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Abstract 

The overall aim of this thesis was to examine myostatin and components of the 

insulin-like growth factor (IGF) axis during regeneration, to determine whether these 

factors were temporally regulated during regeneration, whether the absence or 

presence of growth hormone (GH) affected their levels, and lastly, whether the 

administration of exogenous IGF-11 enhanced muscle regeneration. A histological 

approach was utilised, to determine specific effects on individual tissue types 

(regenerating muscle fibres, survivor muscle fibres, undamaged muscle fibres, and 

connective tissue) within damaged muscle. Regeneration was induced by injection of 

notexin, a myotoxin, into muscle. 

The first experiment tested the hypothesis that the IGFs and their receptors are 

regulated during muscle regeneration, and that the levels of these components are 

regulated by GH. The experimental model used was the GH-deficient dwldw rat in 

which damage and subsequent regeneration were induced by a single intramuscular 

injection of notexin, then either GH- or saline-administered during the regeneration 

period. IGF-1 and -II mRNA were assessed by in situ hybridisation, and binding 

determined by in vitro incubations with 1251-IGF competed with unlabelled 

homologous IGF (specific binding). The presence of IGF binding proteins (IGFBPs) 

was determined by comparison of the specific binding of 1251-IGF-I with the residual 

binding of 1251-IGF-I following competition with des(l-3)IGF-I (which has a greatly 

reduced affinity for IGFBPs relative to IGF-1). Results of the localisation studies 



revealed up-regulation of IGF-1 and -II specific binding in regenerating fibres at the 

time of myotube formation, and indicated the presence of IGFBPs in damaged muscle 

tissues at the same timepoint. IGF-1 and -II mRNAs were significantly up-regulated in 

regenerating muscle fibres concurrent with myotube formation and enlargement, while 

IGF-1 mRNA was also elevated in regenerating muscle fibres at the time of muscle 

precursor cell proliferation. IGF-1 mRNA was elevated in connective tissue of 

damaged, relative to undamaged, muscle during early regeneration. GH 

administration increased bodyweight, and the weights of damaged and undamaged 

muscles. GH administration did not affect the level of specific binding when 1251-IGF­

I was used as the ligand, or the level of IGFBPs as determined by competition of 1251-

IGF-I binding with unlabelled IGF-1 versus unlabelled des(l-3)1GF-I, however GH 

administration did result in increased specific binding of 1251-IGF-II to all damaged 

muscle tissues, relative to muscles from saline-treated animals. GH did not affect 

IGF-1 or -II mRNA levels in damaged muscle tissues. In summary, this trial showed 

that all components of the IGF axis examined showed temporal regulation following 

muscle damage, and that GH administration significantly increased the binding of 1251-

IGF-II to damaged, but not undamaged, muscle tissues. 

The second hypothesis tested in this thesis is that the negative regulator of muscle 

growth, myostatin, is regulated during muscle regeneration, and that its levels are 

decreased in muscles undergoing enhanced growth due to the administration of GH. 

The temporal regulation of myostatin protein was assessed by immunohistochemical 

staining of regenerating muscle sections of Sprague-Dawley rats, and of GH-deficient 

dwldw rats. The effect of GH on myostatin protein levels was determined by 
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comparing myostatin protein levels in saline- versus OH-treated dwldw rats. 

Myostatin immunostaining is present in the cytoplasm of fast muscle fibres, and is 

absent from the connective tissue of undamaged muscles, however following notexin 

injection, abundant myostatin immunostaining was observed at early timepoints in 

connective tissue, and high intensity immunostaining was observed in both fast and 

slow necrotic muscle fibres. Myostatin protein was absent from muscle precursor 

cells at the time of proliferation, and fusion to form new myotubes. Myostatin then 

gradually appeared in the muscle fibres undergoing enlargement. GH administration 

did not affect the temporal regulation, or level, or myostatin immunostaining 

observed. These findings suggest a role for myostatin in the regulation of muscle 

regeneration, including possible effects on connective tissue deposition. 

The third hypothesis tested was that administration of IGF-11 peptide during muscle 

regeneration would advance the onset of muscle precursor cell proliferation and 

differentiation. This was tested by implanting miniosmotic pumps fitted with 

catheters and filled with either IGF-11 (to deliver 3.48 ug IGF-Wday) or vehicle (equal 

volume), in the subcutaneous compartment of Sprague-Dawley rats, then inducing 

damage and regeneration adjacent to the site of peptide of release. Results of the 

immunohistochemical analysis of MyoD, myogenin and developmental myosin heavy 

chain proteins in damaged muscle sections showed that IGF-11 administration resulted 

in a delay in the onset of muscle precursor cell proliferation and differentiation, as 

compared to vehicle only controls. In vitro incubations using 1251-IGF-I as the ligand 

showed no difference in the IGF binding capacity of day 1 tissues, indicating that the 

delay in early regeneration was not caused by down-regulation of the Type 1 IGF 
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receptor in response to administered IGF-II. Cross-sectional areas of regenerating 

muscle fibres on day 7 showed that late regeneration of muscle fibres was enhanced 

relative to the control, vehicle-only group. The period in which the administration of 

IGF-11 enhanced muscle regeneration coincides with the time that IGF-11 mRNA is 

elevated in regenerating muscle fibres, as shown in the first trial, suggesting that a 

greater endogenous production of IGF-II is associated with enhanced regeneration. 

In conclusion, the results of these studies indicate that changes in myostatin and 

components of the IGF axis are associated with muscle regeneration, and that the 

levels of these components are differentially regulated depending on tissue type. 

These studies suggest that IGF-II may be an effective therapeutic agent in regenerating 

skeletal muscle, pending refinement of the administration protocol. 
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CHAPTER! 

INTRODUCTION 

1.1 General Introduction 

Muscle tissue is responsible for most types of body movement. There are three types 

of muscle, identifiable by their structure and contractile properties: skeletal muscle, 

smooth muscle, and cardiac muscle. In this thesis, skeletal muscle will be examined. 

As the name indicates, skeletal muscle is responsible for the movement of the skeletal 

framework, as well as having a role in the maintenance of posture. 

Skeletal muscle has a great capacity for regeneration, ie. the restoration of structure 

and function, following injury. This thesis addresses the hypothesis that growth 

factors regulate the regeneration of skeletal muscle. To provide sufficient background 

for the ensuing work, the composition of intact muscle will first be described, 

followed by a review of the processes that occur when muscle is damaged and 

undergoes regeneration. Subsequently, a review of the growth factors involved in the 

regulation of muscle growth and regeneration will be given, and an explanation of the 

overall aim and experimental hypotheses of this thesis. 
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1.2 An overview of muscle 

Skeletal muscle is composed of four types of tissue- muscle fibres, connective tissue, 

nerves and blood vessels- all of which are necessary for the integrity and proper 

functioning of muscle. 

1.2.1 Muscle fibres 

The basic unit of skeletal muscle is the muscle fibre. Muscle fibres are cylindrical, 

and can extend either partially or wholly down the length of a muscle. It is the 

coordinated contraction of these fibres that generates force and movement (see 

Section 1.3). Within individual fibres are numerous myonuclei, the majority of which 

reside just inside the plasmalemma of the muscle fibre in mature muscle (Allbrook 

1973). Myonuclei are post-mitotic, rendering them unable to participate in processes 

requiring cellular replication, such as growth and regeneration. Muscle cells that are, 

however, capable of replication, termed satellite cells, reside just to the exterior of the 

fibre, between the plasmalemma of the muscle fibre and its surrounding basal lamina. 

Satellite cells normally exist in a quiescent state, however, they can be activated in 

certain conditions to undergo mitosis in order to provide the additional muscle 

precursor cells (MPC) required for the growth maintenance and regeneration of 

postnatal skeletal muscle (this will be discussed in more detail in Section 1.5). 
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J.2.2 Connective tissue 

Connective tissue plays a number of key roles in skeletal muscle: a) the provision of 

strength and structure, b) as a means of attaching muscle to bone, which is necessary 

for the generation of movement, and c) as a reservoir for growth factors, for 

connective tissue is a large component of the extracellular matrix surrounding muscle 

fibres, and d) as a medium through which metabolites are exchanged between muscle 

fibres and capillaries (Bloom & Fawcett 1975). As shown in Figure 1-1, three types 

of connective tissue are found within skeletal muscle: epimysium, perimysium and 

the endomysium. The epimysium envelopes the muscle, and is connected to the 

perimysium, which surrounds fascicles, or bundles of muscle fibres. The endomysium 

surrounds individual muscle fibres, and it is the portion that lies adjacent to the 

muscle fibre that is referred to as the basal lamina. 

Connective tissue is composed primarily of a protein- and carbohydrate-rich matrix, 

including these components: collagen, elastin, fibronectin, laminin, proteo- and 

glycosaminoglycans. Collagen is a major component of connective tissue, and there 

exist numerous collagen types that are associated with skeletal muscle. Types I and ill 

collagens are key components of the epimysium and perimysium, respectively, while 

Types IV and V are predominant in the endomysium (Bailey et al. 1979; Duance et al. 

1977; Foidart et al. 1981). 
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perunysmm 

Figure 1-1. Connective tissue elements within skeletal muscle. 

Shown is a cross-section of muscle with the endomysium (blue) surrounding individual muscle 

fibres, the perimysium (green) surrounding muscle fibre bundles, or fascicles, and the epimysium 

(red) surrounding the entire muscle. Redrawn from Lehto (1983). 

1.2.3 Nerves 

Innervation is essential to the functioning of muscle, as it is through the 

neuromuscular junction, formed where muscle meets nerve, that chemical signals are 

sent which trigger muscular contractions. Nervous input into muscles is via a main 

nerve trunk, which then bifurcates within the muscle so that each fibre is innervated. 

The majority of muscle fibres are innervated by a single motoneuron near to the centre 

of the fibre (Sanes & Lichtman 1999). Conversely, motoneurons innervate more than 
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one fibre (Engel 1994). The grouping of the motoneuron with the muscle fibres it 

innervates is referred to as a "motor unit" (Bodine-Fowler 1994). The muscle fibres 

of a motor unit are relatively uniformly distributed throughout normal, undamaged 

muscle (Bodine-Fowler 1994). 

1.2.4 Blood vessels 

Not only does proper functioning of muscle depend on innervation, it also depends 

upon adequate vascularisation. Blood vessels supply nutrients and carry away waste 

generated by muscle fibres during both rest and contraction. The patterning of the 

vascular system within individual muscles is highly varied, as muscles can be supplied 

by either single or multiple vessels (Jerusalem 1994). A common feature in muscles, 

however, is that within the perimysial space, arteries undergo remarkable branching. 

These arteries then lead to a succession of smaller vessels (arterioles, terminal 

arterioles and capillaries) that are located within the endomysium and in close 

apposition to muscle fibres, and it is through these smaller vessels that adequate 

nutrient supply to the muscle is accomplished. 

1.3 Muscle fibre composition 

As muscle fibres are the basic unit of skeletal muscle, an overview of their 

composition is integral to an understanding of the regeneration process. In adult 

muscle, the majority (80%) of muscle fibre volume is occupied by myofibrils, which 

contain the repeating contractile units known as sarcomeres (see Figure 1-2). 
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Sarcomeres, the specific units responsible for force generation, are composed of four 

types of protein filaments: thick, thin, nebulin and titin. These filaments are attached 

to, or in register with Z-discs. The main components of the thin filaments are actin, 

troponin and tropomyosin, while the thick filaments are composed of myosin, 

myomesin, as well as C-, H- and M-proteins (Schiaffino & Reggiani 1996). Within 

the proteins that comprise the thick and thin filaments there is considerable diversity 

due to the presence of numerous isoforms, and it is this variation in isoforms that 

determines the contractile properties of muscle fibres (Schiaffino et al. 1989). 

thin filament thick filament 

j l 
l 

titin filament 
nebulin filament 

Figure 1-2. Structure of a sarcomere. 

Redrawn from Schiaffino and Reggiani (1996). 

Z-disc 

Muscle fibres are characterised on the basis of their contractile properties, as either 

slow (Type l) or fast (Type 2) fibres, and on the basis of their metabolic properties as 

either oxidative or glycolytic. As suggested by the latter terms, oxidative fibres utilise 

oxygen in their generation of energy, while glycolytic fibres utilise an anaerobic 

pathway. As such, oxidative fibres have a greater number of surrounding capillaries 

than do glycolytic fibres (Viscor et al. 1992). At present there are 4 identified muscle 
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fibre types in rats- slow oxidative (Type 1 ), fast oxidative (Type 2A), and two fast 

glycolytic (Type 28, 2X) (Schiaffino et al. 1989). Different muscles of the body 

contain varying proportions of these fibre types, giving rise to muscles that have been 

specially adapted for different functions such as postural control, running, etc. 

Muscles with a high proportion of glycolytic fibres are especially suited for short 

bursts of intense energy, while muscles with a high proportion of oxidative fibres are 

better suited to long periods of lower intensity use. 

1.4 Muscle development 

Skeletal muscle is first formed during embryonic development. The initial stages of 

muscle development occur in specialised mesenchymal structures near the neural tube, 

called somites (see Figure 1-3). Within somites, MPC are located within a dorsal 

region referred to as the dermomyotome. These MPC embark on one of two possible 

courses: a) migration from the dorsal-medial ( epaxial) region of the dermomyotome 

into the myotome, which eventually becomes part of the back musculature, or b) 

migration from the ventrolateral (hypaxial) region of the dermomyotome into the 

trunk and developing limb areas to form the muscles of the trunk and limb, 

respectively (reviewed by Hawke & Garry 2001). These MPC proliferate to form 

additional MPC, which then either fuse with other mononucleate MPC to form 

cylindrical muscle fibres, the basic units of skeletal muscle, or supplement existing 

fibres through the addition of more nuclei. Nuclei that have fused are post-mitotic. 
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Figure 1-3. Embryonic origins of muscle. 
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A somite consists of the sclerotome and dermomyotome. The dermomyotome in turn is composed 

of the dermatome, which goes on to become the dermis, and the underlying myotome, which gives 

rise to muscle. The medial and lateral divisions of the myotome give rise to epaxial and hypaxial 

muscles, respectively. Figure revised from Hawke and Garry (2001). 

1.5 Muscle damage and regeneration 

1.5.1 General overview 

Regeneration of skeletal muscle occurs naturally in response to a number of 

conditions, including injury such as muscle strain, crush injury or freezing. Similarly, 

muscle regeneration plays a key role in myopathies such as Duchenne's muscular 

dystrophy, a heritable condition affecting young males that leads ultimately to a 

substantial reduction m life span. In Duchenne's muscular dystrophy, a 

subsarcolemmal protein (dystrophin) is lacking, leading to repeated cycles of muscle 

fibre necrosis and regeneration (Karpati & Carpenter 1989). Damaged fibres are 
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replaced by fat and connective tissue rather than muscle (Liu et al. 1993b; McGeachie 

& Grounds 1999), thus causing loss of muscle function (Cohen et al. 1982). 

In addition to the natural causes of muscle damage listed above, skeletal muscle 

damage is commonly induced experimentally by numerous means including muscle 

grafting (Carlson & Gutmann 1975; Hansen-Smith & Carlson 1979), and exposure to 

toxins (notexin, taipoxin) (Harris et al. 2000) or local anaesthetic (bupivacaine) 

(Carlson 1976). Toxin-induced regeneration will be discussed in more detail in 

Section 3.1. Irrespective of the means of damage, successful skeletal muscle 

regeneration consists of a number of coordinated, conserved processes: cellular 

infiltration of damaged muscle and phagocytosis of muscle fibre debris, 

revascularisation, proliferation of satellite cells to give rise to MPC, fusion of MPC to 

form myotubes, enlargement and maturation of regenerating myotubes, re-innervation, 

and remodelling of connective tissue (Bodine-Fowler 1994; Grounds 1991; Hansen­

Smith & Carlson 1979; Kami et al. 1993). Section 1.5 looks at these processes in 

detail, while Section 1. 7 considers the input of specific growth factors in modulating 

these processes. 

1.5.2 Phagocytosis 

The initial events that occur following muscle damage are: a) the disruption of 

myogenic structural protein organisation and myofibril retraction away from the site of 

damage (reviewed by Tidball 1995), and b) damage to the plasmalemma (reviewed by 

Grounds 1991 ). Subsequent to this there is de-regulation of calcium homeostasis, 
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leading to the free entry of calcium into the damaged muscle fibre (Armstrong 1990). 

High intracellular calcium interferes with the normal functioning of mitochondria 

(Grounds 1991; Nakayama et al. 2001), and leads to the activation of calcium­

dependent proteases, known as calpains, which then degrade myofibrillar and other 

muscle proteins (Evans et al. 1984; Koh & Tidball 2000). In addition to these 

intracellular effects, is the activation of the lytic complement pathway, as indicated by 

the presence of complement components (Orimo et al. 1991; Sewry et al. 1987) and 

the membranolytic C5b-9 complement membrane attack complex (Engel & Biesecker 

1982) on necrotic muscle fibres in vivo. The activation of this pathway contributes to 

the removal of necrotic debris from damaged muscle fibres (Grounds 1991). 

Muscles can either be fully or partially damaged. In the case of incomplete damage of 

a muscle fibre, a new plasmalemma is synthesised at the junction of damaged and 

undamaged muscle that effectively seals off the undamaged muscle fibre from the 

damaged fibre (Carpenter & Karpati 1989; Papadimitriou et al. 1990). In most forms 

of muscle damage the basal lamina survives, where it then goes on to function as the 

scaffolding for new muscle formation (Sanes 1994). 

Subsequent to muscle damage there is a remarkable increase in inflammatory and 

phagocytic cells within the lesion (Pimorady-Esfahani et al. 1997; Tidball 1995). It is 

believed that chemotactic factors attract these cells to damaged areas, as damaged 

muscle is chemotactic for polymorphonuclear leucocytes and macrophages (Robertson 

et al. 1993a), and the generation of complement reaction products stimulates cellular 

infiltration and the phagocytosis of necrotic muscle fibre debris (Engel & Biesecker 
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1982). Polymorphonuclear leucocytes appear first at the lesion, a response that has 

been shown to occur within 30 minutes, and to peak at 12 hours, following 

bupivacaine-induced myonecrosis (Orimo et al. 1991). Macrophages subsequently 

appear within damaged muscle, and are comprised of three distinct populations 

(McLennan 1996). Of these three populations, there is variability in their time of 

appearance (from three hours to 1-2 days following freeze-lesioning), as well as in 

function, for some macrophages have a clear association with necrotic tissue whereas 

others have none (McLennan 1996), suggesting that macrophages may perform 

additional functions to phagocytosis within damaged muscle (McLennan 1996; Merly 

et al. 1999). Alternative functions for macrophages include the enhancement of MPC 

chemotaxis and/or proliferation through the production of growth factors, as 

macrophages are known to secrete platelet-derived growth factor (PDGF), leukemia 

inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and transforming 

growth factor-B (TGF-B) (Robertson et al. 1993a). Indeed, PDGF (AB and BB 

isoforms), LIF, bFGF, and TGF-B are all chemotactic for MPC (Robertson et al. 

1993a), while PDGF (BB isoform) and bFGF are mitogenic for MPC, indicating that 

macrophages likely function in the stimulation of MPC chemotaxis and proliferation 

(Robertson et al. 1993a). Mouse and turkey satellite cells co-cultured with 

macrophages exhibit enhanced proliferation and delayed differentiation relative to 

control satellite cell cultures (Merly et al. 1999). 
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J.5.3 Satellite cells and muscle precursor cells (MPC) 

Satellite cells, which give rise to the MPC necessary for new fibre formation during 

muscle regeneration are, as stated in Section 1.2.1, normally located in the 

compartment between the basal lamina ( also referred to as the basement membrane) 

and the plasmalemma (also referred to as the plasma membrane) as shown in Figure 

1-4. On isolated, non-regenerating rat muscle fibres, satellite cells are present at a 

frequency of 2-3 per 100 myonuclei (Bischoff 1986a). Quiescent satellite cells 

typically have a heterochromatic nucleus, and a scant cytoplasm with few organelles 

(Hawke & Garry 2001). As is the case for the embryonic and foetal myoblasts that 

give rise to muscle during embryonic development, satellite cells are generally 

believed to derive from somites (Schultz & McCormick 1994), although recent studies 

suggest that at least some satellite cells may be derived from embryonic dorsal aorta 

(De Angelis et al. 1999). 
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Figure 1-4. Location of satellite cells. 
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Satellite cells are located between the plasmalemma of the muscle fibre, and the surrounding 

basal lamina. Post-mitotic myonuclei of muscle fibres are peripherally located but within the 

plasmalemma of muscle fibres. Redrawn from Chambers and McDermott (1996). 

1.5.3.1 Activation 

Satellite cells normally exist in a quiescent state, known as the Go phase of the cell 

cycle. The cell cycle consists of the following sequential phases: gap 1 (G1), synthesis 

(S), gap 2 (G2), and mitosis (M), as shown in Figure 1-5, while Go is a state of 

quiescence. In order for satellite cells to produce additional MPC, they must first be 

activated to leave Go and enter the G 1 phase of the cell cycle (Hulleman & Boonstra 

2001; Tatsumi et al. 1998). Once in G 1, cells must pass a restriction point (R) after 

which point they are committed to the phases of DNA synthesis (S phase), G2 and 

mitosis (M phase) (Dou et al. 1993; Hulleman & Boonstra 2001; Pardee 1974). 

Satellite cell activation is often referred to as "cell cycle commitment", whereas 
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passage through the restriction point in G, is referred to as "cell cycle progression" 

(Johnson & Allen 1993). Following M phase, MPC may undergo another round of 

replication, differentiate, or become quiescent by re-entering the Go phase. 

Figure 1-5. Diagram of the cell cycle. 

Satellite cells normally exist in the quiescent state (G0), but can be activated to re-enter the cell 

cycle in order to produce the MPC necessary for growth and regeneration. Activated satellite 

cells first enter the G1 growth phase, and then must pass the growth factor-dependent point 

termed the restriction point (R) in order to progress onto the synthesis (S) phase in which DNA 

replication takes place. Cells then progress into the second growth phase (G2), and finally 

undergo mitosis (division) in M phase. Redrawn from Chambers and McDermott (1996). 

1.5.3.2 Migration 

Once activated, satellite cells migrate to the site of injury (reviewed by Bischoff 

1994 ). Activated satellite cells are able to move out of their characteristic position 
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between the basal lamina and plasmalemma (Grounds 1999). Satellite cells migrate to 

damaged areas from undamaged areas, creating a gradient in the number of satellite 

cells with distance from the site of injury (Klein-Ogus & Harris 1983; Schultz et al. 

1985a). Migration of satellite cells can occur in a number of ways: longitudinally 

along a muscle fibre, perpendicular to the fibre axis, and between muscles. Migration 

of satellite cells longitudinally along muscle fibres has been shown in fibre segments 

isolated after injury, whereby the damaged portion of muscle fibres showed a four­

fold increase in the number of satellite cells, while the region furthest from the 

damage contained one-third the number of satellite cells in control muscles (Schultz et 

al. 1985b ). The occurrence of MPC migration perpendicular to the muscle fibre axis 

has been cleverly demonstrated using a longitudinally-split autograft model in the rat, 

in which one half of the muscle was devitalised by freeze damage, while the other half 

remained vital. Results of this study showed that regenerated muscle fibres formed in 

the devitalised half, with the MPC being contributed by the live half of the autograft 

(Phillips et al. 1990). This study therefore showed that MPC can travel considerable 

distances without constraint by the endomysium or perimysium, and is in keeping with 

the observation of myoblast migration across the basal lamina during normal muscle 

development (Hughes & Blau 1990). Studies of the migration of MPC between 

nearby muscles in mice and rats has led to seemingly contradictory results, with both 

positive (Morgan et al. 1987b; Partridge & Sloper 1977; Watt 1982; Watt et al. 1987) 

and negative (Ghins et al. 1984; Schultz et al. 1986) reports of a host contribution to 

the regeneration of allografted muscle. The conflict in these reports appears to be due 

to species differences (Phillips et al. 1990), whereby there is considerable input from 

nearby host muscle in mice (Morgan et al. 1987b; Partridge & Sloper 1977; Watt 
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1982; Watt et al. 1987), but not in rats (Ghins et al. 1984; Schultz et al. 1986) under 

ordinary circumstances. The formation of a physical bridge between the epimysia of 

neighbouring muscles is sufficient to allow migration from neighbouring muscles in 

rats to occur (Schultz et al. 1986), suggesting that while MPC can apparently traverse 

the epimysium of mice, they are unable to in rats due presumably to its increased 

thickness (Phillips et al. 1990). It has also been suggested that the distances for 

satellite cells to travel within the rat, but not the mouse, are too great to allow for 

satellite cell contributions from adjacent muscle (Ghins et al. 1984; Phillips et al. 

1990). 

Because of the notable increase in MPC in regenerating muscle, some researchers 

have considered additional sources of MPC other than satellite cells. A possible 

source is myoid cells, which are located in the thymus and express MyoD and 

myogenin mRNA (Grounds et al. 1992). Myoid cell levels are decreased in the 

thymus after muscle damage, and are lower than normal during dystrophy-induced 

chronic damage (Wong et al. 1999). Bone marrow cells have recently been shown to 

contribute to regeneration, however this contribution is minimal relative to total nuclei 

within regenerated muscle, and occurs late in the regeneration process (Ferrari et al. 

1998). Therefore, although a contribution to skeletal muscle regeneration by non­

satellite cell derived MPC may occur in some instances, the absolute numbers of non­

satellite cell MPC involved in regeneration appears relatively minor at present. 
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1.5.3.3 Proliferation 

The proliferation stage of muscle regeneration consists of the division of satellite cells 

to form MPC that will then go on to form the regenerating muscle fibres. As stated in 

Section 1.5.3.1, cellular proliferation involves progression through at least one entire 

cell cycle (G1 to M), thereby creating additional MPC. These daughter MPC will then 

either progress on to terminal differentiation, or undergo additional proliferation 

(Grounds & McGeachie 1989). A more in depth examination of the cell cycle and 

regulators of the cell cycle will be undertaken in Section 1. 7, in reference to growth 

factor control of these processes. 

Not all satellite cells appear to enter into the cell cycle during regeneration, based on 

the reported observation of differentiation-associated markers prior to proliferation 

markers (Rantanen et al. 1995). This has led to the assertion that a population of 

satellite cells exists which is already committed to immediate terminal differentiation 

without preceding cell division (Rantanen et al. 1995). 

Heterogeneity in the proliferating satellite cell population has been reported for rat 

muscle cells grown in culture. Specifically, two distinct populations, separable on the 

basis of phenotype and proliferation rate were reported (Molnar et al. 1996), thus 

expanding the potential range of regeneration efficiencies by differences in the 

inherent properties of the satellite cells themselves. 
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1.5.3.4 Fusion 

Once sufficient proliferation has taken place, MPC undergo terminal differentiation, 

and so exit from the cell cycle. As such, the cell is no longer capable of re-entering the 

cell cycle and proliferating. Terminal differentiation marks the time when the 

appearance of many proteins typical of mature muscle, such as sarcomeric proteins, 

takes place, and when fusion to form myotubes occurs. Myotubes are immature 

muscle fibres. They normally form within the tube-like structure of the empty basal 

lamina, which serves as a scaffolding of sorts for the newly-formed myotubes 

(Caldwell et al. 1990). In instances where there is no basal lamina, such as after 

mincing of muscle, myotube formation can still occur, but the level of organisation at 

earlier, but not later, timepoints is rather poorer than the organisation of myotubes 

within pre-existing basal lamina tubes (Caldwell et al. 1990). The generation of 

mechanical forces along a muscle may play an important role in the orientation of 

regenerating muscle fibres and their basal lamina tubes (Caldwell et al. 1990). 

Five distinct types of fusion may take place during skeletal muscle regeneration: MPC 

to MPC, MPC to myotube, myotube to myotube, myotube to muscle fibre, and MPC 

to muscle fibre (Robertson et al. 1990; Robertson et al. 1993b ). Electron microscopic 

evidence for fusion includes the formation of small gaps in the apposed myogenic 

cells, coalescence of the cytoplasm of the adjoining cells and, in some types of fusion, 

the union of the free ends (Robertson et al. 1990). In the case of myotube to myotube 

fusion, union usually occurs at multiple sites along the lateral borders of the apposed 
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myotubes (Robertson et al. 1990), while for MPC or myotube fusion to the sealed, 

damaged ends of muscle fibres, fusion occurs at the "stump" ( end) region, and gives 

rise to sarcoplasmic extensions or "buds" (Robertson et al. 1993b ). Collagen or other 

extracellular material deposited amongst sarcoplasmic extensions could give rise to 

fibres with a "split" appearance (Robertson et al. 1993b ), a phenomenon that has been 

reported often in muscle regeneration literature (Ontell 1986). 

1.5.3.5 Maturation 

Following myoblast fusion to form myotubes, a period of muscle fibre enlargement 

and maturation commences. This period is completed when the mature muscle 

phenotype has been re-established. The primary events occurring during this period 

are re-innervation (addressed in Section 1.5.4) and cytoplasmic enlargement, 

including the synthesis of new contractile units, or sarcomeres. Considerable 

alteration in the pattern of myosin heavy chain (MHC) isoform expression occurs 

during this period, and will be addressed in Section 1.6.2. Although the fibre 

enlargement during regeneration bears resemblance to muscle fibre hypertrophy 

( defined as the enlargement of muscle fibre cytoplasm) the two processes are, strictly 

speaking, distinct from one another. 

1.5.4 Innervation 

Innervation is the connection of motoneurons to muscle fibres via the formation of 

synapses and motor endplates. The re-establishment of innervation is essential for the 
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growth and maturation of regenerating muscle fibres, as shown by studies comparing 

the regeneration of muscle in the presence or absence of innervation. The early stages 

of muscle regeneration up to the time of early myotube formation occur normally in 

the absence of innervation, but thereafter diverge so that denervated muscles are 

growth retarded, have lower isometric tension values, express alternate myosin 

isoforms, have abnormal sarcotubular morphology, and eventually undergo atrophy 

(Bodine-Fowler 1994; Sesodia & Cullen 1991; Whalen et al. 1990). 

Denervated muscle can be reinnervated by either the original neurons, or by axon 

outgrowth from neighbouring muscles. Studies of the reinnervation of grafted 

muscles have shown that the former is the predominant means of muscle 

reinnervation, and that the latter tends only to occur if there has been damage to the 

epimysium of the neighbouring muscle(s) (Klueber 1987). 

The basal lamina plays an integral role in the reinnervation of muscle. New 

neuromuscular junctions (where nerve terminals meet the basal lamina) form 

predominantly at the original synaptic sites on the basal lamina (Marshall et al. 1977). 

The basal lamina contains signals that direct reinnervation to specific sites (Sanes et 

al. 1978), and this process occurs regardless of the presence of the myofibre (Sanes et 

al. 1978). In damaged muscle, the pattern of distribution of muscle fibres innervated 

by motoneurons (referred to as "motor units") is altered relative to undamaged muscle. 

In undamaged muscle, muscle fibres served by a single motoneuron are reasonably 

uniformly distributed throughout the muscle, however following reinnervation there 
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are notable groupings of muscle fibres within a given motor unit (Bodine-Fowler 

1994). 

The normal state of the neuromuscular junction is single innervation by motoneurons. 

However, in the early stages of innervation following nerve damage, polyneuronal 

innervation occurs, whereby neuromuscular junctions are innervated by multiple 

motoneurons. In order to return the neuromuscular junctions to a "normal" state, 

synapses are eliminated through a process of gradual removal of its component parts 

(Culican et al. 1998). In mice, this process occurs within two weeks of reinnervation 

(Rich & Lichtman 1989). 

1. 5. 5 Vascularisation 

Revascularisation is a critical process for the effective regeneration of skeletal muscle, 

for without the timely re-establishment of vascularisation, excessive fibrotic tissue 

deposition and muscle cell death can result (Borisov et al. 2000). Revascularisation 

begins near to the time of the onset of necrotic debris phagocytosis (Roberts & 

McGeachie 1990). In grafted muscle undergoing regeneration, revascularisation 

begins at the periphery of the muscle, then proceeds inward towards the centre of the 

muscle (Roberts & McGeachie 1990). Revascularisation occurs rapidly, with 

functional blood vessels established within 2 days of the onset of the revascularisation 

process, although the complete re-establishment can take 14 days in a heavily 

damaged muscle, such as that resulting from the transplantation model (Roberts & 

McGeachie 1990). 
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1.5.6 Connective tissue deposition 

During muscle regeneration there are changes in the connective tissue, or extracellular 

matrix, compartment. Following contusion damage to rat muscle, the sequence of 

changes in the connective tissue compartment begins with disruption of the 

extracellular matrix (Stauber et al. 1990) and an increased widening of the interstitial 

spaces due to the deposition of extracellular matrix components (Stauber et al. 1990). 

Also associated with this early phase is fibroblast proliferation (Hurme et al. 1991; 

Stauber et al. 1990), for fibroblasts produce many of the extracellular matrix 

components, such as collagens and fibronectin (Hurme et al. 1991; McMinn 1967). 

Capillary formation within the connective tissue compartment also occurs as an early 

event (Hurme et al. 1991; Jarvinen 1975). In the next phase, while satellite cells are 

proliferating and forming new myotubes, phagocytosis of unnecessary and/or surplus 

proteins occurs (Hurme et al. 1991). During this early stage, the connective tissue 

compartment is very fragile, however after new fibre formation, the connective tissue 

becomes denser and attains a greater tensile strength (Hurme et al. 1991) and, at later 

stages of fibre maturation, the endomysial and perimysial compartments appear 

thickened relative to those of undamaged muscle (Hurme et al. 1991). The connective 

tissue strength appears to be related to the collagen isoforms expressed, with first 

Type III collagen, which is associated with plasticity, then Type I collagen, which 

provides tensile strength (Hurme et al. 1991). 

Muscle regeneration is enhanced by the presence of the basal lamina (Kami et al. 

1993; Vracko & Benditt 1972), but is hindered by excessive connective tissue 

formation. Excessive connective tissue can develop after severe trauma (Carlson 
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1968; Phillips et al. 1990), forming a dense barrier that regenerating muscle fibres 

must penetrate (McMinn 1967). 

1.6 Gene expression in skeletal muscle 

1.6.1 Myogenic regulatory factors (MRFs) 

The myogenic regulatory factors (MRFs) play an important role in the commitment of 

cells to the myogenic lineage, as well as their subsequent differentiation to form 

mature skeletal muscle (Rudnicki & Jaenisch 1995; Sabourin et al. 1999). Four 

MRFs have been identified thus far: MyoD, myf-5, myogenin and MRF4. Expression 

of each of these factors in non-muscle cells results in conversion to a myogenic 

phenotype (Braun et al. 1989b; Choi et al. 1990; Edmondson & Olson 1989; Rhodes 

& Konieczny 1989; Wright et al. 1989). Targeted gene disruption experiments in 

mice support the importance of MRFs for normal muscle development, as disruption 

of myogenin and MRF-4 leads to perinatal lethality due to major defects in skeletal 

muscle (Nabeshima et al. 1993; Patapoutian et al. 1995). In the case of gene 

disruption of either MyoD or myf-5, normal muscle develops, however simultaneous 

disruption of both MyoD and myf-5 results in perinatal lethality (Braun et al. 1992; 

Rudnicki et al. 1992; Rudnicki et al. 1993). Thus there exists some measure of 

redundancy in the MRFs, by virtue of the ability of MyoD or myf-5 to compensate for 

loss of the other MRF. 

MRFs have a coordinated and sequential pattern of expression during satellite cell 

activation, proliferation, and differentiation. In quiescent satellite cells, it was 
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previously held that there was no expression of MRFs (Smith et al. 1994), however 

activation of myf-5 gene expression within quiescent mouse satellite cells 

(Beauchamp et al. 2000), and the presence of myf-5 protein in quiescent C2 muscle 

cells (Kitzmann et al. 1998) have recently been reported. Upon satellite cell 

activation, either MyoD or myf-5 mRNA is expressed, followed by frequent co­

expression of both MyoD and myf-5, as observed at both the mRNA and protein level 

(Cornelison & Wold 1997; Kitzmann et al. 1998). Myogenin and MRF-4 mRNA 

expression occur subsequent to the expression of MyoD and myf-5 mRNAs 

(Cornelison & Wold 1997), with the expression of myogenin mRNA coincident with 

early differentiation (Smith et al. 1994; Yoshida et al. 1998). In recent years, MyoD 

expression has been routinely used in muscle regeneration studies as a marker for 

MPC proliferation, and myogenin expression as a marker for the entry of MPC into 

the differentiation pathway (Floss et al. 1997; Jin et al. 2000; Merly et al. 1999). 

MRFs exert effects on muscle cells through the formation of heterodimers with E­

proteins (reviewed by Puri & Sartorelli 2000), as shown in Figure 1-6. E-proteins are 

the gene products of E2A (E12 and E47) (Brennan & Olson 1990; Lassar et al. 1991; 

Murre et al. 1989), and HEB, a gene that is highly homologous to E2A (Hu et al. 

1992). MRF-containing heterodimers bind to a region referred to as the E-box, which 

has the consensus sequence CANNTG, and is present in the promoter and enhancer 

regions of many muscle-specific genes. The enhancement of muscle differentiation by 

MRFs is positively regulated by MEF-2 (Molkentin & Olson 1996), and negatively 

regulated by the proteins Id ("inhibitor of differentiation") (Jen et al. 1992), twist 

(Hamamori et al. 1997; Hebrok et al. 1994), 1-mf (Chen et al. 1996), Mistl 
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(Lemercier et al. 1998), MyoR (Lu et al. 1999), and ZEB (Postigo & Dean 1997). An 

additional level of control is present in that the MRFs exert positive feedback on 

themselves as well as regulate the levels of other family members (Braun et al. 1989a; 

Rudnicki et al. 1992; Thayer et al. 1989). 

Re~ulators 

Positive 
MEF-2 

Negative 
Id 

Twist 
1-mf 
Mist 

MyoR 
ZEB 

E-box 

! 
Muscle specific 

gene transcription 

Figure 1-6. Control of gene transcription by MRFs. 

Muscle specific 
gene promoter or 

enhancer region 

MRFs bind to E-proteins, which then recognise and bind to a sequence (CANNTG) referred to as 

an "E-box" in the promoter region of muscle specific genes. The process of MRF/E-protein 

complex formation and binding to the promoter region is positively regulated by MEF-2, and 

inhibited by Id, Twist, 1-mf, Mist, MyoR and ZEB. 
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1.6.2 Myosin heavy chains (MHCs) 

As discussed in Section 1.3, muscle fibres have distinct fibre types that are determined 

by their contractile and metabolic properties. The determination of specific MHC 

isoforms is considered the most accurate determinant of fibre type (Kelly & 

Rubenstein 1994). There exist over 10 identified MHC isoforms, many of which have 

an extremely restricted expression profile. For instance, neonatal and embryonic 

MHCs are expressed during embryonic development, but are not normally present in 

the adult (Condon et al. 1990). Adult rat muscle, like the muscle of many mammals, 

normally contains four MHC isoforms- I, Ila, lib, and Ilx -with very small but 

detectable amounts of a-cardiac MHC (Dunn & Michel 1997). 

During regeneration, newly regenerated muscle fibres re-express neonatal and 

embryonic MHCs, two isoforms that together are referred to as developmental MHC 

( dMHC) (Davis et al. 1991; Sartore et al. 1982). The dMHC in the regenerating 

fibres is then replaced by either fast and/or slow MHC isoforms (Yoshimura et al. 

1998). Fibre type, and thus MHC isoform expression, at this point is highly 

dependent on the innervation status of the regenerating muscle fibres, so that fibres 

that are regenerating in the absence of nerve ("aneural") remain as fast (type II) fibres, 

and express only fast MHC isoforms as shown in Table 1-1 (Whalen et al. 1990; 

Yoshimura et al. 1998). This is in contrast to the situation for fibres that regenerate in 

the presence of nerve ("innervated"), which can become either fast or slow muscle 

fibres (predominantly slow), as indicated by the presence of either fast or slow MHC 

isoforms (Davis et al. 1991; Whalen et al. 1990; Yoshimura et al. 1998)(see Table 

1-1 ). 
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Table 1-1. Effect of innervation on MHC expression. 

The effect of innervation status of grafted muscle on the pattern of MHC isoform expression by 

regenerating muscle fibres. Abbreviations: dMHC ("dev"), fast MHC ("fast"), slow MHC 

("slow"). Adapted from Yoshimura et al. (1998). 

Innervation status MHC expression pattern 

Innervated Dev 7 dev + fast 7 fast 

~ dev + fast + slow 7 fast + slow 7 slow 

Aneural Dev 7 dev + fast 7 fast 

1. 7 Growth factors in muscle regeneration 

Growth factors and hormones modulate the processes of skeletal muscle growth and 

regeneration. A summary of the findings for the major growth factors involved in 

muscle growth, and their effects on the key processes of muscle regeneration, are 

presented in Table 1-2. As shown (Table 1-2), individual growth factors may affect 

either single or multiple processes. Much of what is currently known about the effects 

of individual growth factors on the steps of myogenesis have been determined by in 

vitro studies, and it is largely unknown whether these same actions occur in vivo. 

While in vitro studies are useful, one must bear in mind that tissue culture conditions 

are quite different to the complex in vivo environment that exists during muscle 

regeneration (Grounds 1991 ). 
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Naturally occurring growth factors, including fibroblast growth factor (FGF), platelet­

derived growth factors (PDGFs), hepatocyte growth factor (HGF), insulin-like growth 

factors (IGFs), transforming growth factors {TGFs), leukaemia inhibitory factor (LIF), 

interleukin-6 (IL-6), epidermal growth factor (EGF), and myostatin can be produced 

locally- either within the same cell that they act upon (autocrine production) or within 

a cell from the adjacent tissue (paracrine production)- or they can be produced 

elsewhere within the body ( endocrine production). The unique patterns of growth 

factor production and localisation during muscle regeneration provide a further means 

of modulating growth factor activity. 

A key aspect of growth activity within regenerating muscle is the coordination of 

expression of multiple growth factors, for there is frequent co-expression of different 

factors. Growth factor activity can be altered by the presence of other growth factors, 

as has been clearly shown in vitro by the enhancement of IGF-I-stimulated 

proliferation by the addition of either basic(b)FGF or EGF (Doumit et al. 1993), and 

the inhibition of PDGF-BB stimulated proliferation by the addition ofTGF-P (Cook et 

al. 1993). Furthermore, it has been suggested that not only is the absence/presence of 

a growth factor important for eliciting a response, so too is the growth factor gradient 

that is established within the regenerating muscle (Bischoff 1997). 
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Table 1-2. Effects of growth factors on regeneration processes. 

The effects listed below have been determined by in vitro studies. 

Growth factor Migration Pro I if eration Differentiation 

bFGF t 

t t 

EGF tor~ 1 

~ 

t -J.. 

~ ~ 

HGF t 

t 

t 

t 

t 

IGF-1 t tor -l.-2 

t t 

t 

t t 

IGF-11 t t or-l.-2 

t 

t 

t t 

IL-6 t 

Reference 

Suzuki et al. (2000) 

Robertson et al. (1993a) 

Olwin & Rapraeger 
(1992) 

Doumit et al. (1993) 

Lim & Hauschka (1984) 

Lim & Hauschka (1984) 

Fiorini et al. (1986) 

Bischoff (1997) 

Allen et al. (1995) 

Miller et al. (2000) 

Tatsumi et al. (1998) 

Suzuki et al. (2000) 

Bischoff ( 1997) 

Fiorini et al. ( 1986) 

Ewton et al. (1994) 

Suzuki et al. (2000) 
Allen & Boxhom 
(1989) 

Fiorini et al. (1986) 

Ewton et al. ( 1994) 

Rosenthal et al. ( 1994) 

Ewton et al. (1998) 

Austin & Burgess 
(1991) 

1 when in the presence of serum or other growth factor(s), but no effect in serum-free media 
2 promotes differentiation at low concentrations, inhibits differentiation at high concentrations (biphasic 
response). 
3 inhibits at high cell density, enhances at low cell density. 
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Table 1-2. Effects of growth factors on regeneration processes (continued). 

Growth factor Migration Proliferation Differentiation Reference 

LIF t Austin & Burgess 
(1991) 

t Austin et al. (1992) 
t Robertson et al. (1993a) 

Myostatin t Thomas et al. (2000) 

t Rios et al. (2001) 

PDGF-AA Ye et al. (1996) 

~ t or 1- 3 Webb & Lee (1997) 

~ Robertson et al. (1993a) 

PDGF-AB t Ye et al. (1996) 

t t or 1- 3 Webb & Lee (1997) 

t Robertson et al. ( 1993a) 

PDGF-BB t Ye et al. (1996) 

t t or 1- 3 Webb & Lee (1997) 

t t Robertson et al. (1993a) 

TGF-a t Austin & Burgess 
(1991) 

t Austin et al. (1992) 

TGF-~ t Allen & Boxhom (1989) 

t Zentella & Massague 
(1992) 

t Bischoff ( 1997) 
1 when in the presence of serum or other growth factor( s ), but no effect in serum-free media. 
2 promotes differentiation at low concentrations, inhibits differentiation at high concentrations (biphasic 
response). 
3 inhibits at high cell density, enhances at low cell density. 
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1. 7.1 Insulin-like growth factors 

The role of IGFs in the regeneration of skeletal muscle was pursued in this thesis 

because of the potent stimulatory effects ofIGFs on muscle growth in vitro (see Table 

1-2) (Adams & McCue 1998) and in vivo (Bark et al. 1998; Coleman et al. 1995). 

The existence of the insulin-like growth factors was first proposed by Salmon and 

Daughaday in 1957, with the "somatomedin hypothesis," namely that GH acts through 

a second factor that is secreted into the circulation (Salmon & Daughaday 1957). This 

second factor was initially called "somatomedin", and is now known as insulin-like 

growth factor-I (IGF-1). Insulin-like growth factor-II (IGF-11), previously known as 

"multiplication stimulation activity" (MSA) (Pierson & Temin 1972) and "non­

suppressible insulin-like activity-2" (NSILA) (Rinderknecht & Humbel 1978b), was 

subsequently identified and shown to be highly homologous to IGF-1. IGFs are so 

named because they are structurally related to insulin (Blundell et al. 1983). 

1. 7.1.1 IGF-I and -II peptide synthesis 

IGF-1 

Rat IGF-1 is encoded by a single gene that contains six exons. Two of these exons (3 

and 4) encode the mature IGF-1 molecule (Butler et al. 1994). Transcription and 

differential splicing of messenger RNA yield IGF-1 transcripts with numerous 

permutations of the 5 ' - and 3 '-termini. Variations in both these regions lead to 

alterations in the signal peptide and carboxy-terminal extension peptide (E-peptide) 

sequences of the preproIGF-1 peptide that is first synthesised (Steenbergh et al. 1997). 

Variation in the signal peptide sequence is believed to affect the processing and 
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secretion of IGF-1 (Gilmour et al. 1992), while variation in the 3 '-terminal sequences 

is associated with distinct patterns of expression, and possibly function (McKoy et al. 

1999). Both the signal- and E-peptides are cleaved in order to produce mature IGF-1. 

Recent studies indicate that the cleaved E-peptide, on its own, contains mitogenic 

activity (Tian et al. 1999). 

Mature IGF-1 is comprised of 70 amino acids (MW 7,646) arranged in a single chain, 

with three disulfide bonds linking six cysteine residues (Rinderknecht & Humbel 

1978a). There are four "domains" within IGF-1, extending from amino to carboxy­

termini in the order, B-C-A-D. IGFs share 38-40% homology with insulin in the A 

and B regions, however insulin does not contain a D-region (Adams et al. 1983; 

Whitfield et al. 1984). IGF-1 peptides also share a high (>92%) degree of sequence 

homology amongst mammals (Foyt & Roberts 1991; Steenbergh et al. 1997). 

IGF-11 

The gene that encodes rat IGF-11 contains six exons (Steenbergh 1997; Dull, 1984). 

The prepro-IGF-11 molecule, from which the signal and E-terminal peptides are 

cleaved to produce the mature peptide, is encoded by exons 3-6 in rodents (Soares et 

al. 1986; Steenbergh et al. 1997). As for IGF-1, numerous transcripts are produced 

from the IGF-11 gene as a result of different promoter usage, alternative splicing of the 

5' sequences, and by alternative polyadenylation of 3' sequences. The expression of 

variant IGF-11 transcripts, which may have diverse properties of stability and/or 

translatability (Rosen et al. 1993), are differentially regulated during in vitro 

myogenesis (Rosen et al. 1993). 
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Mature IGF-II contains 67 amino acids (mol wt 7,471) (Rinderknecht & Humbel 

1978b) arranged in a single chain with three disulfide bonds, and has a similar domain 

structure to IGF-1. Human IGF-1 and -II peptides are over 60% homologous at the 

amino acid level (Whitfield et al. 1984). The IGF-II peptide sequence has been shown 

to be highly conserved, with greater than 93% homology amongst mammals (Foyt & 

Roberts 1991; Steenbergh et al. 1997; Whitfield et al. 1984). 

I. 7.1.2 IGF receptors 

Type I IGF receptor 

The actions of IGFs are both mediated and modulated by binding to receptors. IGFs 

can bind to three receptors: the Type I IGF receptor, Type II IGF receptor, and the 

insulin receptor, all of which are found in muscle cells (Beguinot et al. 1985; 

Virkamaki et al. 2001). The binding affinity of the Type I IGF receptor is greatest for 

IGF-1, less for IGF-II, and least for insulin (Fiorini et al. 1996). The Type I IGF 

receptor is a tetrameric glycoprotein, composed of two alpha and two beta chains. The 

alpha-chains are entirely extracellular in location, and are responsible for ligand 

binding. The alpha-chains are linked to the transmembrane beta-chains via disulphide 

bonds in the extracellular compartment (reviewed by Butler et al. 1998). Like the 

receptors for a number of other growth factors, the Type I IGF receptor functions as a 

ligand-activated tyrosine-specific protein kinase (Ullrich et al. 1986). Within the 

cytoplasmic compartment, the beta chains have a tyrosine kinase enzymatic domain 

that includes an ATP binding site (Werner et al. 1991 ). Ligand binding stimulates 
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autophosphorylation of the intracellular domain, and enables the receptor to 

phosphorylate protein substrates (reviewed by Butler et al. 1998). 

Insulin receptor 

The insulin receptor has a similar structure to the Type I IGF receptor, and functions 

as a ligand-activated tyrosine-specific kinase receptor. The precursor molecules for 

the insulin and Type I IGF receptors are of a nearly identical length (approximately 

1340 amino acids), are 84% homologous within the beta chains, and roughly 65% 

homologous in the regions surrounding the cysteine rich region of the alpha chains 

(Werner et al. 1991). The affinity of the insulin receptor for its ligand is: insulin>> 

IGF-11> IGF-1 (Florini et al. 1996). 

Alternative splicing of the insulin receptor mRNA gives rise to two isoforms, A and 

B, of the insulin receptor (Moller et al. 1989). As indicated above, the affinity of the 

insulin receptor for IGF-11 is normally relatively low (Fiorini et al. 1996), however it 

has recently been shown that the insulin receptor isoform A, which is present in foetal 

tissues and some cancers, binds IGF-II with an affinity close to that of insulin, and on 

a par with the binding ofIGF-II to the Type I IGF receptor (Frasca et al. 1999). 

Type II IGF receptor 

The Type II IGF receptor is a single chain polypeptide that contains an extracellular 

domain comprised of 15 cysteine-rich repeating units, a hydrophobic transmembrane 

helix and a short cytoplasmic sequence (Lobel et al. 1988). Unlike the insulin and 

Type I IGF receptors, the Type II IGF receptor does not have intrinsic tyrosine kinase 
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activity (Roth 1988). The affinity of the Type II IGF receptor for its ligand is IGF­

II>>> IGF-1, and it does not bind insulin (Ewton et al. 1987; Fiorini et al. 1996; 

Rechler & Nissley 1985; Rosenfeld et al. 1987). The Type II IGF receptor is identical 

to the cation-independent mannose-6-phosphate receptor (Braulke et al. 1988; 

Morgan et al. 1987a; Roth et al. 1987), and it binds IGF-II and proteins containing 

mannose-6-phosphate moieties through two distinct binding sites on the receptor 

(Braulke et al. 1988). Proteins containing M6P moieties, including both leukaemia 

inhibitory factor (LIF) and lysosomal enzymes, are normally internalised and degraded 

(Blanchard et al. 1999; Kornfeld 1992), but in the case of the M6P-containing latent 

TGF-P, binding to the Type II IGF receptor leads to activation of TGF-P (Ghahary et 

al. 1999a; Ghahary et al. 2000). Additionally, retinoic acid can bind to Type II IGF 

receptor sites other than those used for IGF and M6P binding, resulting in altered 

Type II IGF receptor distribution within the cell (Kang et al. 1998; Kang et al. 1997). 

The Type II IGF receptor is predominantly intracellular in localisation, with only 5-

10% of the receptor located on the cell surface (Kornfeld 1992). Binding of retinoic 

acid to the Type II IGF receptor results in enhanced binding and endocytosis of 

exogenous lysosomal enzymes (Kang et al. 1998; Kang et al. 1997), as well as 

enhanced sorting of lysosomal enzymes (Kang et al. 1997). These studies thus show 

that the Type II IGF receptor interacts with numerous ligands, however, knockout 

experiments in mice clearly show that the majority of growth-related interactions of 

the Type II IGF receptor during foetal development are with IGF-II (Ludwig et al. 

1996). This is inferred by the complete rescue of the overgrowth phenotype in Type II 

IGF receptor null mice by concomitant disruption of the IGF-II gene (Ludwig et al. 

1996). 
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A cleaved form of the Type II IGF receptor is present in the circulation (Causin et al. 

1988), and is secreted from cells in culture (Clairmont & Czech 1991; Scott et al. 

1996). This soluble form of the receptor is able to bind IGF-II with high affinity, and 

appears to inhibit IGF-II, but not IGF-I, activity (Scott & Weiss 2000). 

1. 7.1.3 IGF binding proteins 

The IGF binding proteins (IGFBPs) are a group of proteins that modulate IGF action 

and are present both in the circulation and within tissues. Amongst the functions 

ascribed to the IGFBPs are extension of the IGF half-life, localisation of IGFs to 

certain cell types, and modulation of IGF binding to cell surface receptors (MacGregor 

& Parkhouse 1996). Through these functions, IGFBPs may either potentiate or inhibit 

IGF action. Inhibition is proposed to result from the association of IGFs with IGFBPs 

in solution, thereby making the IGF unavailable for binding to the receptor. 

Potentiation is believed to result from associations of IGFBPs with extracellular 

matrix or cell surface proteins, accompanied by a decrease in binding affinity, which 

allows the IGF to be released and to partake in receptor binding (Bach et al. 1994; 

Wood 1995). 

There are six identified high-affinity IGF binding proteins (IGFBPs), named IGFBP-1 

to -6 (Bach et al. 1994). IGFBP-3 is the main binding protein in the circulation, and is 

present predominantly in a GH-dependent 150kDa complex with IGF-I or -II, and an 

acid labile 85kDa subunit. IGFBP-3 binds >95% of circulating IGF-I and -II with 

high affinity (Cohick & Clemmons 1993). In vitro studies have shown that a number 
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of IGFBPs are produced within muscle cells, with proliferating myoblasts producing 

predominantly IGFBPs-2, -4, and -6 (Ernst et al. 1992; Ewton & Florini 1995). 

Differentiated muscle cells produce IGFBPs-4, -5, and -6 (Ewton & Florini 1995; 

James et al. 1993; Rotwein et al. 1995; Silverman et al. 1995), with increasing and 

decreasing amounts of IGFBPs -3 and -2, respectively, as differentiation proceeds 

(Ernst et al. 1992; Johnson et al. 1996). 

The affinities of IGFBPs for IGF-1 and IGF-11 differs; thus IGFBPs-2 and -5, and -6 

have a greater affinity for IGF-11 relative to IGF-1 (Baxter 2000; Hossner et al. 1997), 

while IGFBPs-1, -3 and -4 bind IGF-1 and -II with equal affinity (Cohick & 

Clemmons 1993; Hossner et al. 1997). 

In addition to the high affinity IGFBPs, there are four recently identified IGFBP­

related proteins (IGFBP-rP-1 to -4) that also bind IGFs. The IGFBP-rPs are highly 

homologous to IGFBPs in the N-terminal region, however they do not contain the C­

terminal region within which the IGFBPs share homology (Baxter et al. 1998; Kim et 

al. 1997). The binding affinity of IGFBP-rPs for IGFs is reduced relative to the 

affinity oflGFBPs for IGFs (Oh et al. 1996). 

1. 7.1.4 IGF gene knockout experiments 

The important role of IGF peptides and receptors in regulating foetal growth has been 

clearly shown by knockout experiments, in which the gene of interest is disrupted. 

IGF-1 knockout mice are 60% of normal weight at birth, and exhibit a generalised 
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muscular dystrophy that is particularly evident in the diaphragm, heart and tongue (Liu 

et al. 1993a; Powell-Braxton et al. 1993). IGF-1 knockout mice have a high rate of 

perinatal mortality (over 95%), and those that do survive remain smaller in size 

postnatally (Liu et al. 1993a; Powell-Braxton et al. 1993). The mouse IGF-11 gene is 

subject to imprinting, such that the paternal allele is active while the maternal allele is 

silent in virtually all embryonic tissues (DeChiara et al. 1991 ). Inactivation of the 

paternal IGF-11 allele leads to phenotypically normal, fertile mice that are also 60% of 

normal weight at birth, with persistent low weight postnatally (DeChiara et al. 1990). 

Mice with an inactivated IGF-II gene are viable, indicating that although IGF-11 

protein has profound effects on size, it is not essential for embryonic development 

(DeChiara et al. 1990; DeChiara et al. 1991). Simultaneous knockout of both IGF-1 

and IGF-11 genes results in mice that weigh only 30% of normal weight at birth (Liu et 

al. 1993a), thus indicating that IGF-1 and IGF-11 have additive effects on growth. 

Most of the biological effects of the IGFs are thought to be mediated through binding 

to the Type I IGF receptor (Ludwig et al. 1996). 1n keeping with this, inactivation of 

the Type I IGF receptor results in mice that are 45% of normal weight at birth (Liu et 

al. 1993a; Ludwig et al. 1996). Mice with a disrupted Type I IGF receptor have 

smaller muscles due to hypoplasia (decreased tissue cell number) (Liu et al. 1993a), 

and die at birth (Ludwig et al. 1996). In mice, but not humans, the Type II IGF 

receptor is oppositely imprinted to IGF-II, so that the maternal allele is 

transcriptionally active while the paternal allele is silent (Haig & Graham 1991; 

Ogawa et al. 1993). The Type II IGF receptor in mice is proposed to act, at least in 

part, as a "sink" for IGF-II during foetal development (Haig & Graham 1991), as Type 

II IGF receptor knockout mice are subject to foetal overgrowth (approximately 130% 
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of normal weight at birth (Lau et al. 1994). Taken together, these gene knockout 

experiments indicate that the IGFs and their receptors are key determinants of foetal 

growth. 

1. 7.1.5 IGFs in skeletal muscle 

1.7.1.5.1 IGF expression 

IGF-1 and -II peptides are first expressed during early foetal development, and are 

subsequently regulated in a temporal fashion. IGF-1 mRNA levels in muscle are 

highest during foetal and early neonatal development, then decline to approximately 

25% of early neonatal levels by postnatal day 50 in the rat (Adamo et al. 1989). In 

contrast, IGF-II mRNA is expressed at a high, constant level throughout rat foetal 

development, but is undetectable in muscle and all tissues, other than brain, in the 

adult (Beck et al. 1988; Soares et al. 1985). The decrease in IGF-11 mRNA levels in 

most tissues of the rat at birth is accompanied by a decrease in circulating levels of 

IGF-II (Cohick & Clemmons 1993). The decrease in circulating levels of IGF-II is 

observed in rodents, but not humans, postnatally (Cohick & Clemmons 1993; 

Steenbergh et al. 1997). The temporal patterns of expression during development 

suggest that these peptides play a role in foetal muscle development. 

Just as IGF-1 and -II are temporally regulated in muscle tissue during development, 

they are also regulated in distinctive patterns in muscle cells during in vitro 

myogenesis. In cultured C2 muscle cells, the expression of IGF-1 mRNA is normally 

low during myoblast proliferation {Tollefsen et al. 1989a; Tollefsen et al. 1989b ), but 
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increases 6-10 fold within 48-72 hours of a switch to differentiation medium 

(Tollefsen et al. 1989a). The expression of IGF-II mRNA is also low during C2 

myoblast proliferation and increases during differentiation, with 25 times higher levels 

at 96 hours after the switch to differentiation medium (Tollefsen et al. 1989b). Both 

IGF-1 and IGF-II peptides are secreted from C2 muscle cells concurrent with the 

increase in IGF transcription during differentiation (Tollefsen et al. 1989a; Tollefsen 

et al. 1989b ). The cognate receptors for IGF-1 and -II are also regulated during 

myogenesis, with detectable levels of Type I IGF receptors in proliferating BC3H-1 

myoblasts, followed by a decrease in receptors during differentiation (Rosenthal et al. 

1991 ). The Type II IGF receptor, which is non-abundant in proliferating C2 

myoblasts, increases 6-fold during early differentiation, and remains high thereafter 

(Tollefsen et al. 1989b). IGFBPs are undetectable in proliferating myoblasts, but 

increase substantially within 16 hours of the switch to differentiation medium. The 

increase in IGFBPs during differentiation is accompanied by secretion of IGFBP from 

the muscle cells (Tollefsen et al. 1989a). 

1.7.1.5.2 IGF action 

IGFs exert pleiotropic effects on skeletal muscle cells. Studies have established a role 

for the IGFs in eliciting anabolic effects, including suppression of protein degradation 

(Janeczko & Etling er 1984 ), enhanced amino acid uptake (Merrill et al. 1977), 

induction of hypertrophy (Adams & McCue 1998; Coleman et al. 1995), and the 

stimulation of myoblast proliferation and differentiation. It is the enhancement of 

myoblast proliferation and differentiation by IGFs that is most relevant to the work 

contained within this thesis. 
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Enhancement of myoblast proliferation involves an increase in the number of 

myoblasts traversing the cell cycle. As discussed in Section 1.5.3.1, the cell cycle 

consists of the phases G1, S, G2 and M, while G0 is the state of quiescence. Growth 

factors participate in different phases of the cell cycle, and it is the G1 phase of the cell 

cycle where pivotal growth factor regulation of cellular proliferation occurs (Hulleman 

& Boonstra 2001). There are two phases of growth factor dependence in G1, first of 

which is the transition from Go to G1 (activation) (Hulleman & Boonstra 2001; 

Zumstein & Stiles 1987), while the second phase is the progression through G1 and 

the growth factor-dependent restriction (R) point, after which time cells are no longer 

dependent on growth factors for cell cycle progression (Hulleman & Boonstra 2001; 

Pardee 1974). To date, only hepatocyte growth factor (HGF), a factor found in crushed 

muscle extract, has been shown to be capable of activating satellite cells (Tatsumi et 

al. 1998). IGFs have been clearly established as progression factors, that is they are 

capable of progressing cells through the restriction point (Chakravarthy et al. 2000; 

Zhang et al. 1999) so that they are committed to completion of the cell cycle 

(Hulleman & Boonstra 2001). IGFs stimulate the proliferation of both transformed 

myoblasts and primary cultures of satellite cells in vitro (Dodson et al. 1985; Doumit 

et al. 1993; Florini et al. 1977; McFarland et al. 1993). 

IGF-1 is more potent than IGF-11 in eliciting the proliferative response in myogenic 

cells (Ballard et al. 1986; Ewton et al. 1994), and early researchers recognised that the 

order of potency in stimulating proliferation (IGF-1> IGF-11> insulin) mirrored the 

order of affinity of the ligands for the Type 1 IGF receptor (Ewton et al. 1987). In 

confirmation of this, studies in chicken satellite cells show that IGF-1 and -II are 
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bound to the Type I IGF receptor during IGF-stimulated proliferation (Duclos et al. 

1991). 

The mitogenic activity of IGF-1 on myoblasts is enhanced by the presence of a co­

factor, referred to as mitogenic competence factor, that is present in horse serum 

(McWade et al. 1997; McWade et al. 1995; Napier et al. 1999). Addition of horse 

serum to cultured L6 myoblasts that have previously undergone IGF-stimulation of 

proliferation allows the myoblasts to continue responding to the IGF with increased 

proliferation, whereas that responsiveness is lost without horse serum (Napier et al. 

1999). The identity of mitogenic competence factor is unknown, but is not believed to 

be TGF-p, PDGF-BB, FGF, or IGFBPs (McWade et al. 1997; Mc Wade et al. 1995). 

The literature to date has tended to focus on the mitogenic effects of IGF-1, and not 

those of IGF-11, however that is not to say that IGF-11 is a poor mitogen. Perhaps 

some of the most compelling evidence that this is not the case comes from recent 

oncogenic research, in which high levels of IGF-11 have been associated with the 

uncontrolled cellular proliferation typical of the malignant state (Khandwala et al. 

2000). This association has also been shown to occur in rhabdomyosarcomas, a 

skeletal muscle tumour (Minniti et al. 1994 ), and may be partially explained by the 

observation of reduced cell cycling time, through a diminished G1 checkpoint, in IGF-

11 overexpressing myoblasts (Zhang et al. 1999). Such a scenario could give rise to 

the malignant state due to the importance of cell cycle checkpoints in making certain 

that all the necessary processes have been completed before progression to the next 

stage (Zhang et al. 1999). As discussed previously, IGF-11 predominantly uses the 
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Type I IGF receptor to elicit a mitogenic effect, however IGF-II has also recently been 

shown to effectively stimulate cell cycle progression via the A isoform of the insulin 

receptor as well (Frasca et al. 1999; Scalia et al. 2001 ). The insulin receptor isoform 

A is present in foetal muscle and in some cancers (Frasca et al. 1999), however it is 

unknown whether this represents a significant mitogenic pathway in undamaged 

and/or regenerating adult muscle. Taken together, these studies indicate that not only 

IGF-1, but also IGF-II, is a potent regulator of myoblast proliferation. 

IGFs are unusual growth factors, in that they are able to stimulate both proliferation 

and differentiation, as many growth factors that stimulate proliferation inhibit 

differentiation, and vice versa (Florini et al. 1996). The stimulation of myogenesis by 

IGFs has been reported for cell lines and primary cultures of satellite cells (Allen & 

Boxhom 1989; Engert et al. 1996; Ewton et al. 1994; Greene & Allen 1991), and is 

concentration-dependent, with stimulation of myogenesis at low concentrations and 

inhibition at supraphysiological levels (Florini et al. 1986; Florini & Magri 1989). 

IGFs interact predominantly with the Type I IGF receptor to elicit a myogemc 

response (Ewton et al. 1987), although involvement of the Type II IGF receptor is also 

suggested by studies showing that an IGF-II analog with high affinity for Type II IGF 

receptors stimulates differentiation (Rosenthal et al. 1994 ). The amount of Type I IGF 

receptor impacts on the speed with which myogenesis occurs, with overexpression 

leading to an increased rate of myogenesis, and functional inactivation resulting in 

delayed differentiation in vitro (Cheng et al. 2000; Quinn & Haugk 1996; Quinn et al. 

1994). While these studies show that the Type I IGF receptor modulates 
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differentiation, in vitro studies also indicate that it is not a critical component, as 

serum-induced differentiation of cells in culture can still occur in the absence of a 

functional Type I IGF receptor (Cheng et al. 2000). 

IGF-1 and IGF-11 are not equivalent in their stimulation of differentiation (Ewton et al. 

1994; Florini et al. 1993). IGF-1 has a greater potency than IGF-11- that is lesser 

amounts of IGF-1 are required to stimulate differentiation- when administered to 

cultured myoblasts, however IGF-11 effects a greater absolute stimulation of 

differentiation (Fiorini et al. 1993). The difference between IGF-1 and -II in the 

stimulation of differentiation in vitro appears to be due at least in part to the greater 

stimulation of proliferation by IGF-1 relative to IGF-11, for when the mitogenic effects 

of IGF-1 on cultured L6A 1 myoblasts are suppressed, the stimulation of differentiation 

by IGF-1 approaches that oflGF-11 (Ewton et al. 1994). 

Proliferation and differentiation are normally considered mutually exclusive events, 

and the IGFs are unique in their ability to stimulate both processes. The mechanism 

by which IGFs achieve this involves cell cycle regulatory proteins, so a review of cell 

cycle control by regulatory proteins, and in particular the retinoblastoma gene product 

(Rb), is essential. The retinoblastoma (Rb) gene product is a primary controller of the 

cell cycle. Rb is a ubiquitously expressed protein containing 16 potential sites for 

phosphorylation, and it is the phosphorylation state of these sites that determines Rb 

activity (Driscoll et al. 1999). Rb protein plays an important role at the restriction 

point in G1, by determining whether cells can undergo DNA synthesis (reviewed by 

Hatakeyama & Weinberg 1995). The active (hypo-phosphorylated) form of Rb 
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suppresses transcription of the genes necessary for DNA synthesis through inhibition 

of E2 promoter binding factor (E2F)-containing complexes, while the inactive (hyper­

phosphorylated) form of Rb does not have growth suppressor activity (La Thangue 

1994 ). The phosphorylation state of Rb protein is mediated by cyclins (A, D 1 and E) 

and cyclin-dependent kinases (cdks), so that up-regulation of cyclins and cdks is 

associated with hyperphosphorylation of Rb, and subsequent cellular proliferation 

(Hatakeyama & Weinberg 1995; Sherr 1994). 

The state of Rb phosphorylation and cyclin/cdks also plays a part in the decision by 

cells to exit the cell cycle following mitosis. Active (hypo-phosphorylated) Rb 

promotes cell cycle exit and terminal myogenic differentiation (Gu et al. 1993), while 

high levels of cyclins and cdks inhibit this process both directly through effects on Rb 

phosphorylation state, and through a mechanism independent of Rb (Skapek et al. 

1996). So important is the effect of Rb phosphorylation on terminal myogenic 

differentiation, that expression of the phosphorylated, inactive form of Rb by 

terminally differentiated SV40T antigen-transfected C2C12 cells allows re-entry into 

the cell cycle (Gu et al. 1993). However, re-entry of non-transfected, "normal" 

terminally differentiated cells back into the cell cycle does not occur because pRB is 

refractory to rephosphorylation in response to growth factors in terminally 

differentiated cells, in agreement with the inability of muscle fibre nuclei to re-enter 

the cell cycle (Gu et al. 1993). The progression of cells from the proliferative to 

differentiated state is marked by an increased incidence of apoptosis, or programmed 

cell death, as shown for C2 muscle cells in culture (Stewart & Rotwein 1996). 

Apoptosis is a normal feature of mammalian skeletal muscle development (McArdle 
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et al. 1999). Upregulation of the cdk inhibitor, p21 WAFI/CJPJ, and dephosphorylation of 

Rb are critical regulatory events for the establishment of the apoptosis-resistant state 

(Walsh & Perlman 1997), a state that allows nuclear number to be retained during 

differentiation (Stewart & Rotwein 1996). 

Studies of the early and late effects of IGFs on muscle cells show that at early 

timepoints, IGF upregulates the expression of cyclin D 1 and cdk4, which 

consequently leads to hyperphosphorylation of Rb (Rosenthal & Cheng 1995). This 

inactive form of Rb allows proliferation, in response to IGFs, to take place. 

Concurrent with the early enhancement of Rb phosphorylation, is a down-regulation 

of myogenin expression, an event that occurs independently to the effects on cell cycle 

proteins (Rosenthal & Cheng 1995). Myogenin plays a critical role in differentiation 

by controlling the transcription of muscle specific genes (Myer et al. 1997), and in 

regulating the extracellular environment in which myoblast fusion takes place, as 

indicated by the report that wild-type myoblasts rescue the ability of myogenin -/­

myoblasts to fuse in vivo (Myer et al. 1997). Regulation of myogenin gene expression 

by IGFs is biphasic, whereby IGFs inhibit myogenin gene transcription during 

proliferation, then enhance myogenin gene transcription during later stages (Adi et al. 

2000; Rosenthal & Cheng 1995). The inhibition of myogenin gene expression during 

proliferation inhibits differentiation (Adi et al. 2000; Myer et al. 1997; Rosenthal & 

Cheng 1995), while the later increase promotes differentiation (Adi et al. 2000; 

Rosenthal & Cheng 1995). The differential effects of IGFs on myogenin transcription 

occur via two distinct regions on the myogenin gene promoter, with inhibition 

occurring via promoter sequences located in the -145 to -9 region of the myogenin 
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gene, and enhancement occurring in the -1,565 to -375 region of the the myogenin 

gene (Adi et al. 2000). Effects of IGF on myogenin gene transcription via two distinct 

sites in the promoter region thus explain how IGFs can both stimulate and inhibit 

myogenin gene transcription (Adi et al. 2000). The coordinated control of cell cycle 

and muscle cell regulatory factors describes a refined mechanism by which the IGFs 

control both proliferation and differentiation processes. 

In addition to the above-mentioned effects on muscle cell proliferation and 

differentiation, both IGFs act as survival factors during muscle cell differentiation in 

culture, by preventing apoptosis (Stewart & Rotwein 1996). In cultured IGF-11 

antisense C2 cells, the switch to differentiation medium is associated with markers of 

apoptosis in over 90% of the cells, however administration of either exogenous IGF-1 

or IGF-11 is able to prevent this through interaction with the Type I IGF receptor 

(Stewart & Rotwein 1996). IGF-11 similarly prevents apoptosis in vivo, as 

demonstrated by the reduction in programmed cell death in the muscle of mdx mice 

after crossing with IGF-11 overexpressing transgenic mice (Smith et al. 2000). 

1. 7.1.6 IGFs in regenerating skeletal muscle 

The levels of IGFs and their receptors are differentially regulated during the 

regeneration process. In homogenised regenerating muscle of young rats following 

bupivacaine-induced damage, IGF-1 mRNA levels are elevated 6-fold relative to 

undamaged control muscle on days 5 and 10 of regeneration, then decline to 

approximately the same level as control muscle by day 15 post-injection (Marsh et al. 
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1997). Results of the same study showed that IGF-II mRNA levels are elevated 60-

and approximately 30-fold on days 5 and 10, respectively, and that IGF-II mRNA 

levels approach control values by day 15 (Marsh et al. 1997). In contrast, Type I IGF 

receptor mRNA levels are elevated approximately 2- and 6-fold on days 5 and 10 of 

regeneration, respectively, then decline to control muscle levels by day 15 (Marsh et 

al. 1997). The Type II IGF receptor mRNA was not measured in the same study, but 

in a separate study of regenerating muscle following notexin-injection, Type II IGF 

receptor mRNA was detected but its levels were not significantly different to that of 

the contralateral control muscle (Levinovitz et al. 1992). Thus, IGF-1 and -II, and 

their cognate receptors, are regulated differentially throughout regeneration, 

presumably as a reflection of their differing functions within regenerating muscle. 

During regeneration, the tissue type specific pattern of IGF-1 expression is altered. 

Undamaged muscle fibres do not show specific localisation of IGF-1 protein, however 

after damage, IGF-1 protein is observed in satellite cells, intramuscular nerves and 

blood vessels (Jennische & Hansson 1987; Jennische et al. 1987; Keller et al. 1999). 

Macrophages in damaged heart muscle following myocardial infarct express IGF-1 

(Matthews et al. 1999), however macrophages in regenerating skeletal muscle were 

not found to contain IGF-1 protein (Keller et al. 1999). 

The pattern of expression by different cell/tissue types during regeneration suggests 

that IGF-1 may be performing a number of different functions within regenerating 

muscle. IGF-1 stimulates the chemotaxis in vitro of skeletal myoblasts (Suzuki et al. 

2000), vascular smooth muscle cells (Bornfeldt et al. 1994), and nerve cells 
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(Puglianello et al. 2000). However, studies of murine muscle following denervation 

and devascularisation indicate that in regenerating muscle, IGF-I has varying effects 

(Lefaucheur et al. 1996). In these studies, immune neutralisation of IGF-I during 

regeneration resulted in a two-fold increase in the number of capillaries, indicating an 

enhancement of muscle revascularisation, and a 50% increase in the number of 

macrophages in the damaged area (Lefaucheur et al. 1996). Immune neutralisation of 

IGF-I during muscle regeneration also resulted in 80% and 30% decreases in 

regenerating fibre number and diameter, respectively, by day 11 of regeneration 

(Lefaucheur & Sebille 1995c ). Thus, by inference, the studies of Lefaucheur and 

colleagues show that in regenerating muscle, IGF-I may have a net negative effect on 

revascularisation and phagocytic processes (Lefaucheur et al. 1996), as well as a 

positive effect at later timepoints (Lefaucheur & Sebille 1995b ), likely through effects 

on proliferation and differentiation. Similarly, IGF-I administration during laceration­

induced regeneration resulted in a 3.5-fold increase in the number of regenerated 

myofibres, increased regenerated myofibre diameter, and increased muscle strength 

(Menetrey et al. 2000). The inferred inhibition of vascularisation reported by 

Lefaucheur and Sebille (1996) is in contrast to the marked enhancement of smooth 

muscle cell proliferation and migration following intraarterial injury in vivo, in smooth 

muscle cells that have been engineered to overexpress IGF-I (Zhu et al. 2001). The 

reason for these inconsistencies is unknown but may in part be due to the impact of 

other regeneration processes on vascularisation, or the fact that anti-IGF-I antibody 

rather than supplemental IGF-I was used for the studies by Lefaucheur and colleagues. 
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IGF-II, which is low or absent from rat muscle fibres postnatally (Levinovitz et al. 

1992), is temporally regulated after damage in regenerating muscle cells (Levinovitz 

et al. 1992), and in areas enriched with neuromuscular juctions (Pu et al. 1999b ). 

Vascular tissues contain IGF-II protein during regeneration, but strictly at constitutive 

levels (Keller et al. 1999), suggesting that IGF-II is not specifically regulated by 

vascular tissues during regeneration. As was the case for IGF-1, macrophages in 

regenerating skeletal muscle have not been shown to contain IGF-II, although IGF-11 

is present within macrophages in multiple sclerotic lesions (Gveric et al. 1999). Thus 

it is apparent from the patterns for IGF-1 and -II expression that there are both 

similarities and differences in the expression patterns of the two peptides during 

skeletal muscle regeneration. To date, there have been no studies to test the effect of 

administered IGF-11 on skeletal muscle regeneration, so it is not known if the effect of 

altered IGF-11 levels during muscle regeneration is similar to that of altered IGF-1. 

As mentioned above, both IGF-1 and -II are specifically expressed in nervous tissue 

during muscle regeneration. IGF-II is often referred to a neurotrophic factor for two 

reasons: a) IGF-11 expression is restricted to the brain in normal postnatal rats (Beck et 

al. 1988), and b) IGF-11 markedly enhances nerve regeneration (Glazner et al. 1993; 

Near et al. 1992). IGF-1 has also been shown to promote nerve regeneration (Zhuang 

et al. 1996). A consideration of the roles of IGFs in nerve regeneration is pertinent, in 

that the innervation status affects the state of the regenerating muscle fibres, in 

particular after the first 5-7 days of regeneration (Whalen et al. 1990). 
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The IGF axis in connective tissue of regenerating skeletal muscle has not been well 

characterised to date. IGF-1 mRNA is up-regulated in fibroblasts of damaged heart 

following myocardial infarct (Matthews et al. 1999), and in the hypertrophic scar 

tissue that develops following thermal injury (Ghahary et al. 1995). Treatment of 

dermal fibroblasts with IGF-1 results in increased collagen synthesis (Ghahary et al. 

1995), which suggests that increased IGF-1 levels in damaged tissues may be 

associated with increased connective tissue. Recently, the mechanism by which IGF-1 

modulates the extracellular matrix has been shown to involve IGF-1 induction of latent 

TGF-P (Ghahary et al. 2000). Latent TGF-P is then activated through binding to the 

Type II IGF receptor, and it is the activated TGF-P that then causes fibroblasts to 

increase matrix deposition (Ghahary et al. 1999b ). 

1. 7.1. 7 Regulation of IGFs 

1.7.1.7.1 Growth hormone 

Growth hormone (GH), a protein produced by the anterior lobe of the pituitary gland, 

has a dramatic effect on growth. Resistance to GH, or lack of sufficient pituitary GH 

concentrations, are associated with the dwarf phenotype in rodents and humans 

(Charlton et al. 1988; Hull & Harvey 1999). Administration of exogenous GH 

promotes also muscle growth in rodents and farm animals (Beach & Kostyo 1968; 

Beerman et al. 1990; Pell & Bates 1987). The activity of GH is greatly influenced by 

nutritional status, for a low-plane of nutrition is associated with increased circulating 

levels of GH (Breier et al. 1988a), and decreased hepatic binding of GH in steers 

(Breier et al. 1988b ). 
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The pattern of GH secretion 1s controlled by two hypothalamic peptides, the 

stimulatory factor, GH-releasing hormone (GHRH), and the inhibitory peptide, 

somatostatin (SRIF) (Wagner et al. 1998). The pattern of GH secretion differs 

between males and females, with dissimilarities in the nadir value and length, and GH 

pulse length and frequency (Jansson et al. 1985). The masculine pattern of GH 

secretion in rats is typified by narrow GH pulses at a frequency of one every 3-4 

hours, and extended periods with low to undetectable nadir values (Jansson et al. 

1985). The feminine pattern of GH secretion in rats has prolonged GH pulses, an 

irregular pattern of pulsatility, and higher nadir values than male rats (Jansson et al. 

1985). The response to GH is sexually dimorphic, with differences in hepatic gene 

expression, including the cytochrome p450 (Sundseth et al. 1992) and major urinary 

protein (MUP) families (McIntosh & Bishop 1989) and in somatic growth responses 

(Jansson et al. 1985). These differential growth and gene expression patterns are the 

result of the different patterns of GH secretion between males and females (Jansson et 

al. 1985), with the length of the nadir being a key determinant of the dimorphic effect 

(Waxman et al. 1991 ). GH receptor signalling involves the Janus kinase/signal 

transducer and activation of transcription (JAK-STAT) pathway (Carter-Su et al. 

1994; Gouilleux et al. 1995), and recent studies have shown that the STAT5b protein 

is a major determinant of the sexually dimorphic response of liver and growth rate to 

GH pulsatility (Udy et al. 1997). The pattern of GH pulsatility is regulated at least in 

part by testosterone, as exposure to testosterone can alter the pattern of pulsatility 

from a feminine to a masculine pattern (Painson et al. 2000). 
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The potent effects of GH on anabolic growth and nitrogen retention (Ambler et al. 

1993) have led to studies regarding its use to enhance wound healing (Belcher & Ellis 

1990; Kowalewski & Yong 1968) and muscle regeneration (Ullman et al. 1990). The 

latter aspect, the enhancement of muscle regeneration by GH, will be addressed in 

CHAPTER 4. 

The "somatomedin hypothesis", of 1957 (Salmon & Daughaday), postulated that the 

effects of growth hormone (GH) were mediated by a factor that was secreted into the 

circulation, a factor that is now known as IGF-I. Liver is a major contributor to 

circulating levels of IGF-1 in response to GH (Yakar et al. 1999), giving rise to 

approximately 75% of circulating IGF-1 levels in mice (Sjogren et al. 1999). Until 

recently, the dogma has been that circulating IGF-1 is the principle mediator of GH 

effects on postnatal growth and development, however recent studies using the Cre/lox 

recombination system to specifically delete the igfl gene in liver clearly show that 

normal postnatal growth occurs even when there is a substantial reduction in 

circulating levels of IGF-1 (Sjogren et al. 1999; Yakar et al. 1999). Furthermore, 

normal growth occured despite a reported compensatory increase in circulating GH, 

due presumably to the lack of negative feedback by circulating levels of IGF-1 

(Sjogren et al. 1999; Yakar et al. 1999). These reports thus suggest that 

autocrine/paracrine production of IGF-1 is likely to be critical for normal postnatal 

growth and development (Sjogren et al. 1999; Ueki et al. 2000; Yakar et al. 1999). 

IGF-1 mRNA is increased in a number of tissues in response to supraphysiological 

levels of exogenous GH, including skeletal muscle (Isgaard et al. 1989), adipose 

tissue (Vikman et al. 1991 ), and bone growth plate (Isgaard et al. 1988). Furthermore, 
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GH receptor levels in skeletal muscle change coordinately with IGF-1 mRNA levels 

during mouse development, suggesting that GH may interact directly with skeletal 

muscle to direct autocrine/paracrine synthesis of IGF-1 (Shoba et al. 1999). In 

cultured C2C12 muscle cells, direct regulation of IGF-1 levels by GH has recently 

been shown (Sadowski et al. 2001), thus providing unequivocal evidence of a direct 

effect of GH on IGF-1 production in non-hepatic cells. Not only does this study 

provide evidence of GH regulation ofIGF-1 in muscle, it also suggests an effect ofGH 

on the Type I IGF receptor, via the suppressor of cytokine signalling-2 (SOCS-2) 

protein (Sadowski et al. 2001 ), which has been shown to interact directly with the 

Type I IGF receptor both in vitro and in vivo (Dey et al. 1998). It should be noted that 

although GH has been shown to directly regulate IGF-1 in cultured muscle cells 

(Sadowski et al. 2001), GH can also exert a mitogenic effect directly on cultured pro­

B Ba/F3 cells independently ofIGF-1 (Baixeras et al. 2001). 

In contrast to the effect of GH on hepatic IGF-1 expression, GH generally does not 

induce expression of hepatic IGF-11 when administered in vivo (Lewis et al. 2000; 

Turner et al. 1988). This is consistent with the observation that hepatic IGF-11 levels 

are high in the rat foetus and low postnatally (Norstedt et al. 1988; Park & Buetow 

1991 ), while the growth response to GH is absent during foetal development but is 

present postnatally (reviewed by Bass et al. 1992). 

The association of GH with stimulation oflGF-11 production in skeletal muscle is less 

clear than the association of GH with muscle IGF-1 production. Neonatal pigs 

administered GH for 7 days do not have increased skeletal muscle IGF-11 mRNA 
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(Lewis et al. 2000), however adult rats implanted with GH-secreting, pituitary-derived 

GH3 cells for 80 days show a six-fold increase in IGF-II mRNA in muscle {Turner et 

al. 1988). Further evidence that GH may not control skeletal muscle IGF-11 

production 1s seen in the greater induction of IGF-II mRNA in the muscles of 

hypophysectomised (GH-deficient) rats relative to normal (GH-replete) rats m 

response to work-induced hypertrophy (DeVol et al. 1990). Therefore, GH regulates 

IGF-1 in the liver and also to some extent in other tissues, however it does not appear 

to regulate IGF-II in the same manner. 

1.7.1.7.2 IGF receptor downregulation by IGFs 

The first suggestions of a link between IGFs and Type I IGF receptor levels were the 

observations that a) in many tissues the Type I IGF receptor levels decrease during the 

time that IGF-1 levels increase during postnatal development in the rat (Werner et al. 

1989), and b) IGF-II mRNA levels increase while Type I IGF receptor levels decrease 

during muscle cell differentiation (Rosenthal et al. 1991 ). It has since been shown 

that both IGF-1 and -II induce down-regulation of the Type I IGF receptor (Rosenthal 

& Brown 1994 ), an effect that occurs via interaction with the Type I, but not the Type 

II, IGF receptor (Rosenthal & Brown 1994; Rosenthal et al. 1994). IGF-1 and -II 

down-regulate Type I IGF receptor levels by decreased receptor gene transcription, 

while IGF-11 has also been shown to increase degradation of the Type I IGF receptor 

protein (Hernandez-Sanchez et al. 1997; Rosenthal & Brown 1994). 
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1. 7. 2 Myostatin 

Myostatin, also known as growth and differentiation factor-8 (GDF-8), is a member of 

the transforming growth factor-beta (TGF-13) superfamily. The TGF-13 family consists 

broadly of TGF-j3s, activins, inhibins, bone morphogenetic proteins (BMPs), and 

Mullerian-inhibiting substance. TGF-13 family members are associated with wide 

ranging effects on numerous cell types, including the regulation of cell growth, cell 

differentiation, and matrix deposition. Myostatin, identified in 1997 by McPherron 

and colleagues (McPherron et al. 1997), is a potent negative regulator of skeletal 

muscle mass. Myostatin has been proposed to act as a "chalone" (Lee & McPherron 

1999), a concept that was originally proposed by Bullough (Bullough 1965). 

Chalones are molecules that are produced by a specific tissue that inhibit its growth, 

so that local and/or systemic concentrations of the chalone reflect the mass of the 

tissue where it was produced (Bullough 1965; Lee & McPherron 1999). 

1. 7.2.1 Peptide synthesis 

The myostatin gene is located on chromosome 1 in mice (Szabo et al. 1998), and on 

chromosome 2 in humans and cattle (Gonzalez-Cadavid et al. 1998; Kambadur et al. 

1997; Smith et al. 1997), and is composed of 3 exons and 2 introns ( Gonzalez­

Cadavid et al. 1998; J eanplong et al. 1999; McPherron et al. 1997). Myostatin 

nucleotide and amino acid sequence is highly conserved across species, with 93% 

homology between bovine and murine amino acid sequences (Kambadur et al. 1997). 

Full-length myostatin protein, which in mice consists of 376-amino acid residues, 
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shares many common structural features with other TGF-P family members, 

including: a carboxy(C)-terminal region containing a conserved pattern of cysteine 

residues, a signal sequence for secretion, and a proteolytic processing site (McPherron 

et al. 1997). As suggested by the latter two features, myostatin is further processed 

before it is capable of exerting biological effects. This begins with the dimerisation of 

full-length TGF-P polypeptides, via disulfide bonds, soon after translation (Gleizes et 

al. 1997). Precursor TGF-P molecules are then proteolytically cleaved in the Golgi 

apparatus to yield the N-terminal latency-associated protein (LAP) portion, and the C­

terminal mature peptide (Gleizes et al. 1997; Okada et al. 1989). The LAP and mature 

TGF-P homodimers associate with each other in a non-covalent manner, and it is this 

complex that is secreted from cells. A similar situation occurs for myostatin (Thies et 

al. 2001 ), however in the case of myostatin the processed, mature form of myostatin 

(ie, not associated with LAP) is also found within the circulation of humans 

(Gonzalez-Cadavid et al. 1998), indicating that in at least some cases myostatin is 

released from the latent complex prior to secretion. Association of myostatin with the 

LAP protein renders it inactive (Thies et al. 2001), and it is only upon dissociation 

from the LAP protein that myostatin is rendered active, and able to interact with its 

receptor (Thies et al. 2001). The LAP portion of TGF-P has been shown to be 

important not only for receptor binding capability, but also to function in the folding 

and secretion of TGF-P, and perhaps in the trafficking of TGF-P to target cells 

(Gleizes et al. 1997; Gray & Mason 1990; Lee & McPherron 2001; Thies et al. 2001). 

These aspects of the LAP portion of myostatin have not been investigated as yet, 

however the importance of the LAP for myostatin function has been clearly 

demonstrated by two studies, even though the results are apparently conflicting. The 
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first report concerns transgenic mice produced with a myostatin pro domain construct, 

which had 22-44% greater carcass weight and larger fast fibre diameters, as compared 

to control mice (Yang et al. 2001). This study clearly suggests an inhibition of 

myostatin action by the LAP protein. In the second study, the Cmpt mouse is reported 

to carry a deletion in the LAP portion of the myostatin gene, and to exhibit a 

hypermuscularity directly linked to the myostatin gene (Szabo et al. 1998). Therefore, 

if one presumes that the deletion in the LAP portion inhibits LAP function rather than 

enhances it, this report infers that the LAP portion of the myostatin gene acts to 

enhance myostatin function. The apparently conflicting findings of these two studies 

may reflect different functions of the LAP protein, whereby the mutation in the Cmpt 

mouse affects a different function of the LAP protein, such as myostatin protein 

folding, to the function that is affected by LAP overexpression. Clearly further studies 

are required in this area, particularly in identifying the specific effect of the deletion in 

the Cmpt mouse, in order to resolve this discrepancy. 

1. 7.2.2 Receptors 

TGF-P family members bind to receptors containing a cysteine-rich extracellular 

region, and an intracellular kinase domain with predicted serine/threonine specificity 

(Heldin et al. 1997). This group of receptors consists of Type I and Type II receptors, 

both of which contain kinase activity (Heldin et al. 1997). TGF-P family members 

bind to characteristic combinations of TGF-P, activin, and BMP Type I and II 

receptors, and binding to both Type I and II receptors is prerequisite for signal 

generation (Heldin et al. 1997). In the case of myostatin, substantial biological effects 
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are exerted both in vivo and in vitro through binding to the activin Type II receptor B 

(Act RIIB) (Lee & McPherron 2001). Activin Type II receptor A (Act RIIA) similarly 

binds dimerised mature myostatin, but at a much lower level than Act RIIB (Lee & 

McPherron 2001). The role of Act RIIB as the primary receptor regulating myostatin 

activity is indicated by the presence of increased muscle mass similar to that of the 

myostatin knockout mice, in transgenic mice expressing a dominant-negative form of 

Act RIIB (Lee & McPherron 2001). 

The signalling mechanisms that take place downstream of receptor activation have not 

been elucidated for myostatin, however a family of proteins called Smads are known 

to function in the intracellular signalling pathways for other TGF-P family members. 

It is believed that Smads undergo conformational changes after activation by 

receptors, form complexes with other Smads, then translocate to the nucleus to 

modulate the transcription of target genes (Heldin et al. 1997). 

1. 7.2.3 Myostatin in muscle 

1.7.2.3.1 Myostatin expression 

Myostatin expression occurs early in development, and this time of onset appears to 

be well-conserved across diverse species. In mice, the first observation of myostatin 

mRNA in the myotome compartment of developing somites is on day 9.5 post-coitum 

(p.c.), with widespread expression in nearly all somites by day 10.5 p.c. (McPherron et 

al. 1997). Similarly, bovine and porcine embryos begin to express myostatin mRNA 

on days 29 and 21, respectively (Ji et al. 1998; Kambadur et al. 1997). Piscine species 
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first express myostatin in post-hatch larvae, at the time of early myogenesis (Rodgers 

et al. 2001). Myostatin expression continues to be associated with the development of 

skeletal muscle at later gestational stages (Ji et al. 1998; McPherron et al. 1997; 

Oldham et al. 2001), with the expression of myostatin mRNA in bovine hindlimb 

muscle increasing during early embryonic development to a peak on day 90 

(approximately 6-fold birth levels), followed by a sharp decrease and steady low 

levels thereafter through the remainder of gestation (Oldham et al. 2001). Myostatin 

levels appear to be important for prenatal development, for a positive correlation 

between low birth weight and elevated myostatin expression has been shown for pigs 

(Ji et al. 1998). 

Myostatin continues to be expressed postnatally, although at lower levels than 

prenatally (Ji et al. 1998), and with considerable variation between different muscles 

(McPherron et al. 1997). Much of the variation in myostatin expression between 

muscles has been attributed to variations in fibre type (Sakuma et al. 2000), however 

this association is not clearcut. Murine M. soleus, which is composed primarily of 

Type I fibres, does not contain myostatin mRNA; rather, Type lib MHC isoform was 

found to correlate positively with myostatin mRNA (Carlson et al. 1999). In a study 

of the association of myostatin mRNA with fibre type in different fish species, 

myostatin was found to be associated with either fast fibres only, slow fibres only, or 

with both fast and slow fibres, depending on the species (Roberts & Goetz 2001). 

These variations may have been attributable to differential locomotion between the 

fish species studied (Roberts & Goetz 2001). It is apparent that this is an area of 
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research worthy of more attention m order to determine the exact nature of the 

relationship between myostatin and muscle fibre type. 

In contrast to the situation observed during embryonic development in which 

myostatin expression is strictly limited to muscle and progenitor muscle cells, 

postnatally myostatin is expressed in a much wider range of tissues. Myostatin has 

been identified in the Purkinje fibres and cardiomyocytes of adult heart (Sharma et al. 

1999), in adipose tissue (McPherron et al. 1997), and the mammary gland (Ji et al. 

1998) of mammals. In brook trout, which express 2 isoforms of myostatin, one 

isoform is found in muscle, and in brain tissues including optic lobes, the hindbrain, 

and hypothalamus (Roberts & Goetz 2001). The second isoform is localised within 

the ovaries, and is expressed during ovulation, suggesting some sort of a reproductive 

role for myostatin in fish (Roberts & Goetz 2001). 

1. 7 .2.3.2 Myostatin action 

As stated above, myostatin is a key negative controller of skeletal muscle mass, as is 

clearly shown by the enhancement of muscle size in Piedmontese and Belgian Blue 

double-muscled cattle, animals which lack a functional myostatin protein (Grobet et 

al. 1997; Kambadur et al. 1997; McPherron & Lee 1997). In Piedmontese cattle the 

non-functional myostatin protein is due to a missense mutation causing a cysteine to 

tyrosine substitution in the coding region (Kambadur et al. 1997; McPherron & Lee 

1997), while in Belgian Blue cattle the non-functional myostatin is due to an 11-bp 

deletion in the coding sequence, resulting in a premature stop codon (Grobet et al. 

1997; Kambadur et al. 1997; McPherron & Lee 1997). The disruption of the 
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myostatin gene m mice yields muscles with 2-3 times greater mass due to both 

hypertrophy and hyperplasia (McPherron et al. 1997). The hypermuscular compact 

(Cmpt) mouse, which is the result of a selection programme for high carcass protein 

content (Varga et al. 1997), has a deletion in the myostatin gene (Szabo et al. 1998). 

These studies thus support a strong inhibitory role for myostatin in controlling muscle 

growth. 

Cell culture studies have provided valuable insight into the mechanism by which 

myostatin inhibits muscle growth. Studies in our laboratory showed that the addition 

of myostatin protein to cultured C2Cl2 myoblasts resulted in blocks at two points in 

the cell cycle: the G1 to S, and G2 to M, transitions (Thomas et al. 2000). These 

findings suggest that the enhancement of muscle mass observed in double-muscled 

cattle and myostatin knockout mice is due, at least in part, to de-regulation of the 

myoblast cell cycle in the absence of functional myostatin (Thomas et al. 2000). 

Myostatin inhibits protein synthesis which, combined with the inhibition of myoblast 

proliferation, could account for the presence of both hyperplasia and hypertrophy in 

myostatin knockout mice (McPherron et al. 1997; Taylor et al. 2001). No effect of 

myostatin on either protein degradation or apoptosis was found in the same study 

(Taylor et al. 2001). 

Considerable attention has been paid to determining the role of myostatin in muscle 

atrophy and sarcopenia, with the expectation that because myostatin is a negative 

regulator of muscle growth, that the levels of myostatin would be increased in cases of 

muscle loss. Indeed, this inverse relationship of myostatin to muscle loss has been 
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observed for chronic disuse atrophy (Reardon et al. 2001 ), muscle loss due to space 

flight (Lalani et al. 2000), and weight loss associated with AIDS (Gonzalez-Cadavid 

et al. 1998). Elevated myostatin alone, however, is not sufficient for loss of muscle 

mass as surmised by the observation that rats undergoing atrophy due to hindlimb 

unloading continued to express high levels of myostatin even following periodic bouts 

of weight bearing sufficient to prevent muscle loss (Wehling et al. 2000). Further 

studies will undoubtedly be aimed at determining the factors and/or conditions that 

modulate the levels of myostatin associated with atrophy and muscle wasting. 

1. 7.2.4 Myostatin in regenerating skeletal muscle 

The potent regulation of muscle growth observed in response to myostatin meant that 

keen interest quickly developed in determining the role of myostatin in skeletal 

muscle regeneration. Following is a summarisation of the key findings regarding the 

localisation and pattern of expression of myostatin mRNA during muscle 

regeneration. In rodents, myostatin protein is temporally-regulated during muscle 

regeneration (Mendler et al. 2000; Sakuma et al. 2000), with predominantly lower 

levels of myostatin protein beyond the necrotic stage (Mendler et al. 2000; Sakuma et 

al. 2000). The levels of myostatin mRNA and protein are strikingly different during 

the early stages of muscle regeneration, suggesting that perhaps circulating levels of 

myostatin alter the level of myostatin protein detected in muscle (Mendler et al. 

2000). An intriguing study by Yamanouchi et al (2000) reported the localisation of 

myostatin mRNA in fibroblasts within regenerating skeletal muscle, then showed that 

skeletal muscle-derived fibroblasts expressed myostatin mRNA in vitro in response to 
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the addition of crushed muscle extract. Crushed muscle extract (Bischoff 1986b) is 

known to contain growth factor activity, including HGF (Tatsumi et al. 1998). HGF 

is capable of activating quiescent MPC (Allen et al. 1995), but whether it is this 

growth factor/cytokine or another that is responsible for invoking transcription of the 

myostatin gene in fibroblasts during regeneration, is unknown. This observation 

paves the way for interesting research into the interactions of myostatin with other 

growth factors, an area that is especially important in terms of muscle regeneration 

given the intricacies of growth factor expression at this time. 

In muscular dystrophy, where continual rounds of muscle fibre degeneration and 

regeneration occur, myostatin may play a role. This has recently been investigated in 

two models of murine muscular dystrophy: a) in mdx mice, which lack dystrophin and 

bear resemblance to Duchenne's muscular dystrophy (Cavanna et al. 1988; Hoffman 

et al. 1987), but do not lose muscle strength as occurs in humans with Duchenne's 

muscular dystrophy (Tanabe et al. 1986); and b) in gsg -/- mice, which lack y­

sarcoglycan and bear likeness to limb girdle muscular dystrophy (Zhu et al. 2000). 

Analysis of three hindlimb muscles showed that myostatin mRNA is markedly 

reduced in these dystrophic strains relative to normal (wild type) mice (Zhu et al. 

2000), suggesting an association of myostatin with muscular dystrophy. 

The association of myostatin with innervation status is pertinent to a discussion of 

muscle regeneration. In rats, denervation of a fast-type muscle resulted in a slight 

increase in myostatin protein, while denervation of a slow-type muscle resulted in a 

small decrease in myostatin protein (Sakuma et al. 2000). Myostatin expression thus 
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changes slightly with denervation, and these changes are altered, or determined, by the 

fibre-type composition of muscle. The effects of myostatin on the reinnervation of 

muscle have not been explored, however based on reports of improved nerve 

regeneration with neutralisation of TGF-P 1 (Davison et al. 1999) this may be an area 

worthy of future attention. 

1. 7.2.5 Regulation of myostatin 

1.7.2.5.1 Follistatin 

Follistatin was originally isolated from ovarian follicular fluid, and as its name would 

suggest, suppresses follicle stimulating hormone (FSH) production by cultured 

pituitary cells (Robertson et al. 1987). Follistatin binds to activin (Phillips 2000), 

another TGF-P family member that binds to the Act RIIB receptor (Gray et al. 2000), 

and so inhibits activin function (deWinter et al. 1996). Similarly, follistatin has been 

shown to also bind to dimerised mature myostatin, and so inhibit the binding of 

myostatin to the Act RHB receptor (Lee & McPherron 2001). Follistatin over­

expressing transgenic mice have extreme muscling, muscling that is significantly 

greater than that seen in myostatin knockout mice (Lee & McPherron 2001). This 

supports a role for follistatin as a potent inhibitor of myostatin function, and suggests 

that it may also inhibit another ligand in addition to myostatin (Lee & McPherron 

2001). 
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1.7.2.5.2 MRFs 

Analysis of the promoter region located upstream of the human myostatin gene has 

identified the presence of a binding site (E-box) for the MRF family of muscle­

specific transcription factors (reviewed in Section 1.6.1) (Ferrell et al. 1999). Because 

some MRFs, ie myf-5 and MyoD, are present during early embryogenesis, as is 

myostatin, it is conceivable that the MRFs enhance the expression of myostatin at 

these early timepoints. Such a hypothesis is supported by the observation of 

coincidental increases in MyoD and myostatin mRNAs in the hindlimb muscles of 

foetal cattle during the stages of primary and secondary fibre formation (Oldham et al. 

2001). Certainly, further studies to elucidate the relationship between MRFs and 

regulation of myostatin will be vital to understanding the mechanism of myostatin 

expression in normal and damaged muscle. 

1. 7 .2.5.3 Myostatin 

Double-muscled Belgian Blue cattle lack a functional myostatin gene product due to a 

deletion that results in a premature stop codon (Kambadur et al. 1997). When the 

expression of myostatin mRNA from double-muscled Belgian Blue cattle is compared 

to that of normal-muscled cattle, significantly greater levels are found in double­

muscled cattle (Oldham et al. 2001). This suggests that a negative feedback 

mechanism by myostatin that is normally present, is non-operational in the double­

muscled Belgian Blue cattle, thus giving rise to the higher levels of myostatin 

expression (Oldham et al. 2001). Further studies to corroborate this have not, as yet, 

been carried out. 
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1.8 Summary 

The role of the insulin-like growth factors in skeletal muscle regeneration has not been 

fully explored. In particular, there is a noticeable lack of information on changes in 

the Type II IGF receptor population alongside changes in the other components of the 

IGF axis during regeneration. Most investigations up to now have involved a non­

histological approach, where the inputs of individual tissues to overall changes in IGF 

and receptor levels are indistinguishable. Such an approach ignores the facts that a) 

growth factor responses may vary depending on distance from the injury site, and b) 

important changes in the IGF axis may occur in different compartments. For this 

reason, the work contained in this thesis utilises a histological approach, so that the 

growth factor activities of different tissues within damaged muscle can be analysed. 

Growth hormone is a potent stimulator of muscle growth, suggesting that it could 

enhance muscle regeneration, however the majority of studies thus far have 

concentrated solely on its regulation of IGF-1, rather than on all components of the 

IGF axis. Furthermore, GH effects may vary depending on tissue type within the 

damaged muscle, an aspect that has been overlooked to date. In the following studies, 

GH effects on all components of the IGF axis, within the different tissues that 

comprise damaged muscle, will be examined. 

Myostatin presented itself as a newly identified protein with a potent negative effect 

on muscle growth, however nothing was known of its role or expression during 

skeletal muscle regeneration. Thus, the localisation of myostatin in damaged and 
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regenerating muscle tissues will be examined herein, and a determination made of 

whether myostatin levels are affected in a situation of enhanced growth during muscle 

regeneration, such as that due to GH administration. 

Lastly, IGF-1 is the better studied of the two IGFs, and its effect on regeneration has 

been examined by various means. The same, however, has not been done for IGF-11, 

which shares many of the same actions, but is not identical to, IGF-1. 

1.9 The Aim of this Thesis 

The aim of this thesis is to characterise components of the IGF axis, and myostatin, 

during skeletal muscle regeneration, and to determine whether the level of these 

factors is altered by the administration of GH. Finally, the effect of IGF-11 

administration on the rate of skeletal muscle regeneration will be determined. 

1.9.1 Achieving the Aim of the Thesis 

The aim of this thesis will be achieved by testing the following individual hypotheses: 

1.9.1.1 Hypothesis 1 (Chapter 4) 

The IGFs and their receptors are regulated during muscle regeneration, and the level 

of IGF expression and binding in regenerating muscle is regulated by GH. This will 

be tested by comparing regeneration and the IGF-axis components in GH- versus 

saline-treated GR-deficient dw/dw rats. 
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1.9.1.2 Hypothesis 2 (Chapter 5) 

A negative regulator of growth, myostatin, is temporally regulated during muscle 

regeneration, and its levels are decreased in muscles undergoing enhanced growth due 

to the administration of GH. The temporal regulation of myostatin protein during 

muscle regeneration will be examined in Sprague-Dawley rats, and in the GH­

deficient dw/dw rat. The effect of GH on myostatin protein levels will be tested by 

comparing saline- versus GH-treated dw/dw rats. 

1.9.1.3 Hypothesis 3 (Chapter 6) 

Administration of IGF-11 during skeletal muscle regeneration enhances the rate of 

skeletal muscle regeneration. This will be tested by comparing regeneration in 

Sprague-Dawley rats receiving a continuous infusion ofIGF-11 over the site of muscle 

damage, to Sprague-Dawley rats receiving a continous infusion of vehicle only. 
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CHAPTER2 

GENERAL MATERIALS AND 

METHODS 

This chapter describes the main methodologies employed for the studies contained in 

Chapters 4, 5, and 6, and lists the source of materials utilised. 

2.1 Materials 

2.2 Antibodies and Detection System Reagents 

2.2.1.1 Primary antibodies 

MyoD antisera (mouse anti-recombinant mouse MyoD; PharMingen Clone MoAb 

5.8A) was purchased from BD Biosciences (Franklin Lakes, NJ, USA). 

Myogenin antisera (rabbit anti-rat, catalog number sc-576) was purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA, USA). 
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Developmental myosin heavy chain (dMHC) antisera (mouse anti-rat; NCL-MHCd) 

was purchased from Novocastra Laboratories Ltd. (Newcastle upon Tyne, UK). 

Slow myosin heavy chain (slow MHC) antisera (mouse anti-human; clone 

NOQ7.1.1A) was purchased from Chemicon International (Temecula, CA, USA). 

Fast myosin heavy chain (fast MHC) antisera (mouse anti-rabbit; clone MY-32) was 

purchased from Sigma Chemical Company (St. Louis, MO, USA). 

Myostatin antibody (rabbit anti-bovine) was produced in-house and has been fully 

characterised (Sharma et al. 1999). 

2.2.1.2 Negative controls 

The following antisera/sera were purchased from DAKO Corporation (Carpinteria, 

CA, USA) for use as negative controls: 

Normal rabbit immunoglobulin fraction (product x0903) 

Normal rabbit serum, whole (x0902) 

Normal mouse immunoglobulin fraction (product x0931) 

Alpha-lactalbumin antisera (rabbit anti-human; A0579) 

2.2.1.3 Detection system reagents 

The following immunohistochemistry detection system reagents were purchased from 

Amersham Pharmacia Biotech (Auckland, New Zealand): 

Sheep anti-mouse whole antibody, biotinylated (SAM-B; RPN1001) 

Donkey anti-rabbit whole antibody, biotinylated (DAR-B; RPNl 004) 

Streptavidin-biotin-horseradish peroxidase (SA-B-HRP; RPN 1051) 
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2.3 Radioisotopes 

(a-35S)-labelled uridine-5'-triphosphate was purchased from Amersham International 

(Amersham, UK). 

Na125Iodide was purchased from New England Nuclear (Boston, MA, USA). 

2.4 Peptides and hormones 

Purified ovine (o) IGF-11 was donated by Dr. Lloyd Moore (AgResearch, Wallaceville, 

NZ). 

Recombinant human (rh) IGF-11 was donated by Eli Lilly and Company (Indianapolis, 

IN, USA) 

Recombinant human (rh) IGF-1 was donated by Ciba-Geigy Corporation (Basel, 

Switzerland). 

Recombinant human amino terminal methionyl IGF-1 ((rh)N-Met IGF-1) was donated 

by Dr. BD Burleigh (IMC/Pitman-Moore, Terre Haute, IN, USA). 

Desamino-(1-3) IGF-1 (des(l-3)1GF-I) and desamino-(1-6) IGF-11 (des(l-6)IGF-II) 

were purchased from Gro-Pep Pty (Adelaide, Australia). 

Bovine insulin was purchased from Sigma Chemical Company (St. Louis, MO, USA). 

2. 5 Chemicals and other supplies 

BDH (Poole, Dorset, UK) 

Iso-pentane (Analar grade); eosm Y; acetic anhydride, acetic acid; aluminium 

sulphate; calcium chloride; chromium potassium sulphate; formaldehyde; Paramat 
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paraffin wax; sodium hydroxide; sodium citrate; sodium chloride; hydrogen peroxide; 

Tween-20; aluminium sulphate; ethylene glycol; glacial acetic acid; magnesium 

sulphate; magnesmm chloride; sodium di-hydrogen orthophosphate; disodium 

hydrogen orthophosphate; paraformaldehyde; D.P.X. mountant; sodium iodate; 

sodium bicarbonate; sodium thiosulphate; ethanol; ammomum acetate; 

triethanolamine 

Sigma (St. Louis, MO) 

Toluidine Blue 0, C.I. 52040; diethyl pyrocarbonate (DEPC); Trizma® 

hydrochloride; Trizma® base; bovine serum albumin (BSA); 3,3 '-diaminobenzidine 

(DAB) tablets; phenylmethylsulfonyl fluoride; Triton X-100; citric acid; Type II-S 

trypsin from porcme pancreas; aluminium potassium sulphate; thymol; 

aminopropyltriethoxysilane; proteinase K; dextran sulphate; beta-mercaptoethanol 

(BME) 

Promega Corporation (Madison, WI, USA) 

Promega transcription kit, RNase-free Dnase 

Oxoid Ltd. (Basingstoke, Hampshire, UK) 

Phosphate buffered saline (PBS) tablets 

Biolab Scientific (Auckland, NZ) 

Esco Polysine™ slides; Esco coverslips 

Life Technologies (Gaithersberg, MD, USA) 

Formamide 

International Merchants (Wellington, New Zealand) 

Home Pro 4.8 mm cork tiles 
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Andrew Industrial Ltd. (Auckland, NZ) 

Xylene 

Aiax Chemicals Ltd. (Sydney, Aust.) 

Haematoxylin (C.1. 75290) 

George T. Gurr, Ltd. (London, UK) 

Nuclear fast red (CL 60760) 

DAKO Corporation (Carpinteria, CA, USA) 

PAP pen 

Eastman Kodak (Rochester, NY, USA) 

X-OMAT-AR5 (XAR) film 

Amersham Pharmacia Biotech (Auckland, New Zealand) 

Dipping chamber for photographic emulsion; LM-1 

Miles Inc. {Elkhart, IN, USA) 

Tissue-Tek® O.C.T. Compound 

Bayer Diagnostics (Mulgrave, Victoria, AUST) 

Tissue-Tek Unicassettes 

Roche Molecular Biochemicals (Switzerland) 

Yeast tRNA; degraded herring sperm DNA 

Ethicon Inc. (Somerville, NJ, USA) 

3-0 silk suture thread, 7-0 braided silk suture 

National Veterinary Supplies, Ltd. (Christchurch, NZ) 

Rompun®(xylazine hydrochloride) 2%; ketamine hydrochloride (100 mg/ml) 

Ilford (Aust.) Pty. Ltd. (Mt. Waverley, Victoria) 

Phenisol X-ray developer 
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2.6 Animals 

The rats used for the ensuing experiments were housed in the Ruakura Small Animal 

Colony, where they were kept at constant temperature with a natural day/night cycle, 

and provided ad libitum food and water both before and during the trials. Rats were 

normally housed in groups of 3 or more within plastic cages, but were housed singly 

during the duration of the trial work. 

Following all surgical manipulations, rats were kept in a warm (28-29°C) room until 

normal movement and activity was observed. Rats were then returned to a 20-22°C 

room where they were then monitored regularly throughout the duration of the trial. 

All trial work described in this thesis was conducted in accordance with the 

AgResearch animal ethics policy. Each trial was approved by an institutional animal 

ethics committee that has representatives from the New Zealand Veterinary 

Association, the SPCA, MAF, and local authorities as mandated by New Zealand 

animal welfare legislation: the Animal Welfare Act 1999 and the Animals Protection 

Act 1960. 

2. 7 Tissue handling 

2. 7.1 Sacrifice and dissection 

Rats were sacrificed with CO2 gas followed by cervical dislocation, then the right and 

left biceps femoris muscles dissected out, weighed, and muscle samples taken for 

histological purposes. 
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2. 7.2 Tissue processing 

Cross-sectional and longitudinal samples were obtained from the most heavily 

damaged area, to be both frozen and formalin-fixed. Considerable attention was given 

to developing methods that would allow tissues to lie flat while being either fixed or 

frozen, so as to optimise for cross-sectional representations of the entire muscle. 

2. 7.2.1 Frozen samples 

Frozen samples were taken for receptor autoradiography and immunohistochemistry 

purposes. For frozen samples, the muscle pieces were adhered to small rectangles of 

cork tile by placing a few drops of Tissue-Tek® O.C.T. Compound on the cork prior 

to laying the muscles samples upon it. The piece of cork was then stabbed with a 

scalpel, allowing the cork to be held firmly in a horizontal position during the freezing 

stage, and immersed in a container of melting iso-pentane. Melting iso-pentane was 

obtained by sitting a container of iso-pentane within a larger container of liquid 

nitrogen, freezing the iso-pentane until solid, then removing the iso-pentane from the 

liquid nitrogen until a sufficient volume had melted to cover the piece of muscle and 

cork. The muscle sample was held under the melting iso-pentane until the overt 

bubbling had subsided, and the tissue had taken on a whitish appearance. The muscle 

and attached cork were then rapidly wrapped in foil, and placed on dry ice until 

transfer into a -80°C freezer for storage. 
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2. 7.2.2 Formalin-fixed samples 

2.7.2.2.1 Solutions 

Formalin fixative 3 7-40% formaldehyde solution 10 mls 
Phosphate buffered saline tablets 1 tablet 
Distilled water 90 mls 

2.7.2.2.2 Procedure 

Samples for formalin-fixation were cut as for frozen sections, then placed on pieces of 

stiff cardboard to keep them flat during fixation. The samples were submerged for 18 

hours in formalin fixative. Tissues were removed and rinsed in 0.02% diethyl 

pyrocarbonate (DEPC)-treated water that had been autoclaved, then placed in marked 

histology cassettes (Tissue-Tek Uni cassettes). The fixed tissues were processed 

overnight on the "routine overnight" programme in a Jung TP 1050 fully enclosed 

vacuum tissue processor (Leica, Cambridge Instruments GmbH, Heidelberg, West 

Germany). At the finish of the cycle, tissues were immediately transferred into a 

container of melted paraffin wax (Paramat). The tissues were then embedded in blocks 

of paraffin wax, using a Thermolyne Risto-Centre II-N embedding machine 

(Barnstead Thermolyne, Doubuque, Iowa). 

2. 7.3 Sectioning 

2. 7.3.1 Frozen tissues 

Frozen tissue blocks were sectioned on a Cryocut 1800 (Reichert-Jung, Cambridge 

Instruments GmbH, Heidelberg, West Germany), at a thickness of 8 or 10 microns, for 
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receptor autoradiography or immunohistochemistry, respectively. Orientation and 

histology were examined by staining with a 1 % aqueous stock of toluidine blue for 1 O 

seconds, dabbing off the excess, then viewing under an Olympus BH-2 microscope at 

low magnification. Experimental sections were placed on Esco Polysine™ slides, and 

left to dry at air temperature. Sections were either stored at -20°C (if they were to be 

used within a week) or-80°C (if they were to be stored longer than one week). 

2. 7.3.2 Formalin-fixed, paraffin-embedded tissues 

Formalin-fixed, paraffin-embedded tissue blocks were sectioned at 8 microns on a 

Leitz Type 1212 microtome (Ernst Leitz, GmbH, Wetzlar, Germany). Ribbons of 

tissue were floated out on a 42°C DEPC-water bath, and then the sections collected on 

Polysine™ slides. Sections were smoothed onto slides by resting slides on the side of 

the water bath (less than 5 minutes), then dried by placing slides on 60°C heating 

plates fitted with bars to provide an approximate 8 mm gap between slide and plate. 

Cut slides were stored in boxes fitted with spacers, unless they were to be used 

immediately. 
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2.8 Histological staining of tissue sections 

Histological staining using haematoxylin and eosin was carried out m order to 

distinguish nuclei and cytoplasm, respectively, in muscle sections. 

2. 8.1 Solutions 

The composition of the following solutions was sourced from a standard histology 

text (such as Lillie 1965). 

Gill's haematoxylin* 

Mayer's haematoxylin 

Nuclear fast red# 

Scott's tap water 

Eosin (1 % solution) 

Haematoxylin (C.1. 75290) 
Sodium iodate 
Aluminium sulphate 
Distilled water 
Ethylene glycol 
Glacial acetic acid 

Haematoxylin (C.I. 75290) 
Aluminium potassium sulphate 
Distilled water 
Sodium iodate 

Aluminium sulphate, hydrated 
Distilled water 
Nuclear fast red (C.1. 60760) 
Crystal ofthymol 

Sodium bicarbonate (NaHC03) 
Magnesium sulphate (MgS04) 

Distilled water 
Crystal ofthymol 

Eosin Y (C.I. 45380) 
Distilled water 
Acetic acid, 5% aqueous 
Crystal ofthymol 

4.0 g 
0.4 g 
35.2 g 
710 ml 
250 ml 
40ml 

1 g 
50 g 
1000 ml 
0.2 g 

5g 
100 ml 
0.1 g 

2.0 g 
20.0 g 
1000 ml 

10 g 
1000 ml 
2.0 ml 

*Dissolve the aluminium sulphate in water with heat, then add the haernatoxylin. Leave overnight, then 
add the ethylene glycol and acetic acid. 
#Dissolve the aluminium sulphate in hot water, then sprinkle in the stain. Add thyrnol. 
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2.8.2 Procedure 

Formalin-fixed, paraffin-embedded sections were prepared as described above, then 

stained as follows: 

Procedure Time 

1. 60°C oven 10 minutes 

2. deparaffinise in xylene 2 x 10 minutes 

3. 100% ethanol 5 minutes 

3. 95% ethanol 2 minutes 

5. 70% ethanol 2 minutes 

6. rinse in distilled water 5 minutes 

7. Gill's haematoxylin (1: 1 in distilled water) 90 seconds 

8. tap water until clear 

9. Scott's tap water 2 minutes 

10. tap water 2 minutes 

11. 0.5% eosin Y ( diluted in distilled water) 1 minute 

12. tap water Until clear, plus 2 minutes 

13. 50% ethanol 3 dips 

14. 70% ethanol 3 dips 

15. 95% ethanol 30 seconds 

16. 100% ethanol 2 minutes 

17. 100% ethanol 5 minutes 

18. xylene 5 minutes 

19. xylene 3 minutes 

20. mount coverslips with DPX mountant 

2.9 Immunohistochemistry 

Immunohistochemistry is a technique that utilises the specificity of an antibody for its 

antigen in order to detect proteins at the cellular level. Immunohistochemistry 

involves use of a "primary" antibody, directed against the protein of interest, followed 

by a detection method that amplifies the signal so that the protein can be visualised at 
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the light microscope level. The detection method used in these studies is based on a 

labelled avidin-biotin (LAB) methodology (Boenisch 1989; Giorno 1984), which uses 

the high affinity of (strept)avidin for biotin to amplify the signal (Hsu et al. 1981 ). 

Thus, the "secondary" antibody is conjugated to biotin that the "tertiary" complex 

binds to because it contains avidin. The tertiary complex contains the enzyme 

horseradish peroxidase, which is then reacted with a substrate, 3,3'- diaminobenzidine 

(DAB), to yield a brown end-product. Immunostained sections are then 

counterstained with an appropriate histological stain for visualisation and/or 

quantitation purposes. 

2.9.1 Solutions 

1 % paraformaldehyde* PBS tablet 1 tablet 
Paraformaldehyde 1 g 
NaOH to pH 
Distilled water to 100 ml 

10 mM Citrate buffer, pH 10 mM sodium citrate 428 ml 
6.0 10 mM citric acid 72 ml 

0.1 % Trypsin Trypsin 0.05 g 
1 % CaClz solution 6ml 
distilled water 44ml 

5 M sodium chloride Sodium chloride 58.44 g 
Distilled water 200ml 

1 M Tris, pH 7.4 Trizma hydrochloride 132.2 g 
Trizma base 19.4 g 
Distilled water 1 litre 

Tris-buffered saline (TBS) 1 M Tris, pH 7.4 50ml 
( 1 litre) 5 M sodium chloride 20ml 

distilled water 930 ml 
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TBS + Tween (TBST) 
(1 litre) 

Quench 
(10 mis) 

1.3% Formalin 

TBST + BSA {TBSTB) 

TBS 
Tween-20 

30% hydrogen peroxide 
TBST 

40% formaldehyde 
distilled water 
PBS tablet 

TBST 
Bovine serum albumin 

999 ml 
1 ml 

1 ml 
9ml 

10 ml 
90ml 
1 

10 ml 
20mg 

(NDS/NSS) 
solution 

Blocking Serum (NDS or NSS) 
TBSTB 

1 ml 
9ml 

3,3 '-diaminobenizidine 
(DAB) 

TBSTB + 1.5% serum 

Sigma DAB/buffer tablet 1 tablet set 
set to make 5 mls 
Distilled water 
TBSTB 

5 mis 
985 ul 

Serum (NDS or NSS) 15 ul 

*Note on paraformaldehyde fixative preparation: Add paraformaldehyde to 70 mis water, then heat 
until dissolved, but do not let the temperature of the solution exceed 70°C. Add a few drops of 1 M 
NaOH as necessary to dissolve the paraformaldehyde. Chill on ice immediately after the 
paraformaldehyde has gone into solution, then add NaOH to take to the pH to 7.4, and add water to 100 
mis. 

2. 9.2 Procedure 

The basic procedure followed is that of Hsu et al. (1981), with modifications that were 

unique to the antibody employed, thus the individual procedures are given below for 

each. In brief, paraffin-embedded tissues on Polysine™ microscope slides were 

briefly heated to soften the paraffin, then deparaffinised and rehydrated. Frozen 

tissues were fixed in paraformaldehyde, acetone or formalin to preserve histology and, 

in some cases, antigenicity. A hydrophobic wax pen (PAP pen) was used to contain 

solution during immunohistochemistry by drawing a ring around each tissue section. 

A quenching step with a hydrogen peroxide containing solution was performed to 
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eliminate endogenous peroxidase activity in tissue sections, followed by washes and a 

blocking step to prevent non-specific binding of antibody to tissue components. 

Tissue sections were incubated with primary antibody, then following washing to 

remove excess antibody, incubated with secondary antibody, which was raised against 

the species that the primary antibody was produced in, then biotinylated. After further 

washing, tissue sections were incubated with a tertiary complex consisting of 

streptavidin-biotin-horseradish peroxidase (SA-B-HRP). Following washing, the 

horseradish peroxidase was incubated with its substrate, DAB, to form a brown end­

product, then the sections counterstained in either nuclear fast red or haematoxylin. 

Sections were then dehydrated and cleared, and coverslips placed over the tissue 

sections using D.P.X. mountant. Sections were visualised on a brightfield microscope 

to determine the cellular localisation of the protein of interest. 
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2.9.2.1 Developmental Myosin Heavy Chain (dMHC) 

For frozen tissue sections. A formalin fixation step following the primary antibody 

step was added to this procedure in order to improve the histology, which is 

suboptimal when acetone is used as the fixative. 

Bring frozen sections to room temperature m a wrapped, 
closed box 
Cold acetone 
Air dry 
Encircle sections with PAP pen 
TBS 
Quench 
TBS 
NSS blocking 
dMHC Ab diluted 1 :60 in blocking solution 
TBST 
Post-fix in 1.3% formalin at room temperature 
TBST 
SAM-B 1 :200 in TBS TB with 1.5% NSS 
TBST 
SA-B-HRP 1 :200 in TBS TB 
TBS 
DAB 
Distilled water 
Mayer's haematoxylin 
Tap water 

Dehydrate, clear in xylene, and mount coverslips with D.P.X. 
mountant. 
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2 minutes 

5 minutes 
5 minutes 
5 minutes 
20 minutes 
1 hour 
2 x 5 minutes 
10 minutes 
2 x 5 minutes 
30 minutes 
2 x 5 minutes 
30 minutes 
2 x 5 minutes 
6 minutes 
2 minutes 
1 minute 20 seconds 
Until clear, plus 2 
minutes 



2.9.2.2 MyoD 

As indicated below, it is necessary to use freshly cut frozen sections for anti-MyoD 

immunohistochemistry. The blocking step, and the addition of BSA and serum to 

diluents, was found to be detrimental to MyoD immunohistochemistry by reducing 

signal intensity and were therefore eliminated from the procedure for MyoD. 

Removal of these components results in slightly elevated, but acceptable, background 

(non-specific) signal that did not interfere with the detection of MyoD 

immunostaining in nuclei (as discussed in Section 6.3.3). 

Frozen tissue sections must be freshly cut, ie within 4 
hours (and NOT re-frozen after placing on slides) 
Encircle sections with PAP pen 
1 % paraformaldehyde 
TBS 
Quench 
TBS 
MyoD diluted 1 :80 in TBST 
TBST 
SAM-B 1:100 in TBST 
TBST 
SA-B-HRP 1 :200 in TBSTB 
TBS 
DAB 
Distilled water 
Mayer's haematoxylin 
Tap water 
Dehydrate, clear in xylene, and mount coverslips with 
D.P.X. mountant. 
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15 minutes 
5 minutes 
5 minutes 
5 minutes 
90 minutes 
2 x 5 minutes 
30 minutes 
2 x 5 minutes 
30 minutes 
2 x 5 minutes 
6 minutes 
2 minutes 
1 minute 20 seconds 
Until clear, plus 2 minutes 



2.9.2.3 Myogenin 

For frozen tissues. 

Bring frozen tissue sections to room temperature in a 
wrapped, closed box 
Encircle sections with PAP pen 
1.3% formalin 10 minutes 
TBS 5 minutes 
Quench 
TBS 

5 minutes 
5 minutes 
20 minutes NOS blocking 

Myogenin antibody 
solution 

diluted I :200 m blocking I hour 

TBST 
DAR-B I :200 in TBSTB with 1.5% NOS 
TBST 
SA-B-HRP I :200 in TBS TB 
TBS 
DAB 
Distilled water 
Mayer's haematoxylin 
Tap water 
Dehydrate, clear in xylene, and mount coverslips 
with D.P.X. mountant. 
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2.9.2.4 Myostatin 

For formalin-fixed, paraffin-embedded sections. 

60°C oven 
Deparaffinise and rehydrate tissue sections 
TBST 
Quench 
TBST 

10 minutes 
As per Section 2.8.2, steps 2-6 
5 minutes 
10 minutes 
5 minutes 
30 minutes NDS blocking 

Myostatin antibody 
solution 

diluted 1 : 100 m blocking 30 minutes 

TBST 
DAR-B 1 :200 in TBSTB with 1.5% NDS 
TBST 
SA-B-HRP 1 :200 in TBSTB 
TBS 
DAB 
Distilled water 
Nuclear fast red 
Tap water 
Dehydrate, clear in xylene, and mount coverslips 
with D.P.X. mountant. 
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2.9.2.5 Slow myosin heavy chain (slow MHC) 

For formalin-fixed, paraffin-embedded sections. The immunostaining achieved with 

this antibody was enhanced by the addition of a microwave antigen retrieval step (Shi 

et al. 1991) to the staining procedure. In the microwave antigen retrieval procedure, 

formalin-fixed, paraffin-embedded tissues are microwaved in the presence of a metal 

solution, which can result in a more intense immunostaining signal. 

60°C oven 10 minutes 
Deparaffinise and rehydrate tissue As per Section 2.8.2, steps 2-6 
sections 
TBST 
Microwave antigen retrieval 

TBST 
Quench 
TBST 
NSS blocking 

5 minutes 
10 min in citrate buffer on high power (1000 
Watts) 
15 minutes cooling down in the same 
solution at room temperature 
5 minutes 
10 minutes 
5 minutes 
30 minutes 

Slow MHC antibody diluted 1: 100 in 30 minutes 
blocking solution 
TBST 2 x 5 minutes 
SAM-B 1 :200 in TBSTB with 1.5% 30 minutes 
NDS 
TBST 
SA-B-HRP 1 :200 in TBS TB 
TBS 
DAB 
Distilled water 
Nuclear fast red 
Tap water 
Dehydrate, clear in xylene, and mount 
coverslips with D.P.X. mountant. 

2 x 5 minutes 
30 minutes 
2 x 5 minutes 
6 minutes 
2 minutes 
15 seconds 
Until clear, plus 2 minutes 
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2.9.2.6 Fast myosin heavy chain (fast MHC) 

For formalin-fixed, paraffin-embedded tissues. 

60°C oven 10 minutes 
Deparaffinise and rehydrate tissue sections As per Section 2.8.2, steps 1-6 
TBST 5 minutes 
Quench 10 minutes 
TBST 5 minutes 
NSS blocking 30 minutes 
Fast MHC antibody diluted 1 :500 m blocking 30 minutes 
solution 
TBST 
SAM-B 1 :200 in TBSTB with 1.5% NDS 
TBST 
SA-B-HRP 1 :200 in TBS TB 
TBS 
DAB 
Distilled water 
Nuclear fast red 
Tap water 
Dehydrate, clear in xylene, and mount coverslips 
with D.P.X. mountant. 
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2 x 5 minutes 
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2 x 5 minutes 
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Until clear, plus 2 minutes 



2.9.3 Controls 

The specificity of staining for all antibodies was determined by immunostaining with 

a) diluent only for the primary antibody step, and b) with a matched concentration of 

normal immunoglobin or serum ( as appropriate), from the same species as the primary 

antibody. In the case of myostatin antibody, the irrelevant class-matched antibody a­

lactalbumin was run as an additional control to confirm specificity of staining. 

Staining was not observed for any of these negative controls. 

2.10 Receptor autoradiography 

2.10.1 Introduction 

Receptor autoradiography was used to determine the binding sites for IGF within 

muscle tissue sections, and was carried out in accordance with the method of Elliott et 

al. (1992). In short, the method consists of the incubation of tissue sections with 

radiolabelled IGF (total binding), and competition of the radiolabelled IGF binding 

with unlabelled homologous IGF (non-specific binding). Non-specific binding is 

subtracted from total binding to determine the specific binding. 
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IGF binding is characterised by competition with unlabelled peptides (IGF-I, IGF-II, 

des(l-3)IGF-I, des(l-6)IGF-II, and/or insulin). The binding affinities of the IGF 

receptors for these peptides are as follows: 

Type I IGF receptor IGF-I = des(l-3)IGF-I > IGF-II >> insulin 
Type II IGF receptor IGF-II = des(l-6)IGF-II >>> IGF-I (does not bind insulin) 

Des(l-3) IGF-1 and des(l-6) IGF-II, so named because they lack the first 3- and 6-

amino acid residues from the amino-terminus of the mature IGF-I sequence, 

respectively, have a very low affinity for IGFBPs (Francis et al. 1993; Szabo et al. 

1988). Because of the greatly reduced affinity for IGFBPs, these peptides can be used 

to distinguish binding to the receptor, from binding to IGFBPs. Thus, when either 

des(l-3) IGF-I or des(l-6) IGF-II is used as a competing peptide, radiolabelled IGF 

binding to receptors will be displaced, but radiolabelled IGF binding to IGFBPs will 

not be displaced. 
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2.10.2 Solutions 

Pre-incubation buffer 0.17 M Tris-HCl, pH 7.4 

Incubation buffer 0.17 M Tris-HCl, pH 7.4 
1%BSA 
5mMMgCh 
1 mM phenylmethylsulphonyl flouride 
Iodinated hormone (400,000 cpm/ml) 

Post-incubation buffer 0.17 M Tris-HCl, pH 7.4 
0.25% BSA 

Neutral buffered 
formalin 

0.01% Triton X-100 

37-40% formaldehyde solution 

Distilled water 
NaH2P04•H20 
Na2HP04 

2.10.3 Procedure 

2.10.3.1 Incubation 

100 mls 

900 mls 
4.5 g 
6.5 g 

Frozen muscle sections were cut at 8 micron thickness at l 6- l 8°C, thaw-mounted 

onto Polysine™ slides, then immediately placed in a -20°C freezer. Sections to be 

incubated were stored not longer than one week. At the time of incubation, sections 

were slowly brought up to room temperature in a closed slide box, and then encircled 

with a PAP pen, which leaves behind a hydrophobic line of wax. Sections were 

incubated for 10 minutes in pre-incubation buffer. Excess pre-incubation buffer was 

aspirated, and then 50 ul of incubation buffer containing iodinated hormone (prepared 

according to the iodogen method (Salacinski et al. 1981) as previously applied to IGF 
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(Hodgkinson et al. 1987)) with or without competing hormones was placed over the 

sections. Competing hormones were used at 1 µg/ml for (rh) N-Met IGF-1, oIGF-1, 

(rh) IGF-11, des(l-3) IGF-1, des (1-6) IGF-11, and bovine insulin at 10 ng/ml. Each 

slide contained one pair of sections for the determination of total binding, and one or 

more pairs that were incubated with iodinated peptide plus cold, unlabelled competing 

hormone. Sections were placed in a humidified slide chamber, and incubated for 2 

hours at room temperature. Incubation buffer was then aspirated, and the unbound 

ligand washed away in two 5-minute baths in post-incubation buffer. The sections 

were subsequently fixed in neutral buffered formalin for 10 minutes, then washed in 

distilled water and dried. 

2.10.3.2 Macroautoradiographs 

The dried slides were apposed to X-Omat-AR5 film for a period not exceeding 11 

days, to generate a macroautoradiograph. The images obtained on the developed film 

were used to determine the length of exposure of the emulsion-coated slides, and to 

qualitatively assess the nature of the ligand binding. 
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2.10.3.3 

Developer 

Stop solution 

Fix solution 

Microautoradiographs 

Phenisol 

Distilled water 

0.5% acetic acid 

Sodium thiosulphate 

Distilled water 

1 part 

4 parts 

30g 

To 100 mis 

Slides were coated with liquid photographic emulsion for microautoradiographic 

purposes, by dipping the slides in a dipping chamber filled with molten emulsion. 

The reverse side of the slides were wiped with a clean tissue, then the slides 

immediately placed on an ice-cooled metal tray until the emulsion had solidified. 

Slides were then placed in slide boxes containing dessicant, and placed in a light-tight 

darkroom box for 24 hours, until the dessicant was replaced with a fresh supply. The 

slides were then wrapped with black polythene to omit all light, at which time they 

were removed to a 4°C refrigerator until development time. 

The silver halide crystals deposited in the emulsion by the 125I-labelled ligand were 

developed to form silver grains according to the manufacturers recommendations for 

LM-1 photographic emulsion. The procedure in brief is as follows. All solutions 

were first brought to 20°C, and were maintained at that temperature throughout the 

development process. Slides were placed in developer for 5 minutes, then in stop 

solution for one minute to end development. Slides were fixed for 8 minutes in fix 

solution, then washed in running tap water for 15 minutes, followed by two-fifteen 
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minute baths in distilled water. Slides were then air-dried until histological staining 

was carried out, at which time sections were rehydrated by placing in water for 5 

minutes. Haematoxylin and eosin histological staining was then performed as per 

Section 2.8.2, steps 7-20. 

2.11 Radiographic grain and nuclear quantification 

Image analysis was performed to quantitate nuclei after immunohistochemical 

experiments (CHAPTER 6), and autoradiographic signal resulting from in situ 

hybridisation (CHAPTER 4) and receptor autoradiography experiments (CHAPTER 4 

and CHAPTER 6). Three analysis and quantification systems were used during the 

course of the work contained in this thesis. The automated Visilog system was used 

for the analysis of radiographic grains resulting from in situ hybridisation with 

radioactive probes as carried out in CHAPTER 4. This system was chosen for use due 

to the high grain density in the in situ hybridisation experiments, whereas the lower 

resultant grain densities of receptor binding experiments in CHAPTER 4 were suited 

to manual grain counting using the Image system. The Scionlmage system was used 

for all quantitation in CHAPTER 6. This system was the only system of the three that 

would enable quantitation of chromogenic signals, such as those resulting from 

immunohistochemistry and histological staining. The Scionlmage system was used 

for manual counting of grains resulting from receptor autoradiography in CHAPTER 6 

as this system superseded the Image system for grain counting purposes. In all cases, 

sites for analysis were determined from random microscope stage coordinates, as 

generated from within Microsoft Excel (Microsoft Corp., Auckland, NZ). 
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2.11.1 Visilog system 

For hybridised sections, gram densities were determined for video images of 

microautoradiographs as obtained through an Olympus BX-50 light microscope with 

attached camera adaptor (CMA-D7CE, Sony Corporation, Japan) and CCD video 

camera (A VC-D7CE, Sony Corporation). Images were captured onto an IBM 

compatible 386 computer equipped with a MVP-AT machine vision processor 

(Matrox, Dorval, Quebec, Canada), Trinitron monitor (Sony Corporation) and Visilog 

DOS version 3.6 software (Noesis, Jouy-en-Josas, France). With this system, silver 

grains were detected following gray image processing to find local intensity maxima. 

Values obtained by this method correlate highly (r=0.99) with grain density values 

obtained by manual grain counting (Ord et al. 1993). 

2.11.2 Image system 

Manual grain counting of in vitro incubated slides was performed using an Olympus 

BH2 microscope fitted to a monochrome video camera unit (Cohu Inc., San Diego, 

CA). Neutral density filters were used to optimise for radiographic grain detection. 

Images for analysis were captured onto a Macintosh Ilfx computer equipped with a 

DT2255 Quick Capture frame grabber card, and the public domain NIH Image 

programme (this can be downloaded at http://rsb.info.nih.gov/nih-image/). 
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2.11.3 Scionlmage system 

For the analysis of chromogenic signals and manual grain counting, digital images 

were captured using the CMS700 image analysis system (Scion Corporation, 

Frederick, MD, USA) which is comprised of an MTI DAGE 330 CCD colour video 

camera, frame grabber card (CG-7, Scion Corporation), and 786 x494 pixel, 24-bit 

camera control unit. Digital images were relayed to a 200 MHz Pentium II computer 

equipped with Scionlmage software (which can be downloaded from the internet at 

http://www.scionco1p.com). Images were saved as TIFF files, then manually counted 

within Scionlmage. 

2.12 Image acquisition 

Photomicrographic images, as contained within this thesis, were captured using the 

Scionlmage system, as described in Section 2.11.3. Images were first saved as TIFF 

files in Scionlmage, then as JPEG files within the PhotoEditor programme of 

Microsoft Office 2000 (Microsoft Corporation). Files were converted into JPEG 

format in order to reduce file size and so allow insertion of images into Word 

documents. 
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2.13 Statistics 

Data was analysed for overall effects of treatment and time by ANOV A using GenStat 

4.2 software. A modification of this method, REML, was used when indicated for the 

statistical analysis of unbalanced groups. Students' T-test was employed for statistical 

comparisons between individual groups, and the Tukey ("Honest") Significant 

Difference used when appropriate for multiple pairwise comparisons. Values shown 

are means ± S.E.M. 
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CHAPTER3 

REGENERATION MODELS 

This chapter describes two models of skeletal muscle regeneration, notexin-induced 

and muscle grafting-induced, and the results obtained using these models in the rat. 

The notexin-induced regeneration model was subsequently used for the studies in 

Chapters 4, 5, and 6. 

3.1 Notexin-induced regeneration model 

3.1.1 Introduction 

As discussed earlier in Section 1.5, there are a number of ways in which to damage 

muscle in order to initiate regeneration. Table 3-1 lists the key methods by which 

muscle has been experimentally damaged in published reports of skeletal muscle 

regeneration. Although the key events of MPC activation, proliferation and fusion 

occur regardless of the means of damage, the method used to damage muscle can 

result in extensive and/or prolonged damage to the basal lamina (Lawson-Smith & 

McGeachie 1997; Lefaucheur & Sebille 1995b; Trupin 1979), vascular (Hansen-Smith 

& Carlson 1979; Lefaucheur & Sebille 1995b) and nervous supplies (Yoshimura et al. 

1998), and may result in the appearance of excessive fibrosis (Vracko & Benditt 
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1972). Further, satellite cells are killed by some methods such as freezing (Ghins et al. 

1984; Schultz et al. 1986), and preserved by others (Harris 1989). These factors may 

alter the timing (Grounds & McGeachie 1990) and/or efficiency (Ghins et al. 1984; 

Lefaucheur & Sebille 1995b; McGeachie & Grounds 1987) of regeneration. 

Table 3-1. Methods for damaging skeletal muscle. 

INJECTED SUBSTANCES 
Snake toxins (notexin, taipoxin) 

REFERENCE 
Harris et al. (1975) 
Harris & Maltin 
(1982) 

Hansen-Smith & 

.................................................................... , Carlson (1979) 
Anderson ( 1991) 

......................................................... 

ische 1986) 
. ell et al. (1992) I 

· · · I Schultz et al. ( 1986) · · 

................................................................................................. LTrupin .. (.1979) 

For the work described in this thesis, the injection of notexin was chosen as the means 

of inducing muscle damage, although for the purposes of the final experimental 

chapter, muscle grafting was considered, and this will be discussed later in Section 

3.2. The reasons for choosing notexin for this work were: a) notexin-induced muscle 

damage and regeneration were well-characterised (Harris 1989; Harris et al. 1975) and 

notexin had been used for many regeneration studies (Davis et al. 1991; Klein-Ogus & 

Harris 1983; Preston et al. 1990), and b) it did not involve extensive surgical 

manipulations, and so was suitable for the large trials described herein, c) notexin 

3-100 



injection results in minor damage to microvascularisation (Harris 1989; Harris et al. 

197 5; Lefaucheur & Sebille 1995b) and basal lamina (Lefaucheur & Sebille 1995b ), 

and reinnervation occurs quickly (Harris et al. 2000; Whalen et al. 1990). 

Notexin, a fraction of the Australian tiger snake venom (Notechis scutatus scutatus), 

is a phospholipase A2 consisting of 119 amino acids and seven disulphide bridges 

(Halpert & Eaker 1975; Halpert et al. 1976). Notexin contains both neurotoxic and 

myotoxic activites. As a neurotoxin, notexin acts at the presynaptic level, causing the 

depletion of the neurotransmitter acetylcholine from motor nerve terminals within one 

hour of injection (Harris et al. 2000). The block of neuromuscular transmission at the 

motor nerve terminal caused by notexin becomes irreversible (Mebs 1989), and is 

followed by the degeneration of the motor nerve terminal and of the axonal 

cytoskeleton (Harris et al. 2000). The neurotoxic effect of notexin results in 

denervation of 70% of muscle fibres in rat M. soleus by 24 hours (Harris et al. 2000). 

The myotoxic effect of notexin is exerted through binding to the sarcolemma, causing 

small lesions in the membrane, loss of ion gradients, subsequent hypercontraction and 

myofibre degeneration (Dixon & Harris 1996). Notexin binds to the sarcolemma of 

both glycolytic and oxidative muscle fibres, although slow oxidative fibres are more 

susceptible to the myotoxic effects of notexin (Dixon & Harris 1996). 

In rats, a 2 µg quantity of notexin has typically been used for regeneration studies 

(Harris et al. 1975; Pluskal et al. 1978). The notexin in published studies has been 

administered variously, including subcutaneous injection (Harris et al. 1975; Pluskal 

et al. 1978), injection into the intermuscular space of the hindlimb (Harris & Johnson 
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1978), and intramuscular injection (Lefaucheur & Sebille 1995b; Sharp et al. 1993). 

Each mode of administration has been shown to effect damage sufficient for the study 

of regeneration, however intramuscular injection is recommended for animals that are 

larger than 1 OOg, due to problems with the diffusion of notexin through larger muscle 

when injected subcutaneously or into the epimysial compartment (Davis et al. 1991). 

The aim of the following trial was to determine the timing of regeneration events in 

GR-deficient dw/dw rats, and to optimise sampling times for the experiments 

described in CHAPTER 4 and CHAPTER 5. 

3.1.2 Materials and Methods 

Twenty-eight male dw/dw rats were castrated at 28 days of age. Castration was 

performed in this experiment, as this was a preliminary trial for the studies contained 

in CHAPTER 4 and CHAPTER 5. The reasons for castration in these studies will be 

addressed in more detail in CHAPTER 4. At 60 days of age and time O in the trial, 

rats were weighed, then anaesthetised with an intraperitoneal injection of 3 mg 

pentobarbitone sodium B.P.(Vet.) (Sagital, May and Baker Ltd., Dagenham, England) 

per 1 OOg bodyweight. The fur was trimmed from the area over the right M. biceps 

femoris, and a small incision made over the muscle. Using a 50µ1 syringe (Hamilton 

Co., Reno, Nevada, USA) with an attached 25G x 16mm needle, 2µg (in 10 µl) of 

notexin (Venom Supplies Pty. Ltd., Tanunda, South Aust) was injected 

intramuscularly into the right M. biceps femoris. A small dot of India ink (Stephen's, 

Dunedin, NZ) was placed on the surface of the muscle to mark the site of notexin 

injection. The wound was closed with 2 stitches using 3-0 silk (Ethicon, Somerville, 
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NJ, USA). Rats were moved to a warm recovery room, and when fully alert and 

active, moved into a standard temperature room. Rats were provided water and food 

ad libitum throughout all pre- and post-operative phases of the trial. At the time of 

sacrifice rats were weighed, then killed by CO2 gas and cervical dislocation. Right 

biceps femoris muscles were carefully dissected out and weighed, then formalin-fixed 

and paraffin-embedded (as per Section 2.7.2.2) for histological examination. The 

timepoints for sacrifice (days 1,2,3,5,10 and 15) were chosen to encompass the 

anticipated periods of MPC proliferation and fusion, and to include a later timepoint 

in which the fibres were enlarged but where regenerating fibres were still discemable 

from fibres that survived notexin treatment. 

3.1.3 Results 

A gross assessment of damaged muscles following notexin-injection showed that not 

all of the fibres in the injected M. biceps femoris underwent damage and regeneration. 

At the site of notexin injection, all fibres were destroyed (referred to in CHAPTER 6 

as the "core of damage"), however further out from this area, "regenerating fibres" 

were interspersed with "survivor fibres" (fibres that did not undergo necrosis and 

regeneration following notexin injection), as shown in Figure 3-1 C. Lastly, further 

out from this area of interdigitating regenerating and survivor fibres was a complete 

absence of damage (Figure 3-1 B). In this area, the fibres are referred to as 

"undamaged fibres". Undamaged fibres from notexin-injected muscles (Figure 3-lB) 

were indistinguishable from the undamaged fibres of the non-injected control muscle 

(Figure 3-lA). 

3-103 



Figure 3-1 provides a histological description of the regeneration events following 

notexin injection, as determined in haematoxylin and eosin stained muscle sections. 

The appearance of undamaged muscle fibres of non-injected control (Figure 3-lA) 

and notexin-injected muscles (Figure 3-1 B) was in contrast to the oedemaceous and 

fragmented appearance of damaged muscle one day after notexin-injection (Figure 

3-1 C). As shown in Figure 3-1 C, phagocytic and inflammatory cells were prevalent in 

day 1 damaged tissues, both in interstitial areas and within necrotic fibres, although 

many necrotic fibres were still non-infiltrated at this time. Day 2 tissues were more 

markedly hypercellular than were day 1 tissues, particularly within the necrotic fibres 

(Figure 3-lD), as necrotic debris was being phagocytosed and removed at this time. 

In day 3 notexin-injected muscle (Figure 3-lE), damaged areas contained a high 

density of mononucleate cells, of which a high proportion were presumed to be MPC, 

because: i) this is the appearance of regenerating muscle just prior to MPC fusion to 

form myotubes, and ii) these mononucleate cells have the generally scant cytoplasm 

typical ofMPC (Harris et al. 1975; Moss & LeBlond 1970; Ontell 1973). The density 

of nuclei in regenerating fibre areas was higher on day 3 than at any other timepoint 

during regeneration (Figure 3-1; E versus C, D, F-H). Necrotic debris was still present 

on day 3, although in considerably smaller amounts than on days 1 and 2. Day 5 

damaged muscle (Figure 3-lF) contained abundant myotubes, which are identifiable 

in cross-section by their centrally-located nucleus and small perimeter of cytoplasm 

(Figure 3-lF) and in longitudinal section as ladder-like arrangements of nuclei with 

surrounding cytoplasm. A few fibres still contained necrotic debris on day 5. The 

regenerating myotubes were increased in diameter by day 10 (Figure 3-1 G), but still 

often contained a centrally-located nucleus and were smaller than survivor fibres, thus 
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allowing easy distinction of the two types of fibres. However by day 15 (Figure 

3-1 H), it is difficult to distinguish regenerating from survivor and undamaged fibres as 

shown in (Figure 3-1 A) and (Figure 3-1 B), respectively, due to the movement of 

regenerating muscle fibre myonuclei to a peripheral location, and increased 

regenerating fibre diameter. The regeneration process, as assessed histologically, was 

consistent between animals, and minimal fibrosis occurred during regeneration. 
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Figure 3-1. Muscle regeneration in the dw/dw rat. 

(A) Non-injected, control muscle contains undamaged muscle fibres (u) and connective tissue (ct); 

(B) undamaged muscle fibres of the notexin-injected damaged muscle (injected on day 0), are 

located within the M. biceps femoris, but a long distance from the site of notexin-injection; (C) 

day 1 damaged muscle shows interspersed regenerating (r) and survivor (s) fibres, and the 

presence of oedema (arrowheads); (D) day 2 damaged muscle; (E) day 3 damaged muscle 

contains a greater number of mononucleate cells relative to day 2; (F) day 5 damaged muscle 

contains numerous myotubes (arrows indicate a fascicle that is filled with new myotubes); (G) 

day 10 damaged muscle with enlarged myotubes as indicated by the arrows; (H) day 15 damaged 

muscle shows many regenerating myotubes (arrows) which have become more difficult to discern 

from undamaged (u) and survivor fibres (s) of notexin-injected muscles as shown in (B) and (C), 

respectively, due to their large diameter. Sections have been stained with haematoxylin and 

eosin, and images captured at 25x magnification (bar=200 microns). 
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3.1.4 Discussion 

The results of this preliminary trial showed that the intramuscular injection of 2 µg of 

notexin into the M. biceps femoris of dw/dw rats resulted in muscle damage and 

subsequent regeneration. The regeneration events observed in this study are identical 

to those reported in the literature for rat muscle (Harris & Johnson 1978; Harris et al. 

1975), with a similar onset of timing of phagocytic cell infiltration (within the first 

day), a profusion ofMPC present on day 3, and myotube formation on day 5 (Harris & 

Johnson 1978; Harris et al. 1975). The bulk of these processes occurred to the later 

end of the time ranges given by Harris and Johnson (1978) for each event (ie days 2-3 

for MPC proliferation, days 3-5 for myotube formation). Regarding the timepoints 

chosen in the present study (days 1,2,3,5,10 and 15), two changes were decided upon: 

a) to bring the day 10 timepoint up to 9 days so as to lessen the sampling gap after day 

5, and b) to bring the day 15 timepoint up to day 13, so as to be able to more readily 

distinguish regenerating from survivor fibres. 

Because of the consistent results achieved in this trial, the notexin-induced model of 

muscle damage and regeneration was chosen for further use in this thesis. 
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3.2 Muscle-grafting regeneration model 

3.2.1 Introduction 

For the purposes of the final experiment, the ideal model of regeneration would 

exhibit widespread damage to all fibres, synchronous damage and regeneration 

processes, consistency between and within animals, and have an early onset and peak 

of MPC proliferation and fusion processes. The reasons for establishing these criteria 

are that they would a) allow for some non-histological quantitation of results, b) 

increase the probability of detecting an effect of administered IGF-II on regeneration, 

and c) not necessitate too lengthy a period of peptide administration. To achieve these 

aims two models of muscle regeneration were considered: a) notexin-induced muscle 

regeneration, and b) the muscle grafting-induced regeneration model. 

The muscle-grafting induced model of muscle regeneration is very well characterised 

(Carlson 1986), and has been used extensively for muscle regeneration studies 

(Smythe et al. 2001; White et al. 2000). In the muscle-grafting model, the muscle is 

removed from its natural bed and all vascular and nervous supplies severed. The 

muscle is then placed in either the same, or an alternate position, in the same animal 

( auto grafting) or in a host animal ( allografting). In the field of muscle regeneration 

research, the most prevalent model of muscle-grafting involves the transplantation of 

the M. extensor digitorum longus onto the anterior side of the M. tibia/is anterior. In 

this case, the proximal and distal tendons of the M. extensor digitorum longus are 

attached by means of sutures to the tendon of the M. quadriceps femoris and M. 

tibia/is anterior, respectively. 
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The grafted M. extensor digitorum longus undergoes complete regeneration of all 

muscle fibres, bar a small number of surviving fibres at the periphery of the muscle, 

which survive due to the availability of growth factors and nutrients in the 

surrounding environment (Grounds & McGeachie 1999). As shown in Figure 3-2, 

regeneration proceeds in a gradient from the exterior to the interior of the M. extensor 

digitorum longus (Carlson 1986), again as a result of greater nutrient and growth 

factor supply from the surrounding environment (Grounds & McGeachie 1999), and 

the re-establishment of a vascular supply from the outside which works its way inward 

with time (Bodine-Fowler 1994). This gradient results in a heterogenous population 

of cells and events within the M. extensor digitorum longus, for at certain timepoints 

regenerated myotubes are present in the periphery of the muscle while necrotic 

material is still present in the centre of the muscle. Innervation begins to take place in 

the second week following grafting of rat M. extensor digitorum longus (Carlson 

1986), and as such is delayed relative to the reinnervation of muscle damaged by 

notexin. 

The aim of this study is to determine whether the muscle grafting model is suitable for 

use in CHAPTER 6 by assessing: a) the variability in regeneration using this model, 

and b) the approximate peak of myotube fusion. 

3-110 



&DAYS 

Figure 3-2. Diagram of muscle regeneration following grafting. 

Diagrammatic representation of a cross-sectional view of a M. extensor digitorum longus 

following grafting, with the times for each stage in the rat indicated. Letter codes are as follows: 

(A) surviving muscle fibres; (B) original muscle fibres that are in a state of ischaemic necrosis; 

(C) muscle fibres that have been infiltrated by phagocytic cells; (D) MPC and new myotubes; (E) 

enlarged muscle fibres containing contractile elements; (F) enlarged and maturing regenerating 

muscle fibres; (G) mature regenerated muscle fibres; (H) normal control muscle fibres. 

Reprinted ( with minor modifications) from Carlson (1986). 

3.2.2 Materials and Methods 

Thirty-three male Sprague-Dawley rats (aged 6 weeks) were used for this experiment, 

three of which were unoperated controls (t=O), and the remainder sacrificed at 

timepoints up to 14 days post-muscle grafting (n=3 per timepoint). Rats were 

balanced for weight at the outset of the trial. On the day of muscle grafting surgery 
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(day 0), rats were anaesthetised with a solution of 5 mg/ml Rompun® (xylazine 

hydrochloride), 37.5 mg/ml ketamine hydrochloride in sterile water (0.2 ml per 100g 

bodyweight), then an incision made in the skin over the M. extensor digitorum longus. 

After the M. extensor digitorum longus was located, a length of 7-0 braided silk suture 

(Ethicon) was slipped under the proximal myotendinous junction of the M. extensor 

digitorum longus, and firmly tied onto it with 3 double reef knots. This procedure was 

followed for the distal end of the M. extensor digitorum longus. The proximal end of 

the M. extensor digitorum longus tendon was subsequently severed with fine scissors, 

and the M. extensor digitorum longus laid over the M. tibia/is anterior. The uncut 

ends of the suture threads on the proximal M. extensor digitorum longus were pulled 

through underneath the distal tendon of the M. quadriceps femoris, and firmly 

knotted. The distal tendon of the M. extensor digitorum longus was next cut with fine 

scissors, and the full length of the M. extensor digitorum longus laid flat upon the 

superficial side of the M. tibia/is anterior. The uncut ends of the suture thread on the 

M. extensor digitorum longus were then tied around the distal tendons of the M. 

tibia/is anterior, taking care to attach the M. extensor digitorum longus at its normal 

length. 

3.2.3 Results 

The grafted muscles showed profound histological changes with time, as shown in 

Figure 3-3. A larger degree of variation in the regeneration process was noted in these 

muscles, relative to the notexin model just described in Section 3.1, however the 

following provides a summary of the key events. By day 1 after grafting, numerous 
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phagocytic and inflammatory cells were interspersed throughout the grafted muscles 

(Figure 3-3B), and this pattern was present in day 2 muscles as well. Oedema, as 

indicated by enlarged pericellular and interstitial spaces, was apparent at early 

timepoints (Figure 3-3B). By days 2 and 3 a band of cells approximately 2-3 cells 

wide near the periphery of the M. extensor digitorum longus had been invaded by 

phagocytic cells, while the remainder of the cells in the more central portion of the M. 

extensor digitorum longus were non-infiltrated. By day 4 the band of phagocytosis 

had enlarged to approximately 4-6 fibres deep in some animals, and the density of 

mononucleate cells in that band had increased relative to day 3. A number of 

surviving muscle fibres around the very outside of the M. extensor digitorum longus 

were easily discernable from day 4 onwards. Myotube fusion was noted as early as 

day 5, but was not observed consistently until days 6 and 7. In day 6 and 7 muscles, 

the regenerated myotubes were generally restricted to a band approximately 8 cells 

wide near the periphery of the muscle, with the centre of the muscle still present as 

non-infiltrated/non-phagocytosed muscle fibres. By day 8, the regenerating myotubes 

were slightly larger in size, as shown in Figure 3-3D. Necrotic fibres were observed 

in the centre of the grafted muscles up through day 11, but were not seen in day 14 

muscle. Day 14 muscle contained numerous enlarged myotubes (Figure 3-3E), some 

of which were similar in diameter to survivor fibres. 

The sequence of regeneration events given in Figure 3-3 summarises the general 

regeneration pattern observed in these grafted muscles, however considerable 

variation relative to that seen in the previously described notexin-induced model (as 

described in Section 3 .1) was observed. This variation appeared to have been due, at 
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least in part, to the deposition of substantial amounts of fibrotic tissue in many of the 

grafted muscles. Accumulations of fibrotic (connective) tissue within and to the 

exterior of the grafted muscle were noted from day 3 onward. These accumulations 

were not consistently deposited within and around the regenerating muscles, so that 

within the same timepoint, grafted muscles often contained vastly different amounts of 

connective tissue/fibrotic material. This is shown for two grafted muscles from day 8 

animals in Figure 3-4. 
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Figure 3-3. Regeneration of grafted muscle. 

Histology of rat M. extensor digitorum longus following grafting on day 0. (A) shows undamaged, 

unoperated muscle at time 0. (B) M. extensor digitorum longus on day 1 following grafting shows 

scattered phagocytic and inflammatory cells throughout the muscle and the presence of oedema. 

(C) Grafted muscle on day 5 contains some survivor fibres (s) along the periphery of the muscle, 

necrotic fibres (n) in the core, and between these are mononucleate cells (mn) prior to the onset of 

fusion. (D) Grafted muscle at day 8 contains myotubes (arrowheads) between areas of 

mononucleate cells and survivor fibres. (E) Grafted M. extensor digitorum longus at 14 days 

contains enlarged myotubes (arrowheads) which are approaching the size of survivor fibres. 

Images are of haematoxylin and eosin stained cross-sections of M. extensor digitorum longus 

taken at 25x magnification (bar =200 microns). 
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Figure 3-4. Fibrotic tissue deposition in grafted muscles. 

(A) and (B) are photomicrographs of grafted M. extensor digitorum longus from two separate 

animals, on day 8 following surgery. (A) shows an area of damaged muscle that contains low 

amounts of fibrotic tissue, while (B) shows muscle at a similar stage of regeneration (early 

myotube stage; arrowheads indicate myotubes) but in the presence of high amounts of fibrotic 

tissue ( f ). Images are of haematoxylin and eosin stained formalin-fixed, paraffin-embedded 

tissue sections taken at 25x magnification (bar=200 microns). 
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3.2.4 Discussion 

In the present study, the sequence of regeneration events normally seen after muscle 

grafting occurred, including the persistence of survivor fibres along the periphery of 

the regenerating muscle (Carlson 1986; Grounds & McGeachie 1999), and the 

gradient of regeneration from the exterior to the interior of the muscle (Carlson 1986). 

The timing of regeneration events such as the onset of muscle fibre phagocytosis on 

days 2-3, and the beginning of new myotube formation on days 6-7, were similar to 

the times reported for rat M. extensor digitorum longus (Carlson 1986). However, in 

contrast to the events indicated in Figure 3-2, whereby necrotic fibres were absent 

from the centre of the graft beyond day 7 post-grafting, the persistence of necrotic 

fibres in the centre of grafted muscles was observed up through day 11 in the present 

trial. 

Although the grafting-induced model resulted in adequate damage and regeneration, 

two factors preclude its use for CHAPTER 6, namely the variability in fibrotic tissue 

deposition between animals and the late onset and peak of myotube formation. 

Fibrotic/connective tissue deposition can hamper muscle regeneration by forming a 

dense barrier to new fibres (McMinn 1967), therefore the presence of fibrous 

accumulations can alter not only the quality, but also the timing, of regeneration. 

Secondly, although the timing of the onset of myotube formation was similar to that 

reported by others for grafted rat M. extensor digitorum longus (Carlson 1986), the 

peak of myotube formation was obviously much later than days 6-7. This was 
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deduced by the fact that on days 6-7 there was still considerable necrotic tissue present 

in the centre of the grafted muscle. For the purposes of CHAPTER 6, the peak of 

myotube formation needed to occur prior to days 6-7, and over a relatively brief period 

in order to reduce inter-animal variation. The reason for the time requirement was that 

the pump being used to administer the peptide had a maximum administration period 

of 7 days, and because the effect of the administered peptide on MPC fusion was 

being tested, the bulk of MPC fusion had to occur within that time. For these reasons, 

the muscle-grafting induced model of regeneration was not used, and the notexin­

induced model chosen for use instead for CHAPTER 6. 
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CHAPTER4 

THE EFFECT OF GH ON THE IGF 

AXIS DURING SKELETAL MUSCLE 

REGENERATION 

4.1 Introduction 

Skeletal muscle growth is affected by its hormonal environment. Growth hormone 

(GH) and the insulin-like growth factors (IGFs) have been shown to have a role in 

muscle growth and development (Dodson et al. 1985; Etherton & Kensinger 1984; 

Merrill et al. 1977), as described in Section 1. 7 .1. Growth hormone enhances normal 

postnatal muscle growth, at least in part, by augmenting skeletal muscle protein 

synthesis (Fryburg & Barrett 1993 ). The means by which GH exerts its effect on 

skeletal muscle is not fully understood, although much attention has been focussed on 

endocrine, as well as autocrine/paracrine, production of IGF-1 (Isgaard et al. 1988; 

Isgaard et al. 1989; Sara & Hall 1990; Vikman et al. 1991 ). Previous animal studies 
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have suggested that GH may improve wound healing (Jorgensen & Andreassen 1987; 

Pessa et al. 1985). GH has been used in several regeneration studies, and similar to 

the case for normal postnatal muscle, has been found to enhance the weight of 

regenerated muscle (Ullman et al. 1989). Additionally, the GH receptor is expressed 

in regenerating skeletal muscle of rats (Jennische & Andersson 1991), further 

supporting a possible role for GH in regeneration. 

Hypophysectomised rats have been used previously to examine the effect of GH on 

muscle growth and regeneration (Sommerland et al. 1989; Ullman & Oldfors 1991). 

In this study, the dw/dw rat was used to examine the effects of GH. The dwldw rat has 

a selective autosomal recessive defect that results in greatly reduced (6-10% of 

normal) levels of pituitary GH, and reduced bodyweight (approximately 40% less at 3 

months) relative to its normal counterpart, the Lewis rat (Charlton et al. 1988). Male 

and female dwldw rats have barely detectable levels of circulating GH, but maintain 

the sexually dimorphic pattern of GH release typical of normal rats, only reduced in 

amplitude (Legraverend et al. 1992). Administration of GH to dw/dw rats results in a 

dramatic growth response, with approximately 2.5- to 4.0-fold greater daily weight 

gain following GH treatment, relative to untreated dw/dw rats (Charlton et al. 1988). 

Dwldw rats have normal concentrations of the other anterior pituitary trophic 

hormones (LH, TSH, prolactin and ACTH), unlike hypophysectomised rats, which 

lack all anterior pituitary hormones (Charlton et al. 1988). This feature of a selective 

GH-deficiency, made the dwldw rat a preferable model to the hypophysectomised rat 

for the study of a GH effect on muscle regeneration. The dw/dw rat is fertile, and thus 

can be maintained as a self-sustaining breeding colony (Crawford et al. 1994). Male 
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dwldw rats achieve sexual maturity, based on plasma testosterone, and testis and 

seminal vesicle growth, on days 42-63 (Crawford et al. 1994). 

In this study, a histological approach rather than one examining the overall changes in 

muscle, has been used. The reasons for this are: a) muscle tissues respond 

differentially to stimuli, as exemplified by a study of normal ovine muscle showing an 

effect of nutrition on IGF-1 binding to connective tissue but not muscle fibres 

(Oldham et al. 1996); and b) the response of muscle fibres may be different depending 

on the proximity to damage. Therefore in this study IGF expression and binding will 

be examined in connective tissue ("connective tissue"), and in muscle fibres that are 

regenerating ("regenerating fibres"), interspersed with regenerating muscle fibres 

("survivor fibres"), and in fibres that are within the notexin-injected muscle but are 

removed from the damage and not interspersed with regenerating fibres ("undamaged 

fibres"). 

4.1.1 Aim of this chapter 

The aim of this chapter is to test the hypotheses that the IGFs and their receptors are 

regulated during muscle regeneration, and that the level of IGF expression and binding 

in regenerating muscle is regulated by GH. 
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4.2 Materials and Methods 

4.2.1 Animals 

The dw/dw GR-deficient rats used for this study were a gift of Dr. LC.AF. Robinson, 

National Institute of Medical Research (Mill Hill, London, UK). Fifty male dw/dw 

rats were grown to 28 days of age, then castrated under general anaesthetic. 

Prepubertal castration of these dw/dw rats was performed in order to remove 

endogenous testosterone. The reason for removing testosterone relates to the 

administration of GH. As discussed in Section 1. 7 .1. 7 .1, testosterone induces a 

masculine pattern of GH secretion (Painson et al. 2000), a pattern associated with 

greater somatic growth relative to the feminine pattern (Jansson et al. 1985). 

Castration was therefore performed in this trial in order to decrease the somatic 

growth response to endogenous GH. The reason that male rats were used was that this 

trial was part of a larger study in which the effects of testosterone on regeneration of a 

testosterone-responsive muscle (M. levator ani) was examined. 

At 60 days of age, and weighing approximately 120 g, the rats were anaesthetised and 

a small incision made over the right M. biceps femoris. The rats then received one 

intramuscular notexin injection (2.0 µg) in the right M. biceps femoris ("injected 

muscle"; as described in Section 3 .1 ). Contralateral muscles, which were not injected 

with notexin ("non-injected") were used as regeneration controls. Rats were divided 

into a GH-treated group which received a single daily subcutaneous injection of 

human N-methionyl GH (kindly provided by Genentech, So. San Francisco, CA; 200 

µg in 0.1 ml/100 g body weight daily), while the control group received an equal 
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volume of saline vehicle (0.1 ml/100 g body weight daily). Animals were weighed 

and sacrificed at days 1, 2, 3, 5, 9 and 13 post-notexin injection (n=4 or 5 per 

treatment group per day). 

In order to separate out the effects of notexin and GH, a second trial was carried out in 

which dwldw rats received identical GH and saline volumes to those used in the first 

trial, but no notexin. Body weights were recorded on a daily basis up to day 1 O (n=5/6 

per group). 

4.2.2 Tissue Sampling 

Muscle samples for autoradiographic receptor studies were frozen (see Section 

2. 7 .2.1 ), then stored at -70°C. Muscles for in situ hybridisation experiments were 

formalin-fixed and paraffin-embedded according to the method given in Section 

2.7.2.2. Formalin-fixed, paraffin-embedded sections were stained with haematoxylin 

and eosin, by the method described in Section 2.8, for examination of morphological 

changes during regeneration. 

4.2.3 Incubations and receptor autoradiography 

In vitro incubations to determine IGF-I and -II binding capacity were carried out 

according to the methods given in Section 2.10. Notexin-injected muscle from all 

animals (n=4), and non-injected muscles from half (n=2) of each treatment group on 

days 3, 5 and 13 were examined. Days 1 and 2 were omitted as the tissues were at a 
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predominantly necrotic/phagocytic stage, in order to focus more specifically on the 

effects of GH and regeneration during the stages of MPC proliferation and 

differentiation. Pairs of sections were incubated with either 1251-(rh)IGF-I or 1251-

(o )IGF-II for a determination of total binding, and the binding competed with excess 

unlabelled homologous IGF for a determination of non-specific binding. Des (l-

3)IGF-I was utilised as a competing hormone for 1251-IGF-I in order to determine 

whether, and at what times, binding proteins were a significant component of the 

specific 1251-IGF-I binding observed. Other competing hormones for IGF-1 were 1 

µg/ml (rh)IGF-11 and 10 ng/ml bovine insulin. For IGF-11, competing hormones 

included 1 µg/ml rh-N-met-IGF-1, 1 µg/ml des (1-3)1GF-I, 1 µg/ml des (1-6)IGF-Il, 

and 10 ng/ml bovine insulin. 

The binding of radiolabelled IGF-1 and -II to notexin-injected muscle sections was 

uniform, except for the following two exceptions, as described here for 1251-IGF-I, in 

which exceedingly high, isolated binding was noted. Firstly, a small subset of 

regenerating fibres ( estimated to be less than 0.5% of all regenerating fibres) had high 

level binding which was effectively displaced by cold IGF-1 and by des(l-3)1GF-I 

(Figure 4-1 ). This binding was not due to chemographic effects (interaction of tissue 

with emulsion, resulting in grain deposition) (Rogers & John 1969), as determined by 

the presence of visibly elevated signal in macroautoradiographs, corresponding to the 

location of these individual fibres. Because of the very low frequency and the 

distorting effect of the exceedingly high signal on the data obtained, these fibres were 

omitted from the quantitation of IGF-1 binding. There was no association of these 

high signal fibres with GH-treatment, although there was some association with 

4-124 



regeneration time in that the fibres were occasionally present in day 3 and 5 muscle, 

but were never observed in day 13 muscle. A second case of aberrant signal was 

observed in cells with the appearance of polymorphonuclear leucocytes (also known 

as neutrophils), which have the morphological characteristics of a lobular, horseshoe­

shaped nucleus and an abundant cytoplasm (Alberts et al. 1994), and are phagocytic. 

The presumed polymorphonuclear leucocytes were observed in regenerating fibres, 

and less frequently in connective tissue/interstitial spaces, and had high total binding 

of 125I-IGF-I which was not displaced by unlabelled IGF-I or des(l-3)IGF-I (Figure 

4-1 ), indicating that the binding was non-specific. These cells were thus also omitted 

from the quantitative analysis of 125I-IGF-I to tissue sections. 
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Figure 4-1. Unusual binding of 125I-IGF-I within damaged muscle. 

The binding of 125I-IGF-I in notexin-injected muscle was unusually high in some regenerating 

muscle fibres (A-C), and presumed polymorphonuclear leucocytes (D-F). In the small subset of 

muscle fibres showing extraordinarily high total binding (A), the 125I-IGF-I is effectively 

displaced by both competition with unlabelled des(l-3)1GF-I (8), and unlabelled IGF-I (C; NSB), 

and is therefore specific. In contrast however, high total binding (D) to presumed 

polymorphonuclear leucocytes (arrows) is not effectively displaced by competition with either 

des(l-3)IGF-I (E) or unlabelled IGF-I (F; NSB), and is thus non-specific. Magnification lOOx, 

bar=50 microns. 

4-126 

+ 

IGF-1 



4.2.4 In situ hybridisation 

In situ hybridisation was utilised in the present study to determine the localisation and 

level of IGF mRNA in regenerating muscle. The procedure employed was based on 

the method of Molenaar et al. ( 1992). 

4.2.4.1 IGF RNA probes 

IGF-1 probes for use in in situ hybridisation experiments were transcribed from a 203-

base pair (bp) Sau3A/Sau3A fragment of human IGF-1 cDNA inserted into pUC 13 

(Jansen et al. 1983). The cDNA, containing the D- and E-domains of the coding 

region plus 40 bp of the 3' non-coding sequence, was cloned into the pGemini-3 

vector (Promega, Madison, WI). IGF-11 RNA probes were transcribed from a 534-bp 

Pstl/Hinfl fragment of a human IGF-11 cDNA (Bell et al. 1984) that codes for the 

signal peptide, mature IGF-11 and part of the E-domain (Rall et al. 1987), cloned into 

the pGemini-3 vector. A. Molenaar and R. Wilkins kindly provided the IGF-1 and -II 

cDNA constructs, respectively. Sense transcripts were used as negative control probes 

for in situ hybridisation, to indicate the level of non-specific binding of the probe. 

Nuclease free MQ water 
Transcription buffer 
DTT 
rATP, rCTP, rGTP 
rUTP 
RNasin 
Purified DNA template 
35S-UTP 
RNA polymerase (T7 or SP6) 

5x concentrate 
lOOmM 
lOmM mix 

500µM 
50 Units 
200-500 ng 
1 OOOCi/mmol 
50 units 
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4.5 µl 
4.0 µl 
2.0 µl 
3.0 µl 
0.5 µl 
1.0 µl 
2.0 µl 
2.0 µl 
1.0 µl 



Probe synthesis was performed according to the Promega Riboprobe protocol with 

minor modifications. All reagents as listed above, were supplied in a Promega 

transcription kit, except for uridine-5'-(a-35S)thiotriphosphate ( 35S-UTP; Amersham 

International, Amersham, UK) which was used to radioactively label the probes. All 

water used for probe synthesis and in situ hybridisation procedures was treated with 

0.1 % DEPC, then autoclaved, in order to avoid RNase contamination. Similarly, 

glassware was treated with DEPC-water, and then autoclaved. The probe synthesis 

reaction was performed at 37°C for 1 hour, with a further 0.5 ul of SP6 RNA 

polymerase added to applicable tubes halfway through the reaction. After this 

reaction, 1.5 µl of RNase-free DNase (Promega) was added to degrade the DNA 

template, followed by a 20 minute incubation at 37°C. At this time, the reaction tube 

was placed on ice, and the probe precipitated by the addition of: 10 µl 7.5 M 

ammonium acetate (BDH), 2 ul of 1 Omg/ml tRNA (from Escherichia coli strain 

HB101; Boehringer Mannheim, Auckland, NZ), and 2.2 volumes of 100% ethanol. 

The reaction tube was placed in a -20°C freezer for at least 30 minutes, then spun at 

13,000 revolutions per minute in a benchtop centrifuge (Jouan S.A., St. Herblain, 

France) for 20 minutes. The supernatant was discarded, and the remaining pellet 

washed three times with 75% EtOH containing DEPC-water. All visible ethanol 

solution was removed, then the remainder left to evaporate off for up to 20 minutes. 

The probe was resuspended in 20 µl of 1 OmM 1,4-dithiothreitol (Boehringer 

Mannheim), with one 5-minute incubation in a 65°C water bath to aid in resuspension. 

Counts were taken from 1 µl of probe placed in liquid scintillation fluor (Beckman, 

Alphatec Systems Ltd, NZ), and the cpm/µl of probe determined (normally greater 

than lx 106 cpm/µl). 
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4.2.4.2 Tissue sections 

Paraffin-embedded tissues from all animals in the 3, 5, 9 and 13 day groups were 

sectioned to a thickness of 7 µm, floated out on DEPC-treated water, and placed on 

slides coated with 3-aminopropyltriethoxysilane (Sigma). Two serial sections were 

placed on each slide, one for antisense probe, and the other for sense probe. Duplicate 

sections were assayed for each animal. 
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4.2.4.3 Solutions 

Proteinase K solution DEPC-water 80 mls 
1 M calcium chloride 200 µl 
1 M Tris, pH 7.2 20 ml 
20 mg/ml Proteinase K (add last) 10 µl 

Acetylation solution triethanolamine 1.32 mls 
pH 8.0 DEPC-water 100 mls 

Acetic anhydride (add just before 1 ml 
use) 

20 x SSC Sodium chloride 175.32 g 
Sodium citrate 88.23 g 
Milli Q water To 1 litre 
DEPC (only for pre-hyb steps) 0.2 ml 

Premix hybridisation 5 M sodium chloride 0.3 ml 
buffer Deionised formamide 5.0ml 

20x SSC 1.0 ml 
10 mg/ml yeast tRNA 0.2 ml 
10 mg/ml degraded herring DNA 1.0 ml 

Hybridisation buffer Premix hybridisation buffer 780 µl 
BSA (20 mg/ml) 20 µl 
50% dextran sulphate 200 µl 
DTT Heaped spatula tip 

Wash solution 1 2XSSC 
50% formamide 
1 OmM P-mercaptoethanol (BME) 760 µI/litre 

Wash solution 2 0.2 X SSC 
lOmMBME 760 µI/litre 

Wash solution 3 70% ethanol 
BME 760 µI/litre 

RNase treatment RNase A (35 mg/ml) 14.3 ul 
*enzymes added after RNase Tl (3.5 mg/ml) 3.4 ul 
heating 2 x SSC 100ml 
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4.2.4.4 Section pre-treatment 

Slides were incubated at 60°C for 10 minutes in order to soften the paraffin, then 

deparaffinised by two successive 10 minute incubations in xylene. Sections were 

rehydrated by passage through a graded series of alcohols (100%, 100%, 95%, 70%) 

for 5 minutes each, then placed in DEPC-water for 3 minutes. The muscle sections 

were treated with 0.2N HCl for 10 minutes at room temperature to remove basic 

proteins, then washed in 2xSSC for 15 minutes. A 15 minute incubation in proteinase 

K solution at 37°C was performed to enhance section permeability to the probe, 

followed by acetylation of amino groups, via two 5 minute incubations at room 

temperature in acetylation solution (solution used immediately after the addition of 

acetic anhydride), to reduce non-specific binding of the probe to the tissue sections. 

Sections were incubated in 2 x SSC for 5 minutes, then placed in 100% ethanol baths 

for 5 minutes each, until the ethanol solution was clear, not cloudy. Sections were 

then air dried at room temperature. 

4.2.4.5 Hybridisation 

Sections were encircled with ADOS™ rubber cement (Para Rubber, Hamilton, NZ), to 

contain the radioactive probe during the hybridisation step. Probes were boiled for 3 

minutes to reduce non-specific interactions, briefly spun, then diluted to 30,000 

cpm/µl in hybridisation buffer. The hybridisation mixture was spread evenly across 

the tissue sections using the long edge of the pipette tip, and any remaining bubbles in 

the solution removed by quickly passing a gas flame over the surface. Slides were 
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placed on racks in air-tight chambers equilibrated with 50% formamide, 2 x SSC and 

hybridised overnight at 55°C. 

4.2.4.6 Post-hybridisation washes 

Slides were removed from the chambers in a ventilated hood, and placed in wash 

solution 1, for 15 minutes at 55°C, then rinsed in Wash Solution 2 for 15 minutes at 

room temperature. Sections were then incubated in RNase solution for 45 minutes at 

3 7°C to destroy non-specifically bound probe, and any residual rubber cement 

removed from the slides at this point. Sections were rinsed in Wash Solution 2 three 

times for 5 minutes each, then transferred to Wash Solution 3 for 5 minutes, followed 

by 95% ethanol for 5 minutes. The slides were then air-dried. 

4.2.4. 7 Autoradiography and Emulsion 

Macroautoradiographs were generated by apposing the slides against XAR film 

(Eastman Kodak) for 3 days. Slides were then coated with NTB-2 (Eastman Kodak) 

photographic emulsion, exposed for 10.5 weeks, developed and counterstained with 

haematoxylin and eosin as per Section 2.8. 

4.2.5 Grain counting 

Radiographic grains in hybridised and incubated sections were quantitated in the 

following fibre/tissue types within the notexin-injected muscle: a) regenerating fibres, 

b) survivor fibres, c) undamaged fibres, and d) connective tissue (excluded from IGF-
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II mRNA grain counting due to low levels in connective tissue). The latter three 

tissue types, which were defined earlier in Section 3 .1.3, were chosen in addition to 

regenerating fibres for the following reasons: a) it was considered that undamaged 

fibres from notexin-injected muscle may have different growth factor activities from 

survivor fibres as the latter are intermixed with the regenerating fibres; and b) 

previous studies have shown high levels of IGF-II receptor in skeletal muscle 

connective tissue (Oldham et al. 1993). Day 1 and 2 tissues were excluded from 

binding and mRNA grain counting as the damaged fibres were predominantly at a 

necrotic, not regenerative, stage. Also, survivor and regenerating fibres could not be 

definitively identified in incubated day 13 sections, so they were not counted. IGF 

binding and mRNA were quantitated in undamaged fibres and connective tissue of 

non-injected muscle (n=2 per treatment group per day for incubated sections; n=4 per 

treatment group per day for in situ hybridised sections). 

For hybridised sections, grain densities were determined using the Visilog system (see 

Section 2.11.1 ). Grain densities were determined for six sites per slide each, and in 

three sites per slide for undamaged fibres as the latter group had less variable levels 

than did connective tissue, survivor and regenerating fibres. Specific IGF-I and -II 

mRNA was determined by subtracting the values from areas in sense-probed sections 

from the values in matched areas of antisense-probed sections. 
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4.2. 6 Statistical analysis 

Values are presented as means ± S.E.M. 1251-IGF-I and -II binding was analysed to 

determine the effects of treatment and the relative tissue levels by the method of 

restricted (residual) maximum likelihood (REML). Tukey ("Honest") Significant 

Difference was used for significance comparisons between individual time x tissue 

values for 1251-IGF binding. Statistical analyses of IGF-1 and -II mRNA levels to 

determine the effects of treatment, time, and fibre or tissue type were carried out on 

log-transformed values using ANOV A. Muscle and body weights, following 

adjustment for initial liveweight, were analysed using ANOV A. Comparisons of the 

IGF mRNA levels of different tissues at individual timepoints were performed using a 

paired t-test, to determine whether the difference in values was significantly different 

from zero. 

For the analysis of the IGFBP component of 1251-IGF-I binding, des(l-3)1GF-I 

competed binding was compared with unlabelled IGF-1 competed binding by using 

Student's t-test to determine if the difference of the two values was significantly 

different from zero. If the difference between the two resultant binding levels was 

significantly different to zero, the presence of IGFBPs was indicated. 
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4.3 Results 

4.3.1 Body and muscle weights 

Body weights changed significantly (p<0.001) after notexin injection (Figure 4-2), 

with a decrease in weights up to day 5 followed by a steady weight gain after this 

time. The initial decrease in body weights suggested a systemic effect of notexin in 

addition to the local effect. To test this, additional rats (n=5/6 per group) of the same 

line and mean weight on day O were administered equal amounts of GH or saline 

vehicle to the amounts used in this trial. Body weights were recorded and are also 

shown in Figure 4-2, and indicate a steady weight gain from day O in the absence of 

notexin, thereby confirming the existence of a systemic effect of notexin in addition to 

its local effect. Growth hormone treatment was not sufficient to overcome the 

systemic effect of notexin on body weights as there was no significant difference in 

weights with and without GH up to day 5 in the present trial. Growth hormone 

administration to notexin-injected rats eventually resulted in 14% higher body weight 

(p<0.001 overall), with increases in the GH-treated group relative to the saline group 

on days 9 (p<0.05) and 13 (p<0.001). 
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Figure 4-2. Effect of GU on body weight of dw!dw rats. 

Effects of daily GU (200 µg/lOOg body weight) and notexin (NOT; one i.m. injection, day 0) on 

body weights of dwldw rats. Values represent the mean weights ± S.E.M., n= 4/5 per group. 

Significance is shown for the saline-treated (SAL NOT) versus GU-treated (GU NOT) notexin­

injected rats (*p<0.05, ***p<0.001; ANOVA). 

Weights of notexin-injected and non-injected M. biceps femoris changed significantly 

over days 1-13 (p<0.001; Figure 4-3). Similar to changes in bodyweight, non-injected 

muscle weights declined from days 1-5, while notexin-injected muscle weights 

declined from days 1-9, then increased. Weights of notexin-injected and non-injected 

M. biceps femoris were increased in GH-treated animals by 15% and 18%, 

respectively, relative to saline group animals (p=0.007 and p=0.002, respectively). 

Specific increases in muscle weight due to GH were seen on day 1 (p<0.05, notexin­

injected and non-injected), day 9 (p<0.05, non-injected) and day 13 (p<0.05, notexin­

injected; p<0.001, non-injected). 
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Figure 4-3. Effect of GH on muscle weight of dwldw rats. 

Effect of daily GH (200 µg/lOOg body weight) on the weights of notexin-injected (blue) and non­

injected (orange) M. biceps femoris. Values are the means± S.E.M., n=415 per group. Asterisks 

indicate the significance of the saline ( • ) versus GU-treated<•) muscle weight comparison for 

either notexin-injected or non-injected muscle(* p<0.005, ***p<0.001; ANOVA). 

4.3.2 Morphological changes during muscle regeneration 

Histological examination of haematoxylin and eosin stained sections showed that the 

occurrence of regeneration events in this trial was similar to that reported for dw!dw 

rats in Section 3.1.3. In brief, mononucleate cells presumed to be MPC were most 

abundant in day 3 tissues, while considerable MPC fusion was observed on day 5. 
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Additional myotube formation, and myotube enlargement occurred after day 5. GH­

treatment did not affect the quality or timing of muscle regeneration as determined by 

histological assessment of haematoxylin and eosin stained muscle sections. 

4.3.3 IGF-1 specific binding 

The relative levels of IGF-1 binding to histological zones ofnotexin-injected and non­

injected muscle from saline-treated animals are shown in Table 4-1. Results show 

that there were highly significant differences in binding between the different tissue 

types (p<0.001), and that the pattern of binding to the different tissue types examined 

changed significantly over time (p=0.018). IGF-1 binding to undamaged muscle fibres 

of the non-injected muscle was low at all timepoints, as was binding to the undamaged 

muscle fibres in the notexin-injected muscle on days 3 and 5. In contrast, regenerating 

fibres had high level binding on day 3, which rose further to peak at day 5. 1251-IGF-I 

binding to day 5 regenerating muscle fibres was significantly greater than the binding 

to all other tissue types on day 5 (p<0.001). 1251-IGF-I binding to survivor fibres was 

not significantly different from the binding to undamaged muscle fibres of notexin­

injected and non-injected muscles on days 3 and 5. The binding of 1251-IGF-I to 

connective tissue was similar to the binding to regenerating fibres on day 3, then 

declined to day 5 values. The pattern and level of 1251-IGF-I binding to connective 

tissue of notexin-injected muscle was similar to the 1251-IGF-I binding to connective 

tissue of non-injected muscle. 1251-IGF-I binding at day 13 following notexin­

injection was high in undamaged muscle fibres and connective tissue of notexin­

injected muscle, and in connective tissue from the non-injected muscle. The binding 
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of 1251-IGF-I to connective tissue of non-injected muscle was significantly greater than 

the binding of 1251-IGF-I to muscle fibres of non-injected muscle (p<0.05) on day 13. 

GH did not have a significant effect on 1251-IGF-I binding, as shown in Figure 4-4. 

Table 4-1. 1251-IGF-I binding to muscle from saline-treated rats. 

The values shown for 1251-IGF-I specific binding in notexin-injected and non-injected muscles 

from saline-treated rats were determined by receptor autoradiography. Grain densities 

(grains/µm2) were determined by subtracting non-specific from total binding values for each 

section. Means as determined by the REML method are shown for survivor fibres (S), 

regenerating fibres (R), undamaged fibres (U), and connective tissue (C). Means were 

determined from three animals unless otherwise indicated (§ n=l and 'I n=4). Regenerating and 

survivor fibres were not distinguishable in day 13 sections, and so were not quantitated (N/A; not 

available). Significance is shown for comparisons within time-points (different letters indicate 

significance at the p<0.05 level; all other comparisons were not significant). 

NOTEXIN-INJECTED NON-I JECTED 

Ave 

s R u C u C S.E.M. 

Day 

3 0.0070a 0.0262 a 0.0036 a 0.0230a 0.0102§a 0.0264§a 0.0065 

5 0.0126b 0.0430a 0.00521b 0.01291b 0.0051 §b 0.0022§b 0.0042 

13 NIA NIA 0.0267ab 0.0277ab 0.0078§b 0.0370§a 0.0091 
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Figure 4-4. Effect of GH on 1251-IGF-I specific binding. 
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1251-IGF-I specific binding values were determined by receptor autoradiography for tissues 

within notexin-injected muscle. Grain densities (grains/µm2) were determined by subtracting 

non-specific from total binding values for each section. Means ± S.E.M. as determined by the 

REML method are shown for survivor fibres (S), regenerating fibres (R), undamaged fibres (U), 

and connective tissue (C). There was no significant effect of GH treatment on 1251-IGF-I binding. 

Three animals were analysed per group except for the following groups, in which 4 animals were 

analysed: day 3 CT (GH), day 5 CT (GH and saline), and day 5 U (saline). 

4.3.4 IGF-11 specific binding 

Table 4-2 shows the relative distribution of 1251-IGF-II binding in the histological 

zones of notexin-injected and non-injected muscles from saline-treated animals. 1251-

IGF-II binding in regenerating fibres changed significantly with time (p<0.05), with 

peak levels on day 5. No other tissue types, from either notexin-injected or non­

injected muscles, showed change over time. The 1251-IGF-II binding in regenerating 

fibres was significantly higher than in connective tissue, undamaged fibres or survivor 
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fibres of notexin-injected muscle (p<0.001), and was higher than in undamaged 

muscle fibre and connective tissue (p<0.01) on day 5. There was no significant 

difference in 1251-IGF-II binding at any timepoint between the other tissue types, from 

either notexin-injected or non-injected muscles. 

Table 4-2. 1251-IGF-11 binding to muscle from saline-treated rats. 

The values shown for 1251-IGF-II specific binding in notexin-injected and non-injected M. biceps 

femoris from saline-treated rats were determined by receptor autoradiography. Grain densities 

(grains/µm2) were determined by subtracting non-specific from total binding values for each 

section. Means as determined by the REML method are shown for survivor fibres (S), 

regenerating fibres (R), undamaged fibres (U), and connective tissue (C). Means were 

determined from four animals unless otherwise indicated (' n=2 and 1 n=3). Regenerating and 

survivor fibre values were not determined for day 13 (NIA). Significance is shown for 

comparisons within time-points (different letters indicate significance at the p<0.001 level; all 

other comparisons were not significant). 

NOTEXIN-INJECTED 

Ave 

s R u C u C S.E.M. 

Day 

3 0.03421 0.12421 0.0731 0.0381 0.0250§ 0.0363§ 0.0440 

5 0.0650b 0.2256 a 0.0350b 0.0375 b 0.0388§b 0.0363§b 0.0267 

13 NIA NIA 0.0206 0.0275 0.0125§ 0.0300§ 0.0069 
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The effect of GH on IGF-II binding in notexin-injected muscle is shown in Figure 4-5. 

A significant effect of GH on IGF-II binding was observed on day 5 (p<0.01 overall), 

whereby levels in all notexin-injected muscle tissues were elevated with GH (p<0.001, 

regenerating fibres; p<0.05, connective tissue, survivor and undamaged fibres). 

Notexin-injected muscle tissues responded to GH, whereas non-injected muscle 

tissues did not (p<0.05 for the GH x tissue interaction). No difference in IGF-II 

binding due to GH was noted on either day 3 or 13. 
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Figure 4-5. Effect of GH on 1251-IGF-II specific binding. 

IJ S saline 

• SGH 
DR saline 
ll R GH 

• U saline 

• UGH 
CT saline 

• CTGH 

13 

1251-IGF-II specific binding values were determined by receptor autoradiography for tissues 

within notexin-injected muscle. Grain densities (grains/pm2) were determined by subtracting 

non-specific from total binding values for each section. Means ± S.E.M. as determined by the 

REML method are shown for survivor fibres (S), regenerating fibres (R), undamaged fibres (U), 

and connective tissue (C). The number of animals analysed per tissue type is 3-4, except for all 

day 3 GU-treated values, where n=2. Significance is shown for the GH versus saline comparison 

(*, p<0.005, ***, p<0.001). 
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4.3.5 IGFBPs 

A qualitative assessment of total binding, and competition by unlabelled-IGF-1 and 

des(l-3)IGF-I, indicated that binding proteins may be present within certain tissues at 

distinct times during the regeneration process in notexin-injected muscle. Since the 

presence of significant levels of IGFBPs could affect the assessment of Type I IGF 

receptor levels in these regenerating tissues, an initial analysis was carried out to 

determine at what time, and in which tissues, significant levels of IGFBPs were 

present. One animal per treatment per timepoint was analysed, the results of which 

showed that there was no significant difference between the des(l-3)IGF-I and 

unlabelled IGF-1 competed binding of 1251-IGF-I in the different tissue types of day 3 

and 13 notexin-injected muscles. This indicated that the binding of 1251-IGF-I was to 

receptor and not IGFBPs in these tissues on days 3 and 13. A similar analysis of day 5 

tissues from the two treatment groups indicated, however, that IGFBPs were a 

significant component of the total binding of 1251-IGF-I at this timepoint. Quantitation 

of 1251-IGF-I binding competed with unlabelled des(l-3)1GF-I was thus carried out for 

a larger number of the day 5 animals, in all of the histological tissue types of notexin­

inj ected muscle that showed a significant level of specific binding, namely connective 

tissue, regenerating and survivor muscle fibres, in order to separate out the effect of 

IGFBP from receptor. Figure 4-6 shows the results of this analysis, whereby specific 

binding of 1251-IGF-I (which indicates binding to both BP and receptor) is compared 

with binding following competition with des(l-3)IGF-I (which indicates binding to 

receptor). Each day 5 tissue examined, namely connective tissue, regenerating and 

survivor muscle fibres, has a significant component of binding protein present 
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(p<0.001 ). There was no effect of GH on IGFBPs, either overall or on individual 

tissues from day 5. 
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Figure 4-6. IGFBPs in damaged muscle tissues. 

Specific binding versus 1251-IGF-I binding competed with des(l-3)1GF-I in day 5 notexin-injected 

muscle from saline- and GB-treated rats. 1251-IGF-I binding density was determined from tissue 

sections following IGF-1 receptor autoradiography, as detailed in Section 2.11. Treatment groups 

were combined as there was no significant effect of GH on 1251-IGF-I binding competed with 

either unlabelled IGF-1 or des(l-3)1GF-I. Values shown represent the means± S.E.M, n=6 for 

regenerating (R) and survivor (S) fibres, n=8 for connective tissue (CT). Significance shown is 

for comparisons within a tissue(***, p<0.001). 
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4.3.6 IGF-1 mRNA 

IGF-1 mRNA levels in tissue types of notexin-injected and non-injected muscles were 

unaffected by the administration of GH, therefore the two treatment groups were 

pooled together for a combined analysis of IGF-1 expression. Figure 4-7(A) shows 

that the level oflGF-1 mRNA as determined by autoradiographic grain density was not 

significantly different, overall or at individual timepoints, in undamaged muscle fibres 

from notexin-injected versus non-injected muscles. In contrast, connective tissue 

IGF-1 mRNA levels were different between notexin-injected and non-injected muscles 

(Figure 4-7B), whereby connective tissue in notexin-injected muscle had significantly 

greater IGF-1 mRNA levels on day 3 relative to that of connective tissue from non­

injected muscle (p=0.013). Connective tissue IGF-1 mRNA levels were not 

significantly different at subsequent timepoints (days 5, 9 or 13). 
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Figure 4-7. IGF-1 mRNA levels in damaged and undamaged muscles. 

IGF-1 mRNA in undamaged muscle fibres (A) and connective tissue (B) of non-injected (open 

symbols) and notexin-injected (solid symbols) muscles following notexin injection at time 0. IGF-

1 mRNA levels are expressed as grain densities following quantitation of in situ hybridised muscle 

sections as described in Section 4.2.4. Values shown are the means ± S.E.M. of the pooled 

treatment groups (ANOV A). Signficance is shown for notexin-injected versus non-injected 

muscle connective tissue on day 3 (*, p=0.013), however all other timepoints for both connective 

tissue and undamaged muscle fibres are not significant (NS). 
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In notexin-injected muscles, a comparison of IGF-1 mRNA expression in connective 

tissue, regenerating, survivor and undamaged muscle fibres identified a distinct 

pattern of temporal regulation (p<0.001 overall; Figure 4-8). Regenerating muscle 

fibres had greatly increased levels oflGF-1 mRNA as early as day 3 (p<0.001 relative 

to undamaged muscle fibres). IGF-I mRNA levels in regenerating fibres peaked on 

day 9 (Figure 4-8 and Figure 4-9), after substantial myotube formation had occurred, 

with peak levels that were 16-times that of undamaged muscle fibres. IGF-1 mRNA 

levels decreased within regenerating fibres after day 9 to day 13 levels, but remained 

greater than undamaged muscle fibres levels (p<0.001). The increase in IGF-1 mRNA 

observed in regenerating muscle fibres did not appear to be related to changes in 

nuclear density, as the peak in nuclear density in regenerating areas occurred on day 3 

(refer to Section 3.1.3), while peak levels of IGF-1 mRNA occurred on day 9, and 

were still substantially elevated on day 13 (Figure 4-8), when the nuclear density was 

greatly decreased relative to day 3. 

Survivor fibres also showed an early increase in the expression of IGF-1 mRNA, with 

a significantly higher mRNA level relative to undamaged fibres on day 3 only 

(p<0.01). Survivor fibres from day 5 onward, and connective tissue throughout the 

regeneration period, did not contain significantly different levels of IGF-1 mRNA 

when compared to undamaged muscle fibres. 
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Figure 4-8. IGF-1 mRNA levels in damaged muscle tissues. 

Grain densities, as determined by grain counting following in situ hybridisation, are shown for 

connective tissue ( + ), regenerating ( • ), survivor <•), and undamaged ( •) muscle fibres. 

Significance levels for the comparison of regenerating fibres (R), connective tissue (CT), and 

survivor fibres (S) with undamaged (U) muscle fibres are shown above(**, p<0.01; ***, p<0.001; 

NS, not significant). 
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Figure 4-9. Localisation of IGF-1 mRNA in regenerating muscle fibres. 

Photomicrographs of radiographic grains after in situ hybridisation using antisense (A) and sense 

(B) 35S-IGF-I RNA probes. (A) Regenerating muscle fibres of notexin-injected muscle 9 days 

after insult show elevated IGF-1 mRNA in regenerating fibres (R) relative to survivor fibres (S). 

(B) A matched sense-probed section contains very few radiographic grains. Sections have been 

counterstained with haematoxylin and eosin, magnification is 50x, bar =100 µm. 
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4.3. 7 IGF-11 mRNA 

GH had no effect on IGF-11 mRNA levels in this study, so GH and saline treated 

animals IGF-11 mRNA data were combined for the analysis of IGF-11 mRNA in 

different tissue types. As shown in Figure 4-10, there was no significant difference 

overall between undamaged muscle fibres from notexin-injected versus non-injected 

muscles, however there was a significant tissue by time interaction (p<0.05). This 

interaction was due to the slight elevation in undamaged fibre IGF-11 mRNA in 

injected, relative to non-injected muscles on day 9 (p<O. l 0), followed by a reversal of 

this relationship on day 13 (p<0.10). 

IGF-11 mRNA levels in tissues from the notexin-injected muscle changed significantly 

(p<0.001) with time following notexin injection (Figure 4-11). Distinct patterns of 

localisation of IGF-11 mRNA in damaged muscle were immediately apparent (Figure 

4-11 ), with the highest mRNA levels in regenerating fibres (Figure 4-11 and Figure 

4-12). Regenerating muscle fibre IGF-11 mRNA levels were not significantly different 

to that of survivor and undamaged muscle fibres on day 3, but were significantly 

elevated on day 5, 9, and 13, as indicated in Figure 4-11. IGF-11 mRNA in 

undamaged muscle fibres was not significantly different from survivor fibre IGF-11 

mRNA except for on day 13, when survivor fibre levels were elevated relative to 

undamaged muscle fibre levels (p<0.05). 
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As was the case for IGF-1 mRNA (refer to Section 4.3.6), increases in IGF-11 mRNA 

were discordant with increases in nuclear density during regeneration, as peak levels 

of IGF-11 mRNA occurred on day 9, and not on day 3, when the nuclear density is 

greatest (refer to Section 3.1.3). 
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Figure 4-10. IGF-11 mRNA levels in undamaged muscle fibres. 

IGF-11 mRNA levels were determined for non-injected (open symbols; n=8) and notexin-injected 

(solid symbols; n=7/8) muscles following notexin injection at time 0. IGF-11 mRNA levels are 

expressed as grain densities following quantitation of in situ hybridised muscle sections as 

described in Section 4.2.4. Values shown are the means ± S.E.M. of the pooled treatment groups 

(ANOV A). Significance at the p<0.10 level is indicated by ( t ). 
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Figure 4-11. IGF-11 mRNA levels in damaged muscle tissues. 

IGF-11 mRNA expression in notexin-injected muscle sections, as determined by in situ 

hybridisation. Grain density was determined as the difference between antisense- and sense­

probe densities for each fibre type in each section. Undamaged fibres ( .A., n=7/8); survivor fibres 

( e, n=7/8); regenerating fibres ( •, n=7/8). Values shown are the means± S.E.M. of the pooled 

treatment groups (ANOV A). Significance is shown for the between tissue type comparisons 

(*p<0.05, **p<0.01, ***p<0.001). 
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Figure 4-12. Localisation of IGF -II mRNA in regenerating muscle fibres. 

Photomicrograph of radiographic grains after in situ hybridisation using 35S-labelled antisense 

(A) and sense (B) IGF-11 RNA probes. (A) Regenerating muscle fibres of notexin-injected 

muscles 9 days after injection show elevated IGF-11 mRNA in regenerating fibres (R) relative to 

survivor fibres (S). (B) A matched sense-probed section contains very few radiographic grains. 

Arrows show a series of MPC that are lined up end-to-end, indicative of myotube formation. 

Sections have been counterstained with haematoxylin and eosin, magnification is 50x, bar =100 

µm. 
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4.4 Discussion 

Notexin administration to M. biceps femoris resulted in a heterogeneous pattern of 

damage, allowing for separate analysis of both non-regenerating and regenerating 

fibres in the notexin-injected muscle. In the present study, components of the IGF 

axis were observed to change differentially depending on the tissue type and proximity 

to the damage. Specifically, regenerating fibres showed the greatest changes in IGF 

mRNA and binding, and survivor fibres and connective tissue showed greater changes 

than did undamaged fibres. Interestingly, although elevated IGF-1 was noted in non­

regenerating fibres, the same was not observed for IGF-11, suggesting that at least 

some of the functions ofIGF-II are distinct to those ofIGF-1 in these tissues. 

IGF-1 and -II are believed to be key regulators of MPC proliferation and 

differentiation (Duclos et al. 1991; Ewton et al. 1994; Fiorini et al. 1991 a). The 

expression patterns of IGF-1 and -II in regenerating fibres as observed in the present 

study are fully consistent with such a regulatory role for the IGFs, because IGF levels 

were elevated during the phases of MPC proliferation and differentiation. While IGF-

1 and -II expression patterns were generally similar in that they were massively up­

regulated during regeneration and had peak levels during late differentiation ( day 9), 

there were also key differences between the two IGFs. Specifically, IGF-1 was up­

regulated at the time of MPC proliferation, whereas up-regulation of IGF-11 mRNA 

was not apparent until the onset of myotube formation. A similar pattern ofIGF-1 and 

-II mRNA regulation, whereby IGF-1 levels increase prior to IGF-II levels, has been 

reported for regenerating rat M. soleus and M. extensor digitorum longus (Levinovitz 
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et al. 1992). Both IGF-1 and -II mRNA levels reached maximal levels during late 

myotube fusion, suggesting an important role for both IGFs in the stimulation of 

differentiation, as has been shown for cultured muscle cells (Florini et al. 1991 a; 

Florini et al. 1991b). Autocrine induction of IGF-11 is essential for the induction of 

differentiation, as shown by studies using an IGF-11 antisense construct to block 

autocrine IGF-11 production (Florini et al. 1991b). Both IGFs elevate myogenin 

mRNA as a part of the stimulation of myogenesis (Florini et al. 1991 a; Florini et al. 

1991 b ), thereby promoting the expression of muscle-specific gene expression via 

MRFs (Kaushal et al. 1994). In addition to the effects of IGFs on muscle specific 

gene expression via the MRFs (Kaushal et al. 1994), IGFs also function to protect 

cultured muscle cells from apoptosis as they exit the cell cycle and undergo terminal 

differentiation (Stewart & Rotwein 1996). A similar function has recently been 

shown in vivo, whereby skeletal muscle programmed cell death in dystrophic mdx 

mice was prevented by IGF-11 overexpression (Smith et al. 2000). These studies 

would suggest that the elevated IGFs observed in regenerating muscle during 

differentiation could be serving more than one function, and that the consequences of 

a lack of IGF at this point can be quite severe. 

In the present study, 1251-IGF-I binding was highest in regenerating muscle fibres. 

1251-IGF-I binding, which constitutes the cumulative binding to both the Type I IGF 

receptor and IGFBPs, was elevated on day 3 but then rose further to day 5 levels, 

concomitant with the onset of differentiation. Elevated Type I IGF receptor binding in 

regenerating muscle has been similarly reported for the M. extensor digitorum longus 

ofhypophysectomised rats (Jennische & Matejka 1992). What is of interest is that the 
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levels on day 5 were higher than the day 3 levels, which is contrary to the reported 

down-regulation of the Type I IGF receptor during muscle cell differentiation 

(Rosenthal et al. 1991 ). This discrepancy can be reconciled, however, by taking into 

account the presence of IGFBPs, as indicated by the in vitro incubations utilising 

des(l-3)IGF-I as the competing hormone (Ross et al. 1989). Competition with des(l-

3)IGF-I showed that a very significant component (approximately 50%) of the day 5 

1251-IGF-I specific binding is comprised of binding to IGFBPs. Binding proteins were 

not observed in the in vitro incubated sections from day 3, thereby suggesting that the 

day 3 specific binding values are comprised solely of binding to the Type I IGF 

receptor. Thus, in terms of the Type I IGF receptor alone, there may be a decrease in 

specific binding from day 3 to day 5, in the present trial. These findings are thus in 

agreement with the reported decrease in Type I IGF receptor levels during muscle cell 

differentiation in vitro (Rosenthal et al. 1991). Studies of cultured muscle cells have 

shown that the amount of Type I IGF receptor affects the speed with which 

myogenesis occurs, whereby increased receptor levels lead to an increased rate of 

myogenesis (Quinn & Haugk 1996; Quinn et al. 1994), while functional inactivation 

of the receptor results in delayed differentiation (Cheng et al. 2000). Thus, the down­

regulation of receptor levels at differentiation may be a mechanism by which the rate 

of differentiation is controlled in vivo. 

In the current study, binding of 1251-IGF-II to regenerating muscle fibres was increased 

during the myotube stage, concomitant with the up-regulation of IGF-11 mRNA. A 

positive association of IGF-11 mRNA and Type II IGF receptor up-regulation during 

myogenesis has also been shown in culture for C2 muscle cells (Szebenyi & Rotwein 
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1991; Tollefsen et al. 1989b). Whether the simultaneous up-regulation of IGF-11 

mRNA and receptor are functionally related is unknown. Evidence for IGF-11 action 

through the Type II IGF receptor comes from studies in which an IGF-11 analogue with 

high affinity for the Type II IGF receptor was found to stimulate differentiation 

(Rosenthal et al. 1994 ), however additional evidence of such an action is lacking. 

Based primarily on results from knockout studies, the Type II IGF receptor is 

proposed to act as a "sink" for IGF-II by binding and internalisation of the growth 

factor (Haig & Graham 1991 ), however such a function would seem unlikely as it 

would directly counteract the up-regulation ofIGF-II during differentiation. The Type 

II IGF receptor has numerous activities other than growth factor binding and 

internalisation, including activation of TGF-P (Ghahary et al. 1999a; Ghahary et al. 

2000), and the trafficking and targeting of lysosomal enzymes (Kornfeld 1992). It has 

been proposed that in the adult the primary function of the Type II IGF receptor is the 

maintenance oflysosomal activity (Wang et al. 1994). Lysosomal activation has been 

reported to occur in developing primary rat muscle culture, denervated muscle and in 

muscular dystrophy (Libelius & Tagerud 1989). During muscle cell differentiation in 

culture, the increase in Type II IGF receptor number occurs alongside an increased 

proportion of lysosomal enzyme (P-hexosaminidase) in the intracellular versus 

extracellular compartments (Szebenyi & Rotwein 1991 ), suggesting that the Type II 

IGF receptor may function during differentiation to increase the efficiency of 

lysosomal enzyme targeting (Szebenyi & Rotwein 1991). 

In the present study, IGFBPs, as determined by the in vitro binding of 1251-IGF-I 

competed with unlabelled IGF-1 and des(l-3)1GF-I, were observed only in day 5 
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connective tissue, regenerating and survivor fibres. In day 5 connective tissue and 

survivor fibres, IGFBPs appear to account for the majority of the observed 1251-IGF-I 

binding, as competition of 1251-IGF-I binding with des(l-3)1GF-I, failed to displace 

1251-IGF-I binding. This finding of a significant contribution of IGFBPs to 

regenerating muscle tissues is supported by a recent study of IGFBP expression and 

localisation in post-ischaemic muscle, which showed that IGFBPs-4, -5, and -6 are 

up-regulated relative to control muscle on day 4 of regeneration (Jennische & Hall 

2000). The IGFBP expression reported by Jennische and Hall (2000) was found to be 

cell-type specific, with IGFBP-4 expressed predominantly in connective tissue, 

IGFBP-5 in regenerating cells, and IGFBP-6 in muscle cells and connective tissue, 

thus indicating IGFBP up-regulation in the same tissues that IGFBPs were reported in 

in the present study. The actions of IGFBPs can be either inhibitory or stimulatory, 

with inhibition of IGF action by IGFBPs primarily through reduced interaction with 

the Type I IGF receptor (reviewed by Hossner et al. 1997). Stimulation of IGF action 

by IGFBPs is thought to be due to formation of IGF-IGFBP complexes that associate 

with cell surfaces, often with a concomitant reduction in the affinity of IGFBP for IGF 

(Hossner et al. 1997). IGFBP-4 acts predominantly as an inhibitor oflGF-stimulated 

proliferation (Bayes-Genis et al. 2001; Duan & Clemmons 1998), IGFBP-5 as a 

potentiator of IGF-induced proliferation and an inhibitor of IGF-stimulation of 

differentiation (James et al. 1996), and IGFBP-6 as an inhibitor oflGF-11 induction of 

muscle cell differentiation (Bach et al. 1994). IGFBPs thus constitute additional 

mechanisms for fine-tuning the actions of IGFs during skeletal muscle regeneration. 

The differential localisation of IGFBPs in regenerating muscle may allow for 
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inhibitory effects on some tissues, such as connective tissue, alongside stimulatory 

actions on other tissues such as muscle. 

In the present trial an effect of GH on IGFBP levels, as determined by the in vitro 

binding of 1251-IGF-I competed with unlabelled IGF-1 and des(l-3)IGF-I, was not 

observed in M. biceps femoris. Similarly, skeletal muscle IGFBP-3 mRNA in pigs is 

unaffected by GH administration (Dunaiski et al. 1999), as is the case for an IGFBP 

(presumed to be IGFBP-4) in the same strain of dwarfrats as used in the present study 

(Lemmey et al. 1997). These findings are in contrast, however, to the observation of 

increased IGFBP-3 protein ( 42-48 kDa band), and presumably IGFBP-1 and/or -2 

protein (28-32 kDa band), in response to GH in dwldw rats (Lemmey et al. 1997), as 

well as the up-regulation of IGFBP-5 mRNA in hypophysectomised rats in response to 

GH administration (Gosteli-Peter et al. 1994). It is possible that the differences 

between the latter studies and the present study relate to sampling time, which in the 

present study was approximately 24-hours post GH injection. IGFBP mRNA levels 

have been shown to vary with time following GH administration, as exemplied by the 

increased 28-32kDa band (presumed to be IGFBP-1 and/or -2) by Western blot at 4 

hours, but not at 8 or 24 hours, following GH treatment (Lemmey et al. 1997). 

In the present study a low level oflGF-II mRNA over connective tissue was observed. 

Human foetal connective tissue expresses high levels of IGF-II mRNA, suggesting 

that it may provide a source of paracrine IGF-II for developing tissues (Han et al. 

1987). However, in adult sheep, IGF-II mRNA is undetectable in connective tissue 

(Hodges et al. 1992), a finding that supports our current observation. Low levels of 

IGF-II mRNA in connective tissue were noted at all stages of the regeneration process, 
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and were in contrast to the increased levels of IGF-1 mRNA observed during early 

regeneration (day 3). IGF-1 mRNA is transiently expressed in the healing wound 

(Steenfos & Jansson 1990), and is produced by fibroblasts in wound chambers 

(Steenfos et al. 1990) and in vitro (Clemmons 1984). IGF-1 protein in connective 

tissue during regeneration could serve as a local source of IGF-1 for regenerating 

muscle fibres, or as a source of IGF-1 protein for fibroblasts. During regeneration, 

IGF-1 may stimulate the proliferation of fibroblasts, as occurs in vitro in response to 

IGF-1 (Cook et al. 1988), and/or stimulate the synthesis of collagen, the major 

structural component of connective tissue (Kelley et al. 1990). IGF-1 stimulates 

collagen synthesis by lung-derived fibroblasts in vitro (Goldstein et al. 1989), a 

process that likely occurs in regenerating muscle as a part of the repair of 

intramuscular connective tissue and/or the synthesis of scar tissue. 

The rats used in this trial responded to exogenous GH with increased body weight, 

notexin-injected and non-injected muscle weights, an observation which is in accord 

with the growth enhancing effect of GH on body and skeletal muscle weights 

previously reported for normal and regenerating muscle (Clark et al. 1985; Ullman et 

al. 1989). However, despite these effects of GH, analysis of in situ hybridised 

notexin-injected and non-injected M. biceps femoris failed to reveal an effect of GH 

on IGF-1 or -II mRNA levels in any of the fibre types examined. In contrast to our 

findings, porcine muscle has increased IGF-1 mRNA in response to GH administration 

(Brameld et al. 1996), and skeletal muscle IGF-1 and -II mRNA is increased in 

response to GR-stimulated hypertrophy in GH3-tumour implanted rats (Turner et al. 

1988). It is possible that the discrepancy between this report and the present one is 
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that the sampling times used in this study may have missed an induction of IGF 

mRNA, for peak levels of tissue IGF-1 occur 12 hours after GH injection in 

hypophysectomized rats (D'Ercole et al. 1984). It would be interesting to examine 

IGF mRNA in regenerating muscle at earlier timepoints relative to the daily GH 

administration, ie. within 6-8 hours of GH treatment. 

Just as an effect of GH was not observed for IGF-1 and -II mRNA, an effect of GH on 

1251-IGF-I binding was not observed. The lack of an effect of GH on 1251-IGF-I 

binding is supported by the demonstration that in hypophysectomised and normal rats, 

identical patterns of 1251-IGF-I binding relative to regeneration stage are seen in both 

animals (Jennische & Matejka 1992). This indicates that the GH status does not 

significantly affect 1251-IGF-I binding during regeneration. 

In contrast to the above-mentioned lack of effect of GH on IGF mRNA and 1251-IGF-I 

binding, this study showed that binding of 1251-IGF-II to damaged muscle tissues is 

sensitive to GH. The fact that the growth promoting effect of GH was observed in 

both notexin-injected and non-injected muscles, but that the effect of GH on 1251-IGF­

II binding was observed in only the notexin-injected muscle, suggests that the GH 

effect on 1251-IGF-II binding was related to the regeneration process. Additionally, the 

effect of GH on 1251-IGF-II binding within the notexin-injected muscle tissues showed 

temporal variation, with a significant effect observed on day 5, but not on days 3 and 

13. The presence of antibodies to human GH following 9 days of GH administration 

to hypophysectomised rats has been reported, and it has been suggested that this could 

result in a decreased growth response (Groesbeck & Parlow 1987). This could explain 
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the lack of effect of GH on 1251-IGF-II binding after 13 days of GH treatment in the 

present trial, although this is considered unlikely as no such effect on growth rates 

following long term GH treatment was observed in this strain of dwarf rats. The 

difference between the two sets of observations may relate to the animal model used. 

The function of the up-regulated 1251-IGF-II binding in response to GH in notexin­

injected muscle tissues may involve modulation of lysosomal enzyme transport and 

uptake by the Type II IGF receptor (Kornfeld 1992; Roth 1988), as previously 

discussed in this section. Growth hormone administration to both hypopituitary 

dwarfs and normal subjects results m elevated lysosomal activity in 

polymorphonuclear leucocytes (Rovensky et al. 1985), thus suggesting that in the 

present study the increased binding to the Type II IGF receptor in GH-treated notexin­

injected muscle tissues may be related to alterations in lysosomal enzyme trafficking. 

In conclusion, this study has identified specific increases in IGF-1 and -II mRNA, IGF 

receptor binding, and indicated changes in the abundance of IGFBPs, during skeletal 

muscle regeneration. GH administration resulted in increased muscle weight of both 

notexin-injected and non-injected muscles, and elevated binding of IGF-11, but no 

changes in the histology of the notexin-injected muscle. This study suggests 

involvement of the IGF axis in skeletal muscle regeneration, and that GH may 

modulate the regeneration process in part through the IGF axis. 
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CHAPTERS 

LOCALISATION OF MYOSTATIN 

DURING MUSCLE REGENERATION 

5.1 Introduction 

While the focus of the previous chapter was IGFs, the focus of this chapter is 

myostatin. The study of both IGFs and myostatin was chosen because a) the 

coordinated expression of different growth factors is an integral part of muscle 

regeneration (Grounds 1991), and b) the balance of both positive (IGFs) and negative 

(myostatin) regulators, at least in part, determines net muscle growth. 

Myostatin, and the current body of literature concerning its role in muscle growth, was 

reviewed in Section 1.7.2. Key studies discussed therein showed that an absence of 

myostatin leads to a substantial increase in muscle weight in mice (McPherron et al. 

1997), while in vitro, the addition of myostatin results in an inhibition of myoblast 

proliferation (Thomas et al. 2000). 
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These studies strongly indicate a role for myostatin as a negative regulator of muscle 

growth, and raise the question of whether myostatin is differentially regulated in a 

situation of enhanced growth, such as following GH-stimulation; and whether levels 

of myostatin are temporally-regulated during regeneration, thereby suggesting a role 

for this protein during muscle regeneration. 

5.1.1 Aim of this Chapter 

The aim of the present study is to determine whether a negative regulator of growth, 

myostatin, is temporally regulated during muscle regeneration, and whether its levels 

are decreased in muscles undergoing enhanced growth due to the administration of 

GH. 

5.2 Materials and Methods 

5.2.1 Animals 

Twenty-one intact male Sprague-Dawley rats were used to determine regeneration in 

normal animals. Intact (non-castrated) rats were used for these normal rats, and for 

the study contained in CHAPTER 6, because GH was no longer being administered, 

thus testosterone was no longer considered a confounding factor (refer to Section 

4.2.1 ). At 60 days of age and weighing approximately 330g, these animals were 

anaesthetised with a solution of 5 mg/ml Rompun® (xylazine hydrochloride), 37.5 

mg/ml ketamine hydrochloride in sterile water (0.2 ml per 100g bodyweight), and the 

right M. biceps femoris injected with 2 µg notexin, as described in Section 4.2.1. The 
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dwarf (dwldw) rats used for this study were a subset (n=3/timepoint), chosen at 

random, of the animals studied in CHAPTER 4. 

5.2.2 Tissue sampling 

Normal rats were sacrificed, as described in Section 2.7.1, on days 1, 2, 3, 5, 9, and 13 

(n=3/timepoint). Contralateral muscles were used as regeneration controls, and three 

normal rats were sacrificed on day O as additional regeneration controls. Muscle 

samples were formalin-fixed for 18 hours prior to paraffin-embedding. Sections were 

cut to a thickness of 7 microns then placed on slides coated with 3-

aminopropyltriethoxysilane (Sigma-Aldrich, St. Louis, MO, USA). 

5.2.3 Immunohistochemistry 

Antibodies used for this study were the following: rabbit anti-bovine myostatin 

antibody, raised against amino acid sequence 201-370, which recognises the precursor 

and processed forms of myostatin protein (Sharma et al. 1999); the irrelevant 

antibody, rabbit anti-human a- lactalbumin; and non-immune rabbit immunoglobulin 

fraction were used to verify the specificity of myostatin immunohistochemistry; the 

monoclonal antibodies mouse anti-slow muscle myosin (slow MHC), and mouse anti­

fast muscle myosin (fast MHC) which recognises all Type II fibres, were used together 

to determine fast and slow fibre-types in muscle sections. The myostatin antibody 

used in these studies does not cross-react with other TGF-~ superfamily members, as 

determined by Western blot analysis of normal and Belgian Blue skeletal muscle 
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extracts (Sharma et al. 1999). Immunohistochemistry was performed according to 

the method described in Section 2.9. 

5. 2. 4 Statistics 

Muscle and body weights were adjusted for initial liveweight, then analysed using 

ANOV A, to determine the effects of notexin on muscle and body weights over the 

trial period. 
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5.3 Results 

5.3.1 Characteristics of the regenerating muscle 

The regeneration of notexin-injected muscle in both normal and dw!dw rat muscle 

was similar, although the regeneration in normal rats tended to occur at an earlier 

time. This reduction in regeneration time was determined by analysis of histological 

sections which showed that a greater proportion of damaged fibres were at the 

myotube stage in normal rat muscle relative to dwldw rat muscle on days 3 and 5, as 

shown for day 3 in Figure 5-1. 

Figure 5-1. Regenerating muscle of dwldw and normal rats. 

Cross-sections of dwldw (A) and normal (8) rat M. biceps femoris on day 3 following notexin­

injection. Notexin-injected muscle from normal rats (8) contains occasional inunature myotubes 

(white arrow), in contrast to notexin-injected muscle from dwldw rats (A), which does not show 

signs of MPC fusion into myotubes. Haematoxylin and eosin stained, magnification=lOOx, bar= 

50 microns. 
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Notexin-injected muscle weights from normal rats are given in Figure 5-2, alongside 

the muscle weights for the subset of saline-treated dwldw rats from CHAPTER 4 that 

were used in this study. Notexin-injected muscle weights from normal rats changed 

significantly over time (p=0.005), with lowest levels on days 2 and 3, followed by an 

increase after that time (Figure 5-2A). In dwldw rats, notexin-injected muscle weights 

increased from day 9 onward (p<0.001, Figure 5-2B). The highly significant 

(p<0.001) changes in weight of both notexin-injected and non-injected muscles of the 

normal rat (Figure 5-2A), and non-injected muscles of the dw/dw rat (Figure 5-2B), 

were similar in pattern to the changes in body weight in the respective animals (Figure 

5-2C, D), although this was not the case for the notexin-injected muscles of dw/dw 

rats (Figure 5-2B). A pronounced systemic effect of notexin was observed in dwldw 

rats, as evidenced by decreased bodyweight up to day 5 (Figure 5-2; see also Section 

4.3.1), in contrast to normal rats which showed little sign of a systemic effect of 

notexin (Figure 5-2) with bodyweights that only decreased marginally between days 1-

2, then increased. 
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Figure 5-2. Muscle and body weights of normal and dwldw rats. 

Muscle (A,B) and body weights (C,D) following injection of notexin on day O in normal (A,C) and 

saline control dwldw rats (B,D). A, B: Weights of notexin-injected and non-injected muscles are 

shown by the open and solid circles, respectively. Values represent the means, the error bar 

equals one SEM (n=3 per group). 
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5.3.2 Myostatin distribution within muscle tissue 

In non-injected normal and dw/dw rat muscle, myostatin was localised in the muscle 

fibre cytoplasm (Figure 5-3A,B, respectively), and was absent from the connective 

tissue (Figure 5-3A). Sections immunostained with non-immune rabbit IgG showed 

no immunostaining over connective tissue or muscle (Figure 5-3D), as was the case 

for all negative control sections in these studies. A similar distribution of myostatin to 

non-injected muscle was also observed for notexin-injected muscle, with three 

exceptions, all of which occurred during early damage and regeneration. Firstly, 

myostatin was observed in interstitial areas and connective tissue in heavily damaged 

areas at early timepoints following notexin injection (Figure 5-3C; Table 5-1). 

Interstitial and connective tissue myostatin was highest on day 1 and then declined 

until day 3 when it was absent. Secondly, although myostatin was mainly found in the 

cytoplasm of muscle fibres, it was occasionally also observed in the nuclei of fibres up 

to day 5. Lastly, myostatin was observed within some phagocytic cells during early 

damage ( data not shown), which possibly resulted from phagocytosis of necrotic 

tissue containing myostatin (Figure 5-3C,E,F). 
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5.3.3 Myostatin localisation . 
In necrotic and regenerating 

muscle fibres 

Distinct temporal variation in the intensity of myostatin immunostaining was observed 

in regenerating muscle fibres of both normal and dwldw rats (Table 5-1 ). Necrotic 

fibres contained high levels of myostatin protein on day 1 following damage (Figure 

5-3C). Myostatin protein within necrotic fibres then reached peak levels, and in the 

majority of fibres observed, stayed elevated until the necrotic debris was removed 

(Figure 5-3F; Table 5-1 ). A slight decrease from peak levels of myostatin 

immunostaining in necrotic fibres was noted in some normal rat necrotic fibres that 

were heavily infiltrated by phagocytes, but not in the necrotic fibres in the dwldw rat 

(Table 5-1, day 3). Mononucleate cells located in regenerating areas at the end of 

phagocytosis, when activated satellite cells are most abundant (Koishi et al. 1995), did 

not contain myostatin (Figure 5-3F). Similarly, myotubes initially did not contain 

myostatin protein (Figure 5-3G). There was then a slight but noticable increase in the 

intensity of myostatin immunostaining in regenerating myotubes (Figure 5-3H), an 

increase that occured more rapidly in normal rats than in dw/dw rats (Table 5-1). 

Specifically, some larger regenerating myotubes of the normal rat had increased 

myostatin at day 5, whereas the regenerating myotubes of dwldw rats did not show an 

increase in myostatin until day 9. 

5-173 



Figure 5-3. Myostatin localisation in regenerating muscle. 

Myostatin localisation in non-injected (A, B) and notexin-injected (C-H) muscle. Notexin­

injected muscle sections show the progression through necrosis and regeneration as follows: (C) 

and (D) are of early necrosis; (E) from mid to late necrosis; (F) from late necrosis/early 

regeneration; (G) from early to mid regeneration, at the onset of myotube formation; (H) from 

late regeneration. Sections were immunostained with anti-myostatin antibody (A-C, E-H) or 

matched normal rabbit non-immune immunoglobulin (D) then counterstained with nuclear fast 

red. Myostatin was localised in the muscle fibre cytoplasm in non-injected normal (A) and dwldw 

(B) muscle. During muscle necrosis, high intensity myostatin localisation was observed in 

connective tissue (ct, C) and necrotic muscle fibres (black arrowheads; C, E, F), but was absent 

from the mononucleated cells present during late necrosis (mn, F). Newly-formed myotubes 

(white arrowheads, G) also lacked myostatin protein, but showed increased intensity of myostatin 

immunostaining after further development (arrows, H). Negative control sections (D) had no 

immunostaining. Bar=lOO microns. 
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Table 5-1. Myostatin immunoreactivity in damaged muscle tissues. 

Shown below are the relative levels of myostatin protein in skeletal muscle tissue types during 

damage and regeneration in normal and dw/dw rats as determined by immunohistochemistry. 

Da 

Necrotic fibres 

normal 

dwldw 

Regenerating 
myotubes 

normal 

dw/dw 

Survivor fibres 

normal 

dw/dw 

Connective tissue/ 
lnterstitium 

normal 

dwldw 

1 

+++ 

+++ 

NM 

NM 

++++ 

++ 

++ 
+++ 

Damage 

2 

+++ 

++++ 

NM 

NM 

++++ 

++ 

+ 

+ 

3 

++ 

++++ 

++++ 

+ 

Peak of 
myotube 
formation 

+ 
5 

NM 

NM 

++ 

+++ 

+ 

Regeneration 

9 

NM 

NM 

++ 

+ 

++ 

++ 

The intensity of myostatin immunostaining was detennined on a scale of - to ++++, where ++++ 
represents the highest intensity. 
NM= "not measured" due to low or negligible quantities of the tissue type. 
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Myostatin expression has been shown by others (Carlson et al. 1999) to be fibre-type 

specific, as determined by the presence of myostatin mRNA in fast (Type 11b) fibres, 

and absence from slow (Type I) fibres. Therefore the association of myostatin with 

muscle fibre-type in notexin-injected and non-injected muscle was examined. Serial 

sections of non-injected rat muscle were immunostained with anti-myostatin, anti­

slow MHC and anti-fast MHC to reveal the presence of myostatin protein in fast, but 

not slow, fibres (Figure 5-4, A-C). Immunostaining of notexin-injected muscle with 

the same panel of antibodies, however, showed the presence of myostatin within not 

only fast fibres, but also slow fibres (Figure 5-4, D-F). This indicates that during 

muscle fibre damage there is altered fibre-type localisation of myostatin protein. 
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Figure 5-4. The association of myostatin with muscle fibre-type. 

Sections (A-C) are from non-injected muscle, while sections (D-F) are from notexin-injected 

muscle. Serial sections of normal rat muscle were immunostained with antibodies to myostatin 

(A, D), fast MHC (B, E), and slow MHC (C, F) as detailed in Section 2.9. Positive 

immunostaining with anti-slow MHC, and negative immunostaining with anti-fast MHC, was 

used to identify slow muscle fibres (arrows). Myostatin immunostaining was absent from slow 

muscle fibres of non-injected (A), but not notexin-injected (D), muscle. Bar=IOO microns. 
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5.3.4 Myostatin localisation in survivor fibres 

Temporal regulation of myostatin levels was observed in the survivor fibres of normal 

and dwldw rats. Specifically, myostatin immunostaining in survivor fibres increased 

immediately after notexin treatment when compared with non-injected muscle in 

normal rats (Table 5-1 ). This was not observed in the survivor fibres of dw/dw 

damaged muscles. Both normal and dw/dw rat survivor fibres showed a decrease in 

the intensity of myostatin immunostaining on days 3-5, and a subsequent increase in 

the intensity of myostatin immunostaining on days 9-13. The changes in the intensity 

of myostatin immunostaining in survivor fibres during regeneration tended to be later 

in normal rats than in dw/dw rats. 

5.3.5 Effect ofGH on myostatin protein 

Although GH had a significant effect on the muscle mass of regenerated muscle 

(Section 4.3.1) no effect of GH-administration on the intensity or distribution of 

myostatin immunostaining was observed in these tissues. 
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5.4 Discussion 

This study describes the localisation of myostatin in the regenerating muscles of 

normal and dwldw rats. High levels of myostatin protein were observed in necrotic 

fibres and connective tissue during the damage phase, followed by a marked decline in 

myostatin concurrent with new fibre synthesis. Survivor fibres showed a notably 

different pattern of myostatin regulation from regenerating fibres. 

Histological analysis showed that the muscle regeneration that occurred in the GH­

deficient dw!dw rats was delayed relative to that of normal rats. Interestingly, the 

pattern of myostatin immunostaining in necrotic fibres/regenerating myotubes was 

similarly altered, as the decrease in the intensity of myostatin immunostaining 

observed in both normal and dw/dw rats took place earlier in the notexin-injected 

muscle of normal rats (day 3) relative to dw/dw rats (day 5). This observation of a 

similar pattern of myostatin localisation and expression in two strains of rats may 

indicate the importance of maintaining this pattern of myostatin expression in order to 

effectively regenerate damaged skeletal muscle. 

High levels of myostatin were associated with the earliest stages of the muscle repair 

process, when necrosis and phagocytosis were the primary activities taking place. 

Similarly, increased myostatin protein has been reported for M. extensor digitorum 

longus and M. soleus on days 1 and 3 following notexin-induced damage (Mendler et 

al. 2000). In the present study, not only was the elevated myostatin protein observed 
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m notexin-injected muscle fibres, it was also observed at high levels within 

connective tissue and interstitial areas. In a separate regeneration study, Yamanouchi 

et al. (2000) reported the presence of myostatin mRNA in presumed fibroblasts, and 

showed that when exposed to crushed muscle extract, cultured fibroblasts from rat 

muscle increased expression of myostatin mRNA. This shows that a cell type that is 

normally associated with connective tissue is responsive to one or more factor(s) in 

damaged muscle, and that this results in the synthesis of myostatin. Whether this is 

the means by which connective tissue-associated myostatin protein is increased, or 

whether it is due to an influx of myostatin from the circulation is not known. 

Myostatin protein has been identified in the circulation, and levels therein found to be 

increased in humans with AIDS-associated muscle wasting (Gonzalez-Cadavid et al. 

1998), however changes, if any, in circulating levels of myostatin, associated with 

regeneration, have not as yet been determined. That connective tissue might function 

as a "reservoir" for myostatin in damaged muscle might be expected, given that other 

TGF-~ family members have been shown to bind to extracellular matrix components 

(Munger et al. 1997). A proposed function for myostatin located within connective 

tissue is the enhancement of connective tissue deposition, as TGF-~ both enhances the 

synthesis, and down-regulates the proteolysis, of extracellular matrix components 

(Gleizes et al. 1997), and double-muscled cattle, which lack functional myostatin 

(Grobet et al. 1997; Kambadur et al. 1997; McPherron & Lee 1997), have decreased 

amounts of connective tissue (Arthur 1995). A second possibility is that high levels of 

myostatin protein within damaged muscle fibres and/or connective tissue may serve as 

a chemoattractant for phagocytes and inflammatory cells, or conversely as an inhibitor 
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of their proliferation, as has been reported for TGF-P (Adams et al. 1991; Ranges et 

al. 1987; Reibman et al. 1991; Wahl et al. 1987; Wahl et al. 1988). 

Of additional interest during this time was the altered association of myostatin 

expression with fibre type. Specifically, myostatin protein in control muscles was 

confined to a subset of fast fibres, however during early regeneration this pattern 

changed so that slow fibres also contained myostatin protein. Notexin affects muscle 

fibre innervation (Harris et al. 2000), and innervation in tum has a potent effect on 

fibre type (Yoshimura et al. 1998). As discussed in Section 1.5.4, this is demonstrated 

by the observation that regenerating muscle fibres lacking innervation become fast in 

fibre type, and that the return to a slow fibre type is not possible until innervation has 

been restored (Yoshimura et al. 1998). It may therefore be postulated that myostatin 

is localised within slow fibres of damaged muscle because of acute sensitivity of the 

myostatin regulatory elements and/or pathways to changes in innervation. Muscle 

denervation has been shown to have varying effects on myostatin protein levels as 

determined by Western blot analysis, with decreased myostatin protein in M. soleus (a 

slow-type muscle), and increased myostatin in M. gastrocnemius and M. plantaris 

(fast-type muscles) (Sakuma et al. 2000). Because the direction of changes in 

myostatin expression ( decreased myostatin in slow muscle) reported by Sakuma et al. 

(2000) for denervated muscle are opposite to those observed in the present study 

(increased myostatin in slow muscle fibres), it appears unlikely that the cause of the 

altered association of myostatin with fibre type in the present study is muscle 

denervation. This would be worthy of subsequent study, however, because the total 

protein levels as assessed by Western blot analysis in the Sakuma et al. (2000) study 
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are the sum total of changes in a number of histological tissue types, and may not 

represent specific changes in slow, damaged fibres alone. 

Myostatin is a key controller of C2C12 muscle cell proliferation in vitro, via 

inhibition of cell cycle progression (Thomas et al. 2000). Consequently, one might 

expect that myostatin levels would be low during a time of high MPC proliferation, 

thus allowing proliferation to proceed unhindered. Indeed, that is the pattern observed 

in this study, wherein myostatin immunostaining levels were low to non-existent in 

regenerating areas during the time of MPC proliferation, and absent from myotubes. 

Although slightly elevated from proliferation- and fusion-associated myostatin levels, 

myostatin protein in post-fusion fibres undergoing enlargement was still very low. 

Satellite cell proliferation, as indicated by the presence of MyoD (Koishi et al. 1995), 

is elevated in notexin-damaged rat muscle during the time of post-fusion fibre 

enlargement (Mendler et al. 1998). Although the period of fibre enlargement during 

regeneration is distinct from muscle hypertrophy, there are certain similarities, 

including increased satellite cell replication in order to maintain a constant nuclear 

domain (Goldberg et al. 1975; Hikida et al. 1997; Snow 1990). Myostatin has been 

reported to have a regulatory role in hypertrophic processes, as indicated by the 

presence of both hypertrophy and hyperplasia in myostatin null mice (McPherron et 

al. 1997), as well as hypertrophy, not hyperplasia, in mice expressing a dominant­

negative form of myostatin (Zhu et al. 2000). The observation of low myostatin 

during the phase of muscle fibre enlargement in the present study thus fits well with a 

role for myostatin in the regulation of hypertrophic processes (McPherron et al. 1997; 

Zhu et al. 2000). 
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In the survivor fibres of normal but not dwldw notexin-injected muscle there was a 

slight increase in myostatin immunostaining immediately after notexin treatment. 

This was followed by a decrease and then a rise in survivor fibre myostatin in both 

normal and dw/dw survivor fibres, however these changes occured later in the normal 

rats as compared to the dw/dw rats. The earlier changes in the pattern of myostatin 

immunostaining in dwldw survivor fibres did not appear to be associated with their 

lack of GH, as GH treatment failed to delay the pattern seen in dw/dw rats. 

Furthermore, the earlier pattern of changes in myostatin immunostaining in dw/dw rats 

did not appear to be associated with changes in muscle weight, as the dw/dw rats 

showed a delay in muscle growth relative to normal rats. This delay in muscle growth 

may have been because the area of damage was relatively greater in the dwldw rats as 

their muscle weights were less than half those of the normal rat muscle weights, yet 

they had identical doses of notexin. The greater weight of normal rats relative to 

dw/dw rats is also likely to account for the presence of a pronounced systemic effect of 

notexin in dw/dw rats, but not normal rats, due to the greater relative concentration of 

notexin per gram of bodyweight in the dw/dw rats. 

This study did not identify altered myostatin immunostaining associated with GH­

induced muscle growth in dw/dw rats. This is similar to the findings of Ji et al. 

( 1998), where GH administered to growing pigs did not alter the abundance of 

myostatin mRNA. There is no evidence of direct regulation of myostatin expression 

by GH, however a possible inter-relationship between myostatin and the GH/IGF axis 

is suggested by recent research. IGF-1 regulates the expression of myogenin, a 
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myogenic regulatory factor (MRF) involved in the terminal differentiation of skeletal 

muscle cells (Florini et al. 1991a), and the related MRF, MyoD (Lawlor & Rotwein 

2000). MRFs bind to E-boxes, and this binding is enhanced by the muscle-specific 

enhancer factor-2 (MEF-2) (Li & Capetanaki 1994). Sequence analysis has identified 

both an E-box and a MEF-2 binding site in the upstream region of the bovine 

myostatin gene (Jeanplong et al. 1999), thereby suggesting that IGF-1 could indirectly 

affect myostatin expression via MRFs. GH administration can lead to up-regulation 

of locally produced IGF-1 in muscle (lsgaard et al. 1989), however in the dw/dw rats in 

this study, GH administration did not affect the levels oflGF-1 or myostatin in muscle 

(see CHAPTER 4). Therefore, the results of the present study can neither confirm nor 

discount an association oflGF-1 with myostatin expression. 

The results from these studies indicate a role for myostatin in the regeneration of 

skeletal muscle, and suggest that it may serve more than one function during this 

process, including possible functions as a chemotactic agent and/or as a regulator of 

connective tissue deposition. 
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CHAPTER6 

EFFECT OF IGF-11 ON SKELETAL 

MUSCLE REGENERATION 

6.1 Introduction 

Skeletal muscle regeneration 1s a process that figures into many physiological 

situations, including sports injuries (Armstrong et al. 1991), reconstructive surgery 

(Arnold et al. 1994), and severe trauma. In these situations it is important that 

regeneration proceeds in a timely and efficient manner, and that the full complement 

of muscle is regenerated in order to restore full function. For this reason there is 

interest in developing therapeutics capable of enhancing the regeneration of skeletal 

muscle. 

As discussed in detail in Section 1.5, skeletal muscle regeneration consists of a series 

of sequential steps. Therapeutic agents can be developed to target one or more of 

these steps. A number of peptides and growth factors have been used to date in 

regeneration studies. A summary of the relevant studies is given in Table 6-1, 
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showing the administered growth factor(s) and their effects on major regeneration 

processes. It is clear that administration of individual growth factors can, and often 

does, affect more than one step of the regeneration process (Lescaudron et al. 1999; 

Menetrey et al. 2000; Miller et al. 2000). 

Two opposing therapeutic approaches have been taken in the studies listed in Table 

6-1, one of which is to increase growth factor levels by administering the peptide 

directly, and the other is to eliminate the naturally occurring peptide of interest by 

administering an antibody directed against it (Lefaucheur et al. 1996; Lefaucheur & 

Sebille 1995c )). Antibodies have the advantage of an often longer half-life within the 

body, however they carry the disadvantage of causing both enhancing and inhibitory 

effects when administered (Dijiane et al. 1985; Massart et al. 1993), thus potentially 

clouding the assertions made regarding the activity of the peptide of interest in vivo. 

As shown in Table 6-1, significant effects of growth factor administration on the 

regeneration process have been reported for both single injection (Lefaucheur & 

Sebille 1995a) and continuous infusion (Barnard et al. 1994) methods, although 

continuous infusion of growth factor is frequently used due presumably to concerns 

that a single injection of peptide would not provide peptide at later timepoints, when it 

might have a biological effect, due to loss from the regenerating area. 
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Table 6-1. Effect of growth factors on muscle regeneration. 

Effect of growth factors on regeneration 
processes 

I-< 
0 

Cl) I-< 

·en s:: s:: Q) 

0 0 .D 
0 ..... 8 >, ~ ·en ..c: ::s 
(.) I-< <-8 ..... s:: :>-. 0 ~ /;)J) ..... 
/;)J) U·- u s:: Q) ..... 

Growth Delivery c,:j p... 0 p... Q) I-< Cl) 

..c: I-< .D s:: 
::E a ::E ..... ..... Q) 

Reference factor method p... VJ µ.. "C 

Peptide administration 
Mitchell et 

bFGF Mil and CR NR 
al. (1996) 

NR NR NR B 

Menetrey et bFGF t t 
al. (2000) IGF-1 Mil NR NR NR t t 

NGF B B 

Miller et al. 
HGF 

Mil early 
NR t* ,I..* NR 

torB 
(2000) Mil late B 

Lescaudron MIP 1-[3 In vitro t t B 
NR 

B 
et al. (1999) VEGF conditioning t t t t 
Barnard et 

LIF CR t# NR NR NR t 
al. (1994) 
Lefaucheur 
& Sebille bFGF Sil NR t NR NR t 
(1995a) 

Antibody administration 
Lefaucheur IGF-1 ,I.. 
& Sebille bFGF Sil NR NR NR NR ,I.. 
(1995c) TGF-[31 t 
Lefaucheur IGF-1 t 
et al. (1996) bFGF Sil ,I.. NR NR NR NR 

TGF-[31 t 

• assayed in vitro. 
# effect indicated but not measured 
Abbreviations: LIF, leukaemia inhibitory factor; HGF, hepatocyte growth factor; bFGF, basic 
fibroblast growth factor; NGF, nerve growth factor; MIP-1[3, macrophage inflammatory protein 1-beta; 
MPC, muscle precursor cell; NR, not reported; Mil, multiple intramuscular injection; Sil, single 
intramuscular injection; CR, continuous release; t, enhancement of regeneration process; ,I.., inhibition 
of regeneration process, B, no significant effect. 
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In the previous two chapters, temporal and histological regulation of growth factor 

expression during the regeneration of skeletal muscle was reported. Among these 

changes was a dramatic up-regulation of IGF-II mRNA in newly-formed myotubes 

(CHAPTER 4). Further, the increased IGF-II mRNA was in regenerating muscle 

fibres, but not survivor fibres, connective tissue, or undamaged muscle fibres, 

suggesting that the provision of high amounts of IGF-II locally is important for 

skeletal muscle regeneration, and that the IGF-II protein is likely to function in an 

autocrine/paracrine fashion during regeneration. In the elegant study of Stewart et al. 

(1996), the overexpression of autocrine IGF-II by C2 myoblasts resulted in an 

advancement of the onset of differentiation. This study combined with earlier 

findings (CHAPTER 4) raised the possibility that if exogenous IGF-II were 

administered locally during skeletal muscle regeneration, that the timing of myogenic 

differentiation could be advanced. 

In CHAPTER 4, an up-regulation of IGF-II at the time of MPC fusion was observed, 

but not an upregulation of IGF-II concurrent with the period of MPC proliferation. 

Studies by others (Bach et al. 1995; McFarland et al. 1993; Minniti et al. 1995) 

however have clearly shown an effect of IGF-II on myoblast proliferation, via 

interactions with the Type I IGF receptor (Ewton et al. 1987). These in vitro studies 

suggested that if exogenous IGF-II were supplied at the time of MPC proliferation, it 

might positively affect that step. Therefore, in this trial the effect of IGF-II on the 

process of MPC proliferation, as well as fusion, will be examined. 
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The IGF axis, which includes not only the growth factors IGF-1 and IGF-11, but 

receptors and binding proteins as well, is tightly regulated by way of positive and 

negative feedback loops between the various components. For instance, GH down­

regulates its own secretion via negative feedback (Hashimoto et al. 2000), while IGF-

1, IGF-11 and high concentrations of insulin down-regulate IGF-11 at the transcriptional 

level (Magri et al. 1994). Similarly, IGF-11 down-regulates the Type I IGF receptor, 

via transcriptional down-regulation and increased receptor degradation (Rosenthal & 

Brown 1994; Rosenthal et al. 1991). Such an IGF-11-induced down-regulation of the 

Type I IGF receptor could have a significant effect on the timing of differentiation of 

myogenic cells, as suggested by studies showing an advancement of differentiation 

with Type I IGF receptor overexpression (Quinn & Haugk 1996; Quinn et al. 1994), 

or a delay with functional inactivation of the Type I IGF receptor (Cheng et al. 2000). 

As stated in the introduction (Section 1.6.1 ), two members of the MRF family of 

transcriptional regulators, MyoD and myogenin, are frequently used as markers of 

myogenic proliferation and differentiation processes. MyoD is localised within 

proliferating MPC, while myogenin is one of the earliest markers of differentiation. 

These markers have been employed in the ensuing study in order to precisely 

determine the effects of administered IGF-11 on proliferation and early differentiation 

events. Developmental MHC ( dMHC), an embryonic/neonatal form of MHC that is 

not normally expressed in adult muscle, but is expressed during regeneration, is used 

in this study as a later marker of differentiation, for dMHC has been shown to persist 

in damaged rat muscle until at least 7 days after damage (St. Pierre & Tidball 1994). 
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6.1.1 Aim of this chapter 

The aim of this chapter is to test the hypothesis that administration of IGF-II during 

skeletal muscle regeneration advances regeneration. This will be determined by 

exammmg: 

a) MPC proliferation and differentiation 

b) muscle fibre size. 

6.2 Materials and Methods 

6.2.1 Alzet pumps 

Two methods were considered for the administration of IGF-II, namely a single 

intramuscular injection or continuous infusion. Single injections of polypeptide 

during regeneration have been used with success by others (Lefaucheur & Sebille 

1995a), however continuous polypeptide infusion was preferred, as it is unlikely that a 

single dose of polypeptide would remain throughout the 7-day time period under 

examination. A sampling period of up to 7 days was chosen so as to include the 

periods of MPC proliferation, MPC fusion and muscle fibre enlargement during 

notexin-induced regeneration in these Sprague-Dawley rats. 

Localised, as opposed to systemic, peptide administration was chosen because 

previous work (see CHAPTER 4) showed high levels of IGF-II within regenerating 

fibres, suggesting that local production of IGF-II is important during muscle 

regeneration. The options available for the local delivery of peptide included 
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impregnated polymers (Langer & Folkman 1976; Mitchell et al. 1996), microspheres 

(Lee et al. 1997), and miniosmotic pumps (Alzet pumps; Alza Corporation, Mountain 

View, CA). Miniosmotic pumps were chosen for use in this study for the following 

reasons: a) they are the best characterised of the three options; b) Alzet miniosmotic 

pumps have been frequently used to administer IGF-II (Conlon et al. 1995; Shaar et 

al. 1989; Spencer et al. 1996), including over periods of 14 days (Conlon et al. 1995), 

and often with a significant treatment effect ofIGF-II (Conlon et al. 1995; Shaar et al. 

1989). A seven-day Alzet miniosmotic pump that was suitable for implantation in rats 

(Model 1007D) was therefore chosen for this study. Pumps were fitted with single 

lumen, vinyl catheters (SV55 tubing, inner diameter 0.80mm, outer diameter 1.20mm; 

Dural Plastics and Engineering, Dural, NSW, Australia) so that they did not lie 

directly over the damaged/regenerating muscle (possibly causing further damage). 

Catheters were cut to length then fitted with a "cuff' to ensure that the catheter stayed 

in place. Cuffs were made by attaching 2 small rings of SV102 (inner diameter 

1.40mm, outer diameter 1.90mm, single lumen vinyl tubing; Dural Plastics) 

approximately 2 mm apart, two-thirds of the way along the length of the catheter. The 

catheter was then autoclaved, allowing for 25% shrinkage. To attach the catheter 

tubing, the plastic portion of the flow moderator was crushed with scissors or pliers 

and disposed of. The catheter tubing was then attached to the end of the metal flow 

moderator tube, and secured with Loctite adhesive (Loctite Australia, Caringboh, 

NSW, Australia). 

On the afternoon prior to surgery, both the pump assembly, and the flow moderator 

with attached catheter, were filled with a 0.29 ug/ul solution of recombinant human 

6-192 



IGF-11 (OM-001, lot EJI-001, GroPep Pty Ltd, Adelaide, Australia; reconstituted to 

lmg/ml in lOmM acetic acid) diluted in RPMI 1640 media, or diluent only (controls). 

After filling each component (the pump and the flow moderator/catheter), the two 

parts were fitted together. If the pumps are being used with catheters, or if immediate 

peptide delivery is desired, the manufacturers recommend that the filled Alzet pumps 

be pre-incubated in saline for 4-6 hours at 37°C, or preferably overnight, prior to use 

(Alzet miniosmotic pump instruction and specification sheet). Therefore, for this 

study the filled pump and catheter assemblies were stored at 37°C in sterile 0.9% 

saline overnight, in order to start the pumps flowing. 

The concentration of IGF-11 used in this study was 0.29 ug/ul. The flow rate of the 

Alzet pump model 1007D was 0.5 ul/hr over a period of 7 days, therefore the IGF-11 

filled pumps used in this study delivered 0.145 ug IGF-11/hr, or 3.48 ug IGF-11/day. 

This particular IGF-11 concentration was chosen because earlier work by Conlon et al. 

(1995) showed that administration of 5.87 ug IGF-11/g bodyweight/day (=2.93 ug/0.5 g 

bodyweight/day) from subcutaneously implanted Alzet pumps to young rats resulted 

in significant effects on body weight gain and feed conversion efficiency. The amount 

of tissue affected by injection of 1 Oul of notexin was unlikely to exceed 0.5 g, as 

deduced by the fact that injection of 10 ul of methylene blue dye into non-viable rat 

muscle affects only 0.11 g of tissue. Local administration of IGF-11 would have a 

small amount of peptide loss due to diffusion to tissues other than the regenerating 

muscle, so that with these factors taken into account, the concentration used in this 

study approximates the concentrations used in the study by Conlon et al. (1995). 
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6.2.2 Surgical procedures 

Seventy-five male Sprague-Dawley rats were housed in the Small Animal Colony of 

Ruakura Agricultural Research Centre. At approximately 7 weeks of age, 70 rats were 

anaesthetised with a solution of 5 mg/ml Rompun® (xylazine hydrochloride), 37.5 

mg/ml ketamine hydrochloride in sterile water (0.2 ml per 100g bodyweight) then 

operated on to inject notexin and implant the Alzet pumps. Surgical manipulations 

began with the making of two incisions: one on the dorsal region on the right side of 

the body and slightly anterior to the M. biceps femoris, and the second directly over 

the M. biceps femoris. These two incisions were referred to as "DI" ("dorsal 

incision") and "BFI" ("biceps femoris incision"), respectively. The catheter portion of 

the pump/catheter assembly was fed through the DI out through the BFI as shown in 

Figure 6-1 A and B. The pump was sited just to the side of the DI (Figure 6-18), and 

the DI closed with 9mm autoclips (Clay Adams, Becton-Dickinson, Franklin Lakes, 

NJ) (Figure 6-1 C). The catheter was secured in place with polypropylene suture 

thread (Prolene blue monofilament with attached RB-1 taper needle, Johnson and 

Johnson, Janssen-Cilag Pty. Ltd., Newmarket, Auckland, New Zealand) within the 

cuff (see above) and approximately 1 cm above that, then the end of the catheter cut at 

an angle so that the angled end sat directly over the muscle (Figure 6-1 D and E). A 

loop was placed in the catheter, to allow the rat freedom of movement without 

dislodging the pump/catheter assembly (Figure 6-1 E). Figure 6-1 F shows the 

microsyringe (50 µl gastight microsyringe, 005229, SGE, Melbourne, Australia) with 

attached Luer-Lok microlance needle (26 gauge x 13mm, Becton-Dickinson) and 

11.5mm long vinyl tubing sleeve (0.028mm inner diameter, 0.046mm outer diameter, 
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VX028, No 6129; Becton-Dickinson) that was used to administer the notexin. The 

sleeve was fitted onto the needle to prevent the notexin from being delivered too deep 

in the muscle, as it was critical in this trial to have the regeneration occurring as close 

as possible to the site of IGF-II/diluent administration. The lOul volume of notexin 

was injected into the right M. biceps femoris directly under the angled end of the 

catheter tubing (Figure 6-1 G). Finally, the BFI was closed with wound clips (Figure 

6-1 H). Rats were kept in a warm room until actively moving (approximately 45 

minutes). Rats were walking normally and bearing weight on both legs without 

favouritism, as well as eating and drinking, within 2.5 hours of surgery. 
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Figure 6-1. Alzet pump implantation and notexin injection. 

(A) The catheter attached to the Alzet pump ("pump") was fed through from the dorsal incision 

(DI) and out through the incision over the M. biceps femoris (BFI). (B) The pump was sited just 

to the side of the (DI), then (C) the DI closed with wound clips. (D, E) The pump and catheter 

assembly was secured in place, and the notexin injected (F, G) using a modified 

needle/microsyringe apparatus. (H) Finally, the BFI was closed with wound clips. 
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6.2.3 Sampling and tissue processing 

Animals were sacrificed by CO2 gas followed by cervical dislocation on days 0-7, 5 

rats per treatment per timepoint. Prior to dissection of the leg muscles, the Alzet 

pumps were carefully removed from the flow moderator plus catheter assembly. 

Using a marker pen (Stephen's Vivid permanent waterproof marker, Bic NZ Ltd, 

Auckland, New Zealand), the site of peptide delivery/notexin injection was marked on 

the right M. biceps femoris. The catheter assembly and associated sutures were then 

cut away, and both right and left biceps femoris muscles dissected away from the 

hindlimb. Muscle tissue was both frozen for immunohistochemistry, and formalin­

fixed, paraffin-embedded for routine histological staining, as described in Section 2. 7. 

6.2.4 Immunohistochemistry 

Immunohistochemistry was utilised to identify the presence of myogenic proteins 

(MyoD, myogenin and dMHC), as markers of proliferation and differentiation, in 

regenerating muscle sections. The reason for choosing a microscopic approach over 

methods such as Northern or Western analysis, where tissues are ground up prior to 

analysis, is that the former method allows for the study of areas of similar damage. 

The core of damage (refer to Section 3.1.3) was chosen for examination in all facets of 

this trial because of its proximity to the site of peptide administration. The core of 

damage represents the site where notexin is most abundant, ie. the site of injection. 

This site was purposefully located just below the site of peptide infusion, in order to 

optimise for peptide effects on regenerating muscle tissue. 
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Cross-sections of regenerating muscle tissue were carefully sectioned in order to 

obtain an optimal core of damage. These tissue sections were then incubated with 

MyoD, myogenin and dMHC antibodies according to the protocol listed in Section 

2.9. Nuclei that were positive or negative for a given marker were quantitated, using 

the Scionlmage system (refer to Section 2.11.3). Five areas, generated by random 

coordinates, were counted for each animal. These values were then used to yield the 

percent positive nuclei per total nuclei. 

6.2.5 Fibre area 

The purpose of this analysis was to determine the size of regenerated fibres at the last 

timepoint ( day 7). Images of regenerating muscle were captured from the core of 

damage in sections that had been immunostained with dMHC antibody. The captured 

images (one per animal) were obtained using the Olympus BX-50 microscope fitted 

with a 5.0x photo eyepiece and lOx objective, which was attached to the Scionlmage 

system (as described in Section 2.11.3). To determine regenerating fibre size in the 

Scionlmage programme, individual fibres were outlined using the freeform selection 

tool, then the "measure" command used to generate the fibre area (in pixels). The 

counted fibres were numbered and the data recorded for each individual fibre. The 

number of regenerating fibres analysed per animal ranged from 31 to 89. A 

conversion factor of 2.46 x 10-7mm2 /pixel was used to convert the data to actual 

numbers. 
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6.2.6 Type 1 receptor autoradiography 

Receptor autoradiography was performed, as detailed m Section 2.10, on frozen 

muscle sections taken one day after notexin-injection. Muscle sections were 

incubated with 1251- rh IGF-1 alone or in the presence of unlabelled competing peptides 

including the following: 1 µg/ml (rh) N-Met IGF-1, 1 µg/ml des(l-3) IGF-1, 1 µg/ml 

rh IGF-11, or 10 ng/ml bovine insulin. Macroautoradiographic analysis of the 

incubated section images on XAR film showed no difference in the displacement of 

1251-IGF-I binding by unlabelled des(l-3)-IGF-I versus unlabelled IGF-1, indicating 

that the binding observed was to receptor and not binding protein. Grain counting to 

determine Type I IGF receptor levels was performed as detailed in Section 2.11.3. 

6.2. 7 Statistics 

Body and muscle weights were adjusted for initial liveweight, then analysed by 

ANOVA for the overall effect of time and treatment. Values shown are means ± 

SEM. 

MyoD, myogenin, and dMHC data were log-transformed then analysed by Student's t­

test for differences at individual timepoints, or by ANOV A to determine overall 

effects. Day 1 values were omitted from myogenin and dMHC overall analyses due to 

high "zero" components in the data sets. Values shown for MyoD, myogenin and 

dMHC are least squares means, and the errors shown are SEMs. 
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Fibre area and receptor autoradiography data were analysed by Student's t-test, and 

the values given are means ± SEM. 
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6.3 Results 

6.3.1 Body and muscle weights 

The body weights of notexin-injected rats changed significantly (p<0.001) over time, 

with a decline to day 2 values, then a steady increase in weight over the remaining 

days (Figure 6-2). By days 6/7, bodyweights were similar to day O (pre-treatment) 

values. There was no significant effect of IGF-II on body weight, and no interaction 

of IGF-II treatment with time. 
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Figure 6-2. Effect of IGF-11 on body weight. 

Body weights of IGF-11 treated and control rats following administration of notexin at time Oare 

shown. Control<•> and IGF-11 treated (•)values are means (n=4-5), bars indicate one SEM. 
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Non-injected muscle weights changed significantly (p=0.004; Figure 6-3) over time 

following notexin administration. Non-injected muscle weights decreased between 

days O and 1, remained low until day 4, and then gradually increased through to day 7. 

There was no significant difference in non-injected muscle weights between IGF-Il 

and control groups at any timepoint, or overall, nor any interaction of treatment with 

time. 
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Figure 6-3. Effect of IGF-11 on non-injected muscle weights. 

Non-injected M. biceps femoris weights following administration of notexin at time 0. Control 

<•> and IGF-11 treated (•)values are means (n=4-5), and the bar indicates one SEM. 

Notexin-injected muscle weights changed significantly (p<0.001; Figure 6-4) over 

time after damage on day 0. Notexin-injected muscle weights showed an initial 

increase on day 1, a sharp decline to day 2 values, then little change through to day 7. 

As was the case for non-injected muscle weights, there were no differences in notexin-
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injected muscle weights between IGF-II and control groups at any timepoint, or 

overall, and no interaction of time versus treatment. 
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Figure 6-4. Effect of IGF-11 on notexin-injected muscle weights. 

Notexin-injected M. biceps femoris weights following administration of notexin at time 0. Control 

(•)and IGF-11 treated (•)values are means (n=4-5), and the bar indicates one SEM. 

6.3.2 Muscle histology 

The timecourse of muscle regeneration, within the core of damage in animals that 

were not treated with IGF-II, is depicted in Figure 6-5. In undamaged (day 0) animals 

fibres are whole, and contain low numbers of mononucleate cells (Figure 6-5A), 

however by day 1 in notexin-injected control muscle, substantial numbers of 

infiltrating phagocytic and inflammatory cells are observed both within and outside of 

muscle fibres (Figure 6-5B). Approximately 50% of damaged muscle fibres in control 
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animals showed signs of phagocytic infiltration, and considerable necrotic fibre 

cytoplasm fragmentation was observed. Day 2 control muscles (Figure 6-5C) 

contained large accumulations of mononucleate cells, with low to moderate amounts 

of necrotic debris. Fusion was first observed on day 3 following notexin-injection 

(Figure 6-5D), with high levels of myotube formation occurring on both days 3 and 4, 

such that the bulk of the regenerated myofibres had been formed by day 4. Myotube 

enlargement occurred between days 5-7, with the myotube diameter at day 7 still less 

than that of survivor fibres (Figure 6-5E). 
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Figure 6-5. Muscle regeneration in control animals. 

(A) shows undamaged (day 0) muscle fibres prior to notexin injection. On day 1 following 

notexin-injection (B), muscle fibres are both infiltrated (white arrow) or non-infiltrated (black 

arrow) by phagocytic cells. By day 2 of damage (C), mononucleate cells, often in the absence of 

necrotic debris, are seen in the heavily damaged areas, and by days 3 and 4 (D; day 3 shown) 

immature myotubes are evident (black arrows). (E) By day 7 after notexin-injection, 

regenerating myotubes (black arrows) have enlarged, but are still smaller in diameter than the 

survivor fibres (white arrow). Haematoxylin and eosin stain; magnification = 50x, bar = 100 

microns. 
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Regeneration of the two treatment groups was compared histologically by examining 

haematoxylin and eosin stained sections of regenerating muscle. There was no 

histological difference in the rate of muscle regeneration between IGF-II and control 

groups on day 1 after damage, as both groups contained approximately 50% infiltrated 

fibres. However by day 2 there were obvious differences in the regenerating muscle, 

as shown in Figure 6-6. Day 2 control tissues had considerably higher numbers of 

mononucleate cells with the morphological appearance of MPC (refer to Section 

3.1.3) present in the regenerating areas. Conversely, the IGF-II treatment group 

contained considerably fewer mononucleate cells, and of these mononucleate cells, 

many appeared to be phagocytic, as assessed by their cellular morphology (multi~ 

lobed nuclei with extensive cytoplasm (polymorphonuclear leucocytes), or cells with a 

much greater cytoplasm to nuclear ratio than is found in MPC (macrophages)). 

Furthermore, the IGF-II treated regenerating muscle contained higher amounts of 

necrotic debris relative to the control group (Figure 6-6), consistent with the greater 

proportion of phagocytic cells present in the IGF-II treated muscle. 
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Figure 6-6. Histology of control and IGF-11-treated regenerating muscle. 

Sections of control (A) and IGF-11 treated (B) muscles on day 2 of regeneration are shown. 

Regenerating muscle sections of control rats (A) have high numbers of mononucleate cells with 

the morphological appearance of MPC, and sparse necrotic debris, while IGF-11 treated (B) 

muscles have a high proportion of cells with the morphological appearance of phagocytes, and 

greater amounts of necrotic debris. Haematoxylin and eosin stain, magnification 50x, bar= 100 

microns. 

6.3.3 MyoD 

MyoD was used as a marker of proliferating MPC in this study. Immunocytochemical 

staining of muscle sections showed changes in the number of nuclei positive for 

MyoD during the process of muscle regeneration. Specifically, MyoD positive nuclei 

were observed infrequently in undamaged (day 0) muscle sections. In regenerating 

muscle from day 1 onwards, MyoD protein was observed in mononucleate cells 

(Figure 6-7) either in the presence or absence of necrotic debris. The proportion of 

nuclei that were positive for MyoD protein was less than that observed for either 

myogenin or dMHC. MyoD protein was never observed in myotube nuclei, however 

after substantial myotube formation, MyoD( +) mononucleate cells were often 

observed closely aligned to myotubes, presumably m satellite cells. 
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Immunohistochemistry usmg this particular protocol did result in low level 

background staining, staining that was also observed in negative control sections 

(Figure 6-7), and so considered to be non-specific. This light background staining 

was easily distinguished from the specific nuclear staining of MyoD, and never 

interfered with the detection of MyoD positive nuclei. 

Figure 6-8 shows the frequency of MyoD protein m the core of damage of 

regenerating muscle in treated and control rats over the period of days 1-4. This time 

period was chosen for an examination of MyoD, myogenin and dMHC levels because 

it included virtually all proliferation and differentiation events in these tissues. MyoD 

positive nuclei were counted, then expressed as a percentage of total nuclei, in order to 

determine the effect of IGF-II on the proliferation of MPC. The results of this 

quantitation show that there was a significant change over time (p<0.001), with an 

increase up to day 2 in the percentage of nuclei that contain MyoD protein, after which 

time levels decreased. On day 1 there is less MyoD protein in the IGF-II treated group 

relative to the control group (p= 0.057; Figure 6-7 and Figure 6-8). 
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Figure 6-7. Localisation ofMyoD protein. 

MyoD immunohistochemistry in day 1 regenerating muscle of control (A) and IGF-11 (B) treated 

animals. MyoD protein (arrows) was localised within nuclei in regenerating areas. Negative 

control sections (C,D) were devoid of nuclear staining. The proportion of nuclei that contained 

MyoD protein was greater (p=0.057) in control versus IGF-11-treated muscles. Sections were 

counterstained with haematoxylin. Magnification lOOx, bar=40 microns. 
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Figure 6-8. Proportion of MyoD positive nuclei. 

MyoD protein expression in regenerating muscle of control ( •> and IGF-11 ( •) treated rats. 

Values are means (n=3-5) ± SEM. + indicates significance (p=0.057) between control and IGF-11 

treatment groups for the timepoint shown. 

6.3.4 Myogenin 

Myogenin protein was present only occasionally (approximately 1 per 250 nuclei) in 

undamaged ( day 0) muscle. These myogenin positive nuclei were near the periphery 

of muscle fibres, suggestive of localisation within satellite cells. In damaged muscle, 

virtually all myogenin was contained within the nuclei of mononucleate MPCs (Figure 

6-9). After fusion, myogenin protein was sometimes observed in very immature 

myotubes, within the cytoplasm and less often within the myotube nuclei. Larger, 

more mature myotubes did not contain myogenin protein. 
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Myogenin positive nuclei in mononucleate MPC in day 1-4 regenerating muscle were 

counted within the core of damage, and expressed relative to total nuclei, the results of 

which are shown in Figure 6-10. The percentage of nuclei that were positive for 

myogenin changed significantly over time (p<0.001) with an increase up to day 3, 

followed by a decrease to day 4 values. Minimal numbers of myogenin positive 

nuclei were observed in day 1 tissues, as only one of the five control muscles had non­

zero values, while all IGF-II treated rat muscles yielded zero values when counted. 

Because of the low numbers of myogenin positive nuclei observed on day 1, these 

values were omitted from the overall statistical analysis of myogenin data. On day 2, 

prior to the peak in myogenin values, IGF-II treated muscle had significantly less 

(p=0.034) myogenin protein than control muscle (Figure 6-9 and Figure 6-10). No 

significant effect oflGF-II treatment on myogenin protein was observed on days 3 or 

4. 

6-215 



Figure 6-9. Localisation of myogenin protein. 

Myogenin immunohistochemistry in muscle sections of control (A) and IGF-11- (B) treated 

animals 2 days after notexin treatment. Myogenin protein was localised almost exclusively within 

nuclei of mononucleate MPC (arrows indicate examples of myogenin positive nuclei) within 

regenerating areas in the first 4 days following damage. Negative control sections are shown in 

(C) and (D) for control and IGF-11 animals, respectively. Sections were counterstained with 

haematoxylin. Magnification lOOx, bar=40 microns. 
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Figure 6-10. Proportion of myogenin positive nuclei. 

Myogenin protein expression in regenerating muscle of control <•) and IGF-11 ( & ) treated rats 

on days 1-4 after notexin-injection. Values are means (n=3-5) ± SEM. * indicates significance 

(p=0.034) between control and IGF-11 treatment groups for the timepoint shown. 

6.3.5DMHC 

No dMHC protein was observed in undamaged fibres, or in day 1 damaged muscles. 

By days 2 and 3 however, dMHC was observed in individual nuclei in regenerating 

areas (day 3, Figure 6-1 lB). As regeneration proceeded, dMHC became localised 

within the cytoplasm, but not in the nuclei, of regenerating myotubes (Figure 6-11 A). 

hnmunostaining with dMHC antibody identified a very flattened morphology within 

the early regenerated myotubes. These early myotubes stained particularly intensely 

for dMHC protein. Immunostaining with the dMHC antibody within the core of 

damage clearly showed the presence of newly regenerated myotubes that appeared to 
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be using earlier, larger regenerated myotubes as a scaffold. For quantitation purposes, 

nuclei were considered dMHC positive if they fitted either of the following criteria: a) 

they were dMHC(+) mononucleate cells, orb) they were myonuclei contained within 

newly regenerated dMHC positive myotubes. 

The results of the quantitation of dMHC protein in regenerating muscle sections are 

shown in Figure 6-12. This figure shows that the percentage of dMHC positive nuclei 

changed significantly over time (p<0.001), with a sharp rise in dMHC positivity up to 

day 3, followed by a more gradual increase to day 4. Analysis of day 3 dMHC values 

revealed a significant (p=0.047; Figure 6-11, Figure 6-12) decrease in the percentage 

of dMHC positive nuclei in IGF-II treated muscles relative to control muscles, while 

days 2 and 4 showed no significant difference between the two treatment groups. 
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Figure 6-11. Localisation of dMHC protein. 

Immunolocalisation of dMHC protein in regenerating muscle sections of control (A) and IGF-11-

(B) treated animals 3 days after notexin injection. DMHC protein was detected in the nuclei of 

mononucleate cells during early regeneration (white arrow), and almost exclusively in the 

cytoplasm of myotubes (black arrows) in tissues that were further along in the regeneration 

timecourse. Negative control sections are shown in (C) and (D) for control and IGF-11 animals, 

respectively. Sections were counterstained with haematoxylin. Magnification lOOx, bar=40 

microns. 
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Figure 6-12. Proportion of dMHC positive nuclei. 

DMHC protein expression in regenerating muscle of control <•) and IGF-11 (•)treated rats on 

days 1-4 after notexin-injection. Values are means (n=3-5) ± SEM. * indicates significance 

(p=0.047) between control and IGF-11 treatment groups for the timepoint shown. 

6.3.6 Muscle fibre size 

Muscle fibre size was measured at the final sampling point to determine a) whether 

the treatment effect of IGF-II, as previously noted on days 1 (MyoD), 2 (myogenin), 

and 3 ( dMHC), was still apparent at day 7, and b) whether the two groups had 

different rates of fibre enlargement in the newly-regenerated muscle fibres. Figure 

6-13 shows the microscopic appearance of regenerated fibres in day 7 IGF-II treated 

and control groups. The results of the fibre size analysis (Figure 6-14) show that the 

IGF-II treated muscle contains significantly larger regenerated muscle fibres than did 

the control muscles on day 7 (p=0.0092). 
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Figure 6-13. Effect of IGF-11 treatment on the area of regenerating fibres. 

Cross-sectional fibre area in control (A) and IGF-11-treated (B) regenerating muscle 7 days after 

injury. Fibre areas of IGF-11-treated muscles were significantly greater than those of control 

muscles. These sections have been immunostained with anti-dMHC antibody, then 

counterstained with haematoxylin. Magnification 50x, bar= 100 microns. 
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Figure 6-14. Quantification of fibre area. 

Cross-sectional fibre area at day 7 in the regenerated muscle of control and IGF-11 treatment 

groups. Fibre size was determined as described in Section 6.2.5. Values shown are the means 

(n=3/4), and the error bars show 1 SEM. ** indicates a significant difference (p=0.0092) between 

treatment groups. 

6.3. 7 Type 1 IGF receptor autoradiography 

Receptor autoradiography was chosen to determine levels of Type I IGF receptor in 

regenerating muscle from control and IGF-11 treatment groups on day 1. This 

timepoint was chosen because the earliest differences in the expression of myogenic 

markers in response to IGF-11 were noted on day 1, suggesting a possible difference in 
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receptor levels on, or prior to, this time. The results of this analysis show that the 

Type I IGF receptor levels were greater in the control (0.247 ± 0.073 grains/ µm2) than 

in the IGF-11-treatment (0.137 ± 0.063 grains/ µm2) group however this difference was 

not significant (p=0.311; Figure 6-15). 

0.35 ---·········-··-----·-··--··---

,-. ... 0.3 E = --"' = ·; 0.25 ... 
QI) 
'-' 
QI) 

= 0.2 :a 
= :Ei 
C,I 

i:: 0.15 ·u 
Qj 
Q. 

"' - 0.1 I ... 
c., -I -"' 0.05 ~ 

0 

control IGF-11 

Treatment group 

Figure 6-15. Specific binding of 1251- IGF-1 to day 1 damaged muscle. 

Type I IGF receptor levels in regenerating muscles from control and IGF-11 treatment groups on 

day 1 following notexin injection. Tissue sections were incubated with 1251-labelled IGF-1, then 

the bound peptide visualised as silver grains in an overlying emulsion layer, as described in 

Section 2.10. Grains were counted as per Section 2.11.3 and used to generate the density of 

radiolabelled IGF-1 in treated and control tissues. The Type 1 IGF receptor levels in treated and 

control tissues was not significantly different (p=0.311). Values shown are the means± SEM. 
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6.4 Discussion 

The aim of this study was to determine whether the processes of MPC proliferation 

and differentiation during skeletal muscle regeneration are altered by the continuous 

administration of IGF-11 to the damaged muscle. The MRFs, MyoD and myogenin, 

were used as markers of proliferation and early differentiation, respectively, while 

dMHC was employed as a later marker of differentiation. This study clearly shows 

that the administration of IGF-11 to regenerating muscle delayed both proliferation and 

differentiation. Furthermore, fibre size analysis showed that although proliferation 

and differentiation processes were delayed in the IGF-11-treatment group, by day 7 the 

IGF-11 treatment group had larger regenerated muscle fibres relative to the control 

group. These results show that IGF-11 had varying actions throughout the course of 

regeneration. 

The present study identified induction times of less than 1 day for MyoD, 1-2 days for 

myogenin, and 2 days for dMHC protein expression in regenerating rat M. biceps 

femoris. Similarly, it is well established in the literature that MyoD expression 

precedes that of myogenin (Cornelison et al. 2000; Smith et al. 1994) and that 

myogenin expression precedes the expression of sarcomeric myosin heavy chain 

isoforms (Andres & Walsh 1996). Peak values for the number of nuclei positive for 

MyoD, myogenin, and dMHC were observed on days 2, 3, and 4, respectively. These 

observed patterns of MyoD, myogenin and dMHC protein induction and peak values 

are virtually identical to those reported by Yablonka-Reuveni and Rivera (1994) for 

activated satellite cells undergoing myogenesis on cultured rat muscle fibres. Our 
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results combined with those of Yablonka-Reuveni and Rivera (1994), support the 

existence of an approximate 24-hour lag between MyoD(+), myogenin(+), and 

dMHC(+) compartments for rat MPC and muscle fibres. 

IGF-II has been firmly established as a proliferation and differentiation-enhancing 

peptide, with the evidence for this coming from a number of in vitro studies (Minniti 

et al. 1995; Prelle et al. 2000; Stewart et al. 1996). Given the body of evidence for 

positive effects of IGF-II on proliferation and differentiation in culture, the 

observation of an opposite effect in this regeneration experiment was surprising. 

Furthermore, the effects were of a highly consistent, sequential nature, with significant 

differences observed on day 1 for MyoD, day 2 for myogenin, and day 3 for dMHC, 

and the significant treatment effects always occurred prior to peak marker expression. 

This pattern, taken together with the fact that the effect ofIGF-II treatment occurred as 

early as day 1, suggests that IGF-II may have affected a process up to, or on, day 1 

following damage, and that this initial set-back of the regeneration process by IGF-II 

was simply carried on through until at least the stage of myotube fusion. One key 

possibility that was considered for these initial effects of IGF-II was down-regulation 

of the Type 1 IGF receptor. 

IGF-II can down-regulate the Type 1 IGF receptor in muscle cells via transcriptional 

down-regulation and/or increased receptor degradation (Rosenthal & Brown 1994; 

Rosenthal et al. 1991 ). IGFs bind to, and exert effects through, the Type I IGF 

receptor during the stimulation of MPC proliferation and differentiation (Ewton et al. 

1987; Rosenthal et al. 1994). Functional inactivation of the Type I IGF receptor 
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results in delayed differentiation in mouse C2C12 cells (Cheng et al. 2000). In the 

present trial, the level of Type I IGF receptor in day 1 regenerating muscle was 

measured in order to determine whether administration of IGF-11 effected down­

regulation of the Type 1 IGF receptor which may have in turn caused the delays in 

proliferation and differentiation. Results show that while the density of Type I IGF 

receptors is lower in the IGF-11 treatment group relative to the control group, the 

difference is non-significant. These results suggest that rather than affecting Type 1 

IGF receptor levels, IGF-11 treatment may have affected another early process, such as 

phagocytosis. 

The rate of phagocytosis that occurs within damaged muscle can affect subsequent 

phases of regeneration (Grounds 1991), for phagocytosis is a necessary event in the 

regeneration of skeletal muscle. A role for the IGF system in the modulation of 

inflammatory and phagocytic responses is supported by studies in which immune 

neutralisation of endogenous IGF-1 during muscle repair resulted in enhanced 

macrophage infiltration (Lefaucheur et al. 1996). The means by which macrophages 

contribute to the regeneration process is not limited to just the removal of necrotic 

tissue, but rather includes the production of growth factors that are capable of 

affecting MPC (Grounds 1991; Layne & Farmer 1999). One such growth factor is 

tumour necrosis factor-alpha (TNF-a) (Renier et al. 1996), a growth factor that is 

believed to be responsible for muscle wasting in a number of pathological conditions, 

including cancer (Meadows et al. 2000). Monocytes and macrophages up-regulate 

TNF-a in response to exogenous IGF-1 in vitro (Renier et al. 1996), and TNF-a 

inhibits IGF-1-induced stimulation of myogenesis in cultured C2C12 cells (Layne & 
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Farmer 1999). These findings thus lend support to the interaction of IGFs with 

phagocytic processes, and indeed a detailed examination of the different phagocytic 

cell populations within the 0-24 hour timeperiod following notexin injection and IGF-

11 administration in a future study would be of great interest. 

This study was designed to address the hypothesis that administration oflGF-11 results 

in a change in the onset of proliferation and/or differentiation processes within 

regenerating skeletal muscle. The pattern of control versus IGF-11 treatment values 

observed in this study would seem to suggest that instead of a change in the onset of 

proliferation and differentiation events, an overall decrease in MPC proliferation and 

differentiation was observed. Two factors which cloud the interpretation of an overall 

decrease, however, are that: a) there is a lack of sampling points between days which 

would unequivocally establish when the absolute peaks of MyoD and myogenin 

expression occurred, as otherwise it cannot be ruled out that the peak values obtained 

were taken from different parts of their respective curves, and b) the dMHC values on 

day 4 are virtually identical, indicating that by day 4 the same total number of nuclei 

in control and IGF-11 treatment groups had gone through the differentiation process. 

For this reason, it is reasonable to assert that there was a delay in the onset of 

proliferation and differentiation processes, but it cannot be stated whether there were 

changes in the overall numbers of MPC undergoing proliferation and differentiation 

processes. 

This study identified an effect of IGF-11 on both proliferation and differentiation 

events, thus raising the question of whether the delayed proliferation results in the 
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delayed differentiation, or m fact whether these two observations are completely 

independent of each other. This question could be addressed in an interesting series of 

experiments where IGF-II is pulsed at different times and durations, in order to see if 

effects are observed on single or multiple regeneration events. 

This study showed a delay in MPC proliferation and fusion in muscles that received 

exogenous IGF-II, as well as a late effect whereby the regenerated fibres that received 

IGF-11 were larger than the control fibres. The fact that the IGF-II treated fibres were 

larger at day 7 than the control group fibres was precisely the opposite result to what 

might have been anticipated given that the early regeneration was hindered. This 

suggests that the administered IGF-II had a pronounced effect on the regenerated 

muscle between days 4-7, when the primary process occurring was fibre enlargement. 

Likewise, an increase in muscle fibre diameter has been reported for laceration­

damaged muscle treated with IGF-1 peptide (Menetrey et al. 2000), and a decrease in 

fibre diameter observed following treatment of damaged muscle with anti-IGF-1 

antibodies (Lefaucheur & Sebille 1995b ). 

Strictly speaking, the period of fibre enlargement in regenerating muscle fibres is 

distinct from muscle hypertrophy, however both processes lead to increased muscle 

fibre size, thus warranting an examination of the role of IGFs in hypertrophy in 

relation to the present findings. It should be noted that the term "hypertrophy", which 

is classically defined as an increase in the protein to DNA ratio in the mature fibre, is 

also frequently used in the literature to refer to instances of increased protein with 

concomitantly increased DNA (Adams & McCue 1998; Barton-Davis et al. 1999). 
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Markers of hypertrophy as reported in the literature include increased muscle weight 

(Barton-Davis et al. 1998), fibre size (Coleman et al. 1995), and biochemical 

determinations of protein and DNA (Adams & McCue 1998). 

A role for IGF-1 in the induction of hypertrophy has been very clearly established by 

studies in vitro (Semsarian et al. 1999) and in vivo (Adams & McCue 1998; Barton­

Davis et al. 1998; Coleman et al. 1995), with as much as a 66% increase in fibre area 

reported for IGF-1-transfected myotubes in culture (Semsarian et al. 1999). In this 

study there was a fairly similar increase ( 42%) in fibre area in response to exogenous 

IGF-11. Hypertrophy in response to IGF-1 occurs via binding to the Type 1 IGF 

receptor (Semsarian et al. 1999), induction of calcineurin and the transcription factor, 

GATA-2, which then cooperate with selected NF-ATcl transcription factor isoforms 

in order to activate genes responsible for the hypertrophic response (Musaro et al. 

1999). Despite the fact that Type 1 IGF receptor levels increase after differentiation 

(Tollefsen et al. 1989a), hypertrophy occurs only if the exogenous IGF-1 is 

administered prior to, but not after, the induction of differentiation (Semsarian et al. 

1999). In the present trial IGF-II was administered continuously throughout 

proliferation, differentiation and enlargement, and was therefore present in high levels 

during the critical period for a hypertrophic response. 

IGF-11 has also been associated with hypertrophy, although certainly to a lesser degree 

than IGF-1, for at present there have been no studies looking directly at the effects of 

administered IGF-11 on skeletal muscle hypertrophy. Levels of both IGF-1 and IGF-II 

mRNA are elevated in rat M. plantaris and M. soleus subjected to compensatory 
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hypertrophy (DeVol et al. 1990), suggesting that both IGFs have a role in the 

induction of hypertrophy. Hypertrophy of cardiac tissue, which occurs by a similar 

mechanism to muscle hypertrophy in response to IGF-1 (Musaro et al. 1999), has also 

been shown to occur in response to IGF-11 (Adachi et al. 1994; Liu et al. 1996). 

Taken together, there is a strong body of evidence supporting a role for IGF-11 in the 

enhancement of muscle fibre enlargement as seen in this study. 

An additional factor that must be considered within the scope of the current study is 

re-innervation, and possible effects of IGF-11 upon that process. Notexin injection 

results in denervation of 70% of the muscle fibres in rat M. soleus (Harris et al. 2000), 

and the ensuing functional innervation is complete by 7 days (Whalen et al. 1990). 

Sesodia and Cullen ( 1991) report that the regeneration of denervated and non­

denervated rat M. soleus is identical up to 3-4 days following notexin injection, 

however after that time non-denervated muscles grow more rapidly than denervated 

muscles. IGF-11 has positive effects on nervous tissue, as illustrated by studies in 

which IGF-11 administration to damaged nerves results in increased motoneuron 

survival and enhanced nerve regeneration (Near et al. 1992; Pu et al. 1999a). This 

opens up the possibility that in the current study, IGF-11 administration may have 

speeded up and/or enhanced the functional innervation of the regenerating muscle, 

thus allowing for more rapid growth of the regenerating muscle fibres. 

In summary, this study clearly shows that local administration of IGF-11 to 

regenerating skeletal muscle results in delayed MPC proliferation and differentiation 

events, however by late regeneration the muscle fibres formed in the presence oflGF-
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II attain a larger size than control fibres. These findings indicate that IGF-11 has 

pleiotropic effects within regenerating skeletal muscle, likely as a function of the 

unique environment present during the sequential steps that make up the whole of 

muscle regeneration. The use of IGF-11 as a therapeutic agent for skeletal muscle 

regeneration may have potential, pending further investigation into the individual 

effects of IGF-11, and subsequent refinement of the administration protocol. 
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CHAPTER 7 

FINAL DISCUSSION 

Regeneration of skeletal muscle is a fascinating process involving a number of 

coordinate steps, each of them regulated, at least in part, by the presence of growth 

factors. Recent studies suggest a critical role for locally produced growth factors in 

the regulation of normal postnatal growth and development (Sjogren et al. 1999; Ueki 

et al. 2000; Yakar et al. 1999). Accordingly, in the present studies, the tissue levels of 

IGF mRNA and myostatin protein have been associated with the processes occurring 

concomitantly within the regenerating muscle. A histological approach was used 

throughout this thesis in order to assess the individual growth factor activities in 

damaged muscle tissues; the identified growth factor activities can then be related to 

the histological changes taking place at that particular time. Finally, in the last 

experimental chapter, the effect of IGF-II administration on muscle regeneration was 

examined, and the effects on key regeneration steps examined in detail. 
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7.1 Summary of Results 

7.1.1 Muscle regeneration 

7.1.1.1 Necrosis 

Two of the earliest processes m the repair of muscle following damage are 

inflammation and phagocytosis of necrotic debris. The IGF axis was not examined 

during the stage of muscle necrosis, as the focus of work contained in this thesis is on 

MPC proliferation and fusion events, however, when myostatin was examined, it was 

apparent myostatin regulation was considerably altered during these early timepoints. 

The results presented here showed that during the stage of inflammation and 

phagocytosis, high levels of myostatin protein were present in connective tissue and 

necrotic fibres. Similarly, M. extensor digitorum longus and M. soleus have increased 

levels of myostatin protein, as determined by immunoblot analysis, on days 1 and 3 

following notexin-induced damage (Mendler et al. 2000). Skeletal muscle-derived 

fibroblasts up-regulate myostatin expression in a dose-dependent fashion in response 

to crushed muscle extract (Y amanouchi et al. 2000), suggesting that the myostatin 

protein within interstitial areas, as observed in the present study, may be produced by 

connective tissue-associated fibroblasts. Other likely candidate sources for the 

increased myostatin protein within interstitial areas include necrotic fibres, which 

show markedly increased protein levels at this time; or the bloodstream, as increased 

circulating myostatin is associated with muscle wasting (Gonzalez-Cadavid et al. 

1998). Regeneration is a process associated with significant changes in the connective 

tissue compartment (McMinn 1967; Phillips et al. 1990; Stauber et al. 1990), thus a 
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proposed role for the increased myostatin protein within connective tissue during 

necrosis is in the enhancement of connective tissue deposition. A role in connective 

tissue deposition is inferred by the presence of decreased connective tissue (Arthur 

1995) in double-muscled cattle, which lack functional myostatin (Grobet et al. 1997; 

Kambadur et al. 1997; McPherron & Lee 1997). Alternatively, during the necrotic 

stage, the high myostatin protein present in muscle fibres and connective tissue may 

modulate phagocytic and inflammatory cell processes, as has been shown for the 

related factor TGF-P (Adams et al. 1991; Ranges et al. 1987; Reibman et al. 1991; 

Wahl et al. 1987; Wahl et al. 1988). 

7.1.1.2 MPC proliferation 

In the present growth factor localisation studies (CHAPTER 4 and CHAPTER 5), day 

3 tissues of the dwldw rat contained the greatest proportion (relative to other 

timepoints) of mononucleate cells with the histological appearance of MPC. This 

timepoint (day 3) therefore will be the focus of this section regarding MPC 

pro Ii ferati on. 

Survivor, regenerating and undamaged muscle fibres from notexin-injected muscles 

on day 3 were not significantly different from undamaged muscle fibres of non­

injected muscles in terms of IGF-1 and IGF-11 binding, and IGF-11 mRNA production, 

as was the case for connective tissue comparisons (CHAPTER 4). These results are in 

agreement with the virtually unchanged levels of IGF-11, and Type I and II IGF 
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receptor mRNA, relative to time zero controls, in M. soleus following notexin 

injection, as determined by solution hybridisation (Levinovitz et al. 1992). 

These studies showed that, in contrast to the lack of change in other components of 

the IGF axis, differences were observed in IGF-1 mRNA levels in regenerating fibres 

relative to undamaged muscle fibres (CHAPTER 4). Similarly, elevated IGF-1 

mRNA, as determined by solution hybridisation, has been reported for rat M. soleus 

on day 3 following notexin injection (Levinovitz et al. 1992). In histological studies, 

IGF-1 immunoreactivity was found in satellite cells of normal and hypophysectomised 

rat M. extensor digitorum longus following ischaemia (Jennische et al. 1987) and 

taipoxin-induced (Jennische & Hansson 1987) injury. Given the role of IGF-1 in the 

stimulation of cell proliferation, as discussed in Section 1.7.1.5.2, and the presence of 

the Type I IGF receptor on regenerating muscle fibres (CHAPTER 4), it is possible 

that IGF-1 produced by regenerating muscle fibres acts in an autocrine manner to 

stimulate the proliferation of MPC during muscle regeneration. 

The present studies showed that during the stage of MPC proliferation, IGF-1 mRNA 

was also elevated in survivor fibres of notexin-injected muscle (CHAPTER 4). In 

regenerating rat M. extensor digitorum longus, IGF-1 immunoreactivity was present in 

regenerating muscle fibres, but not in "surviving, undamaged" muscle cells (Jennische 

et al. 1987). The apparent discrepancy between the Jennische (1987) study and the 

present one is possibly due to the proximity of the "surviving, undamaged" fibres of 

the Jennische (1987) study to the damaged area. Following notexin injection, there is 

a decreasing gradient in activated satellite cell number from the damaged area of 
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notexin-injected muscle (Klein-Ogus & Harris 1983), so that "survivor" fibres (that 

are interspersed with the regenerating fibres) would be expected to have a greater 

satellite cell activity than "undamaged" fibres (which are located further away from 

the damage) (see Section 3.1.3). In the present study (CHAPTER 4), IGF-1 mRNA 

was elevated in survivor, but not undamaged, muscle fibres, a pattern that suggests the 

IGF-1 production in survivor fibres may be linked to satellite cell replication. 

Previous studies have treated all uninjured fibres as a single population (Jennische et 

al. 1987), however the results of the present study shows that the uninjured muscle 

fibre population is not homogenous. 

The results of the present study showed that like regenerating and survivor fibres, 

connective tissue of notexin-injected muscles contained greater IGF-1 mRNA than did 

non-injected muscles (CHAPTER 4). IGF-1 may act in connective tissue to stimulate 

fibroblast proliferation and/or collagen synthesis by fibroblasts, as occurs in vitro in 

response to IGF-1 (Cook et al. 1988; Goldstein et al. 1989), or it may be a source of 

locally-acting growth factor for damaged muscle tissues. 

Myostatin protein was not observed in proliferating MPC in this study (CHAPTER 5). 

This finding is in contrast to that of Y amanouchi (2000), who reported occasional 

localisation of myostatin mRNA in mononucleated myogenic cells of regenerating rat 

femoral muscle two days after bupivacaine-induced damage, but is similar to the 

virtually undetectable levels of myostatin protein, by Western blot analysis, in rat 

muscle 1-14 days after bupivacaine-induced damage (Sakuma et al. 2000). The report 

that myostatin mRNA was only occasionally observed in mononucleated myogenic 
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cells of regenerating muscle (Y amanouchi et al. 2000), combined with the apparently 

undetectable levels for M. tibia/is anterior (Sakuma et al. 2000), and the present 

report of no myostatin localisation in MPC (CHAPTER 5), suggest that myostatin 

does not play a critical role in the proliferation of MPC during skeletal muscle 

regeneration. 

7.1.1.3 Myotube formation 

In the present study, the period of myotube formation, the peak of which occurred on 

day 5 in regenerating muscle tissues of the dw/dw rat, was typified by dramatic 

increases in components of the IGF axis (CHAPTER 4). Specifically, IGF-1 and -II 

binding capacity, and IGF-1 and -II mRNAs, were significantly up-regulated in 

regenerating muscle fibres on day 5, and it was at this time that the presence of 

IGFBPs in regenerating muscle tissues was indicated by the in vitro binding of 1251-

IGF-I (CHAPTER 4). A similar elevation of IGF-1 and -II mRNA, in homogenised 

tissue, during myotube formation has been shown for notexin-injected rat M. soleus 

(Levinovitz et al. 1992). Similarly, specific binding of IGF-1 and Type I IGF receptor 

mRNA are both elevated in damaged rat muscles on day 5 following 

ischaemia/glycogen depletion and bupivacaine injection, respectively (Jennische & 

Matejka 1992; Marsh et al. 1997), and the Type II IGF receptor is co-ordinately up­

regulated with IGF-II during muscle cell differentiation in vitro (Tollefsen et al. 

1989b ). However, such an elevation of Type -I and -II IGF receptors was not reported 

for regenerating rat M. soleus analysed by solution hybridisation (Levinovitz et al. 

1992). The lack of change in the Levinovitz ( 1992) study is possibly due to dilution 
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of receptor levels in the homogenised muscle. IGFBPs, as mentioned above, were 

determined by the in vitro binding of 1251-IGF-I to be present in day 5 tissues only, and 

to be localised within connective tissue, and regenerating and survivor fibres 

(CHAPTER 4). In the present study, competition of 125IGF-I with unlabelled des(l-

3)IGF-I and IGF-1 suggested that IGFBPs account for virtually all of the IGF-1 specific 

binding to connective tissue and survivor fibres, and approximately half of the IGF-1 

specific binding to regenerating muscle fibres, at day 5 (CHAPTER 4). In a detailed 

study of IGFBP mRNAs in regenerating rat skeletal muscle, the presence of IGFBPs-4 

and -6 in connective tissue, IGFBP-5 in regenerating muscle fibres, and IGFBP-6 in 

uninjured muscle fibres was reported (Jennische & Hall 2000). IGFBPs may serve 

important modulatory functions within damaged muscle tissues, as they can either 

potentiate or inhibit IGF action (Bach et al. 1994; Wood 1995). 

In the present study, myostatin protein was not observed in newly regenerating muscle 

fibres (CHAPTER 5). Similarly, in cultured C2C12 muscle cells, increased myostatin 

mRNA was not observed until day 4 following the switch to differentiation medium, 

when fusion was already well-established (Mendler et al. 2000). In rat M. tibialis 

anterior regenerating after bupivacaine-induced damage, myostatin protein is virtually 

undetectable by Western blot analysis during the stage of myotube formation (Sakuma 

et al. 2000). Results from another regeneration study, where both low and high 

intensity immunostaining were observed in newly formed myotubes of notexin­

damaged M. soleus (a slow-type muscle) and M. extensor digitorum longus ( a fast­

type muscle) (Mendler et al. 2000), respectively, suggests that muscles vary 

considerably in the expression of myostatin at the time of myotube formation, leading 
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to the proposal by Mendler et al. (2000) that this variation may be modulated by the 

re-innervation status of the muscle. 

7.1.1.4 Muscle fibre enlargement 

Late regeneration, when the major event taking place was muscle fibre enlargement, 

persistent increases in IGF-1 and -II message were observed in regenerating muscle 

fibres, and elevated IGF-11 in survivor fibres relative to undamaged muscle fibres 

(CHAPTER 4). Similarly, IGF-1 mRNA levels are elevated in homogenised M. 

tibia/is anterior on day 15 following bupivacaine-induced damage (Marsh et al. 

1997). 

In this study, myostatin was observed in generally increasing amounts in regenerating 

and survivor muscle fibres undergoing enlargement and maturation (CHAPTER 5). 

Similarly, the stage of muscle fibre enlargement is associated with increased 

myostatin protein in homogenised rat M. tibia/is anterior (Sakuma et al. 2000), and 

with increased myostatin mRNA in homogenised rat M. extensor digitorum longus 

(Mendler et al. 2000). The increased myostatin levels in these fibres may be related to 

the slowing down of cellular proliferation, relative to earlier timepoints. 

7.1.2 Modulation of muscle regeneration 

7.1.2.1 GH 

The GH-deficient, dwarf dw/dw rat was used in these studies to examine the effect of 

GH on skeletal muscle regeneration. In order to eliminate the confounding effects of 
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endogenous GH on somatic growth in the trial, the dwldw rats were castrated in order 

to remove testosterone. Exposure to testosterone alters the pattern of GH pulsatility 

from a feminine to a masculine pattern of GH secretion (Painson et al. 2000), and the 

masculine pattern is associated with a greater somatic growth response relative to the 

feminine pattern (Jansson et al. 1985). This strategy has been similarly undertaken by 

others (Gevers et al. 1995). It is possible that castration of the dw/dw rats in these 

experiments slightly altered the resultant regeneration processes, for exogenous 

testosterone has a stimulatory effect on satellite cell proliferation in castrated neonatal 

pigs (Mulvaney et al. 1988), and research suggests that during regeneration, elevated 

testosterone may impair phagocytic processes (Grounds 1987). However, the 

regeneration processes observed in castrated dw/dw rats in the present study were 

qualitatively similar to those reported in the literature for notexin-induced damage 

(Harris & Johnson 1978; Harris et al. 1975), with the only observed difference being a 

slightly extended timeframe for the regeneration process, which may be due to the 

dwldw GB-deficient phenotype, and/or castration. 

In this set of experiments, an effect of GH was observed on body and muscle weights, 

and on IGF-11 binding. Similarly, a 25% increase in body weight, and significantly 

greater damaged and undamaged M. extensor digitorum longus weights were reported 

for GB-treated Sprague-Dawley rats following ischaemic necrosis (Ullman et al. 

1989). The effect of GH on muscle weights was observed in both notexin-injected 

and non-injected control muscles, thus indicating that the enhancement of muscle 

weight was not related to regeneration. The effect of GH on IGF-II binding levels in 

all tissues of the notexin-injected muscle on day 5 only was unexpected. The Type II 
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IGF receptor has been postulated to be a negative regulator of IGF-II action, based 

primarily on developmental studies (Haig & Graham 1991). A few studies have 

indicated a signalling pathway for the Type II IGF receptor, via G-proteins (McKinnon 

et al. 2001; Okamoto & Nishimoto 1991), and a role for the Type II IGF receptor in 

muscle has been suggested by the report that an IGF-II analog with high selective 

affinity for the Type II IGF receptor, stimulates differentiation (Rosenthal et al. 1994). 

However, the Type II IGF receptor up-regulation in response to GH that occurred in 

this study was observed in all tissues, including connective tissue, making it unlikely 

to be a muscle differentiation-associated up-regulation. The primary role of the Type 

II IGF receptor in adults has been proposed to be the maintenance of lysosomal 

activity (Wang et al. 1994 ), and GH administration elevates lysosomal activity in 

polymorphonuclear leucocytes (Rovensky et al. 1985). This suggests that GH may 

modulate lysosomal activity in regenerating muscle tissues. 

These studies did not identify changes in myostatin or other components of the IGF 

axis, including IGF-1 mRNA, in response to GH. This was in contrast to other studies 

showing GH regulation of IGF-1 mRNA in muscle cells in vivo and in vitro (Brameld 

et al. 1996; Butler et al. 1994; Sadowski et al. 2001), but was in keeping with 

previous studies using the same strain of rats where GH treatment did not affect levels 

of the Type I IGF receptor (Butler et al. 1994), and an earlier immunohistochemical 

study that showed IGF-1 levels are unaffected by the GH status of the animal during 

regeneration (Sommerland et al. 1989). A number of studies now have implicated GH 

in having direct effects, ie. not mediated by IGF-1, on skeletal muscle by showing 

immediate up-regulation (within 5 minutes) of many GH-signalling proteins (Chow et 
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al. 1996; Sadowski et al. 2001). Furthermore, treatment of GR-responsive pro-B 

Ba/F3 cells with an anti-IGF-1 antibody that blocks IGF-1 action does not block the 

proliferative effects of GH (Baixeras et al. 2001). These reports combined with the 

present study thus provide evidence of GH effects that are distinct from those of IGF-

1. The findings of the present study and that of Sommerland et al. ( 1989) may suggest 

that for regenerating muscle, the IGF-1 mediated pathway (for GH action) is utilised to 

a lesser degree relative to normal, uninjured muscle and cultured muscle cells. 

7.1.2.2 IGF-11 

In the present study, the administration oflGF-11 to regenerating skeletal muscle led to 

interesting, and unanticipated results, with a delay in the expression of MyoD (a 

marker of proliferating MPC), myogenin and dMHC (sequential markers of MPC 

differentiation) (CHAPTER 6). The effects on these markers of the regeneration 

process were consistent, with each step showing the same directional change, that is, a 

delay due to IGF-11 administration. The fact that a delay in regeneration was apparent 

by day 1 following notexin-injection indicated that an early regeneration process was 

affected, or that perhaps there had been a down-regulation of the Type I IGF receptor 

in response to the administered IGF-II, as has been shown in vitro for BC3H-1 muscle 

cells (Rosenthal & Brown 1994; Rosenthal et al. 1991 ), which could account for the 

lack of a positive effect on regeneration by IGF-11. The latter hypothesis, of a down­

regulation of Type I IGF receptor, was examined in day 1 tissues, however the 

receptor levels were found to be unchanged by the administration of IGF-11. Because 

the Type I IGF receptor levels were not down-regulated on day 1, it is postulated that 
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the administration of IGF-II to regenerating muscle impeded phagocytic and/or 

inflammatory processes, as those were the other major events occurring at that early 

time, and the rate of phagocytosis can affect ensuing phases of regeneration (Grounds 

1991). A proposed inhibitory effect of IGF-II on phagocytic processes corresponds 

with the reported enhancement macrophage infiltration following immune 

neutralisaton of endogenous IGF-1 (Lefaucheur et al. 1996). Certainly, an interesting 

experiment would be to determine if there are changes in the phagocytic population, 

with administered IGF-11, in the first 0-24 hours following notexin injection. 

The most promising result from the trial examining the effect of IGF-II on skeletal 

muscle regeneration is the significant enhancement of muscle fibre size observed on 

day 7. This finding is particularly exciting given the inhibition of regeneration 

processes observed as late as day 4, implying that the effects of IGF-11 between days 

4-7 were potent. The enhancement of regeneration between days 4-7 may have been 

the result of stimulation of hypertrophic-like events as has been observed for cultured 

C2C12 cells stably transfected with IGF-1 (Semsarian et al. 1999), and cultured rat 

cardiomyocytes administered IGF-11 (Adachi et al. 1994). A second possibility is that 

the enhancement of muscle fibre size of day 7 was due to an augmentation of 

innervation by IGF-11. Administration of IGF-II to crushed sciatic nerve results in 

increased distance of motor axon regeneration (Near et al. 1992), and conversely, 

spontaneous nerve regeneration is inhibited by the presence of antiserum directed 

against IGF-II (Near et al. 1992). From 3-4 days following notexin injection, 

regeneration is more rapid in non-denervated muscles than in denervated muscles 
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(Sesodia & Cullen 1991), therefore an effect of IGF-II on nerve regeneration could 

lead to enhanced muscle fibre size by day 7. 

An important feature of the trial testing the effects of IGF-II is that it has identified a 

"window" of time (days 4-7) during which IGF-II appears to be beneficial to the 

regeneration process in these trial animals (CHAPTER 6). This "window" of time is 

coincident with the natural pattern of IGF-II expression during regeneration, as 

determined in earlier studies (CHAPTER 4). The finding of an enhancement of 

regeneration processes with additional IGF-11 suggests that a greater endogenous 

expression of IGF-11 during regeneration is associated with improved muscle 

regeneration. 

7.1.3 Achievement of the aims of the thesis 

The aims of the thesis, as outlined in Section 1.9, were to test the following 

hypotheses: 

1. The IGFs and their receptors are regulated during muscle regeneration, and the 

level of IGF expression and binding in regenerating muscle is regulated by 

GH. 

2. A negative regulator of growth, myostatin, is temporally regulated during 

muscle regeneration, and its levels are decreased m muscles undergoing 

enhanced growth due to the administration GH. 

3. Administration of IGF-II during skeletal muscle regeneration enhances the rate 

of regeneration. 
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As a result of the studies contained in this thesis, these hypotheses were tested. IGF-I 

and -II mRNAs, Type I and II IGF receptors, and myostatin protein were regulated 

during muscle regeneration, as reported in CHAPTER 4 and CHAPTER 5. GH 

administration regulated IGF-II binding to regenerating muscle, but did not affect 

other components of the IGF axis (CHAPTER 4) or myostatin protein levels 

(CHAPTER 5). Lastly, administration of IGF-II during skeletal muscle regeneration 

inhibited the early stages of muscle regeneration (up to myotube formation), but then 

enhanced the later stages of regeneration (CHAPTER 6). 

7.2 Future Work 

This work has highlighted a number of avenues worthy of pursuit, as described below. 

7.2.1 IGF-11 

In the present study, administered IGF-II inhibited MPC proliferation on day 1, 

inhibited MPC differentiation on days 2 and 3, but enhanced regenerating fibre size on 

day 7. These results leave the following questions unanswered: 

a) Was there an early inhibitory effect on phagocytosis and/or MPC 

migration? 

b) Was the inhibition of differentiation simply a follow on from the 

inhibition of proliferation, or did IGF-II have separate effects on both 

of these stages? 

c) What is the optimal administration protocol for IGF-II? 

d) Does the quantity ofIGF-II delivered alter the effect ofIGF-II? 
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To address (a) above, a similar trial to the one reported in CHAPTER 6, with a 

number of sampling times in the first 24 hours after injury, could be carried out, then a 

histological assessment of phagocytic processes and/or MPC migration performed. 

Such an investigation in an IGF-II knockout mouse would also be useful in 

determining the effects of IGF-II on these processes. If the histological assessment of 

IGF-II effects on phagocytosis and/or MPC migration showed an effect of IGF-II, the 

effects on migration could be further studied in vitro using a Boyden chamber {Takano 

& Nakagawa 2001). 

To address (b) and ( c) above, IGF-II would be administered at varying times, such as 

from day 2.5 onwards to determine whether IGF-II has a negative effect on MPC 

differentiation that is separate to its negative on MPC proliferation ((b) above). To 

determine the optimal administration time for IGF-11 ((c) above), peptide would be 

administered on days 4-7, 5-7, and 6-7, histological sections taken, and fibre area 

determined to decide the optimal time to begin IGF-11 administration. Similarly, the 

optimal duration of IGF-11 administration would be determined in studies going 

beyond 7 days. 

A much earlier in vitro study of the effects of IGF-II on L6 muscle cells showed that 

IGF-11 stimulates myogenesis at low concentrations, and inhibits myogenesis at 

supraphysiological levels (Fiorini et al. 1986). A logical extension then, which would 

test (d) above, would be to administer different concentrations of IGF-11 to 

regenerating muscle, to see if the amount ofIGF-11 delivered alters the effect ofIGF-II 

on MPC proliferation and differentiation. 
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7.2.2 GH 

In the present studies, GH treatment resulted in effects on Type II IGF receptor levels, 

but not on any other component of the IGF axis or myostatin. The effects of GH vary 

considerably depending on the administration regime used (Gevers et al. 1995; 

Jansson et al. 1985), therefore it would be of interest to test other dose and treatment 

regimes for GH, to see if these alterations result in additional changes in the IGF axis 

or myostatin. 

As discussed, in the present study GH treatment resulted in up-regulation of IGF-II 

binding to all tissues, including connective tissue, of the notexin-damaged muscle. 

The Type II IGF receptor has a number of different functions, but in the adult, the 

primary function of this receptor is believed to be the maintenance of lysosomal 

activity (Wang et al. 1994). A logical set of experiments would thus be aimed at 

determining whether GH administration results in changes in lysosomal activity in 

regenerating muscle tissues. If GH is found to alter lysosomal activity during 

regeneration, GH could then be administered to an animal with a conditional gene 

knockout of the Type II IGF receptor in skeletal muscle, such as that generated using 

Crellox technology (Le & Sauer 2001). If an altered pattern of lysosomal enzyme 

processing resulting from GH treatment is present in regenerating muscles with a 

disrupted Type II IGF receptor, relative to muscles with a functional Type II IGF 

receptor, then the Type II IGF receptor would be implicated in having a role m 

lysosomal enzyme processing in GB-treated regenerating muscle tissues. 
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7. 2. 3 Myostatin 

The present study identified high levels of myostatin within connective tissue of 

regenerating muscle in the first few days after muscle damage (CHAPTER 5). This 

localisation, in a tissue that it is normally absent from, suggests that myostatin has a 

specialised function that is specific to early regeneration processes, such as 

phagocyosis, MPC recruitment/chemotaxis and/or granulation tissue formation. To 

determine the functional significance of the myostatin in connective tissue, the 

myostatin knockout mouse (McPherron et al. 1997) would be an extremely useful 

model. Muscle damage could be induced in the knockout mice and their background 

strain (as a control), histological samples taken, and the following parameters 

examined: infiltration of phagocytes; rate of removal of necrotic debris; MPC 

migration into damaged areas; and connective tissue deposition. lfresults of knockout 

experiments indicate an effect of myostatin on MPC and phagocyte chemotaxis, these 

effects could then be examined in vitro using a Boyden chamber (Takano & 

Nakagawa 2001). 

7.2.4 Other factors 

In the present study, a histological approach was taken, with the presumption that 

different tissues within a notexin-damaged muscle may not be identical in their growth 

factor and receptor levels. This was supported, for instance, by the findings of 

elevated IGF-11 mRNA in regenerating muscle fibres, relative to undamaged and 

survivor fibres (CHAPTER 4). An extension of the present study, in which the 

localisation of IGFs and myostatin was examined, is to use laser microdissection to 
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separate out the tissue types (regenerating, surviving, and undamaged muscle fibres, 

and connective tissue) of damaged muscle, isolate the RNA from each, and then to 

carry out a microarray analysis (Schena et al. 1995) of each sample. Such an approach 

could identify other candidate genes that may play a role in the damage and repair 

process in specific tissues. The use of microarray technology means that only a small 

sample quantity is required (Schena et al. 1995). The localisation and expression 

patterns of candidate genes during muscle regeneration would then be determined 

using an approach like that used for the studies in CHAPTER 4 and CHAPTER 5. If 

the candidate genes are temporally regulated during regeneration, suggesting a role in 

the process, the effect of the particular candidate gene product could be tested by 

either administration of the factor (such as carried out in CHAPTER 6), or elimination 

of the factor by antibody administration or by use of a gene knockout model. 

7 .3 Conclusion 

In summary, the results presented in this thesis show that local growth factor 

expression is tightly regulated during skeletal muscle regeneration, and indicates roles 

for IGF-1, IGF-11, IGFBPs, the Type 1 and II IGF receptors, and myostatin in this 

process. The results of these studies suggest that IGFs may carry promise of 

improving muscle regeneration after injury. 
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