with inputs. The result of a program is the outputs produced by the operations

used, and the final resulting state. If an operation in the program is nondeterministic, then

the same program may result in different outputs. An imaginary observer of the specification

can execute programs and observe the output and states.

3.5 Further Schema Calculus

Consider the RemoveFriend example we provided previously in section 3.3. This operation

is used to remove a name from the birthday book. The relation that this operation defines is

22

only partial, as when the birthday book does not include the input name, we do not specify

what the afterstate should be.

The precondition of an operation characterises the states and inputs which relate to

some afterstate and outputs. For example, the precondition of the RemoveFriend operation

is that the input name is included in the book. We discuss what happens if the name is not

included in section 3.7, and give a formal definition of the precondition of an operation in

section 3.6, but first we provide some more schema calculus that will be useful.

Similarly to first-order logic, we can quantify over schemas. This can be used to express

universal and existential properties of schemas. Quantification removes a given observation

x from the declarations of the schema, and quantifies the predicate over x .

Existential Quantification

We are given a schema S == [x : X ; DeclS | predS], where the set of observations in DeclS

does not contain x : X . The existential quantification over x in S is

∃ x : X • S == [DeclS | ∃ x : X • predS]

This can also be called hiding the observation x , because x is removed from the declarations.

Instead of hiding a single observation x : X , we can also hide all observations in a given

schema U from another schema S. We are given a schema S == [U ; DeclS | predS], where

the set of observations in DeclS does not include any observations in U , and DeclU has

observations x0 : X0, x1 : X1, . . . , xi : Xi . The existential quantification over U in S is

∃U • S == [DeclS | ∃ x0 : X0, x1 : X1; . . . , xi : Xi • predU ∧ predS]

For example, observe the following state schema, which has two observations.

State

x : N

y : N

x < 10

The Operation schema below includes the observations in State.

Operation

∆State

x ′ = x + 1

y ′ = x

We will hide the State schema observations, leaving only the afterstate observations of

Operation in the declaration section. The following schema shows ∃State • Operation:

23

x ′, y ′ : N

∃ x , y : N • x < 10

x ′ < 10

x ′ = x + 1

y ′ = x

Universal Quantification

We are given a schema S == [x : X ; DeclS | predS], where the set of observations in DeclS

does not contain x : X . The universal quantification over x in S is

∀ x : X • S == [DeclS | ∀ x : X • predS]

Thus, the resulting schemas ∃ x : X • S and ∀ x : X • S contain all observations of S

but x . This will be shown to be useful in the following definitions for preconditions and

refinement.

We can also quantify schema U over S to remove the observations of U from the decla-

rations of S .

3.6 Precondition Definition

The precondition characterises the states and input which relate to an afterstate when the

operation is applied. It can also be called the states where the operation is applicable, or

where the operation is able to be used successfully.

The precondition pre Op of operation Op == [∆State; In; Out ; | pred] with state

State, input observations In and output observations Out is defined as:

pre Op = ∃State ′; Out • Op

This hides the afterstate and outputs of Op, resulting in a schema that only includes befor-

estate and input observations. For example, pre AddFriend = ∃ birthdaybook ′; known ′; •

AddFriend . This can be simplified using the one-point rule and other equivalences to the

schema [State; name? : NAME ; date? : DATE | name? 6∈ known]. This matches with what

we expected, the AddFriend operation can be used successfully when the name is not already

in the book.

If the precondition of an operation is true, then the operation is total and can be used to

get the ‘expected’ result in any beforestate with any valid input. That is, the state and input

observations can have any value of the correct type. Otherwise, it is a partial operation,

as it is not applicable for all inputs and states in the domain. The AddFriend operation is

partial because it does not specify the afterstate when name? ∈ known.

24

3.7 Introduction to Chaos

Allowing operations to be partially specified is useful for a number of reasons. We may

specify the important parts of the system. Anything that we have not specified is taken

as not important for the system to work and could be implemented in any way without

affecting the target system. Since we have not specified what we want to happen, we are

happy with any result. The initial specifications we create are highly abstract, and through

refinement we add more details. By allowing partial specifications, we are able to create

more abstract specifications that focus on the important parts of the system.

However, when we allow partial specifications, we must ask the question: what happens

when an operation is used in a state where the behaviour has not been specified, i.e. when

the precondition is false? The two most common interpretations are blocking and chaos.

The blocking interpretation states that we cannot use an operation where the precondi-

tion is false. For example, we could not use AddFriend when the input name is already in

the book. If it is not possible to use the operation, then it is not possible for the operation

to cause any nasty undefined side effects. However, the question we asked was what happens

when the operation is used outside its precondition, and ‘actually it wasn’t used, because it

could not be used’ can be considered to be an unsatisfactory answer.

The standard interpretation of Z operations is the chaotic or contractual interpretation.

If we do not want or cannot block the operation from being used, how will it behave?

Chaotically. When the operation is used outside its precondition, the afterstate values

could be anything. When using the operation outside its precondition, the values might

stay the same, they could follow earlier specified behaviour, or result in any other state,

nondeterministically. This includes a state called ⊥ (pronounced bottom), which is a state

that represents the system reaching a state that is chaotic, blocked, unsafe or broken. ⊥ is

a state we want to avoid. However, we include it because it is possible that when using an

operation outside its precondition we could cause the system to break.

Previously we discussed how we should handle operations being used outside of their

preconditions. However, it is possible to create an operation that specifies what happens

to some of the observations but not all. Consider a state schema with two observations,

x and y , that are natural numbers. We could create an operation called IncreaseX that

simply specifies that we increase the value of x . However, when this operation is used, how

does the value of y change? We have not specified this within the operation. Again, there

are two common interpretations. The first is to do nothing. The value of x will change as

we have specified it, while the value of y will not change. Alternatively, if we use a more

chaotic interpretation, the value of y could change to any natural number when we use

this operation. The difference between the two options here is different to the blocking and

chaos that we looked at previously. This is because “do nothing” is a possible refinement of

25

the chaotic approach, while we cannot refine a chaotic operation into a blocked operation.

Because of this, the chaotic approach is standard, as it allows us to be more rigorous. We

could choose to refine the operation into “do nothing”, but we could also refine the operation

into something more suitable, depending on the circumstances.

Z operations can be nondeterministic or partially defined. These types of abstraction

have their advantages when first creating a specification. However, we want the final specifi-

cation to have no uncertainty. So, we improve our operations by removing non-determinism

and making the operations total. We develop our abstract specification toward a more

concrete specification using refinement. We discuss this further in chapter 4.

3.8 ZC

ZC is an extension of higher order logic for Z. It includes the addition of schema types. More

information about ZC and the logic of Z can be found in [45]. We define the types of Z as

follows.

T ::= Υ | PT | T × T | [. . . z T . . .]

These types are free types, power sets, pairs, and schema types. Note that in this metalan-

guage we use superscript to denote type.

Free types are given by equations with the following form:

Υ ::= . . . | ci〈〈Υij 〉〉 | . . .

Υ is the name of the free type. ci are constructors which inject values from the set Υij to

Υ. Υij are expression types, which may include Υ (permitting recursion). 〈〈Υij 〉〉 may be

omitted, if so, ci is simply a constant of type Υ rather than a constructor.

We provide three examples of free types. The first example is simple, and introduces five

constants with type VOWELS .

VOWELS ::= a | e | i | o | u

The following examples are recursively defined free types. In the first example, we define N

as a free type.

N ::= zero | succ〈〈N〉〉

Next, we give the type of a tree, where each node has contains a natural number. Addition-

ally, each node is either a leaf or branches in two.

TREE ::= leaf 〈〈N〉〉 | branch〈〈N× TREE × TREE 〉〉

leaf zero is the simplest value with type TREE . A more complex example is the following

value, which we can also see drawn in Figure 3.1. Here numbers are used to represent

26

1

30

00

Figure 3.1: Example tree

elements from N.

branch (succ zero, branch (zero, leaf zero, leaf zero), leaf succ succ succ zero)

Schema types are the types for bindings and have the form [. . . z Ti
i . . .]. This is an

unordered sequence of observations zi with types Ti .

However, note that the type of a given binding will not be clear without also knowing

the schema it is an element of. For example, consider the binding 〈 x 7→ 0, y 7→ 2 〉. Although

we know the form of this binding is [x Ti , yTj], we do not know what the exact types of Ti

and Tj are. Currently, the only knowledge we have is that it must be the case that 0Ti and

2Tj .

Carrier sets are sets that contain all values of a certain type, and have the same name

as that type. The distinction between a type and its carrier set is subtle. An observation

can be in many different sets, but has exactly one type.

C =df {z C | true}

The superscript C is the type and C is the carrier set. There is no ambiguity here, as in this

metalanguage types are always superscript and only types can be superscript. The carrier

set is useful in the following definition.

Schemas can have one of two forms. The basic form is the schema set, which is a schema

with an unordered sequence of typed observations:

[. . . zi : C
PTi

i . . .]

zi is an observation, while Ci is a set with type PTi . The schema set is used in the other

form, the atomic schema. This has the following structure, where S is a schema and P is a

predicate.

[S | P]

An operator that we will be using frequently is the binding selection operator. This

extracts the value of a given observation from a binding. For example,

〈 x 7→ 0, y 7→ 2 〉.x = 0

27

More generally, this is defined as 7→=
0 :

7→=
0〈. . . zi 7→ ti . . .〉.zi = ti

A simple schema without any propositions is defined as a set of bindings.

[. . . zi : Ci . . .] =df {x | . . . ∧ x .zi ∈ Ci ∧ . . .}

Therefore, a given binding x exists in the defining set of bindings if, and only if, it has the

following properties. Firstly, the names of every observation zi in the schema are also in

the binding x . Secondly, the value of observation zi is in the set Ci . Ci may be a newly

introduced set or, if it has the same name as a previously defined type, then it must be

the carrier set of that type. Note that the schema type of x is same as the schema being

defined, i.e. x [...zi :Ci ...]. This means that the binding x only contains observations in the

schema declarations. If x had another schema type, x .zi would not be valid for all zi or x

could include observations not equal to any observation zi in the declarations of the schema.

Consider the simple schema [n : {0, 1, 2}]. From the definition, Ci = {0, 1, 2} and zi can

only be n. So, bindings in this schema have only one observation, n. Additionally, the value

of n must be in {0, 1, 2}. The set of bindings is {〈n 7→ 0〉, 〈n 7→ 1〉, 〈n 7→ 2〉}.

When adding propositions P to schema S , the defining set of bindings need to satisfy

P . The binding selection operator can be generalised over terms and over propositions, and

z .P is true if P is true when the variables from z are substituted with their binding values.

[S | P] =df {z ∈ S | z .P}

The alphabet of a binding or schema is the set of observations it has. α[. . . z1 . . .] is the

set {. . . z1 . . .}. �,f,g and − are the subtype, intersection, union and subtraction operators

for schema types. � is the type restriction (or filtering) operation for bindings. z � T restricts

the binding z to the schema type T . For example, 〈x 7→ 0, y 7→ 2〉 � [xN] = 〈x 7→ 0〉. Note

that the binding z must be an extension of T for this to be well-formed. In this example,

the type of x in the binding must be N. The main use of these operators is to ensure that

our schema types are well-formed when performing more complex calculus. z0Fz1 is the

binding concatenation operator, where z0 and z1 have non-overlapping type. For example,

types T in and T out′ are types containing all before observations and types containing all

after observations, respectively.

The last important type operator is priming. For example, [. . . z1 . . .]
′ = [. . . z ′1 . . .]. While

we expect priming z gives us z ′, it is also true that z ′′ = z . This is not common in Z, but

is useful in ZC logic.

Next we present the terms of ZC , variables, pairs, bindings, filtered bindings, free type

28

values and sets.

tT ::= x T | t [...zT ...].z | tT×T1 .1 | tT0×T .2

tT0×T1 ::= (tT0 , tT1)

t [...zT ...] ::= 〈. . . z 7→ tT . . .〉

tT0 ::= tT1 � T0 where T0 � T1

tΥ ::= ci tυij

tPT ::= {z T | P}

These terms can then be used to build propositions.

P ::= false | tT = tT | tT ∈ C PT | ¬ P | P ∨ P | ∃ z T ∈ C PT • P

Finally, when we interpret the Z operations using the contractual interpretation (chaotic),

we use the ⊥ value. To include this value in our Z logic, we use Z⊥C . In Z⊥C we add a new

value ⊥T to each type T in ZC . Additionally, the carrier set of a type is defined differently

in Z⊥C .

C =df {z C | z 6= ⊥}

This means that the carrier sets do not include ⊥. To convert a binding from ZC to Z⊥C

(called lifting), we use the following definitions.

T⊥ =df T ∪ {⊥}

T
∗

=df T in
⊥ FT out

⊥

Additional definitions will be provided when and if necessary.

3.9 Summary

Z is used to write formal specifications, unambiguously describing what a system is meant

to do. Strongly typed observations are declared in schemas to abstractly describe the state

space and operations. We have looked at how operation schemas describe the change between

before and afterstates. We have seen how we can use existential quantification to find the

precondition of an operation and verify that we have a total or partial operation. Chaos and

blocking interpretations were then introduced to cover what happens if an operation is used

outside of its precondition. Finally, we looked at ZC , the underlying logic of Z and how it

defines the possible types and propositions that can be found in a Z specification.

Below, we give two more examples of using Z. These examples, along with the birthday

book specification, will be used throughout the thesis and the majority of visualisations will

be of these specifications.

29

3.10 Filling Jars

We have two jars, j 3 has a volume of 3 pints, whereas j 5 can contain 5 pints.

Jars ::= j 3 | j 5

max fill : Jars → N

max fill = {j 3 7→ 3, j 5 7→ 5}

Each jar currently contains a certain amount of liquid.

Level

level : Jars → N

∀ j : Jars • level(j) ≤ max fill(j)

In the beginning, all jars are empty.

Init =̂ [Level | ran level = {0}]

A (not full) jar can be filled completely.

Fill Jar

∆Level

j ? : Jars

level(j ?) < max fill(j ?)

level ′ = level ⊕ {j ? 7→max fill(j ?)}

Or a (non-empty) one can be emptied completely.

Empty Jar

∆Level

j ? : Jars

level(j ?) > 0

level ′ = level ⊕ {j ? 7→ 0}

Or we can pour the liquid of one jar into the other, until one is empty or full.

30

Transfer

∆Level

j 1?, j 2? : Jars

amount? : N1

j 1? 6= j 2?

amount? = min({level j 1?,max fill j 2?− level j 2?})

level ′ = level ⊕ {j 1? 7→ level j 1?− amount?, j 2? 7→ level j 2? + amount?}

3.11 Stopwatch Specification

The stopwatch has two observations. The current time value of the stopwatch and whether

the stopwatch is paused or playing.

maxTime : N

maxTime = 9999

Stopwatch

time : N

playing : BOOL

time ≤ maxTime

Initially the stopwatch is paused, and the time is 0.

Init

Stopwatch ′

time ′ = 0

playing ′ = false

There is a button on the stopwatch that toggles between paused and playing.

Pause/Play

∆Stopwatch

time = time ′

playing = ¬ playing ′

Resetting the stopwatch sets the time back to 0 and pauses the stopwatch.

31

Reset

∆Stopwatch

time ′ = 0

playing ′ = false

Finally, each tick increases time if the stopwatch is playing. If the stopwatch is paused,

time does not change. The behaviour when maxTime is reached has not yet been specified.

Tick

∆Stopwatch

(playing = true ∧

time ′ = time + 1

∨

playing = false ∧

time ′ = time)

playing = playing ′

32

Chapter 4

Refinement

Stepwise refinement, also called top-down design, is a way of creating computer programs

[113]. Firstly, each of the functions of the system are described generally. Then more

detail is gradually added until the functions are completely defined. This process has been

formalised for specifications, and sets of rules have been created that allow us to prove that

as changes are made the new specification still has the same underlying behaviour as the

original specification.

In this chapter we introduce Z refinement. For Z, the refinement calculus provides a set

of rules that are used to compare two specifications, the original abstract specification and

a refined replacement concrete specification. This chapter only gives a brief introduction

of the rules for Z refinement. Informally, a refinement is acceptable if it is impossible for

an observer to notice the replacement. It is this principle that we use in our hypothesis;

refinement can be used to characterise sound visualisations.

We cover two main types of refinement, operation refinement and data refinement. In

operation refinement the concrete and abstract specifications have the same state space

described by the same state schema. In data refinement, the state space of the abstract and

concrete specifications can be different.

When using Z, there are three main abstraction techniques that are useful in the specifi-

cation, but must be removed before implementation. These are partially defined operations,

non-deterministic operations, and data structures that are not suitable for implementation.

The abstract specification is developed into a concrete specification with total, determin-

istic operations and an appropriate data structure. Z refinement is used to ensure that the

concrete specification is consistent with the requirements of the abstract specification.

We hypothesise that Z refinement is suitable for characterising the soundness of specifi-

cation visualisations. This is because a visualisation is similar to a concrete implementation

for the purposes of soundness. The visualisation may use a data structure that is more

suitable for visualising the behaviour of the specification and the type of visualisation we

33

are using may not allow non-deterministic or partial operations. Using refinement, we can

test that the visualisation is consistent with the specification.

4.1 Principle of Substitutivity

How can we check that a refined specification still has the same behaviour as the original

specification? One way is to consider it from the user’s point of view, using the principle of

substitutivity.

Principle of Substitutivity: It is acceptable to replace one program by another,

provided it is impossible for a user of the programs to observe that a substitution

has taken place. If a program can be acceptably substituted by another, then

the second program is said to be a refinement of the first. [29]

In this scenario, the user has learnt the behaviour of an abstract system. They interact

with the system by using operations and inputting values, and can observe any output the

system produces. This system is then replaced with a refined version. If a sequence of

operations and input resulted in a particular output, then the user would expect to see the

same output from the refined system. If the user cannot distinguish the difference between

the two systems by using the same operations and inputs, then the principle of substitutivity

is satisfied.

If the original system behaved nondeterministically, and could produce different outputs

after the same sequence, then when using the same sequence in the refined system, the user

would expect to see outputs that were in the set encountered previously. For example, a

simple operation could output a natural number when used. If this operation was refined

and the user observed the output being negative, they could then tell that the behaviour of

the operation has changed. If, however, the refined operation produces natural numbers less

than a thousand, or indeed, less than ten, then the user would not be able to definitively

tell the difference between the two systems. They may suspect that a change has taken

place, however the nature of nondeterminism means it is entirely possible for the system to

produce a particularly long chain of small numbers.

Another way of refining the system in a way the user cannot distinguish is when a

refined operation can be used in more states. This is because the user can only test the

refined system by using operations and inputs that were possible in the abstract system.

For example, our birthday book specification only allows the user to remove a name from

the book if the name is known. We can refine this operation by outputting an error message

when the user attempts to remove an invalid name. The principle of substitutivity says

that this is a valid substitution, as the user cannot detect the substitution by only removing

34

names that are known. They would need to remove a name that is not known, but this is

not possible in the abstract specification.

4.2 Preconditions and Postconditions

The precondition of an operation is a set of states and inputs for which the behaviour of

the operation has been specified. Trying to use the operation outside of its precondition will

result in unspecified behaviour. For example, an operation that removes an item from a set

may have a precondition that requires the item is in the set to start with. The postcondition

of an operation is a set of states that may be the result of an operation being used. For

example, an operation that removes an item from a set may have a postcondition that the

item is no longer in the set.

Let’s consider the strength of the preconditions and postconditions. Proposition A is

stronger than proposition B if A ⇒ B . For example, because x = 1 ⇒ (x = 1 ∨ x = 2),

x = 1 is the stronger proposition. Strengthening (x = 1 ∨ x = 2) to x = 1 means what

used to work in states where x is either 1 or 2 now works only in states where x = 1, i.e.

fewer states. A stronger precondition means the operation is defined in fewer states, while a

stronger postcondition means that there are fewer possible afterstates, or that the operation

is less nondeterministic. A precondition that is true is the weakest precondition, and the

operation is defined in all states. The strongest condition is false because an operation

with false as its precondition is unusable in all states, and an operation with a false as its

postcondition has no valid afterstates.

By comparing the preconditions and postconditions of the operations in the system with

their refined versions, a set of rules has been created that lets us prove that no behaviour

has been lost. These rules allow us to weaken the preconditions and strengthen the post-

conditions of the operations. Weakening the precondition means that the operation is now

defined in a larger state space, while the behaviour in previously defined states should not

be changed. Strengthening the postcondition means removing nondeterminism by removing

elements from the set of possible afterstates. We cannot add new elements to this set, nor

can we remove every element. As an example, imagine we have an operation that simply

increases a number if the number is not greater than 10. We can weaken the precondition

by adding the condition that if the number is greater than 10 then it is unchanged when

the operation is used. Additionally, we can reduce the nondeterminism (strengthen the

postcondition) by incrementing the number by one each time.

35

4.3 Operation Refinement (Derrick and Boiten)

Here we introduce a set of operation refinement rules from John Derrick and Eerke A. Boiten

[29]. These rules compare two operation schemas, one from the abstract specification, AOp,

and another from the concrete specification, COp. These operations have the same input

and output observations, and operate over the same state space State.

To show that a concrete specification is an acceptable substitute, and that a refinement

relation exists between the abstract and concrete specifications, we test that each operation

in the concrete specification has two properties: applicability and correctness.

Applicability requires that the concrete operation is defined everywhere the abstract

operation was defined. If the operation is no longer defined in a state when it was defined

in the abstract operation then the user will realise the operation has been changed when

trying to use the operation in this state. Applicability allows us to weaken the precondition

of the operation.

Correctness requires that the concrete operation should map into the range of the ab-

stract operation everywhere the abstract operation is defined. This means that the concrete

operation cannot change the behaviour of the abstract operation by resulting in a different

afterstate when the operation is used. Correctness allows us to strengthen the postcondition

of the operation.

These conditions can be formalised in the following way. An operation COp is an opera-

tion refinement of an operation AOp over the state space State with the same set of inputs

?AOp and set of outputs !AOp if and only if:

Applicability property:

∀State; ?AOp • pre AOp ⇒ pre COp

Correctness property:

∀State; State ′; ?AOp; !AOp • pre AOp ∧ COp ⇒ AOp

Note that the correctness property only requires that COp ⇒ AOp where the operation

has been defined. This is because we are using the standard contractual (chaotic) interpre-

tation, and we do not need to enforce the correctness property on the chaotic behaviour

outside the precondition. If using the blocking interpretation, the correctness property can

be simplified.

∀State; State ′; ?AOp; !AOp • COp ⇒ AOp

If these rules are satisfied by COp and AOp, then COp satisfies the requirements of

AOp. Additionally, COp can have reduced non-determinism and be specified in a wider set

of states compared to AOp.

36

Consider the following example. We have a state schema with a single observation of a

natural number.

State =̂ [n : N]

We have an abstract operation that increases n. How much we increase n by is not

important at this stage, so we use nondeterminism to abstract away this unimportant detail.

AIncrease

∆State

n ′ > n

As the system is developed further we need to decide exactly how much n is increased

by. We propose that the following operation schema that increases n by one is a valid

substitution.

CIncrease

∆State

n ′ = n + 1

Now, we show that the underlying behaviour of AIncrease has not been changed by

showing that the refinement rules hold. We start by finding the preconditions of each of the

operations.

pre AIncrease = true

pre CIncrease = true

Both operations are total so showing the applicability property holds is trivial.

∀State; ?AOp • pre AIncrease ⇒ pre CIncrease

≡ (Substitution)

∀n : N • true⇒ true

≡ (true⇒ true)

true

However, we are removing nondeterminism. The concrete operation CIncrease is correct

if it implies AIncrease.

∀State; State ′; ?AOp; !AOp • pre AIncrease ∧ CIncrease ⇒ AIncrease

37

Figure 4.1: An operation shown as a partial relation

≡(Substitution)

∀n,n ′ : N • true ∧ n ′ = n + 1⇒ n ′ > n

≡ (n ′ = n + 1 or not)

∀n,n ′ : N • n ′ = n + 1⇒ n ′ = n + 1 ∧ n ′ > n ∨

n ′ 6= n + 1 ∧ n ′ = n + 1⇒ n ′ 6= n + 1 ∧ n ′ > n

≡(Simplify)

∀n,n ′ : N • n ′ = n + 1⇒ n ′ = n + 1 ∧ true ∨

false⇒ n ′ 6= n + 1 ∧ n ′ > n

≡ (false⇒ P ,Q ⇒ Q)

∀n,n ′ : N • true ∨ true

≡

true

Because both rules are true this is a valid refinement. Using the same example, if we instead

decided to change the constraint to n ′ = n − 1 then this would not be a valid refinement.

4.4 Woodcock Operation Refinement

Rather than conceptualising refinement in two parts, weakening preconditions and strength-

ening postconditions, we can instead consider refinement as simply reducing nondeterminism

as described by Woodcock and Davies [114]. This approach uses total operations. If either

the abstract or concrete operations are only partially specified, then we instead use their

totalised versions.

Figure 4.1 shows a partial relation that we will be using as an example. First the

operations are lifted and totalised. Lifting means we are including ⊥ as a possible state.

This state is understood to mean undefined, erroneous, and generally out of our control.

38

Figure 4.2: Lifting the relation

Figure 4.3: Totalising the relation

This is a state we do not want our system to be in, however using an undefined operation

may result in this state. Figure 4.2 shows how ⊥ is included, and how it maps to all

afterstates. Totalisation means that we are expanding the states in the state space in which

the operation is defined to include all states. The afterstates of the previously unspecified

states can be any state, including ⊥. In Figure 4.3, d was previously outside the domain of

the relation, and so now maps to all afterstates after totalisation.

We write ρ
•

to denote the totalised form of ρ. The lifted totalisation of a set of bindings

has been defined as follows:

U
•

=df {z0Fz ′1 ∈ T ∗ | Pre U z0 ⇒ z0Fz ′1 ∈ U }

So, binding z0Fz ′1 is included in U
•

in two ways. Firstly, if the binding was part of the

original operation U . Secondly, if the binding was not in U , then it is included only if

z0, the beforestate of the binding, does not satisfy the precondition of U . The before and

afterstate of the binding may be ⊥, because z0Fz ′1 ∈ T ∗. So, like the example shown in

Figure 4.3, U
•

adds bindings to U such that all states outside the precondition map to all

possible afterstates, including ⊥.

Once we have totalised our operations in this way it is now clear to see how they behave

outside their previous preconditions. There is also a simple rule for when a specification is

a refinement of another specification: If the lifted totalised concrete operation is a subset of

the lifted totalised abstract operation, then it is a valid refinement.

UC vW • UA =df UC

•
⊆ UA

•

For example, Figure 4.4 is a subset of the example in Figure 4.3, because although some

mappings have been removed, all mappings in Figure 4.4 are present in Figure 4.3. Woodcock

39

Figure 4.4: Refinement of the relation

refinement tests if nondeterminism is reduced in the totalised forms of the operations. Each

beforestate that had multiple possible afterstates including d now only has one possible

afterstate. Although this definition only tests the reduction of nondeterminism, when we

consider the untotalised versions of the operations, we can see that nondeterminism has

been reduced for b and c and the precondition has been weakened to include d . The same

underlying principles apply to both of the refinement rules shown here.

4.5 Data Refinement

In addition to just refining the operations, it may also be useful to refine the underlying data

structure or state space. For example, we may want to change the type of an observation

from a set to a list. This is particularly useful when changing from the abstract data types

used in early specifications to more concrete data types used in the later specifications or

executable programs. Data refinement is similar to operation refinement, but the abstract

state space and concrete state space can be different. We will be using data refinement in

this thesis as the visualisations will often have a different representation of the state space.

The details of how and why data refinement works will not be presented here, instead

we refer to existing literature [29]. However, the main principles of substitution, weakening

preconditions and strengthening postconditions are still the same. We will be using the most

common way of checking data refinement, downwards simulation.

Downwards simulations use a retrieve relation R that relates the abstract state space

with the concrete state space. The retrieve relation is written as a schema that includes

the abstract and concrete state schemas. The choice of predicate depends on how the state

spaces are related.

R

AState

CState

pred

40

Figure 4.5: Refinement using downward simulation

The following example shows how we might use a retrieve relation. We have decided to

change the state space of the Jars example such that instead of using a partial function we

use simple numbers to represent how full each jar is. CLevel =̂ [j 1, j 2 : N | j 1 ≤ 3 ∧ j 2 ≤ 5]

We can then use R to relate the two different state spaces. How much liquid is in the first

jar is now specified as j 1 instead of level(j 3).

R

Level

CLevel

level(j 3) = j 1

level(j 5) = j 2

Data refinement extends operation refinement by considering the changes in the state

space and how the system is initialised. Data refinement also includes properties for appli-

cability and correctness, and while the underlying idea is unchanged, the retrieve relation R

has been included. R lets us compare the abstract and concrete operations despite the fact

that they have different state spaces.

In Figure 4.5 we can see an abstract operation change the abstract state and a concrete

operation change the concrete state. These are then connected by R. If we start in the

topleft state and follow the arrows we can see that application of relation R followed by the

operation COp can be matched by the operation AOp followed by R′.

This is used to change the operation refinement properties. Previously the correctness

property was written as:

∀State; State ′; ?AOpi ; !AOpi • pre AOpi ∧ COpi ⇒ AOpi

Correctness still requires that the concrete operation should map into the range of the

abstract operation everywhere the abstract operation is defined. The difference is that COp

will now result in a concrete state. So, the range of AOp is changed to the concrete state

space using R. Based on the observation above, we now apply R before the operation COpi

41

and follow AOpi with R′. The ∃AState ′ is used to hide any abstract afterstate observations.

∀AState; CState; CState ′; ?AOpi ; !AOpi • pre AOpi ∧ R ∧ COpi ⇒

∃AState ′ • AOpi ∧ R′

Similarly to operation refinement, there exists a simpler correctness rule when using the

blocking interpretation.

∀AState; CState; CState ′; ?AOpi ; !AOpi • R ∧ COpi ⇒ ∃AState ′ • R′ ∧ AOpi

Applicability still requires that the concrete operation is defined everywhere the abstract

operation was defined. Previously this was written ∀State; ?AOp • pre AOp ⇒ pre COp.

However, the concrete operation is now defined in the concrete state space. So we use R to

simulate AOp being used in the concrete state space as well:

∀AState; CState; ?AOpi • pre AOpi ∧ R ⇒ pre COpi

Finally, we have a new property that must hold for a valid refinement relation to exist. The

system is being initialised in a different state space and we need to ensure that we don’t

start the system in a completely different state. CInit should start the system in the range

of AInit and we use R simulate AInit starting in the concrete state space rather than the

abstract state space. Again, ∃AState ′ is used to remove abstract observations from the right

hand side of the implication. Initialisation property:

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

Let us try using applying data refinement to our simple jars example. We have refined

our Init operation into CInit =̂ [CLevel ′ | j 1′ = 0 ∧ j 2′ = 0].

∀CLevel ′ • CInit ⇒ ∃Level ′ • AInit ∧ R′

≡(Substitution)

∀CLevel ′ • j 1′ = 0 ∧ j 2′ = 0⇒ ∃ level ′ • ran level ′ = {0} ∧

level ′(j 3) = j 1′ ∧ level ′(j 5) = j 2′

≡(One-point Rule)

∀CLevel ′ • j 1′ = 0 ∧ j 2′ = 0⇒

0 = j 1′ ∧ 0 = j 2′

≡

true

Next we will check applicability and correctness hold for a refined Fill operation.

42

CFill

∆CLevel

j ? : JARS

j ? = j 3 ∧ j 1 < 3 ∧ j 1′ = 3 ∧ j 2′ = j 2 ∨

j ? = j 5 ∧ j 2 < 5 ∧ j 2′ = 5 ∧ j 1′ = j 1

The precondition of Fill Jar is [Level ; j ? : Jars | level(j ?) < max fill(j ?)] while the

precondition of CFill is [CLevel ; j ? : Jars | j ? = j 3 ∧ j 1 < 3 ∨ j ? = j 5 ∧ j 2 < 5].

∀AState; CState; ?AOpi • pre AOpi ∧ R ⇒ pre COpi

∀Level ; CLevel ; j ? • level(j ?) < max fill(j ?) ∧ level(j 3) = j 1 ∧ level(j 5) = j 2

⇒ j ? = j 3 ∧ j 1 < 3 ∨ j ? = j 5 ∧ j 2 < 5

≡(Substitution)

∀Level ; CLevel ; j ? • j ? = j 3 ∧ level(j 3) < 3 ∨ j ? = j 5 ∧

level(j 5) < 5 ∧ level(j 3) = j 1 ∧ level(j 5) = j 2⇒

j ? = j 3 ∧ j 1 < 3 ∨ j ? = j 5 ∧ j 2 < 5

≡(Substitution)

∀Level ; CLevel ; j ? • j ? = j 3 ∧ j 1 < 3 ∨ j ? = j 5 ∧ j 2 < 5 ∧ level(j 3) = j 1 ∧ level(j 5) = j 2

⇒ j ? = j 3 ∧ j 1 < 3 ∨ j ? = j 5 ∧ j 2 < 5

≡

true

So the applicability property holds, next we look at the correctness property.

∀AState; CState; CState ′; ?AOpi ; !AOpi • pre AOpi ∧ R ∧ COpi ⇒

∃AState ′ • AOpi ∧ R′

∀Level ; CLevel ; CLevel ′; j ? : Jars • level(j ?) < max fill(j ?) ∧ level(j 3) = j 1 ∧

level(j 5) = j 2 ∧ (j ? = j 3 ∧ j 1 < 3 ∧ j 1′ = 3 ∧ j 2′ = j 2 ∨

j ? = j 5 ∧ j 2 < 5 ∧ j 2′ = 5 ∧ j 1′ = j 1)⇒

∃Level ′ • level(j ?) < max fill(j ?) ∧ level ′ = level ⊕ {j ? 7→max fill(j ?)}

∧ level ′(j 3) = j 1′ ∧ level ′(j 5) = j 2′

43

≡(One-point Rule)

∀Level ; CLevel ; CLevel ′; j ? : Jars • level(j ?) < max fill(j ?) ∧ level(j 3) = j 1 ∧

level(j 5) = j 2 ∧ (j ? = j 3 ∧ j 1 < 3 ∧ j 1′ = 3 ∧ j 2′ = j 2 ∨

j ? = j 5 ∧ j 2 < 5 ∧ j 2′ = 5 ∧ j 1′ = j 1)⇒ level(j ?) < max fill(j ?) ∧

(level ⊕ {j ? 7→max fill(j ?)})(j 3) = j 1′ ∧

(level ⊕ {j ? 7→max fill(j ?)})(j 5) = j 2′

≡(Simplify j ?)

∀Level ; CLevel ; CLevel ′; j ? : Jars • level(j ?) < max fill(j ?) ∧ level(j 3) = j 1 ∧

level(j 5) = j 2 ∧ (j ? = j 3 ∧ j 1 < 3 ∧ j 1′ = 3 ∧ j 2′ = j 2 ∨

j ? = j 5 ∧ j 2 < 5 ∧ j 2′ = 5 ∧ j 1′ = j 1)⇒ level(j ?) < max fill(j ?) ∧

(j ? = j 3 ∧ (level ⊕ {j 3 7→ 3})(j 3) = j 1′ ∨

j ? = j 5 ∧ (level ⊕ {j 5 7→ 5})(j 3) = j 1′) ∧

(j ? = j 3 ∧ (level ⊕ {j 3 7→ 3})(j 5) = j 2′ ∨

j ? = j 5 ∧ (level ⊕ {j 5 7→ 5})(j 5) = j 2′)

≡(Simplify ⊕)

∀Level ; CLevel ; CLevel ′; j ? : Jars • level(j ?) < max fill(j ?) ∧ level(j 3) = j 1 ∧

level(j 5) = j 2 ∧ (j ? = j 3 ∧ j 1 < 3 ∧ j 1′ = 3 ∧ j 2′ = j 2 ∨

j ? = j 5 ∧ j 2 < 5 ∧ j 2′ = 5 ∧ j 1′ = j 1)⇒ level(j ?) < max fill(j ?) ∧

(j ? = j 3 ∧ 3 = j 1′ ∨ j ? = j 5 ∧ level(j 3) = j 1′) ∧

(j ? = j 3 ∧ level(j 5) = j 2′ ∨ j ? = j 5 ∧ 5 = j 2′)

≡(Rearrange)

∀Level ; CLevel ; CLevel ′; j ? : Jars • level(j ?) < max fill(j ?) ∧ level(j 3) = j 1 ∧

level(j 5) = j 2 ∧ (j ? = j 3 ∧ j 1 < 3 ∧ j 1′ = 3 ∧ j 2′ = level(j 5) ∨

j ? = j 5 ∧ j 2 < 5 ∧ j 2′ = 5 ∧ j 1′ = level(j 3))⇒ level(j ?) < max fill(j ?) ∧

(j ? = j 3 ∧ level(j 3) < 3 ∧ j 1′ = 3 ∧ j 2′ = level(j 5) ∨

j ? = j 5 ∧ level(j 5) < 5 ∧ j 2′ = 5 ∧ j 1′ = level(j 3))

≡

true

So we have found a valid refinement relation despite the fact that the state spaces of the

abstract and concrete specifications are different.

The refinement calculi we have looked at so far have required two sets of matching

operations, for example AIncrease and CIncrease. When using refinement each abstract

operation AOpi is tested with its matching concrete operation COpi . Operation pairs need

to have the same set of input and output observations ?AOpi and !AOpi .

44

Methods of refinement have been developed that allow us to relax these constraints. The

input and output can be changed [15], and operations can be split apart [30]. Additionally,

the refinement calculi discussed here are not restricted to only Z specifications, and many

languages have custom refinement rules that are specific to that language [57, 77]. In this

thesis we will be focusing on Z refinement, particularly operation refinement and downward

simulation data refinement.

4.6 Summary

In this chapter we have introduced three types of refinement. We will be using all three

throughout the thesis. Refinement allows us to compare two specifications and verify that

the preconditions have not been strengthened and nondeterminism has not increased. This

allows us to remove abstraction or use a different state space without changing the underlying

behaviour. If an operation is enabled in the abstract specification it must also be enabled

in the concrete specification. If a transition between two states is possible in the concrete

specification it must also be possible in the abstract specification.

45

Chapter 5

Visualisations

We are interested in the soundness of specification visualisations. Visualisations are tools for

helping users understand and analyse complex information. In this section we discuss who

uses specification visualisations and why. Then, by building on the ideas in the discussion,

we explain soundness and why it is an important visualisation property.

5.1 Visualisation Users

We begin by identifying the three main user groups for these visualisations. Visualisations

can be used to verify and validate specifications. Different users will require different types

of visualisations to help assist completing different tasks.

Firstly, there is the creator(s) of the specification. The specifier has been given an

informal specification of the system, and their goal is to create a formal specification that

accurately models the client’s requirements. This could be either the initial specification,

or a specification that is intended to be a refinement of the original specification. If they

are working in a team, then they may begin by only specifying a small part of the overall

system, and then later integrating this with the larger system. Visualisations help these users

identify errors created during the writing of specifications and help with the comparison of

formal and informal specifications. The state space of these visualisations can be reduced

by incorporating mathematical language and observations from the specification.

Clients also make use of specification visualisations. They are not expected to have any

knowledge of the formal language of the specification, however they still need to understand

the specification to help ensure it matches with their informal requirements. They will

primarily be using the visualisation to help validate the specification by identifying any

differences between the formal specification and their vision. Walk-throughs and simulations

of the system being used are helpful for this task. Domain-specific visualisations can help

lower the semantic distance by showing the system using graphical language that the client

46

can understand.

The third user group consists of programmers. They are given the formal specification

and their goal is to build a functioning program that matches the specification. A visualisa-

tion of the specification gives an overview of what needs to be implemented. While they may

also have a copy of the client’s original informal specification, the formal specification the

programmer receives will have been heavily refined and may include many details that are

not defined in the original specification. Visualising these details can save the programmer

time and energy when parsing the specification.

5.2 Visualising Z Specifications

A Z specification specifies what a system does. A visualisation of a specification should

provide a clearer and more understandable way of showing the same information.

The Z specification contains operation schemas, and these operation schemas describe

how the state of the system changes when the operation is used, depending on the current

state and input. The specification itself has no restrictions on what states are reachable,

as each of the operations are independent from one another and the behaviour of each

operation can be specified for any possible state, even if it is not possible to reach the state

when looking at the system as a whole. Therefore, if a simple visualisation is made to show

the behaviour of the whole specification, it needs to show how the operations change the

state. More sophisticated visualisations can also show additional emergent behaviour that

is not explicitly defined in the specification. This could include showing how the operations

interact to create a working system, or which operations need to be applied in what order

to reach particular states. However, the bare minimum we require is for the visualisation to

show how the operations change the state of the system.

5.3 Visualisation Soundness

If the visualisation is accurate and does not mislead the user, then the visualisation is sound.

We assess this by firstly, requiring that if the visualisation shows some behaviour, such as

an operation changing the state, it must also be possible in the specification. Secondly, we

require that all operations enabled in a particular state of the specification must also be

enabled in that state of the visualisation. Our goal is to formally characterise this property.

Both the client and the specifier rely on the visualisation being sound. For the client,

if the visualisation is unsound, then they do not know if the specification that has been

created matches their informal requirements. An unsound visualisation could make an in-

correct specification appear to be correct. For the specifier, an unsound visualisation could

hide bugs in the specification or visualise bugs that do not exist. The programmer does

47

not rely as heavily on the soundness of the visualisation, as they were only using the visu-

alisation to get an idea of the system. If there is a discrepancy between the visualisation

and the specification it could cause some confusion, but only the specification needs to be

implemented to successfully build a correct program.

Although visualisations are intended to be clear and usable, often the visualisation may

be large, confusing, or written using a graphical language the user does not understand.

We separate these problems from the problem of soundness. To this end, we simply assume

that no matter how large, complex, and confusing the visualisation is the user can still

understand any visualisation perfectly. Of course this is not realistically possible, however

these assumptions vastly simplify the process of characterising soundness as we no longer

need to consider the limitations of individual users.

There are two ways we can formalise the user’s understanding of a visualisation. These

are based on two opposing epistemological paradigms [10]: that knowledge is objective or

that knowledge is relative. The first method is to use the formal semantics of the graph-

ical language, where they exist. The semantics of the visualisation are assumed to be the

objective truth that we can use consistently and without ambiguity.

Alternatively, relativism assumes that there is no objective truth and instead different

viewpoints each have their own truth. Different people using the visualisation can interpret

it differently based on their world view and their understanding of the specification and

graphical language. A formal model can be created that represents the user’s understanding

of the visualisation. If the meaning of the visualisation is clear and unambiguous then this

formalisation should be the same for all users. However it is possible that two people can

interpret the same image differently or the same person might interpret the visualisation

differently over time. Using this philosophy means that when a sound visualisation is looked

at from a different viewpoint it may be unsound. This paradigm implies that we cannot

formally characterise the soundness of visualisations.

We could limit our investigation to only include visualisations with formal semantics.

However, many useful visualisations are informal. Because of this we do not ignore the

problems that relativism introduces. Instead, our method allows different viewpoints to be

formalised. This means that we can now assume that the visualisation does not need to

have a single objective truth and that different people can interpret it differently.

The purpose of our specification visualisations is to provide a better way to understand

and analyse the behaviour of the specifications. We use the semantics of the visualisation

or the formalisation of the user’s understanding of the visualisation.

48

5.3.1 Soundness and Completeness

In logic soundness has a distinct meaning. A deductive system is sound if and only if all

provable things are ‘true’ with regards to the semantics. Testing for the property of logical

soundness is different from what we are investigating, however we will briefly discuss it. A

method for visualising specifications has the soundness property if every visualisation that

is creates is ‘true’ with regards to the specification. What does it mean for a visualisation

to be ‘true’ with regards to the specification? In fact, this is our main research question

written in a different form, and part of why we have chosen to use the term ‘sound’ when

describing visualisations.

In logic soundness is often discussed alongside completeness, as both properties deal

with how the proof system and semantics work together [17]. If every ‘true’ formula can

be proven then the system is complete. A method for visualising specifications has the

completeness property if it can create every ‘true’ visualisation. It is not necessarily useful

to prove that such a method is complete for the following reasons. Firstly, this does not

mean that every visualisation that is created will be helpful or even usable. A method

that can create awful visualisations of anything would still be complete, though perhaps not

sound. Secondly, different types of visualisations can be more or less suitable for a particular

specification. Therefore, different methods are used to visualise different specifications and

it is not necessary to be able to use one particular method to visualise any specification.

5.4 ProZ

ProZ is a model checker and simulation tool that is used to analyse and visualise Z specifi-

cations [89]. We are using ProZ as an example of a tool that can create animated and static

visualisations. Figure 5.1 shows ProZ with the birthday book example opened. Two main

uses of ProZ that we will be discussing are the simulation and graphical animation tools,

although we will also briefly discuss the state diagram visualisation that ProZ can display.

ProZ is an extension of ProB, which is a tool for another specification language, B [67].

The extension works by converting Z specifications into B specifications behind the scenes,

although no understanding of B is needed to use ProZ. Z specifications, written in LATEX,

can be opened directly using ProZ, without needing to be converted into a proprietary file

type. This means we can quickly analyse our existing specifications. Z specifications also

include informal descriptions of the schemas, and this does not need to be removed when

opening the specification.

49

Figure 5.1: ProZ

Figure 5.2: State Properties Figure 5.3: Enabled Operations Figure 5.4: History

ProZ Simulation

The first tool we will discuss is the simulator. When we introduced specification languages,

we mentioned that they cannot be executed as a typical programming language program

could be. However, by introducing some restrictions, the ProZ simulation tool allows us

to ‘run’ the specification, simulating initialising, providing inputs, applying operations and

viewing the output. Basically, it searches for observation values that satisfy the constraints

of the schemas.

The values of the observations for the current state of the simulation can be observed.

Figure 5.2 shows the state properties after two names have been added to the birthday book.

Being able to visualise the values of observations before and after using operations is useful

for any user.

At each step of the simulation, ProZ provides a list of operations that are enabled in

the current state. This is shown in Figure 5.3. The user can pick any of these, then the

50

Figure 5.5: Increase Specification

current state values are updated and a new list of operations are provided. This allows the

user to simulate the specification being run. Each operation in the list is a combination of

multiple properties. First is the name of the operation being used, second is the value of

the inputs being provided, third is any resulting output that will occur. So, for example,

if an operation can be used in the current state with two valid inputs, it will appear twice

in the list. The operations are colour coded depending on the resulting state, with different

colours for entering an unexplored state, a previously explored state or if the state does not

change.

Figure 5.4 shows the history panel of ProZ. Here, the user can see the operations that

have been used so far in the simulation. When clicked, the simulation reverts to a previous

state, so that the user does not need to restart the simulation to explore multiple branches.

It is important to discuss the limitations of the ProZ simulation. The ProZ simulation

does not have unlimited memory. This is an obvious limitation of any physical program,

and any computer program we try to use to analyse our specification will be restricted by

this. One limitation is the size of sets. Z specifications can use observations which have

types that have infinitely large carrier sets. This could be as simple as x : N, or we can use

a given type like name? : NAMES where [NAMES] is understood to be the set of all names.

In Figure 5.3 we see that we can only edit friends to DATE1 or DATE2. Additionally, we

cannot use the AddFriend operation in this state. This is because the size of the NAME

and DATE carrier sets is restricted by the tool setting, in this case, to 2. In the simulation,

DATE1 and DATE2 are the only values with type DATE .

51

Nondeterminism is handled by explicitly providing the user with the option to choose

a particular operation. If an operation can nondeterministically enter two different states,

then it will appear in the list twice, and the user can pick which state to enter. Because

the user can choose the resulting state, it no longer behaves nondeterministically, and if

the user did not understand this limitation they may believe that the specification itself

is deterministic. Additionally, the number of operations provided to the user is limited. If

there are too many possible afterstates, inputs or outputs, then not all possible combinations

will be provided for the user to simulate. This could cause a user to believe that a particular

operation is not possible since it was not shown in the list of possible operations. However,

a warning is provided if ProZ was not able to show every possibility. In Figure 5.5, an

orange box labelled max is shown next to the enabled operations title. This is because

Increase is nondeterministic, so the operation appears in the list multiple times for each

possible afterstate. However, the number of operations shown to the user is limited to 10,

so although the specification says that n can be increased to any natural number, we can

only choose from 10 options. Finally, the size of maxInt has been limited to 20, so at most

this simulation could only increase n to 20.

The ProZ simulation is blocking. If the current state is not in the precondition of an

operation, then the user does not have the option to use it. This is fine for specifications

that are intended to be blocking, however if the specification uses the chaotic interpretation

then a user may expect to be able to use an operation outside its precondition.

So, with all these limitations, can this simulation be used to understand the specification

without being misled? Is the ProZ simulation unsound? We will discuss this further in

chapter 7.

5.5 Graphical Animation

ProZ allows us to define an animation function[69, 70]. By adding images and the following

schemas to the jars specification, ProZ can display the grid of images seen in Figure 5.6 while

the specification is being simulated. This provides the user with a graphical animation that

updates each time an operation is used.

Having the maximum fill of all jars helps us in the visualisation:

global maximum : N

global maximum = max (ran(max fill))

Firstly, we declare a type for the images where the names of the elements refer to the

file names of the GIF files for each of the images.

Images ::= Filled | Empty | Void

52

Figure 5.6: 2x5 Grid of Images

There are several simple naming requirements that must be met to use this graphical

animation. The animation function, named animation function, must be defined in a schema

called ProZ Settings. The animation consists of a grid of images that is updated in each

new state. The animation function maps a coordinate to an image where (1 7→ 1) is the

upper-left corner. animation function default is a helpful optional addition that is used to

create a background for the animation. In this example the background is simply white.

ProZ Settings

Level

animation function default : (N× Jars) 7→ Images

animation function : (N× Jars) 7→ Images

animation function default = (1 . . global maximum × Jars)× {Void}

animation function =

({l : 1 . . global maximum; c : Jars | l ≤ max fill c •

global maximum + 1− l 7→ c} × {Empty})⊕

({l : 1 . . global maximum; c : Jars | l ≤ level c •

global maximum + 1− l 7→ c} × {Filled})

The graphical animation allows the user to show the simulation to clients with an even

lower barrier of entry. Because the graphical animation is limited to a grid of images, it

does not have the power of a custom graphical animated visualisation. However it is often

sufficient, and will serve as a good comparison when we discuss animated visualisations later.

In Figure 5.6, our y coordinate is 1 up to the global maximum of our jars and our x coordi-

nate each of the jars. We then build the visualisation in layers. Firstly the white background

is created. As a set, this looks like {(1, j 3,Void), (1, j 5,Void), (2, j 3,Void), (2, j 5,Void), ...}.

This is then overridden by empty jar images. If the y coordinate is less than the maximum

level of that jar we draw an empty jar. The variable l here is used to draw up from the bottom

of the grid so that we don’t end up with upside down jars. Finally, this is overridden again

by filled jar images. If we are between the bottom of the jar and the current fill level, then we

53

Figure 5.7: Graph of State in Jars

Figure 5.8: Graph of State in Birthday Book

draw a filled jar. This gives us a set like {(1, j 3,Void), (1, j 5,Empty), ..., (5, j 3,Empty), (5, j 5,Filled)}

depending on the current value of level . This visualisation is then drawn and updated by

ProB during simulation.

Other ProZ Visualisations

ProZ can also be used to display the specification as a state graph, and can do this in a few

different ways, including visualisations of the state, operations, and invariants.

The figures 5.7 and 5.8 demonstrate another way ProZ can display states of the speci-

fication. The states shown are the same as figures 5.6 and 5.2. These visualisations show

values of sets such as 5, j 5, and NAME2 as coloured squares in a graph. These nodes are

then connected based on the value of the observation in the state being visualised. So, if

the current level of j 5 is 3 or DATE2 is the birthday of NAME2 according to birthdayMap

then these links are created and appropriately labelled. However, not all observations can be

broken down into pairs of values. For example, global maximum = 5. In this case our visu-

54

Figure 5.9: Graph of Explored States in Birthday Book

alisation links the 5 node with “ROOT -NODE”. This node is included in the visualisation

when the visualisation requires a valueless node to connect to.

We will mostly be looking at the state diagram visualisation of the currently explored

state space. This state diagram is connected to the simulation, and shows the states that

have been explored, the current state, and unexplored states that have been seen as possible

afterstates but have not yet been visited. In Figure 5.9 we show the graph that ProZ can

generate after adding two names to the birthday book.

5.6 Conclusion

Visualisations are a useful validation tool. They are helpful for many types of users and

are particularly helpful for users that would have difficulty understanding specifications

otherwise. We can visualise the same specification in many different ways. This allows us

to approach problems from multiple angles and can reveal hidden information.

In his thesis A.J. Pretorius concludes:

It was shown that visualization can assist in understanding the complex system

behavior represented by state transition graphs. On the one hand, by supporting

explorative visual analysis, it was shown that users are enabled to gain a better

intuitive understanding of their data. On the other hand, by supporting focused

analysis, visualizations of transition graphs enable users to investigate particular

features and answer specific questions about their data. Moreover, communi-

cation between users themselves and between users and other stakeholders was

substantially enhanced by giving visual form to inherently abstract data. [92]

(p.133)

We are focusing on specification visualisations and this allows us to narrow the scope of

55

what defines a visualisation and what its purpose can be. We further narrow the scope by

only focusing on visualisation soundness while ignoring features like aesthetics and usability.

There exists a fundamental gap between the informal and the formal. We discussed two

ways to help bridge this gap while formalising visualisations.

Finally, we introduced the ProZ tool and displayed some of the specification visualisations

it can create. These examples helped highlight some of the difficulties of creating sound

visualisations.

56

Chapter 6

State Diagrams

This chapter covers the first type of visualisation we will be investigating in this thesis:

state diagrams. We have chosen state diagrams as the main visualisation type as they are a

commonly used visualisation method for state and operation-based designs. Z specifications

are typically written with state and operation schemas, so state diagrams are an appropriate

type of visualisation.

There are many variations of state diagrams: they can use different graphical notations.

For example, labels on states and transitions can have different meanings and appearances.

Because we are visualising the system in different ways, we will be looking at several different

types of state diagram. We will then present different formalisations of these state diagrams

that we can later use to prove that the visualisations are sound.

The classic form of a state diagram is a directed graph with states, transitions, input

symbols, and an initial state. This has been used to visualise finite-state machines. A state

diagram has the elements (Q ,Σ,Z , δ, q0):

• Q is a finite set of states, normally drawn as circles labelled with symbols or words.

• Σ is a finite set of input symbols.

• Z is a finite set of output symbols.

• δ is a finite set of transitions, normally drawn as arrows connecting the beforestate to

the afterstate, and labelled with an input and output symbol.

• q0 is the start state of the state diagram, and will be drawn as either an arrow with

no origin pointing to the state, or a state drawn with two circles.

In the classic form, the sets are finite, and each transition is labelled with a single input.

However, we are using the state diagrams to visualise Z specifications. In Z, sets can be

infinite in size, and the operations can accept multiple input observations and have output

observations. Additionally, the Init schema can be nondeterministic and also have input

57

∅Init ∅

Add

Remove

Edit

Add

Remove

Figure 6.1: Empty or not empty

observations, so the state diagram can have multiple initial states. This means that the

classical state diagram definition will only be suitable for the simplest Z visualisations.

Because of this we present our own variations of state diagrams. We make minor changes

to the state diagram definition that allows us to create a greater variety of visualisations.

This includes state diagrams with no initial state, labels with symbols that match the

specification observations, graphical syntactic sugar, and more. Many variations of state

diagrams exist and we could choose to use existing semantics instead of creating our own.

However, the type of state diagram chosen is not important. We choose to include a larger

variety of handmade state diagrams rather than a few particular types.

The examples that are presented in this section have been chosen as representatives

of their subtype of state diagram visualisation. The discussion of what is actually being

visualised, and whether this choice of content or level of abstraction is useful to a potential

user, is not relevant here. Typically, we assume that each of these visualisations could have

been created to communicate some or all of the specification behaviour to a potential user.

The first state diagram we look at is a visualisation of the Birthday Book. It has two

states, empty and not empty, and shows that when we add a name to our empty birthday

book it is no longer empty. Then, we can add more names, edit names and remove names,

and removing a name may result in the book being empty again.

Figure 6.1 is a simple visualisation that shows the three operations being used. The

input of the operations is not shown, so we assume that the choice of input does not change

the behaviour of the state diagram, since whichever name we add to the book when it is

empty will result in it becoming not empty.

Q = {∅,∅}

Σ = {Add ,Edit ,Remove}

Z = {}

δ = {(∅,Add) 7→∅, (∅,Edit) 7→∅, (∅,Add) 7→∅, (∅,Remove) 7→∅, (∅,Remove) 7→∅}

q0 = ∅

This is also an example of an unsound visualisation. The reasons why are discussed in

appendix B, however, a closer look reveals that after adding two names to the birthday

book, removing one can cause the book to become empty.

58

6.1 State diagrams with no current state

The following example focuses on state diagrams that do not have a ‘current’ state. If

we consider a deterministic finite-state machine, then the system is always in exactly one

state at any given time, and this current state may change when a transition occurs. If

we instead consider a trace of operations, then as we execute this trace the current state

changes. However, Z specifications typically cannot be executed, and the definition of Z we

provided in chapter 3 did not include a definition of a ‘current’ state that would change as

the specification is used. Instead, an operation simply specifies possible afterstates for all

possible beforestates where the precondition is true.

The following specification is provided to highlight the point that state diagrams do not

need to always be in exactly one state at a given time, and additionally, that states do not

need to be reachable to have specified behaviour. The operation schema NOperation is total,

and so the afterstate is specified for all possible beforestates.

NState =̂ [n : N]

NOperation

∆NState

n < 2⇒ n ′ = 0

n ≥ 2⇒ n ′ ≥ 2

This is also shown in Figure 6.2. This example is unusual for a state diagram because in

the classic form of a state diagram, a transition has a beforestate, input, and an afterstate.

The next state of the diagram depends on the input symbols on the outgoing transitions of

the current state.

This visualisation does not have a current state. However, it can still be used to visualise

the before and afterstates of NOperation. The value of n is visualised with labels on the

states. n = 0 satisfies the condition for both of the top states, and this visualisation shows

that when n < 2 the afterstate will be n = 0. Additionally, the state space is disjoint, as

states are unreachable from other states. When state diagrams are used to visualise state

machines the state space would not be disjoint as if a state is unreachable in the state

machine as it would not be drawn in the state diagram. However, we choose to visualise the

behaviour of the specification even in “unreachable” states.

A definition for this type of state diagram needs to include the propositions on the labels

and the observations in the state space being visualised, in this example, n. This state

diagram can be defined using the triple (Q ,S , δ), where:

• Q is a set of states, drawn as circles and labelled with a proposition.

59

n < 2 n = 0

n >= 2

Figure 6.2: Visualisation of NOperation

j 3 7→ x0

j 3 7→ x0

j 5 7→ 5

j 3 7→ x0

j 5 7→ 0

Fill Jar .j ? 7→ j 5

Empty Jar .j ? 7→ j 5

j 5 7→ x1

j 3 7→ 3

j 5 7→ x1

j 3 7→ 0

j 5 7→ x1

Fill Jar .j ? 7→ j 3

Empty Jar .j ? 7→ j 3

j 3 7→ 0

j 5 7→ 0
Init

Figure 6.3: State Diagram of Jars

• S is a set of observations.

• δ is a set of transitions, drawn as arrows connecting the beforestate to the afterstate.

Because there is only one operation being visualised, and there is no Init schema, many of

the elements of the state diagram definition have been removed. For the state diagram in

Figure 6.2, there is one observation, n, and three states; {(n < 2), (n = 0), (n ≥ 2)}. There

are two transitions in δ; δ(n < 2) = (n = 0) and δ(n ≥ 2) = (n ≥ 2). This is the full

definition of this visualisation.

Next, Figure 6.3 shows how the Empty Jar and Fill Jar operations of the jars specifi-

cation work. The fill and empty jar operations change the current amount of liquid of j 3 or

j 5 to the most it can hold or zero, and do not affect the amount of liquid in the other jar.

Like the previous example, this state diagram is not required to have exactly one current

state at all times.

There is a lot of information in the labels of this visualisation. First, we have labels

on the states themselves, which refer to the observations j 3 and j 5. Additionally, we have

values x0 and x1, which are used to make sure that the jar not being filled does not change.

60

If the amount in the jar before using the operation was x0, then it must be x0 afterwards.

Finally, the transitions are also labelled. Here, we give the name of the operation, the input

observation name and its value.

Rather than the propositions, as in the previous example, we are using bindings as labels

on the states. When we want to visualise an operation being used, we do not trace through

the state diagram from the initial state until we have reached what we need. Instead, we

look for the operation we are interested in, and we can quickly see how the state will change

based on the beforestate of the relevant transition(s). For example, we want to know how

the Fill Jar operation works. There are two Fill Jar transitions, and we see that if the

input observation j ? is j 5, then the value of j 5 becomes 5 and the value of j 3 does not

change. We can see similar behaviour when we fill j 3.

This type of state diagram has a different definition that uses bindings. We use the tuple

(Q ,Σ, δ, q0), however the elements of the tuple have different meanings:

• Q is a set of states, where each state is labelled with a binding.

• Σ is a set of operations, which can have input and output observations.

• δ is a set of bindings, normally drawn as arrows connecting the beforestate to the

afterstate, and labelled with the operation being used and the value of the input and

output observations.

• q0 is the initial state.

q0 is the start state of the state diagram, and is drawn as an arrow with no origin pointing

to the state. For example, q0 can be written as the binding 〈j 3 7→ 0, j 5 7→ 0〉.

The bindings in δ are the transitions. The values of the observations in the bindings

are found in the before and afterstates and the transition, as well as the transition label

which determines the input and output observation values. For example, a simple transition

binding could be written as 〈j 3 7→ 0, j 5 7→ 0, j ? 7→ j 3, j 3′ 7→ 3, j 5′ 7→ 0〉.

However, the state diagram in Figure 6.3 still does not fit this definition, because of the

states labelled j 3 7→ x0 and j 5 7→ x1. x0 and x1 have not been included in this definition.

Additionally, these two states do not include both observations, so the schema types of

the transitions are not well-formed. To fix this, we observe that each transition represents

multiple bindings. For example, 〈j 3 7→ 0, j 5 7→ 0, j ? 7→ j 3, j 3′ 7→ 3, j 5′ 7→ 0〉 and 〈j 3 7→ 1, j 5 7→

1, j ? 7→ j 3, j 3′ 7→ 3, j 5′ 7→ 1〉 are part of the same transition. For the full formalisation of this

visualisation, and for the proof that it is sound, see appendix C.

This is a useful way to visualise Z specifications as it is more abstract than a typical state

diagram that has a current state. Additionally, the labels on the states of the state diagram

are a powerful tool that is used here to both identify the beforestate values of observations,

61

bdays 7→ b ∪ {(f , d)}

bdays 7→ b

f 6∈ dom b

bdays 7→ b ∪ {(f ,newD)}bdays 7→ {}Init

RemoveFriend .friend? 7→ f

AddFriend .friend? 7→ f , date? 7→ d

EditFriend .friend? 7→ f , date? 7→ newD

Figure 6.4: State diagram of birthday book

and use these values to calculate the afterstate values. However, this type of state diagram

does not behave intuitively like a user may expect if they are accustomed to state machines.

A similar type of visualisation is shown in Figure 6.4 to visualise the birthday book

example. Unlike the previous example, this state diagram includes a box that adds a con-

straint to f . This state diagram includes particularly complex labels which combine the

propositions and bindings we saw in the previous two examples. This complexity allows us

to visualise the entire birthday book specification with only four states and three transitions.

These transitions show that if our book contains friend f with birthday d , we can edit the

date to a new date newD , or remove friend f from the book. These operations do not affect

the other names and dates in the book, b. Finally, we can add a given name to the book,

provided that the friend is not already recorded in the book.

Each transition represents multiple bindings. There is no limit to the number of friends

that can be added to the book, so b has infinitely many possible values. Let us look at two

bindings in the RemoveFriend transition and match the observation values with the binding

propositions in the diagram.

〈bdays 7→ {(name1, date1), (name2, date2)}, friend? 7→ name1, bdays ′ 7→ {(name2, date2)}〉

〈bdays 7→ {(name1, date1), (name2, date2)}, friend? 7→ name2, bdays ′ 7→ {(name1, date1)}〉

In the first binding, b = {(name2, date2)}, f = name1, and d = date1. The additional

requirement that f 6∈ dom b is satisfied. In the second binding, b = {(name1, date1)}, f =

name2, and d = date2.

In appendix D we look at bindings of the other operations: EditFriend and AddFriend .

We find that the bindings of the visualisation transitions match the specification operations

and therefore this visualisation is sound.

62

Figure 6.5: Birthday Book States where set size is two

6.1.1 ProZ State Space

Not all visualisations need to be handmade. Drawing custom visualisations lets us be more

informal, explore particular parts of the specification, choose the layout, and other aesthetics

that can make a visualisation more usable. However, automatically generated visualisations

have their own strengths, particularly speed of generation and accuracy of information. Both

styles are useful and each serves a different objective. We discussed the Z visualisation tool

ProZ in section 5.4, and show examples of the state diagrams it can be used to generate

below.

Visualising the entire state space, where each state represents unique values for the

observations, is a difficult problem. Even simple specifications can have an infinite number

of states, and even finite state spaces may still be far too large to draw or read comfortably.

The visualisations in Figure 6.5 and Figure 6.6 have been generated using ProZ. The first

has restricted the size of all sets and types to be two, while the second has been restricted to

three. In Figure 6.6 the floating window shows the full state space, while the main window

shows a zoomed-in portion. Because of the restrictions, only two or three names may be

added to the birthday book, but this is still a large state space to explore. By comparing

these generated visualisations with the previous visualisation we can see that the labels on

the states include different information. The birthday book has two observations in the

state schema, and both are faithfully included in the generated visualisation. However, the

value of known is redundant information for the user, and was not included in the custom

visualisation.

We do not need to generate the entire state space using ProZ (and in fact cannot due

to limitations of memory). The visualisation in Figure 6.7 shows a particular state and the

operations that can be used from this state. Note that because the size of the sets is still two

for this example we have two outgoing operation transitions for AddFriend and EditFriend .

63

Figure 6.6: Birthday Book States where set size is three

Figure 6.7: Visualisation of birthday book state

This sort of visualisation gives us an example of how each operation changes the state of the

specification, given a beforestate and input values. Some states are more useful to visualise

than others, for example the initial state, boundary states, and states where the precondition

of operations are not satisfied. This lets us easily validate particular specification states.

Additionally, if unexpected transitions are present or expected transitions are missing, it

can also reveal errors in the specification. For example, in Figure 6.7 there is a selfloop on

the state being visualised. Depending on the intentions of the client, it may be an error in

the specification to be able to edit the date without changing it.

6.1.2 More State Diagram Types

The state diagram shown in Figure 6.8 is a visualisation of the stopwatch specification.

The most notable property of this state diagram is the syntactic sugar used to reduce the

64

Figure 6.8: Visualisation of stopwatch

¬ AInitSD +A

Add A

Remove A

Edit A

Figure 6.9: Add, Edit, and Remove A

number of states and transitions. Ellipses (. . .) are used to show a pattern continuing until

a particular point, while the transition labelled Reset has no start state. This means that

Reset can be used from any state, and will return the state diagram to the initial state.

Another difference, compared to the previous visualisations we have presented so far, is that

the states have no labels. The top row are states where the stopwatch is paused, and the

bottom row has the stopwatch running. The time increases from left to right until we reach

the maximum time allowed. Although this information could have been included as labels on

the states, it has been excluded in this example as it is not needed for a user to understand

the visualisation.

The state diagram in Figure 6.9 is similar to the earlier state diagram in Figure 6.1.

Both are visualisations of the birthday book, have only two states, and the transitions are

not labelled with all the input values we expect from the operations in the specification.

This syntactic sugar allows us to simplify the visualisation when the value of the excluded

observation is not relevant. In this example we are only visualising the operations that add,

edit or remove person A from the book. The first state represents all books that do not

contain A, while the second is all books that do contain A. The labels on the states here are

just names to identify the states, and do not define the value of the bday observation, as we

saw in Figure 6.4. Although Add and Edit have two input observations, only one has been

provided in the label. So while name? = A, date? is unconstrained and can have any value

of type DATE . For example, when in state ¬ A we can add A with DATE1, DATE2, or

65

name? 6∈ knownInitSD name? ∈ known

Add

Remove

Edit

Figure 6.10: Precondition labels on states

any other, and the resulting state will be state +A, because the name A is now in the book.

This visualisation does not have transitions that show what happens if we try to add a

different name to the book. If we assume that this state diagram is a sound and accurate

visualisation of the birthday book specification then we should infer that an error has been

found in the specification because a different name cannot be added to the birthday book.

However, this diagram is only focused on visualising A and other names are outside its scope.

Our main discussion about this type of restricted visualisation can be found in chapter 7.

In the birthday book example, each of the operations have the precondition that name?

is in known or not in known. The state diagram in Figure 6.10 visualises this.

The observation names from the specification are included in the state labels. Rather

than showing the values of observations or an informal name, these labels give the condition

that allows the operation to be used, as well as demonstrating that the value of known has

changed to satisfy the new condition of the afterstate.

In appendix E we use operation refinement to check if this visualisation is sound. Al-

though this visualisation accurately shows the preconditions, the postconditions it shows

are weaker than the specification operations. For example, Remove can remove every name

in the birthday book at once. Therefore, this is not a sound visualisation.

To help reduce the size of the state space, we can merge similar states together. This

can be seen in many of the previous examples. The state diagram in Figure 6.11 is another

birthday book visualisation, where the entire state space has been merged into three states.

• StateT: birthday books that contain the pair (“Alan Turing” 7→ “June 23, 1912”)

• StateF: birthday books that contain the name “Alan Turing”, but with some different

date.

• State0: birthday books that do not contain the name “Alan Turing”.

The labels on the transitions in the state diagram are different from previous examples.

The operations are separated out into the cases where the name and date are equal to or

different from “Alan Turing” and “June 23, 1912”, respectively. In the state diagram the

operation names have been given subscript notes to represent the inputs in order to save

space. For example, AddA,T is the add operation with inputs “Alan Turing” and “June 23,

1912”. EditO is the edit operation where the name is not “Alan Turing” and the date is any

66

State0InitSM

StateF

StateT

AddA,F

AddA,T

RemoveA

EditA,T

EditA,F

RemoveA

EditO

AddO

RemoveO

EditO

AddO

RemoveO

EditA,F

EditO

AddO

RemoveO

EditA,T

Figure 6.11: Alan Turing Visualisation

0InitSM 1
Add

Figure 6.12: Small Visualisation

date. RemoveA,F is the remove operation where the name is “Alan Turing” and the date

is not “June 23, 1912” We formalise this visualisation using schema calculus in appendix F

and use data refinement to show that this visualisation is sound.

The generated visualisations only showed part of the state space due to choice or restric-

tions on memory. In the Birthday Book visualisation shown in Figure 6.12 we make the

same choice, showing that only Add can be used from the initial state. This may be all the

information we want to validate, and so a small visualisation is all that is needed.

This introduces the idea of the Unexplored state, a state with no outgoing transitions.

State diagrams that include unexplored states only visualise part of the specification, leaving

the rest unexplored.

The state diagram in Figure 6.13 includes an unexplored state and has used colour to

indicate the transitions that have been used and the states that have been explored. This

lets us examine part of the birthday book specification, while being clear that it does not

visualise the entire specification.

We have provided examples of several different types of state diagram visualisations.

This covers only some of the many possible types, as the broad category of state diagram vi-

sualisations includes an enormous variety of different aesthetics and purposes. Furthermore,

there is no universal formal semantics for these state diagram visualisations and in Section

67

∅Init A,T A,F

Unexplored

Add(A,T)

Add(A,F)

Edit(A,F)

Remove(A)

Remove(A)

Add(A,Other)

AddOther

Edit(A,Other)

AddOther

Edit(A,Other)

AddOther

Edit(A,F)

Edit(A,T)

Figure 6.13: Unexplored Alan Turing Visualisation

5.3 we discussed how these visualisations can be interpreted differently by different people.

Nevertheless, our hypothesis is that we can characterise the soundness of each of these types

of visualisation, and more, by using refinement. To help narrow the scope, we will examine

these examples looking for differences and similarities that we can use to present a consistent

definition to be used in the rest of this thesis.

6.2 State Diagram Visualisation Definitions

Because we are only investigating the soundness of visualisations our definition of the vi-

sualisation does not need to include any aesthetic features such as colour, layout, or how

exactly the labels are written. We have seen that the transitions on the labels have used

many different characters including brackets, commas, 7→ and =. However, for all examples,

the transitions show operations that can be used. Although the same meaning is implied,

the labels on transitions varied in length and formality. Fill Jar .j ? 7→ j 5 provides the name

of the operation being used with the input observation included as a mapping. To reduce

the size of the labels, labels like Add(Alan,T) used the context to imply that Alan was the

value of name?, and T was the value of date?. When the exact input did not change the

transition, the label could be simplified further, to Add or AddO . The choice of label style

should not change the underlying meaning of the transition. To meet these requirements,

our definition will need to include two main properties: the operation being used, and the

input observation values for that operation.

The states however have more substantial differences. For some examples the label simply

helps identify the state, such as ∅ or ∅. Other visualisations use the label as a conditional

statement about the state observations, such as j 3 7→ x0. Some examples do not include

state labels while others use colour to identify the special unexplored state.

Many of the state diagrams we show operate over the same state space as the specifica-

tion. Others, such as Figure 6.3 operate over a different state space. State diagrams with

68

0Init 1 2
Inc

Jump 1

Jump 2
Jump 0

Inc

Figure 6.14: State Diagram of IncJump

unexplored states only visualise part of the state space of the specification. Diagrams that

“merge” multiple specification states into a single visualisation state may be considered to

have a different state space. However, Figure 6.10 only has two states, but references the

known observation from the specification state schema. This shows that although the states

have been merged, the underlying state space is the same as the specification and should

therefore not be considered different.

Our goal is to find refinement relations between the visualisation and the specification.

There are many different types of refinement and so we need to decide which refinement

calculus we use. Rather than create a new custom refinement calculus we choose to use

existing Z refinement as we are visualising Z specifications. By defining the visualisations

in Z we can use Z refinement.

In an earlier section we introduced semantics for state diagrams based on the idea that

states and transitions can be represented as bindings. To be well-formed we require that

the states in the visualisation are not merged.

Our formalisation of the state diagram uses bindings, where each transition is represented

as a binding and each operation in the state diagram is a set of bindings. Each transition

has a beforestate, an afterstate and may have input and output values. A binding is built

using these values. The bindings are collected into operations that can then be compared

with the specification using refinement.

We present the state diagram (Q ,Σ, δ, q0) in Figure 6.14 as bindings. This is a visuali-

sation of the simple IncJump specification:

State =̂ [n : N]

Init =̂ [State ′ | n ′ = 0]

Inc =̂ [∆State | n ′ = n + 1]

Jump =̂ [∆State; n? : N | n ′ = n?]

Firstly, the labels on the states refer to the value of n. This lets us easily build bindings

matching each of the states.

Q = {〈n 7→ 0〉, 〈n 7→ 1〉, 〈n 7→ 2〉}

There are two operations in the IncJump specification, so Σ = {Inc, Jump}. We use the

binding concatenation operation to build the transition bindings. For each transition we

69

Paused Playing

time ′ = time time ′ = time + 1

Play

Pause

Figure 6.15: These diagram states each represent several specification states

concatenate the beforestate and afterstate with the input and output observation values

from the transition label. So a transition can be written as sbsFs ′asF?AOpF!AOp. sbs

and sas are bindings in Q . ?AOp and !AOp are bindings with schema types matching

the operation shown in the transition label, restricted to input and output observations

respectively. The value of these observations are also found in the transition label. For

example, the transition (0, 2, Jump 2) = 〈n 7→ 0〉F〈n 7→ 2〉′F〈j ? 7→ 2〉. This lets us build δ,

which matches the operations with the relevant transition bindings.

δ = {(Inc, {〈n 7→ 0,n ′ 7→ 1〉, 〈n 7→ 1,n ′ 7→ 2〉}),

(Jump, {〈n 7→ 0, j ? 7→ 0,n ′ 7→ 0〉, 〈n 7→ 0, j ? 7→ 1,n ′ 7→ 1〉, 〈n 7→ 0, j ? 7→ 2,n ′ 7→ 2〉})}

q0 = 〈n 7→ 0〉

However, this formalisation will not work for some of the example visualisations we

intended to include. For example, when diagram states are merged and the diagram

state represents several states from the specification state space. Figure 6.15 is a re-

stricted visualisation of the stopwatch specification that shows the Tick and Pause/Play

operations. [time : N, playing : BOOL] is the specification state space but the visuali-

sation does not have unique states for each time value. We cannot represent the state

as a binding in the same way we did previously, as bindings map observations to single

values. Instead, we recognise that a state like Paused is satisfied by multiple bindings:

〈playing 7→ false, time 7→ 0〉, 〈playing 7→ false, time 7→ 1〉, 〈playing 7→ false, time 7→ 2〉 and so

on. So, we can represent the states as a collection of bindings, rather than a single binding.

Schemas are sets of bindings and so can be used to represent the states and transitions.

We can write these states as schemas rather than an infinitely long lists of bindings.

Paused

time : N

playing : BOOL

playing = false

70

Playing

time : N

playing : BOOL

playing = true

Transition and operation schemas can then be built using schema calculus. This visual-

isation has inconsistent labels. Two have names while two have mathematical statements.

Our first example creates the Pause schema, named after the transition label in the visual-

isation. This transition begins in the Playing state and ends in the Paused state.

Pause == Playing ∧ Paused ′

Play == Paused ∧ Playing ′

These transitions each show part of the Pause/Play operation from the specification. We can

combine these transition schema to create a schema that matches the Pause/Play operation.

Pause/Play == Pause ∨ Play

Next, we create schemas for the Tick transitions. These transitions do not have names in

the visualisation so their schemas will be given generic names. The mathematical statements

in the labels are first contained in schemas and then combined with the state schemas.

TickTransition1 == Playing ∧ Playing ′ ∧ [time, time ′ : N | time ′ = time + 1]

TickTransition2 == Paused ∧ Paused ′ ∧ [time, time ′ : N | time ′ = time]

These transition schemas can again be combined to create an operation schema that matches

the specification.

TickOperation == TickTransition1 ∨ TickTransition2

In Figure 6.15 the state schemas were named after the label of the state and contained

observations from the specification state space. In this section we introduce a simpler for-

malisation that can be used to formalise a greater variety of state diagrams. We introduce

a simple state schema with only one observation, s. s has type STATES , where STATES

is the set of states in the state diagram.

[STATES]

StateDiagramStates

s : STATES

Now, we can then define Paused in Figure 6.15 as follows, the observation s has the value

Paused .

71

∅Init ∅

Add

Remove

Edit

Add

Remove

Figure 6.1: The book is empty in State1, the book is not empty in State2 (repeated from

page 58)

Paused

StateDiagramStates

s = Paused

By introducing StateDiagramStates and [STATES] we no longer need to create individual

schemas for each state that include the specification observations. Despite being greatly

simplified, these state schemas can still be used to build the operation schema. Each visual-

isation state can now be represented by a schema with the same form as Paused . Although

the schema names are changed to match the state label these schemas are removed for

brevity as their content is basically unchanged from the above example.

We use this approach to create state and operation schemas for the visualisation in Figure

6.1. We presented this state diagram earlier in the chapter, and used it to present the classic

form of a state diagram. We use it here to help explain the binding and schema forms of a

state diagram. First, we try to write this visualisation using bindings. For example, states

can be written as 〈book 7→∅〉 or 〈book 7→ {Alan Turing 7→ 19th July}〉, while transitions are

written as 〈book 7→∅, book ′ 7→ {Alan Turing 7→ 19th July}〉.

The initial state is written like 〈book ′ 7→∅〉.

In this example, State2 represents multiple values. This is every value where the birthday

book set is not empty.

〈book 7→ ∅〉 is not a valid binding because ∅ is not of the correct type. This means that

we cannot use bindings to formalise this state diagram. We could change the formalisation

such that the state is represented by multiple bindings, however, this would require us to

write a large, or possibly infinite, number of bindings. So, it is easier to formalise the state

diagram using the schema semantics.

72

¬ AInit + A

Add A

Remove A

Edit A

Figure 6.9: Add, Edit, Remove A (repeated from page 65)

AddTransition1 == State1 ∧ State2′

AddTransition2 == State2 ∧ State2′

AddOperation == AddTransition1 ∨ AddTransition2

RemoveTransition1 == State2 ∧ State2′

RemoveTransition2 == State2 ∧ State1′

RemoveOperation == RemoveTransition1 ∨ RemoveTransition2

EditOperation == State2 ∧ State2′

Init == State1′

These operation schemas can be simplified even further by inspection. For example,

because the Add operation will always result in the system being in State2 (because the

book is not empty when a name is added), it can be simplified to AddOperation == State2′.

Figure 6.9 also shows a previous visualisation, where the transitions include an input

value. We use this example to show how input observations can be included in the schema

form of the state diagram.

There are multiple ways to include the input observation values. First, we can add

the input observation values by creating a schema that contains the information and using

schema conjunction.

Add == State1 ∧ State2′ ∧ [name? : NAME | name? = Alan]

Alternatively, we can use schema inclusion rather than schema conjunction to build the

Add schema using the state diagram state schema:

Add

State1

State2′

name? : NAME

name? = Alan

If we include the state schema we do not need to write schemas for individual states.

However, the result may be slightly less readable.

73

Add

∆StateDiagramStates

name? : NAME

s = state1

s ′ = state2

name? = Alan

The above three Add schemas are equivalent so the choice of which to use can be based

on preference.

It is useful to build the visualisation operation schemas such that the input and output

observations match the specification operations. In this example, AddFriend has two input

observations, name? and date?. So although this visualisation does not show date?, we can

still include it in the schema. This makes it easier to compare the Add operation with the

original AddFriend operation, as they would share the same signature.

Add == State1 ∧ State2′ ∧ [name? : NAME , date? : DATE | name? = Alan]

6.3 Summary

In this chapter we have introduced state diagrams by showing examples of different possible

types. From infinite state diagrams that would visualise the entire state space of an infinite

specification if we could only draw it completely, to visualisations with merged states and

unexplored states. Each of these visualisations could be used to help validate our specifi-

cations. Some focus on particular parts of the specification while others present the whole

specification in new ways.

As we progressed through the chapter we formalised these state diagrams. We showed

how the state diagrams could be formalised using Z bindings, Z schemas, and schema cal-

culus. Refinement relations can then be found using the specification and the formalisation

of the visualisation. This allows us to characterise the soundness of the formalisation of

visualisations. When the formalisation is obvious or the meaning of the visualisation is

defined by its formalisation, then we directly say that we characterise the soundness of the

visualisation.

74

Chapter 7

Restrictions

When we want to validate some property of a system we are typically not required to

visualise the entire system. Often we will only need to see a small set of states or look at

one of the operations in detail. Despite this, if we explore too little of the system, then

we may not observe all relevant behaviour. For example, if we are visualising a particular

state, we should see all outgoing transitions. Additionally, we should not see any outgoing

transitions that are not possible in the specification.

In the previous sections we looked at state diagrams that visualised the entire specifica-

tion. In this section, we look at state diagrams that only visualise part of the specification.

There are many reasons for not visualising the entire specification. Firstly, as we have seen

when visualising the entire state space of the specification, complete visualisations can be-

come too large to be usable. Z specifications allow for infinitely large state spaces which

can make the full state space impossible to explore. Secondly, if we are generating the vi-

sualisation using some program, there are technical limitations that mean that we cannot

create visualisations of the entire state space. Finally, focusing on visualising part of the

system can improve clarity by removing unnecessary details. In Figure 6.9, a visualisation

of the birthday book, we only visualise the operations on one person, A, leaving out the

uncountably many other people that the system could include.

Another technique we investigate is using ‘unexplored’ or ‘unexamined’ states in our

visualisations, such as in Figure 6.13. This is a direct representation of something found

in animated visualisations and simulations. When simulating a specification the user ex-

plores the system one state at a time until the user has validated or invalidated the system.

The remaining states are left unexplored. In our state diagram visualisations we include a

representation of these unexplored states.

75

¬ AInitSM +A

Add A

Remove A

Edit A

Figure 6.9: Visualising A in the birthday book (repeated from page 65)

7.1 Proving Soundness with Standard Methods

We begin by demonstrating that our standard methods are not sufficient to prove that a

visualisation of part of the system is sound. If a state where the operation is enabled in

the specification is not visualised then the operation will have a stronger precondition in

visualisation because it is enabled in fewer states. When looking for a refinement relation

we check that the visualisation operations do not have stronger preconditions than the

respective specification operations. This means that, by our current definition of soundness,

visualisations that do not visualise all states with enabled operations are not sound.

This is correct as anyone using such a visualisation while assuming that it visualised

the entire system would be misled. For example, if Figure 6.9 was used to validate that

birthday book specification, the user could assume that the birthday book can only contain

one name. Any visualisation that does not visualise the entire system should not meet our

current definition of soundness.

However, such visualisations are still useful. Indeed, they are often more useful than

large visualisations that show the entire system. Additionally, in practice, users are unlikely

to be misled if it is clear what is being visualised. So, in this chapter, we investigate how

to prove if a visualisation of part of the system is sound by providing a different approach

based on our standard methods.

7.2 Proving Soundness with Restrictions

Partial visualisations only visualise part of the specification. All properties and behaviour

the specification has outside of what is being visualised are not considered relevant. Previ-

ously, in chapter 5, we required that for a visualisation to be sound all operations that could

be used in a specification state must also be shown in the visualisation state. However, we

should only check if the visualisation is an accurate representation of the part of the spec-

ification that we are choosing to visualise. For example, if we are creating a visualisation

to show what operations are possible from the initial state of a specification then showing

how the operations behave from other states in the specification is unnecessary and may be

excluded without misleading the user.

We can create a restriction of the specification to match the partial visualisation. If we

76

are visualising a set of states then we restrict the specification to those states. If we are

visualising how the system responds to certain inputs then we restrict the system to those

inputs. Similarly, we can restrict the operations that can be used or apply any combination

of these restrictions. This lets us create a restricted specification of exactly what we are

verifying or demonstrating in the partial visualisation.

7.3 A New Definition of Soundness

To allow for partial visualisations we need to update our definition of soundness because the

partial visualisations do not visualise all features of the specification. Previously, we used

the Principle of Substitutivity to justify using refinement to characterise soundness. How

do partial visualisations affect this principle? Users test the concrete system by using any

abstract operations from any state and observe the changes in the expected behaviour of the

system. Now instead of seeing a visualisation of the whole system, they can only see part.

So, if a state (or operation, etc.) is not part of the partial visualisation then the user will

not use it in order to try and discover a substitution. The users will now check if there are

changes using the restricted abstract operations. For a partial visualisation to be sound it

still needs to be accurate and not mislead the user. All transitions in the partial visualisation

must still be in the specification. However, we now require that only the operations enabled

in the restricted specification states must also be enabled in the corresponding state of the

visualisation. For example, in the birthday book specification we can add the name B in

the initial state. However, this is outside of our restriction for Figure 6.9 as we are only

visualising the name A. This means that we do not require that the Add transition with

input B is enabled in the initial state of our visualisation.

We look for a refinement relation between the restricted specification and the partial

visualisation. If one is found, then we conclude that the visualisation is sound. This is valid

as we are effectively changing the specification that is being visualised to match what the

user expects. For Figure 6.9 this means changing the birthday book specification to only

input the name A.

7.4 Restrictions

We can restrict various aspects of the specification, from the states we are visualising to the

inputs of the operations. However, these restrictions can all be applied to the specification in

one way: by adding to the constraints of the operations. For example, consider the following

schema that sets the value of a to the value of input i?.

77

0Init 1
i? = 1

Figure 7.2: Setting a to 1

AssignValue

a, a ′ : N

i? : N

a ′ = i?

Trying to visualise the entire state space of this specification would require infinite states

and transitions. Instead, we create a visualisation that only shows the operation being used

with input 1 when a is in the initial state 0. This is shown in Figure 7.2 where we are only

visualising two states and one input.

Next, we apply these restrictions to the specification itself. The restriction we use is

[a : N, i? : N | i? = 1 ∧ a = 0]. We could also include the constraint a ′ = 1. However, we

see below, in the restricted schema AssignValueR, that this is unnecessary.

AssignValueR

a, a ′ : N

i? : N

a = 0

i? = 1

a ′ = i?

In the following section we look for refinement relations between the visualisation and

these two schemas.

7.5 Refinement Comparison

A refinement relation does not exist between the original specification and the visualisation

because the precondition of the operation has been strengthened. However, we show this

by working through the proof as it is useful as an example. We cannot find refinement

relations between other partial visualisations and their unrestricted specifications for the

same reason. We will use simple operation refinement which means we must check for

correctness and applicability.

We begin by showing correctness holds:

∀State; State ′; ?AOp; !AOp • pre AOp ∧ COp ⇒ AOp

78

≡(Substitution)

∀ a, a ′, i? : N • a = 0 ∧ i? = 1 ∧ a ′ = 1⇒ a ′ = i?

≡

∀ a, a ′, i? : N • a = 0 ∧ i? = 1 ∧ a ′ = 1 ∧ a ′ = i?⇒ a ′ = i?

≡ (Q ∧ P ⇒ P)

true

The visualisation satisfies the correctness requirement for AssignValue because the tran-

sition shown in the visualisation is also in the specification. However, the applicability

property does not hold, as per the proof below, as it only visualises one transition and the

precondition has been strengthened.

∀State; ?Aop • pre AOp ⇒ pre COp

≡(Substitution)

∀ a, i? : N • true⇒ a = 0 ∧ i? = 1

⇒ (Universal instantiation a = 1)

∀ i? : N • true⇒ 1 = 0 ∧ i? = 1

≡

true⇒ false

≡

false

This statement is false for all instances where a 6= 0 and i? 6= 1. Therefore the refinement

does not hold and by our original definition this is not a sound visualisation. However,

if we instead look for a refinement relation between the visualisation and the restricted

specification correctness is unchanged:

∀State; State ′; ?AOpR; !AOp • pre AOpR ∧ COp ⇒ AOpR

≡(Substitution)

∀ a, a ′, i? : N • a = 0 ∧ i? = 1 ∧ a ′ = 1⇒ a ′ = i?

≡ (Q ∧ P ⇒ P)

true

79

However, the applicability property is satisfied because the precondition of AssignValueR

is the same as the visualisation:

∀State; ?AOpR • pre AOpR ⇒ pre COp

≡(Substitution)

∀ a, i? : N • a = 0 ∧ i? = 1⇒ a = 0 ∧ i? = 1

≡ (P ⇒ P)

true

Both correctness and applicability properties are satisfied for the restricted specification

and, therefore, the state diagram is a sound partial visualisation.

7.6 Restriction Strengths

Although we have shown that Figure 7.2 is a sound partial visualisation it may still be

misleading. Firstly, the specification has been strongly restricted meaning that very little of

the specification is actually being visualised. Secondly, it is not clear from the visualisation

what the restriction is. Exactly how the visualisation is interpreted depends on the user and

not all users will make the same assumptions concerning what is being visualised.

Like preconditions, our restrictions can be stronger or weaker compared to other restric-

tions. Conceptually, having a stronger restriction means we are visualising a smaller part of

the specification. This allows us to choose exactly what we want to visualise, giving smaller

and more focused visualisations. Having a weaker restriction means that we are visualising

more of the specification, and the weakest restriction, true, will be visualising the entire

specification.

If we use the strongest restriction, false, then any visualisation would be sound, as we

are ignoring the specification entirely. This can be seen as the precondition of AOpR is false

in the applicability and correctness properties. This results in false⇒ P ≡ true:

∀State; ?AOpR • false⇒ pre COp

∀State; State ′; ?AOpR; !AOp • false ∧ COp ⇒ AOpR

Because of this we define the strongest reasonable restriction that could be used. If a

transition is shown in the visualisation it must be in the restricted specification. For each

operation in the specification we add constraints based on the transitions for that operation

in the visualisation. For the state diagram visualisations that we have been investigating

there is a simple method to find these constraints. We start by writing the visualisation in

schema form, as we have done previously. This gives us our restriction. For each operation

80

jar3 7→ 0, jar5 7→ 0Init

jar3 7→ 3, jar5 7→ 0

jar3 7→ 0, jar5 7→ 5

Fill(Jar3)

Fill(Jar5)

Empty(Jar3)

Empty(Jar5)

Figure 7.3: Filling and emptying the jar 1

we combine the visualisation schema with the specification schema. This method produces

a set of restricted operation schemas that we can then use to prove the soundness of the

restricted visualisation.

For example, we find the strongest reasonable restriction for the Fill operation in Figure

7.3. This will restrict the operation to the two Fill transitions in the visualisation. Although

the state labels include mappings we need to write the restriction using the specification

observations. How the states in the visualisation are related to the specification observations

should be clear. If not, then the ambiguous visualisation should be clarified.

Restriction

∆Level

j ? : Jars

level(j 3) = 0 ∧ level(j 5) = 0 ∧ level ′(j 3) = 3 ∧ level ′(j 5) = 0 ∨

level(j 3) = 0 ∧ level(j 5) = 0 ∧ level ′(j 3) = 0 ∧ level ′(j 5) = 5

Simple schema conjunction lets us build the restricted specification schema.

Fill JarR

∆Level

j ? : Jars

level(j 3) = 0 ∧ level(j 5) = 0 ∧ level ′(j 3) = 3 ∧ level ′(j 5) = 0 ∨

level(j 3) = 0 ∧ level(j 5) = 0 ∧ level ′(j 3) = 0 ∧ level ′(j 5) = 5

level(j ?) < max fill(j ?)

level ′ = level ⊕ {j ? 7→max fill(j ?)}

If we use the strongest reasonable restriction and the refinement exists then the visuali-

sation is sound and every transition in the visualisation must also be in the specification.

81

jar3 7→ 0, jar5 7→ 0Init

jar3 7→ 3, jar5 7→ 0

jar3 7→ 0, jar5 7→ 5

jar3 7→ 3, jar5 7→ 5

Fill(Jar3)

Fill(Jar5)

Empty(Jar3)

Empty(Jar5)

Fill(Jar5)

Fill(Jar3)

Empty(Jar5)

Empty(Jar3)

Figure 7.4: Filling and emptying the jar 2

Weakening this restriction means that we are visualising more of the specification. If the

visualisation is no longer sound because we are using a weaker restriction then there must

be a transition in the specification that we are not visualising properly in the visualisation.

However, if the restriction is weaker and the partial visualisation is sound then we are

showing that transitions that could be in the restricted specification do not actually exist.

Demonstrating that operations are not enabled in the specification is useful.

In this set of examples we will be visualising the Init , Fill , and Empty operations of the

Jars specification. The visualisation in Figure 7.3 shows the jars being filled and emptied

back and forth from the initial state where both jars are empty. We can prove that the

visualisation is sound using the strongest reasonable transition restriction which means that

these four transitions all exist in the specification. However, if we try to use a weaker

restriction such as restricting the specification to the states shown in the visualisation then

the visualisation is not sound. This means that there are transitions outgoing from these

states that we are not visualising. In appendix I we apply these two restrictions and show

how this changes the result of the refinement properties.

The next visualisation in Figure 7.4 adds the extra state where both jars are full. Again,

this visualisation is sound with the strongest reasonable transition restriction as all the

transitions here exist in the specification. If we weaken this restriction to the strongest

state restriction, which means that we are visualising the states with only empty or full jars,

then this is still a sound visualisation. So, these are the only Add and Remove transitions

outgoing from these four states. If we tried to weaken the restriction any further to include

other states then this visualisation would no longer be sound simply because it does not

show the transitions from other states.

The visualisation does not explicitly specify what is being visualised. If the user believes

that the partial visualisation was actually a visualisation of the entire system (i.e. where

the restriction is true), or a visualisation of a different part of the system, then their

82

∅Init A,T A,F

Unexplored

Add(A,T)

Add(A,F)

Edit(A,F)

Remove(A)

Remove(A)

Add(A,Other)

AddOther

Edit(A,Other)

AddOther

Edit(A,Other)

AddOther

Edit(A,F)

Edit(A,T)

Figure 6.13: Unexplored Alan Turing Visualisation (repeated from page 68)

interpretation of the visualisation would not be sound. However, when the user uses the

refinement method to determine if the visualisation is sound they choose the restriction they

believe is correct and so are actually testing if their interpretation is sound.

If what the state diagram is visualising has not been described, either informally or

formally, then it is useful to have a default interpretation. We use the strongest state

restriction which restricts the specification to the states that have outgoing transitions in

the visualisation. This means that if our visualisation is sound we know that we have

completely examined every state in the visualisation. If a transition exists then it must

also be possible in the specification and if it does not exist then it is not enabled in the

specification. The following section focuses on state diagrams that use the state restriction

as default.

7.7 Examined and Unexamined States

A simple way to build smaller visualisations is to only examine certain states in the specifi-

cation. These states can be chosen in various ways. For example, we can choose states that

share a similar property. Other states from the specification are left unexamined. This is

similar to the approach taken by the ProZ state diagram representation of the simulation.

This simulation starts by initialising the system and building the state diagram by exploring

states one state at a time. Only states with incoming transitions are displayed and states

only have outgoing transitions after they have been explored. Each state displays the values

of the observations in the state. When the user has decided they have seen enough the

simulation will have generated a state diagram that visualises part of the specification.

This is not the only way to visualise part of a specification. There are many details that

can be changed depending on the situation in order to get a more appropriate visualisation.

For example, we don’t need to start in the initial state.

The example in Figure 6.13 is a visualisation of a name being added to the birthday

83

∅Init A,T A,F
Add(A,T)

Add(A,F)

Edit(A,F)

Remove(A)

Remove(A)
Edit(A,F)

Edit(A,T)

Figure 7.6: Add, Edit, Remove without Unexplored

book, then edited, then removed. This visualisation explores three states which are: when

the book is empty, when it includes only name A with date T , and when it includes only

name A with date F . Additionally, the state diagram includes an Unexplored state which

includes states that were not explored.

When we examine states in the specification we visualise all outgoing transitions from

those states. This shows the possible behaviours of the operations in the specification in the

examined states. Not all outgoing transitions lead to other explored states however our state

diagram requires end states for all transitions. We introduce the Unexplored or Unexamined

states that are used as end states for these transitions. It is drawn in red to show that it is

different from the examined states as we do not visualise the behaviour of the system while

it is in the Unexplored state.

Because including the operations in full takes up a lot of space on the page we have sim-

plified them slightly here without losing any information. The most notable simplifications

are those that include the word Other , which means either inputting a date that is not T

or F , or adding a name which is not A. We show that this is a sound partial visualisation

in appendix G.

When the Unexplored state is removed from this visualisation it is no longer a sound

visualisation of the three remaining states as we can see in Figure 7.6 and appendix J.

Because we have removed the Unexplored state, we have also removed the transitions entering

it, meaning that this is not a partial visualisation of the three states it shows.

The Unexamined state represents states that we are not interested in examining. It is

used as an afterstate for any transitions that start inside the restriction and end outside.

This allows us to construct state diagrams that can fully examine the relevant states.

Although the example in Figure 6.13 has merged all unexplored states into a single state

this is not a requirement. Figure 7.7 is a visualisation of two states of the Jars example which

has left the unexplored states unmerged to clearly show the afterstates of all transitions. The

states are coloured red to indicate to the user that these states have not been explored and

as such the lack of outgoing transitions is expected and not an indication of the behaviour

of the system in these states. Proofs showing this visualisation is sound can be found in

appendix K.

84

jar3 7→ 0, jar5 7→ 0Init

jar3 7→ 3, jar5 7→ 0

jar3 7→ 0, jar5 7→ 5

jar3 7→ 0, jar5 7→ 3

jar3 7→ 3, jar5 7→ 5

Fill(Jar3)

Fill(Jar5)

Fill(Jar5)

Transfer(Jar3, Jar5)

Empty(Jar3)

Figure 7.7: Filling and emptying the jar 3

7.8 Using Special State]

Apart from the Unexamined state we have not changed how the state is represented. Rather

than using data refinement we could choose to use the simpler Woodcock operation refine-

ment rules from section 4.4. As an example of using the power of Zc we formalise the

idea of the Unexamined state and show that certain simple properties hold. We use this to

extend the Woodcock operation rules to include the Unexamined state. UR represents the

restricted operation U . UR only contains transitions outgoing from states that are inside the

restriction. These transitions are the same as they were in U , unless they would terminate

in states outside the restriction. In this case, the endstate of the transition is changed to].

In order to define the special state], we must first define new types, terms, and values.

Any term with the type] has value].

t] =df]

Since we will most commonly be using] to refer to the unexamined state, we will define a

binding with this name.

][]:]] =df 〈] 7→]〉[]:]]

We will also need a similar binding to represent the afterstate. The definition below includes

labels that will help explain these definitions.

]′[]
′
[2]:][3]][4]

[1] =df 〈]′[2] 7→][5]〉
[]′:]][4]
[6]

We define the term]′[1] as a binding 〈]′ 7→]〉[6] which has observation name]′[2] with the

value][5], which is a value unique in the type][3]. The type of the binding (and the term

being defined), is the schema type []′ :]][4]. Bindings of this type have a single observation

]′[2], where]′[2] has type][3]. We have named the term]′[1] instead of using the meta-

85

variable t , since the schema type of]′[1] has a unique binding, so we can give the term a

unique name.

The difference between the two definitions for the terms] and]′ is that]′ is primed,

which signifies that this is an afterstate. Now that] and]′ have been properly defined, we

can use them as bindings without explicit typing in the proofs below.

To allow our visualisation and our operation UR to include the unexamined state it must

have a schema type that can have] and]′ as a possible states in addition to regular states.

T] =df T in g T out | T in g []′ :]] | [] :]]g T out | [] :]]g []′ :]]

Below are the introduction and elimination rules for UR.]+ is used to lift transition

bindings such that] can be a possible state. Every binding z0Fz ′1 has the same before and

afterstates after being lifted. Later we introduce rules that can change the afterstate to].

z0Fz ′1 ∈ U T

]+
z0Fz ′1 ∈ U T]

There are two restriction introduction rules. UR contains all U transitions that start

and end inside the restriction.

R.z0 R.z ′1 z0Fz ′1 ∈ U z0Fz ′1 ∈ T]

R1+
z0Fz ′1 ∈ UR

The second introduction rule shows UR contains transitions from z0 to the unexamined

state when z ′1 is outside the restriction.

R.z0 z0Fz ′1 ∈ U ¬ R.z ′1 z0Fz ′1 ∈ T]

R2+
z0F]′ ∈ UR

We also introduce some elimination rules that may be useful. The first shows that all

transitions within UR start within the restriction.

z0Fz ′1 ∈ UR
R1−

R.z0

The second shows that if a transition z0Fz ′1 from UR doesn’t end in the special unex-

amined state then z0Fz ′1 ∈ U .

z0Fz ′1 ∈ UR z ′1 6=]′
R2−

z0Fz ′1 ∈ U

The third shows the type of the bindings within UR is T]

86

z0Fz ′1 ∈ UR
R3−

z0Fz ′1 ∈ T]

Now we will show two cases where UR ⊆ U . Firstly, if you remove] from UR then the

resulting operation will be a subset of U .

UR \ {z0Fz ′1 ∈ T] | z ′1 =]′} ⊆ U

The proof of this is shown in the following tree. We introduce a binding t0Ft ′1 from the

restricted operation where t ′1 cannot be]′. This transition is also a transition in U , so the

entire set of transitions like this must be a subset of U .

(1)
t0Ft ′1 ∈ UR \ {z0Fz ′

1 ∈ T] | z ′
1 =]′}

\−
t0Ft ′1 ∈ UR

(2)
t ′1 =]′

(1)
t0Ft ′1 ∈ UR \ {z0Fz ′

1 ∈ T] | z ′
1 =]′}

false
¬ + (2)

t ′1 6=]′

R2−
t0Ft ′1 ∈ U

⊆ +(1)
UR \ {z0Fz ′

1 ∈ T] | z ′
1 =]′} ⊆ U

Secondly, if the unexamined state is not in UR then UR is a subset of U .

(1)
z0Fz ′1 ∈ UR z ′1 6=]′

R2−
z0Fz ′1 ∈ U

⊆ +(1)
UR ⊆ U

7.9 Lifting and Totalising

W•−refinement uses lifted and totalised operations to check if a refinement exists. This

means that if an operation would be used outside of its precondition it will nondetermin-

istically enter any possible state including the ⊥ state. The lifted totalisation of a set of

bindings has been defined as follows:

•
U =df {z0Fz ′1 ∈ T ∗ | Pre U z0 ⇒ z0Fz ′1 ∈ U }

We now have two operations which change our sets of bindings; lifting and totalising, and

restricting. We will now investigate how the order of these operations can change the

resulting set of bindings.

Lifting and totalising adds a large number of transitions from every state that does

not already have an outgoing transition to every state. Restricting the operation removes

all transitions that start outside the restriction, and may add transitions that end in the

unexamined state.
•

(U)R: Lifting then restricting will add transitions outgoing from unexplored states that

87

1 2

3 4

1 2

3 4

]

⊥

Figure 7.8:
•

(UR) 1

would then be removed.
•

(UR): Restricting then lifting will remove transitions outgoing from unexplored states and

then add them back in.

Since we will be using W•−refinement we will first take the restriction then lift and

totalise. This gives us the correct form to check for refinement between the restricted

operation and visualisation.

7.10
•

(UR)

Since we have introduction rules for both restricted operations and lifted operations we can

deduce the rules needed to directly introduce
•

(UR). The pre− and • + rules used in these

proofs can be found in Appendix A. Firstly, a binding in the original U operation that ended

inside the restriction will still be in the final operation. We show an example operation U

on the left of Figure 7.8. On the right we show the transitions that are introduced when the

operation is restriction to states 1, 2, and 3. Note that because U is lifted we also include

the states] and ⊥.

(1)
pre UR z0

z0Fz ′1 ∈ U R.z1

(2)
y =T in z0

(2)
y ∈ UR

R1−
R.y

=
R.z0

R1+
z0Fz ′1 ∈ UR

pre−(2)
z0Fz ′1 ∈ UR

• +(1)

z0Fz ′1 ∈
•

(UR)

Secondly, states outside the restriction have transitions to all states. This can be seen

in Figure 7.9 where states], 4 and ⊥ have transitions to all states while 1, 2, and 3 have

88

1

2

3

4

]

⊥

Figure 7.9:
•

(UR) 2

1 2

3 4

1 2

3 4

]

⊥

Figure 7.10:
•

(UR) 3

no outgoing transitions.

(1)
pre UR z0

¬ R.z0

(2)
y =T in z0

(2)
y ∈ UR

R1−
R.y

=
R.z0

false
pre−(2)

false
false−

z0Fz ′1 ∈ UR
• +(1)

z0Fz ′1 ∈
•

(UR)

Thirdly, if there is a transition in z0Fz ′1 ∈ U that ends outside the restriction then

a transition from z0 to] is included in the final operation. This can be seen in Figure

7.10. There is only one transition ending outside the restriction {1, 2, 3} so this rule only

introduces a single transition from 2 to].

(1)
pre UR z0

(2)
y =T in z0

(2)
y ∈ UR

R1−
R.y

=
R.z0

pre−(2)
R.z0 ¬ R.z ′1 z0Fz ′1 ∈ U

R2+
z0F]′ ∈ UR

• +(1)

z0F]′ ∈
•

(UR)

89

1

2

3

4

]

⊥

Figure 7.11:
•

(UR) 4

Finally, if a state does not have any outgoing U transitions then in the final operation

it will be lifted and totalised to have transitions to every state. Continuing our example,

in Figure 7.11 state 3 had no outgoing transitions in U so it has transitions to all states in
•

(UR).

¬ pre U z0

(1)
pre UR z0

pre ⊂
pre U z0

false+
false

false−
z0Fz ′1 ∈ UR

• +(1)

z0Fz ′1 ∈
•

(UR)

7.11 Refinement

Woodcock refinement is defined as follows.

U0 vW • U1 =df

•
(U0)⊆

•
(U1)

We will be using this to show a refinement relation exists between a visualisation and a

restricted specification.

V vW • UR =df

•
V⊆

•
(UR)

To show that a refinement exists we must first lift and totalise the operations in the

visualisation. For each operation we check each visualisation state and see if it has an

outgoing transition. If it does not, then the lifted operation would have transitions to every

state in the state space as well as to] and ⊥. To show that
•

V⊆
•

(UR) we need to show that

every transition in the lifted visualisation also exists in the lifted restricted specification.

However, checking these transitions individually is time consuming. Instead, for each state,

90

1 2

3 4

1 2

3

]

Figure 7.12: Partial Visualisation of U

we check if it is outside the precondition of the specification or outside the restriction. These

states will be totalised in
•

(UR) so the lifted visualisation transitions outgoing from these

states will be a subset. Then, if all remaining visualisation transitions inside the restriction

are in the specification, we have shown a refinement relation exists. Figure 7.12 shows a

partial visualisation of our example U . Based on the work we have done in this section, to

show that this partial visualisation is sound we need to check that the three visualisation

transitions 1 7→2, 2 7→3, and 1 7→3 are in U . Additionally we need to check that a transition

exists in the specification that starts in state 2 and ends outside the restriction.

This method allows us to use operation refinement for visualisations that include un-

examined] states. We use this method in section 9.4. We have introduced this method

because operation refinement is simpler than data refinement. However, most of the visu-

alisation examples we look at have a different state space compared to the specification.

Because of this we use data refinement more often than operation refinement.

7.12 Summary

By removing unimportant details partial visualisations can be used to focus on particular

parts of the specification. However, the standard refinement rules cannot be used to char-

acterise the soundness of these visualisations. We have introduced two ways to extend these

rules.

Firstly, we observed that these visualisations only show a part of the specification. The

specification could be restricted in many ways, such as only allowing certain inputs or being

restricted to a smaller area of the state space. We changed the standard refinement rules

to allow for restricted specifications and discussed how different restriction strengths can

affect the soundness of the visualisation. Restrictions can be added to the constraints of the

schemas in the specification. For example, the birthday book specification can be restricted

to only one person by adding name? = Alan to the constraints of the operation schemas.

Secondly, some visualisations contain an unexamined state that helps the user understand

that only part of the specification is being visualised. We used ZC to lift the state space

of the specification and include the] state. Then we showed how this special state can be

used while looking for a refinement relation.

91

Chapter 8

Microcharts

8.1 Microcharts

µ-Charts is a language that can be used to specify the behaviour of reactive systems in

a graphical form. The µ-Charts language is used to create visualisations called µ-charts.

Unlike the various different types of state diagram we investigated in chapter 6, µ-Charts

have a precise semantics. µ-Charts were originally presented by Philipps and Scholz in [86]

and are an extension of Mini-Statecharts presented in [90, 47]. These are based on the

behavioural specification language Statecharts [42] which are an extension of conventional

state-transition diagrams. After many developments and extensions to the language, the

semantics of µ-Charts is given in Z [97, 96, 95]. µ-Charts is a “visual” specification language

which we will use for visualising Z specifications.

There are two reasons we are investigating µ-Charts. Firstly, we can use the language

to create more complex visualisations. Secondly, it is a type of visualisation with formally

defined semantics. In Section 5.3 we discussed how formal semantics can be used as the true

meaning of the visualisation. When using this philosophy we do not need to worry about

misunderstandings or different interpretations of the visualisation. The main alternative

language we could have chosen is UML statechart diagrams which are another variant of

classical statecharts. However, its formal semantics are inadequate [28].

A µ-chart receives sets of input signals from the environment. We assume that these

arrive together, perhaps each time the environment in which the chart is embedded makes

a notional “tick”. Receiving signals can cause the state of the µ-chart to change and when

this happens it may also output signals back to the environment. All this happens (at this

level of abstraction) instantaneously.

The semantics of µ-charts also lets us compose charts together, include local variables,

and feed signals back into the chart that may instantaneously trigger additional transitions.

These properties allow us to visualise a complex system in fewer states than state diagrams.

92

Figure 8.1: Simple Sequential µ-chart

µ-charts have been used to represent Presentation Interaction Models (PIMs), which are

models of the dynamic behaviour of interface designs [19].

In this chapter we begin by providing some examples of µ-Chart visualisations. Then we

provide the Z transition model for µ-Charts. We discuss some changes that will be made

to the language and the purpose of these changes. Finally, we characterise the soundness of

µ-Chart visualisations using refinement.

8.2 Microchart Examples

Figure 8.1 is an example of a simple sequential µ-chart. A simple sequential µ-chart does not

contain any feedback and is similar to a state diagram put in a box with a name in the top

left. However, the transitions are different and can be split into two parts. On the left hand

side of the / in the label of the transitions there is a guard. This is a set of signals and when

all of these signals are received from the environment, or via feedback, the transition will

trigger. This will move the system into a new state and any signals listed on the right hand

side of the / (the action) are output. The / is sometimes omitted if the label only contains

a guard with no output. In Figure 8.1, if we receive the signals jump and 1 while we are in

the initial state, state 0, then the system will transition to state 1 and output nothing. The

signals jump and 1 are received from the environment when the jump operation is ‘used’

with input 1.

In this section we look at how µ-charts can be used to create more sophisticated vi-

sualisations than state diagrams. Let us first look how we may compose multiple charts

together.

We have used composition to create Figure 8.2: a visualisation of the stopwatch specifi-

cation. The top chart shows what the current time value is, while the bottom chart shows

whether the stopwatch is paused or playing. The ability to compose several charts allows

us to separate the different observations in the specification into separate charts. This al-

lows us to quickly see which operations affect which observations. By removing the need to

93

Figure 8.2: Composed Microchart

visualise every possible combination of values we can greatly reduce the number of states in

the visualisation.

The bottom chart outputs feedback signal sPlaying which the top chart uses in its guards

in some transitions to ensure that the state only changes when the stopwatch is playing.

Feedback, input, and output all happen instantaneously on the same tick, so if one chart

outputs a signal in a transition which is the guard of a transition in another chart then

both transitions occur at the same time. The bottom chart can also output feedback signal

sPaused . However, this signal is not used by the top chart and is only included to make the

model seem more realistic and help the user understand that the stopwatch is paused. The

top chart also includes some extra syntactic sugar that is not part of the formal semantics.

We use . . . to show that the pattern continues rather than drawing all states. The smaller

box underneath the µ-chart shows any feedback signals. In this case, sPaused and sPlaying .

We can also build µ-charts that include local variables which can be seen in the top

right of Figure 8.3. Instead of using a chart that visualises each possible value of time as a

different state we can, as here, use a local variable to store the current value of time or any

other observation in the specification. This is particularly useful for observations that have

a large number of possible values such as sets or functions.

To take advantage of the local variables the guard can also include comparisons and the

action can include assignments. For example, time := 0 resets the value of our local variable

time to 0. We can also use value-laden signals to assign our local variables with values

from the environment. We show that this visualisation is sound in Appendix M using data

refinement and the Z semantics of this µ-chart.

94

Figure 8.3: Microchart with Local Variable

Figure 8.4: aMuZed Microchart

aMuZed is a graphical editing tool for the creation of µ-charts. Figure 8.4 shows an

example µ-chart built using this tool. ZooM is an associated tool which allows users to

convert their µ-charts into a Z specification [111].

8.3 The Z Semantics of MicroCharts

In this section we provide the semantics of µ-Charts. For more information see [97]. Each

state and each transition in the µ-chart is written as a Z schema. Schema disjunction is

then used to build a schema that describes the transition behaviour of the chart. The

composition, decomposition, and hiding operators are schemas that are used to describe

more complex µ-charts. Here we only provide the composition operator. Finally, the step

semantics schema maps the beforestate of the entire chart and its input to its afterstate and

output.

Sequential charts are described as a tuple that has the fields (C ,Σ, σ0,Ψ, δ).

• C is the name of the chart, shown in the top-left corner.

• Σ is the set of states.

• σ0 is the initial state, drawn with a double circle.

95

• Ψ is the set of feedback signals.

• δ is the set of transitions in the chart.

The following axiomatic definitions encode the states, input, and output of the chart.

in C and out C are functions that give the signals in all guards and actions of the chart C .

statesC : PµState

inC : PµSignal

outC : PµSignal

Ψ : PµSignal

statesC = Σ

inC = in C

outC = out C

The Z state schema has an observation that determines the current state of the chart.

ChartC =̂ [cC : statesC]

The initial state of the chart is modelled by the following schema which sets the current

state to the initial state of the chart.

InitC

ChartC

cC = σ0

Every state in the chart has its own state schema that sets the current state cC to the

value of that state. So for all σ ∈ Σ:

Cσ =̂ [ChartC | cC = σ]

Then we give an operation schema for each transition (Sf ,St , guard/action) in the chart.

δSf St

CSf

CS ′t

iC ? : P inC

active: PµState

oC ! : P outC

active(C)

ρ(guard)

oC ! = action

96

Here, ρ(guard) is a function that produces the Z predicate that models the guard. Typically,

each signal, sig , in the guard will be represented by the expression sig ∈ iC ? ∪ (oC ! ∩ Ψ)

which is true if chart C is receiving sig as input or feedback.

The semantics also includes a schema that models the behaviour when the chart is

inactive. Only decomposed charts can become inactive so for our purposes we assume that

active(C) will always be true.

InactiveC

ΞChartC

iC ? : P inC

active: PµState

oC ! : P outC

¬active(C)

oC ! = {}

The transitional semantics of a sequential chart can now be given by the following defi-

nition.

δC =̂ (
∨
{[[t]]Zt

| t ∈ δ}) ∨ InactiveC

This gives a schema that is a disjunction of the transition schemas in the chart, including

InactiveC .

There are five observations in the transition operation schemas.

• cC is the state of the chart before the transition occurs.

• iC ? is the set of input signals offered by the environment this tick that the chart can

accept.

• active is the set of currently active charts. Note that this is used as a predicate, for

example active (C) = true if C is in the set of active charts.

• c′C is the state of the chart after the transition occurs.

• oC ! is the output generated by the chart this tick.

As an example, the following Z schemas result from the transition model of the simple

sequential chart in Figure 8.1.

ChartIncJump =̂ [cIncJump : statesIncJump]

97

InitIncJump

ChartIncJump

cIncJump = 0

IncJump0 =̂ [ChartIncJump | cIncJump = 0]

IncJump1 =̂ [ChartIncJump | cIncJump = 1]

IncJump2 =̂ [ChartIncJump | cIncJump = 2]

Rather than show every transition schema we show one for each of the two operations

Inc and Jump.

δ02

IncJump0

IncJump′2

iIncJump? : P inIncJump

active: PµState

oIncJump ! : P outIncJump

active(IncJump)

jump ∈ iIncJump? ∪ (oIncJump ! ∩Ψ)

2 ∈ iIncJump? ∪ (oIncJump ! ∩Ψ)

oIncJump ! = {}

δ12

IncJump1

IncJump′2

iIncJump? : P inIncJump

active: PµState

oIncJump ! : P outIncJump

active(IncJump)

inc ∈ iIncJump? ∪ (oIncJump ! ∩Ψ)

oIncJump ! = {}

Now we can build the operation schema that combines each of the transitions in the

chart.

δIncJump =̂ δ00 ∨ δ01 ∨ δ02 ∨ δ12 ∨ InactiveIncJump

98

δIncJump

∆ChartIncJump

iIncJump? : P inIncJump

active: PµState

oIncJump ! : P outIncJump

(active(IncJump) ∧

oIncJump ! = {} ∧

((cIncJump = 0 ∧

jump ∈ iIncJump? ∪ (oIncJump ! ∩Ψ) ∧

0 ∈ iIncJump? ∪ (oIncJump ! ∩Ψ) ∧

c′IncJump = 0)

∨

(cIncJump = 0 ∧

(jump ∈ iIncJump? ∪ (oIncJump ! ∩Ψ) ∧

1 ∈ iIncJump? ∪ (oIncJump ! ∩Ψ) ∨

inc ∈ iIncJump? ∪ (oIncJump ! ∩Ψ)) ∧

c′IncJump = 1)

∨

(cIncJump = 0 ∧

jump ∈ iIncJump? ∪ (oIncJump ! ∩Ψ) ∧

2 ∈ iIncJump? ∪ (oIncJump ! ∩Ψ) ∧

c′IncJump = 2)

∨

(cIncJump = 1 ∧

inc ∈ iIncJump? ∪ (oIncJump ! ∩Ψ) ∧

c′IncJump = 2))

∨

(¬active(IncJump) ∧

cIncJump = c′IncJump

oIncJump ! = {}))

8.3.1 Composition Operator

µ-charts can be composed together allowing the charts to communicate using feedback sig-

nals. C1 and C2 can be composed into the new chart C1 | Ψ | C2. The feedback signals are

in the set Ψ which is shown listed in a small box under the charts. Feedback signals can be

99

output from one chart which can instantaneously trigger the guards of the second chart in

the same tick. For example, if information about the current state of the chart is output as

a feedback signal then the behaviour of a composed chart can change.

The transition model for the composed chart C is constructed recursively by first con-

structing the charts C1 and C2, which could themselves also be composed charts. The

schemas of C1 and C2 are then combined using the following axiomatic definitions and

schema to create the transition model for C .

statesC : PµState

inC : PµSignal

outC : PµSignal

Ψ : PµSignal

statesC = statesC1 ∪ statesC2

inC = inC1
∪ inC2

outC = outC1
∪ outC2

The composed chart will have a current state for each of the charts being composed. If

ChartC1 and ChartC2 are both sequential charts then our composed chart state schema will

have two observations; cC1
and cC2

.

ChartC

ChartC1

ChartC2

InitC

InitC1

InitC2

100

δC

∆ChartC

iC ? : P inC

active: PµState

oC ! : P outC

active(C1)⇔ active(C2)

∃ iC1
?, iC2

?, oC1
!, oC2

! : PµSignal •

iC1
? = (iC ? ∪ (oC ! ∩Ψ)) ∩ inC1

∧

iC2? = (iC ? ∪ (oC ! ∩Ψ)) ∩ inC2 ∧

oC ! = oC1
! ∪ oC2

! ∧

δC1
∧ δC2

The transition model for the composed chart includes the transition models of its con-

stituent parts. However, the signals that these parts receive is different compared to the

sequential model. Instead of receiving input signals from the environment and its own

feedback signals the input observations iC1
? and iC2

now receive input values from the

environment and the feedback signals that are output from either chart.

8.3.2 Step Semantics

Finally, we present the top-level schema that maps the beforestate(s) of the chart and the

input from the environment to its afterstate(s) and output.

µSignal = in C

This schema, called CSys, hides the active observation by ensuring the topmost chart

is always active.

CSys

∆ChartC

iC ? : P inC

oC ! : P outC

∃ active: PµState • active(C)

∧ δC

8.4 Soundness of Visualisations

Our goal is to prove that these visualisations, and other µ-chart visualisations, are sound.

101

If the visualisation shows that some action is possible then it must also be possible in the

specification. For example, the IncJump visualisation in Figure 8.1 shows that we can use

either the Inc operation or the Jump operation to move from state 0 to state 1. So, if this is a

sound visualisation then this should also be possible in the specification and the visualisation

would be unsound if either operation did not allow this in the specification. Clearly, a µ-chart

that visualises incorrect or impossible behaviour is misleading and unsound.

For state diagrams we start by showing the applicability property holds. However this

property always holds trivially for µ-Chart visualisations. This property would require that

if an operation is enabled in the specification it must also be in the visualisation. However,

µ-charts can receive a signal to use any operation in any state. Because of how this is

handled in the semantics this means that pre COp = true. Furthermore, when substituted

into the applicability property:

∀State; ?AOp • pre AOp ⇒ true

≡

true

However, because operations can be used in any state in µ-Chart visualisations we must

be careful that they are being still used correctly by checking the correctness property

holds. If all traces and changes of state in the µ-Chart visualisation are also possible in the

specification then the visualisation is sound.

8.5 Changes to Microcharts

The µ-chart semantics we are using in this thesis are an adaptation of classic µ-charts as we

are specifically using them for visualisations of Z specifications. The most notable difference

is that we allow some syntactic sugar such as the use of ellipses for a repeating pattern and

transitions with no visible start state that can be used from any state.

Additionally, since we are visualising a specification we assume that when an operation

is used the operation name as well as its input observation values are sent as signals to the

µ-chart. For example, if we use the jump operation to jump to state 2 we are inputting

signals jump and 2. This allows us to use the operation name as a guard on transitions

and can help make visualisations where it is clear how each operation affects the system

differently. For example, the IncJump µ-chart could axiomatically define the signals as the

following where OperationNames is a set containing the operation names Inc and Jump from

the specification:

µSignals ::= Op〈〈OperationNames〉〉 | N 〈〈{1, 2, 3}〉〉

We can think of Op and N as functions which inject the types OperationNames and {1, 2, 3}

into µSignals. Additionally, any feedback signals are still included in this definition. As

102

such, the composed stopwatch example would define µSignals as:

µSignals ::= Op〈〈OperationNames〉〉 | sPaused | sPlaying

Similarly, instead of using a basic type we can define the type of states more explicitly. The

most straightforward way of doing this is to use the set of names of states Σ. However, this

can lose valuable information. For example, in the composed stopwatch example each of the

states in the top chart represents a particular time value. Therefore, we can define the type

as follows, where each state is either a natural number or a boolean value:

µStates ::= t〈〈N〉〉 | p〈〈B〉〉

Below, we update the transition schema δ02 to use the changed µ Signals and µStates set.

δ02

IncJump0

IncJump′2

iIncJump? : P inIncJump

active: PµStates

oIncJump ! : P outIncJump

active(IncJump)

Op jump ∈ iIncJump? ∪ (oIncJump ! ∩Ψ)

t 2 ∈ iIncJump? ∪ (oIncJump ! ∩Ψ)

oIncJump ! = {}

This is a small change syntactically, however it removes any ambiguity from the types of

our values, particularly 0, 1, and 2, which could be states, signals or numbers.

Finally, we need to specify how the µ-chart should behave if signals are received that do

not satisfy the guards of any outgoing transitions. We can use either the do-nothing or the

chaotic interpretation. Respectively, this means that either the state does not change or

the state can change nondeterministically to any state. The choice here largely depends on

preference and the specification being visualised as either interpretation can be used. We

will be using the do-nothing interpretation as it allows us to remove some “selfloops” from

the µ-chart.

The following schema describes the behaviour of a chart when the guards of all outgoing

transitions are not satisfied. For example, when no input signals are received while Figure

8.1 is in state 0 no outgoing transition can be used.

When using the do-nothing interpretation the state does not change and no signals are

output. This schema is used when no µ-chart transition can be used i.e for each transition

(Sf 1,St1, guard1/action1), (Sf 2,St2, guard2/action2) etc., we are not in state Sfi when the

input satisfies guardi .

103

εC

∆ChartC

iC ?, oC ! : PµSignal

active : PµState

active(C)

c′C = cC

oC ! = {}

¬ (Sf 1 ∧ ρ(guard1))

¬ (Sf 2 ∧ ρ(guard2))

...

This schema is then disjointed with the other transition schemas to create the total δC

which describes how the µ-chart changes for any given state and input.

δC == (
∨
{[[t]]Zt | t ∈ δ}) ∨ InactiveC ∨ εC

The εC schema has been built by reverse engineering the ZooM tool which converts

µ-charts into Z using the do-nothing interpretation.

8.6 Microchart Semantics

Schemas are constructed for each state, transition, and chart and the schema calculus is

used to integrate these schemas into a layered system.

For example, amongst the schemas used to define a simple composed µ-chart the lower-

level operation schemas specify the behaviour of the transitions in each chart being composed

together. The higher-level operation schemas describe the behaviour of the system after the

lower-level charts have been composed. The top-level chart, which we call CSys, has input

and output observations for the signals to and from the environment and specifies the overall

behaviour of the chart based on what signals are being received and what the current state

is.

We present the CSys schema for the Stopwatch µ-chart. The low-level schemas and

axiomatic definitions can be found in appendix L. The CSys schema predicates are divided

into multiple cases based on the current state and the input signals being received from the

environment. We are using do-nothing semantics so when we try to use an operation where

there is no appropriate outgoing transition we stay in the same state. We have two state

observations, cPP and cTick , which observe the current state for each of the two sub-charts.

As can be seen from the SWSys example it is not possible to match a transition in the

visualisation with a single case in the predicate part of the schema. All feedback signals that

104

were present in the lower-level schema have been removed and how a particular operation

behaves both depends on and changes the state of each composed µ-chart. So, the first case

in the predicate describes the change in states when the Tick operation is used while the

bottom chart is in the Playing state and the top chart is in any state but sTime. When

the operation is used with this precondition the bottom state stays in Playing and the top

chart increments to the next state.

SWSys

∆ChartSW

iSW ? : P inSW

oSW ! : P outSW

(Op Tick ∈ iSW ? ∧

(t ∼ cTick) < maxTime ∧

c′Tick = t (t ∼ cTick + 1) ∧ cPP = p true ∧ c′PP = p true ∨

Op Reset ∈ iSW ? ∧

c′PP = p false ∧ c′Tick = t 0 ∨

Op PausePlay ∈ iSW ? ∧

c′Tick = cTick ∧ cPP = p true ∧ c′PP = p false ∨

Op PausePlay ∈ iSW ? ∧

c′Tick = cTick ∧ cPP = p false ∧ c′PP = p true ∨

Op Tick ∈ iSW ? ∧

c′Tick = cTick ∧ cPP = p false ∧ c′PP = p false ∨

Op Tick ∈ iSW ? ∧

cTick = t maxTime ∧

c′Tick = cTick ∧ cPP = p true ∧ c′PP = p true) ∧

oSW ! = {}

However, if we want to use Z data refinement we need to have operations in the visu-

alisation that match the operations in the specification. For this purpose we introduce a

new layer to the µ-chart semantics which may be used to separate the overall behaviour of

the chart into multiple schemas that describe the behaviour of the chart when a particular

operation is used.

8.7 Operation Operator

We are using µ-charts to visualise Z specifications. Hence, rather than allow the environment

to input an arbitrary set of signals to the system we instead use operation names. From the

105

specification we are visualising we have a set of operations each with their own input and

output observations. For each operation we restrict the schema to show only the changes

to the system when that operation is used. We do this by ensuring that the set of input

signals includes exactly the operation name as well as signals with the same types as any

input observations of the operation. Similarly, we need to ensure that the output signal

set matches the output observations of the operation. When using the operation no other

signals should be input by the environment and the system should not output any other

signals. Once we have the input and output observations we remove the signals from the

schema using hiding. This ensures that the resulting schema will match the appropriate

operation and we can use data refinement. If the signal observations were still present in

the schema then it would not be a match for the operation defined in the specification.

The purpose of this operator is to hide the signals, and replace them with the appropriate

observations for the operation. First, we look at a generic operation written in Z. This

operation changes the state of the specification and has some finite set of input and output

observations. Then, there is some predicate P that specifies how the state is changed:

OperationName

∆State

inputi? : Typei

...

inputj ? : Typej

outputo ! : Typeo

...

outputp ! : Typep

P

The following schema illustrates how we can extract a schema with the same input

and output observations as the above schema from CSys. µOperationName will be a

schema that describes a change in the state of the µ-chart rather than the specification

when OperationName is used. In the predicate we have CSys where the input and output

signals have been hidden. When using OperationName we require that the input signals

include the name of the operation being used as well as a signal for each of the input obser-

vations. Similarly, we require the output signals to include exactly the output observations.

106

µOperationName

∆Chart

inputi? : Typei

...

inputj ? : Typej

outputo ! : Typeo

...

outputp ! : Typep

∃ iC ?, oC ! : PµSignals |

iC ? = {µOp OperationName, µ ii inputi?, . . . µ ij inputj ?}

∧ oC ! = {µ oo outputo !, . . . µ op outputp !} • CSys

In our previous examples we showed how to build the type µSignals. The set of sig-

nals includes the operation names, signals with the same types as the input and output

observations from each of the operations, and finally feedback signals.

µSignals ::= µOp〈〈OperationNames〉〉 | µ ii〈〈Typei〉〉 | . . . | µ oj 〈〈Typej 〉〉 |

Feedbacki | . . . | Feedbackj

Let us apply this definition to the composed stopwatch example. The stopwatch example

has no input or output observations in any of the operations:

µSignals ::= µOp〈〈OperationNames〉〉 | sPaused | sPlaying

So, when we use the Reset operation we expect Reset to be the only signal being input

to the µ-chart:

µReset

∆ChartSW

∃ iSW ? : P inSW , oSW ! : P outSW •

iSW ? = {µOp Reset} ∧ oSW ! = {} ∧

SWSys

Alternatively, if the original specification had input and output observations we would

be inputting the appropriate signals to the µ-chart with the operation name and expect to

see output signals of the appropriate type.

Below we have applied the operation operator to the Jump operation of the visualisation

in Figure 8.1. The Jump schema in the specification has a single input, the number that the

107

state will jump to. Therefore, when we use the operation operator to determine how the

Jump operation affects the µ-chart we know that we need to input a number from 0 to 2

called n?. We know that the input signals being input from the environment must be Jump

and n? if we are using the Jump operation. Finally, we know that there will be no output

signals:

µ Jump

∆ChartIJ

n? : {0, 1, 2}

∃ iIJ ? : P inIJ , oIJ ! : P outIJ •

iIJ ? = {Op Jump,N n?} ∧ oIJ ! = {} ∧

IJSys

We can substitute IJSys and simplify this schema further to get a predicate with only

three cases. If we are in state 0 we jump to the state number being input, otherwise we do

not change states:

µ Jump

∆ChartIJ

n? : {0, 1, 2}

c = S 0 ∧ c′ = S n? ∨

c = S 1 ∧ c′ = S 1 ∨

c = S 2 ∧ c′ = S 2

Similarly, we can build the schema µ Inc by applying the operation operator to the

µ-chart and using the other operation in the specification:

µ Inc

∆ChartIJ

c = S 0 ∧ c′ = S 1 ∨

c = S 1 ∧ c′ = S 2 ∨

c = S 2 ∧ c′ = S 2

Using µ Inc and µ Jump along with the initialisation and state schemas from the orig-

inal µ-chart semantics we can find a refinement relation between the specification and the

visualisation.

The following schemas are the result of applying the operation operator to the composed

stopwatch visualisation for each of the operations Reset , Pause/Play , and Tick . First,

108

µReset shows that when we use the reset operation the µ-chart will return to the paused

state and the initial time 0 state:

µReset

∆ChartSW

c′PP = cPaused

c′Tick = t 0

µPP does not change the value of time but toggles between the paused and playing

states:

µPP

∆ChartSW

c′Tick = cTick ∧ cPP = cPlaying ∧ c′PP = cPaused ∨

c′Tick = cTick ∧ cPP = cPaused ∧ c′PP = cPlaying

Finally, µTick increases the current time unless the stopwatch has paused or has reached

the maximum time allowed. In this schema we use the relational inverse of the state obser-

vation. This lets us check that we have not yet reached the maximum time and allows us to

transition into the next consecutive state by adding 1 to the current time:

µTick

∆ChartSW

(t ∼ cTick) < maxTime ∧

c′Tick = t (t ∼ cTick + 1) ∧ cPP = cPlaying ∧ c′PP = cPlaying ∨

c′Tick = cTick ∧ cPP = cPaused ∧ c′PP = cPaused ∨

cTick = t maxTime ∧

c′Tick = cTick ∧ cPP = cPlaying ∧ c′PP = cPlaying

8.8 Refinement

In order to use Z data refinement we need operations with matching input and output

observations. We now have the operation operator which gives us the visualisation formally

written in Z with the input and output observations we require.

We will work through the proof of only one of the operations, Reset .

109

The retrieve relation shows how the observations in the specification are related to the

states in the visualisation:

R

Stopwatch

ChartSW

t ∼ cTick = time ∧

(cPP = cPaused ∧ playing = false

∨ cPP = cPlaying ∧ playing = true)

We also need the preconditions of our Reset and µReset operations. Because the Reset

operation can be used from any state the precondition will be true. In fact, when we use the

do-nothing µ-chart semantics the precondition of the visualisation operations will always be

true. This is because the behaviour of the µ-chart is totally defined:

pre Reset ≡ true

preµReset ≡ true

Firstly, we check Init . µ Init can easily be found using the µ-chart semantics. The initial

states in the visualisation are identified by the double circles where the time is 0 and the

watch is paused:

∀Chart ′SW • µ Init ⇒ ∃Stopwatch ′ • Init ∧ R′

≡{definitions}

∀Chart ′SW • t ∼ c′Tick = 0 ∧ c′PP = cPaused ⇒

∃ playing ′ : Bool , time ′ : N •

playing ′ = false ∧ time ′ = 0 ∧ R′

≡{one point rule, simplify}

∀Chart ′SW • t ∼ c′Tick = 0 ∧ c′PP = cPaused ⇒

t ∼ c′Tick = 0 ∧ c′PP = cPaused

≡{logic}

true

Since the initialisation property holds we can check applicability. However, since the

precondition for each visualisation operation is true we can quickly see that the applicability

property is true for each operation. Here we show that for Reset :

∀ChartSW ; Stopwatch; • pre Reset ∧ R ⇒ preµReset

110

≡{precondition of Reset as above}

∀ChartSW ; Stopwatch; • pre Reset ∧ R ⇒ true

≡{logic}

true

The full proof checks each of the operations in the specification. We will finish with the

contractual correctness proof of Reset as an example:

∀Stopwatch; ChartSW ; Chart ′SW ; •

pre Reset ∧ R ∧ µReset ⇒ ∃Stopwatch ′ • R′ ∧ Reset

≡{definitions}

∀Stopwatch; ChartSW ; Chart ′SW ; •

true ∧ R ∧ c′PP = cPaused ∧ c′Tick = t 0⇒

∃Stopwatch ′ • R′ ∧ time ′ = 0 ∧ playing ′ = false

≡ {one point rule, simplify}

∀Stopwatch; ChartSW ; Chart ′SW ; •

R ∧ c′PP = cPaused ∧ c′Tick = t 0⇒

t ∼ c′Tick = 0 ∧ c′PP = cPaused

≡{logic and definitions}

true

Proofs for the remaining operations can be found in appendix L. Additionally we provide

the operation schemas for a further µ-Chart visualisation in appendix M.

8.9 Summary

In this thesis we have added a new operator to the µ-chart semantics. This operator allows

us to create schemas that describe how the µ-chart responds to operations defined in Z

specifications. By building these schemas we can find refinement relations between the

specification and the µ-chart. We are using the µ-charts to visualise Z specifications and by

finding a refinement relation we can ensure these visualisations are sound.

Although we have constructed the operation operator to help ease the discovery of refine-

ment relations this is not the only possible use. If you are not experienced with µ-charts, or

are investigating particularly complex µ-charts with decomposition and feedback, you may

refer to the semantics of the µ-chart to completely understand the meaning and ensure that

nothing has been missed. Separating the chart into its component operations is useful for

data refinement and for understanding the meaning of the µ-chart piece by piece.

111

Chapter 9

Animated Visualisations

So far we have only given examples of static visualisations like state diagrams and µ-charts.

However, there is another category of visualisations that we will call animated visualisations.

Animated visualisation can include moving parts, user interaction, and, most importantly

for our investigation, hidden information that is only shown to the user after the visualisation

changes in some way. This includes changing the state of the visualisation by simulating

an operation being used, getting more details by clicking on a state, or viewing different

operations separately from one another.

Specifications that include observation values changing over time are well suited to being

visualised using an animated visualisation. Similarly, any operations that are intended to be

uncontrollable by the user (e.g. Tick) can be animated to create an interactive environment

for the user to explore.

We show in this section that refinement can be used to characterise the soundness of

animated visualisations.

9.1 Aesthetic Animated Visualisations

Note again that we are not focusing on the aesthetics of animations. The movement of

the visualisations is not relevant to the formal meaning of the specification. For example, a

visualisation may show an animation of an operation being performed to change the state. If

the intermediary frames of this animation are designed to show the transition from one thing

to another in a visually pleasing way then we will only consider the before and afterstate of

the animation.

For example, consider an animated visualisation of the birthday book specification that

shows an image of an open book. When a new name is added to the book an animation

plays, hand-drawing the name and date. If the name ‘Alan’ is added to the book we would

consider this to be a single use of the AddFriend operation being visualised and not the

112

letter ‘A’ being added, then edited to ‘Al ’, ‘Ala’, and ‘Alan’ in order.

Our definitions of animated visualisations and soundness become simpler when we do

not need to consider intermediary frames. Additionally, this helps us provide examples in

this thesis, as we can show the before and afterstates of an animated transition and describe

the animation that takes place in the animated version.

9.2 Simulation

We will mostly be focusing on simulations where the programmer or computer walks the user

through the specification step by step. Let us consider a simple simulation of a specification.

The visualisation shows the current values of the specification observations and provides a

list of possible operations the user can use. When the user uses an operation values change.

For an animated visualisation to be sound everything that it shows is possible is also possible

in the specification. Additionally, every operation that is enabled in the specification must

be usable in the corresponding visualisation state. Figure 9.1 is a visualisation of the Jars

example. The user initialises the system, fills j 3, and transfers the liquid to j 5. We can see

the enabled operations on the right and the values of the state observations on the left for

each step of the simulation. It is easy to identify states for this type of visualisation and to

see the operations that are enabled in each state.

9.3 Animated Visualisation Definition

Firstly, we give a general definition of what makes a visualisation animated as opposed to

static. Because we do not want to restrict our definition to a particular type of animated

visualisation we start by providing one major difference and show how this affects our

previous definitions of usability and soundness.

Static visualisations show all their information in a single unchanging image while an-

imated visualisations do not. An animation change automatically, because of operations

being used, or because of user interaction. Therefore, the information the visualisation has

communicated to the user is limited by how much of the visualisation the user has explored.

Because we are visualising Z specifications the soundness of the visualisation depends on

how the visualisation shows operations changing the state of the specification. It is important

to know which operations are being used and how the states in the visualisation relate to

states in the specification. For consistency, and to allow us to easily use Z refinement,

we define this information using Z. Our formalisation of Z animations is similar to our

formalisation for static visualisations. That is, we still use state and operation schemas to

specify what is shown in the visualisation. Firstly, if the animation has a formal visual

semantics then we tranform this into Z in order to use Z refinement. Alternatively, if the

113

Figure 9.1: ProZ Jars Simulation

114

animation shows the state observation values, like in Figure 9.1, then we can simply use the

abstract state schema observations. Finally, if the state space has changed or is unclear then

we can use the given set [STATES] as we did for static visualisations. This set contains all

states in the animation and is used to create the following schemas:

CStates =̂ [c : STATES]

State1 =̂ [CStates | c = State1]

. . .

StateN =̂ [CStates | c = StateN]

These state schemas can then be used to create operation schemas using schema calculus:

Transition1,2 =̂ [∆CStates | State1 ∧ State ′2]

A transition schema Transitioni,j is created when the animation changes because of an oper-

ation being used. The exact naming convention is not important although each schema must

have a unique name. Short names are generally preferred but to avoid multiple transition

schemas with the same name we can include the operation name and input values. The fol-

lowing example is from Figure 9.1 and so there are two differences compared to the previous

generic example. Firstly, it uses the abstract state space instead of CStates. Secondly, it

includes the input observation j ?.

Fill1 =̂ [∆Level ; j ?Jars | level = {(j 3, 0), (j 5, 0)} ∧ j ? = j 3 ∧ level ′ = {(j 3, 3), (j 5, 0)}]

After creating schemas for each transition shown in the animation we combine transitions

with the same operation. For example:

CFill =̂ Fill1 ∨ Fill2 ∨ . . .

This produces an operation schema for the animation that is conformal with the specification.

9.4 Refinement

As we have in previous chapters, we will be using Z refinement to characterise the soundness

of visualisations; in this case however the visualisations are animated. The formalisations

for static and animated visualisation produce similar state and operation schemas. This

means that we do not need to create a different method for finding a refinement relation for

animations.

For large animated visualisations it is unlikely the user will explore the entire visualisa-

tion. Therefore, we use our definition for restricted visualisations from chapter 7 to ensure

that we only check that what they have explored is sound. In section 7.11 we presented our

version of operation refinement that included restrictions:

V vW • UR =df

•
V⊆

•
(UR)

115

We will use this to show the the formalisation of the animation in Figure 9.1 is sound. The

states that this animation has explored are 〈level = {(j 3, 0), (j 5, 0)}〉, 〈level = {(j 3, 3), (j 5, 0)}〉,

and 〈level = {(j 3, 0), (j 5, 3)}〉. This is what we use as our restriction. Bindings that do not

begin in these states will be totalised in
•

(UR). The animation does not contain any tran-

sitions that start outside of these three states. However, the lifted animation does as it

includes the] and ⊥ states. The ⊆ relationship holds for these transitions because of the

totalisation. For these three states we check that the animation shows transition for each

operation and input. For example the first state 〈level = {(j 3, 0), (j 5, 0)}〉 shows that there

is an enabled operation for Fill Jar(j 3) and Fill Jar(j 5) but none of the other operations.

In this situation we need to show that this state and input is outside the precondition for

the abstract operations. For Empty Jar this is because level(j ?) > 0 and for Transfer

amount? > 0. In this example the animation has enabled operations for every input within

that operation’s precondition. Next we check that each enabled operation in the animation

matches one in the specification. There are nine of these, which we can break up into cate-

gories. Two are operations that the user has chosen to use. Four end in an unexplored state

so we check that these four also end outside the restriction in the specification. The remain-

ing three are coloured black and would put the simulation into a previously explored state.

For the first two operations it is easy to see that they are also in the specification. For exam-

ple: 〈level = {(j 3, 0), (j 5, 0)}, j ? = 3, level ′ = {(j 3, 3), (j 5, 0)}〉 exists in both the animation

and Fill Jar . It is also easy to find a binding for each of the operations that end outside

the restriction. For example: 〈level = {(j 3, 0), (j 5, 0)}, j ? = 5, level ′ = {(j 3, 0), (j 5, 5)}〉

matches Fill Jar(j 5) as {(j 3, 0), (j 5, 5)} is outside the restriction. For the black oper-

ations we need to find a matching binding that ends inside the restriction. For exam-

ple: 〈level = {(j 3, 3), (j 5, 0)}, j ? = 3, level ′ = {(j 3, 0), (j 5, 0)}〉 matches Empty Jar(j 3) as

{(j 3, 0), (j 5, 0)} is inside the restriction. This shows that

•
V⊆

•
(UR)

and so this visualisation is sound.

Note that the black operations have been treated differently. Previously we did not have

a distinction between unused operations that ended inside vs. outside the restriction. If we

treated this simulation like our previous visualisations and did not change the restriction

then the formalisation of this visualisation is actually unsound. This is because it shows

that using Empty Jar(j 3) results in a state that is not 〈level = {(j 3, 0), (j 5, 0)}〉, 〈level =

{(j 3, 3), (j 5, 0)}〉, or 〈level = {(j 3, 0), (j 5, 3)}〉. However, in the specification this results in

〈level = {(j 3, 0), (j 5, 0)}〉 so the formalisation of this animation and the specification show

different behaviour. This means it would be unsound. So, if the user did not understand

the meaning of the black operations the partial animation shown in Figure 9.1 would be

misleading. In the proof above we have made suitable changes that ensure that black

116

Figure 9.2: ProZ Jars Graphical Animation

operations must end inside the restriction.

9.4.1 Definition by Construction

We can characterise the soundness of a animation that is built using a graphical animation

function. Three slides of such a visualisation can be seen in Figure 9.2. This function maps

the values of the specification observations to a grid of images. When this visualisation

is simulated the image the user sees updates based on the current values of the state ob-

servations. The graphical animation function of the Jars example can be found in section

5.5.

So far we have been finding refinement relations using the operations and state space of

both the specification and the visualisation. When using data refinement we also needed a

retrieve relation to relate the two different state spaces. However, another method allows us

to calculate refinement without requiring the operations of the visualisation [29]. The idea

is to modify the abstract operations using the retrieve relation resulting in new concrete

operations. The new concrete specification will be a refinement of the abstract specification.

We can see how this method can be used in this example. We have the abstract specifica-

tion, the possible images are our concrete state space, and ProZ Settings relates the abstract

and concrete state spaces. We can use this information to calculate a sound visualisation.

This method constructs a set of Z operation schemas that operate over a grid of images.

Note that the visualisation that we construct is not equal to the ProZ graphical animation.

The ProZ graphical animation still has the same limitations as the ProZ simulation.

Not all retrieve relations will result in a sound visualisation. However, if the relation is

a function from concrete to abstract then the calculation is simple:

CInit =̂ ∃AState ′ • AInit ∧ R′

COp =̂ ∃∆StateA • R ∧ AOp ∧ R′

When every state in the specification is mapped to a unique image in the visualisation the

relation is bijective and we can use the above calculation. This is the case for the example

117

in Figure 9.2, so we know that we can calculate a sound visualisation with images like these.

Knowing how the visualisation is defined lets us avoid needing to explore a large animated

visualisation to find errors and unsound behaviour that could be hidden in the visualisations

we have generated.

If we want multiple specification states to map to the same image then the retrieve

relation will not be functional. More complex calculations would be needed and it is not

guaranteed that a sound visualisation would exist.

We would like to generate a sound animation like the one in Figure 9.2. We start with

the following retrieve relation. This relation is functional from concrete to abstract. Each

state in the animation represents just one state in the specification.

R

Level

CState

level = {(j 3, 0), (j 5, 0)} ∧ State1 ∨

level = {(j 3, 3), (j 5, 0)} ∧ State2 ∨

level = {(j 3, 0), (j 5, 3)} ∧ State3

This function does not provide any information about how State1,State2, etc. should be

drawn. What is important for this example is that State1 should clearly show that both jars

are empty. R only includes three states however this schema could be extended to include

more. We can then use R to generate concrete operation schema.

COp =̂ ∃∆StateA • R ∧ AOp ∧ R′

CFill =̂ ∃∆Level • R ∧ Fill Jar ∧ R′

≡ (Expand R′)

CFill =̂ [∆CState; j ? | ∃∆Level • R ∧ (

level ′ = {(j 3, 0), (j 5, 0)} ∧ State1′ ∧ level(j ?) < max fill(j ?) ∧

level ′ = level ⊕ {j ? 7→max fill(j ?)} ∨

level ′ = {(j 3, 3), (j 5, 0)} ∧ State2′ ∧ level(j ?) < max fill(j ?) ∧

level ′ = level ⊕ {j ? 7→max fill(j ?)} ∨

level ′ = {(j 3, 0), (j 5, 3)} ∧ State3′ ∧ level(j ?) < max fill(j ?) ∧

level ′ = level ⊕ {j ? 7→max fill(j ?)}])

118

≡ (One-point Rule)

CFill =̂ [∆CState; j ? | ∃ level • R ∧ (

State1′ ∧ level(j ?) < max fill(j ?) ∧ {(j 3, 0), (j 5, 0)} = level ⊕ {j ? 7→max fill(j ?)} ∨

State2′ ∧ level(j ?) < max fill(j ?) ∧ {(j 3, 3), (j 5, 0)} = level ⊕ {j ? 7→max fill(j ?)} ∨

State3′ ∧ level(j ?) < max fill(j ?) ∧ {(j 3, 0), (j 5, 3)} = level ⊕ {j ? 7→max fill(j ?)})]

≡ (Expand R and simplify)

CFill =̂ [∆CState; j ? | ∃ level •

level = {(j 3, 0), (j 5, 0)} ∧ State1 ∧ State2′ ∧ level(j ?) < max fill(j ?) ∧

{(j 3, 3), (j 5, 0)} = level ⊕ {j ? 7→max fill(j ?)}]

≡ (One-point Rule)

CFill =̂ [∆CState; j ? | State1 ∧ State2′ ∧ {(j 3, 0), (j 5, 0)}.j ? < max fill(j ?) ∧

{(j 3, 3), (j 5, 0)} = {(j 3, 0), (j 5, 0)} ⊕ {j ? 7→max fill(j ?)}]

≡ (Simplify)

CFill =̂ [∆CState; j ? | State1 ∧ State2′ ∧ j ? = j 3]

This has generated a simple operation schema for Fill . Similarly, we can generate the

remaining operations and CInit schema.

CEmpty =̂ [∆CState; j ? | State2 ∧ State1′ ∧ j ? = j 3 ∨

State3 ∧ State1′ ∧ j ? = j 5]

CTransfer =̂ [∆CState; j 1?; j 2?amount? | amount? = 3 ∧ State2 ∧

State3′ ∧ j 1? = j 3 ∧ j 2? = j 5 ∨

amount? = 3 ∧ State3 ∧ State2′ ∧ j 1? = j 5 ∧ j 2? = j 3]

CInit =̂ [CState ′ | State1′]

A refinement relation exists between the specification and the concrete schema that we

have generated. If this specification is transformed into a state diagram or animation it is

guaranteed to be sound. While this example does not describe what the visualisation looks

like, an animation function does. An example of how we can construct a sound animation

using an animation function can be found in appendix N.

9.5 Summary

Animated and interactive visualisations are a useful tool and can help demonstrate properties

that would be difficult to show statically. However, we are interested in characterising

119

soundness and animation can be safely removed without affecting the soundness of the

visualisation. This allows us to convert animated visualisations into state diagrams and use

our existing methods to characterise soundness. We also presented a method that can be

used to generate sound visualisations using a graphical animation function.

120

Chapter 10

Conclusion

In this thesis we have covered a variety of ways to visualise Z specifications and shown how

refinement methods can be used to characterise the soundness of these visualisations. In

this chapter we summarise the main contributions of this work and discuss future work that

can be done in the same area.

The goal of this work was to find a way to formally characterise the soundness of Z speci-

fication visualisations. Although visualisations can assist in understanding the complexities

of specifications, unsound visualisations can also cause misunderstandings. By finding a way

to characterise soundness we can identify unsound visualisations. These visualisations can

then be discarded or repaired before being used to validate the Z specifications. By doing

this we hope to improve the confidence users have in visualisations and also specifications

themselves. Alternatively, this method can be applied to visualisations that are suspect, that

have shown unexpected errors, or caused confusion in some way. This helps save time and

resources however this will not help avoid problems caused by visualisations that reinforce

a misunderstanding of the specification.

To help achieve this goal we used Z refinement. This was because of the underlying

meanings of refinement. Originally it was intended that the visualisation of the specifica-

tion be the abstract version. Clearly, a visualisation is an abstraction of a model however

our research did not lead to a characterisation of soundness as we hoped. Instead it sug-

gested a way to begin system development not with specifications, but with more informal

visualisations of the imagined system that could then be refined into Z.

Rather than using Z refinement we could have created a custom refinement calculus used

to compare specifications and visualisations. This is not unusual as there are a variety of

refinement methods that are used to compare different formal languages. This was not done

for two main reasons. Firstly, the goal was to validate and help the user be more confident

that their visualisation is sound. Z refinement is well-known and has long been used to

help verify the applicability and correctness of a refined specification. Secondly, we had

121

begun investigating a variety of visualisations from simple state diagrams to µ-charts and

animated, interactive visualisations. Creating a refinement calculus for “visualisations” in

general did not seem feasible.

Instead, we developed methods for converting the visualisations into Z. This achieved

two goals. Firstly, having a unified language between the specifications and any visualisa-

tions allowed us to make easier comparisons and use the existing Z refinement methods.

Secondly, it formalises the visualisation. Visualisations are informal by nature as they have

been simplified and abstracted to help the user easily understand the complex specification.

However, valuable information about the specification still exists within the visualisation

(clearly, as they would otherwise be useless) and it is this information that we retrieve when

formalising. If the visualisation is too simple and does not contain sufficient information

then it will be unsound.

We described multiple ways to formalise the visualisation using Z, including converting

state diagrams into bindings and schemas, and using the underlying Z semantics of µ-

charts. Additionally, when an unambiguous formal definition did not exist we showed how

the users understanding of the visualisation could be used formally. This method can result

in multiple users interpreting the visualisation differently due to their knowledge of the

system etc. However, we argue that this method can be more useful in practise than using

the underlying formal semantics as the user can check that their understanding is sound.

At this point, we could formalise the visualisation and find refinement relations between

it and the specification. However, we discovered visualisations that should intuitively be

sound that were not a refinement of the specification. This meant that refinement did not

characterise the soundness for some visualisation types. The visualisations that were being

found as unsound were what we later called restricted visualisations. This type of visualisa-

tion could be found in both our handmade examples and the state diagrams generated using

simulation. Our definition of restricted visualisations originally included an “unexplored

state”. The unexplored state was included when the simulation did not cover the entire

state space of the specification. Later, this definition was expanded to include visualisations

that did not include every specification operation, focused on particular input values, or only

visualised a particular selection of transitions. What these visualisations had in common

was that the specification being visualised was restricted in some way.

All restricted visualisations were characterised as unsound as they were not a valid re-

finement of the specification. In chapter 7 we identified this problem and updated our

methods to ensure that sound restricted visualisations were actually sound. Our definition

of soundness was updated to acknowledge that not all visualisations visualise the entire spec-

ification. We also introduced a restriction schema similar to the retrieve relation schema.

This restriction schema was then included when finding a refinement relation.

122

We also researched further into µ-Chart visualisations. This let us show that refine-

ment could characterise the soundness of a wider range of visualisation types. Additionally,

the µ-Chart semantics is given in Z. This gives µ-Chart visualisations a formal and unam-

biguous meaning compared to the more informal visualisation types we had investigated

originally. We made some changes to the µ-Chart semantics, most notably the inclusion of

the operation operator that converted the single system tick operation schema into a set

of operations. When the tick operation schema is split into operations conformal to the

specification operations we can easily apply Z refinement.

In chapter 9 we briefly discussed animated visualisations. Unfortunately, we did not

find any particularly interesting problems with these visualisations. We concluded that once

properties that did not affect soundness, such as aesthetics, were removed the visualisation

could be formalised using methods very similar to the methods we used for state diagrams.

So, refinement could be used to characterise the soundness of animated visualisations without

any changes. The process of formalising the animated visualisations removed a number of

interesting properties and it may be that we have removed properties that could have affected

the soundness of the visualisation. This is a topic for future work. For example, does the

user interacting with the visualisation affect its soundness? We decided that it did not,

so long as the user can only interact in ways allowed by the original specification. Future

research could begin by investigating if interaction like this does have an effect. Progressing

to allow the user total freedom in how they interact with the visualisation and updating

how soundness is characterised appropriately.

In the appendices we include examples of the visualisations being converted into Z and

apply refinement rules. We also clarify some details that were not suitable for discussion in

the main body of the thesis.

10.1 Limitations to our Approach

10.1.1 Scalability

The visualisations and specifications given in the thesis have been small, proof-of-concept

examples. This has allowed us to provide step-by-step proofs in the appendices and to focus

on the main problem of soundness. However, how well would it scale in practice? Clearly,

larger specifications and visualisations would require larger proofs.

As a handmade visualisation becomes larger and more complex it is easier for it to

become unsound and more difficult to see the problem. A computer generated visualisation

can create extremely large visualisations and proving the soundness can be time consuming

if every state and transition needs to be checked. Similarly, as the specification becomes

more complex the proofs become more difficult.

123

Using refinement to characterise the soundness of large visualisations of complex speci-

fications can still be done. Proof assistants and theorem provers can be used to help reduce

or automate some of the complexities involved [7, 20, 37].

However, before starting a long and difficult proof that shows that your enormously

complex visualisation is actually sound, instead see if you can scale the visualisation back

down. Visualisation design best practices state that the visualisation should be clear and

easy to understand. The second of Edward Tufte’s graphical principles is that “Graphical

excellence consists of complex ideas communicated with clarity, precision, and efficiency.”

[107]. Your complex visualisation might be sound but still unusable due to graphic de-

sign problems or mental overload. Because of this, we have included examples that use

techniques like grouping together states and syntactic sugar. These small, simple examples

visualise a large state space while making it easier for the user to understand and prove the

soundness. Similarly, we have shown how complex specifications can be handled through

the use of restrictions. Rather than trying to visualise the entire specification using one

complex visualisation the specification can be broken down into smaller parts each focusing

on a particular problem or idea. This point can be further emphasised using the following

thought experiment. Consider that the birthday book specification was only a small part of

a much larger social network specification. Rather than creating state diagrams that try to

visualisation the entire social network we have scaled it down to examples that are easier to

understand and easier to find refinement relations.

10.1.2 Practical Use

Formally proving that the properties of refinement hold is a difficult and time consuming

task. This limits the usefulness of this technique until these properties become trivial to

prove. We have seen some examples where these properties hold trivially, such as when the

visualisation is isomorphic to the specification. Because of this the best way to make this

technique useful is to develop tools that support proving the soundness of visualisations.

Our method characterises the soundness of the formalisation of the visualisation. When

the formalisation is clear then we use shorthand and directly say that it characterises the

soundness of the visualisation. This is the case when we can formalise the visualisation

using its semantics or when users have a common understanding of the meaning of the

visualisation. Additionally, in section 5.3 we mentioned that different users can interpret

the same visualisation in different ways. This would mean that different users would create

different formalisations and we would instead say that we characterise the soundness of the

user’s understanding of the specification. However, non-formal methods users are unable to

create a formalisation of the visualisation. This means that we cannot rely solely on this

method to ensure that a visualisation is sound for any user. We still need to ensure that

124

our visualisations are clear, unambiguous, and understandable.

We have focused on Z specifications and different versions of Z refinement. We chose to

use Z because of its popularity and we were most familiar with this language. We believe

that the underlying principles of our method can be applied to other formal languages.

However, until further research is done it is limited to Z specifications.

10.2 Future Work

The work done here focuses exclusively on Z specifications. Future work can be done to

show that refinement (or other methods) can be used to characterise the soundness of any

visualisation without being limited to just visualisations of Z specifications. In order for

this work to be truly useful future research would need to show that it is feasible to apply

these methods to visualisations of industrial specifications. If both visualisations and refine-

ment are being used as part of system development then it is possible to use the methods

introduced in this thesis to show that the visualisations are sound.

10.2.1 Tool Support

There are a number of steps where additional tool support could make proving the soundness

of a visualisation easier. For example, automatically converting a visualisation into schema

form. This would be done using the formalisation of the visualisation as well as the observa-

tions from the original specification. This tool could be integrated into existing visualisation

software or included as part of a tool developed specifically for creating visualisations like

the ones shown in this thesis. Other functionality that could be added to this tool includes:

1. The ability to add restrictions to the visualisations based on Chapter 7.

2. In Section 9.4.1 we looked at functional retrieve relations that specify which specifica-

tion state each visualisation state is associated with. By using these retrieve relations

sound visualisations can be constructed automatically.

3. A means to check the proof, both to verify correctness and discover why a proof of

soundness could not be found.

4. A method to convert the state diagram into a domain specific visualisation by adding

alternative graphics and interactivity.

5. A way to automatically adjust a visualisation when the original specification is refined.

This includes removing the appropriate nondetermistic transitions and changing the

outgoing transitions when an operation has new enabled states. Additionally, outdated

visualisations can be clearly labelled to ensure it is clear why they are no longer sound

visualisations of the latest refinement step.

125

Outside of this visualisation tool, future work also includes more integration with proof

assistants. This can include setting up the environment by importing the specification,

visualisation, and the proof obligations. In the future, if the proof is able to be automated

then the value of this work will greatly increase.

10.2.2 User Studies

A topic for future work is studying existing visualisations, particularly those that have been

used in industry, based on this method. How many unsound visualisations can be found,

and why were they unsound? It would be useful to characterise different types of errors that

can be found in unsound visualisations. This could be used to report common errors and

how they can be identified and fixed.

There are multiple user studies that can be performed to learn more about the soundness

of visualisations. In section 5.1 we identified a range of potential users, from those creating

the specifications to those that only see the visualisations. Some interesting studies include:

1. Are users able to identify unsound visualisations? There are a number of variables

that can be changed, including the complexity of the specification and visualisation,

different types of visualisation, and different reasons why the visualisation is unsound.

This study will allow us to learn what types of errors are noticeable and unnoticeable

and so develop a method for identifying problematic errors.

2. How useful is an unsound visualisation? The users are provided a list of questions

about a specification. To help answer these questions they are provided with some of

the following material. The specification itself, an unsound visualisation with minor

errors, a different unsound visualisation with major errors, a sound visualisation, and

a detailed explanation of the system being specified. User groups that have received

different sets can then be compared based on how the questions have been answered,

time taken, confidence level, etc.

Lastly, it would be interesting to formally characterise other visualisation properties such

as aesthetics or usability.

126

Bibliography

[1] Islam Abdelhalim, Steve Schneider, and Helen Treharne. “An Optimization Approach

for Effective Formalized fUML Model Checking”. In: Software Engineering and For-

mal Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 248–262.

[2] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering. Cam-

bridge University Press, 2010.

[3] Jean-Raymond Abrial and Jean-Raymond Abrial. The B-book: assigning programs to

meanings. Cambridge University Press, 2005.

[4] W Richards Adrion, Martha A Branstad, and John C Cherniavsky. “Validation,

verification, and testing of computer software”. In: ACM Computing Surveys (CSUR)

14.2 (1982), pp. 159–192.

[5] Sten Agerholm and Peter Gorm Larsen. “A lightweight approach to formal methods”.

In: International Workshop on Current Trends in Applied Formal Methods. Springer.

1998, pp. 168–183.

[6] Carina Andersson and Per Runeson. “Verification and validation in industry-a qual-

itative survey on the state of practice”. In: Proceedings International Symposium on

Empirical Software Engineering. IEEE. 2002, pp. 37–47.

[7] Rob D Arthan. “On formal specification of a proof tool”. In: International Symposium

of VDM Europe. Springer. 1991, pp. 356–370.

[8] Rosalind Barden, Susan Stepney, and David Cooper. Z in Practice. Prentice-Hall,

Inc., 1995.

[9] Yaman Barlas. “Formal aspects of model validity and validation in system dynamics”.

In: System Dynamics Review: The Journal of the System Dynamics Society 12.3

(1996), pp. 183–210.

[10] Yaman Barlas and Stanley Carpenter. “Philosophical roots of model validation: two

paradigms”. In: System Dynamics Review 6.2 (1990), pp. 148–166.

[11] Leonor M Barroca and John A. McDermid. “Formal methods: Use and relevance for

the development of safety-critical systems”. In: The Computer Journal 35.6 (1992),

pp. 579–599.

127

[12] Jacques Bertin. Graphics and graphic information processing. Walter de Gruyter,

2011.

[13] Dines Bjørner. “The Vienna Development Method (VDM)”. In: Mathematical Stud-

ies of Information Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979,

pp. 326–359.

[14] Dines Bjørner and Cliff B Jones. The Vienna Development Method: The Meta-Language.

Vol. 61. Springer, 1978.

[15] Eerke Albert Boiten and John Derrick. “IO - refinement in Z”. In: 3rd Northern For-

mal MethodsWorkshop, 1998. Electronic Workshops in Computing. Springer Verlag,

1998.

[16] Christie Bolton. “Using the Alloy analyzer to verify data refinement in Z”. In: Elec-

tronic Notes in Theoretical Computer Science 137.2 (2005), pp. 23–44.

[17] George S Boolos, John P Burgess, and Richard C Jeffrey. Computability and logic.

Cambridge University Press, 2002.

[18] Judy Bowen, Steve Jones, and Steve Reeves. “Creating Visualisations of Formal Mod-

els of Interactive Medical Devices”. In: Pre-proceedings of Second International Work-

shop on Formal Techniques for Safety-Critical Systems (FTSCS 2013). 2013, pp. 259–

263.

[19] Judy Bowen and Steve Reeves. “A Simplified Z Semantics for Presentation Interaction

Models”. In: International Symposium on Formal Methods. Springer. 2014, pp. 148–

162.

[20] Achim D Brucker, Frank Rittinger, and Burkhart Wolff. “HOL-Z 2.0”. In: Journal

of Universal Computer Science 9.2 (2003), pp. 152–172.

[21] Jordi Cabot and Martin Gogolla. “Object constraint language (OCL): a definitive

guide”. In: International School on Formal Methods for the Design of Computer,

Communication and Software Systems. Springer. 2012, pp. 58–90.

[22] Mackinlay Card. Readings in information visualization: using vision to think. Morgan

Kaufmann, 1999.

[23] Stuart K Card, George G Robertson, and Jock D Mackinlay. “The information vi-

sualizer, an information workspace”. In: Proceedings of the SIGCHI Conference on

Human factors in computing systems. ACM. 1991, pp. 181–186.

[24] Guido de Caso et al. “Automated abstractions for contract validation”. In: IEEE

Transactions on Software Engineering 38.1 (2010), pp. 141–162.

[25] Edmund M Clarke and Jeannette M Wing. “Formal methods: State of the art and

future directions”. In: ACM Computing Surveys (CSUR) 28.4 (1996), pp. 626–643.

128

[26] William S Cleveland. Visualizing data. Hobart Press, 1993.

[27] Darren Cofer and Steven P Miller. Formal methods case studies for DO-333. NASA,

2014.

[28] Michelle L Crane and Juergen Dingel. “On the semantics of UML state machines:

Categorization and comparision”. In: Technical Report 2005-501, School of Comput-

ing, Queen’s. Citeseer. 2005.

[29] John Derrick and Eerke A Boiten. Refinement in Z and Object-Z: foundations and

advanced applications. Springer Science & Business Media, 2013.

[30] John Derrick and Heike Wehrheim. “Using coupled simulations in non-atomic re-

finement”. In: International Conference of B and Z Users. Springer. 2003, pp. 127–

147.

[31] Brian Dobing and Jeffrey Parsons. “How UML is used”. In: Communications of the

ACM 49.5 (2006), pp. 109–113.

[32] Nicolas Dulac et al. “On the use of visualization in formal requirements specification”.

In: Proceedings IEEE Joint International Conference on Requirements Engineering.

IEEE. 2002, pp. 71–80.

[33] Aaron M Dutle et al. “Software validation via model animation”. In: International

Conference on Tests and Proofs. Springer. 2015, pp. 92–108.

[34] Steve Easterbrook et al. “Experiences using lightweight formal methods for require-

ments modeling”. In: IEEE Transactions on Software Engineering 24.1 (1998), pp. 4–

14.

[35] Alessandro Fantechi, Francesco Flammini, and Stefania Gnesi. “Formal methods for

railway control systems”. In: International Journal on Software Tools for Technology

Transfer 16.6 (Nov. 2014), pp. 643–646.

[36] Stephen Few. Now you see it: simple visualization techniques for quantitative analysis.

Analytics Press, 2009.

[37] Leonardo Freitas. Proving theorems with Z/Eves. url: https://www.cs.york.ac.

uk/ftpdir/pub/leo/mefes/zeves/tutorials/CRG-3.pdf (visited on 04/30/2018).

[38] Ana Garis, Alcino Cunha, and Daniel Riesco. “Translating Alloy specifications to

UML class diagrams annotated with OCL”. In: International Conference on Software

Engineering and Formal Methods. Springer. 2011, pp. 221–236.

[39] Fahad Rafique Golra et al. “Bridging the Gap Between Informal Requirements and

Formal Specifications Using Model Federation”. In: International Conference on Soft-

ware Engineering and Formal Methods. Springer. 2018, pp. 54–69.

129

[40] Niusha Hakimipour, Paul Strooper, and Andy Wellings. “TART: Timed-automata

to real-time Java tool”. In: 2010 8th IEEE International Conference on Software

Engineering and Formal Methods. IEEE. 2010, pp. 299–309.

[41] Anthony Hall. “Seven myths of formal methods”. In: IEEE software 7.5 (1990),

pp. 11–19.

[42] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science of

computer programming 8.3 (1987), pp. 231–274.

[43] Robert L Harris. Information graphics: A comprehensive illustrated reference. Oxford

University Press, 2000.

[44] Daniel Hazel, Paul Strooper, and Owen Traynor. “POSSUM: An Animator for the

SUM Specification Language”. In: Asia-Pacific Software Engineering Conference and

International Computer Science Conference. IEEE Computer Society, 1997, pp. 42–

51.

[45] Martin C Henson, Steve Reeves, and Jonathan P Bowen. “Z Logic and its Conse-

quences”. In: Computing and Informatics 22.3-4 (2012), pp. 381–415.

[46] MA Hewitt, CM O’Halloran, and Chris T Sennett. “Experiences with PiZA, an ani-

mator for Z”. In: International Conference of Z Users. Springer. 1997, pp. 35–51.

[47] Jozef JM Hooman, S Ramesh, and Willem-Paul de Roever. “A compositional axiom-

atization of Statecharts”. In: Theoretical Computer Science 101.2 (1992), pp. 289–

335.

[48] Bardh Hoxha, Nikolaos Mavridis, and Georgios Fainekos. “VISPEC: A graphical tool

for elicitation of MTL requirements”. In: 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 3486–3492.

[49] Bardh Hoxha et al. Towards formal specification visualization for testing and moni-

toring of cyber-physical systems. 2014. url: https://pdfs.semanticscholar.org/

68a4/d2c63a74bb365ba024832bc266e2ca3a6042.pdf (visited on 09/30/2018).

[50] Edwin Hutchins. Cognition in the Wild. MIT press, 1995.

[51] Edwin Hutchins, James D. Hollan, and Donald A. Norman. “Direct Manipulation

Interfaces”. In: Human-Computer Interaction 1 (1985), pp. 311–338.

[52] Akram Idani and Nicolas Stouls. “When a formal model rhymes with a graphical no-

tation”. In: International Conference on Software Engineering and Formal Methods.

Springer. 2014, pp. 54–68.

[53] Juha Itkonen, Mika V Mantyla, and Casper Lassenius. “How do testers do it? An ex-

ploratory study on manual testing practices”. In: 2009 3rd International Symposium

on Empirical Software Engineering and Measurement. IEEE. 2009, pp. 494–497.

130

[54] Daniel Jackson. “Alloy: a lightweight object modelling notation”. In: ACM Transac-

tions on Software Engineering and Methodology 11.2 (2002), pp. 256–290.

[55] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.

[56] Jonathan Jacky. The way of Z: practical programming with formal methods. Cam-

bridge University Press, 1997.

[57] He Jifeng. “Process simulation and refinement”. In: Formal Aspects of Computing

1.1 (Mar. 1989), pp. 229–241.

[58] Soon-Kyeong Kim and David Carrington. “Visualization of formal specifications”.

In: Proceedings Sixth Asia Pacific Software Engineering Conference. IEEE. 1999,

pp. 102–109.

[59] Eva Kühn and Sophie Therese Radschek. “An initial user study comparing the read-

ability of a graphical coordination model with Event-B notation”. In: International

Conference on Software Engineering and Formal Methods. Springer. 2017, pp. 574–

590.

[60] Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel. “Visualising event-B

models with B-motion studio”. In: International Workshop on Formal Methods for

Industrial Critical Systems. Springer. 2009, pp. 202–204.

[61] Lukas Ladenberger, Ivaylo Dobrikov, and Michael Leuschel. “An approach for creat-

ing domain specific visualisations of CSP models”. In: International Conference on

Software Engineering and Formal Methods. Springer. 2014, pp. 20–35.

[62] Lukas Ladenberger and Michael Leuschel. “Mastering the visualization of larger state

spaces with projection diagrams”. In: International Conference on Formal Engineer-

ing Methods. Springer. 2015, pp. 153–169.

[63] Jill H Larkin and Herbert A Simon. “Why a diagram is (sometimes) worth ten thou-

sand words”. In: Cognitive science 11.1 (1987), pp. 65–100.

[64] Diego Latella, Istvan Majzik, and Mieke Massink. “Towards a formal operational

semantics of UML statechart diagrams”. In: International Conference on Formal

Methods for Open Object-Based Distributed Systems. Springer. 1999, pp. 331–347.

[65] Yves Ledru. “Using Jaza to animate RoZ specifications of UML class diagrams”.

In: 2006 30th Annual IEEE/NASA Software Engineering Workshop. IEEE. 2006,

pp. 253–262.

[66] Yves Ledru et al. “Validation of security policies by the animation of Z specifica-

tions”. In: Proceedings of the 16th ACM symposium on Access control models and

technologies. ACM. 2011, pp. 155–164.

131

[67] Michael Leuschel and Michael Butler. “ProB: A model checker for B”. In: Interna-

tional Symposium of Formal Methods Europe. Springer. 2003, pp. 855–874.

[68] Michael Leuschel and Michael Butler. “ProB: an automated analysis toolset for the B

method”. In: International Journal on Software Tools for Technology Transfer 10.2

(2008), pp. 185–203.

[69] Michael Leuschel, Mireille Samia, and Jens Bendisposto. “Easy graphical animation

and formula visualisation for teaching B”. In: (2008).

[70] Michael Leuschel and Edd Turner. “Visualising larger state spaces in ProB”. In:

International Conference of B and Z Users. Springer. 2005, pp. 6–23.

[71] David Lightfoot. Formal specification using Z. Palgrave, 2001.

[72] Shaoying Liu and Hao Wang. “An automated approach to specification animation

for validation”. In: Journal of Systems and Software 80.8 (2007), pp. 1271–1285.

[73] Shaoying Liu et al. “SOFL: A formal engineering methodology for industrial appli-

cations”. In: IEEE Transactions on Software Engineering 24.1 (1998), pp. 24–45.

[74] Petra Malik. “A retrospective on CZT”. In: Software: Practice and Experience 41.2

(2011), pp. 179–188.

[75] Petra Malik and Mark Utting. “CZT: A framework for Z tools”. In: International

Conference of B and Z Users. Springer. 2005, pp. 65–84.

[76] Aad Mathijssen and A Johannes Pretorius. “Verified design of an automated parking

garage”. In: International Workshop on Parallel and Distributed Methods in Verifi-

cation. Springer. 2006, pp. 165–180.

[77] Sun Meng, Zhang Naixiao, and Lúıs Soares Barbosa. “On semantics and refinement

of UML statecharts: A coalgebraic view”. In: Proceedings of the Second International

Conference on Software Engineering and Formal Methods, 2004. SEFM 2004. IEEE.

2004, pp. 164–173.

[78] Tim Miller and Paul Strooper. “A case study in model-based testing of specifications

and implementations”. In: Software Testing, Verification and Reliability 22.1 (2012),

pp. 33–63.

[79] Tim Miller and Paul Strooper. “A framework and tool support for the systematic

testing of model-based specifications”. In: ACM Transactions on Software Engineer-

ing and Methodology (TOSEM) 12.4 (2003), pp. 409–439.

[80] Tim Miller and Paul Strooper. “Supporting the software testing process through

specification animation”. In: First International Conference onSoftware Engineering

and Formal Methods, 2003. Proceedings. IEEE. 2003, pp. 14–23.

132

[81] Michael Möller et al. “Integrating a formal method into a software engineering process

with UML and Java”. In: Formal Aspects of Computing 20.2 (2008), pp. 161–204.

[82] Glenford J Myers et al. The art of software testing. Vol. 2. Wiley Online Library,

2004.

[83] Kumiyo Nakakoji, Akio Takashima, and Yasuhiro Yamamoto. “Cognitive effects of

animated visualization in exploratory visual data analysis”. In: Proceedings Fifth

International Conference on Information Visualisation. IEEE. 2001, pp. 77–84.

[84] Don Norman. Things that make us smart: Defending human attributes in the age of

the machine. Diversion Books, 2014.

[85] Jan Peleska and Wen-ling Huang. “Industrial-strength model-based testing of safety-

critical systems”. In: International Symposium on Formal Methods. Springer. 2016,

pp. 3–22.

[86] Jan Philipps and Peter Scholz. “Compositional specification of embedded systems

with statecharts”. In: Colloquium on Trees in Algebra and Programming. Springer.

1997, pp. 637–651.

[87] Colin Pilbrow and Steve Reeves. “Characterising Sound Visualisations of Specifica-

tions using Micro-charts and Refinement”. In: 24th Asia-Pacific Software Engineering

Conference (APSEC). IEEE. 2017, pp. 612–617.

[88] Colin Pilbrow and Steve Reeves. “Using state machines for the visualisation of specifi-

cations via refinement”. In: Proceedings of the 24th Australasian Software Engineering

Conference (ASWEC). Vol. 2. ACM. 2015, pp. 106–110.

[89] Daniel Plagge and Michael Leuschel. “Validating Z specifications using the ProB

animator and model checker”. In: International Conference on Integrated Formal

Methods. Springer. 2007, pp. 480–500.

[90] Amir Pnueli and Michal Shalev. “What is in a step: On the semantics of Statecharts”.

In: International Symposium on Theoretical Aspects of Computer Software. Springer.

1991, pp. 244–264.

[91] Christophe Ponsard et al. “Early verification and validation of mission critical sys-

tems”. In: Formal Methods in System Design 30.3 (2007), p. 233.

[92] AJ Pretorius. “Visualization of state transition graphs”. PhD thesis. Eindhoven Uni-

versity of Technology, 2008.

[93] Nafees Qamar, Yves Ledru, and Akram Idani. “Validation of security-design models

using Z”. In: International Conference on Formal Engineering Methods. Springer.

2011, pp. 259–274.

133

[94] Bryan Ratcliff. Introducing Software Engineering Specification Using Z: A Practical

Case Study Approach. McGraw-Hill, Inc., 1994.

[95] Greg Reeve. “A refinement theory for µ-Charts”. PhD thesis. The University of

Waikato, 2005.

[96] Greg Reeve and Steve Reeves. “µ-Charts and Z: Hows, whys, and wherefores”. In:

International Conference on Integrated Formal Methods. Springer. 2000, pp. 255–276.

[97] Greg Reeve and Steve Reeves. The syntax and semantics of µ-Charts. Tech. rep.

Department of Computer Science, University of Waikato, 2004.

[98] Wolfgang Reisig. Petri nets: an introduction. Vol. 4. Springer Science & Business

Media, 2012.

[99] Howard L Resnikoff. The illusion of reality. Springer Science & Business Media,

2012.

[100] Hendrik Roehm et al. “Industrial Examples of Formal Specifications for Test Case

Generation.” In: ARCH@ CPSWeek. 2015, pp. 80–88.

[101] Omar Salman. “Animation of Z Specifications by Translation to Prolog”. In: Dogus

University Journal 155.1 (2000), pp. 155–167.

[102] Linda B Sherrell and Doris L Carver. “Experiences in translating Z designs to Haskell

implementations”. In: Software: Practice and Experience 24.12 (1994), pp. 1159–1178.

[103] J Michael Spivey. The Z notation: a reference manual. International Series in Com-

puter Science. 1992.

[104] Susan Stepney and Stephen P Lord. “Formal specification of an access control sys-

tem”. In: Software: Practice and Experience 17.9 (1987), pp. 575–593.

[105] Harold Thimbleby. “Interaction walkthrough: evaluation of safety critical interactive

systems”. In: International Workshop on Design, Specification, and Verification of

Interactive Systems. Springer. 2006, pp. 52–66.

[106] Ulyana Tikhonova, Maarten Manders, and Rimco Boudewijns. “Visualization of for-

mal specifications for understanding and debugging an industrial DSL”. In: Federa-

tion of International Conferences on Software Technologies: Applications and Foun-

dations. Springer. 2016, pp. 179–195.

[107] Edward R Tufte. The visual display of quantitative information. Vol. 2. Graphics

press Cheshire, CT, 2001.

[108] John W Tukey and Paul A Tukey. “Computer graphics and exploratory data analysis:

An introduction”. In: The Collected Works of John W. Tukey: Graphics: 1965-1985

5 (1988), p. 419.

134

[109] Mark Utting and Petra Malik. “Unit testing of Z specifications”. In: International

Conference on Abstract State Machines, B and Z. Springer. 2008, pp. 309–322.

[110] Mark Utting, Alexander Pretschner, and Bruno Legeard. “A taxonomy of model-

based testing approaches”. In: Software Testing, Verification and Reliability 22.5

(2012), pp. 297–312.

[111] University of Waikato. AMuZed and ZooM. 2004. url: https://www.cs.waikato.

ac.nz/research/fm/amuzed.html (visited on 04/30/2018).

[112] Dolores R. Wallace and Roger U. Fujii. “Software verification and validation: an

overview”. In: IEEE Software 6.3 (1989), pp. 10–17.

[113] Niklaus Wirth. “Program development by stepwise refinement”. In: Communications

of the ACM 26.1 (1983), pp. 70–74.

[114] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof. Vol. 39.

Prentice Hall Englewood Cliffs, 1996.

[115] Jim Woodcock et al. “Formal methods: Practice and experience”. In: ACM computing

surveys (CSUR) 41.4 (2009), p. 19.

[116] J. B. Wordsworth. Software Development with Z: A Practical Approach to Formal

Methods in Software Engineering. Addison-Wesley Longman Publishing Co., Inc.,

1992.

[117] Hong Zhu, Patrick AV Hall, and John HR May. “Software unit test coverage and

adequacy”. In: ACM computing surveys (CSUR) 29.4 (1997), pp. 366–427.

135

Appendices

136

The appendices contain proofs for many of the visualisations we have looked at in the

thesis. In each case the theorem being proved is that a certain visualisation is or is not

sound. Typically, these proofs include a formalisation of the visualisation and we check if

the refinement properties hold.

• Appendix A contains the refinement proof obligations and some common rules that

will be used throughout the proofs.

• In Appendix B we look at an unsound visualisation of the birthday book specification.

We formalise this visualisation using schema calculus and use data refinement.

• In Appendices C and D we discuss how two visualisations can be formalised using

bindings and show they are sound using operation refinement.

• In Appendix E we create a schema formalism of a birthday book visualisation using

the same state space as the specification. This lets us use operation refinement and

find that the visualisation is unsound.

• In Appendix F we investigate a sound visualisation of the birthday book specification

using schema calculus and data refinement.

• This is followed by a similar visualisation in Appendix G that includes an unexplored

state.

• In Appendix H we look at a partial visualisation that only includes two of the opera-

tions of the stopwatch specification. Additionally, we discuss the consequences of this

visualisation lacking an initial state.

• In Appendices I and J we look at two partial visualisations and investigate the effect

of using different restrictions.

• In Appendix K we look at a partial visualisation with multiple unexplored states and

show that it is a sound visualisation of a restricted jars specification.

• In Appendix L we present the complete formalisation of a µ-Chart visualisation that

uses composition. After applying the operation operator we use data refinement to

show the visualisation is sound.

• In Appendix M we present the final operation schemas of a µ-Chart visualisation that

uses a local variable and assignment. This is shown to be sound using data refinement.

• Finally, in Appendix N we construct a sound visualisation using an animation function.

137

Appendix A

Proof Rules

We described the different proof obligations in chapter 4. Typically, if our specification and

visualisation share the same state space then we will use operation refinement from section

4.3:

Applicability property:

∀State; ?AOp • pre AOp ⇒ pre COp

Correctness property:

∀State; State ′; ?AOp; !AOp • pre AOp ∧ COp ⇒ AOp

Otherwise, we use data refinement:

Initialisation property:

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

Applicability property:

∀AState; CState; ?AOpi • pre AOpi ∧ R ⇒ pre COpi

Correctness property:

∀AState; CState; CState ′; ?AOpi ; !AOpi • pre AOpi ∧ R ∧ COpi ⇒

∃AState ′ • R′ ∧ AOpi

For each example if all proof obligations are satisfied we have found a refinement relation

and conclude that the visualisation is sound. In order to prove that these properties hold

we first formalise the visualisation. Additionally, we may need to create a retrieve relation

that describes how the states in the specification and visualisation are related. For partial

visualisations we also give a restriction that is applied to the specification operation schema.

The one-point rule is used to eliminate ∃. Where x is not free in t :

∃ x : S • t ∈ S ∧ (P ∧ x = t) ≡ P [t/x]

138

If we know the value of a variable we can substitute the value for the variable and eliminate

it from the existential quantification. This rule will be used in data refinement when proving

the correctness property holds.

To eliminate the universal quantification we use two main rules. If we can show that P

is true for all values of quantified variable x then ∀ x : X • P is true. This is usually done

by assuming x is arbitrary, i.e. no assumptions made about it.

∀ x : X • P ≡ true if P ≡ true

Alternatively, if we can find even one counterexample such that P is false then ∀ x : X •

P is false.

∀ x : X • P ≡ false if P [t/x] ≡ false

The majority of the proofs use implication so we use the following rules:

false⇒ P ≡ true

P ⇒ true ≡ true

true⇒ false ≡ false

P ⇒ P ≡ true

(Q ∧ P)⇒ P ≡ true

(P ∨ Q)⇒ R ≡ (P ⇒ R) ∧ (Q ⇒ R)

P ⇒ (Q ∧ R) ≡ (P ⇒ Q) ∧ (P ⇒ R)

P ⇒ Q ≡ P ⇒ Q ∧ P

In section 7.10 we use some natural deduction rules to complete our proofs. While the

standard rules can be found elsewhere we also introduce two that are specific to Z [45]. In

the following rules U is an operation schema with type T . T can be split into the before

and after observations T in and T out . t0 is a binding with type T in and t ′1 is a binding with

type T out . These bindings can be concatenated t0Ft ′1 as the bindings are disjoint. This

results in a binding with type T . y =T in t if the before observations and values in bindings

y and t are equal.

When y is a fresh binding and P is any proposition we can use the following precondition

elimination rule:
pre U t y ∈ U , y =T in t `P

pre−
P

An operation U can be lifted and totalised using the following introduction rule. T ∗ shows

that the type T has been lifted to include ⊥. If t0Ft1 ∈ T then t0Ft1 ∈ T ∗

t0Ft1 ∈ T ∗ pre U t0 ` t0Ft1 ∈ U
• +

t0Ft1 ∈
•

U

139

Appendix B

Proofs for Figure 6.1

Figure 6.1 is a visualisation of the birthday book specification that splits the state space into

two states; one where the book is empty and one where it is not. We begin by defining the

visualisation using schema calculus. We have two state schemas, State1 and State2, and use

these to build the transitions. We also include input observations so that these operations

are conformal to the specification operations.

Add =̂ State2′ ∧ [name? : NAME ; date? : DATE]

Edit =̂ State2 ∧ State2′ ∧ [name? : NAME ; date? : DATE]

Remove =̂ State2 ∧ (State1′ ∨ State2′) ∧ [name? : NAME]

We then calculate the preconditions of these operations.

pre Add = true

pre Edit = State2

pre Remove = State2

To use data refinement we need a retrieve relation. This schema matches the states where

birthdaybook = ∅ with State1 and the remaining states with State2. We include the schema

SDState which is the state space of the visualisation. SDState =̂ State1⊕ State2

∅Init ∅

Add

Remove

Edit

Add

Remove

Figure 6.1: Empty or not empty (repeated from page 58)

140

R

State

SDState

birthdaybook = ∅ ∧ State1 ∨

birthdaybook 6= ∅ ∧ State2

We begin by checking the initialisation property.

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

≡ (Substitution)

∀SDState ′ • SDInit ⇒ ∃State ′ • Init ∧ (birthdaybook ′ = ∅ ∧ State1′ ∨

birthdaybook ′ 6= ∅ ∧ State2′)

≡ (Substitution)

∀SDState ′ • State1′ ⇒ ∃State ′ • known ′ = ∅ ∧ (birthdaybook ′ = ∅ ∧ State1′ ∨

birthdaybook ′ 6= ∅ ∧ State2′)

≡(One-point rule known ′ = dom birthdaybook ′)

∀SDState ′ • State1′ ⇒ State1′

≡ (P ⇒ P)

true

Next, we show the applicability property holds for Add :

∀AState; CState; ?AOpi • pre AOpi ∧ R ⇒ pre COpi

≡ (Substitution)

∀State; SDState; ?AOpi • name? 6∈ known ∧ R ⇒ true

≡ (P ⇒ true)

true

Next, we show the applicability property holds for Edit :

∀AState; CState; ?AOpi • pre AOpi ∧ R ⇒ pre COpi

≡ (Substitution)

∀State; SDState; ?AOpi • name? ∈ known ∧ (birthdaybook = ∅ ∧ State1 ∨

birthdaybook 6= ∅ ∧ State2⇒ State2)

141

≡(Distribution, ∅)

∀State; SDState; ?AOpi • name? ∈ known ∧ birthdaybook 6= ∅ ∧ State2⇒ State2)

≡ (P ∧ Q ⇒ P)

true

The preconditions for Edit are the same as Remove so applicability also holds for Remove.

Finally, we need to show the correctness property holds. We start we Add :

∀AState; CState; CState ′; ?AOpi • pre AOpi ∧ R ∧ COpi ⇒ ∃AState ′ • R′ ∧ AOpi

≡ (Substitution)

∀State; SDState; SDState ′; ?AOpi • name? 6∈ known ∧ R ∧ State2′ ⇒

∃State ′ • R′ ∧ name? 6∈ known ∧ birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

≡(One-point rule)

∀State; SDState; SDState ′; ?AOpi • name? 6∈ known ∧ (birthdaybook = ∅ ∧ State1 ∨

birthdaybook 6= ∅ ∧ State2) ∧ State2′ ⇒

(birthdaybook ∪ {name? 7→ date?} = ∅ ∧ State1′ ∨

birthdaybook ∪ {name? 7→ date?} 6= ∅ ∧ State2′) ∧ name? 6∈ known

≡ (∅)

∀State; SDState; SDState ′; ?AOpi • name? 6∈ known ∧ (birthdaybook = ∅ ∧ State1 ∨

birthdaybook 6= ∅ ∧ State2) ∧ State2′ ⇒

State2′ ∧ name? 6∈ known

≡ (P ∧ Q ⇒ P)

true

Next, we check correctness for Remove:

∀AState; CState; CState ′; ?AOpi • pre AOpi ∧ R ∧ COpi ⇒ ∃AState ′ • R′ ∧ AOpi

≡ (Substitution)

∀State; SDState; SDState ′; ?AOpi • name? ∈ known ∧ (birthdaybook = ∅ ∧ State1 ∨

birthdaybook 6= ∅ ∧ State2) ∧ State2 ∧ (State1′ ∨ State2′)⇒

∃State ′ • (birthdaybook ′ = ∅ ∧ State1′ ∨ birthdaybook ′ 6= ∅ ∧ State2′) ∧

name? ∈ known ∧ birthdaybook ′ = name?−C birthdaybook

142

≡(One-point rule)

∀State; SDState; SDState ′; ?AOpi • name? ∈ known ∧ birthdaybook 6= ∅ ∧

State2 ∧ (State1′ ∨ State2′)⇒

(name?−C birthdaybook = ∅ ∧ State1′ ∨ name?−C birthdaybook 6= ∅ ∧ State2′) ∧

name? ∈ known

Counterexample State2 ∧ State2′ ∧ birthdaybook = {(A,T)} ∧ name? = A

true ∧ true ∧ true ∧ true⇒

(A−C {(A,T)} = ∅ ∧ false ∨ A−C {(A,T)} 6= ∅ ∧ true) ∧ A ∈ {A}

≡ (∅)

true⇒ false

≡ (true⇒ false)

false

So, the Remove operation is not correct. This is because you can remove the last name in

the book and stay in State2. This means that the visualisation is not sound and should not

be used to help validate the Remove operation.

143

Appendix C

Proofs for Figure 6.3

Figure 6.3 is a visualisation of the Fill Jar and Empty Jar operations from the Jars speci-

fication. This state diagram was defined using the sets of bindings (Q ,Σ, δ, δ0). We begin by

converting the diagram into bindings without removing the variables x0 and x1. Although

this means the bindings are not valid, this is still a useful intermediary step.

Q = {〈j 3 7→ 0, j 5 7→ 0〉, 〈j 3 7→ x0〉, 〈j 3 7→X0, j 5 7→ 5〉, 〈j 3 7→ x0, j 5 7→ 0〉,

〈j 5 7→ x1〉, 〈j 3 7→ 3, j 5 7→ x1〉, 〈j 3 7→ 0, j 5 7→ x1〉}

We begin with the set of seven states in the diagram. There are two changes we must make

to convert this into a set of valid bindings. Firstly, the variables x0 and x1 are removed.

This is done by replacing the bindings containing these variables with multiple bindings

where the variables have been replaced with the possible values. For example, the binding

〈j 3 7→ x0〉 is replaced with 〈j 3 7→ 0〉, 〈j 3 7→ 1〉, 〈j 3 7→ 2〉 and 〈j 3 7→ 3〉.

Secondly, the size of the bindings in Q is not consistent, as two states only refer to one

of the observations. This is because in these states the value of the omitted observation is

not relevant, and can have any valid value. So, similarly to the first step, we replace these

bindings with bindings that contain both observations. For example, the binding 〈j 3 7→ 0〉

that we added in the previous step is replaced with the bindings 〈j 3 7→0, j 5 7→0〉,〈j 3 7→0, j 5 7→

1〉,〈j 3 7→0, j 5 7→2〉, and so on. Replacing the state bindings with valid bindings results in 24

bindings, which we will not show in full. Because this type diagram does not have distinct

unique states like a state machine, many bindings are duplicates and are removed from the

set of bindings Q . For example 〈j 3 7→ 0, j 5 7→ 0〉 can be found in five of the states.

Σ is the set of observations in the state diagram. We are visualising Init , Fill Jar and

Empty Jar , where Fill Jar and Empty Jar both have input observation j ?. δ0 is the initial

state 〈j 3 7→ 0, j 5 7→ 0〉.

For the set of transitions δ, we start by writing the four transitions as invalid bindings.

144

j 3 7→ x0

j 3 7→ x0

j 5 7→ 5

j 3 7→ x0

j 5 7→ 0

Fill Jar .j ? 7→ j 5

Empty Jar .j ? 7→ j 5

j 5 7→ x1

j 3 7→ 3

j 5 7→ x1

j 3 7→ 0

j 5 7→ x1

Fill Jar .j ? 7→ j 3

Empty Jar .j ? 7→ j 3

j 3 7→ 0

j 5 7→ 0
Init

Figure 6.3: State Diagram of Jars (repeated from page 60)

Once again, the variables are present and some bindings are missing observations.

δ = {〈j 3 7→ x0, j ? 7→ j 5, j 3′ 7→ x0, j 5′ 7→ 5〉, 〈j 3 7→ x0, j ? 7→ j 5, j 3′ 7→ x0, j 5′ 7→ 0〉

〈j 5 7→ x1, j ? 7→ j 3, j 3′ 7→ 3, j 5′ 7→ x1〉〈j 5 7→ x1, j ? 7→ j 3, j 3′ 7→ 0, j 5′ 7→ x1〉}

Note that this representation does not include the operation that is being used. Because

this is important, another way of representing δ is by separating the bindings into distinct

operations.

δFill Jar = {〈j 3 7→ x0, j ? 7→ j 5, j 3′ 7→ x0, j 5′ 7→ 5〉,

〈j 5 7→ x1, j ? 7→ j 3, j 3′ 7→ 3, j 5′ 7→ x1〉}

δEmpty Jar = {〈j 3 7→ x0, j ? 7→ j 5, j 3′ 7→ x0, j 5′ 7→ 0〉,

〈j 5 7→ x1, j ? 7→ j 3, j 3′ 7→ 0, j 5′ 7→ x1〉}

The same steps that we applied to the state bindings are also used here. For example,

〈j 3 7→ x0, j ? 7→ j 5, j 3′ 7→ x0, j 5′ 7→ 5〉 is replaced with 〈j 3 7→ 0, j 5 7→ 0, j ? 7→ j 5, j 3′ 7→ 0, j 5′ 7→

5〉,〈j 3 7→ 1, j 5 7→ 0, j ? 7→ j 5, j 3′ 7→ 1, j 5′ 7→ 5〉, 〈j 3 7→ 0, j 5 7→ 1, j ? 7→ j 5, j 3′ 7→ 0, j 5′ 7→ 5〉, and

many more. Note that 〈j 3 7→0, j 5 7→0, j ? 7→ j 5, j 3′ 7→1, j 5′ 7→5〉 is not a valid replacement, as

the same variable x0 has been replaced by two different values in the same binding. There

are 96 resulting operation bindings, which will not be listing here in full. This helps show

one important reason for using this type of state diagram, compared to a state diagram

that would show every state and transition in full. We have simplified a state diagram that

would have nearly 100 transitions to one that has only four. Additionally, this diagram does

not visualise the Transfer Jar operation, as the methods we have applied to simplify this

145

visualisation would not work after this operation is included. Showing all transitions for each

operation would require over 1000 transitions. This is why we use handmade, custom, or

otherwise simplified visualisations, even though it affects the soundness of the visualisation.

We can now start finding a refinement relation between the specification and the visu-

alisation. Because the state space is the same in the visualisation and specification, we will

be checking operation refinement for Fill Jar and Empty Jar .

Calculating the preconditions for the operations gives us two collections of bindings that

contain the beforestate and input observation of the operations.

pre AFill Jar = [Level ; j ? : Jars | level(j ?) < max fill(j ?)]

pre AEmpty Jar = [Level ; j ? : Jars | level(j ?) > 0]

We can obtain similar collection of bindings for the concrete (visualisation) operations by

removing the afterstate observations from the bindings in δFill Jar and δEmpty Jar . How-

ever, the visualisation shows that it is possible to empty jars that are already empty, and

fill jars that are already full, meaning they have weaker preconditions than the abstract

operations. So, does the applicability property hold?

∀Level ; j ? : Jars • pre AFill Jar ⇒ pre CFill Jar

≡ (Substitution)

∀Level ; j ? : Jars • pre level(j ?) < max fill(j ?)⇒ true

≡ (P ⇒ true)

true

For both operations we can conclude that the applicability property holds as the visualisation

operations are enabled in all the beforestates where the abstract operations are enabled and

more.

We we be using the standard contractual interpretation when checking correctness. We

check that the all behaviour shown in the visualisation is the same as the specification in the

states where the behaviour of the operation is specified in the specification. To check this

we remove bindings from δEmpty Jar where the value of j ? in the beforestate is 0. Then,

we check that all remaining bindings are in AEmpty Jar . Because the visualisation shows

that jar j ? is set to 0 while the level of the other jar is unchanged this is true. We can do a

similar check for Fill Jar although a more rigorous test would involve testing each binding.

This is why in later proofs we use schemas to represent the state diagram.

So, because the visualisation has passed the tests for operation refinement, Figure 6.3 is

a sound visualisation of the Fill Jar and Empty Jar operations from the Jars example.

146

Appendix D

Proofs for Figure 6.4

Figure 6.4 is visualisation of the birthday book specification. Once again variables have

been used to simplify a large model. With no limits on the size of NAME and DATE , this

specification has an infinitely large state space. Like the previous example, (Q ,Σ, δ, δ0) will

be written using the invalid bindings directly, followed by a few bindings selected from the

infinitely many that are used as the valid replacements.

Q = {〈bdays 7→ {}〉, 〈bdays 7→ b ∪ {f ,newD}〉, 〈bdays 7→ b ∪ {f , d}〉, 〈bdays 7→ b〉}

The state bindings shown here in Q are not entirely accurate, because this state diagram has

an additional requirement that f 6∈ dom b. So 〈bdays 7→ {(friend1, date1), (friend1, date2)}〉

is not a valid state binding, although it may appear to be so from how we have written Q

above. Remember that this is only a useful intermediary step to work out the real value of

Q , which is an infinite set of valid bindings.

Q = {〈bdays 7→ {}〉, 〈bdays 7→ {(friend1, date2)〉, 〈bdays 7→ {(friend1, date3)〉, . . .

〈bdays 7→ {(friend1, date1)}〉, 〈bdays 7→ {(friend1, date1), (friend2, date1)}〉, . . .

bdays 7→ b ∪ {(f , d)}

bdays 7→ b

f 6∈ dom b

bdays 7→ b ∪ {(f ,newD)}bdays 7→ {}Init

RemoveFriend .friend? 7→ f

AddFriend .friend? 7→ f , date? 7→ d

EditFriend .friend? 7→ f , date? 7→ newD

Figure 6.4: State diagram of birthday book (repeated from page 62)

147

When completely expanded and the observation known is included, Q is the same as the

state space in the specification. Σ is the set of operations and their input used in the state

diagram, this is the same as the specification. δ0 = 〈bdays 7→ {}〉, this matches with the

specification as it should.

There are only three transitions in the state diagram, each representing a potentially

infinite number of bindings. We look at each of these operations separately, starting with

EditFriend . δEditFriend = 〈bdays 7→ b ∪ {(f , d)}, friend? 7→ f , date? 7→ newD , bdays ′ 7→ b ∪

{(f ,newD)}〉. When replacing the variables with values, remember to be consistent. For

example, when replacing f with friend1, all instances of f should be replaced with the same

value friend1, including in f 6∈dom b. Like the state bindings, we need to remove the bindings

from δ that do not satisfy this additional requirement. This transition only makes one small

change to bdays, the value of d is changed to newD , while the rest is left unchanged. The

beforestate of this transition includes all but one, 〈bdays 7→ {}〉, as {} is the only value of

bdays that cannot satisfy b ∪ {(f , d)}.

δEditFriend = 〈bdays 7→ {(friend1, date1)}, friend? 7→ friend1, date? 7→ date2,

bdays ′ 7→ {(friend1, date2)}〉,

〈bdays 7→ {(friend1, date1), (friend2, date1)}, friend? 7→ friend1, date? 7→ date2,

bdays ′ 7→ {(friend1, date2), (friend2, date1)}〉 . . .

Only two of the bindings of δEditFriend are shown here to help demonstrate that this

transition contains bindings like we would expect.

δRemoveFriend removes an element from the bdays set, while leaving b unchanged. Thus,

this is fairly straightforward to expand.

δRemoveFriend = 〈bdays 7→ {(friend1, date1)}, friend? 7→ friend1, bdays ′ 7→ {}〉,

〈bdays 7→ {(friend1, date1), (friend2, date1)}, friend? 7→ friend1,

bdays ′ 7→ b ∪ {(friend2, date1)}〉, . . .

Finally, δAddFriend adds inputs (f , d) to bdays, without changing any existing birthdays b.

There is also the additional requirement that f 6∈ dom b.

δAddFriend = 〈bdays 7→ {}, friend? 7→ friend1, date? 7→ date1, bdays ′ 7→ {(friend1, date1)}〉,

〈bdays 7→ {(friend2, date1)}, friend? 7→ friend1, date? 7→ date1,

bdays ′ 7→ b ∪ {(friend1, date1)(friend2, date1)}〉, . . .

The resulting collections of bindings for δ are exactly the same as the respective operations

from the specification, once the observation known is included properly. This means that

this is a trivial refinement, and the visualisation is sound. However, the method of expanding

and checking each binding individually is infeasible. As such, for the following examples we

define the state diagrams using schemas rather than bindings.

148

Appendix E

Proofs for Figure 6.10

Figure 6.10 is a simple visualisation of the birthday book that is used to clearly show

the preconditions of the operations. Because the visualisation refers to the specification

observations name? and known, we will begin by assuming that the underlying visualisation

state is the same as the specification state. This lets us use operation refinement to determine

if the visualisation is sound. If the visualisation referred to observations that were not part

of the original specification, then we would use data refinement instead.

We begin with the Add operation, which has two input observations, name? and date?.

The visualisation gives us the constraints of this operation, name? 6∈ known and name? ∈

known ′.

Add

∆State

name? : NAME

date? : DATE

name? 6∈ known

name? ∈ known ′

To use operation refinement, we first find the preconditions of the abstract and concrete

name? 6∈ knownInitSD name? ∈ known

Add

Remove

Edit

Figure 6.10: Precondition labels on states (repeated from page 66)

149

operations. Because they are identical, the applicability property is true trivially.

pre Add = [State; name? : NAME ; date? : DATE | name? 6∈ known]

pre AddFriend = [State; name? : NAME ; date? : DATE | name? 6∈ known]

∀State; name? : NAME ; date? : DATE • name? 6∈ known ⇒ name? 6∈ known

≡ (P ⇒ P)

true

Then, we need to show the correctness property holds.

∀State; State ′; ?AOp; !AOp • pre AOp ∧ COp ⇒ AOp

≡ (Substitution)

∀State; State ′; name? : NAME ; date? : DATE • pre AddFriend ∧ Add ⇒ AddFriend

≡ (Substitution)

∀State; State ′; name? : NAME ; date? : DATE • name? 6∈ known ∧ name? ∈ known ′ ⇒

name? 6∈ known ∧ birthdaybook ′ = birthdaybook ∪ name? 7→ date?

Here we notice that the left and right sides of the implication are uneven, so we look

for a counterexample. We can also expand State and State ′ to reveal that known =

dom birthdaybook . We only need to find one combination of observation values such that

true ⇒ false for the correctness property to be false. There are many examples of this,

firstly, we start with an empty birthday book where birthdaybook = {} and known = {}.

Our input observation values are name? = A and date? = D . However, our counterexample

states birthdaybook ′ = {(A,D), (B ,D)} and known ′ = {A,B}. Two names have been added,

which is not correct in the specification. Hence, substituting this counterexample into the

implication results in false.

A 6∈ {} ∧ A ∈ {A,B} ⇒ A 6∈ {} ∧ {(A,D), (B ,D)} = {} ∪A 7→D

≡ (∪rule)

true ∧ true⇒ true ∧ false

≡ (true⇒ false)

false

The visualisation is not sound because it does not show that names other than what we

are currently adding remain unchanged. In fact, the correctness property also does not

hold for Edit and Remove for the same reason. So, although the visualisation shows the

preconditions of the operations accurately, the postconditions are more complex than what

is shown in the visualisation.

150

Appendix F

Proofs for Figure 6.11

The visualisation in Figure 6.11 has merged the specification into three main states, depend-

ing on the name Alan Turing. Additionally, the labels on the transitions are also shortened.

For example, EditA,T refers to the edit friend operation being used with name? = A and

date? = T , while AddO refers to the add friend operation being used where name? 6= A.

We will formalise the operations using schema calculus, where State0, StateT and StateF

are schemas that refer to the states in the visualisation. This lets us write transitions as

follows:

AddO =̂ State0 ∧ State0′ ∧ [name? : NAME ; date? : DATE | name? 6= A]

However, to shorten the proof, rather than include the input values using horizontal schemas

we simply show the constraints:

AddO =̂ State0 ∧ State0′ ∧ name? 6= A

To use data refinement, we need a retrieve relation that matches the specification states

with the visualisation states.

R

State

SDState

State0 ∧ A 6∈ known ∨

StateT ∧ (A,T) ∈ birthdaybook ∨

StateF ∧ A ∈ known ∧ (A,T) 6∈ birthdaybook

We will begin by formalising Add , then find the precondition and check the applicability

151

State0InitSD

StateF

StateT

AddA,F

AddA,T

RemoveA

EditA,T

EditA,F

RemoveA

EditO

AddO

RemoveO

EditO

AddO

RemoveO

EditA,F

EditO

AddO

RemoveO

EditA,T

Figure 6.11: Alan Turing Visualisation (repeated from page 67)

and correctness properties.

Add =̂ (State0 ∧ State0′ ∧ name? 6= A) ∨

(StateT ∧ StateT ′ ∧ name? 6= A) ∨

(StateF ∧ StateF ′ ∧ name? 6= A) ∨

(State0 ∧ StateT ′ ∧ name? = A ∧ date? = T) ∨

(State0 ∧ StateF ′ ∧ name? = A ∧ date? 6= T)

pre Add = State0 ∨ ((StateT ∨ StateF) ∧ name? 6= A)

The precondition of Add is the states where A is not in the book or, otherwise, A is not

being added. Next, we check for applicability and correctness:

∀AState; CState; ?AOpi • pre AOpi ∧ R ⇒ pre COpi

≡ (Substitution)

∀State; SDState; name? : NAME ; date? : DATE • name? 6∈ known ∧ R ⇒

State0 ∨ ((StateT ∨ StateF) ∧ name? 6= A)

≡(Substitution, distribution)

∀State; SDState; name? : NAME ; date? : DATE •

(name? 6∈ known ∧ State0 ∧ A 6∈ known ∨

name? 6∈ known ∧ StateT ∧ (A,T) ∈ birthdaybook ∨

name? 6∈ known ∧ StateF ∧ A ∈ known ∧ (A,T) 6∈ birthdaybook)⇒

State0 ∨ ((StateT ∨ StateF) ∧ name? 6= A)

152

≡ (Using dom birthdaybook = known from State)

∀State; SDState; name? : NAME ; date? : DATE •

(name? 6∈ known ∧ State0 ∧ A 6∈ known ∨

name? 6∈ known ∧ StateT ∧ (A,T) ∈ birthdaybook ∧ name? 6= A ∨

name? 6∈ known ∧ StateF ∧ A ∈ known ∧ (A,T) 6∈ birthdaybook) ∧ name? 6= A⇒

State0 ∨ ((StateT ∨ StateF) ∧ name? 6= A)

≡ (P ∧ Q ⇒ P)

true

∀AState; CState; CState ′; ?AOpi • pre AOpi ∧ R ∧ COpi ⇒ ∃AState ′ • R′ ∧ AOpi

≡ (Substitution)

∀State; SDState; SDState ′; name? : NAME ; date? : DATE ; • name 6∈ known ∧

(State0 ∧ A 6∈ known ∨

StateT ∧ (A,T) ∈ birthdaybook ∨

StateF ∧ A ∈ known ∧ (A,T) 6∈ birthdaybook) ∧

((State0 ∧ State0′ ∧ name? 6= A) ∨

(StateT ∧ StateT ′ ∧ name? 6= A) ∨

(StateF ∧ StateF ′ ∧ name? 6= A) ∨

(State0 ∧ StateT ′ ∧ name? = A ∧ date? = T) ∨

(State0 ∧ StateF ′ ∧ name? = A ∧ date? 6= T))⇒

∃State ′ • (State0′ ∧ A 6∈ known ′ ∨

StateT ′ ∧ (A,T) ∈ birthdaybook ′ ∨

StateF ′ ∧ A ∈ known ′ ∧ (A,T) 6∈ birthdaybook ′) ∧

name? 6∈ known ∧ birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

≡ (DNF ,State0 ∧ StateT = false)

∀State; SDState; SDState ′; name? : NAME ; date? : DATE ; • name? 6∈ known ∧

((State0 ∧ A 6∈ known ∧ State0′ ∧ name? 6= A) ∨

(State0 ∧ A 6∈ known ∧ StateT ′ ∧ name? = A ∧ date? = T) ∨

(State0 ∧ A 6∈ known ∧ StateF ′ ∧ name? = A ∧ date? 6= T) ∨

(StateT ∧ (A,T) ∈ birthdaybook ∧ StateT ′ ∧ name? 6= A) ∨

(StateF ∧ A ∈ known ∧ (A,T) 6∈ birthdaybook ∧ StateF ′ ∧ name? 6= A))⇒

∃State ′ • name? 6∈ known ∧

(State0′ ∧ A 6∈ known ′ ∧ birthdaybook ′ = birthdaybook ∪ {name? 7→ date?} ∨

StateT ′ ∧ (A,T) ∈ birthdaybook ′ ∧ birthdaybook ′ = birthdaybook ∪ {name? 7→ date?} ∨

StateF ′ ∧ A ∈ known ′ ∧ (A,T) 6∈ birthdaybook ′) ∧

birthdaybook ′ = birthdaybook ∪ name? 7→ date?

153

≡ (One-point Rule birthdaybook ′ = birthdaybook ∪ name? 7→ date?)

∀State; SDState; SDState ′; name? : NAME ; date? : DATE ; • name? 6∈ known ∧

((State0 ∧ A 6∈ known ∧ State0′ ∧ name? 6= A) ∨

(State0 ∧ A 6∈ known ∧ StateT ′ ∧ name? = A ∧ date? = T) ∨

(State0 ∧ A 6∈ known ∧ StateF ′ ∧ name? = A ∧ date? 6= T) ∨

(StateT ∧ (A,T) ∈ birthdaybook ∧ StateT ′ ∧ name? 6= A) ∨

(StateF ∧ A ∈ known ∧ (A,T) 6∈ birthdaybook ∧ StateF ′ ∧ name? 6= A))⇒

name? 6∈ known ∧

(State0′ ∧ A 6∈ dom birthdaybook ∪ {name? 7→ date?} ∨

StateT ′ ∧ (A,T) ∈ birthdaybook ∪ {name? 7→ date?} ∨

StateF ′ ∧ A ∈ dom birthdaybook ∪ {name? 7→ date?} ∧

(A,T) 6∈ birthdaybook ∪ {name? 7→ date?})

≡ ∪ Definition, rearrange

∀State; SDState; SDState ′; name? : NAME ; date? : DATE ; • name? 6∈ known ∧

((State0 ∧ A 6∈ known ∧ State0′ ∧ name? 6= A) ∨

(State0 ∧ A 6∈ known ∧ StateT ′ ∧ name? = A ∧ date? = T) ∨

(State0 ∧ A 6∈ known ∧ StateF ′ ∧ name? = A ∧ date? 6= T) ∨

(StateT ∧ (A,T) ∈ birthdaybook ∧ StateT ′ ∧ name? 6= A) ∨

(StateF ∧ A ∈ known ∧ (A,T) 6∈ birthdaybook ∧ StateF ′ ∧ name? 6= A))⇒

name? 6∈ known ∧

(A 6∈ known ∧ State0′ ∧ name? 6= A ∨

A 6∈ known ∧ StateT ′ ∧ name? = A ∧ date? = T ∨

A 6∈ known ∧ StateF ′ ∧ name? 6= A ∧ (A,T) 6∈ birthdaybook ∧ date? 6= T ∨

(A,T) ∈ birthdaybook ∧ StateT ′ ∧ name? 6= A ∨

A ∈ known ∧ (A,T) 6∈ birthdaybook ∧ StateF ′ ∧ name? 6= A)

≡ (P ∧ Q ⇒ P)

true

So, the applicability and correctness properties hold for Add . Although we do not show the

154

complete proof, the schema calculus definitions for Edit and Remove are as follows.

Edit =̂ State0 ∧ State0′ ∧ name? 6= A ∨

StateT ∧ StateT ′ ∧ name? 6= A ∨

StateT ∧ StateT ′ ∧ name? = A ∧ date? 6= T ∨

StateF ∧ StateF ′ ∧ name? 6= A ∨

StateF ∧ StateF ′ ∧ name? = A ∧ date? 6= T ∨

StateF ∧ StateT ′ ∧ name? = A ∧ date? = T ∨

StateT ∧ StateF ′ ∧ name? = A ∧ date? 6= T

Remove =̂ State0 ∧ State0′ ∧ name? 6= A ∨

StateT ∧ StateT ′ ∧ name? 6= A ∨

StateT ∧ State0′ ∧ name? = A ∨

StateF ∧ StateF ′ ∧ name? 6= A ∨

StateF ∧ State0′ ∧ name? = A

Finally, we check if the initialisation property holds.

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

≡ (Substitution)

∀SDState ′ • State0′ ⇒ ∃State ′ • known ′ = {} ∧

State0′ ∧ A 6∈ known ′ ∨

StateT ′ ∧ (A,T) ∈ birthdaybook ′ ∨

StateF ′ ∧ A ∈ known ′ ∧ (A,T) 6∈ birthdaybook ′

≡ (One-point rule known ′ = {})

∀SDState ′ • State0′ ⇒ State0′

≡ (P ⇒ P)

true

155

Appendix G

Proofs for Figure 6.13

Next, we prove that the visualisation in Figure 6.13 is sound. Because the Unexplored state

is not a valid state in the original specification we will use data refinement where the retrieve

relation merges together the states we are not examining into one state.

R

State

SMState

birthdaybook = {} ∧ State∅ ∨

birthdaybook = {(A,T)} ∧ StateAT ∨

birthdaybook = {(A,F)} ∧ StateAF ∨

birthdaybook 6= {} ∧ birthdaybook 6= {(A,T)} ∧

birthdaybook 6= {(A,F)} ∧ Unexplored

∅Init A,T A,F

Unexplored

Add(A,T)

Add(A,F)

Edit(A,F)

Remove(A)

Remove(A)

Add(A,Other)

AddOther

Edit(A,Other)

AddOther

Edit(A,Other)

AddOther

Edit(A,F)

Edit(A,T)

Figure 6.13: Unexplored Alan Turing Visualisation (repeated from page 68)

156

First we give the preconditions we will be using in the proof:

pre Add FriendR ≡ birthdaybook = {} ∨ (birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? 6∈ known

pre Remove FriendR ≡ (birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)})

∧ name? ∈ known

pre Edit FriendR ≡ (birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)})

∧ name? ∈ known

pre Add ≡ State∅ ∨ (StateAT ∨ StateAF) ∧ name? 6= A

pre Edit ≡ (StateAT ∨ StateAF) ∧ name? = A

pre Remove ≡ (StateAT ∨ StateAF) ∧ name? = A

We can now begin checking refinement. Firstly, checking Init .

∀SDState ′ • InitSM ⇒ ∃State ′ • Init ∧ R′

≡(Substitutions)

∀SDState ′ • State ′∅ ⇒ ∃ birthdaybook ′ : NAME 7→DATE , known ′ : PNAME |

known ′ = dom birthdaybook ′ • known ′ = ∅ ∧ R′

≡(One-point rule, then State ′∅ since known is empty)

∀SDState ′ : PNAME • State ′∅ ⇒ State ′∅

≡ (P ⇒ P)

true

Since SDState says that we can only be in a single state and R gives the requirements

on how to be in each state, if those requirements are met we simply replace R with the

appropriate state instead of expanding R. Since the initial test passed, we can prove the

applicability property for each of the operations.

Firstly, Add :

∀State; SDState; name?; date? • pre AddFriendR ∧ R ⇒ pre Add

≡(Substitutions)

∀State; SDState; name?; date? • birthdaybook = {} ∧ R ∨

(birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧ name? 6∈ known ∧ R ⇒

State∅ ∨ (StateAT ∨ StateAF) ∧ name? 6= A

≡(Distribute over R and remove false cases)

∀State; SDState; name?; date? • birthdaybook = {} ∧ State∅ ∨

(birthdaybook = {(A,T)} ∧ StateAT ∨ birthdaybook = {(A,F)} ∧ StateAF) ∧

name? 6∈ known ⇒ State∅ ∨ (StateAT ∨ StateAF) ∧ name? 6= A

157

≡ (Using known = dom birthdaybook)

∀State; SDState; name?; date? • birthdaybook = {} ∧ State∅ ∨

(birthdaybook = {(A,T)} ∧ StateAT ∨ birthdaybook = {(A,F)} ∧ StateAF) ∧

name? 6∈ known ∧ name? 6= A⇒

State∅ ∨ (StateAT ∨ StateAF) ∧ name? 6= A

≡ (P ∧ Q ⇒ P)

true

Secondly, Remove:

∀State; SDState; name?; date? • pre RemoveFriendR ∧ R ⇒ pre Remove

≡(Substitutions)

∀ birthdaybook ; known; SDState; name?; date? • (birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? ∈ known ∧ R ⇒

(StateAT ∨ StateAF) ∧ name? = A

≡(Distribute over R and remove false cases)

∀ birthdaybook ; known; SDState; name?; date? • (birthdaybook = {(A,T)} ∧

StateAT ∨ birthdaybook = {(A,F)} ∧ StateAF) ∧ name? ∈ known ⇒

(StateAT ∨ StateAF) ∧ name? = A

≡ (Using known = dom birthdaybook)

∀ birthdaybook ; known; SDState; name?; date? • (birthdaybook = {(A,T)} ∧

StateAT ∨ birthdaybook = {(A,F)} ∧ StateAF) ∧ name? ∈ known ∧ name? = A

⇒ (StateAT ∨ StateAF) ∧ name? = A

≡ (P ∧ Q ⇒ P)

true

Finally, Edit has the same proof as Remove:

∀State; SDState; name?; date? • pre EditFriendR ∧ R ⇒ pre Edit

≡(Substitutions)

∀ birthdaybook ; known; SDState; name?; date? • (birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? ∈ known ∧ R ⇒

(StateAT ∨ StateAF) ∧ name? = A

158

≡(Distribute over R and remove false cases)

∀ birthdaybook ; known; SDState; name?; date? • (birthdaybook = {(A,T)} ∧

StateAT ∨ birthdaybook = {(A,F)} ∧ StateAF) ∧ name? ∈ known ⇒

(StateAT ∨ StateAF) ∧ name? = A

≡ (Using known = dom birthdaybook)

∀ birthdaybook ; known; SDState; name?; date? • (birthdaybook = {(A,T)} ∧

StateAT ∨ birthdaybook = {(A,F)} ∧ StateAF) ∧ name? ∈ known ∧ name? = A⇒

(StateAT ∨ StateAF) ∧ name? = A

≡ (P ∧ Q ⇒ P)

true

Next we will investigate contractual correctness for the visualisation.

∀State; SDState; SDState ′; ?AOpi • pre AOpi ∧ R ∧ COpi ⇒ ∃State ′ • R′ ∧ AOpi

Firstly, Add :

∀State; SDState; SDState ′; name?; date? • (birthdaybook = {} ∨

(birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧ name? 6∈ known) ∧ R ∧

(State∅ ∧ State ′AT ∧ name? = A ∧ date? = T ∨ State∅ ∧ name? = A ∧ date? = F ∧

State ′AF ∨ State∅ ∧ name? 6= A ∧ Unexplored ′ ∨

StateAT ∧ name? 6= A ∧ Unexplored ′ ∨ StateAF ∧ name? 6= A ∧ Unexplored ′)⇒

∃ birthdaybook ′; known ′ | known ′ = dom birthdaybook ′ • R′ ∧ (birthdaybook = {} ∨

birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧ name? 6∈ known ∧

birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

159

≡{One-point rule, Distribute over R and remove false cases}

∀ birthdaybook ; known; SDState; SDState ′; name?; date? • (birthdaybook = {} ∧

State∅ ∨ birthdaybook = {(A,T)} ∧ StateAT ∧ name? 6∈ known ∨

birthdaybook = {(A,F)} ∧ StateAF ∧ name? 6∈ known) ∧

(State∅ ∧ birthdaybook = {} ∧ State ′AT ∧ name? = A ∧ date? = T ∨

State∅ ∧ birthdaybook = {} ∧ name? = A ∧ date? = F ∧ State ′AF ∨

State∅ ∧ birthdaybook = {} ∧ name? 6= A ∧ Unexplored ′ ∨

StateAT ∧ birthdaybook = {(A,T)} ∧ name? 6= A ∧ Unexplored ′ ∨

StateAF ∧ birthdaybook = {(A,F)} ∧ name? 6= A ∧ Unexplored ′)⇒

(birthdaybook = {} ∨ birthdaybook = {(A,T)} ∧ name? 6∈ known ∨

birthdaybook = {(A,F)} ∧ name? 6∈ known) ∧

(birthdaybook ∪ {name? 7→ date?} = {(A,T)} ∧ State ′AT ∨

birthdaybook ∪ {name? 7→ date?} = {(A,F)} ∧ State ′AF ∨

birthdaybook ∪ {name? 7→ date?} 6= ∅ ∧ birthdaybook ∪ {name? 7→ date?} 6= {(A,T)} ∧

birthdaybook ∪ {name? 7→ date?} 6= {(A,F)} ∧ Unexplored ′)

≡ (∪)

∀ birthdaybook ; known; SDState; SDState ′; name?; date? • (birthdaybook = {} ∧

State∅ ∨ birthdaybook = {(A,T)} ∧ StateAT ∧ name? 6∈ known ∨

birthdaybook = {(A,F)} ∧ StateAF ∧ name? 6∈ known) ∧

(birthdaybook ∪ {name? 7→ date?} = {(A,T)} ∧ State∅ ∧ birthdaybook = {} ∧

State ′AT ∧ name? = A ∧ date? = T ∨

birthdaybook ∪ {name? 7→ date?} = {(A,F)} ∧ State∅ ∧ birthdaybook = {} ∧

name? = A ∧ date? = F ∧ State ′AF ∨

(birthdaybook ∪ {name? 7→ date?} 6= {(A,T)} ∧

birthdaybook ∪ {name? 7→ date?} 6= {(A,F)} ∧

(State∅ ∧ birthdaybook = {} ∧ name? 6= A ∧ Unexplored ′ ∨ StateAT ∧

birthdaybook = {(A,T)} ∧ name? 6= A ∧ Unexplored ′ ∨

StateAF ∧ birthdaybook = {(A,F)} ∧ name? 6= A ∧ Unexplored ′)))⇒

(birthdaybook = {} ∨ birthdaybook = {(A,T)} ∧ name? 6∈ known ∨

birthdaybook = {(A,F)} ∧ name? 6∈ known) ∧

(birthdaybook ∪ {name? 7→ date?} = {(A,T)} ∧ State ′AT ∨

birthdaybook ∪ {name? 7→ date?} = {(A,F)} ∧ State ′AF ∨

birthdaybook ∪ {name? 7→ date?} 6= {(A,T)} ∧

birthdaybook ∪ {name? 7→ date?} 6= {(A,F)} ∧ Unexplored ′)

≡ (P ∧ Q ⇒ P)

true

160

Every possible transition in Add FriendR, the right hand side of the implication, is shown

in the visualisation.

Next, we check contractual correctness for Remove. Remove only has two transitions in

the visualisation.

∀ birthdaybook ; known; SDState; SDState ′; name? • (birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? ∈ known ∧ R

name? = A ∧ (StateAT ∨ StateAF) ∧ State ′∅ ⇒

∃ birthdaybook ′; known ′; | known ′ = dom birthdaybook ′ • R′ ∧

(birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧ name? ∈ known ∧

birthdaybook ′ = {name?} −C birthdaybook

≡{One-point rule}

∀ birthdaybook ; known; SDState; SDState ′; name? • (birthdaybook = {(A,T)} ∧

StateAT ∨ birthdaybook = {(A,F)} ∧ StateAF) ∧ name? ∈ known ∧ name? = A ∧

(StateAT ∧ birthdaybook = {(A,T)} ∨ StateAF ∧ birthdaybook = {(A,F)}) ∧ State ′∅

⇒ ({name?} −C birthdaybook = {} ∧ State ′∅ ∧ (birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? ∈ known

≡ (P ∧ Q ⇒ P move name? = A to right)

∀ birthdaybook ; known; SDState; SDState ′; name? • (birthdaybook = {(A,T)} ∧

StateAT ∨ birthdaybook = {(A,F)} ∧ StateAF) ∧ name? ∈ known ∧ name? = A ∧ State ′∅

⇒ State ′∅ ∧ (birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)})

≡ (P ∧ Q ⇒ P)

true

Finally, we can also show that the correctness property holds for Edit .

∀ birthdaybook ; known; SDState; SDState ′; name?; date? •

(birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧ name? ∈ known ∧ R ∧

name? = A ∧ (StateAT ∨ StateAF) ∧ (date? = T ∧ State ′AT ∨

date? = F ∧ State ′AF ∨ date? 6= T ∧ date? 6= F ∧ Unexplored ′)⇒

∃ birthdaybook ′; known ′; | known ′ = dom birthdaybook ′ • R′ ∧

(birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧

name? ∈ known ∧ birthdaybook ′ = birthdaybook ⊕ name? 7→ date?

161

≡{One-point rule}

∀ birthdaybook ; known; SDState; SDState ′; name?; date? •

(birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧ name? ∈ known ∧ R ∧

name? = A ∧ (StateAT ∨ StateAF) ∧ (date? = T ∧ State ′AT ∨

date? = F ∧ State ′AF ∨ date? 6= T ∧ date? 6= F ∧ Unexplored ′)⇒

(birthdaybook ⊕ name? 7→ date? = ∅ ∧ State ′∅ ∨

birthdaybook ⊕ name? 7→ date? = {(A,T)} ∧ State ′AT ∨

birthdaybook ⊕ name? 7→ date? = {(A,F)} ∧ State ′AF ∨

birthdaybook ⊕ name? 7→ date? 6= {(A,T)} ∧

birthdaybook ⊕ name? 7→ date? 6= {(A,F)}

∧ Unexplored ′) ∧ (birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)})

∧ name? ∈ known

≡(Simplification and P ⇒ P ∧ Q)

∀ birthdaybook ; known; SDState; SDState ′; name?; date? •

(birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧ name? ∈ known ∧

name? = A ∧ (StateAT ∨ StateAF) ∧

(date? = T ∧ State ′AT ∧ birthdaybook ⊕A 7→ date? = {(A,T)} ∨

date? = F ∧ State ′AF ∧ birthdaybook ⊕A 7→ date? = {(A,F)} ∨

date? 6= T ∧ birthdaybook ⊕A 7→ date? 6= {(A,T)} ∧

date? 6= F ∧ birthdaybook ⊕A 7→ date? 6= {(A,F)} ∧ Unexplored ′)⇒

(birthdaybook ⊕A 7→ date? = {(A,T)} ∧ State ′AT ∨

birthdaybook ⊕A 7→ date? = {(A,F)} ∧ State ′AF ∨

birthdaybook ⊕A 7→ date? 6= {(A,T)} ∧

birthdaybook ⊕A 7→ date? 6= {(A,F)}

∧ Unexplored ′)

≡ (P ∧ Q ⇒ P)

true

We have now checked all the data refinement rules for this partial visualisation. We have

found a refinement relation and conclude that this visualisation is sound.

162

Appendix H

Proofs for Figure 6.15

This is a partial visualisation of the Stopwatch example as it only shows the Tick and

Pause/Play operations. Previously we used schema conjuction to build the transition

schemas. We begin this section by showing an alternative approach, using schema inclusion,

before checking if the applicability and correctness properties hold for Tick and Pause/Play .

The given set STATES contains the states in the visualisation, Paused and Playing

[STATES]

StateDiagramStates

s : STATES

PausedState

StateDiagramStates

s = Paused

PlayingState

StateDiagramStates

s = Playing

Paused Playing

time ′ = time time ′ = time + 1

Play

Pause

Figure 6.15: These diagram states each represent several specification states (repeated from

page 70)

163

Using StateDiagramStates we can then construct the operation schemas.

Pause/PlayOperation

∆StateDiagramStates

PausedState ∧ PlayingState ′ ∨

PlayingState ∧ PausedState ′

Note below that TickOperation uses a different state space than Pause/PlayOperation as it

includes the time and time ′ observations.

TickOperation

∆StateDiagramStates

time, time ′ : N

PlayingState ∧ PlayingState ′ ∧ time ′ = time + 1 ∨

PausedState ∧ PausedState ′ ∧ time ′ = time

The precondition of both operations is true.

We will use data refinement for this example because the state space of the specification

and visualisation are different. We require a retrieve relation schema that relates the two

state spaces.

R

Stopwatch

StateDiagramStates

playing = false ∧ PausedState ∨

playing = true ∧ PlayingState

Because the visualisation does not show initialisation we will begin by checking that ap-

plicability holds for each of the operations. Firstly Pause/Play : ∀AState; CState; ?AOpi •

pre AOpi ∧ R ⇒ pre COpi

∀Stopwatch; StateDiagramStates • time ≤ maxTime ∧ R ⇒ true

≡ (P ⇒ true)

true

Secondly Tick . Note that the precondition of Tick is [Stopwatch | playing = true ∧

time + 1 ≤ maxTime ∨ playing = false ∧ time ≤ maxTime]. Additionally we don’t

164

explicitly quantify over time even though it is in the TickOperation declarations because it

is already in Stopwatch.

∀Stopwatch; StateDiagramStates • playing = true ∧ time + 1 ≤ maxTime ∨

playing = false ∧ time ≤ maxTime ∧ R ⇒ true

≡ (P ⇒ true)

true

Next we will check for correctness, starting with Pause/Play .

∀State; SDState; SDState ′; ?AOpi • pre AOpi ∧ R ∧ COpi ⇒

∃State ′ • R′ ∧ AOpi

∀Stopwatch; StateDiagramStates; StateDiagramStates ′ • time ≤ maxTime ∧

pre Pause/Play ∧ R ∧ (PausedState ∧ PlayingState ′ ∨ PlayingState ∧ PausedState ′)

⇒ ∃Stopwatch ′ • R′ ∧ time ′ = 0 ∧ playing ′ = ¬ playing

≡(Expand R,R′)

∀Stopwatch; StateDiagramStates; StateDiagramStates ′ • time ≤ maxTime ∧

pre Pause/Play ∧ (playing = false ∧ PausedState ∧ PlayingState ′ ∨

playing = true ∧ PlayingState ∧ PausedState ′)⇒

∃Stopwatch ′ • time ′ = 0 ∧ playing ′ = ¬ playing ∧

(playing ′ = false ∧ PausedState ′ ∨ playing ′ = true ∧ PlayingState ′)

≡ (One-point Rule)

∀Stopwatch; StateDiagramStates; StateDiagramStates ′ • time ≤ maxTime ∧

pre Pause/Play ∧ (playing = false ∧ PausedState ∧ PlayingState ′ ∨

playing = true ∧ PlayingState ∧ PausedState ′)⇒

(¬ playing = false ∧ PausedState ′ ∨ ¬ playing = true ∧ PlayingState ′)

≡ (Negation)

∀Stopwatch; StateDiagramStates; StateDiagramStates ′ • time ≤ maxTime ∧

pre Pause/Play ∧ (playing = false ∧ PausedState ∧ PlayingState ′ ∨

playing = true ∧ PlayingState ∧ PausedState ′)⇒

(playing = true ∧ PausedState ′ ∨ playing = false ∧ PlayingState ′)

≡ P ∧ Q ⇒ Q

true

Next we will investigate contractual correctness for Tick . Unfortunately there is a prob-

lem as the time ′ observation is in both the abstract and concrete state. This means that

165

the correctness property will be written like ∀ time ′ : N • . . . ∃ time ′ : N . . ., which is invalid.

To avoid this problem we rename time ′ in the concrete state space like

TickOperation[time/ time, time ′/ time ′] and include it in the retrieve relation.

R

Stopwatch

StateDiagramStates

time : N

time = time

playing = false ∧ PausedState ∨

playing = true ∧ PlayingState

∀State; SDState; SDState ′; ?AOpi • pre AOpi ∧ R ∧ COpi ⇒ ∃State ′ • R′ ∧ AOpi

∀Stopwatch; StateDiagramStates; StateDiagramStates ′[time ′/ time ′] •

time ≤ maxTime ∧ pre Tick ∧ R ∧

PlayingState ∧ PlayingState ′ ∧ time ′ = time + 1 ∨

PausedState ∧ PausedState ′ ∧ time ′ = time

⇒ ∃Stopwatch ′ • R′ ∧ (playing = true ∧ time ′ = time + 1 ∨

playing = false ∧ time ′ = time) ∧ playing = playing ′

≡(Expand R, R′, One-point rule)

∀Stopwatch; StateDiagramStates; StateDiagramStates ′[time ′/ time ′] •

time ≤ maxTime ∧ pre Tick ∧ time = time ∧

(playing = true ∧ PlayingState ∧ PlayingState ′ ∧ time ′ = time + 1 ∨

playing = false ∧ PausedState ∧ PausedState ′ ∧ time ′ = time)

⇒ ∃ time ′ : N • time ′ = time ′ ∧

(PlayingState ′ ∧ playing = true ∧ time ′ = time + 1 ∨

PausedState ′ ∧ playing = false ∧ time ′ = time)

≡(One-point rule)

∀Stopwatch; StateDiagramStates; StateDiagramStates ′[time ′/ time ′] •

time ≤ maxTime ∧ pre Tick ∧ time = time ∧

(playing = true ∧ PlayingState ∧ PlayingState ′ ∧ time ′ = time + 1 ∨

playing = false ∧ PausedState ∧ PausedState ′ ∧ time ′ = time)

⇒ (PlayingState ′ ∧ playing = true ∧ time ′ = time + 1 ∨

PausedState ′ ∧ playing = false ∧ time ′ = time)

166

≡ P ∧ Q ⇒ Q

true

So, the applicabilty and correctness properties hold for these two operations.

H.1 Initialisation Property

We have not checked the initialisation property because the visualisation has no initial state.

This leaves our proofs unfinished so we will address this now. There are different ways we

can look at this problem because the visualisation presented does not have a fixed formal

semantics and so people can interpret it in different ways. We present different options that

could be used. Firstly, we define the CInit schema as [StateDiagramStates | false] This lets

us easily prove that the initialisation property holds:

∀CState ′ • false⇒ ∃AState ′ • AInit ∧ R′

≡ false⇒ Q

true

Secondly, if the definition of the visualisation requires an initial state then the visuali-

sation must have an initial state or be invalid. This visualisation does not show an initial

state so it would be invalid. However, we can also consider that the visualisation actually

has the same initial state as the specification: [playing ′ : BOOL, time ′ : N | playing ′ =

false ∧ time ′ = 0]. The observation names and R′ have been changed to avoid clashes like

above.

∀ playing ′ : BOOL; time ′ : N • playing ′ = false ∧ time ′ = 0⇒

∃ playing ′ : BOOL; time ′ : N • playing ′ = false ∧ time ′ = 0 ∧

playing ′ = playing ∧ time ′ = time

≡(One-Point Rule)

∀ playing ′ : BOOL, time ′ : N • playing ′ = false ∧ time ′ = 0⇒

playing ′ = false ∧ time ′ = 0

≡

true

While this does work, the state space that is initialised is different from what the visualisation

actually operates on. So, if we instead use the previous retreive relation R and CInit =̂

167

[StateDiagramStates | PausedState ′] schema then we can show the following:

∀StateDiagramStates ′; time ′ : N • PausedState ′ ⇒

∃ playing ′ : BOOL, time ′ : N • (playing ′ = false ∧ time ′ = 0 ∧

playing ′ = false ∧ PausedState ′ ∨ false) ∧ time ′ = time ′

≡(One-Point Rule)

∀ s ′ : STATES , time ′ : N • PausedState ′ ⇒

PausedState ′ ∧ time ′ = 0

This does not hold when the initial state is paused but time, whose value is not explicitly

shown in the visualisation, is not 0.

However, if we use the retrieve relation R that does not include time then we see the

following:

∀StateDiagramStates ′ • PausedState ′ ⇒

∃ playing ′ : BOOL, time ′ : N • (playing ′ = false ∧ time ′ = 0 ∧

playing ′ = false ∧ PausedState ′ ∨ false)

≡(One-Point Rule)

∀ s ′ : STATES , time ′ : N • PausedState ′ ⇒ PausedState ′

≡

true

So the initialisation property holds when Paused is the initial state for retrieve relation R.

This is because the visualisation does not show that the system starts at time ′ = 0.

Finally, we look at the underlying meaning of the initialisation property to explain why

this property holds. Every initial state in the visualisation should match an initial state in

the specification. If there is no initial visualisation state or if the set of initial states is the

same in both then this property will hold trivially. So, the visualisation will be unsound if the

visualisation shows that the system starts in a state that is not possible in the specification.

For example, if this visualisation initially began in the Playing state or in a state where

time 6= 0.

168

Appendix I

Proofs for Figure 7.3

We use the partial visualisation in Figure 7.3 as an example of how using different restric-

tions can affect soundness. We use operation refinement for these examples because the

visualisation has the same state space as the restricted specification. We begin by consider-

ing this as a visualisation of four specification transitions. That is, if any of these transitions

are not possible in the specification then the visualisation is unsound. The following schema

FillR shows the specification operation Fill Jar after the restriction level = {(j 3, 0), (j 5, 0)}

has been added and simplified.

FillR

∆State

j ? : Jars

level = {(j 3, 0), (j 5, 0)}

(j ? = j 5 ∧ level ′ = {(j 3, 0), (j 5, 5)} ∨

j ? = j 3 ∧ level ′ = {(j 3, 3), (j 5, 0)})

jar3 7→ 0, jar5 7→ 0Init

jar3 7→ 3, jar5 7→ 0

jar3 7→ 0, jar5 7→ 5

Fill(Jar3)

Fill(Jar5)

Empty(Jar3)

Empty(Jar5)

Figure 7.3: Filling and emptying the jar 1 (repeated from page 81)

169

The precondition of this operation is [State; j ? : Jars | level = {(j 3, 0), (j 5, 0)}].

∀State; j ? : Jars • pre FillR ⇒ pre Fill

≡(Substitutions)

∀State; j ? : Jars • level = {(j 3, 0), (j 5, 0)} ⇒ level = {(j 3, 0), (j 5, 0)}

≡ (P ⇒ P)

true

∀State; State ′; j ? : Jars • pre FillR ∧ Fill ⇒ FillR

≡(Substitutions)

∀State; State ′; j ? : Jars • level = {(j 3, 0), (j 5, 0)} ∧

(j ? = j 5 ∧ level ′ = {(j 3, 0), (j 5, 5)} ∨ j ? = j 3 ∧ level ′ = {(j 3, 3), (j 5, 0)})⇒

level = {(j 3, 0), (j 5, 0)} ∧

(j ? = j 5 ∧ level ′ = {(j 3, 0), (j 5, 5)} ∨ j ? = j 3 ∧ level ′ = {(j 3, 3), (j 5, 0)}

≡ (P ⇒ P)

true

The proofs for the correctness and applicability properties are trivial because the transitions

shown in the visualisation are exactly what is possible in the specification.

However, this is not a sound partial visualisation of the three states shown. For example,

it is possible to Fill(Jar5) in the top state but this is not shown by the visualisation. This

can be shown using the following proof. We begin by restricting level in Fill Jar to the

three states.

FillR

∆State

j ? : Jars

level = {(j 3, 0), (j 5, 0)} ∧ j ? = j 5 ∧ level ′ = {(j 3, 0), (j 5, 5)} ∨

level = {(j 3, 0), (j 5, 0)} ∧ j ? = j 3 ∧ level ′ = {(j 3, 3), (j 5, 0)} ∨

level = {(j 3, 3), (j 5, 0)} ∧ j ? = j 5 ∧ level ′ = {(j 3, 3), (j 5, 5)} ∨

level = {(j 3, 0), (j 5, 5)} ∧ j ? = j 3 ∧ level ′ = {(j 3, 3), (j 5, 5)}

The precondition of this operation is shown in the following schema:

170

jar3 7→ 0, jar5 7→ 0Init

jar3 7→ 3, jar5 7→ 0

jar3 7→ 0, jar5 7→ 5

jar3 7→ 3, jar5 7→ 5

Fill(Jar3)

Fill(Jar5)

Empty(Jar3)

Empty(Jar5)

Fill(Jar5)

Fill(Jar3)

Empty(Jar5)

Empty(Jar3)

Figure 7.4: Filling and emptying the jar 2 (repeated from page 82)

FillR

∆State

j ? : Jars

level = {(j 3, 0), (j 5, 0)} ∨

level = {(j 3, 3), (j 5, 0)} ∧ j ? = j 5 ∨

level = {(j 3, 0), (j 5, 5)} ∧ j ? = j 3

∀State; j ? : Jars • pre FillR ⇒ pre Fill

≡(Substitutions)

∀State; j ? : Jars • level = {(j 3, 0), (j 5, 0)} ∨

level = {(j 3, 3), (j 5, 0)} ∧ j ? = j 5 ∨

level = {(j 3, 0), (j 5, 5)} ∧ j ? = j 3⇒ level = {(j 3, 0), (j 5, 0)}

Counterexample (level = {(j 3, 3), (j 5, 0)} ∧ j ? = j 5)

false ∨ true ∧ true ∨ false ∧ false⇒ false

≡ (true⇒ false)

false

The applicability property does not hold after we weaken the restriction. This is because

the visualisation does not show every transition that is possible in the three states. The

partial visualisation in Figure 7.4 is a similar example that does show every Fill and Empty

transition that is possible in the four states. Partial visualisations are useful for focusing on

a small part of the specification. However, unclear restrictions can be misleading.

171

Appendix J

Proofs for Figure 7.6

Figure 7.6 shows the same visualisation as Figure 6.13 however the unexplored state has

been removed. We will use this example to help show the importance of the unexplored

state while also comparing two different restriction strengths. We will focus on the Add

operation for this example.

We begin by using the strongest reasonable transition restriction. That is, we are restrict-

ing the specification to just Add(A,T) and Add(A,F) in the state when birthdaybook = ∅.

This gives us the following schema:

AddFriendR

∆State

name? : NAME

date? : DATE

birthdaybook = ∅

name? = A

(date? = T ∧ birthdaybook ′ = {(A,T)} ∨

date? = F ∧ birthdaybook ′ = {(A,F)})

Next, we show the correctness property holds for these two transitions:

∀State; State ′; ?AOpR; !AOpR • pre AOpR ∧ COp ⇒ AOpR

∅Init A,T A,F
Add(A,T)

Add(A,F)

Edit(A,F)

Remove(A)

Remove(A)
Edit(A,F)

Edit(A,T)

Figure 7.6: Add, Edit, Remove without Unexplored (repeated from page 84)

172

≡(Substitutions)

∀State; State ′, ?AddFriendR • (birthdaybook = ∅ ∧ name? = A ∧

(date? = T ∨ date? = F)) ∧ (birthdaybook = ∅ ∧ name? = A ∧ date? = T ∧

birthdaybook ′ = {(A,T)} ∨ birthdaybook = ∅ ∧ date? = F ∧ name? = A ∧

birthdaybook ′ = {(A,F)})⇒

(birthdaybook = ∅ ∧ name? = A ∧ date? = T ∧ birthdaybook ′ = {(A,T)} ∨

birthdaybook = ∅ ∧ date? = F ∧ name? = A ∧ birthdaybook ′ = {(A,F)})

≡ (P ∧ Q ⇒ P)

true

Since the correctness property holds we will next check applicability. The preconditions

of the operations are identical so this proof is trivial.

∀State; ?AopR • pre AOpR ⇒ pre COp

≡(Substitutions)

∀State; ?AddFriendR • (birthdaybook = ∅ ∧ name? = A ∧ (date? = T ∨ date? = F))

⇒ (birthdaybook = ∅ ∧ name? = A ∧ (date? = T ∨ date? = F))

≡ (P ⇒ P) true

Thus, we have shown that AddFriend has been visualised soundly when we use the

strongest transition restriction. So we know that we can add A to the birthday book when

the date is T or F and it will be recorded as shown in the visualisation. However, we would

like to use weaker restrictions. Does this visualisation of three states actually visualises the

three states or is there missing information?

AddFriendR

∆State

name? : NAME

date? : DATE

(birthdaybook = ∅ ∨ birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)})

name? 6∈ known

birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

Correctness property:

∀State; State ′; ?AOpR; !AOpR • pre AOpR ∧ COp ⇒ AOpR

173

≡(Substitutions)

∀State; State ′; ?AddFriendR • ((birthdaybook = ∅ ∨ birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? 6∈ known ∧ (birthdaybook = ∅ ∧ name? = A ∧

date? = T ∧ birthdaybook ′ = {(A,T)} ∨ birthdaybook = ∅ ∧ date? = F ∧

name? = A ∧ birthdaybook ′ = {(A,F)})⇒

(birthdaybook = ∅ ∨ birthdaybook = {(A,T)} ∨ birthdaybook = {(A,F)}) ∧

name? 6∈ known ∧ birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

≡ (P ⇒ Q ∧ P)

∀State; State ′; ?AddFriendR • ((birthdaybook = ∅ ∨ birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? 6∈ known ∧ (birthdaybook = ∅ ∧ name? = A ∧

date? = T ∧ birthdaybook ′ = {(A,T)} ∨ birthdaybook = ∅ ∧ date? = F ∧

name? = A ∧ birthdaybook ′ = {(A,F)})⇒

birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

≡(Distribution)

∀State; State ′; ?AddFriendR • ((birthdaybook = ∅ ∨ birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? 6∈ known ∧ birthdaybook = ∅ ∧ name? = A ∧

((date? = T ∧ birthdaybook ′ = {(A,T)}) ∨

(date? = F ∧ birthdaybook ′ = {(A,F)}))⇒

birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

≡ (P ⇒ Q)

∀State; State ′; ?AddFriendR • ((birthdaybook = ∅ ∨ birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? 6∈ known ∧ birthdaybook = ∅ ∧ name? = A ∧

((date? = T ∧ birthdaybook ′ = {(A,T)}) ∨

(date? = F ∧ birthdaybook ′ = {(A,F)}))⇒

birthdaybook ′ = birthdaybook ∪ {name? 7→ date?}

∧ birthdaybook = ∅ ∧ name? = A ∧

((date? = T ∧ birthdaybook ′ = {(A,T)}) ∨

(date? = F ∧ birthdaybook ′ = {(A,F)}))

174

≡ (∪)

∀State; State ′; ?AddFriendR • ((birthdaybook = ∅ ∨ birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? 6∈ known ∧ birthdaybook = ∅ ∧ name? = A ∧

((date? = T ∧ birthdaybook ′ = {(A,T)}) ∨

(date? = F ∧ birthdaybook ′ = {(A,F)}))⇒

birthdaybook = ∅ ∧ name? = A ∧

((date? = T ∧ birthdaybook ′ = {(A,T)}) ∨

(date? = F ∧ birthdaybook ′ = {(A,F)}))

≡ P ∧ Q ⇒ P

true

The correctness property holds for AddFriend . The two transitions in the visualisa-

tion have the same behaviour in the specification. However, the visualisation has a much

stronger precondition than the specification and this will cause us to be unable to prove the

applicability property holds.

∀State; ?AopR • pre AOpR ⇒ pre COp

≡(Substitutions)

∀State; ?AddFriendR • (birthdaybook = ∅ ∨ birthdaybook = {(A,T)} ∨

birthdaybook = {(A,F)}) ∧ name? 6∈ known ⇒

(birthdaybook = ∅ ∧ name? = A ∧ (date? = T ∨ date? = F))

(Counterexample birthdaybook = {(A,T)},name? = B)

∀ date? : DATE ({(A,F)} = ∅ ∨ {(A,F)} = {(A,T)} ∨

{(A,F)} = {(A,F)}) ∧ B 6∈ {A} ⇒

({(A,F)} = ∅ ∧ B = A ∧ (date? = T ∨ date? = F))

≡(Equality)

∀ date? : DATE • (false ∨ false ∨ true) ∧ true⇒

(false ∧ false ∧ (date? = T ∨ date? = F))

≡

∀ date? : DATE • true⇒ false

≡

false

175

In our counterexample we used name? = B . Because this partial visualisation does not

let us add other names to the birthday book from these three states the correctness property

does not hold. Because we have removed the Unexplored state, we have also removed the

transitions entering it, meaning that this is not a partial visualisation of the three states it

shows.

176

Appendix K

Proofs for Figure 7.7

The following is the data refinement proofs for Figure 7.7. We will prove that the conditions

hold for each operation in Jars when the specification has been restricted to the states we

are examining. First, we check Fill .

Fill JarR

∆Level

j ? : Jars

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0})

level(j ?) < max fill(j ?)

level ′ = level ⊕ {j ? 7→max fill(j ?)}

Correctness property:

∀State; State ′; ?AOpR; !AOpR • pre AOpR ∧ COp ⇒ AOpR

≡(Substitution)

∀Level ; Level ′, j ? : Jars •

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0}) ∧ level(j ?) < max fill(j ?) ∧

(level = {j 3 7→ 0, j 5 7→ 0} ∧ j ? = j 3 ∧ level ′ = {j 3 7→ 3, j 5 7→ 0} ∨

level = {j 3 7→ 0, j 5 7→ 0} ∧ j ? = j 5 ∧ level ′ = {j 3 7→ 0, j 5 7→ 5} ∨

level = {j 3 7→ 3, j 5 7→ 0} ∧ j ? = j 5 ∧ level ′ = {j 3 7→ 3, j 5 7→ 5})⇒

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 0, j 5 7→ 0}) ∧

level(j ?) < max fill(j ?) ∧ level ′ = level ⊕ {j ? 7→max fill(j ?)}

≡

true

177

jar3 7→ 0, jar5 7→ 0Init

jar3 7→ 3, jar5 7→ 0

jar3 7→ 0, jar5 7→ 5

jar3 7→ 0, jar5 7→ 3

jar3 7→ 3, jar5 7→ 5

Fill(Jar3)

Fill(Jar5)

Fill(Jar5)

Transfer(Jar3, Jar5)

Empty(Jar3)

Figure 7.7: Filling and emptying the jar 3 (repeated from page 85)

The three transitions that fill the jar in the visualisation correctly fill the jar as specified by

the Z operation.

Applicability property:

∀State; ?AopR • pre AOpR ⇒ pre COp

≡(Substitution)

∀Level ; j ? : Jars • (level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0}) ∧

level(j ?) < max fill(j ?)⇒

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0} ∧ j ? = j 5)

≡

true

The applicability property being satisfied means that we are not missing any Fill Jar

transitions that should be outgoing from the states we are visualising. Next, we look at

Empty Jar , and see that the conditions are satisfied for the same reasons.

Empty JarR

∆Level

j ? : Jars

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0})

level(j ?) > 0

level ′ = level ⊕ {j ? 7→ 0}

178

Correctness property:

∀State; State ′; ?AOpR; !AOpR • pre AOpR ∧ COp ⇒ AOpR

≡(Substitution)

∀Level ; Level ′, j ? : Jars • (level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0}) ∧

level(j ?) > 0 ∧ level = {j 3 7→ 3, j 5 7→ 0} ∧ level ′ = {j 3 7→ 0, j 5 7→ 0} ⇒

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0}) ∧

level(j ?) > 0 ∧ level ′ = level ⊕ {j ? 7→ 0}

≡

true

Applicability property:

∀State; ?AopR • pre AOpR ⇒ pre COp

≡(Substitution)

∀Level ; j ? : Jars • (level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0})

∧ level(j ?) > 0⇒ level = {j 3 7→ 3, j 5 7→ 0} ∧ j ? = j 3

≡

true

In the visualisation, there is only one transition that shows the Empty Jar operation

being used. As both conditions are satisfied, this means that we have visualised the jar

being emptied correctly, and the jars are not emptied in any other way from the two states

we are examining.

Finally, we check the conditions hold for Transfer .

TransferR

∆Level

j 1?, j 2? : Jars

amount? : N1

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0})

j 1? 6= j 2?

amount? = min({level j 1?,max fill j 2?− level j 2?})

level ′ = level ⊕ {j 1? 7→ level j 1?− amount?, j 2? 7→ level j 2? + amount?}

Correctness property:

∀State; State ′; ?AOpR; !AOpR • pre AOpR ∧ COp ⇒ AOpR

179

≡(Substitution)

∀Level ; Level ′, j 1?, j 2?amount? : N1 : Jars •

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0}) ∧ j 1? 6= j 2? ∧

amount? = min({level j 1?,max fill j 2?− level j 2?}) ∧

level = {j 3 7→ 3, j 5 7→ 0} ∧ level ′ = {j 3 7→ 0, j 5 7→ 3} ∧ j 1? = j 3 ∧ j 2? = j 5⇒

(level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0}) ∧ j 1? 6= j 2? ∧

amount? = min({level j 1?,max fill j 2?− level j 2?}) ∧

level ′ = level ⊕ {j 1? 7→ level j 1?− amount?, j 2? 7→ level j 2? + amount?}

≡

true

Applicability property:

∀State; ?AopR • pre AOpR ⇒ pre COp

≡(Substitution)

∀Level ; j ? : Jars • (level = {j 3 7→ 0, j 5 7→ 0} ∨ level = {j 3 7→ 3, j 5 7→ 0}) ∧

j 1? 6= j 2? ∧ amount? = min({level j 1?,max fill j 2?− level j 2?})⇒

level = {j 3 7→ 3, j 5 7→ 0} ∧ j 1? = j 3 ∧ j 2? = j 5

≡

true

We have shown that the conditions hold for each of the operations in the specification,

and so we conclude that this is a sound partial visualisation where the two black states have

been fully explored.

180

Appendix L

Proofs for Figure 8.2

In section 8.6 we presented SWSys, the top level operation schema for the µ-chart in Figure

8.2. Here we provide the low-level schemas and axiomatic definitions that were used to

construct this schema. Following this we will prove that this visualisation is sound. In

section 8.8 we began this with the initialisation property and the Reset operation. Here we

complete the proofs with the Pause/Play and Tick operations.

There are many low-level schemas. Starting from the lowest level of the chart, we require

the following:

1. Schemas for the state space of sequential charts;

2. Seperate state schemas for every state;

3. Init schemas;

4. Operation schemas for each transition in the chart;

5. Inactive transition schemas for each sequential chart;

6. Do-nothing schemas for each sequential chart;

7. Combined transition schemas for each sequential chart;

8. Init, state and transition schemas for the composed chart;

9. Init, state and transition schemas for the decomposed chart;

10. Init, state and transition schemas for the hiding operator;

11. Transition schema for the step semantics.

This, along with appropriate axiomatic definitions is the list of schemas defined in previous

works to create the full model of a µ-chart.

When we use this in our example we will not need to create the schemas for the decomposed

181

Figure 8.2: Composed Microchart (repeated from page 94)

chart as none are present in our example.

However, we do use the new operation operator to create additional schemas for each oper-

ation schema in the original specification, namely Pause/Play , Reset and Tick .

L.1 State, Init and Axiomatic Definitions for Simple Se-

quential Charts

µStates ::= t〈〈N〉〉 | p〈〈Bool〉〉

µSignal ::= op〈〈OperationNames〉〉 | sPlaying | sPaused

Here we are defining the states, input, output and feedback of the simple charts.

Note that we have redefined the type of the states and the signals.

The state type is now a boolean value or a number, while the signals in the chart will either

be the name of the operation being used, Playing or Paused, which are the signals we are

feeding back into the µ-chart to indicate the watch is paused or not.

182

statesTick : PµStates

inTick : PµSignal

outTick : PµSignal

Ψ : PµSignal

statesTick =
∑

inTick = in Tick

outTick = out Tick

This is the state schema for the Tick chart and if we had any local variables they would

also be included in this chart.

ChartTick

cTick : statesTick

For each state in the µ-chart, we have a schema such that the system is in that state.

Tickσ

ChartTick

cT ick = t σ

An example of this is Tick0 which specifies the state when time is 0. Note that because

we are using a redefined type for the states, we need to cast the value for it to be type

statesTick . We use t for states in Tick and p for states in Pause/Play.

Tick0

ChartTick

cTick = t 0

The initial state of the sequential µ-chart TickChart is t 0.

InitTick

ChartTick

cTick = t 0

Similarly, we can construct the schemas of the Pause/Play chart.

183

statesPP : PµStates

inPP : PµSignal

outPP : PµSignal

Ψ : PµSignal

statesPP =
∑

inPP = in PP

outPP = out PP

ChartPP

cPP : statesPP

PPPaused

ChartPP

cPP = p false

PPPlaying

ChartPP

cPP = p true

InitPP

ChartPP

cPP = p false

L.2 Operation Schemas for Tick

We will be using the semantic sugar “. . .” to simplify the operation schemas here, but first

we give an example of a single transition. This is the transition from state 0 to state 1.

184

δ01

Tick0

Tick ′1

iTick ? : P inTick

active : PµState

oTick ! : P outTick

active(Tick)

op T ∈ iTick ?

Playing ∈ iTick ? ∪ (oTick ! ∩ {sPlaying , sPaused})

oTick ! = {}

There are a large number of schemas similar to the one above where the only difference

is the start and end states. Additionally, the after state will always be one greater than

the start state. We use this information to combine multiple transitions into the following

schema.

δinc

ChartTick

iTick ? : P inTick

active : PµState

oTick ! : P outTick

active(Tick)

op T ∈ iTick ?

sPlaying ∈ iTick ? ∪ (oTick ! ∩ {sPlaying , sPaused})

oTick ! = {}

(t ∼ cTick) < maxTime

c′Tick = t (t ∼ cTick + 1)

Similarly, the transition labelled Reset is also a simplification of a large number of tran-

sitions. The large number of transitions combine into δreset , a transition schema with an

afterstate but no defined before state.

185

δreset

Tick ′0

iTick ? : P inTick

active : PµState

oTick ! : P outTick

active(Tick)

op Reset ∈ iTick ?

oTick ! = {}

Although this chart will never be inactive, we also present InactiveTick . If the chart was

inactive then it would not change states or output any signals.

InactiveTick

ΞChartTick iTick ? : P inTick

active : PµState

oTick ! : P outTick

¬ active(Tick)

oTick ! = {}

Because the top chart does not respond to the Pause/Play signal it causes the entire chart

to behave chaotically when this signal is recieved. We assume that it should do nothing when

such signals received and so we include the ε ‘do-nothing’ schema which causes the µ-chart

to behave as expected.

εTick

∆ChartTick

iTick ?, oTick ! : PµSignal

active : PµState

active(Tick)

c′Tick = cTick

oTick ! = {}

¬ (Sf 1 ∧ ρ(guard1))

¬ (Sf 2 ∧ ρ(guard2))

...

We can now create the schema containing all the transitions for this chart, which is simply

the disjunction of the previous schemas. δTick == δreset ∨ δinc ∨ InactiveTick ∨ εTick We

186

write this schema out in full below. Note the text that εTick contributes is the Pause/Play

operation being used and the Tick operation being used at maxTime.

187

δTick

ChartTick

iTick ? : P inTick

active : PµState

oTick ! : P outTick

(

active(Tick) ∧

op Tick ∈ iTick ? ∧

sPlaying ∈ iTick ? ∪ (oTick ! ∩ {sPlaying , sPaused}) ∧

(t ∼ cTick) < maxTime ∧

c′Tick = t (t ∼ cTick + 1)

∨

active(Tick) ∧

op Reset ∈ iTick ? ∧

c′Tick = t 0

∨

active(Tick) ∧

op Pause/Play ∈ iTick ? ∧

c′Tick = cTick

∨

active(Tick) ∧

op Tick ∈ iTick ? ∧

sPaused ∈ iTick ? ∪ (oTick ! ∩ {sPlaying , sPaused}) ∧

c′Tick = cTick

∨

active(Tick) ∧

op Tick ∈ iTick ? ∧

sPlaying ∈ iTick ? ∪ (oTick ! ∩ {sPlaying , sPaused}) ∧

cTick = t maxTime ∧

c′Tick = cTick

∨

¬ active(Tick) ∧

c′Tick = cTick

)

oTick ! = {}

188

L.3 Operation schemas for Pause/Play

The Pause/Play chart has four normal transitions and two Reset transitions that have been

combined into one. In this section we will write each of these schemas, as well as the inactive

schema and the schema that combines these together, just like the previous section.

δft

PPPaused

PP ′Playing

iPP? : P inPP

active : PµState

oPP ! : P outPP

active(PP)

op PausePlay ∈ iPP?

oPP ! = {}

δtf

PPPlaying

PP ′Paused

iPP? : P inPP

active : PµState

oPP ! : P outPP

active(PP)

op PausePlay ∈ iPP?

oPP ! = {}

189

δtt

PPPlaying

PP ′Playing

iPP? : P inPP

active : PµState

oPP ! : P outPP

active(PP)

op Tick ∈ iPP?

oPP ! = {Playing}

δff

PPPlaying

PP ′Playing

iPP? : P inPP

active : PµState

oPP ! : P outPP

active(PP)

op Tick ∈ iPP?

oPP ! = {Paused}

δresetp

PP ′Paused

iPP? : P inPP

active : PµState

oPP ! : P outPP

active(PP)

op Reset ∈ iPP?

oPP ! = {}

190

InactivePP

ΞChartPP

iPP? : P inPP

active : PµState

oPP ! : P outPP

¬ active(PP)

oPP ! = {}

εPP

∆ChartPP

iPP?, oPP ! : PµSignal

active : PµState

active(PP)

c′PP = cPP

oPP ! = {}

¬ (Sf 1 ∧ ρ(guard1))

¬ (Sf 2 ∧ ρ(guard2))

...

δPP == δtf ∨ δft ∨ δtt ∨ δff ∨ δresetp ∨ InactivePP ∨ εPP

L.4 Composed Chart TPP

In this section we present the init, state, and transition schemas for the composed chart

TPP . This is the composition of TickChart and Pause/PlayChart .

statesTPP : PµStates

inTPP : PµSignal

outTPP : PµSignal

Ψ : PµSignal

statesTPP = statesTick ∪ statesPP

inTPP = inTick ∪ inPP

outTPP = outTick ∪ outPP

The chart and init schemas are simple as we just combine the Tick and Pause/Play chart

schemas. This gives us a chart that has two current states and two initial states.

191

ChartTPP

ChartTick

ChartPP

InitTPP

InitTick

InitPP

The transition model is more complicated, as we need to hide the inputs and outputs

of the component charts. δTick ∧ δPP can be seen in the final line of the constraints. This

schema changes the current state of both lower level charts based on the input signals it

receives.

δTPP

∆ChartTPP

iTPP? : P inTPP

active : PµState

oTPP ! : P outTPP

active(PP)⇔ active(Tick)

∃ iPP?, oPP !, iTick ?, oTick ! : PµSignal •

iPP? = (iTPP? ∪ (oTPP ! ∩ {sPlaying , sPaused})) ∩ inPP ∧

iTick ? = (iTPP? ∪ (oTPP ! ∩ {sPlaying , sPaused})) ∩ inTick ∧

oTPP ! = oPP ! ∪ oTick ! ∧

δTick ∧ δPP

L.5 Hiding Operator

Now that we have a simplified model of the composed chart we can proceed to the hiding

operator. The hiding operator hides input and output signals. In this example we are only

inputting the operation name signals, not the feedback signals, and we are not outputting

any signals to the enviroment. We will call this level of the schema SW and we need to

create new axiomatic definitions as well as state, init and operation schema.

192

statesSW : PµStates

inSW : PµSignal

outSW : PµSignal

statesSW = statesTPP

inSW = inTPP \ {sPaused , sPlaying}

outSW = outTPP \ {sPaused , sPlaying}

The chart and init schemas are not effected by hiding signals. The chart still has two

current states and two initial states.

ChartSW == ChartTPP

InitSW == InitTPP

The transition schema replaces the input and output signals with sets that do not contain

the signals sPaused and sPlaying .

δSW

∆ChartSW

iSW ? : P inSW

active : PµState

oSW ! : P outSW

∃ iTPP?, oTPP ! : PµSignal •

iTPP? = iSW ? ∧

oSW ! = oTPP ! ∩ outSW ∧

δTPP

We can expand and simplify this schema into the following:

193

δSW

∆ChartSW

iSW ? : P inSW

active : PµState

oSW ! : P outSW

active(PP)⇔ active(Tick)

((active(Tick) ∧ active(PP) ∧ (

op Tick ∈ iSW ? ∧

(t ∼ cTick) < maxTime ∧

c′Tick = t (t ∼ cTick + 1) ∧ cPP = p true ∧ c′PP = p true ∨

op Reset ∈ iSW ? ∧

c′PP = p false ∧ c′Tick = t 0 ∨

op Pause/Play ∈ iSW ? ∧

c′Tick = cTick ∧ cPP = p true ∧ c′PP = p false ∨

op Pause/Play ∈ iSW ? ∧

c′Tick = cTick ∧ cPP = p false ∧ c′PP = p true ∨

op Tick ∈ iSW ? ∧

c′Tick = cTick ∧ cPP = p false ∧ c′PP = p false ∨

op Tick ∈ iSW ? ∧

cTick = t maxTime ∧

c′Tick = cTick ∧ cPP = p true ∧ c′PP = p true) ∨

¬ active(Tick) ∧ ¬ active(PP) ∧

c′Tick = cTick ∧ c′PP = cPP

) ∧

oSW ! = {}

)

L.6 Step semantics

We can now hide active to give the step semantics schema SWSys.

194

SWSys

∆ChartSW

iSW ? : P inSW

oSW ! : P outSW

∃ active : PµState •

active(SW)

δSW

This expands into the schema we presented previously in section 8.6. We also previously

showed how we can use the new operation operator to convert SWSys into operations that

are conformal with the original specification. We will now investigate the applicability and

correctness properties for Tick and Pause/Play . We will be using the same retrieve relation

as before:

R

Stopwatch

ChartSW

t ∼ cTick = time ∧

(cPP = p false ∧ playing = false

∨ cPP = p true ∧ playing = true)

The µTick schema increments the state of TickChart until it reaches maxTime. Note

that it does not change the state of PausePlayChart.

µTick

∆ChartSW

(t ∼ cTick) < maxTime ∧

c′Tick = t (t ∼ cTick + 1) ∧ cPP = p true ∧ c′PP = p true

∨

c′Tick = cTick ∧ cPP = p false ∧ c′PP = p false

∨

cTick = t maxTime ∧

c′Tick = cTick ∧ cPP = p true ∧ c′PP = p true

We start by looking at the applicability property.

pre Tick =̂ [Stopwatch | playing = true ∧ time + 1 ≤ maxTime ∨

playing = false ∧ time ≤ maxTime]

preµTick =̂ [ChartSW | true]

195

While the abstract Tick operation is only defined while time ≤ maxTime, µTick is a total

operation. This is because we are using the do nothing interpretation. Because of this

applicability is trivially true.

∀AState; CState; • pre AOpi ∧ R ⇒ pre COpi

≡(Substitution)

∀Stopwatch; ChartSW ; • pre Tick ∧ R ⇒ true

≡ (P ⇒ true)

true

Correctness property:

∀State; StateMC ; StateMC ′; ?AOpi •

pre AOpi ∧ R ∧ COpi ⇒ ∃State ′ • R′ ∧ AOpi

≡(Substitution)

∀Stopwatch; ChartSW ; Chart ′SW •

pre Tick ∧ R ∧ COpi ⇒ ∃State ′ • t ∼ c′Tick = time ′ ∧

(playing = true ∧ time ′ = time + 1 ∧ c′PP = p true ∨

playing = false ∧ time ′ = time ∧ c′PP = p false) ∧ playing = playing ′

≡(One-Point Rule)

∀Stopwatch; ChartSW ; Chart ′SW •

pre Tick ∧ R ∧ COpi ⇒ t ∼ c′Tick ≤ maxTime ∧

(playing = true ∧ t ∼ c′Tick = time + 1 ∧ c′PP = p true ∨

playing = false ∧ t ∼ c′Tick = time ∧ c′PP = p false)

≡(Substitution)

∀Stopwatch; ChartSW ; Chart ′SW • pre Tick ∧

t ∼ cTick = time ∧ ((t ∼ cTick) < maxTime ∧

c′Tick = t (t ∼ cTick + 1) ∧ cPP = p true ∧ c′PP = p true ∧ playing = true ∨

c′Tick = cTick ∧ cPP = p false ∧ c′PP = p false ∧ playing = false ∨

cTick = t maxTime ∧ c′Tick = cTick ∧ cPP = p true ∧ playing = true ∧

c′PP = p true)⇒ t ∼ c′Tick ≤ maxTime ∧

(playing = true ∧ t ∼ c′Tick = time + 1 ∧ c′PP = p true ∨

playing = false ∧ t ∼ c′Tick = time ∧ c′PP = p false)

≡ (P ∧ Q ⇒ P)

true

196

Lastly we can show that the correctness property holds for Pause/Play. Applicability

holds trivially because the µ-chart operation is total.

µPP

∆ChartSW

c′Tick = cTick ∧ cPP = p true ∧ c′PP = p false ∨

c′Tick = cTick ∧ cPP = p false ∧ c′PP = p true

∀State; StateMC ; StateMC ′; ?AOpi •

pre AOpi ∧ R ∧ COpi ⇒ ∃State ′ • R′ ∧ AOpi

≡(Substitution)

∀Stopwatch; ChartSW ; Chart ′SW • pre AOpi ∧ t ∼ cTick = time ∧

(playing = true ∧ c′Tick = cTick ∧ cPP = p true ∧ c′PP = p false ∨

playing = false ∧ c′Tick = cTick ∧ cPP = p false ∧ c′PP = p true)⇒

∃State ′ • time = time ′ ∧ t ∼ c′Tick = time ′ ∧

(playing = true ∧ playing ′ = false ∧ c′PP = p false ∨

playing = false ∧ playing ′ = true ∧ c′PP = p true)

≡(One-point Rule)

∀Stopwatch; ChartSW ; Chart ′SW • pre AOpi ∧ t ∼ cTick = time ∧

(playing = true ∧ c′Tick = cTick ∧ cPP = p true ∧ c′PP = p false ∨

playing = false ∧ c′Tick = cTick ∧ cPP = p false ∧ c′PP = p true)⇒

t ∼ c′Tick = time ∧

(playing = false ∧ c′PP = p true ∨ playing = true ∧ c′PP = p false)

≡ (P ∧ Q ⇒ P)

true

Because all of the refinement properties hold we can conclude that this is a sound visu-

alisation of the stopwatch specification.

197

Appendix M

Proofs for Figure 8.3

We also prove the soundness of Figure 8.3. This is also a visualisation of the stopwatch

however it uses a local variable and assignment instead of chart composition to show the

time. Below we present the schemas for this µ-chart after the operation operator has been

applied. Note that we have changed the local variable name to avoid clashes while checking

refinement holds.

These schemas have one current state, cSW , and one local variable, time.

ChartSW

cSW : statesStopwatch

time : N

µ Init

Chart ′SW

c′SW = cPaused

time ′ = 0

µReset

∆ChartSW

c′SW = cPaused

time ′ = 0

198

Figure 8.3: Microchart with Local Variable (repeated from page 95)

µPP

∆ChartSW

time ′ = time ∧ cSW = cPlaying ∧ c′SW = cPaused ∨

time ′ = time ∧ cSW = cPaused ∧ c′SW = cPlaying

µTick

∆ChartSW

time < maxTime ∧

time ′ = time + 1 ∧ cSW = cPlaying ∧ c′SW = cPlaying ∨

time ′ = time ∧ cSW = cPaused ∧ c′SW = cPaused ∨

time = maxTime ∧

time ′ = time ∧ cSW = cPlaying ∧ c′SW = cPlaying

These are total operation schemas so proving applicability holds is trivial.

R

Stopwatch

ChartSW

time = time

playing = true ∧ cSW = cPlaying ∨

playing = false ∧ cSW = cPaused

199

We begin by checking that the initialisation property holds.

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

≡(Substitution)

∀Chart ′SW • c′SW = cPaused ∧ time ′ = 0⇒

∃ time ′; playing ′ • time ′ = 0 ∧ playing ′ = false ∧

time ′ = time ′ ∧ c′SW = cPaused

≡(One-point rule)

∀Chart ′SW • c′SW = cPaused ∧ time ′ = 0⇒

0 = time ′ ∧ c′SW = cPaused

≡

true

Then we can check that the correctness property holds for the three operations, starting

with Pause/Play:

∀State; StateMC ; StateMC ′; ?AOpi •

pre AOpi ∧ R ∧ COpi ⇒ ∃State ′ • R′ ∧ AOpi

≡(Substitution)

∀Stopwatch; ChartSW ; Chart ′SW •

R ∧ (time ′ = time ∧ cSW = cPlaying ∧ c′SW = cPaused ∨

time ′ = time ∧ cSW = cPaused ∧ c′SW = cPlaying)⇒

∃State ′ • R′ ∧ time = time ′ ∧ ¬ playing = playing ′

≡(One-point rule)

∀Stopwatch; ChartSW ; Chart ′SW •

R ∧ (time ′ = time ∧ cSW = cPlaying ∧ c′SW = cPaused ∨

time ′ = time ∧ cSW = cPaused ∧ c′SW = cPlaying)⇒

time ′ = time ∧ (playing = false ∧ c′SW = cPlaying ∨

playing = true ∧ c′SW = cPaused)

≡(Expand R)

true

Next we look at Reset:

∀State; StateMC ; StateMC ′; ?AOpi •

pre AOpi ∧ R ∧ COpi ⇒ ∃State ′ • R′ ∧ AOpi

200

≡(Substitution)

∀Stopwatch; ChartSW ; Chart ′SW •

R ∧ c′SW = cPaused ∧ time ′ = 0⇒

∃State ′ • time ′ = 0 ∧ playing ′ = false ∧

time ′ = time ′ ∧ c′SW = cPaused

≡(One-point rule)

∀Stopwatch; ChartSW ; Chart ′SW •

R ∧ c′SW = cPaused ∧ time ′ = 0⇒

0 = time ′ ∧ c′SW = cPaused

≡

true

Finally, we look at Tick.

∀State; StateMC ; StateMC ′; ?AOpi •

pre AOpi ∧ R ∧ COpi ⇒ ∃State ′ • R′ ∧ AOpi

≡(Substitution)

∀Stopwatch; ChartSW ; Chart ′SW •

(playing = true ∧ time + 1 ≤ maxTime ∨ playing = false) ∧

R ∧ (time < maxTime ∧

time ′ = time + 1 ∧ cSW = cPlaying ∧ c′SW = cPlaying ∨

time ′ = time ∧ cSW = cPaused ∧ c′SW = cPaused ∨

time = maxTime ∧ time ′ = time ∧ cSW = cPlaying ∧ c′SW = cPlaying)

⇒ ∃State ′ • time ′ ≤ maxTime ∧ time ′ = time ′ ∧

(playing = true ∧ c′SW = cPlaying ∧ time ′ = time + 1 ∨

playing = false ∧ c′SW = cPaused ∧ time ′ = time) ∧ playing = playing ′

≡(One-point rule)

∀Stopwatch; ChartSW ; Chart ′SW •

(playing = true ∧ time + 1 ≤ maxTime ∨ playing = false) ∧

R ∧ (time < maxTime ∧

time ′ = time + 1 ∧ cSW = cPlaying ∧ c′SW = cPlaying ∨

time ′ = time ∧ cSW = cPaused ∧ c′SW = cPaused ∨

time = maxTime ∧ time ′ = time ∧ cSW = cPlaying ∧ c′SW = cPlaying)

⇒ time ′ ≤ maxTime ∧ (playing = true ∧ c′SW = cPlaying ∧ time ′ = time + 1 ∨

playing = false ∧ c′SW = cPaused ∧ time ′ = time)

201

≡(Expand R)

true

So we conclude that this is a sound visualisation of the stopwatch specification.

202

Appendix N

Construction of a Sound

Animation

In this example we construct a sound visualisation of the Jars specification. To do this we

will use the animation function defined in section 5.5.

R

Level

animation function : (N× Jars) 7→ Images

animation function =

({l : 1 . . global maximum; c : Jars | l ≤ max fill c •

global maximum + 1− l 7→ c} × {Empty})⊕

({l : 1 . . global maximum; c : Jars | l ≤ level c •

global maximum + 1− l 7→ c} × {Filled})

This animation function will be our retrieve relation as it relates the specification state and

animation state. This relation is functional from concrete to abstract so we can calculate

our concrete operation and init schemas using the following:

CInit =̂ ∃AState ′ • AInit ∧ R′

COp =̂ ∃∆StateA • R ∧ AOp ∧ R′

This is a functional relation because every animation state matches one specification state.

Figure 5.6 shows an example of the animation state where j 5 is 3 units full. This matches

the state where level = {(j 3, 0), (j 5, 3)}.

We begin with CInit which specifies the state that is initially shown by the animation.

We expect this to be two empty jars of the correct size.

CInit =̂ [animation function ′ | ∃ level ′ • ran level ′ = {0} ∧ R′]

203

Figure 5.6: 2x5 Grid of Images (repeated from page 53)

≡(Substitution)

CInit =̂ [animation function ′ | ∃ level ′ • ran level ′ = {0} ∧ animation function ′ =

({l : 1 . . global maximum; c : Jars | l ≤ max fill c •

global maximum + 1− l 7→ c} × {Empty})⊕

({l : 1 . . global maximum; c : Jars | l ≤ level ′ c •

global maximum + 1− l 7→ c} × {Filled})]

≡(One-point rule)

CInit =̂ [animation function ′ | animation function ′ =

({l : 1 . . global maximum; c : Jars | l ≤ max fill c •

global maximum + 1− l 7→ c} × {Empty})⊕

∅]

This schema initialises the grid of images with Empty down from 5. This is upside down

because the ProB animation function starts drawing from the top-left. The Z set-builder

notation can be simplified further:

animation function ′ = {(5, j 3), (4, j 3), (3, j 3), (5, j 5), . . .} × {Empty}

Next we calculate the CFill operation.

COp =̂ ∃∆StateA • R ∧ AOp ∧ R′

CFill =̂ [∆animation function; j ? | ∃∆Level •

R ∧ level(j ?) < max fill(j ?) ∧

level ′ = level ⊕ {j ? 7→max fill(j ?)} ∧ R′]

204

≡(One-point rule R′)

CFill =̂ [∆animation function; j ? | ∃ level •

R ∧ level(j ?) < max fill(j ?) ∧ animation function ′ =

({l : 1 . . global maximum; c : Jars | l ≤ max fill c •

global maximum + 1− l 7→ c} × {Empty})⊕

({l : 1 . . global maximum; c : Jars | l ≤ (level ⊕ {j ? 7→max fill(j ?)}) c •

global maximum + 1− l 7→ c} × {Filled})]

≡(Substitution)

CFill =̂ [∆animation function; j ? : Jars | ∃ level • animation function =

({l : 1 . . global maximum; c : Jars | l ≤ max fill c •

global maximum + 1− l 7→ c} × {Empty})⊕

({l : 1 . . global maximum; c : Jars | l ≤ level c •

global maximum + 1− l 7→ c} × {Filled}) ∧ level(j ?) < max fill(j ?)

∧ animation function ′ =

({l : 1 . . global maximum; c : Jars | l ≤ max fill c •

global maximum + 1− l 7→ c} × {Empty})⊕

({l : 1 . . global maximum; c : Jars | l ≤ (level ⊕ {j ? 7→max fill(j ?)}) c •

global maximum + 1− l 7→ c} × {Filled})]

Unfortunately we cannot simply use the one-point rule to remove level . However, this is still

a valid operation schema. The apparent complexity of this schema is due to two reasons.

Firstly, there is only a single observation with a complex type. If this was split into multiple

observations, such as an observation for each jar, then this would be much simpler. Secondly,

this schema mostly consists of graphical information. Half of this schema just draws two

empty jars. The fill operation here specifies how a particular layout of images changes when

the operation is used. Despite the complexity however, this schema can be calculated by a

computer and simply drawn as an animation rather than the user having to interface with

the schema itself.

205

