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Abstract 
In response to Searle's well-known Chinese room argument 
against Strong AI (and more generally, computationalism), 
Harnad proposed that if the symbols manipulated by a robot 
were sufficiently grounded in the real world, then the robot 
could be said to literally understand. In this article, I expand 
on the notion of symbol groundedness in three ways. Firstly, I 
show how a robot might select the best set of categories 
describing the world, given that fundamentally continuous 
sensory data can be categorised in an almost infinite number 
of ways. Secondly, I discuss the notion of grounded abstract 
(as opposed to concrete) concepts. Thirdly, I give an objective 
criterion for deciding when a robot's symbols become 
sufficiently grounded for "understanding" to be attributed to 
it. This deeper analysis of what symbol groundedness actually 
is weakens Searle's position in significant ways; in particular, 
whilst Searle may be able to refute Strong AI in the specific 
context of present-day digital computers, he cannot refute 
computationalism in general.1 

Keywords: Chinese room argument, symbol grounding, 
artificial intelligence. 

 

1 Introduction 
Will a machine ever be able think and understand in the 
same way that a human mind thinks and understands? 
Aside from debates over definitions, this is a question 
that has dogged AI scientists and philosophers for a 
number of years. With the advent of digital computer 
technology, the question has tended to focus 
specifically on digital technology: could a computer, 
solely by virtue of running the correct program, think 
and understand? The affirmative answer to this 
question is the stance known as Strong AI (Searle, 
1980), which has its roots in assertions by famous AI 
researchers such as Newell & Simon (1976) that 
intelligence resides in physical symbol systems. 

It is no wonder, then, that John Searle created a storm 
of controversy when he published his now (in)famous 
Chinese room argument (CRA) against Strong AI 
(Searle 1980, 1990). More recently, Harnad (1993, 
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2001) has shown how the CRA can be reformulated as 
an attack on computationalism, a more general position 
than Strong AI, which holds that mental states are 
equivalent to implementation-independent 
computational states (i.e. states independent of the 
underlying hardware or substrate). Searle (1993) agrees 
that the CRA also holds for computationalism. 

The CRA argument is essentially this. Programs are 
syntactic. That is, they consist solely of symbol strings. 
The shape of a symbol is arbitrary (not related to its 
meaning or content), and the rules for reasoning 
(combining and recombining the symbols) are 
themselves arbitrary symbol strings. The human mind, 
on the other hand, is both syntactic and semantic: the 
human mind has symbols, but it also attaches a 
meaning (semantics) to its symbols. Thus, a human 
mind can be said to understand. Searle states that 
because no amount of syntax will ever produce 
semantics, there is no way that a computer running a 
program (which is purely syntactic) will ever be able to 
understand. It follows that Strong AI is false. 

To "set the reader up" to accept this conclusion, Searle 
makes use of a particularly effective thought 
experiment (or "intuition pump" as Dennett, 1987, calls 
it). Imagine a man (or a flea, or a machine) inside a 
room. The man is passed, through a slit in the wall, 
pieces of paper upon which are written sequences of 
Chinese symbols. The man understands no Chinese at 
all, and therefore has no comprehension of what the 
symbols on the paper actually mean. Yet, with the help 
of a rulebook specifying the correct matching response 
for every possible string of Chinese input characters, he 
is able to write a response in Chinese and pass it back 
through the slit to the outside world. To the native 
Chinese speakers who are outside the room, it is as if 
they are conversing (via written Chinese words) with 
another native Chinese speaker. The question is, does 
the man (or the flea, or the machine) understand 
anything? Searle says no, since the man is merely 
following the mechanical instructions in the rulebook 
that allow the man to simulate a native Chinese 
speaker. And by following the rulebook, the man is 
doing essentially the same thing as digital computer. 

It is my intention to focus on a single significant reply 
to the CRA, namely Harnad's notion of symbol 
grounding (Harnad, 1990, 1993). By elaborating on the 
notion of symbol groundedness in three ways, I will 
show that Searle's CRA is considerably weakened. In 
particular, I claim that Searle's argument relies 
significantly on features of present-day digital 
computers that a sufficiently grounded computer (or 



robot) would not necessarily possess; thus Searle's 
argument works against present-day computers, but 
cannot refute computationalism in general. 

Symbol grounding, stated simply, is an attempt to show 
that computer programs can have semantics. 
"Grounding" a symbol means taking the symbol, and 
associating it with a pattern of sensory data that is 
perceived when the entity that the symbol denotes is 
seen, or heard, or tasted etc. For example, I understand 
what the symbol "pizza" means because I know what a 
pizza looks like, smells like, tastes like and so on. This 
sensory information is called its iconic representation. 
Icons are analog rather than digital, because their form 
reflects their content. If a computer acquired the icon 
for a pizza, then according to Harnad, it too could 
understand the concept "pizza". Of course, the 
computer ideally should be able to learn about pizzas 
all by itself: it therefore would be more like a robot 
than a standalone computer, having a host of 
sensorimotor apparatus connected to it such as video 
cameras to see the pizza, artificial taste and smell 
receptors for tasting and smelling the pizza, artificial 
hands to pick up and touch the pizza etc. In this way, 
the symbol "pizza" would become grounded in the real 
world, and the robot would understand. Note that 
Harnad uses the term category to refer to the name of 
the thing that a symbol denotes, but a category is not a 
symbol; thus, a grounded symbol has both categorical 
and iconic representations. 

A feature of the groundedness of symbols is that they 
can be easily combined. For example, if I have never 
seen a zebra before, but I do have the grounded 
symbols "horse" and "stripes", then I can construct the 
iconic representation for "zebra" from the icons for 
"horse" and "stripes". In this way, I would be able to 
recognise a zebra when (and if) I ever see one. 

2 An Elaboration of Symbol Grounding 
There are three issues that Harnad does not address in 
relation to his symbol grounding scheme, which I 
intend to discuss here. 

2.1 Where do grounded symbols come from? 
This first issue concerns how grounded symbolic 
representations could arise in a mechanical or 
biological mind initially. Bear in mind that there is a 
basic dichotomy between sensory data, which is 
continuous and constantly fluid, and symbols, which 
are essentially discrete and static. It has often been 
asked how the mind (be it human or robot) could ever 
be able to categorise the massive in-flow of sensory 
data that it receives in order to sort out the icons from 
the noise, and furthermore, how it can do this in real-
time. I am going to ask a much more fundamental 
question: how does the mind induce grounded symbols 
(complete with categories and iconic representations) in 
the first place?  

Consider, for example, a child (or a newly built, 
“intelligent” robot). A child starts out in the world with 
no grounded symbols because groundedness can only 
arise as a consequence of experiences, and a child 
initially has no experience of the world. Admittedly, 
the child may possess a handful of innate responses 
(such as the ability to react in a certain way to a visual 
pattern resembling a face), but such autonomic reflexes 
do not constitute any form of understanding. Piaget, in 
his theory of cognitive development, states that a child 
is initially unable to distinguish even between self and 
environment (Wadsworth, 1989). In other words, the 
child must not only learn to associate icons with 
categories to form grounded symbols, but it must also 
come up with a grounded symbol that denotes the 
child’s own self as distinct from everything else. 

Now, sensory data begins flowing into the child's brain 
via the eyes, ears, etc. There are no clean divisions in 
the sensory data that could be used to learn the icons. If 
there are divisions (e.g. discontinuities in intensity 
gradients), which ones are significant? To illustrate the 
problem, consider how difficult it must be to identify 
the leaves and the fruits of an apple tree in the absence 
of any a priori iconic information about what a leaf or 
an apple should look like. 

Now consider this: without some sort of bias, it is 
computationally intractable to come up with the best set 
of categories describing the world. What do I mean by 
this? Given that sensory data is continuous, there is an 
effectively infinite (subject to the limits of the sensory 
apparatus) number of possible categorisations of the 
data. It is simply impossible to mechanically search this 
space of categorisations to find the one that best fits the 
perceived reality. To give a simple example, suppose I 
have a camera that can detect shades of grey to an 
arbitrary degree of accuracy, from pure white to pure 
black and everything in between. What is the best way 
to divide this continuum of stimuli up into discrete 
categories? I could halve the spectrum, for example, by 
assigning the lightest half to the WHITE category and 
the darkest half to the BLACK category. Alternatively, 
I could divide it into three categories, namely WHITE, 
GREY and BLACK. Or I might decide to divide it into 
four or more categories. Note that the categories need 
not all have the same width; I might assign a wider 
region of the range to the category GREY, for example. 
The key point is that the number of different 
categorisations is effectively infinite. So how can a 
robot or child ever find the best one, and what is the 
criterion for selecting a particular categorisation 
anyway? Scale the problem up to realistic proportions 
and you have to deal with sensory data that is not 
continuous over a single dimension like shades of grey, 
but is continuous over multiple dimensions. 
Furthermore, some of those dimensions will be visual, 
others auditory, and so on. A brute force search over all 
the possible different categorisations of this data (in 
order to find the one that best benefits the robot or 



child) is simply impossible due to the sheer size of the 
search space. 

It should be noted that this is a difficult problem to 
solve. AI and Artificial Life researchers often skirt over 
the issue by building systems and simulations in which 
the input data is assumed to be “automatically” 
symbolic. 

So how can a child learn symbols and categories, and 
what can this tell us about how a grounded robot might 
learn its symbols? My argument is that initially 
symbols and their categories are grouped into task-
specific sets. Task-specific means that the symbols are 
formed in order to solve specific problems in particular 
domains. By having a specific task to perform, a bias is 
provided for the problem of searching for the best 
categorisation of sensory data. The bias is simply that 
the symbols learned are those that make the solving of 
the task as simple as possible, and all other 
categorisations are ignored. For example, consider an 
entity that is learning to hunt. It will clearly need 
symbols denoting at least its prey and any obstacles; 
these symbols would belong in the task-specific set for 
hunting. It can then reason symbolically about what 
actions it needs to take in order to catch the prey. The 
number of categories relevant to each task is likely to 
be quite small as well, which may explain how minds 
and robots can identify and categorise sensory data so 
quickly: they are only searching for symbol icons 
relevant to the task at hand. 

An implication of task-specificity is that the same 
sensory data will be categorised in different ways 
depending on the context. For example, in one task 
context some visual data may match the prey category 
(that being a single category), but in a different task 
context, the same data may be further subdivided into 
categories such as head, torso, arms, legs etc, because 
these additional symbols are required to effectively 
carry out the different task. So categories are grouped 
into sets where each set is relevant to a particular task. 
A mind or intelligent, grounded robot learns its 
symbols set-by-set, as it successively masters task after 
task. 

2.2 Can symbols denoting abstract concepts 
be grounded? 

The second issue is about abstract concepts. What does 
it mean to say that an abstract concept (such as "love", 
"politics", or "victory") is grounded? Or does Harnad's 
solution apply solely to concrete concepts (such as 
"cat", "pizza", and "house")? Harnad himself 
recognises this as a problem (Harnad, 1993). I want to 
show that the notion of grounded symbols denoting 
abstract concepts is meaningful, and furthermore, it 
arises naturally if one accepts that initially symbols are 
grouped into task-specific sets. 

The first thing to note is that task-specific sets of 
symbols may overlap. That is, pairs of symbols from 

disparate sets may actually denote the same or a 
partially similar concept or thing, because their icons 
contain similar information. For example, consider the 
games of chess and tennis. The notion of "victory" in 
each game is a concrete concept, and so I would expect 
a "victory" symbol in both the task-specific set defined 
for chess, as well as the task-specific set defined for 
tennis. The iconic representation of the former would 
include (perhaps) an icon of the chessboard in a victory 
configuration, while the iconic representation of the 
latter would include information for determining if a 
game of tennis has been won. But both icons would 
contain a great deal of similar information as well. For 
example, the sensation of victory one feels when one is 
victorious in a game of chess or tennis, whether it be 
happiness, satisfaction or exhilaration, is similar. 

So how does the abstract notion of "victory" arise, one 
that is not connected with any particular instance of 
victory? It is by a process of generalisation or 
decontextualisation, in which a new symbol, outside of 
the task-specific sets, is learned. The new symbol's 
iconic representation is precisely the iconic information 
that is shared by all the specific instances from which it 
derives. In other words, the abstract "victory" symbol 
has an icon that is the intersection of the icons of 
victory in each specific context, such as chess, tennis, 
and so on. Another example is the formation of the 
abstract notion of "love". A child learns that Mummy 
loves Daddy and Uncle loves Aunty, and from the 
similar parts of the iconic representations of these 
different, concrete categories, it can learn the abstract 
symbol "love". 

This idea makes sense from a computational viewpoint. 
Intersecting icons is a way of minimising the amount of 
data to be stored. It is analogous to the idea of the 
compression algorithm from Computer Science (e.g. 
Witten et al, 1999), in which redundancy is eliminated 
by replacing repeating patterns with references to their 
first occurrence. It just so happens that as a by-product 
of this intersection process, new, useful, and abstract 
concepts can be formed. 

So abstract symbols can be grounded; the primary 
difference between grounded abstract symbols and 
grounded concrete symbols is that the former are 
associated with only a partial icon that arises through a 
process of decontextualisation. 

2.3 When is a robot sufficiently grounded for 
it to be considered intelligent? 

The third and final discussion in this elaboration of 
symbol grounding concerns the criterion for 
intelligence. How grounded should a robot become 
before it can be said that it has an intelligent mind? The 
traditional test of intelligence is the Turing Test 
(Turing, 1950) or one of its variants (e.g. the Total 
Turing Test discussed in Harnad, 2001). But the Turing 
Test is purely behaviouristic, asserting that intelligence 
and understanding is an attribute assigned subjectively 



by an observer to an entity, rather than being an 
inherent property of the entity itself. The CRA is 
designed to show that the Turing Test is insufficient - a 
robot could simulate intelligence and pass the test, but 
still not really understand anything. Harnad's reply is to 
make assertions about how an intelligent robot's mind 
would be organised cognitively and how it could 
operate - specifically, its symbols would be grounded. 
So Harnad has effectively brought the debate into the 
arena of cognitivism, which in turn means that the 
Turing Test is no longer completely sufficient for 
attributing understanding, because hypothetically, a 
machine might meet Harnad's requirements but fail the 
Turing Test. 

I propose a new test for determining when a robot's 
brain would be sufficiently grounded in order to 
constitute it being called a mind. The basis of the test 
rests on the observation that physical symbol systems 
(Allen & Newell, 1976) consist of both symbols 
denoting things in the world, and separate rules for 
meaningfully combining them. The rules may 
themselves be symbols, but the fact is that there is a 
clear distinction. 

I claim that in a sufficiently grounded robot there 
would be no need for explicit, separate rules for 
combining symbols. The reason for this is as follows: 
the robot has a rich, iconic representation of each of its 
symbols. It should therefore be able to infer from the 
icon and the icon alone when it is meaningful to 
combine those symbols and when it is not. In other 
words, the symbols, by virtue of their groundedness, 
can be manipulated intrinsically without any distinct 
and artificial rules of composition being defined. This 
could serve as the starting point for a definition of 
understanding. 

To illustrate the point, a robot that understands "horse" 
and "stripes" should, by analysing the icons of these 
symbols, admit the possibility of a meaningful new 
category being produced by their combination 
(irrespective of whether such a thing really exists in the 
world). It should likewise admit the impossibility of 
combining "pizza" with, say, "victory". And the robot 
should be able to do this solely by reasoning from the 
iconic representations of its symbols. So, effectively, 
thanks to groundedness, we no longer need distinct 
rules of composition, taxonomies or class hierarchies of 
symbols, and so on. A mind that understands will 
consist of meaningful, grounded symbols - and that is 
all. 

Thus we have a new test for intelligence: examine the 
robot's program and determine if the robot can reason 
symbolically solely by virtue of the iconic information 
associated with its symbols. Is the iconic information 
sufficiently rich to support such "intrinsic" reasoning? 
If it is, then it passes the test. On the other hand, if the 
program uses rules external to the symbols themselves, 
rules that prescribe the way in which symbols should be 
combined, then the robot is not utilising the iconic 

information associated with the symbols. Instead, it is 
following mechanical rules, so therefore it fails the test. 

Why are mechanical, prescriptive rules so bad? 
Researchers in the expert systems community would 
immediately be able to offer an answer to this question: 
mechanical rules inevitably lead to brittleness. 
Brittleness refers to the inability of a supposedly 
intelligent system to adapt to a slightly different task 
for which it was designed, without a major 
reprogramming effort. Humans are quite the opposite. 
To illustrate, the famous chess-playing computer Deep 
Blue (Campbell et al, 2002) is unlikely to be able to 
win a game of draughts. Similarly, a medical system 
designed to diagnose one type of cancer is unlikely to 
be able to diagnose cancer of another type, even though 
much of the domain knowledge may overlap. And the 
reason for this is simply that there is no real 
“understanding” in the system: all that exists are 
mechanical rules that are followed. The symbols are not 
grounded, and cannot therefore be used for purposes 
other than that for which they were designed. (It should 
be noted that if a gap or error occurs in these 
mechanical rules, then the system may exhibit some 
profoundly silly behaviour that betrays its lack of 
understanding. Some authors have referred to this as 
“artificial stupidity”.) 

A possible counter-argument to this stance may be to 
say that the rules could be generated on-the-fly using 
machine learning algorithms. The system would thus be 
able to adapt to new tasks. I think that the major flaw 
with this argument is that the no matter what machine 
learning algorithm is used, the number of possible rules 
that could be generated by any given algorithm will 
always be limited. And this must in turn lead to the 
brittleness problem. The only solution is avoid external 
rules altogether, and this is the test for intelligence that 
I am advocating. External rules are not needed if the 
icons are sufficiently rich. 

The test proposed here is certainly not designed to 
displace the Turing Test. Rather, it enhances the Turing 
Test. The Turing Test is behaviouristic, but Harnad's 
reply to the CRA makes cognitive assertions about 
intelligent robots and minds. We therefore need to 
account for this cognitive dimension, and this test does 
just that.  

3 Implications for the CRA 
Now that Harnad's original concept of symbol 
grounding has been extended and analysed, what are its 
implications for Searle's CRA? Is the CRA still a 
convincing argument when confronted with a robot 
whose symbols are richly grounded, and meaningfully 
combined without resort to separate rules of 
manipulation? 

Unfortunately (for Searle), the plausibility of the CRA 
rests quite strongly on the distinction between the 
symbols and the external rules that manipulate them: 



the "man" in the Chinese room uses rules to shuffle the 
symbols in and out through the slits. But I am 
suggesting that in a properly grounded robot, there 
would be no such rules. There would be no rulebook 
that the man could look up with which to manipulate 
the symbols. Instead, there would just be the symbols 
and their rich iconic representations. The man would be 
able to manipulate the symbols because he has enough 
information within the icons to "understand" them. So 
the concept of a pure syntactic manipulation of symbols 
does not apply to a grounded robot; rather, in such a 
robot, the semantics (the icons) will play a large part in 
how the symbols are combined. This is one argument 
undermining the CRA. 

The CRA is weaker still when one considers that Searle 
uses a neat trick to lend plausibility to his argument. 
The trick relies on generating confusion in the minds of 
the readers between implementation-level symbols and 
referential-level symbols. Implementation-level 
symbols are determined by the hardware that the 
program will execute on. For example, implementation-
level symbols in a digital computer include bits such as 
1 and 0, fundamental instructions like SHIFT and 
COMPARE, and so on. They are precisely the symbols 
that the man in the Chinese Room is meant to process. 
Referential symbols, on the other hand, denote things in 
the world such as "pizza", "zebra", "cat" etc, which 
have been the focus of this discussion. Such symbols 
are not determined by the hardware at all, and so they 
are "implementation-independent" in the 
computationalist sense. Searle's argument, in fact, is 
that a digital computer manipulating symbols at the 
implementation-level cannot understand. That, I 
believe, is a valid assertion. However, Searle makes an 
error when he claims that his conclusion holds true of 
any type of symbol manipulation - which implicitly 
includes referential symbols as well. He gets away with 
it because he never distinguishes between the 
implementation and referential levels in the first place, 
and consequently many readers are "persuaded" by his 
conclusion that all types of symbol manipulation must 
be mechanical, syntactic, and therefore non-intelligent. 

I find this conclusion somewhat ironic because 
symbolic AI scientists do actually try to develop 
programs at the referential level; models of cognition, 
especially classic AI programs, focus a great deal on 
defining and manipulating referential symbols, and do 
not in theory depend on the implementation level. Of 
course, the flaw in classical symbolic AI is that the 
referential symbols are not grounded, but are defined in 
terms of other referential symbols (the Chinese/Chinese 
dictionary-go-round, as Harnad, 1990, calls it), which 
leaves the door wide open for a CRA-type argument. 
But in general, the symbolic AI scientist would not give 
consideration to whatever implementation symbols 
their particular platform compiles their program into. 
Yet Searle attacks implementation-level symbol 
manipulation quite specifically. 

What the notion of symbol grounding does suggest, in 
respect of the implementation/referential distinction, is 
that a computer could be developed that operates solely 
at the referential level. Unlike a present-day digital 
computer, which can manipulate only implementation-
level symbols, the referential computer would have as 
its most primitive element symbols that are grounded in 
the world. Its sensory apparatus, and even its iconic 
memory, would need to be primarily analog. Rather 
than converting sensory data first into a stream of bits, 
it would operate directly on the sensory data itself; 
matching data to category (which, as I have argued, 
will depend on the current task-specific context), and 
pulling the corresponding iconic representations into its 
analog working memory. Thus the memory of the 
grounded robot would be an iconic representation of 
the world itself, at a particular level of detail 
determined by the task it is trying to solve. Once the 
symbols and their icons are drawn into memory, and 
after the sensory data has been categorised, reasoning 
then becomes the process of manipulating the symbols 
by virtue of their icons. In other words, a sufficiently 
rich iconic representation of a situation in a robot's 
memory should suffice for understanding and problem 
solving. 

At this stage it is premature to speculate about how 
such a system might be implemented. Harnad has 
argued for many years that neural networks offer the 
best means of achieving grounded representations (e.g. 
see Harnad, 1993, and many of his other papers). 
However, I believe that the main flaw of his proposal is 
that he only suggests using neural networks for storing 
the iconic information associated with the symbols. The 
symbols themselves are still manipulated by external 
rules, which as I have argued, should not be necessary 
if the icons are sufficiently rich. Whether neural 
networks are sufficiently flexible to allow the type of 
processing I have described here is an open question for 
future research. It may be the case that they are not, but 
perhaps some new emerging technologies such as bio-
computers (e.g. Garcia et al, 2002) or 
analog/associative hardware does offer some hope. 

So, could Searle's CRA apply to a grounded robot as 
described in this paper? The answer is no. Clearly, you 
can no longer draw an analogy between the man in the 
Chinese room and the CPU of such a computer. The 
CPU of a traditional digital computer operates at the 
implementation-level, where the form of the input is 
not related to what is denoted. The machine I am 
proposing, however, is quite different: it operates on 
the referential level where the form is related to the 
content at the lowest level (and that level can vary 
depending on the task at hand). It cannot thus be argued 
that the CPU or man in the Chinese room is merely 
shuffling meaningless symbols. Searle’s CRA is 
therefore inapplicable to such a machine. 



4 Conclusion 
To summarise, Harnad’s symbol grounding idea has led 
to the following tenets about what constitutes 
intelligence. 

Firstly, an intelligent robot should acquire its symbols 
as it learns new tasks. The task essentially provides a 
bias for distinguishing the icons of each symbol from 
everything else in the sensory input. 

Secondly, although concrete symbols are initially 
compartmentalised according to the task, later they are 
generalised out of their initial task-specific contexts by 
a process of intersecting (or compressing) the icons, 
thus forming abstract symbols. 

Thirdly, a consequence of this is that the icons for each 
symbol should be sufficiently rich to allow symbolic 
reasoning without the use of external, prescriptive 
rules. This provides the basis for a new test of 
intelligence.  

Fourthly and finally, these new tenets have proved 
incompatible with the notion that the CRA can refute 
computationalism in general. The CRA only holds 
against machines like present-day digital computers 
that operate with implementation-level (as opposed to 
referential-level) symbols. Note that it does not actually 
matter whether or not one believes that the variety of 
robot discussed here really could understand; the point 
is that Searle's argument cannot deny the possibility, 
which is what it was originally designed to do. And 
because such a robot is still basically a machine 
running a program, computationalism is still valid. 
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