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Abstract— This paper presents a general framework for
modular synthesis of supervisors for discrete event systems.
The approach is based on compositional minimisation, us-
ing concepts of process equivalence. Its result is a compact
representation of a least restrictive supervisor that ensures
controllability and nonblocking. The method is demonstrated
to reduce the number of states to be constructed for a simple
manufacturing example, and the framework is proven to be
sound.

I. INTRODUCTION

The standard (monolithic) way to synthesise a controllable
and nonblocking supervisor for a discrete event system is
to build the synchronous composition of all components
and search the state space. This method is known to suffer
from the state-space explosion problem and therefore is only
feasible for small systems. To handle larger systems, modular
approaches to supervisor synthesis are of great interest and
have long been studied in supervisory control theory [1]–[3].

Several approaches to modular synthesis of discrete event
systems have been suggested in the literature [4], [5], but so
far most of them rely on structure to be provided by users and
hence are hard to automate. Those that can be automated [6]–
[9] either do not consider nonblocking, or are guaranteed
to produce a least restrictive supervisor only under certain
constraints.

Using ideas of process equivalence [10], this paper pro-
poses a general framework for modular synthesis of least
restrictive controllable and nonblocking supervisors, which
can be fully automated. The method efficiently handles
supervisory control problems given as a large set of small
finite-state automata.

Section II demonstrates the proposed method using a sim-
ple example. Then, Section III provides the formal notation
needed for automata and supervisory control, and Section IV
explains the synthesis framework in detail, with a formal
proof of its soundness. Finally, Section V contains some
concluding remarks.

II. MOTIVATING EXAMPLE

This section demonstrates the ideas of the modular syn-
thesis procedure using a simple manufacturing example,
the transfer line originally given in [1]. It consists of two
machines M1 and M2 and a test unit T , linked by two buffers
B1 and B2. A finite-state automata model of this system is
shown in Fig. 1. Automata M1, M2, and T constitute the

plant model, while B1 and B2 are specifications. Uncontrol-
lable events are prefixed by an exclamation mark (!).

The modular synthesis procedure presupposes the system
model to be given as a set of plant models only. Therefore,
the buffer specifications B1 and B2 are first transformed
into plants B′

1 and B′
2. This is a straightforward operation:

wherever an uncontrollable event is disabled, a transition on
that event to a dump state ⊥ is added. The result is shown in
Fig. 2. This transformation produces an equivalent supervi-
sory control problem using only plants if both controllability
and nonblocking are considered.

Modular synthesis is performed as a series of small steps
that in the end result in a simplified representation of the least
restrictive supervisor. The intermediate steps strive to avoid
state explosion by simplifying different parts of the system
to something that preserves all information necessary for the
synthesis. That is, to something supervision equivalent.

For example, when composing the modules M2 and B′
2,

the uncontrollable event f2 becomes local to the subsystem
M2‖B′

2, i.e., transitions associated with f2 can never be dis-
abled in future compositions with other modules. Therefore,
the identity of event f2 is no longer important, so all its oc-
currences are replaced by τu, an identity-less uncontrollable
event. The resultant automaton, H ′

1 = (M2 ‖ B′
2) \! {f2},

where \! denotes this special kind of hiding, is shown in
Fig. 3. In a similar fashion, all local controllable events are
replaced by the identity-less controllable event τc.
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Fig. 1. The transfer line example.
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Fig. 2. The buffer specifications as plant models.
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= (M2 ‖B′

2
) \!{f2} (to the left) results

in the automaton H1 (to the right).
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Fig. 4. The result of the simplification of (M1 ‖ B′

1
) \!{f1, s1}.

The intermediate automata obtained by such manipulations
can obviously be nondeterministic. However, this nonde-
terminism in interpreted in a special way by the modular
synthesis procedure—it is assumed that a potential supervisor
can individually enable or disable each controllable transition
of a nondeterministic automaton. This is an appropriate as-
sumption, because the nondeterministic automata have been
obtained by abstraction from deterministic automata in the
original model, so the supervisor actually can distinguish
between the different transitions. The information needed
for this distinction is carried along using state labels that
relate the states of the intermediate automata to the states
in the original model. For example, the state label I2E
in Fig. 3 represents a state of the original system, where
automaton M2 is in state I2 and B2 is in state E.

After hiding, the five-state automaton H ′
1 can be replaced

by the supervision equivalent two-state automaton H1, also
shown in Fig. 3. To see that these automata are equivalent,
consider a supervisor that is to enforce controllability and
nonblocking. Clearly, state I2⊥2 must be avoided since it is
blocking. Moreover, state W2F must be avoided, too, since
there is an outgoing uncontrollable transition leading to a
blocking state, which no other process can disable. So, both
I2⊥2 and W2F must be avoided whatever the other modules
in the system look like. Thus, already at this point it is clear
that the controllable transition from I2F to W2F must be
and can be prevented by a supervisor—states I2⊥2 and W2F
can be removed. Furthermore, states I2F and W2E can be
merged into a single state since a supervisor that allows the
plant to reach W2E cannot do anything but accept that the
plant may uncontrollably transit to I2F .

Figures 4 and 5 show further simplification results, H2
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Fig. 6. The result of the simplification of (H2 ‖ H3) \!{s2, r}.

derives from (M1 ‖B′
1) \!{f1, s1} and H3 from (H1 ‖ T ) \!

{a, l}. Fig. 6 shows the end result H , a simplified version
of (H2 ‖ H3) \!{s2, r}. This final result does not share any
events with other components so all events can be hidden.
After simplification this always results in an automaton with
one or, if controllable and nonblocking supervision is not
possible, zero states.

In the process of producing the final result, the largest
intermediate automaton, H2‖H3, has 21 states and 45 transi-
tions. These figures should be compared to the corresponding
values for the monolithic approach, which calculates the
supervisor directly from the composed system G = M1‖B1‖
M2‖B2‖T , an automaton with 48 states and 120 transitions.

Now, how is the result supposed to be used? Given the
final result H and the original automata M1, B1, M2,
B2, and T , it is possible to construct a supervisor that
yields the least restrictive behaviour that is controllable and
nonblocking. The original automata are used to observe the
system and determine the current global state. The objective
of supervision is to avoid “bad” states, i.e., states that are
blocking or uncontrollable or that may lead to such states.
The final result H can be used to determine whether a
state is “bad”, and thereby to decide which events can
be enabled. This is possible because, at each stage in the
construction of H , there is a clear correspondence between
the states of the intermediate and the original automata. This
correspondence is propagated and stored using labels in such
a way that the single state of H has labels representing all
states that are reachable under a least restrictive supervisor.

For instance, assume that the transfer line system is in the
global state I12I2EIT . An inspection of the modular model
shows two possible transitions, associated with controllable
events s1 and s2. Event s1 would lead the system to
state W12I2EIT , but since its label cannot be found in H
(actually no label starting with “W12” can be found there)
the supervisor disables s1. Event s2, on the other hand, leads
to state I11W2EIT whose label can be found in H (on
the second line in Fig. 6 if the last expression is unfolded).
Therefore, the supervisor enables s2.

III. NOTATION AND PRELIMINARIES

A. Events and Strings

Event sequences and languages are a simple means to
describe discrete system behaviours. Their basic building
blocks are events, which are taken from a finite alphabet Σ.
For the purpose of supervisory control, the event alphabet Σ
is partitioned into the set Σc of controllable events and the
set Σu of uncontrollable events. There are two special events,
the silent controllable event τc and the silent uncontrollable
event τu. These do not belong to Σ, Σc, Σu. If they are to be
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included, the alphabets Στ = Σ∪{τc, τu}, Σc,τ = Σc∪{τc},
and Σu,τ = Σu ∪ {τu} are used instead.

Σ∗ denotes the set of all finite strings of the form
σ1σ2 · · ·σk of events from Σ, including the empty string ε.
The catenation of two strings s, t ∈ Σ∗ is written as st.

B. Nondeterministic Automata

System behaviours are represented using finite-state au-
tomata. Nondeterminism is used to support hiding, which is
essential for modular synthesis in this approach.

Definition 1: A (nondeterministic) finite-state automaton
is a 5-tuple G = 〈Q,Σ,→ , Qi, Qm〉, where Σ is a finite
alphabet of events, Q is a finite set of states, → ⊆ Q×Στ×Q
is the state transition relation, Qi ⊆ Q is the set of initial
states, and Qm ⊆ Q is the set of marked states. �

Note that the silent events are allowed in → even though
they are never included in the alphabet of an automaton.

The transition relation is written in infix notation p
σ
→ q,

and is extended to strings in Σ∗
τ by letting

p
ε
→ p for all p ∈ Q ; (1)

p
sσ
→ q if p

s
→ r and r

σ
→ q for some r ∈ Q . (2)

For state sets Q1, Q2 ⊆ Q, Q1
s
→ Q2 denotes the existence

of q1 ∈ Q1 and q2 ∈ Q2 such that q1
s
→ q2. Similarly,

p → q means that there exists a string s ∈ Σ∗
τ such that

p
s
→ q. Finally, p

s
→ denotes that there exists a state q such

that p
s
→ q, and for an automaton G, G

s
→ q means Qi s

→ q.
A state q is called reachable in an automaton G if G → q;

if this holds for all q ∈ Q, then G is called accessible. If G
is not accessible, it can easily be made so by removing all
states that are not reachable. Therefore, in the following all
automata are assumed to be accessible.

Definition 2: An automaton G = 〈Q,Σ,→ , Qi, Qm〉 is
deterministic if Qi is a singleton, p

σ
→ q1 and p

σ
→ q2 always

implies q1 = q2, and → contains no transitions labelled τc

or τu. �

Various operations can be used to modify or combine
automata. For modular synthesis, synchronous composi-
tion [11] and hiding are the most important.

Definition 3: Let G1 = 〈Q1,Σ,→1 , Qi
1, Q

m
1 〉 and G2 =

〈Q2,Σ,→2 , Qi
2, Q

m
2 〉 be two automata using the same al-

phabet. The synchronous product of G1 and G2 is

G1 ‖ G2 = 〈Q1 × Q2,Σ,→ , Qi
1 × Qi

2, Q
m
1 × Qm

2 〉 (3)

where

(p, q)
σ
→ (p′, q′) if σ ∈ Σ, p

σ
→1 p′ and q

σ
→2 q′ ;

(p, q)
σ
→ (p′, q) if σ ∈ {τc, τu} and p

σ
→1 p′ ;

(p, q)
σ
→ (p, q′) if σ ∈ {τc, τu} and q

σ
→2 q′ . �

If the two automata to be combined do not use the same
alphabet, they first have to be extended to their united
alphabet. An automaton using alphabet Σ is extended to
Σ′ ⊇ Σ by adding selfloops q

σ
→ q for all states q ∈ Q

and all events σ ∈ Σ′ \ Σ.

Definition 4: Let G = 〈Q,Σ,→ , Qi, Qm〉 be an automa-
ton, and let Υ ⊆ Σ. The result of controllability preserving
hiding, hiding henceforth, of Υ from G is

G \!Υ = 〈Q,Σ \ Υ,→!, Q
i, Qm〉 (4)

where →! is obtained from → by replacing each transition
p

σ
→ q such that σ ∈ Υ by p

τc→! q if σ ∈ Σc or by p
τu→! q

if σ ∈ Σu. �

Hiding removes the identity of the events in Υ and in
general produces a nondeterministic automaton.

By introducing concepts of subautomata and union of
automata, the set of automata can be considered as a lattice.

Definition 5: Let G1 = 〈Q1,Σ,→1 , Qi, Qm
1 〉 and G2 =

〈Q2,Σ,→2 , Qi, Qm
2 〉 be two automata with the same alpha-

bet and initial states. G1 is a subautomaton of G2, G1 ⊆ G2,
if Q1 ⊆ Q2, →1 ⊆ →2, and Qm

1 ⊆ Qm
2 . �

Definition 6: Let Gj = 〈Qj ,Σ,→j , Qi, Qm
j 〉, j ∈ J be a

family of automata all having the same alphabet and set of
initial states. Define⋃

j∈J

Gj = 〈
⋃

j∈J

Qj ,Σ,
⋃

j∈J

→j , Qi,
⋃

j∈J

Qm
j 〉 .

�

C. Supervision and Synthesis

Supervisors are used to restrict the behaviour of systems
represented by automata. A supervisor observes the sequence
of events occurring in the system and then enables or
disables certain controllable events, but it cannot disable any
uncontrollable events. Formally, this can be considered as a
map S, where S(s) represents the set of events enabled by
the supervisor after observing the system execute the string s.

Definition 7: Let G = 〈Q,Σ,→ , Qi, Qm〉 be an automa-
ton. A supervisor for G is a map S : Σ∗ → 2Σ, such that
S(s) ⊇ Σu for all s ∈ Σ∗. �

Given a plant behaviour G, and a desired behaviour K,
it is of interest to construct a supervisor for G that yields
exactly the behaviour K. Supervisory control theory shows
that the behaviour K has to be controllable for a supervisor
to exist [2], [3]. Below are two definitions of controllability
used for the nondeterministic setting of this paper.

Definition 8: Let G and K be two automata using the
same alphabet Σ. K is controllable with respect to G if,
for every string s ∈ Σ∗, every state q of K, and every
uncontrollable event υ ∈ Σu such that K

s
→ q and G

sυ
→, it

holds that q
υ
→. �

Definition 9: Let G be an automaton, and let K ⊆ G be
a subautomaton of G. K is controllable in G if, for every
string s ∈ Σ∗

τ , every uncontrollable event υ ∈ Σu,τ , and all
states p, q ∈ Q such that K

s
→ p and G

s
→ p

υ
→ q, it holds

that K
s
→ p

υ
→ q. �

Def. 8 corresponds to the original controllability defi-
nition from [2]. The two definitions coincide when K is
a subautomaton of a deterministic automaton G. In the
nondeterministic case, Def. 9 assumes that a supervisor can
disable each transition individually unlike in traditional su-
pervisory control. Here, this definition makes sense because
nondeterministic automata always derive from determinis-
tic automata, and the supervisor is assumed to distinguish
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different transitions using its knowledge about the global
state. In the following, be aware of the difference between
controllable with respect to and controllable in.

In addition to controllability, the behaviour of a supervised
system is typically also required to be nonblocking [2], [12].

Definition 10: An automaton G = 〈Q,Σ,→ , Qi, Qm〉 is
called nonblocking if, for every state q such that Qi → q it
holds that q → Qm . �

Similar to traditional supervisory control theory [2], it can
be shown that the union of controllable and nonblocking
subautomata of a given automaton is again controllable and
nonblocking. This justifies the following definition.

Definition 11: Let G be an automaton. The supremal
controllable and nonblocking subautomaton of G is

supCN (G) =
⋃

{G′ ⊆ G | G′ is controllable in G
and nonblocking } . �

Unlike traditional synthesis [2], supCN merely describes
a controllable and nonblocking sub-behaviour of the given
plant G. Specifications are not considered here since they
can easily be translated into plants.

D. Translation of Specifications into Plants

A specification automaton can be transformed into a plant
by adding, for every uncontrollable event that is not enabled
in a state, a transition to a new blocking state ⊥. The result
of synthesis remains the same after this transformation.

Definition 12: Let K = 〈Q,Σ,→ , Qi, Qm〉 be a specifi-
cation. The complete plant automaton K⊥ for K is

K⊥ = 〈Q ∪ {⊥},Σ,→⊥ , Qi, Qm〉 (5)

where ⊥ /∈ Q is a new state and

→⊥ = → ∪ { (q, υ,⊥) | q ∈ Q, υ ∈ Σu, q 6
υ
→} . �

Whenever the specification disallows an uncontrollable
event enabled by the plant, after the transformation, syn-
chronous composition results in an uncontrollable transition
to a blocking state.

In this way, controllability problems are translated into
blocking problems. The synthesis procedure treats all possi-
ble causes of nonblocking alike. Thus, it resolves controlla-
bility problems in the same way as it resolves blocking—a
computed nonblocking supervisor will in addition yield a
controllable solution to the original problem.

Proposition 1: Let G, K, and K ′ be deterministic au-
tomata over the same alphabet Σ. Then the following two
statements are equivalent.
(i) K ′ ⊆ G ‖ K is nonblocking and controllable with

respect to G.
(ii) K ′ ⊆ G‖K⊥ is nonblocking and controllable in G‖K⊥.

�

Proof: First, assume that (i) holds. Clearly, since K ⊆
K⊥, it follows that K ′ ⊆ G ‖ K ⊆ G ‖ K⊥. Also, K ′ is
nonblocking by assumption.

It remains to show that K ′ is controllable in G ‖K⊥. Let
s ∈ Σ∗ and υ ∈ Σu be such that K ′ s

→ p and G ‖ K⊥
s
→

p
υ
→ q. By the definition of ‖, it is clear that G

sυ
→. Thus,

since K ′ is controllable with respect to G, it follows that
K ′ sυ

→. Since K ′ is a deterministic automaton, this implies
K ′ s

→ p
υ
→ q.

Second, assume that (ii) holds. Since, by the assumption,
K ′ is nonblocking, it holds that K ′ 6→ (q,⊥) for every state q
in G. Thus, since K⊥ is the complete plant automaton for
K, it holds that K ′ ⊆ G ‖ K⊥ implies K ′ ⊆ G ‖ K.

It remains to show that K ′ is controllable with respect
to G. Let s ∈ Σ∗ and υ ∈ Σu such that K ′ s

→ (pG, pK) and
G

s
→ pG

υ
→ qG. Since K ′ ⊆ G‖K⊥ it holds that K⊥

s
→ pK .

Since υ ∈ Σu and since K⊥ is a complete plant automaton
for K, there exists a state q⊥ such that K⊥

s
→ pK

υ
→ q⊥.

This implies G ‖ K⊥
s
→ (pG, pK)

υ
→ (qG, q⊥). Since K ′ is

controllable in G‖K⊥, it holds that (pG, pK)
υ
→ in K ′. �

An immediate consequence of this result is that syn-
thesis of the least restrictive nonblocking and controllable
behaviour allowed by a specification K with respect to a
plant G can be achieved by computing

supCN (G ‖ K⊥) . (6)

This automaton can be used to implement a supervisor,
enabling precisely the events enabled in supCN (G ‖ K⊥).
However, if hiding and/or abstractions have been made the
(potentially nondeterministic) automaton no longer explicitly
shows which events can be enabled in a certain state. To
overcome this problem, state labels are introduced to convey
the necessary information.

E. Kripke-Structures

The intermediate results in the construction of the su-
pervisor carry state labels to establish a correspondence to
the global system states. To this end, labelled automata or
Kripke-structures are used.

Definition 13: An (extended) Kripke-structure is a 7-tuple
G = 〈Q,Σ,→ , Qi, Qm,Ω, B〉 where 〈Q,Σ,→ , Qi, Qm〉 is
an automaton, Ω is a set of state labels, and B : Q → 2Ω is
a map that associates each state with a set of labels. �

A Kripke-structure can be considered as an automaton,
simply by ignoring its labels. Conversely, an unlabelled
automaton G = 〈Q,Σ,→ , Qi, Qm〉 can be extended to a
Kripke-structure G′ by labelling each state with its name,

G′ = 〈Q,Σ,→ , Qi, Qm,Ω, B〉 (7)

where Ω = Q and B(q) = {q}. Simplification may result in
states with more than one label associated to them. In the
following, the letter G is used to represent both an automaton
and its Kripke-structure. All concepts and notations that can
be applied to automata, such as transitions and controllability,
are extended to Kripke-structures in the straightforward way.

Synchronous composition produces state tuples as labels
and is extended to Kripke-structures using

ΩG1‖G2
= ΩG1

× ΩG2
; (8)

BG1‖G2
(p, q) = BG1

(p) × BG2
(q) . (9)

Here, the resulting labels should not depend on the order
in which automata are composed. Therefore pairs (p, q)
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and (q, p), e.g., are considered as equivalent when occurring
as labels. To this effect, it is also assumed that all composed
automata use different state names.

Sometimes it is of interest to know the set of all reachable
labels in a Kripke-structure G, which is defined as

B(G) = {ω ∈ Ω | ∃q ∈ Q : G → q, ω ∈ B(q) } . (10)

IV. MODULAR SYNTHESIS

A modular supervisory control problem consists of a plant
G = G1 ‖ · · · ‖ Gn and a specification K = K1 ‖ · · · ‖ Km,
each composed of deterministic automata. The task is to find
the supremal controllable and nonblocking sub-behaviour of

G ‖ K = G1 ‖ · · · ‖ Gn ‖ K1 ‖ · · · ‖ Km , (11)

or, equivalently, the largest subautomaton of G ‖ K that is
nonblocking and controllable (in G ‖ K).

Proposition 1 shows that this can be represented equiva-
lently by a set of plant automata. Therefore, in the following
it is assumed without loss of generality that the synthesis
problem consists of finding a nonblocking and controllable
supervisor for a modular deterministic plant

G = G1 ‖ · · · ‖ Gn , (12)

represented as Kripke-structures where each state is labelled
by its name. This is the starting point for modular synthesis.

A. Compositional Minimisation

The supervisor should result in the least restrictive non-
blocking sub-behaviour of the system G in (12). Such a
supervisor can be described by

S◦
G(s) = {σ ∈ Σ | supCN (G)

sσ
→} . (13)

To avoid monolithic synthesis and compute this supervisor
in a modular way, the system G of plant automata is
transformed into a simpler system

H = H1 ‖ · · · ‖ Hm (14)

that should be related to the original system G in an
appropriate way. The simplified system H is assumed to use
the same state labels as the original system G, i.e., it is
labelled by the names of the states in G. Using these labels,
the simplified system can also be used to define a supervisor
as follows.

SH(s) = {σ ∈ Σ | G
sσ
→ q and q ∈ B(supCN (H)) } .

(15)
To determine whether an event σ should be enabled after
executing a string s, this supervisor first determines whether
the original system G can execute string sσ. If this is the
case, it checks whether the state reached by G is a reachable
label of supCN (H). If this is the case, the event σ is enabled,
otherwise it is disabled.

To be useful, the supervisor constructed in this way
should produce exactly the same behaviour as a monolithic
supervisor computed for the original system. Clearly, this
can only be guaranteed if the simplified system H stands in
a certain relationship to the original system G.

Three operations are proposed that can be applied to a
system of plant automata in such a way that the resultant
supervisor yields the same behaviour.
Synchronous Composition. Any two plant automata can be

replaced by their synchronous product.
Hiding. If an event σ is used by only one automaton Gi,

then Gi can be replaced by Gi \!{σ}.
Simplification. A plant automaton can be replaced by a

simplified automaton, provided that that simplified au-
tomaton is supervision equivalent to the original.

The simplification step clearly relies on an appropriate no-
tion of equivalence to guarantee that the resultant supervisor
remains unchanged. The following definition introduces a
general equivalence that relates two automata with equivalent
synthesis results in combination with any other system.
Synthesis results for Kripke-structures can be considered as
equivalent if they result in the same sets of state labels.

Definition 14: Two Kripke-structures G and H are said
to be supervision equivalent, denoted G 'sup H , if, for any
automaton T ,

B(supCN (G ‖ T )) = B(supCN (H ‖ T )) . �

Definition 15: The following rules can be used to rewrite
sets of Kripke-structures G1, . . . , Gn.

{G1, . . . , Gn}
{G1 ‖ G2, G3, . . . , Gn}

{G1, . . . , Gn}
{G1 \!Υ, G2, . . . , Gn}

if events Υ ⊆ Σ are unused in
G2, . . . , Gn;

{G1, . . . , Gn}
{H1, G2, . . . , Gn}

if G1 'sup H1.

If {G1, . . . , Gn} can be transformed into {H1, . . . , Hm}
using one of the above rules, then this is denoted by
{G1, . . . , Gn} � {H1, . . . , Hm}. The reflexive and transitive
closure of the rewrite relation � is denoted by �∗. �

B. Main Result

In order to construct the supervisor efficiently, the system
of plants (12) is repeatedly rewritten and simplified using the
rewrite rules given in Def. 15, until all automata have been
composed and reduced to a one-state automaton.

The following result shows that this method is sound. The
sequence of rewrite steps always leads to a supervisor that
is equivalent to the monolithic supervisor for the original
system, and therefore yields the least restrictive behaviour
that can be achieved by control.

Proposition 2: Let G = G1 ‖ · · · ‖ Gn be a system of
deterministic plant automata, and let H = H1 ‖ · · · ‖Hm be
a system of Kripke-structures such that

{G1, . . . , Gn} �∗ {H1, . . . , Hm} . (16)

Then their synthesised supervisors yield the same behaviour,
i.e., S◦

G = SH . �

Proof: The claim is proved by induction on the number
of rewrite steps used to transform G into H .

Base case. First assume that G = H , i.e., no rewrite steps
have been used. It needs to be shown that the monolithic
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and modular supervisors obtained from G are equal, i.e., that
S◦

G = SG. This is the case because, for arbitrary s ∈ Σ∗,

S◦
G(s) = {σ ∈ Σ | supCN (G)

sσ
→}

= {σ ∈ Σ | G
sσ
→ q, q reachable in supCN (G) }

= {σ ∈ Σ | G
sσ
→ q, q ∈ B(supCN (G)) }

= SG(s) .

Inductive Step. Assume that G is rewritten into H in k+1
rewrite steps as follows

G = G0 � · · · � Gk � Gk+1 = H . (17)

By inductive assumption, the modular supervisor for Gk

behaves like the monolithic supervisor for G, i.e., S◦
G = SGk .

It remains to be shown that

SGk = SH , (18)

where H is obtained from Gk using one of the rewrite rules
from Def. 15.

Case 1. H is obtained via synchronous composition
from Gk. Let Gk = {G1, G2, . . . , Gn}, and let H = {G1 ‖
G2, G3, . . . , Gn}. By definition of synchronous composition
and synthesis, and using the assumption that state labels are
constructed in such a way that the order of composition does
not matter, it follows that

B(supCN (Gk)) = B(supCN (G1 ‖ G2 ‖ · · · ‖ Gn))

= B(supCN ((G1 ‖ G2) ‖ · · · ‖ Gn))

= B(supCN (H)) .

Case 2. H is obtained via hiding from Gk. Let Gk =
{G1, G2, . . . , Gn} and H = {G1 \! Υ, G2, . . . , Gn} where
all events in Υ are unused in G2 ‖ · · · ‖Gn. Since synthesis
treats the silent events τc and τu in the same way as ordinary
controllable and uncontrollable events, it follows that

B(supCN (Gk)) = B(supCN (G1 ‖ · · · ‖ Gn))

= B(supCN ((G1 ‖ · · · ‖ Gn) \!Υ))

= B(supCN ((G1 \!Υ) ‖ G2 ‖ · · · ‖ Gn))

= B(supCN (H)) .

Case 3. H is obtained via simplification from Gk. Let
Gk = {G1, G2, . . . , Gn} and H = {H1, G2, . . . , Gn} where
G1 'sup H1. By letting T = G2 ‖ · · · ‖ Gn in Def. 14,

B(supCN (Gk)) = B(supCN (G1 ‖ G2 ‖ · · · ‖ Gn))

= B(supCN (H1 ‖ G2 ‖ · · · ‖ Gn))

= B(supCN (H)) .

Thus, the equation B(supCN (Gk)) = B(supCN (H))
holds in all three cases. This implies, for arbitrary s ∈ Σ∗,

S◦
G(s) = SGk(s)

= {σ ∈ Σ | G
sσ
→ q, q ∈ B(supCN (Gk)) }

= {σ ∈ Σ | G
sσ
→ q, q ∈ B(supCN (H)) }

= SH(s) . �

C. Supervision Equivalence Preserving Operations

Simplification is the only step that reduces the size of
intermediate automata, and is therefore crucial for the per-
formance of the method. Since the state space tends to grow
exponentially with the number of components, even a small
reduction, particularly at an early stage, can greatly reduce
effort later in the process.

There are various ways how an automaton can be rewritten
to a simpler supervision equivalent version. A simple but
powerful method is called “half-way” synthesis. The idea is
to perform synthesis on a subsystem but, to guarantee that the
end result is maximally permissive, the synthesis must take
into consideration that all uncontrollable events except τu

may actually become disabled by other subsystems. Thus,
transitions associated with such events are not sure to cause
uncontrollability and must be retained to guarantee maximal
permissiveness.

Definition 16: Let G = 〈Q,Σ,→ , Qi, Qm〉. The set of
“bad” states for “half-way” synthesis is the smallest state set
Qx ⊆ Q that satisfies the following two conditions.

• If for some state p ∈ Q, no path to a marked state

p = q0 → q1 → · · · → qn ∈ Qm (19)

exists that does not pass through a “bad” state qi ∈ Qx,
then p ∈ Qx.

• If for some state p ∈ Q it holds that p
τu→ Qx then

p ∈ Qx.

If Qx ∩ Qi = ∅, the “half-way” synthesis result for G is

synthh(G) = 〈(Q\Qx)∪{⊥},Σ,→h , Qi, Qm \Qx〉 (20)

where ⊥ /∈ Q, and p
σ
→h q if p

σ
→ q and p, q /∈ Qx, and

p
υ
→h ⊥ if p

υ
→ Qx for some p /∈ Qx and υ ∈ Σu. �

The set Qx can be shown to be well-defined. If there is
a “bad” initial state, it is already known that there does not
exist any controllable and nonblocking supervisor.

“Half-way” synthesis can be implemented using a fixed
point algorithm similar to standard synthesis [2]. Until a fixed
point is reached, all blocking states, and all states from which
blocking states can be reached via τu are replaced by the
new non-marked state ⊥. Finally, all incoming controllable
transitions and all outgoing transitions are removed from ⊥.

Proposition 3: Let G be a Kripke-structure. Then

G 'sup synthh(G) . �

Proof: (Sketch) It suffices to show for arbitrary T ,

supCN (synthh(G) ‖ T ) = supCN (G ‖ T ). (21)

This is true because synthh only removes controllable tran-
sitions that supCN would also remove, and all blocking
situations remain. �

This shows that “half-way” synthesis is a sound way of
simplification for the modular synthesis procedure. Methods
from process-algebraic testing theory [10] can be used to
derive several other simplification procedures, but they have
to be omitted here for lack of space.
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V. CONCLUSIONS

A general method for modular synthesis of controllable
and nonblocking supervisors for discrete event systems has
been proposed. The monolithic representation of the state
space is avoided by the use of simplified automata at
the intermediate stages of the algorithm. The supervisor is
produced in an efficient representation using a symbolic
mapping of state labels and therefore remains modular.

The proposed framework can be extended and enhanced in
different ways. In the future, the authors would like to study
and evaluate additional algorithms for the minimisation of
automata in a way that preserves supervision equivalence.
Furthermore, it is interesting to consider coarser equivalences
than supervision equivalence that take some aspects of the
rest of the system considered into account.
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