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Abstract 

It is a fact that drivers’ poor speed choices play a significant role in crashes, leading to 

many fatalities and injuries worldwide (WHO, 2012). Young novice drivers are about 

twice as likely to be killed in a speed-related crash than older, more experienced 

drivers (NZTA, 2017). We also know that novice drivers’ hazard perception is often 

poor and predictive of crash likelihood (Horswill & McKenna, 2004), yet its 

relationship to their speed choices is virtually unknown. This thesis aimed to fill this 

critical gap. 

The first step (Experiment 1) was to examine the ecological validity of a new 

laboratory-based video speed choice task, which was similar to the task developed by 

Horswill and McKenna (1999). The speed choices of two gender-balanced groups 

comprising 24 ‘Novice’ drivers (mean age of 19.3 years) and 24 ‘Experienced’ drivers 

(mean age of 29.5 years) were recorded. Participants were shown video clips of 

various urban and rural road situations filmed from a driver’s perspective, and 

following each clip, asked to select the ‘appropriate’ speed they would feel most 

comfortable and safe travelling. An eye-tracker (SR-Research II) recorded their eye 

movements, which allowed for a detailed examination of drivers’ visual search 

behaviour. Compared to the Experienced drivers, the Novice drivers chose 

significantly faster overall speeds and adapted their speeds to a lesser degree under 

the differing road, weather, and lighting conditions. Novice drivers predominantly 

focused their visual attention immediately ahead of the simulated vehicle, with rapid 

glances at salient visual features, while the more experienced drivers focused their 

visual search more broadly and further ahead to include inspection of roadside cues. 

Road markings were also found to influence drivers’ speed choices, with the presence 

of clearly defined road-markings associated with higher speed choices. These 

laboratory-based results were consistent with what would be observed in real driving 

conditions based on data from naturalistic driving studies, real-world speed choice 

statistics, and crash data (Turner et al., 2014; Ministry of Transport, 2017). We 

concluded, therefore, that the speed choice task had considerable ecological validity. 

In Experiment 2, we replicated the speed choice task conditions of the first 

experiment but added a separate video-based hazard perception task (Isler, Starkey, 

& Williamson, 2009), and tested 138 participants, divided into five gender-balanced 

groups based on age, experience, and licence type (mean age: ‘Learner’= 16.5 years, 
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‘Restricted’= 18.8 years, and ‘Full (<25)’ licence= 23.2 years; ‘Full (25<50)’= 34.9 

years, ‘Full (>50)’= 57.5 years). Our prediction, based on the reviewed literature (e.g., 

McKenna, Horswill, and Alexander, 2006), was that more advanced hazard perception 

skills would facilitate increased awareness of risk, prompting the selection of slower 

appropriate speeds.  The results indicated that both the number of perceived hazards 

and hazard perception times significantly improved with experience as anticipated. 

Drivers’ chosen speeds, however, increased with age, with ‘Experienced’ drivers 

choosing faster speeds than novice drivers (‘Learner and Restricted’) and, to a lesser 

degree, ‘Full (>50)’, older drivers. This indicated that higher levels of hazard 

perception skills were often related to choices of faster speeds in the speed choice 

task, and this finding was unexpected. We concluded that it might be possible that 

experienced drivers only select slower speeds at the time when they become aware 

of immediate hazards. This hypothesis required further clarification, forming the 

basis of the rationale for conducting Experiment 3.  

In Experiment 3, the same hazard perception task as in the second experiment was 

merged with the speed choice task to form an experiment measuring speed choices 

under the immediate influence of hazards. Two groups of participants, 52 ’Novice’ 

drivers (mean age of 19.9 years) and 37 ‘Experienced’ drivers (mean age of 37.4 

years), were asked to select the speed they considered most appropriate immediately 

following each hazard perception trial. Visual search patterns were recorded using an 

eye-tracker. This time, longer hazard perception times were associated with choices 

of faster speeds. Overall, novice drivers showed less efficient visual search strategies 

when perceiving hazards, requiring about double the number of fixations to identify 

each hazard, but they also chose faster speeds than their more experienced 

counterparts. We concluded that if there is a causal relationship between improved 

hazard perception skills and speed choices, we might reduce drivers chosen speeds 

in Experiment 4 by improving hazard perception, particularly in novice drivers.    

Experiment 4 consisted of two studies. In the first study, forty participants were 

randomly assigned either to a control group or a training group, each composed of 

twenty drivers ‘Novice’ (mean age of 16.6 years) and ‘Experienced’ drivers (mean age 

of 31.1 years). Both Novice and Experienced drivers showed significant 

improvements in hazard perception following road commentary, accompanied by a 

change in visual focus, compared to the control group. In the second study, we tested 
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the hypothesis that improved hazard perception will lead to slower speed choices. 

Twenty-two participants, ten ‘Novice’ drivers (mean age of 21.3 years) and twelve 

‘Experienced’ drivers (mean age of 29.1 years), were assigned randomly to either a 

control or test group. We found that immediately following the road commentary, the 

test group showed significant improvement in hazard perception skills and chose 

slower speeds compared to the control group.  

In summary, this thesis revealed several significant new findings and insights, leading 

to a much better understanding of the underlying factors influencing speed choices of 

novice and experienced drivers. More efficient hazard perception was clearly related 

to choices of slower speed when hazards were presented within the speed choice 

trials, possibly mediated by visual search behaviour. There was strong evidence of a 

causal relationship when road commentary improved hazard perception and caused 

drivers to select slower speeds, directly influencing speed choices. Future research 

could investigate the potential for hazard perception to reduce speed choice in real-

world traffic situations, especially for young novice drivers. The knowledge that 

improving hazard perception can influence safer speed choices is of great value for 

future road safety initiatives. Such research may be instrumental in the quest to 

decrease the number of speed-related crashes both in New Zealand and around the 

world.  
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Literature Review 

The Kaimai ranges split the central North Island of New Zealand down the side like a great 

seam. Narrow roads weave throughout, connecting the coastal cities of the Bay of Plenty 

to the fertile Waikato planes. While accommodating the many commuters travelling 

between cities, the many corners and inclines of this route require drivers to carefully 

assess the road conditions with an acute awareness of tolerable speed. It was on one of 

these corners during the light autumn rain where a 19-year-old travelling at an excessive 

speed lost control of his vehicle and collided with an oncoming car. Despite the sudden 

force shearing his vehicle in two and showering the countryside with debris, the young man 

survived. The driver of the oncoming car was not as fortunate. The impact crushed the 

chassis, forcing the engine bay contents into the vehicle's interior. The crash provided 

sufficient energy to throw a quad bike in tow several hundred meters into a nearby paddock. 

The driver of the car did not survive. His name was John. He was my uncle. 

Stories like this are commonplace, though their regularity does not make them trivial. 

The World Health Organization in 2012 indicated that more young people aged 

between 15 and 25 are killed in vehicle crashes than by drugs, alcohol, disease, or 

violence across the developed world. What makes many of these stories even more 

tragic is that there is often a significant amount of collateral damage and loss of life. 

Half of all fatalities on New Zealand roads are the direct result of the behaviour of 

another driver (Ministry of Transport, 2017). Speeding has been studied extensively, 

and millions, if not billions of dollars, have been spent on education and public safety 

campaigns and the development of infrastructure and enhanced enforcement. 

However, speed-related crashes continue to claim lives despite these interventions. 

Surprisingly, little research has focused on how visual risk factors, particularly 

hazards, are related to speed choice; and how this relationship changes with 

increasing driver maturity and experience. If understanding the characteristics that 

influence drivers’ perception of risk and subsequent choice of speeds can reduce the 

number of fatal crashes, it is an essential, not merely academic, field of research.  

The following literature review focuses on three key themes in the road safety 

literature; the Psychology of Speed Choice (p. 4), the Critical Skill of Hazard 

Perception (p. 33), and the Vulnerability of Young and Novice Drivers (p. 61), with age 

and experience as significant human factors related to crash risk. 



2 

 

The first section of the literature review focuses on how drivers select speeds, 

particularly the factors that make roads appear risky, and how these factors are 

related to drivers’ perception of risk. Speed choice is one of the fundamental ways 

drivers balance the goal of reaching a destination against the risk of being involved in 

a crash. We will review how drivers frequently become accustomed to routinely 

travelling within a range of particular ‘comfortable’ default speeds and why drivers' 

ability to adjust their speed to suit the road and traffic situation is critical for safe 

journeys. We will examine several factors which may cause roads to appear more or 

less dangerous to drivers, the extent to which these factors influence drivers ability 

to perceive risk, and their willingness to accept and compensate for these changes 

through their choice of speed.  

The second section of the literature review will examine the critical skill of hazard 

perception. Hazard perception is recognised as the greatest skill gap separating 

novice from experienced drivers and is defined as the ability to rapidly identify 

dangerous or risky traffic situations and anticipate how these situations may evolve. 

This literature review will focus on how hazard perception is acquired and how this 

skill becomes increasingly automatic with driving experience. Furthermore, as 

driving is a visually intensive task, drivers must efficiently detect and interpret the 

visual cues that precede a change in risk. In this respect, hazard perception requires 

drivers’ visual attention, and the deliberate allocation of cognitive resources. Hence, 

the literature will focus on the importance of strategic and active visual search as a 

necessary component of safe driving. 

The final section of this literature review will focus on the vulnerability of young and 

novice drivers. Young novice drivers typically have under-developed hazard 

perception and visual search abilities and are over-represented in speed-related 

crashes. These deficiencies are often the consequence of a lack of quality driving 

experience and factors related to pre-frontal maturation. We will review how the 

many emotional and cognitive changes occurring during adolescence predisposes 

these young drivers to greater risk-taking and errors while driving.  

These three areas, which we will cover in the literature review, have individually 

received considerable focus within the psychological study of driver behaviour. While 

it seems reasonable to assume that speed choice and hazard perception are related, 

there is an intriguing absence of scientific examination of this potential relationship 

in the road safety literature. Given this absence linking the most critical driving skill 
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of hazard perception to a significant cause of fatal crashes - speed choice - a thorough 

scientific investigation is needed to understand how these two critical factors are 

interrelated. Understanding how hazard perception may influence drivers’ speed 

choice could mark an essential step towards mitigating drivers involvement in speed-

related crashes. 
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The Psychology of Speed Choice 

Speed is one of the most important determining factors in predicting the likelihood 

and severity of a vehicle crash. Elvik et al. (2004) have noted that speed probably has 

a more substantial effect on road safety than any other known risk factor. As vehicle 

speed increases, there is an exponential increase in the likelihood that a serious crash 

resulting in loss of life will occur. Hence, determining the factors contributing to 

speeding is of utmost importance (Berry, Johnson, & Porter, 2011), particularly for 

New Zealand roads1.   

The factors identified relating to drivers’ choice of speed are complex and range from 

perceptual, behavioural, emotional, attitudinal to cognitive in explaining why drivers 

speed. It is not surprising then that Berry, Johnson, and Porter (2011) suggested that 

defining the specific factors contributing to poor speed choice is challenging - if not 

impossible - to quantify fully. Considering this fact, it is certainly outside the scope of 

this literature review to exhaustively examine all the factors contributing to speed 

choice. However, as driving is an intensely visual process, with a significant 

proportion of the information that drivers rely upon being visual (Rogé et al., 2004), 

visual factors will be a point of emphasis in this thesis. 

Researchers examining the human factors in transport psychology have argued that 

understanding crashes requires a holistic system-based approach that examines the 

vehicle, road, and driver as contributing factors. While technically accurate, simply 

citing human error as the primary cause of crashes overlooks the many contributing 

factors that precede a crash (Charlton, Alley, Baas, and Newman, 2001). In discussing 

the potential for speed-reducing perceptual countermeasures, Charlton and O’Brien 

(2001) emphasise the importance of visual behaviour as an essential human factor 

contributing to inappropriate speeding that may result in a crash.  

Some researchers have categorised the factors between novice and experienced 

drivers that contribute to increased crash risk as either related to the style of driving 

(e.g., willingness to speed) or driving skill which is a function of experience (e.g., 

hazard perception). Driving style refers to how drivers choose to travel based on their 

                                                           
1 Around the time of publication, road speed limits were under serious scrutiny in New Zealand, with about 80% of roads 

not matching the calculated threshold of a ‘safe and appropriate’ speed. The New Zealand Transport Agency (NZTA) 
recommended that the speed limits on open arterial roads be reduced, and particularly, roads which were rated as high-
risk or associated with multiple crashes. The NZTA’s suggestion was that only 5 percent of open roads should have a 
100km/h speed limit, with most roads requiring a recommended reduction of speed limits to 60-80 km/h, and an 
appropriate speed in most urban areas of 30-40 km/h rather than the current 50km/h (NZTA, 2019). This makes the subject 
of speed choice particularely relevant within a New Zealand context. 
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attitudes, preferences, personality, and beliefs towards risky behaviours (Bianchi & 

Summala, 2004; Taubman-Ben-Ari & Yehiel, 2012; Zimbardo et al., 1997). Driving 

skill, by comparison, refers to the factors that contribute towards the performance of 

the driving task, and notably, the capacity to detect hazards and respond 

appropriately. Driving skill is thought to increase as drivers become more 

experienced (Elander et al., 1993; Horswill, 2016). Elander et al. (1993) note that 

driving style is established during the early years of driving. While driving style 

accompanies the development of skill, it does not necessarily become safer with 

experience. 

Speed choice has been conceptualised as an outgrowth of driving style, and this is not 

unjustified, as many adolescent drivers accept high speed related risks and have 

riskier attitudes towards speeding contrasted with more mature drivers (Cantwell, 

2010). Risky behaviours and lenient attitudes towards risk when driving have often 

been associated with adolescence and the ‘problem young driver’ (Scott-Parker et al., 

2013).  Many studies indicate that speeding behaviour declines in frequency over time 

and generally stops once these drivers enter adulthood (McNally & Bradley, 2014). 

Some researchers have considered that the changes that occur with increased driving 

experience shift the way motivational factors, task performance, and driving 

competence influence drivers on-road behaviour (Kuiken & Twisk, 2001). Novice 

drivers’ subjective perception of control over the driving situation through vehicle 

handling (e.g., task performance) may be disproportionately higher than their actual 

capability. It is thought that this gap between actual and perceived ability may close 

with increased experience and maturity.  

Personal and motivational factors, such as the desire to gain peer approval or a 

predisposition toward sensation seeking, may exert a severe adverse influence on 

drivers' attitudes toward speeding and their subjective perception of control. These 

adverse influences may mean that young drivers are less responsive or may even be 

oblivious to the actual risks present, leading to greater crash-likelihood  (de Craen, 

2010). This lack of awareness may be why novice drivers accept greater risk. As 

hazard perception skills increase with experience, drivers can become more aware of 

risks in the road and traffic situation, encouraging them to reduce their speed (Wilde, 

1982; Fuller, 2005). 
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This section will examine the factors contributing to poor speed choices, including the 

role of road characteristics related to the perception of risk, how drivers’ speed habits 

develop over time, and how drivers’ view of the road influences their speed behaviour.  

 

Speed Choice and Risk-Appraisal 

While many theories have attempted to explain how drivers choose speeds 

appropriate for the conditions2, two principal approaches will be reviewed. These 

risk-management theories provide a framework for understanding how individual 

differences and developmental factors elevate drivers’ willingness to engage in risky 

driving. Risk in driving has been described as  “the subjective experience of risk in 

potential traffic hazards” (Deery, 1999, p. 226), which is determined by a drivers 

ability to process and appraise information related to the potential hazards and traffic 

environment (Brown & Groeger, 1988). 

A review of the literature suggests drivers make speed choice decisions based on 

essentially three factors. First, the riskiest speed which a driver can travel according 

to the risk they are willing to accept (Wilde, 1982). Second, the safest speed the driver 

believes is best suited to the conditions (Näätänen & Summala, 1974); and third, the 

most pleasurable speed where the driver receives the most enjoyment (Musselwhite 

et al., 2010; Vaa, 2007). Some researchers have examined drivers’ speed choice based 

on their responsiveness to the level of acceptable risk and how influential personality 

variables are to driving behaviour (Fuller et al., 2007; Stradling et al., 2020). This has 

often resulted in speed choice being considered more a style of driving than a 

trainable skill, as speed is often examined within the context of personality factors. 

Indeed, while speeding is an issue in driver training, it is often considered more 

enforced than learnt (ECMT., 2006). In considering the term, ‘speed choice’ implies 

that drivers make a conscious or deliberate decision (i.e., a choice). While this is 

undoubtedly the case for drivers who undertake deliberately risky driving, it neglects 

the fact that many speeds are simply the outcome of learnt habitual behaviours 

(Charlton & Starkey, 2011; De Pelsmacker & Janssens, 2007). Due to conceptualising 

speed solely as a choice, speed has often been examined in light of driving style, which 

                                                           
2 For an excellent – albeit dated – survey of models of risk-taking, I refer the reader to the article by Michon (1985). 

Additonally, Ben Lewis-Evans (2011) conducted a thorough test of several models of risk-appraisal in his widely published 
doctoral dissertation. 
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involves their attitudes, beliefs, and values (Stephens et al., 2015; Stradling et al., 

2020). 

Broadly reviewing the relevant literature, the consensus among researchers is that 

drivers frequently rely on their own personal judgements and what can be considered 

‘acceptable risk’, irrespective of the theoretical perspective of risk-taking. However, 

there is no consensus concerning risk-taking models, mainly due to a lack of 

understanding of how human emotion and cognition interact. The concept of a 

threshold of acceptable risk is foundational in the overwhelming majority of models, 

describing the level of risk a driver is willing to accept and act within (Näätänen & 

Summala, 1974; Wilde, 1982). These models assert that drivers select the amount of 

risk they are willing to tolerate and control the traffic situation through deliberate 

action, such as slowing down (Fuller, 2005). Drivers selection of speed to manage 

traffic risk seems reasonable, given that driving is primarily a self-paced activity and 

risk-acceptance is mainly at the driver's discretion.  

 

Wilde’s (1982) Risk Homeostasis Theory 

One of the earliest and well-known theories developed to understand risk-taking is 

Risk Homeostasis Theory (RHT), initially proposed by Taylor (1964) and developed 

by Wilde (1982). Risk homeostasis generally suggests that drivers select their speeds 

in line with perceived risk, continually maintaining a balance between the dangers in 

the situation against an acceptable subjective level of risk. In Näätänen and Summala 

(1974) ‘zero-risk theory’, the level of acceptable risk is effectively zero, and drivers 

continually strive to diminish risk as much as possible. In risk-homeostasis, drivers 

have an individual and subjective level of acceptable risk determined by personal 

attitudes, beliefs, and human factors such as self-perceived skill and emotional state. 

While several variations have grown out from risk homeostasis theory over the years, 

we will consider the original theory, as this is both well-known and simple in its 

formulation. 

One popular analogy used to explain risk homeostasis theory is considering the 

function of a thermostat on an air-conditioning system. In order to maintain a 

consistent temperature, as the temperature rises above a certain level, the system 

begins to cool the room, and if the temperature drops, the air-conditioning heats the 

room so that the average temperature remains stable over time (Shinar, 2007). In 

homeostatic risk models, there is a central adjustment ‘comparator’. This cognitive 
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mechanism weighs subjectively perceived risk from the current traffic and road 

situation against the driver’s preferred, acceptable level of risk. The risk homeostasis 

model proposed by Wilde (1998) is represented in Figure 1:  

 

 

Figure 1: A diagrammatic representation of Wilde's Risk Homeostasis Model 

  

This mechanism regulating risk needs to continuously monitor the level of risk for the 

theory to hold (much like the continual monitoring of the thermostat on the air-

conditioner). One of the significant criticisms of risk homeostasis (e.g., McKenna, 1990) 

is that the comparator mechanism requires drivers to have an unreasonably 

comprehensive and continually updated awareness of situational risk, which would 

require excessive perceptual and cognitive resources. 

While there is a certain sense that risk homeostasis is reasonable and even natural, 

considering that many regulatory systems in the body function in similar ways 

nevertheless, the theory has also received a great deal of criticism. The strongest 

criticism is primarily based on Wilde’s (1998) supposed selective usage of crash 

statistics to validate his argument, discounting unfavourable evidence of effective 

interventions as the outcome of a natural trend in the reduction of accident casualties 

(McKenna, 1990; Robertson, 2002; Wilde, 2002). Furthermore, according to McKenna 

(1987, 1990), the theory ultimately paints a bleak prospect for any preventative 

measures. As drivers will always compensate as roadways and vehicles are made 

safer, the only effective method to change drivers' speed, according to risk-

homeostasis theory, would be behavioural modification through enforcement.  

Despite these criticisms, the concept of risk-homeostasis is not without its merits, as 

Wilde’s theory accounts for the role of experience. As experience is gained, drivers’ 
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perceived acceptable risk levels might be lowered (safe calibration) as they identify 

more danger in complex traffic situations. Novice drivers may have a very low level 

of acceptable risk due to the lack of basic driving competence and may drive with 

extreme caution while their confidence level is low. However, as car handling skills 

are acquired relatively quickly, this can over-inflate young drivers' confidence 

(deCraen, 2010). Over-confidence fuelled by sensation-seeking may result in a higher 

acceptable risk level that exceeds the drivers' actual competence (unsafe calibration). 

Consequently, poorly calibrated drivers may choose speeds that are much faster than 

they might be able to manage (de Craen, 2010; Rosenbloom et al., 2008). 

For the most part, driving is a ‘self-paced task’, in that drivers can control the demands 

of the driving situation to align with personal goals and predictions of how traffic 

events will unfold. This gives drivers a certain ability to determine how difficult or 

risky the traffic situation can become by adjusting their driving behaviour. It is 

thought that drivers typically try to balance the demands of the situation against their 

competencies to maintain the stability of the system, which leads us to consider 

Fuller’s (2005) Task-Capability Interface theory.  

 

Fuller’s (2005) Task-Capability Interface Theory 

The Task-Capability Interface (TCI) theory was developed by Fuller (2005) to account 

for the evolving concept of driving as a process that requires attentional resources. In 

Fullers’ theory, a crash may result when the demands of the situation exceed the 

driver’s capability to manage the situation. When the driving task demands are within 

the driver’s ability to manage them, they feel a sense of safety (Fuller, 2005, 2008). 

However, as the driving situation becomes more demanding of the driver’s 

capabilities (e.g., increased traffic), there is a compensatory response where the 

driver adjusts their behaviour to reduce the task demand (e.g., slowing down). If the 

task demands exceed the driver’s abilities, loss of control may occur, and a crash is 

more probable as the driver may be prone to errors or lapses in judgement or 

mishandling of the vehicle (e.g., overcorrected steering). Fuller et al. (2007) examined 

why drivers selected ‘inappropriately high speeds’ from a review of ten years of crash 

statistics across the United Kingdom and noted that drivers overestimation of 

capability, or underestimation of task demand, may lead drivers to interpret the 

driving task to be more comfortable than it is objectively. This misidentification of 

demands against ability may cause drivers to view posted speed limits as lacking 
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credibility and potentially resulting in dangerous speed adjustments to compensate 

for lower perceived risk level. 

Central to Fuller’s Task-Capability Interface theory is the driver’s speed choice. Fuller 

(2005) considered that speed choice is both a task demand and the driver’s primary 

method of regulating a stable level between their capabilities and the driving task 

demands. Fuller reasoned that the drivers’ ability to regulate the amount of risk in the 

driving situation was primarily controlled through the drivers’ choice of vehicle speed. 

Fuller’s Task Capability Interface model is represented diagrammatically in Figure 2. 

Researchers have used speed choice as a proxy measure for risk-taking or risk-

acceptance because of this close relationship between drivers’ speed choices and 

perceived risk in the traffic situation. For example, using a video-based task, Horswill 

and McKenna (1999) found that drivers’ choice of speeds was a good indicator of their 

willingness to engage in risky driving behaviour. Drivers who chose faster speeds 

have a  higher probability of having been previously involved in a  speed-related 

accident.  

 

Figure 2: The TCI Model as proposed by Fuller (2008) with an indication of the various factors 
that could add to the Task Demands (D) or to Driver’s Capability (D). If C>D, the driver is in 

control. If C<D, the driver is in danger of losing control.  

  

As shown in Figure 2, factors such as the road condition and traffic situation, as well 

as personal variables (e.g., fatigue, emotions such as anger), are in a state of continual 

fluctuation, there is the need for a compensatory feedback mechanism similar to the 
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comparator in Wilde’s (1998) theory. Consequently, the target level of risk can change 

as external and internal demands increase or decrease. Speed then is an essential 

safety-related factor to consider when examining driving behaviour, as it acts both as 

a predictor of crash likelihood and the main method drivers’ use to regulate their level 

of risk in the traffic situation (Elvik et al., 2004). An example of this relationship 

between speed and perceived risk is that the corresponding stopping distances 

dramatically increase as vehicle speed increases. This means that the driver must be 

vigilant for risk factors that may require urgent braking, such as encountering a 

hidden queue of vehicles or changing traffic signals (Terry et al., 2008).  

The initial conceptualisation of Fuller’s (2011) TCI theory required that drivers’ 

perception of risk or task difficulty linearly increase as speed increased. However, this 

formulation was subject to the same weakness Wilde’s (1982) risk-homeostasis 

theory had been criticised. Namely, drivers need to continually experience 

incremental changes in the feeling of risk – that is, have an unreasonably and 

continuously revised feeling of risk that increases co-linearly along with speed. Due 

to this weakness, Fuller et al. (2008) revised the theory so that drivers’ perception of 

risk remains stable until a certain threshold is reached, providing a range of 

acceptable speeds where drivers feel comfortable (Fuller et al., 2008).  This 

reformulation was more in line with the zero-risk theory proposed by Näätänen & 

Summala (1974), which held that drivers possessed a threshold of acceptable risk.  

Lewis-Evans (2012) replicated the study by Fuller et al. (2008), finding that drivers 

had a preferred comfortable range for speeds, within which they felt safe. Only once 

vehicle speed exceeded these comfortable speeds did the drivers report feeling 

increasingly uncomfortable with faster speeds. This finding indicated that feeling of 

risk does not increase in a linear relationship to speed, but the perceived risk remains 

stable with speed, and only increases after drivers speed exceeds this threshold 

(Lewis-Evans. 2012; Fuller et al., 2008). From his simulator-based work, Lewis-Evans 

(2012) determined this comfort threshold for acceptable speed to be approximately 

50km/h in urban settings and 110km/h in open-road settings for the average New 

Zealand driver.  

One of the main advantages of Fuller’s (2005, 2008) theory is that it includes the 

driver as an essential human factor as part of the equation in understanding why 

drivers speed. Drivers vary in the amount of driving experience, and this has a 

significant role in the amount of task-demand the driver can accommodate before the 

driving task becomes too difficult. For example, when a driver is still learning as a 
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novice, task demands such as basic vehicle handling (e.g., steering control) are at the 

threshold of the drivers’ capabilities. Consequently, many novice drivers often 

practice on quiet urban streets when there are low traffic levels and excellent 

visibility. As drivers gain experience, they become more comfortable in adding 

additional task demands, such as coping with greater amounts of traffic, or driving at 

night. However, this gain in comfort with experience, despite increases in task 

demands, can mean that drivers underestimate the risks of specific tasks such as using 

a mobile phone while driving.  

Theories of risk-appraisal such as Risk Allostasis based on the balancing of task-

demand and feeling of risk can account for divided attention that drivers often 

experience. Drivers’ can reduce their speed and the corresponding workload, which 

allows them to allocate the released cognitive resources to a secondary task such as 

using a mobile phone (Shinar et al., 2005). 

Fuller (2005) suggested that drivers experience changes in risk as a ‘feeling’ (i.e., akin 

to a gut instinct) and that drivers are motivated by this feeling to maintain a level of 

task demand within the boundaries of what is comfortable. For instance, research 

conducted by Varotto et al. (2018) indicated that when task difficulty or perceived 

risk exceeded acceptable levels, drivers will take manual control of a vehicle’s speed 

rather than rely on cars’ inbuilt dynamic cruise control. The willingness for a driver 

to assume control from an in-vehicle radar-based system was most noted in scenarios 

where there was a higher perceived level of risk, such as driving on motorways where 

there are multiple lane transitions and significantly denser traffic.  

Varotto et al. (2018) also observed that drivers had different minimum and maximum 

acceptable-risk thresholds. For example, drivers who self-reported as having a 

patient and careful driving style had a smaller range of acceptable risk. Hence, careful 

drivers take manual control of vehicle speed when the feeling of risk is higher in low-

risk situations and when the change in feeling is lesser in high-risk situations. This 

suggests that drivers can vary substantially in the levels of risk they are willing to 

accommodate into their everyday driving behaviour. While Varotto et al. (2018) study 

had an immediate application for enhancing comfort and acceptability with 

automated vehicle control systems, it also lends significant support to Fullers (2011) 

development of a ‘feeling-based approach’ to risk-taking. This somatic or feeling-

based approach to risk-appraisal is known as allostasis, the process where stability in 

the level of risk in a situation occurs at a physiological level between feelings of 

comfort and discomfort in response to changes in perceived risk. Allostasis theories 
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have the advantage in some respects over other theories of risk-taking in that the 

psychophysiological state (i.e., arousal level) of the driver plays an important role. 

Risk-appraisal has been conceptualised as both an outcome of an analysis at a 

conscious level of awareness using reasoning and logical evaluation, but also through 

the experience of risk as a feeling (Loewenstein et al., 2001; Slovic et al., 2004). For 

instance, Epstein (1994) observed: 

… people apprehend reality in two fundamentally different ways, one variously 

labelled intuitive, automatic, natural, non-verbal, narrative, and experiential, 

and the other analytical, deliberative, verbal, and rational. (p. 710)  

Fuller (2011) developed earlier concepts of feeling-based theory into the Risk 

Allostasis Theory (RAT), in which the role of emotion and visceral feeling (i.e., somatic 

markers) play a more integral part in determining drivers behaviour. Fullers (2011) 

theory of Risk-Allostasis is shown in  Figure 3: 

 

Figure 3: Fuller's (2011) representation of Risk Allostasis Theory, in an application concerning 
driver’s willingness to comply with Speed Limits (from Porter, 2011). 

 

The inclusion of drivers feeling of risk in extending Fuller’s (2011) Task Capability 

Interface functions similarly to its predecessor while incorporating drivers' felt sense 

of risk. While a threshold of risk may challenge the concept in allostasis theories that 

risk is processed in a subconscious emotional loop, it is reasonable to consider that 
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the physiological perception of risk is not easily interpreted or mapped by drivers 

onto a conscious scale. 

Fuller (2011) considered speed choice to be either the outcome of feelings of fear 

(which directs the driver to reduce speed) or frustration (which encourages the 

driver to increase speed). This theory was tested by Kinnear (2009) in measuring the 

physiological response that accompanies response to hazards.  

In one experiment, Kinnear (2009) showed three groups of participants with differing 

degrees of experience video clips containing hazardous traffic scenarios while 

measuring skin conductivity as a measure of their physiological response to risk. 

Additionally, participants were able to represent their perceived danger in the traffic 

scenes using a sliding scale, ranging from ‘safe’ (1) through to ‘hazardous’ (10), which 

provided a measure of their cognitive appraisal of risk. Kinnear found that while there 

was no difference between the three groups’ cognitive evaluation of risk, there was a 

significant difference in the physiological responses during the anticipatory stage, just 

before the hazard occurred. Kinnear (2009) found that the experience of risk-feelings, 

measured by skin-conductance, was not observed in novice drivers who had less than 

1000 miles of total on-road driving experience. Only once drivers had accrued 

sufficient driving experience did they show changes in physiological arousal 

corresponding to increases in risk.  

Kinnear’s research indicated that there is an aspect of risk-appraisal that is perceived 

as a gut feeling (e.g., somatic marker), consistent with the rapid cognition that allows 

for the almost instantaneous and effortless detection of danger before its presence 

enters conscious awareness (Kinnear et al., 2013; LeDoux, 1998, 2003). This rapid 

subconscious process is continually operating, informing our conscious (higher-

cognition) perspective of the world, and is capable of assuming control over conscious 

processes in the event of an emergency, assigning top priority to self-protective 

actions (Kahneman, 2011). While this is a critical adaptation and is usually highly 

efficient and accurate, it is not free from erroneous judgments (Wickens et al., 2008).  

While it is outside the scope of the current thesis, the role of emotional wellbeing has 

recently become of interest, as emotional dysregulation can reduce a drivers mental 

resources and sensitivity to risk, increasing the likelihood of being involved in a crash 

(Isler & Newland, 2017; Zimasa, 2018; Zimasa et al., 2017). Young drivers are 

particularly vulnerable, both due to inexperience as well as the effects of neurological 

maturation (Scott-Parker, 2017; Scott-Parker & Weston, 2017). 
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What Factors cause a Driver to Perceive a Road as Risky? 

Within Fuller’s (2005) theory, driving demands are easier to quantify than in Wilde’s 

(1998) risk-homeostasis model. Demands on the driver may be a human factor 

unique to each driver, such as the amount of driving skill or experience, mental and 

emotional states, attitudes, fatigue, or the influence of drugs or alcohol. Demands are 

also external and involve factors related to both the vehicle (e.g., braking and 

acceleration, drivers field of view) and the road environment, such as road condition, 

weather, illumination, traffic, lane width and markings (Charlton, 2007; Shinar, 2007). 

As discussed previously, a growing base of evidence supports an allostasis model of 

risk-assessment, as drivers physiological state changes when the perceived difficulty 

or task-demand increases (Kinnear & Stradling, 2011). As suggested by Fuller (2011); 

Fuller et al. (2008), drivers typically counteract increased task-demand by reducing 

speed, such as while negotiating intersections (Liu & Lee, 2005) or narrowing 

roadways (Lewis-Evans & Charlton, 2006; Uzzell & Muckle, 2005).  

Extensive research has found that specific fixed road characteristics, such as the 

presence of a median strip and barriers, influence drivers’ perception of speed and 

subsequent speed choice (Elliott et al., 2003). Many aspects of the road environment, 

such as the presence of buildings and parked vehicles, interact to influence vehicle 

speeds, with increased roadside activity being a strong determinant for drivers to 

choose slower speeds. Increasing the visual complexity of the road environment (e.g., 

buildings and cars parked parallel to the road) has been found to reduce drivers speed 

choices, likely by increasing the visual and cognitive load, with higher perceived risk 

playing an important role (Charlton & Starkey, 2016; Elliott et al., 2003; Wilmot & 

Khanal, 1999). Edquist et al. (2011) investigated the role of visual cues on speed 

choice, where participants were required to drive on simulated roads with varying 

numbers of on-street parked cars. They found that as the complexity of the traffic 

environment increased, drivers tended to select slower speeds. They suggested that 

this effect on drivers’ speed choices could be related to potential hazards to be present 

but obscured (e.g., hidden pedestrians) when there were more parked cars (Edquist 

et al., 2011). 

It has also been observed that changes in lane width can influence driver’s perception 

of risk, which results in changes to the speed they are willing to travel (Godley et al., 

2004; Melman et al., 2018). Weller, Schlag, Friedel, and Rammin (2008) found that the 
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presence of certain road characteristics, such as shoulders (e.g., margins) and clear 

lane-markings, significantly influenced drivers’ perceptions of how ‘demanding’ and 

‘comfortable’ the road will feel about travelling on. For example, several studies have 

found that narrow shoulders lead drivers to be more cautious and slow down in 

compensating for greater perceived risk (Stamatiadis & Council, 2009). While 

physical characteristics of the roadway are fixed and unchanging, many visual cues 

may influence speed choices that do change at different times, such as weather 

conditions, illumination, and the presence of pedestrians and other road users (Royal, 

2003; Yannis et al., 2013). For instance, Konstantopoulos et al. (2010) found that 

learner drivers had degraded visual performance when driving in simulated rain 

compared with expert driving instructors, providing support for the notion that wet-

weather driving is more demanding on the driver.  

In support of the premise that particular road (lane) characteristics influence drivers 

behaviour, Lewis-Evans and Charlton (2006) conducted a simulator-based study in 

which participants drove on several simulated roadways of varied lane width and 

road-margin size. Participants were also presented with images of the simulated 

roadways and asked to rate the level of risk for each, along with the speed they would 

feel most comfortable driving. The results from the simulated roadways showed that 

drivers selected slower speeds on narrow roads and faster speeds on wider roads. 

Risk ratings showed that drivers rated the risk highest for narrow roads and lowest 

for wide roads. Lewis-Evans and Charlton (2006) noted that more than half of the 

participants failed to identify lane width as one of the variables being manipulated in 

the experiment. This finding indicated that risk-appraisal was an implicit perceptual 

process occurring at a subconscious level and not an explicit, conscious decision 

(Lewis-Evans & Charlton, 2006). Their finding supports Fullers (2011) theory that the 

‘feeling of risk’ (i.e., somatic markers) occurs below the level of conscious awareness 

(or preconscious as some drivers become acutely aware of the sensation after the 

fact), which has also been observed by Kinnear et al. (2013).  

Lewis-Evans (2012) analysis revealed a threshold for comfortable speeds across 

different simulated roadways. Despite comparing residential roads to dual 

carriageways and noting that the feeling of risk and loss of control increased rapidly 

on the residential roads compared with non-residential roads. However, in his study, 

Lewis-Evans (2012) did not address the role that perception of hazards might have 

played in drivers speed choices. While the effect of lane-width concerning speed 

choice and the feeling of risk has been well examined, it is not well-known what role 
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the presence of hazards might have on speed choice. Based on the somatic-marker 

component, which is at the heart of the allostasis theory proposed by Fuller (2000), 

hazards themselves may be good predictors of drivers behaviour by triggering 

somatic responses corresponding to the perception of fear or discrete change in the 

level of risk. 

The presence or absence of hazards in a traffic and road situation could be 

conceptualised as a difference in the amount of complexity. That is to say, the number 

of features a driver may be required to represent and anticipate mentally. Elliott et al. 

(2003) found in their review of speed countermeasures that as a general principle, 

drivers perceived an increase in cognitive load and situational risk when the 

environment was more complex, and drivers correspond by reducing their speeds.  

Currently, several countries have attempted ‘shared spaces’, which are areas where 

traditional roads are turned into a setting where vehicle drivers as well as other road 

users such as cyclists and pedestrians (Hamilton-Baillie, 2008). Analysis of the way 

different road users navigated these ‘shared spaces’ was performed by Schönauer et 

al. (2012). One finding was that drivers largely accommodated the other road users, 

and with greater complex factors to consider in the space, as well as the best means 

to negotiate other users in reaching the destination, drivers selected slower speeds 

(Schönauer et al., 2012) 

As previously discussed, in order to evaluate and respond to risks in making 

appropriate speed judgements, drivers need to be adequately informed through the 

perception of both static (e.g., road surface) and dynamic (e.g., traffic, pedestrians) 

hazards (Aarts & van Schagen, 2006; Royal, 2003). Both Renge (1998) and McKenna 

et al. (2006) found that accumulated driving experience was related to slower speed 

choices. This might demonstrate a schema 3  that dynamically controls speed for 

changes in the traffic environment. However, this system does not always function 

adequately. For example, Renge (1998) observed that drivers chose faster speeds 

under night driving than daytime conditions. Under night conditions, participants 

noticed fewer hazards, which may have influenced their reduced perception of risk. 

Furthermore, crashes occurring at night-time are four times more likely to involve 

                                                           
3 A schema is a basic element of knowledge (such as a rule) as conceived by Cognitive scientists. As the brain is exposed to 

repeated information, it develops cognitivly economic ways of processing that information – and schema are a simple way 
of handling that information efficiently (Gazzaniga, 2009). More can be found in Appendix 12. 
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fatalities compared with day-time driving, despite the lower number of vehicles on 

the road (Clarke et al., 2006).   

  

Speed Choice and the Credibility of Speed Limits 

The credibility of the speed limit has been shown to have an important relationship 

to how likely it is for drivers to comply with said speeds, and ensuring that road limits 

are credible is a significant problem4, both internationally as well as in New Zealand 

(Starkey et al., 2017; Turner et al., 2014). As the crash rates on both rural and urban 

roads are elevated for young and novice drivers, further research may be beneficial 

in determining how drivers’ visual search and the perception of specific cues relates 

to speed choices for different road conditions.  

While numerous factors influence drivers’ speed choice, such as road geometry 

(Savolainen et al., 2016) and markings (Godley et al., 2004), drivers perception of risk 

seems to be one of the critical determinants of how credible the speed limit is 

perceived to be and the likelihood that drivers will comply with said limits (Wilmot & 

Khanal, 1999; Yao, Carsten, Hibberd, et al., 2019). In a study conducted by Yao, 

Carsten, Hibberd, et al. (2019), the relationship between drivers perception of risk 

and the credibility of speed limits was examined using multiple hierarchical 

regression upon drivers speed selection in a simulator. It was found that as drivers’ 

perception of risk increased, drivers comply more with the speed limits. However, 

when drivers do not perceive the roads as risky, they tend to view the road speed limit 

as less credible and are more likely to speed (Yao, Carsten, Hibberd, et al., 2019). Yao, 

Carsten, Hibberd, et al. (2019) go on to propose that this is in keeping with the 

allostasis theory proposed by Fuller (2011), who suggested that drivers consider the 

feeling of risk and task-demand when making judgements.  

Credible roads are those in which the drivers’ perception of risk at a certain speed is 

under the speed limit threshold, which has important implications for road design. 

The road geometry usually establishes the speed limit. The general rule is that the 

limit is based on the 85th percentile of free-flowing vehicle speed and is often based 

on the safest speed determined for the highest-risk section of road (Stamatiadis & 

Gong, 2004). The shortcoming of using this approach to design speed is that it assumes 

                                                           
4 As many factors determine whether a speed limit is credible, dynamic speed limits have been introduced in New Zealand, 

with a digital speed sign displaying slower speeds at certain times of day (e.g., reduce speed during school recess) and under 
certain road conditions (e.g., slower speeds in wet or fog conditions). While effective to an extent, dynamic speeds are a 
costly intervention, and impractical to use on a large scale.   



19 
 

 

 

that drivers will be provided with adequate information to base an appropriate speed; 

in other words, the road is assumed to be self-explaining. However, as sections of the 

road can vary in the level of objective risk, this can lead to inconsistencies in what 

drivers perceive to be credible and inconsistencies in speed limits between similar-

appearing stretches of road (Stamatiadis & Gong, 2004). Suppose the speed limit of a 

road is not supported by the features of the road and characteristics of the traffic 

environment. In that case, countermeasures may be needed to match the road with a 

credible and safe speed limit (Yao et al., 2019b). In New Zealand, a significant 

proportion of roadway developed before 1985 was under a regime of limiting speed 

to 80km/h, and although sections of road have been upgraded since, many roads 

remain with limitations to what can be considered safe, with many New Zealand 

drivers travelling too fast on open roads (ACC, 2000). In this regard, most drivers tend 

to favour reducing speeds on urban and suburban roads but are less likely to agree 

with speed restrictions on motorways (SARTRE, 2004). 

In one study investigating the reduction of speed at road-works, Gardner and 

Rockwell (1983) found that drivers were more likely to select a speed they considered 

appropriate rather than conform to the posted speed limit. Mustyn and Sheppard 

(1980) found that the majority of drivers indicated they drove at a speed that the road 

conditions permitted, irrespective of the speed limit. Goldenbeld and van Schagen 

(2007) indicated that as road conditions change, drivers may view the speed limit as 

being more or less credible and may consequently exceed the speed limit under 

circumstances where they consider the posted speed limit to be a poor indication of 

actual safe speed to maintain control of the vehicle (Aarts & van Schagen, 2006). The 

key finding of these researchers is that drivers tend to rely on their personal 

judgements based on their perception of safe speed regardless of speed limits 

(Gardner & Rockwell, 1983; Goldenbeld & van Schagen, 2007; Haglund & Åberg, 

2000), with the notable exception being when there is an increased presence of 

enforcement (Wegman & Goldenbeld, 2006).  

Previous research investigating drivers speed choices under different road and traffic 

conditions has shown that drivers judgement (or perception) of appropriate speed is 

related to age and the amount of driving experience, and likely, a corresponding 

sensitivity to risk and credibility of speed limits. Cantwell (2010) examined the speed 

choices of New Zealand drivers across a selection of different commonly encountered 

road types using a video-based task similar to that developed by Horswill and 

McKenna (1999). The study's findings indicated that ‘Novice’ drivers tended to select 
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speeds nearer to the speed limit compared with the speed choices of ‘Experienced’ 

drivers, who had more conservative speed choices below the speed limit. In the study, 

drivers were provided with no indication of the actual speed limit for each road (i.e., 

there were no road signs), so that they were reliant on their own judgement of what 

the speed limit may be given the traffic and road situation. 

Novice drivers also displayed less variation in their speed choice between different 

road environments, despite the difference in road characteristics and the objective 

level of risk. For example, in the study, the speed limit for both Motorway and Rural 

roads was identical at 100km/h. However, the objective amount of risk on the Rural 

road environment was arguably higher at the speed limit when compared to the safer 

Motorway environment (ACC, 2009). Despite this difference in risk level, novice 

drivers chose similar speeds under both environments. Experienced drivers, by 

comparison, chose much slower speeds on the Rural road compared to the Motorway. 

Drivers speed choices under different road environments is shown in Figure 4:  

 

Figure 4: The difference between Novice and Experienced drivers’ Speed Choices across a range 
of commonly encountered Road Environments. Cantwell (2010) found that Novice drivers appear 
to align their speed choice with the maximum legal speed limit, while Experienced drivers appear 

to base their ‘ideal’ choice of speed on the traffic and road conditions.  

Cantwell (2010) argued that this finding indicated that Experienced drivers were 

more correctly calibrated. Their perceived level of risk was more aligned with the 

objective level of risk, as demonstrated by their more appropriate speed choices. The 



21 
 

 

 

lack of adjustment by Novice drivers could be related to a lack of ability to perceive 

risks present in the road and traffic situation and overconfidence, which is evidence 

of poor calibration. Cantwell (2010) found that drivers with faster speed choices had 

a higher self-rated driving skill, greater enjoyment in taking risks, a relaxed attitude 

towards dangerous driving in general and speed in particular, and the number of 

traffic fines/convictions for speeding received in the previous twelve months. While 

in general, the speed choices of drivers were not ‘excessive’ (i.e., much faster than the 

speed limit), there was sufficient evidence to suggest that drivers’ do not all view 

speed limits in the same way. Many drivers chose speeds that were faster than the 

legal posted speed limits but under a speed that would result in penalties such as 

traffic conviction. While enforcement can be an effective means of managing drivers’ 

speeds, drivers should choose suitable speeds for the road conditions. By combining 

the speed choice task with an eye-tracker, one could determine what characteristics 

contribute to the driver’s choice of speed and provide valuable information to assist 

future speed management solutions where enforcement is impractical. 

Poor speed adaptation may be intentional, driven by individual preferences (Ahie et 

al., 2015), but seems more likely to be unintentional due to inadequate hazard 

perception (McKenna et al., 2006). While the vast majority of drivers do adapt their 

speed to road conditions, this is often insufficient to offset adverse conditions 

(DaCoTa, 2012). Drivers who are less competent in judging what speed is appropriate 

may be more vulnerable due to limited visual search (Underwood et al., 2002; 

Crundall et al., 2004) as well as an inaccurate evaluation of risk (Charlton et al., 2014; 

De Craen et al., 2008; Horswill & McKenna, 2004; McKenna et al., 2006). 

Furthermore, drivers do not frequently consult their speedometers and are often 

unreliable at accurately predicting speed (Recarte & Nunes, 1996). Certain perceptual 

limitations may predispose drivers to either overestimate or underestimate their 

speed, known as adaptation effects (Denton, 1976). Adaptation effects can lead to 

significantly dangerous judgements, as underestimating ones own vehicle speed is 

likely to occur in conditions where there is limited visibility, such as night-time or wet 

weather driving (Mueller & Trick, 2012).  Kloeden et al. (1997) noted that one cause 

of speed-related crashes could be that drivers misjudge the speed of other vehicles to 

be slower than what they actually are, resulting in a crash situation. At speed, drivers 

cover a greater distance, meaning reaction times can be too long to compensate 

through braking or other vehicle manoeuvres, resulting in a high-speed, high energy 

collision (Kloeden et al., 1997). 
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Driving involves processing a vast amount of visual information, and this continuous 

stream of information is essential for drivers to perceive how fast their vehicle is 

travelling (i.e., ego-speed), determine the direction the vehicle is heading, and 

estimate the distances to certain objects, and ultimately, accurately estimating safe 

stopping distances.  

While the mechanism that allows humans to perceive self-motion is complex and 

beyond the scope of this thesis, it is nevertheless important to recognise that, like 

other biological systems, perception of self-motion does not function at a continuous 

level of performance and is subject to fatigue and the natural limitations imposed by 

biology. Humans are the only living beings that have developed means of travelling 

faster than they can otherwise naturally move. As this development is recent, our 

biological systems have not evolved fast enough to adapt and meet the challenges 

inherited by fast driving (Rumar, 1999). Humans likely evolved to experience fear of 

height rather than fear of speed. Hence, speed may not be perceived as dangerous in 

the same way height is commonly perceived (Rumar, 1999, in Yannis et al., 2013). 

For instance, because of these biological limitations, humans are generally poor at 

judging speeds that exceed approximately 30mph - the speed of a large cat - which 

can adversely influence drivers’ behaviour. Denton (1978) observed one well-known 

effect: drivers’ perception of speed becomes ‘adapted’ to the speed they are travelling, 

making changes in speed appear greater in magnitude. A good example of this is 

demonstrated when a driver encounters a situation requiring them to reduce speed 

in response to a posted speed limit after travelling at a faster speed for an extended 

period. Despite their speed reduction, they may find themselves inadvertently 

speeding as they perceive themselves to be travelling slower than they actually are 

(see Sugihara et al., 2013 for a review of traffic and road illusions). This effect also has 

an influence on drivers’ perception of the speed of other objects such as vehicles or 

roadside features. Recently, researchers at Waikato University demonstrated that on 

approaching a level-crossing, drivers might perceive a train that is travelling at 

100km/h to be moving at a slower 80km/h, meaning that they may believe they have 

adequate time to cross the tracks before the arrival of the train (Clark, Perrone, & Isler, 

2013). Additionally, drivers’ perception of speed can be negatively influenced by the 

time of day or weather conditions such as fog (Kim, Perrone, & Isler, 2017). (DeLucia, 

2013) 
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Speed Choice as a Habitual Process 

Given enough time and exposure, almost all complex behaviour becomes easier to 

perform, including driving. When learning to drive, novices often need to focus their 

full attention on steering and using the gear-shift, and over time, as they gain 

experience, they will find these early driving challenges almost trivial. Speed, too, 

appears to be an aspect of driving that becomes automated with experience.  

Charlton and Starkey (2017b) found that drivers speed tends to reflect a habitual 

process rather than a moment to moment explicit decision as to whether speeds are 

appropriate for the traffic and road conditions. The speeds drivers choose may meet 

their individual goals and the perception of risk and task-demand and become 

reinforced if performed frequently enough without adverse consequences (e.g., loss 

of control, speeding tickets). Hence, speed choices made by drivers under certain 

conditions in the past are likely to be repeated when encountering similar conditions 

in the future. These repeated, reinforced choices ultimately lead to the development 

of an automatic speed choice selection for a given traffic and road circumstance, 

stored in the form of a cognitive rule known as schemata. 

Such schemata are ‘proceduralised’ in that they can be easily deployed when required 

without being actively attended to by the conscious mind. This allows for accurate 

and rapid responses in complex situations, as schemata can be retrieved from long-

term memory in response to environmental cues with the advantage of placing 

minimal demand on working memory (Emmott & Alexander, 2014). The consequence 

of automatised, schematized behaviour is that drivers revert to a default speed on 

roads that have become familiar and routine – or roads that fit the pattern in long-

term memory that is most appropriate (Charlton & Starkey, 2017b). These default 

speeds are strongly determined by utilisation of cues or pattern recognition, which 

have been suggested to play a more prominent role in drivers choice of speed than 

personality factors or cognitive ability (Lheureux et al., 2016; Verplanken & Aarts, 

1999). 

Repeated exposure, mentioned above, might involve travelling along a road during a 

particular time of day under specific conditions in traffic, which naturally raises the 

question of what happens should the conditions on the road suddenly change? 

Charlton and Starkey (2017a, 2017b) acknowledge that the speed choice of 

participants is based on schemata that represent what is most likely to occur on 

familiar roads. These schemata might not necessarily accommodate the operations a 
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driver needs to perform should the road situation become unfamiliar or complicated 

through the addition of hazards or other unanticipated road or traffic features 

(Malhotra et al., 2018; Prabhakharan & Molesworth, 2011).  

Drivers who are overly dependent on associative cues in order to determine 

appropriate behaviour are also susceptible to miscuing – a situation that occurs when 

a salient cue engages an inappropriate schema or interferes with the accurate 

recognition of an event or object of significance (Brouwers et al., 2018). This incorrect 

assessment due to inadequate or faulty appraisal may lead drivers to choose an 

inappropriate speed which increases crash likelihood (Accident Compensation 

Corporation & Land Transport Safety Authority, 2000; Broughton et al., 2009; De 

Craen et al., 2011; De Craen et al., 2008; Yao, Carsten, & Hibberd, 2019; Yao, Carsten, 

Hibberd, et al., 2019).  

As much of the driving task is automatic, this leaves cognitive resources open to be 

assigned to other (often non-driving) related tasks (Berry et al., 2011). This explains 

in part why mind-wandering is a common phenomenon amongst modestly 

experienced drivers (Burdett et al., 2016), as subconscious and automatic processes 

manage the majority of driving behaviour (i.e., as a kind of autopilot), leaving the 

drivers’ mind free to attend to other thoughts or activities. In this state of ‘autopilot’, 

a driver may use schemata to make habitual speed choices. As with many other 

driving behaviours (e.g., steering) moderating speed to accommodate other vehicles 

or increased attention to in-vehicle devices, passengers, or other causes of distraction 

can be performed almost effortlessly by drivers, even though it increases 

suceptability to cognitive lapses or errors (Haigney et al., 2000; Patten et al., 2006; 

Regan & Young, 2003).  

Using Radar-measurements and roadside interviews, Ahie et al. (2015) found 

evidence that drivers self-reported default speed choices and actual observed on-road 

speeds were highly consistent and that individual differences such as motives and 

beliefs accounted for only a fractional proportion of the variance in observed speed. 

This supports the theory that drivers choose the speeds they travel due to habit and 

familiarity. Furthermore, they suggested: 

Because usual speed was the most influential component in the speed preference 

term, one could suggest that speed preference involves a consistent liking for 

certain speeds over others, rather than mere momentary motives. (pp. 62-63) 
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Ahie et al. (2015) noted that it is reasonable to assume that the selection of speed is 

out of familiarity with certain roads, and the formation of a cognitive rule to govern 

speed works well when there is little demand on the driver for attention directed 

toward the driving task. Habits are the automatic responses to everyday situations 

learned through repeated performance, and there is growing evidence that habits can 

be triggered in the associated context (e.g., accelerating to 100km/h on turning onto 

a rural road), often overriding more deliberate conscious intentions (Gardner, 2012). 

Evidence of the habitual nature of drivers speed choice was found by De Pelsmacker 

and Janssens (2007) using an approach based on the Theory of Reasoned Behaviour. 

This theory incorporated drivers’ attitudes, beliefs, and social norms and the amount 

of perceived control the driver has over the situation as forming the underlying 

intention to behave in a particular way (Ajzen, 1991). After conducting a 

comprehensive survey of drivers and using a model which was based upon Ajzen’s 

(1991) theory, they found that self-reported speeding behaviour was either the 

outcome of a conscious choice, though equally, merely the result of pre-established 

habitual patterns of behaviour. In support of the more cognition-based perspectives, 

De Pelsmacker and Janssens (2007) noted that much of drivers speed choice is based 

entirely on habit and not on conscious decisions or deliberate choices. The results of 

their analysis are shown in Figure 5: 

 

Figure 5: Using a model based on the Theory of Planned Behaviour, De Pelsmacker and Janssens 
(2007) found that habitual speed choice contributed to drivers speed behaviour as much as 

intentional or deliberate speeding. 
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The conclusion from De Pelsmacker and Janssens (2007) research is that speed choice 

at some level can involve little to no deliberate conscious awareness. While the traffic 

scenarios were hypothetical and were measured using self-report items, their 

research provides additional weight to the argument that the credibility of the road 

and traffic situation, as well as automated responses to commonly encountered 

driving situations, accounts for more than half of drivers speed choices, over and 

above deliberate intention for drivers to select certain speeds. 

The degree to which a driver perceives control over the situation may influence how 

likely they are to engage in deliberate speeding, as predicted by Azjen’s (1991) Theory 

of Planned Behaviour. While perceived control over vehicle speed undoubtedly plays 

a role over drivers behaviour, it is possible that with experience, drivers take into 

account actual control over their driving behaviour unconsciously, which may 

potentially explain why drivers perceived control contributes to self-reported 

speeding but not recorded speeding (Warner & Åberg, 2006). Parker et al. (1996) 

found that training drivers to have greater perceived behavioural control had the 

unexpected effect of causing these drivers to become less confident that they could 

control their vehicle at a steady speed, possibly because of an increased awareness 

that the traffic situation may have a stronger role in influencing their choice of speeds.  

Hence, while speed choice may be classified as a driving style, there is also likely to be 

good evidence to consider that speed choice may also be a type of driving skill – 

automated and largely operating below a driver's conscious awareness. Research by  

Haglung and Åberg (2002) may provide evidence to support this speculation. Haglund 

and Åberg (2002) measured the speeds of the same drivers over several days on two 

different road sections while changing the posted speed limits. They found a  high 

correlation between drivers speed choices between both road sections, despite 

altering the posted speed limits. The high degree of correlation showed that drivers 

were highly consistent in their choice of speed, even when speed limits were changed. 

Haglund and Åberg (2002) argued that rather than deliberately choosing to violate 

the speed limits, this shows the extent to which drivers’ speed choice is automatic. 

Furthermore, a deliberate violation of the speed limit might indicate that drivers will 

favour their default speed preference over the posted limit when speed limits do not 

seem credible.  
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The Problem with Habitual Speed, and the Role of Perceptual Countermeasures 

One of the challenges associated with the habitual nature of speed choice is that it is 

extraordinarily difficult to change once it becomes automatised. This is evidenced in 

drivers' behaviour following a crash, where they will drive at a more cautious speed 

for some time, then revert to their previous driving behaviours. Although drivers do 

show a reduction in risky driving over time, this trend seems unrelated to crash 

involvement and more with general driving experiences (af Wåhlberg, 2012; O'Brien 

et al., 2017).  

Habitual behaviour has been recognised as automatic, uncontrolled, and challenging 

to repress naturally without deliberate conscious attention (Lheureux et al., 2016; 

Verplanken & Aarts, 1999). This means that drivers learn to quickly revert to speeds 

that seem credible given the road and traffic situation, even though there may be 

unperceived risks that warrant slower and more cautious driving speeds. 

The difficulty associated with modifying habitual speeds can result in numerous 

problems, especially when drivers are required to decrease speed when transitioning 

from rural to urban settings. In New Zealand, the open-road limit is 100km/h, while 

the typical urban limit is 50km/h, with many open roads interspersed by small 

townships requiring drivers to slow down on a region of road referred to as a 

‘transition zone’. While many drivers do reduce speeds when encountering a 

transition zone, often due to the effects of sensory adaptation, drivers may have the 

perception they have decelerated adequately, while they are actually still travelling 

well over the posted speed limit (Denton, 1980; Recarte & Numnes, 1996).  

As previously mentioned, increasing the visual complexity of the road environment 

has a strong effect on drivers speed. Increasing the number of structures surrounding 

the road is thought to increase drivers’ perception of ‘edge rate’, that is, the speed at 

which specific roadside features pass by the moving observer’s peripheral field of 

view. This can create the perception that the speed has increased, triggering the 

driver to become acutely aware of the speed at which they are travelling. As drivers 

become aware of their speed, they switch from relying on automated behaviour to 

more deliberate decision making, choosing speeds that are judged appropriate for the 

condition.  

This thinking is behind the concept of the ‘Urban Gateway’, which has been used in 

part to solve drivers' speed when entering towns following prolonged travel on the 
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open road (Charlton & O'Brien, 2001; Makwasha & Turner, 2013). Urban Gateways 

are large oversized signs on either side of a road, which drivers pass when entering 

an area with reduced speed limits. These gateways turned out to be quite effective in 

triggering an immediate reduction in drivers’ speed. Drivers were found to reduce 

speeds when passing an Urban Gateway even when the speed limit was not explicitly 

shown, indicating the effectiveness of this countermeasure was primarily perceptual. 

However, what researchers found was that the speed-reducing effect was quite 

limited and that within a relatively short distance of about 250 meters, drivers had 

returned to their previous default speed.  On occasion, it was found that drivers 

eventually settled at a faster speed than the speed they were travelling before 

encountering the Urban Gateway (Charlton et al., 2001). Additionally, over time and 

with repeated exposure, familiarity meant that drivers’ became accustomed to the 

gateways, decreasing their overall effectiveness as a speed-reducing countermeasure.  

While Urban Gateways have been widely adopted, they are usually utilised alongside 

a range of other perceptual (e.g., road markings) or geometric countermeasures (e.g., 

the use of chicanes to create ‘pinch-points 5 ’). Combining other traffic calming 

methods has proven necessary to maintain any speed reduction downstream from 

the point where the driver transitions from high to low speed (LTSA, 2002). 

Concerning this, it has been noted that “the speed reduction achieved by a gateway 

alone is not likely to be significant unless used in combination with other measures” 

(pg. 18. NCHRP, 2012). 

Considering the challenges in reducing drivers speed through perceptual and 

infrastructural countermeasures, this demonstrates the difficulty in changing drivers’ 

choice of speed once it has become habitual. As speed choice almost inevitably 

becomes automated, the ability for drivers to interpret the traffic and road situation 

and respond appropriately must have a central role in driver education. This leads us 

to consider the importance of drivers’ ability to learn to read the road well before 

their behaviour becomes habitual. 

 

                                                           
5 A pinch-point is a point where the road narrows significantly, typically by introducing a coloured concrete chicane in the 

road centre and along the roadside, which forces drivers to reduce speed while transitioning through the Urban Gateway. 
In combination, the estimated net reduction in crashes is 35% on New Zealand roads (Makwasha & Turner, 2013).  
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Speed Choice and ‘Reading the Road’ 

As we have discussed, several theories have been proposed to explain how drivers 

adjust their speed according to changing road conditions. Many have emerged from 

either psychological theories of risk-management and theories grounded in visual 

perception (DaCoTa, 2012; Elliott et al., 2003; Goettker et al., 2018). Novice drivers 

not only tend to drive at excessive speeds but are also ill-equipped to process the 

nuances of the road and traffic situation. Thus, novice drivers are prone to either 

driving too fast for the conditions or failing to anticipate how other road users might 

behave – which introduces the significant role that hazard perception plays in safe 

driving behaviour.  

Horswill and McKenna (1999) found laboratory measures based on a video speed 

task predicting drivers’ previous involvement in speed-related crashes. Drivers with 

a speeding-related crash history both chose faster speeds in the laboratory task and 

responded more positively to questionnaire items measuring riskier attitudes 

towards speeding. McKnight and McKnight (2003) found that the major contributing 

factor to road accidents was an inability in motorists to adjust driving behaviour to 

the conditions of the road environment due to a combination of poor hazard 

recognition, poor visual search and attention, and an inappropriate speed selection. 

Braitman and colleagues (2008) examined police reports in conjunction with 

interviews with drivers. They identified the primary factors contributing to increased 

crash risk: poor hazard awareness and perception, followed by excess speed and lost 

control or traction. For those crashes that involved a combination of excessive speed 

and loss of vehicle control, excess speed emerged as the primary factor, often 

preceding and contributing to a loss of vehicle control (Braitman et al., 2008). This 

indicates that both excess speed and poor hazard awareness may together contribute 

to the loss of vehicle control, elevating crash likelihood and severity. Many crashes 

have been traditionally attributed to lack of driver experience and inadequate 

perceptual training in hazard perception, and this lack of driving experience has been 

identified as playing a significant role in increasing crash risk for young drivers (Meir 

et al., 2014). Young novice drivers are more likely to be involved in accidents through 

lack of awareness of other vehicles at intersections or roundabouts, owing to a 

diminished hazard perception ability (Braitman et al., 2008).  

Curry et al. (2011) found in their evaluation of crash statistics that poor risk 

assessment and hazard anticipation plays a greater role in crash prediction than 
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reckless or dangerous attitudes – indicating that hazard perception is critical in 

ensuring safe driving. Excessive or inappropriate speed selection was a strong 

predictor of crash severity, whereas insensitivity to hazards and poor situational 

awareness were reliable predictors of crash likelihood.  

As previously discussed, besides speed choice, hazard perception has been identified 

as one of the most critical skills for safe driving. According to Horswill and McKenna 

(2004), this higher-order ability is the most crucial driving skill related to crash 

involvement. Hazard perception and situation awareness refer to the capacity to ‘read 

the road’ and create continual mental representations of the traffic environment from 

which judgements can be drawn regarding potentially dangerous situations – both in 

regards to the anticipation of other road-users behaviour, as well as in regards to 

immediate and potential hazards related to the road environment.  
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The Critical Skill of Hazard Perception 

Hazard perception has been the theme of many driving studies. A large volume of 

literature is related to the importance of this vital skill in improving drivers’ safety 

and reducing their crash likelihood (e.g., Porter, 2011; Groeger, 2000; Shinar, 2010). 

Researchers have defined hazard perception to emphasize different aspects of driving, 

resulting in numerous and often inconsistent definitions. Despite this, there are 

common conceptual threads related to identifying risk that runs through the various 

definitions. A standard definition of hazard perception refers to a driver’s ability to 

identify potentially dangerous or high-risk stimuli within the driving environment, 

and determine the probability of interaction, which would require adjusting driving 

behaviour to compensate for changes in perceived risk.  

Horswill et al. (2004) define hazard perception as “the ability to recognize and 

anticipate dangerous traffic situations” (p. 179) and that drivers with advanced 

hazard perception have a more effective mental representation of the road 

environment (McKenna & Horswill, 1999). Helman (2009) used a similar approach 

and defined hazard perception as “the ability to identify potentially dangerous traffic 

situations as early as possible” (p. 8). Mills et al. (1996) expanded upon what 

constitutes a ‘dangerous traffic situation’ to include “any aspect of the road 

environment or combination of circumstances which exposes an individual to an 

increased possibility of an accident” (p. 1). The components of a hazardous situation 

could encompass any semi-permanent factor (e.g., road surface, power poles, etc.,) as 

well as temporary physical characteristics of the road environment (e.g., urban or 

rural roadway), the surface and visibility conditions (e.g., weather, nighttime), and 

the behavioural aspects of the surrounding traffic, pedestrians, and other road users 

(Fitzgerald & Harrison, 1999). 

Deery and Love (1996) introduced the dimension of prioritising hazards on the 

driver's part, who needs to predict how the road situation is likely to evolve based on 

available cues to drive safely. Thus “the process of identifying hazardous objects and 

events in the traffic system and then quantifying their dangerous potential” involves 

a considerable overlap with drivers capacity to perceive risk by integrating top-down 

knowledge, visual awareness, and the feelings which may accompany the situation. 

Hazard perception has been described as drivers capability for “reading the road” (p. 

28, McKenna & Crick, 1994) which McKenna (2004) adds drivers ability to anticipate 

change by stating that “By hazard perception I [sic] mean the ability to anticipate, the 
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ability to read the road” (p.1). Such definitions of hazard perception begin to 

incorporate several features: the ability to detect dangerous situations or objects, 

assess the risk involved and compare the outcomes of each assessment to determine 

whether or not one can cope with the hazard (Brown & Groeger, 1988; Crundall et al., 

2012). 

With such a diverse range of definitions used by researchers, it is essential to 

acknowledge that the term ‘hazard perception’ may not refer to the same construct. 

For instance, some researchers may use hazard perception to refer simply to the 

ability of drivers to detect hazards against the background noise of traffic 

(Velichkovsky et al., 2003). In contrast, others may introduce aspects of risk-

perception, anticipation, and behavioural response. Vlakveld (2011) reviewed 

commonly cited definitions condensing the definitions of hazard to two components: 

a) the ability to anticipate road and traffic events, and b) the ability to assess risks 

based on priority (Lemonnier et al., 2015). Furthermore, Vlakveld (2011) noted that 

perception was just one stage of the process of dealing with hazards. It is not only 

recognising a possible hazard but also the preparatory actions that allow for timely 

intervention to avoid a crash should the hazard materialise. For immediate hazards, 

Isler et al. (2009) provide the following definition in their commentary paper: 

Immediate hazards were defined as hazards that would require some 

preventative or evasive actions from the driver (e.g., braking or being 

prepared to brake, sounding the horn or/and changing direction) in order 

to avoid a potentially dangerous interaction with another road user. (p. 

447) 

While Isler, Starkey, and Williamson (2009) apply a standard definition involving 

some stimuli that drivers need to identify and then subsequently use to modify their 

behaviour in avoiding a crash, a definition could be interpreted as having quite a 

broad operational scope. However, hazards are restricted to other road users and 

pedestrians, and not certain road and traffic environment features that are fixed, 

though still pose a potential threat. For example, does a wet road qualify as a hazard? 

Driving on wet surfaces is potentially dangerous and may require evasive action from 

the driver (e.g., reducing speed to retain traction). However, road surface condition is 

not generally considered a hazard, though it most certainly can influence the level of 

risk present when conditions are not favourable. 



33 
 

 

 

In the absence of immediately visible hazards, assessing and anticipating a hazardous 

road environment may still influence a driver’s eye movements as well as other 

behaviours such as speed choice (Konstantopoulos et al., 2010; Lemonnier et al., 2015; 

Salvucci & Gray, 2004; Salvucci & Taatgen, 2011). This detail, however, is neglected in 

many hazard perception studies.  

Here a distinction needs to be made between the detection and the anticipation (or 

perception) of hazards. A driver may anticipate potential hazards, but until the hazard 

manifests itself, it is not detectable. This distinction between hazard anticipation and 

hazard detection is of importance. Although the terms ‘perception’ and ‘detection’ are 

sometimes used equivocally or interchangeably in the literature, there are some 

important differences in their meaning. Detection generally refers to the ability of a 

driver to notice some novel stimuli amongst the background noise of the traffic 

environment. On the other hand, perception involves the correct identification of a 

hazard as opposed to a non-hazard and then the potential for interaction to occur, 

which may require a change in the driver's behaviour (e.g., braking, steering away). 

While the two terms are interrelated, one obviously is more weighted on the 

visuospatial search and visual attention. At the same time, the other involves more 

cognitive processing based on stimulus detection and knowledge-based identification. 

Fitzgerald and Harrison (1999), using recognition-primed decision-making models 

(Klein, 1993), suggest that hazard perception can be thought of as a chain of mental 

events starting with the detection of a hazard (i.e., situation recognition). Detection 

involves classifying the situation as either familiar or novel based on matches within 

existing memory. If the situation is familiar and benign, it is essentially disregarded. 

In contrast, novel situations demand more intensive processing and decision-making, 

which ultimately results in a behavioural outcome and memory modification. 

Fitzgerald and Harrison (1999) suggested hazard perception is generally viewed at 

the situation recognition stage and not at the point of behavioural response.  

A broader perspective has been adopted by Vlakveld (2011), who argues that the term 

‘hazard perception’ would be better replaced with ‘hazard anticipation’. In doing so, 

this broadens the scope to allow for the drivers' recognition of a potential hazard 

approaching and include the preparatory actions (such as braking or slowing down) 

that allow for timely intervention to avert a crash the recognised possible hazard 

materialise. It involves recognising potentially adverse outcomes from approaching 

events and the course of action that would most effectively reduce negative 

consequences. In a study by Alberti et al. (2014), it was found that experienced drivers 
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slowed on the approach to hazards sooner than inexperienced drivers, which 

supports the notion that anticipation of potential threats is a significant component 

of the hazard perception chain. However, making the definition of hazard perception 

synonymous with hazard anticipation opens the doors to an almost limitless number 

of potential factors requiring the driver's mental awareness, which is naturally 

restrictive in an operational sense. 

Additionally, anticipation is dependent on the capacity of a driver to assess and 

entertain the risks associated with a particular region of road and traffic. While 

Vlakveld (2011) makes a valid point, as many existing definitions involve an aspect of 

anticipation, it is not a distinction without a difference. Hazard anticipation and 

hazard perception are two distinct cognitive processes, and the term ‘perception’ 

emphasises mental awareness. In contrast, anticipation can be considered as having 

more to do with the visual aspects of expectancy and value (see the section, Hazard 

Perception and Visual Perception). 

Some researchers, such as Horswill and McKenna (2004), consider that Hazard 

Perception is the awareness of danger nested within the broader construct of 

Situation Awareness, which was proposed and developed by Endsley (1995) that is 

represented in Figure 6. Situation Awareness involves “the perception of elements 

within an environment within a fixed volume of time and space, the comprehension 

of their meaning and the projection of their status in the near future”. In describing 

Situation Awareness, Endsley (1995) considered three levels, being 1) stimulus 

detection, and then 2) comprehension of essential elements, followed by 3) projecting 

how these elements might change over the course of time and space. In this 

conceptualisation, Situation Awareness involves detection, perception, and 

anticipatory components. 
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Figure 6: The conceptualization of  Situation Awareness as a means of Dynamic Decision Making 
when driving (Endsley, 1995). 

 

Endsley's (1995) conceptualisation of situation awareness allows for an expanded 

explanation of the role of hazard perception that can incorporate emotional states, or 

somatic markers, as feelings of risk. As drivers perceive, comprehend, and make 

projections, they can identify and experience the perceptions of risk accompanying 

these mentally simulated predictions and then act to reduce these uncomfortable 

somatic feelings (Kinnear, 2009; Vlakveld, 2011).  It is also worth noticing that 

‘Task/System Factors’ are those identified which influence drivers speed choice, 

while ‘Individual Factors’ can be broadly divided into categories of either driving skill 

or style. 

One significant finding of relevance to this thesis is the relationship between hazard 

perception and risk perception. As discussed previously, speed choice is a drivers’ 

primary way of regulating situational risk. Thus, if a relationship between hazard 

perception and speed choice exists, drivers’ perception of risk is likely to be a key 

component. While it is uncertain why some researchers have discovered an 

association between hazard perception and risk (i.e., Renge, 1998), while others have 

found no compelling evidence for a relationship between the two (McKenna et al. 

2004), the answer may rest in the way that risk is measured in the laboratory.  
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For example, Farrand and McKenna (2001) asked participants to complete a six-item 

questionnaire involving risk-related questions on a Likert scale ranging from 1 (“Very 

Risky”) to 11 (‘Not Risky’), and then to complete a video-based hazard perception task. 

The task required participants to press a button every time they perceived a hazard, 

while a computer recorded the number of button presses and response times. The 

results showed no statistically significant correlation between hazard perception 

performance and previous assessment of self-rated risk, driving ability, and crash 

likelihood.  

In a second experiment using the same video-based task, participants were required 

to detect hazards. However, following each button press, the video was paused, and 

participants were asked to estimate the risk in the scene they had just viewed. Again, 

the correlation between hazard perception performance and risk ratings was not 

significant. One finding of note was participants who rated as having high self-rated 

driving ability reported lower levels of perceived risk.  

While Farrand and McKenna (2001) conducted a valuable investigation, there are 

several potential methodological issues with their study. First, it may be difficult for 

participants to attach a subjective value to the level of risk they experience if the risk 

is perceived as a somatic feeling. Kinnear and Stradling (2011) found that drivers 

experience a somatic response when anticipating and perceiving that hazard. While 

this indicates a physiological response when perceiving hazards, it may remain 

outside of the ability of the driver to analyse consciously. Such a momentary sense of 

arousal may barely be perceptible unless it elicits a powerful emotional response – 

such a the fear associated with a near-miss with another vehicle. Moreover, 

measuring risk in a laboratory setting can be extraordinarily difficult due to the 

limitations in how realistic the simulated environment is to actual driving (Evans, 

1991).  

Another reason why it is reasonable to call these findings into question is that the 

study of risk-perception has shown that drivers experience risk at various subjective 

levels, even though the sensation may not be reflected in the objective level of risk. It 

has been noted that awareness of hazards is a critical source of information that 

influences the subjective perception of risk (Brown & Groeger, 1988). If hazards did 

not affect the perceived risk to at least some degree, an adequate alternative 

hypothesis would need to be formulated as to what signals a driver receives that 

causes them to experience risk while behind the wheel. However, research has 

revealed that drivers’ subjective rating of confidence can result in longer hazard 
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detection latencies. There are also indications that the self-reported rating of risk is 

unreliable when drivers are under time constraints (Sun & Hua, 2019). This indicates 

that factors that influence the perception of risk also may operate on the hazard 

perception process. 

Situational Awareness requires the driver to develop and maintain a mental 

representation of the road environment as they encounter a changing situation over 

time (Endsley, 1995). This sophisticated mental representation is dependent on 

sufficient cognitive resources, working memory, and the extraction of cues from the 

continual stream of visual and other sensory information (Horswill & McKenna, 2004; 

Owsley & McGwin, 2010).  The second level in Endsley’s model is the ability of the 

driver to distinguish hazardous from non-threatening stimuli. This skill presumably 

evolves as experience is accrued and differing traffic and road situations are 

navigated. 

Naturally, some stimuli will be threatening without a heightened degree of expertise 

or experience (e.g., a pedestrian running in front of the vehicle). However, there is an 

advantage in having experience. Due to their automatized nature, well developed 

mental models bypass the limitations of working memory (i.e., scripts or schemata 

that come with practice). Horswill, Falconer, Pachana, Wetton, and Hill (2015) further 

elaborate on Endsley (1995) model by discussing the superiority of experienced 

drivers’ perception, comprehension, and projection (anticipation) over that of young 

or novice drivers. As cognitive and perceptual processes change or are altered due to 

the maturation that accompanies adolescence, this naturally will influence hazard 

perception. The role of these changes will be discussed at a later stage (see the section, 

Developmental Factors). 

In this thesis, the principal measure of hazard perception is that of immediate hazards, 

which are those hazards that are overtly presented, though they may materialise from 

cues that could be considered covert. Various methods to measure hazard perception 

have been developed over the past several decades ranging from verbally identifying 

hazards to the more commonly employed video and simulator-based tasks, which 

involve participants either using a mouse click or pressing a touch-screen when they 

identify a visually apparent hazard (Horswill et al., 2004; Isler et al., 2009). 

Hazard perception time for immediate hazards is measured from the moment the 

hazard becomes visible until the point in time where the driver attends to it (known 

as a ‘hazard window’), either through sustained visual attention or by indicating 
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detection through some indication (which is usually a button-press or verbal signal). 

While hazard windows provide a functional value for the time that a hazard is within 

the threshold of perception, there are often cues that occur before the opening of that 

window that are purely contextual (i.e., the traffic situation, such as approaching a 

school zone). These contextual cues serve to prime perceptual and cognitive 

resources in anticipation of hazards and are of enormous value in understanding how 

drivers’ make decisions. Experienced drivers are often more aware of these 

contextual cues than novice drivers, meaning that they often devote visual resources 

toward hazard rich regions of the visual scene. Many studies into hazard perception 

emphasize the readily apparent aspects of the scene and neglect the contextual 

indicators that can be observed through eye-tracking. Some hazards are more 

attractive to the attention of drivers with greater levels of experience (Crundall et al., 

2012). However, this can lead to situations where drivers deploy an inappropriate 

schema in response to the context (Brouwers et al., 2018). 

Covert hazards can be any situation wherein a hazard may or may not materialise 

given specific contextual cues. The key difference between immediate (overt) and 

covert hazards is that immediate hazards readily present themselves as visually 

apparent. In contrast, covert hazards are anticipatory based on the context where 

driving is occurring. For instance, covert hazards may be anticipated in the driver’s 

mind, and their eye movements may indicate the active scanning for such potential 

hazards. However, this may only influence behaviour once the probability of 

emergence becomes sufficiently high, and the driver may slow down in anticipation 

of these hidden (covert) hazards when driving past parked vehicles during school 

recess. The presence of pedestrians on the sidewalk in the distance may provide 

foreshadowing, which alerts the driver of possible risk (Garay-Vega et al., 2007; 

Sagberg & Bjørnskau, 2006). Garay-Vega et al. (2007) provided an example of 

foreshadowing, where a pedestrian begins stepping ping out onto the road but is so 

far away as not to be a hazard, but this at least draws the driver’s attention to the fact 

that another pedestrian might step out from the location as the vehicle driver 

approached. 

As covert hazards are not readily apparent, both novice and experienced drivers have 

greater difficulty predicting whether a hazardous event is imminent than when the 

hazard cues are more apparent (e.g., overt). Research conducted by Pradhan et al. 

(2005) noted that young novice drivers have greater difficulty than older and more 
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experienced drivers anticipating hazards that are not visible, and similar findings 

have been observed by Sagberg and Bjornskau (2006).  

 

Measuring Hazard Perception in Laboratory Settings 

Researchers frequently measure hazard perception in laboratory settings rather than 

during real-world driving. While measuring hazard perception in a naturalistic way 

is possible and has been successfully conducted by numerous researchers (i.e., 

Quimby & Watts, 1981) using both self-report measures. Video footage of the road 

and driver, the progression of technology has lent itself to laboratory-based tasks. 

From a research perspective, the primary reason for this is that experimenters have 

a high degree of control over the variety and frequency of hazard stimuli, consistent 

across participants. Laboratory tasks also provide a way for researchers to collect 

more precise data related to detection latency (time) and the spatial location of the 

hazards perceived by the driver (Moran et al., 2019). From an ethical and financial 

perspective, laboratory-based tasks do not expose participants to the risk associated 

with real-world driving and can be developed quickly while remaining reasonably 

cost-effectively.  

 

Hazard Perception and Driving Experience 

Researchers have indicated a clear relationship between driving experience and 

improvement in hazard perception (Isler et al., 2009; Velichkovsky et al., 2003), and 

there is much evidence from several studies that indicate that more experienced 

drivers respond more frequently to hazards and have shorter response times 

compared with novice drivers. Horswill and McKenna (2004) note that one method 

of demonstrating a hazard perception task's validity differentiates between drivers 

separated by a substantial degree of driving experience. As hazard perception is a skill 

that improves with practice (as well as through training), a laboratory-based task that 

can differentiate between novice and experienced drivers from their respective 

ability to distinguish different hazardous elements of the road and traffic situation 

can be considered reliable. This capacity to differentiate between drivers with 

different degrees of experience is recognized as a standard requirement in developing 

and validating hazard perception tasks (Horswill, 2016; McKenna & Crick, 1991). 
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As with any acquired skill, initially, the task requires the learners' full complement of 

mental resources, and the learner is fully conscious of the demands of the task. 

However, over time as the skill becomes more rehearsed, it can be carried out below 

the level of conscious awareness. Automaticity is the process whereby a certain 

activity ceases to require conscious mental attention or resources but occurs 

subconsciously. While lower-level skills become automatized relatively quickly, 

higher-level skills can take much longer to become fully incorporated into a catalogue 

of associated schemata (Isler et al., 2006; Salmon, 2013, 2016). Experienced drivers 

rapidly detect a more numerous variety of hazards compared to novice drivers 

(Crundall et al., 2012; Underwood, 2007; Geoffrey Underwood et al., 2002; G. 

Underwood et al., 2002). There is, therefore, good reason to assume Hazard 

Perception develops alongside Situation Awareness, and this is represented in Figure 

7, taken from Endsley (2006): 

 

 

Figure 7: The development of Situation Awareness Skills as driving experience increases, 
differentiating Novice from Experienced drivers (Endsley, 2006). 

Altogether, these findings support the contention that increased experience plays an 

essential role in the acquisition of hazard perception skills and is in keeping with a 

broad cross-section of literature (Horswill & McKenna, 2004; Mayhew et al., 2003).  

As the amount of driving experience accumulates, there are notable changes to how 

hazard awareness and perceived levels of risk may moderate speed choice. In a study 

employing pre-recorded video of various traffic environments in measuring risk and 

hazard awareness, Renge (1998) found that the amount of experience strongly 

influenced both hazard perception ability and speed preference between newly 

licensed, novice, and experienced drivers, including driving instructors. Renge (1998)  

identified a significant relationship between improved hazard perception, the 
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perceived level of risk, and slower speed preferences. As driving experience increased, 

drivers had a greater ability to perceive hazards and selected slower speeds. 

Although primary driving skills can be acquired in a relatively short amount of time, 

inexperienced drivers often lack developed perceptual skills and the executive 

processes that are required to process the sensory information needed to drive safely 

(Deery, 1999). Inexperienced drivers also tend to be less able to anticipate the 

behaviour of other road users and react accordingly (McKenna et al., 2006). Novice 

drivers scan the road environment less efficiently than more experienced drivers. 

They may not perceive subtle cues for hazards, only identifying nearby and visually 

salient hazards, and are therefore unlikely to detect hazards much further down the 

road  (Brown & Groeger, 1988; Groeger, 2002). This suggests that inexperienced 

drivers who travel at high speeds may not detect a hazard until it is too late to respond 

safely6. At high speeds, they may overcorrect in manoeuvring the vehicle leading to 

an accident. 

 

  

                                                           
6 This leads to an interesting question: If drivers are speeding, visual cues pass by so fast they are barely perceived and thus 

hazard perception is degraded. On the other hand, if drivers are perceiving hazards and appraising risk, they choose a slower 
speed where they can detect more cues. So does speed choice effect hazard perception, or does hazard perception 
influence speed choice? 



42 

 

Hazard Perception and Visual Perception 

Visual perception plays a critical role in driver behaviour, and there has been a long 

history of research into the visual aspects of driving (Crundall & Underwood, 2011; 

Owsley & McGwin, 2010). There is no doubt that disruption to visual attention is 

responsible for vehicle crashes and is considered a major contributing factor in 

crashes where distraction is involved (Recarte & Nunes, 2002). For example, using 

information gathered from the 100-car-naturalistic study, Klauer and colleagues 

(2006) found that some form of inattention caused approximately 78% of crashes and 

65% of reported near-crashes (Klauer et al., 2006). Active visual attention is an 

essential skill that needs to be developed as part of any effective training intervention, 

given its strong influence on either the success or failure of the driving task 

(Konstantopoulos, 2009; Underwood et al., 2013). 

Many studies have demonstrated that eye movements provide a useful means of 

understanding how experience influences hazard perception. Chapman et al. (2002) 

found that novice drivers tended to fixate largely on objects within the centre-field. In 

contrast, more experienced drivers had a much fuller ellipse of eye motions that 

included the peripheral field where hazards were most likely to be encountered. One 

significant finding was that novice drivers’ were resilient to modifying their search 

strategy as road conditions changed, while experienced drivers tended to devote 

more time to scan the areas of the roadway where other vehicles were likely to 

intersect  (Underwood et al., 2003; Underwood et al., 1999).  

The breadth of visual search has been demonstrated across many studies to be 

associated with driver experience (Crundall & Underwood, 2007). However, a recent 

meta-analysis conducted by Robbins and Chapman (2019) found no significant 

difference between novice and experienced drivers’ breadth of visual search or the 

number and duration of fixations. However, Robbins and Chapman (2019) caution 

how this finding is interpreted. Their analysis focused only on the quantitative aspects, 

not the expectancy or value of different drivers’ visual behaviour (i.e., what 

information is gathered). While drivers may display a similar breadth of search, 

experienced drivers can likely extract more useful information for the driving task 

(Lemonnier et al., 2015). 

Hazard perception skills involve having a continuously changing composite 

representation of current traffic situations, a feedback loop guided by the moment to 

moment perceptions, decisions, and actions of the driver (Baas & Charlton, 2005). 
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Effective hazard perception skills result in a holistic assessment of risk, which 

combines information from multiple sources in a continually evolving cycle of 

perceiving, processing, planning, and performing (Bellet et al., 2009). The process of 

perceiving hazards can be explained as a continuous loop. The driver needs to 

sequentially perceive, analyse, and then create a plan to respond given the drivers’ 

goals, knowledge, and ability, and then carry out that planned action. As a 

consequence of action combined with the dynamic traffic environment, the driver 

must update their perception, conduct a new analysis, and create a subsequent 

response plan (Baas & Charlton, 2005). As with risk-appraisal as discussed earlier, 

vehicle performance, road and traffic conditions, and the drivers’ mental well-being, 

cognitive demand, and awareness are all components that influence the performance 

of this feedback loop and the time taken to perform a complete cycle (Neisser, 1976). 

This theoretical mechanism is shown in Figure 8: 

 

 

Figure 8: Neisser’s (1976) Perceptual Cycle model, which represents the relationship 
between perceptual exploration, environmental information, and the schema that 

represents the environment – and how this directs behaviour.  

Neisser (1976) conceptualised that information from the environment continuously 

modifies a corresponding ‘map’, or mental representation, from which actions are 

planned and directed. Acting on the environment introduces new information which 

feeds back into the ‘map’ and subsequent decision-making and actions, completing 

the loop. As drivers’ attention and ability to process visual information are limited, 
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only a small amount of the total information a driver encounters is used to make 

decisions. This cognitively economic process is known colloquially amongst cognitive 

scientists as thin-slicing (Gladwell, 2005; Schank & Abelson, 2013). For drivers with 

a high degree of experience, much of the decision-making is likely to be recognition-

primed and habitual, using specific cues and drawing upon an available repository of 

highly-practised automatic responses, requiring little conscious attention from the 

driver. This allows experienced drivers to anticipate and predict traffic behaviour in 

the near future, enabling them to plan appropriate courses of action almost 

effortlessly (Bargh, 1992, 1994). 

However, the degree to which hazard perception places a demand on cognitive 

resources is highly subject to the number of factors that the driver needs to consider 

at any given time (Wickens, 2008). It seems plausible that advanced hazard 

perception skills draw substantially on cognitive resources as they are considered to 

be conscious and effortful processes and are unlikely to become fully automated 

(Horswill & McKenna, 2004). Evidence of this lack of complete automatization has 

been presented by Mckenna & Farrand (1999), who found that experienced drivers 

may require more attentional resources to achieve a superior level of hazard 

perception, which does not appear to become more automated with practice. 

Additionally, in an analysis by McKenna and Horswill (1998), many driving 

behaviours which presumably become automatic with repeated practice do not load 

onto the same factor, suggesting that some behaviours may be automatic and others 

may involve conscious monitoring and attention. For example, some researchers have 

found that steering is not adversely affected by additional cognitive load, and there is 

evidence that steering may involve intentional and automatic processes that work in 

concert (Salvucci & Gray, 2004). 

The idea that hazard perception may not be automatized with practice may seem 

counterintuitive at first, as experienced drivers have been shown to detect hazards 

more effectively than novice drivers even under the pressure of additional cognitive 

load, such as a secondary task. Groeger (2000) has argued that a reasonable 

explanation for this seemingly contradictory result is that hazard perception is 

similar to pattern-matching. It is reasonable that over many hours of driving, 

experienced drivers develop a rich store of hazardous scenarios in long-term memory 

and become more capable of perceiving non-hazardous traffic situations against 

hazardous ones, placing less demand on working memory. It is reasonable to assume 

that a driver with more experience is also likely to have a much larger repository of 
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patterns to draw from. Consequently, when the traffic situation aligns with a stored 

mental pattern, experienced drivers become aware of hazards faster and can initiate 

an effective response more promptly than novice drivers (Groeger, 2000). In contrast, 

novice drivers continuously process non-hazardous traffic situations through 

working memory, which places an increased demand on immediately available 

cognitive resources and, consequently, reduces overall responsiveness or ability to 

plan and deploy evasive action. 

In viewing hazard perception as a pattern-matching task, Ventsislavova et al. (2016) 

discussed the mechanism of hazard detection within the cognitive framework of 

Signal Detection Theory. They note that as experience is gained, there is increased 

sensitivity to stimuli accompanied by a reduced incidence of false positives (i.e., 

identifying non-hazardous stimuli as hazards) and more developed decision-making 

in responding to hazards. In this respect, hazard perception can be considered as a 

continually refined set of scripts that form more complex schemata (Salmon et al., 

2014; Salmon et al., 2012; Walker et al., 2011). These schemata are automatic and 

proceduralised to the extent that they are performed without the interference of 

explicit control or conscious attention (Charlton & Starkey, 2011).  

However, scripts or schemata can be underdeveloped, false, distorted, or faulty 

(Prabhakharan & Molesworth, 2011). An example of poor driving behaviour 

becoming automated might be frequent and risky over-taking that becomes 

reinforced when adverse consequences are not encountered. In many instances, these 

schemata are proceduralised and run subconsciously. When they are deficient, they 

can result in inefficient visual search, cognitive tunnelling, and “look but fail to see” 

incidences (Charlton & Starkey, 2011; Cole & Hughes, 1984; Hughes & Cole, 1986). 

Additionally, drivers can fail to identify hazards due to inattentional or change 

blindness. There is an inability to perceive a particular stimulus because it moves 

outside of our attentional range. (Galpin et al., 2009). Drivers can also be prone to 

‘blind scanning’, where drivers scan the road environment without conscious 

awareness (Crundall et al., 2006). 

Evidence suggests that when signal detection is heavily dependent upon 

proceduralised cognitive processes, there is the potential for individuals who are 

sensitive to non-relevant visual cues to become prone to errors involving the 

misdiagnosis of stimuli. This misdiagnosis may result in the misappropriation of 

schemata unrelated to the situation, degrading overall performance (Brouwers et al., 
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2018). When a cognitive process is inappropriately triggered by some salient 

‘distractor’, this can draw resources away from making an accurate interpretation and 

subsequent response – an issue referred to as ‘miscuing’ (Rowe et al., 2009). 

Despite the possibility that proceduralised behaviour may result in an error, there are 

undoubtedly significant advantages to the cognitively economic way that schemata 

assist the performance of experts and why automated mental processes are a 

desirable outcome of quality training. Additionally, despite the automatization of 

much of the underlying process of hazard perception, the interference of an additional 

workload can reduce the hazard perception skills of even experienced drivers to a 

level much lower than that of novice drivers (McKenna and Farrand, 1999). This 

finding indicates that even after many years of driving experience, these skills may 

place high demands on conscious attentional resources. For these reasons, drivers 

must attempt to ensure an optimum level of performance – such as by controlling 

fatigue and stress, avoiding substances that impair function, and reducing the 

potential number of distractions. 

 

Hazard Perception: Where’s the Risk? 

In examining the psychology of speed choices, a strong emphasis has been placed on 

the role played by drivers' perception of risk. Speed choice is one of the primary ways 

in which drivers balance their goals against the likelihood of being involved in a crash. 

While travelling at the speed limit might enable the drivers to arrive at their 

destination slightly earlier (e.g., the driver's goal), risks such as other road users or 

weather conditions may require a driver to reduce speed to remain safe. As has been 

previously mentioned, Farrand and McKenna (2001) observed no relationship 

between participants hazard perception skills and drivers ratings of risk. It was 

hypothesised that drivers who had more advanced hazard perception abilities would 

also have higher ratings for the level of risk in the road and traffic situation. However, 

Farrand and McKenna (2001) found a non-significant relationship between risk 

ratings and hazard perception latencies. This lack of an association was found both in 

response to videos from their Hazard Perception task and for risk-rating on images 

with a greater number of hazards. 

 

This is not the only instance where a relationship between risk and hazard perception 

has not been found. Derry (1999) found that skin conductance did not correspond to 
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drivers’ subjective ratings of risk when there was increased danger. However, both 

Watts and Quimby (1979), and more recently, Kinnear (2010), found that drivers do 

appear to experience a physiological response to increased risk on the road in the 

presence of hazards, as evidenced in measurements of galvanic skin response.  

 

Defining Hazard Perception in this Thesis 

There is a considerable variation in both the conceptual frameworks and 

methodologies used to examine hazard perception in reviewing the available 

literature. The term hazard perception embodies many concepts that vary in their 

operational scope, limiting the reproducibility of research findings across multiple 

studies. Additionally, there is an interchange in the terminology used by researchers, 

such as hazard detection, hazard perception, and hazard anticipation. While a variety 

of definitions of the term ‘hazard perception’ has been suggested, this paper will use 

the definition proposed by Horswill, Waylen, and Tofield (2004), which defines 

hazard perception as “the ability to recognize and anticipate dangerous traffic 

situations” (p. 179). This definition provides a sufficiently broad scope for what 

constitutes a hazard (e.g., dangerous traffic situations), as well as the driver’s ability 

to attend to the probable location of hazards (e.g., anticipation) and consider the 

importance of identified hazards (e.g., recognition). Most importantly, recognition can 

involve components that are both automatic as well as effortful.  

The following diagram simply distinguishes how the author conceptualises the chain 

of events from automatic subconscious signal-detection of hazardous features against 

a set of cognitive templates (i.e., hazard detection) through to a conscious,  effortful 

level of hazard perception, which is the intentional attending to the stimulus by the 

driver: 
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Figure 9: The conceptualisation of Hazard Perception used in this thesis, divided into three 
distinct mental processing stages. The first level involves a continuous subconscious and 

automated search for events that match known hazards. When this process matches knowledge 
against the situation, it can be considered Hazard Detection. The final stage involves awareness 

and cognitive resources in perceiving, evaluating, and then strategically planning a compensatory 
response to avoid or minimize risk.  

 

Figure 9 above shows how information is processed through the course of detection 

through to perception. At a subconscious level, a visual search mechanism compares 

the current traffic situation against an extensive database of templates (e.g., schemata 

or scripts) for a novel scenario not previously encountered (Bellet et al., 2009). This 

process occurs entirely subconsciously, and the driver is not aware of this until a 

novel situation occurs. At this stage, the situation is determined to be either a hazard 

using existing patterns. It is sent to be prioritised into working memory if it is a hazard, 

where an evasive action must be planned and performed. This chain is prone to errors 

or lapses at various levels: from the inability to detect a signal visually, through to the 

level of detection where ‘look but fail to see’ accidents occur, through to hazard 

perception where a driver may fail to weigh the danger of a hazard adequately or 

produce an inappropriate response (Brown, 2002; Trick & Enns, 2009). 
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Critical Review of Previous Research 

Much of the previous research that associates hazard perception with speed choice 

has been conducted within the context of driver education, as this allows for the 

measurements of speed choice concurrently with hazard perception while hazard 

perception is manipulated through some form of training. This section will briefly 

examine three studies that found evidence of a relationship between hazard 

perception and speed choice. 

 

An Examination of Renge’s (1998) Study 

As previously mentioned, Renge (1998) conducted a series of studies that revealed a 

relationship between hazard perception and drivers speed choice. In an article 

published in 1998, Renge reported the results of two studies that investigated the 

inter-relationship of drivers’ experience in hazard perception, self-rated confidence, 

and speed choice. In the first study, 24 traffic scenarios were selected from footage 

recorded from the driver’s perspective, with an average duration of 10-15 seconds 

per clip. Twelve traffic scenarios were filmed during daytime and 12 during night-

time conditions. Forty participants observed the series of traffic scenarios as a group 

and were asked to identify features considered hazards. When twenty percent of 

participants identified the same feature as hazardous, it was included in the final list, 

which consisted of twenty-two hazards. Two sham scenarios containing no hazards 

were included to ensure participants were engaged in the task. The list of hazards was 

grouped arbitrarily into two daytime clusters and two nighttime clusters – a total of 

four clusters containing six clips each, covering a range of hazards such as pedestrians, 

bicyclists, parked cars, preceding vehicles and merging vehicle lanes. 

This coded list of hazards was then used in the second study, where a separate cohort 

of 129 participants was asked to watch each video clip presented on a projector 

screen. Following each traffic clip, participants were asked to answer four questions. 

The first question was how risky the viewed clip was using a 5-point Likert scale from 

‘Very Dangerous’ to ‘Not Dangerous’, followed by a 5-point scale of how confident the 

participant would feel driving on the road shown in the clip. The third item required 

participants to rank order the hazards from most hazardous to least hazardous, using 

a scoring system where points were given for every ‘correct’ answer based upon 

hazards in the coding system developed in Study 1. Participants could receive a total 
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of three points per trial, with two points given for the first correctly identified hazard 

and 1 point for a subsequent hazard. The final question involved how much faster or 

slower the participant would feel comfortable travelling using a 5-point Likert from -

20km/h to +25km/h. The second study, which involved a larger group of 129 drivers. 

The time to complete the experiment was approximately 30 minutes for each group. 

The findings of the two studies showed that as drivers’ experience increased, there 

was a corresponding higher score in hazard perception performance. Additionally, 

experienced driver’s had higher confidence levels, selected slower speeds, and 

observed higher risk. Renge (1998) notes in summary that the “more experience a 

driver has, the more correct he [sic] perceives hazardous objects/events, the higher 

he/she evaluates risks and the lower he chooses his driving speed” (p. 109).  

One interesting and unexpected finding was that driver’s perceived fewer hazards 

during night driving, which was interpreted as a consequence of diminished visibility. 

Paradoxically there was less of a reduction in speed choice on the night video clips 

than the day video clips. Drivers tended to notice fewer hazards in the night driving 

condition, which may explain why there was less of a reduction in chosen speeds 

compared with speed choice for the daytime condition. However, an analysis of the 

risk rating for night driving was not included, which encourages further research into 

how night driving is related to speed choice and how night driving influences visual 

search behaviour.  

 

Figure 10: The correlations between the Number of Hazard Perceived, Self-rated perception of 
Risk, and drivers’ Speed Choice.  More advanced Hazard Perception was related to both higher 
Risk ratings and slower Speed Choice. The self-rated risk rating is also related to Speed Choice 

(taken from Renge, 1998) 
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As shown in Figure 10, a highlight from Renge (1998) paper was that more advanced 

hazard perception skills appeared to be associated with slower chosen speeds, as well 

as higher ratings of perceived risk. Together, advanced hazard perception skills and 

higher ratings of risk were associated with slower speed choice. This finding supports 

the idea that risk-appraisal and speed choice are related, providing empirical support 

for Fullers (2008, 2011) risk-allostasis theory. 

While Renge’s (1998) study provided a good foundation for exploring the role of 

hazard perception, risk-appraisal, and speed choice, their design was reliant solely on 

Likert-based measurements in conjunction with film clips, which may lack the 

sensitivity that is found in a simulator. This is especially true concerning speed choice, 

which in Renge’s (1998) study was calculated based upon questionnaire scores 

participants provided for each clip. This method of reporting speed is limited in 

several ways. Firstly, drivers are particularly poor at judging vehicle speed, and this 

can become exaggerated in using video-based measures, so ecological validity needed 

to be established. If the driver were to provide an estimated speed, it would be known 

how much faster or slower they were willing to accept in relation to the actual vehicle 

speed. 

Secondly, the coding system for different identified hazards was based on what the 

majority of drivers with varying levels of ability were able to identify at a minimum 

of 20 per cent agreement. This could have inadvertently placed novice drivers at a 

disadvantage. Certain hazards that were not immediately apparent could be 

perceived less frequently by novice drivers, despite being easily identified by more 

experienced drivers. In the first study, where drivers provided the initial 

identification and classification of hazards, participants aged over 25 years old 

represented the majority, including skilled drivers such as instructors. In the results, 

Renge notes that experienced drivers perceived hazards more correctly. While this is 

a characteristic requirement of a hazard perception task, there is still the potential for 

an unintended bias favouring more experienced drivers. 

Nevertheless, this innovative approach to coding hazards meant that the hazards 

drivers perceived were within the threshold of what the average driver might identify 

and allowed for the examination of both potential and ‘obvious’ hazards7 between 

                                                           
7 In this thesis, the distinction Renge (1998) makes between potential and ‘obvious’ is covered entirely under the umbrella 

of immediate hazard. For instance, Renge lists a potential hazards, refered to as covert, are partially obscured objects 
“possible appearance of a pedestrian behind a car” as opposed to the overt “pedestrian standing in front of a car”. Within 
our definition of immediate hazard, some hazards such as ‘children playing on side of road’ is covert, while ‘boy standing 
to cross road’ or ‘car braking’ are in the later overt category. 
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different groups of driver experience. However, Renge did not evaluate whether these 

different types of hazard influenced speed choices. Furthermore, there is potentially 

some issue in how participants were awarded points in their hazard perception 

ability. Drivers were required to rate the hazards they perceived from most 

dangerous to least in order, which is highly prone to the subjective appraisal of risk, 

and the ordering of hazards was not examined in detail. For example, novice drivers 

may have been less competent in ordering the danger inherent in a hazard compared 

to more experienced drivers. An analysis of this could indicate what hazards or 

dangers on the road attract the attention of drivers with differing levels of experience. 

This important consideration has been noted by Crundall et al. (2012).  

Another aspect of the hazard perception measure used by Renge is the absence of a 

measure for hazard perception time. Hazard perception time, sometimes referred to 

as latency, has been identified as a critical component to drivers ability to detect and 

respond in an appropriate and time-sensitive way to danger in the traffic and road 

environment. Some researchers consider measures of hazard perception latency to 

be as important as the number of hazards that a driver perceives (Farrand & McKenna, 

2001). 

Renge (1998) provided the initial link in the chain of empirical literature suggesting 

a relationship between hazard perception and speed choice. Despite several 

limitations, his research contributes to this thesis's hypothesis, namely, that there is 

a relationship between hazard perception and speed choice and that an individual’s 

perception of risk may moderate this relationship.  

 

 

 

 

An Examination of McKenna, Horswill, and Alexander (2006) 

A study conducted by McKenna et al. (2006) involved designing a hazard anticipation 

procedure requiring the participants to listen to an expert verbal commentary on 

what hazards are presenting while watching video-based traffic situations and how 

they would deal with them to mitigate the risk. McKenna et al. (2006) measured 

drivers perception of risk, speed choice using a video speed task, and hazard 



53 
 

 

 

perception using a video-based computer task. Additionally, they measured close-

following and gap-acceptance using two additional video-based tasks. Three separate 

studies involving these measures are discussed in their 2006 paper, which presents 

an excellent case for the existence of a relationship between hazard perception and 

speed choice. The first study focused on the development of a method for hazard 

anticipation training. 

In the second study, McKenna et al. (2006) created a video-based speed choice task 

that presented drivers with six scenarios involving the absence of hazard 

accompanied by six identical traffic scenarios where a hazard was included. This 

design was to rule out non-specific effects from the training against an actual 

improvement in hazard perception ability. They reasoned that drivers who were 

trained should respond with a more significant reduction in speed to the hazardous 

scenes than for less hazardous scenes. The presence of non-specific effects related to 

changes in safety awareness would result in an equivalent reduction in speed to both 

situations. 

The results of this second study were that drivers who had received the training 

showed a greater reduction in speed as a response to hazardous scenes when 

compared with non-hazardous scenes. They concluded that the training method 

successfully improved hazard perception, rather than merely increasing safety 

awareness, and that drivers with more advanced hazard perception reduced speed in 

response to hazardous situations. The final study of the training involved testing 

police officers with differing degrees of experience, who were grouped into drivers 

with advanced and non-advanced driving ability.  

The purpose of this third experiment was to determine whether advanced hazard 

perception skills would be associated with a greater reduction of speed on hazardous 

roads as to roads without hazards, in a similar way to the training in the previous 

study. McKenna et al. (2006) found that police officers with advanced training 

selected significantly slower speeds on the hazardous scenarios as opposed to the 

non-hazardous scenarios. In contrast, the non-advanced officers showed less of a 

difference in their choice of speed between hazardous and non-hazardous roads. They 

concluded that this provided good evidence that it was the drivers' ability to perceive 

hazards that influenced their speed choices, rather than advanced drivers’ being more 

cautious in general (p. 7, McKenna et al., 2006).  
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While McKenna et al. (2006) developed a robust series of experiments to demonstrate 

that training did not merely reduce risk-taking, but improved hazard anticipation, the 

assumption that a nonspecific increased vigilance for safety, as opposed to increased 

hazard anticipation, cannot entirely be sustained. Firstly, it cannot be determined 

from their study whether the anticipation training primed drivers to reduce their 

speed choices. McKenna et al. (2006) suggested that if the training produced a non-

specific reduction in risk-taking, there would be a similar reduction in speed for both 

hazardous and non-hazardous situations. However, drivers who generally are risk-

averse with increased vigilance could reduce speed in the presence of increased visual 

noise, as visual distractors have been shown to make traffic situations appear riskier.  

The use of an eye-tracker could show that the specific search for hazards was 

occurring, rather than the addition of more visual clutter, making the road appear 

riskier. In extending their research, the use of an eye-tracker will provide valuable 

clues as to what hazards or features of the road influence drivers speed choices, as it 

has been shown that there is a need to identify those hazards which discriminate 

between safe and unsafe drivers (Crundall et al., 2012). McKenna et al. (2006) 

introduced hazards that were both overt (e.g., car exiting a partially concealed 

driveway) and covert (i.e., cars obscuring the view around a corner). However, the 

effect of these hazards on speed choice was not examined. 

McKenna et al. (2006) present a strong and robust case for the relationship between 

hazard perception and speed choice within the context of validating a driver training 

tool that has significant applications for improving road safety. Their contribution 

provides the foundational evidence that this present thesis will extend by further 

examining the relationship between hazard perception and speed choice through the 

use of commentary protocol and eye-tracking measures. 

 

An Examination of Edquist, Rudin-Brown, and Lenné (2011) 

One reviewed research paper examined drivers' role in different road and traffic 

settings, which feature increased crash risk, focusing on how visual noise influences 

drivers speed behaviour and hazard perception. In a conference proceeding, Edquist 

et al. (2011) introduced eye-tracking to accompany a speed-choice task. Twenty-nine 

participants drove in a simulated urban commercial route with no parking bays, 

empty parking slots, and parking slots that were occupied by cars. Participants also 

drove on a less complex ‘arterial’ road with no parking skirting the road. Participants 
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were required to identify an unexpected event where a pedestrian would suddenly 

appear in front of the participant's simulated vehicle, to which drivers were required 

to identify by pressing a button. Participants were free to modify their driving through 

the use of a steering wheel and electronic pedals, which provided a real-time update 

to the simulator. 

As hypothesized, drivers’ simulated vehicle speeds were slower in the presence of 

occupied on-street parking bays compared to the other two environments. Drivers 

reduced their speed and drove further from the curb in response to the presence of 

vehicles parked on-street in the complex, urban environments. Additionally, drivers 

reacted more slowly to a peripheral target and had reduced responsiveness to the 

pedestrian unexpectedly crossing the road when driving in the more complex fully 

occupied car-park as opposed to when there were no occupied car parks.  

Although there was evidence of some compensation by drivers in response to the 

changes in the complexity and visual-clutter in the road environment, it was 

determined that these behavioural changes were not sufficient to protect drivers 

from an increase in crash risk as measured by response to the unexpected pedestrian. 

Even with the reduction in speed, this alone was not sufficient to offset the decreased 

reaction times. Increased visual complexity, accompanied by the presence of parked 

cars, while resulting in a reduction in speed, also resulted in longer response times. 

The increased environmental complexity and cognitive workload significantly 

reduced their time releasing the accelerator and applying the brakes, with greater 

pressure being applied to the brake pedal. The minimum safe distance was also 

influenced by parked cars, with shorter stopping distances and reduced reaction 

times increasing the likelihood of colliding with the pedestrian. These findings have 

strong safety implications, especially concerning spaces shared by pedestrians and 

vehicles, such as parking buildings. Their research outlined the need for employing 

markings that can act as traffic calming measures, as well as a continued emphasis on 

maintaining slower speeds in complex environments. Furthermore, even though 

Edquist et al. (2011) identified this as a limitation, their findings presented a good 

case for using low-fidelity simulators to measure drivers' visual behaviour and speed 

choice. This preliminary proceeding provides some compelling findings for future 

road safety research and practice. 

One area which would have been interesting is investigating how age and experience 

influenced the behavioural responses of drivers in this study. This was not examined 
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in their analysis. Experienced drivers may be more responsive to certain cues, such 

as the markings and presence of other vehicles, which could have influenced their 

behaviour. Examining drivers hazard perception across a range of stimuli, rather than 

a single pedestrian event, would have provided a more robust measure of drivers 

ability to detect hazards, and this has the potential to look at using training, much like 

that of McKenna et al. (2006) study to determine whether improving drivers hazard 

perception skills could help to mitigate the effect of increased visual noise and mental 

workload on drivers choice of speed. This would be a significant advancement in 

understanding how training hazard perception may influence drivers speed choice. 

In this thesis, we will attempt to overcome this limitation through the use of eye-

tracking and a range of different stimuli over different road types and under different 

conditions. 

Additionally, increasing visual noise while simultaneously increasing drivers mental 

workload can be overcome through well-developed hazard perception abilities, 

which employs greater top-down visual search for hazards. Advanced hazard 

perception may circumvent the limitations inherent in bottom-up visual search, 

which is far more likely to be influenced by the load created by excess visual 

information that competes for cognitive resources (Beck & Kastner, 2009). This 

bottom-up search method in drivers with poor hazard perception is a critical point at 

which novice drivers are disadvantaged (Konstantopolous, Chapman, & Crundall, 

2010). 

 

 

 

Summary of the Existing Gap in Knowledge 

In reviewing the literature, overall, there was surprisingly little research regarding a 

link between hazard perception and speed choice. However, there appears to be 

evidence that indicates hazard perception might be associated with speed choice 

(McKenna et al., 2006; Renge, 1998). Combined, these studies each present valuable 

insights into various aspects of the role of hazard perception in speed choice, 

indicating that an interrelationship may well exist. Despite these initial findings, 

however, there remains a substantial gap in our knowledge of the relationship 

between speed choice and hazard perception.  



57 
 

 

 

Many previous studies have relied heavily upon the use of questionnaire-based 

measures rather than reliable and validated laboratory measures of speed choice, 

which means that it is difficult to determine whether driver behaviour is 

representative of actual real-world behaviour. Furthermore, these methods are 

limited in determining how drivers adjust their speed choices in response to changes 

in the road and traffic situation, which is part of everyday driving.  

This thesis will build upon the existing research by investigating the relationship 

between hazard perception and speed choice through the use of validated laboratory-

based methodologies. This thesis will examine how different hazards influence speed 

choice and how this relationship may be mediated through eye-movement behaviour 

and moderated by age and experience. 
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The Vulnerability of Young and Novice Drivers 

Young drivers are over-represented in crash and traffic fatality statistics, particular 

during their first year of unsupervised driving (Preusser & Leaf, 2003; Williams, 

2003). Worldwide, road crashes are the most significant cause of death for men aged 

15-29 and the second greatest for 15-29-year-olds overall, according to the World 

Health Organization (WHO, 2007) figures. New Zealand has the second-highest per-

capita crash fatality rate for young drivers (OECD, 2006), with young drivers in the 20 

to the 24-year-old age group being approximately three to five times more likely to 

crash than the lowest risk 55 to 59-year-old drivers of the same gender (for a more 

comprehensive review, see Appendix 6).  

In New Zealand, young inexperienced drivers are more than two and a half times as 

likely to have speed as a contributing factor in crashes than drivers over the age of 25 

years (Stradling et al., 2000). Crashes involving drivers losing control of their vehicles 

are common in crashes involving young drivers, in which inappropriate speed plays 

a significant role. Thirty-nine percent of 15 to 24-year-old drivers involved in fatal 

crashes were in single-vehicle loss-of-control or run-off-road crashes, compared to 

twenty-one percent for older drivers. In addition, many head-on crashes also involve 

drivers losing control of their vehicles (Ministry of Transport, 2009). 

Mayhew et al. (2003) were able to show that the crash likelihood is greatest in the 

month immediately following licensing for all drivers regardless of age and then 

decreases substantially over the following six months (Figure 11). During the learning 

stage of driving, crash risk is quite low, though once a driver migrates to a restricted 

licence, the likelihood of being involved in a crash dramatically increases. Gregersen 

et al. (2003) have suggested that the risk of being involved in a crash is 33 times 

greater for drivers once novices begin solo driving – thus, the transitional period 

between supervised and unsupervised driving appears to be a period of considerable 

concern.  
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Figure 11: Crash profile of drivers as they move from supervised (Learner licence) to 
unsupervised driving, indicating a substantial increase in crash likelihood directly after 

transitioning to solo driving on a Restricted Licence (Ministry of Transport, 2009) 

 

Groeger (2000) suggested that this increase in crash likelihood8 may be attributed to 

the lack of developed higher-level driving skills, and this suggestion is supported by 

research conducted by Mayhew and Simpson (2002), which showed that the amount 

of supervised experience young drivers receive is insufficient to allow for the 

acquisition of competencies such as visual search and appropriate hazard perception 

abilities. Renge (1998) found that driving experience had a strong influence on hazard 

perception ability, risk perception and speed preference between newly licensed 

novices contrasted with experienced drivers, as well as driving instructors. 

 

  

                                                           
8 Internationally, it has been highlighted in the literature that crash involvement of young drivers is greatest immediately 

following provisional (or restricted) licensure, and this increased crash risk is also reflected in New Zealand crash statistics 
(Ministry of Transport., 2009). 
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Developmental Factors 

One of the most noteworthy considerations gained over the past two decades is that 

the adolescent brain has differing visual and cognitive processing capabilities 

compared to adults. A review of the literature gives evidence that limitations in visual 

processing (i.e., the frontal eye field) and limited cognitive resources and working 

memory are due to the lack of fully developed frontal lobes in young drivers, which 

may be associated with poorer hazard perception abilities. Adolescence is marked by 

significant changes in the brain, which are related to cognition and emotion. 

Increasingly so, contemporary research into risk-taking has emphasized the 

biological substrates of behaviour which involve the maturation and fine-tuning of 

the prefrontal, temporal, and cortico-limbic brain circuitry related to executive 

functions and emotional regulation (Albert & Steinberg, 2011; Dahl & Spear, 2004; 

Gogtay et al., 2004; Marcovitch & Zelazo, 2009; National Research Council, 2011; 

Steinberg, 2005). Figure 12 shows the progression of grey-matter maturation in five-

year intervals from childhood to adulthood:  

 

Figure 12: The development of grey matter in the cortex during maturation, showing changes in 
5-year increments from Childhood through to Adulthood (from Gogtay et al. (2004)). Grey matter 
is where the bulk of mental processing occurs. It includes regions of the brain involved in sensory 
perception, decision making, behavioural regulation, memory, emotion, speech, muscle control 

and motor planning. 

 

Executive functions are primarily performed by the prefrontal cortex (PFC) and are 

associated primarily with planning, regulation of behaviour and decision making, as 
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well as divided and sustained attention (Sarter et al., 2001), precession speed, and 

cognitive flexibility, amongst others (Kurzthaler et al., 2005). Each of these cognitive 

functions has relevance to driving behaviour  (Isler & Starkey, 2008). Research 

suggests that it takes young drivers longer to develop risk assessment skills and that 

young drivers’ detect and assess hazards more slowly, especially during the early 

stages of learning to drive (Deery, 1999; Fisher et al., 2006; McKenna & Crick, 1991; 

McKenna et al., 2006). Importantly, among adolescents, the areas of the prefrontal 

cortices that are activated during exposure to social stimuli overlap considerably with 

other parts of the brain shown to be sensitive to reward stimuli (Casey et al., 2016; 

Sunstein, 2008). These changes are thought to be a principal contributing factor to 

socio-emotional development throughout adolescence. However, this heightened 

reward when engaging with peers may make teens more susceptible to unfavourable 

peer influence.  

Hazard perception and visual tracking are also affected by the maturation of executive 

processes. This may predispose young and inexperienced drivers to misjudge road 

conditions or poorly respond to hazards (Chapman et al., 2002; Deery, 1999; 

Rosenbloom et al., 2008). Additionally, these refinements of the cognitive architecture 

of the brain that gradually lead to improved attention and awareness may explain 

why inattention (or focus on visually salient cues irrelevant to the driving task) 

frequently precipitate crashes involving young novice drivers (Keating, 2007; 

Underwood, 2007).  

Young novice drivers find themselves in the dilemma that they need to increase their 

driving experience to reduce the risk of crash involvement, but the more they drive, 

the more they are exposed to high risks. Given all the facts about the high risks of 

young drivers for over half a century, many countries across the developed world 

have introduced some form of driver training or education to address this problem 

(Hatakka et al., 2002).  

As previously discussed concerning risk-appraisal, drivers may maintain a stable 

level or target of acceptable risk, which can defeat the introduction of safety measures 

(McKenna, 1987; McKenna, 1990). In theory, Graham (1998) notes that risk-

homeostasis will undermine all non-motivational countermeasures, as drivers will 

continually adjust their behaviour to accommodate reductions in situational risk by 

increasing personal risk behaviour. Wilde’s (1994) response to these criticisms is that 

drivers can be encouraged to assume smaller target risk by promoting the 
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consideration of long-term wellbeing; however, this requires that drivers can 

contextualise current risk targets within long-term goals. The lack of foresight can 

obscure this ability to project long-term outcomes - the ‘myopia to future 

consequences’ - that young people experience in their process of making decisions 

(Cauffman & Steinberg, 2000; Steinberg et al., 2009).  

The study results by McKnight and McKnight (2000) indicated that young drivers had 

crashes not so much because of deliberate, reckless driving, but because of poor 

hazard anticipation. This is to say that, in general, novice drivers did not recognize the 

presence of hazards and consequently may not have perceived the risks associated 

with those hazards. McKnight and McKnight’s (2000) conclusion that the heightened 

crash risk for young drivers is the result of deficient risk assessment and poor hazard 

anticipation was confirmed in a more recent study by Curry et al. (2011).  

In an extensive American interstate survey involving over three-hundred thousand 

teen-related crashes, Curry et al., (2011)  found that inadequate driving skills, such as 

recognition errors (e.g., inadequate surveillance), failures in decision-making (e.g., 

driving too fast for the conditions), and errors in performance (e.g., loss of control) 

accounted for the overwhelming number of crashes. Driving style, such as aggressive 

driving, was less commonly cited as the cause for speed-related crashes. As an 

outcome, they recommended that prioritization in driver training should be focused 

on improving hazard perception and visual surveillance while avoiding driver 

distraction. While essential to robust driver education, these higher-level driving 

skills ought to be accompanied by maintaining the existing broader educational 

approach targeted at societal-level changes involving norms and values (which are 

generally more directed to adjusting driving style). 
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Experiential Factors 

Age has been found to be a very significant predictor of crash involvement, with 

several studies finding age apart from experience serving as a contributing factor in 

determining crash involvement before the age of 25 years. This is not to diminish the 

significance that quality driver experience plays in road safety but rather to highlight 

the vulnerability of adolescents due to functional changes that occur as a consequence 

of neurological development. For instance, according to a study by Mayhew et al. 

(2003) which examined the collision rate amongst novice drivers during the first 

months of driving, 16 years olds are involved in more crashes than recently licensed 

older drivers (age 20 or older). A study in Sweden in 2001 showed that drivers aged 

between 18 and 19 years old were five times more likely to be involved in a fatal crash 

than drivers aged between 35 and 50 years old (Gregersen et al., 2003). At that time, 

the prevailing view was that novice training programs should focus on acquiring 

lower-level driving skills, such as traction control and lane management. 
 

The assumption was that if drivers were more competent in managing their vehicle 

control, especially in hazardous circumstances, then there would be fewer crashes. If 

crash statistics demonstrated a high rate of skid-related crashes, then presumably 

this points to a deficiency in skid management, and increased training should, in 

theory, reduce crash rates. However, following the widespread implementation of one 

such large-scale training program that emphasised basic car handling skills (such as 

the skid-training as mentioned above), novices drivers were being involved 

disproportionately represented in skid-related crashes. Gradually it was discovered 

that increased self-confidence coupled with an incomplete mastery of driving skills 

could increase the likelihood that young drivers would engage in dangerous driving – 

resulting in a dramatic increase in crashes.   

 

The unexpected consequence of concentrating driver training on low-level skill 

acquisition was that it led to increased risk-taking and, subsequently, higher crash 

rates. Gregersen (1996) studied this phenomenon and discovered that drivers might 

develop a false sense of superiority in their driving ability, encouraging them to 

engage in greater risk-taking. This idea of inflated confidence conjoined with poor 

actual driving skill is known as miscalibration (Havârneanu & Popusoi, 2015; Kuiken 

& Twisk, 2001).  Calibration refers to the internal balancing of task demand to task 

competency. Conceptualised within Fullers (2011) risk-allostasis theory, poor 

calibration results in a lower appreciation of risk factors, leading to drivers engaging 
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in dangerous driving where the driver believes they can perform a risky manoeuvre 

without consequence. Miscalibration (or poor calibration) refers to a situation when 

task demands exceed task competency, allowing accidents to occur from loss of 

control in the inability to regulate the crash factors within the system (Fuller et al., 

2007). 

 

It became increasingly clear that basic training that focused solely on car handling 

skills was inadequate in creating competent drivers. This was the turning point where 

attention shifted to include other skill sets to complement existing training. There are 

many skills that drivers are required to develop throughout their on-road experiences, 

such as maintaining lane position, steering and vehicle control, and a plethora of rules 

governing safe interactions with other road users. While there are many situations 

where low-level training may prove helpful, these skills need to be blended in 

gradually with those skills that function at higher levels. 

 

Most of these driving skills can be classified within a categorical hierarchy, composed 

of four levels ranging from the most basic (e.g., braking) to the more demanding and 

complex (e.g., situational awareness). This hierarchy of driver competencies is known 

as the Goals for Driver Education (GDE) matrix and was first proposed by Hatakka, 

Keskinen, Gregersen, Glad, and Hernetkoski (2002). The GDE matrix provides a 

framework to guide the licencing process by ensuring that novice drivers acquire all 

the necessary skill-sets before progressing from supervised to unsupervised (or ‘solo’) 

driving. The cornerstone of this hierarchy is the higher-level skill of hazard perception. 

As stated previously, driving can be considered as a hierarchical process involving 

strategic, tactical, and operational levels (Salvucci & Taatgen, 2011), all of which 

depend on executive functions related to cortical maturation (Dahl & Spear, 2004; 

Spear, 2000) – and this has increasingly become the target of research into driver 

education. One such project, the ‘Frontal Lobe Project’, was conducted in New Zealand 

to investigate the relationship between executive functions and driving behaviour.  

This two-week study provided invaluable scientific evidence that executive functions, 

especially working memory and cognitive switching, are associated with higher 

driving performance and more accurate self-appraisal of driving skill (Isler, Starkey, 

Drew, et al., 2008). Furthermore, following a brief but intensive training program of 

higher-level driving skills, it was demonstrated that improvements could be obtained 

in both driving ability and visual search behaviour. Using a specific higher-order 
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training method based upon road commentary, the number of hazards perceived and 

the number of actions in response to perceived hazards was improved within a 

relatively short period (Isler, Starkey, Drew, et al., 2008; Isler et al., 2009). Similar 

training using road commentary has provided promising results in developing the 

hazard perception ability of older and more experienced drivers within a short period 

(M. Horswill et al., 2013). 

In the literature, evidence of relevant factors at the level of individual-differences are 

frequently observed to be related to crash likelihood, such as gender (e.g., Laapotti & 

Keskinen, 2004) and personality traits such as sensation-seeking or need for control 

(e.g., Dahlen et al., 2005; Jonah, 1997). It is well known that males tend to take more 

driving-related risks than females. Lee (2007) pointed out that young male drivers, in 

particular, are more sensitive to peer influence in adopting inappropriate norms (e.g., 

Lin & Fearn, 2003; Simons-Morton et al., 2005). Renge (2000) found that young 

drivers are at higher risk to get involved in a traffic accident since they tend to 

misunderstand common traffic signals (e.g., indicators, headlights, or hand gestures). 

Furthermore, young novice drivers tend to demonstrate an inefficient pattern of 

visual search (e.g., Chapman et al., 2002; G. Underwood et al., 2002) and are less 

competent when adjusting their speed and following distance in keeping with the 

driving conditions (Clarke et al., 2005).  

Similar differences in visual search behaviours between novice and experienced 

drivers were observed when drivers encounter multiple-lane carriageways, where 

hazards ought to be anticipated from both sides of the vehicle. In such situations, 

novice drivers focused on the centre of the carriageway, while experienced drivers 

increased scanning of the peripheral field where hazards are likely to intercept, such 

as vehicles transitioning between lanes. The maturation of the prefrontal cortex has 

been found to affect the performance in saccadic eye movement tasks, and in young 

people, performance deficits could be attributed to this ongoing process of 

maturation (Munoz et al. (1998), cited in Isler et al. (2009). Isler et al. (2009) noted 

that: 

… young drivers may be disadvantaged in their search behaviour by not 

being able to move their eyes fast and frequently enough to fixate on all 

important traffic information… However, the inefficient eye scanning 

behaviour of novice drivers may also stem from the fact that they have not 

encountered a sufficient number of hazardous situations, to allow them to 
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draw on a broad knowledge base, or a mental map that could assist them in 

determining what to look out for in different traffic situations… (p. 12) 

Crundall and Underwood (2010) found that young novice drivers possessed a smaller 

spread of visual search and devoted less attention to the periphery and mirrors when 

compared to more experienced drivers. Hazard perception, in part, could be 

considered a function of attentional resources being dedicated more broadly across 

the visual field, including the peripheral regions of the carriageway - with more rapid 

fixations across the visual field being associated with greater driver performance.  

For example, while visibility was not found to be a factor differentiating eye 

movements between experienced and novice driver groups, Konstantopoulos et al. 

(2010) found significant differences in visual search behaviour between groups, and 

this is depicted in Figure 13: 

 

Figure 13: The differences in visual search behaviour between Experienced and Novice driver 
groups on a simulated motorway scenario (Konstantopoulos et al., 2010) 

 

The findings made by Konstantopoulos et al. (2010) indicated that novice and 

experienced drivers differed significantly in search behaviour. Konstantopoulos’ 

(2010) research confirmed the previous findings made by Crundall and Underwood 

(1998), with experienced drivers having a more significant number of short fixations 

distributed across the entire horizontal field of view. Experienced drivers also 

displayed higher sampling rates across several road scenarios compared with novice 

drivers, with a higher number of fixations and shorter fixation times – suggesting 
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experienced drivers collected more information pertaining to the road environment 

and salient hazards (Desimone & Duncan, 1995; Konstantopoulos, 2009; 

Konstantopoulos et al., 2010). Konstantopoulos (2010) suggested: 

[This] strategy of deploying frequent short fixations can be considered 

crucial in hazardous situations when the driver has to be able to anticipate 

dangerous on-road behaviours by maintaining awareness of many 

potential sources of hazard without becoming overly focused in any one 

source. Driving instructors spread their fixations on the horizontal axis 

significantly wider than learner drivers, irrespectively the visibility of 

driving conditions. (p. 831) 

Konstantopoulos et al. (2010) suggested that driving instructors can shift their locus 

of visual attention across a broader visual range at a greater speed than novice 

drivers, as illustrated by the deployment of rapid fixations with a short duration. 

Crundall and Underwood (1998) showed that young drivers have difficulties 

gathering relevant visual information while driving, especially when driving 

conditions become more complex, which is supported by Whelan et al. (2004). 

These themes are essential for understanding how drivers allocate their visual 

attention, and a modestly extended discussion can be found in Appendices 11, 14, 

and 17. Konstantopolous et al. (2010) recommend this implication be the subject of 

future research, with obvious practical applications to the development of new 

driver training methodologies, which will be a consideration toward the end of this 

thesis.  
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The Aim of this Thesis 

In summary, this literature review has revealed the need for more research examining 

the relationship between hazard perception and speed choice and the potential role 

of eye movements to mediate such an anticipated relationship. The central focus of 

this thesis was to fill this gap in the road safety literature by examining in depth the 

role of hazard perception in speed choice, and to thoroughly and systematically test 

any observed relationship for its strength and causality, while taking eye movement 

patterns and driving experience into account as potential mediators and moderators.  

In order to fulfil this aim, a series of experiments have been designed. Experiment 1 

will test a laboratory-based speed choice task for ecological validity and measure the 

efficiency of eye-movement behaviour in novice and experienced drivers.  Experiment 

2 will examine if hazard perception skills relate to speed choices when the two tasks 

(hazard perception and speed choice) are separate and unrelated. Experiment 3 will 

merge the two tasks into one, requiring the participants to select the most 

appropriate (i.e., ideal) speed after each hazard perception trial. Experiment 4A will 

try to improve the hazard perception skills of the participants (particularly in young 

drivers), while Experiment 4B will examine if improved hazard perception relates to 

slower speeds. Each experiment will have a set of research questions and hypotheses, 

serving to fulfil the aim of this thesis. 
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Experiment 1 

 

Introduction 

One of the most challenging issues when measuring drivers’ behaviour in a laboratory 

setting is determining ecological validity. This issue plagues the earliest ‘low fidelity’ 

simulators and video-based tasks to the more true-to-life and immersive simulators. 

Generally speaking, it is difficult to determine whether findings based in the 

laboratory correspond to real-world driving without observing real-world behaviour. 

Validating laboratory tasks frequently involve proxy measures of crash likelihood, 

such as questionnaires related to dangerous attitudes or beliefs and the self-reported 

number of crashes or traffic infringements. However, this approach requires a large 

and generally heterogeneous group of participants, as crashes and near-misses are 

relatively infrequent. 

Regardless, simulators have become a ubiquitous tool in driver research, as 

experimenters can efficiently study drivers' behaviour by presenting participants 

with identical traffic situations under near-identical conditions, reducing the number 

of confounding factors that occur in naturalistic settings. While there are many 

benefits to using a simulator, there is always the concern that experimental findings 

may not be transferable to drivers in the real world. For example, it is questionable 

whether participants are motivated to behave in a simulator in the same way as they 

would in the real world (Carsten & Jamson, 2011).  

One issue is that young drivers tend to view simulated driving as similar to a 

computer or video games (Kuiken & Twisk, 2001). Hence, they may view the task less 

seriously than they would if they were under real driving conditions. Evans (1991; 

2004) noted that it is exceedingly unlikely that simulators can provide useful 

information on a participant’s tendency to speed, as simulators lack the element of 

fear (e.g., risk of injury accompanying a potential crash), which elicits realistic 

‘absolute’ validity. Participants' possible lack of fear makes the validation of 

laboratory measures of risk-based driving behaviour challenging, as participants 

have no real concern that a simulated crash will result in actual injury. While this is 

an important consideration, researchers believe that ‘relative’ validity can still be 

inferred by demonstrating that driver behaviour in a simulator reflects real-world 
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observations (Blaauw, 1982; Carsten & Jamson, 2011). For example, Liu et al. (2016) 

found that drivers chose faster speeds on wider roads compared to narrow roads in 

a simulator, which confirmed similar naturalistic observations made by Fitzpatrick et 

al. (2003). The criteria for a simulator to have relative validity are met when the 

differences between real-world and simulated driving are of the same order and 

direction. When the values are identical between real-world and simulator-based 

experiments, the system is defined as having absolute validity (Blauw, 1982). 

The first experiment aims to test the relative ecological validity of the video-based 

speed choice task used throughout this thesis, by determining whether drivers would 

choose similar speeds in the laboratory task compared with speed choices anticipated 

from data from drivers behaviour in a real-world setting. The speed choice task is a 

modification of the task developed and validated by Horswill and McKenna (1999). 

Their speed choice task was predictive of drivers’ previous involvement in speed-

related crashes and corresponded to questionnaire measures of riskier attitudes 

towards speeding. Horswill and McKenna’s (1999) experiment was replicated in 

Australia by Thornton and Rossiter (2003). Cantwell (2010) then further adapted it 

for a New Zealand context, with several modifications, including the additional 

requirement that participants estimate the vehicle speed. Thornton and Rossiter 

(2003) and Cantwell (2010) found that their video-based tasks revealed differences 

in the speed choices of drivers with differing amounts of age and experience, with 

young novice drivers choosing significantly faster speeds compared with older and 

more experienced drivers. Cantwell (2010) found that these faster speed choices also 

corresponded to riskier attitudes and were predictive of higher self-reported traffic 

violations or fines (Cantwell, 2010). This ability to differentiate between novice and 

experienced drivers is one of the crucial requirements of validating hazard perception 

tasks (Horswill, 2016) – and in similar regard, the ability to differentiate between 

experience provides support for the validity of the video-based speed choice task. 

One of the shortcomings of previous video-based speed tasks is that participants were 

required to provide their speeds, without reference to the perceived speed of the 

vehicle or the road limit, but simply to suggest how much faster or slower they would 

choose to travel. The potential drawback to this approach is that researchers cannot 

see necessarily how close to the road limit a driver would choose the speed, or 

whether over or under-estimating the vehicle’s speed based on the video-based 

method influenced subsequently chosen speeds. Cantwell (2010) asked participants 

to estimate the vehicle's speed and then asked participants to select their ideal speed 
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based on their previous estimate for that clip. Additionally, the roads were filmed 

using different vehicle speeds, requiring drivers to actively engage with the task 

rather than select a ‘default’ speed for all scenarios (e.g., selecting the same speed they 

had estimated the vehicle was travelling). 

Cantwell (2010) noticed that experienced drivers adapted their chosen speeds to the 

differing filmed road scenarios in a previously developed task. In contrast, novice 

drivers seemed to choose speeds consistent with the posted speed limits for those 

roads. The filmed road scenarios ranged from open roads to arterial commercial, 

industrial, and urban roads. Suburban roads were the only road scenario where both 

novice and experienced drivers chose similar reduced speeds. This finding could 

potentially be explained by the greater visual complexity of suburban roads, which 

has a notable effect on drivers speed (Edquist et al., 2011; Oviedo-Trespalacios et al., 

2017) – a hypothesis for which eye-tracking may provide further insight.  

Wang et al. (2010) tested the hypothesis that one of the most sensitive measures of 

validity was eye-movement behaviour. It was argued that if drivers’ visual behaviour 

were consistent across different experimental settings, this would indicate a high 

degree of correspondence to real-world behaviour. Wang et al. (2010) compared 

drivers' behaviour in simulator versus on-road driving and found a high degree of 

both absolute and relative validity in drivers visual behaviour. Notably, they 

considered that eye movements demonstrate sensitivity to changes in the 

physiological arousal associated with mental workload (Wang et al., 2010). 

Visual complexity presents drivers with more factors to consider, which subsequently 

increases the demand on drivers’ attentional and cognitive resources, as well as the 

level of perceived risk (Charlton & Starkey, 2011; Edquist et al., 2011; Weller et al., 

2008; Wilmot & Khanal, 1999). Fuller, McHugh, and Pender (2008) propose that 

factors likely to increase drivers’ subjective workload and perceived task difficulty 

moderate drivers chosen speeds when controlling for changing risk on the road 

(Charlton et al., 2014; Wilmot & Khanal, 1999). 

Another significant observation between novice and experienced drivers’ visual 

search was differences in the role of expectancy and value, which refers to the visual 

sampling strategy that maximizes the amount of useful information a driver retrieves 

from the visual scene (Lappi, 2014; Lemonnier et al., 2015). Expectancy refers to the 

driver’s anticipation of certain specific cues (i.e., it is reasonable for a driver to expect 

to encounter children) when driving past a school. Value refers to the significance that 



72 

 

 

such cues play in influencing drivers behaviour (i.e., a ball rolling onto the road is of 

high value, as a child will likely follow it). As expectancy and value is a product of 

knowledge (i.e., schemata) that develops with experience, novice drivers may not 

have an efficient visual search strategy and fail to detect valuable cues about the road 

or traffic situation leaving them more vulnerable to making incorrect judgements 

(Konstantopoulos et al., 2010; Wickens & McCarley, 2008). 

For instance, extensive research has found specific fixed road characteristics (e.g., the 

presence of a median strip and barriers) influence drivers’ perception of risk and 

consequent speed choice (Elliott et al., 2003). Additionally, road markings have been 

found to influence driver’s behaviour. Novice drivers fixate more on lane-markings in 

order to determine vehicle position and adjust steering than experienced drivers 

(Mourant & Rockwell, 1972), even though markings still inform experienced drivers 

of relative position through peripheral vision (Land & Horwood, 1995). As noted in 

the reviewed literature, many aspects of the road environment may influence drivers’ 

speed choices, with weather and visibility conditions, as well as the roadside activity 

being a strong determinant of speed choice (Bella et al., 2014; Chinn & Elliott, 2002). 

This is a point of concern, as novice drivers, in particular, may fail to notice these 

factors and adjust driving behaviour, which may potentially lead to a crash (Chapman 

et al., 2002; Konstantopoulos et al., 2010; McKnight & McKnight, 2000). Hence in 

developing a test for speed choice, it is important to carefully choose roads that should 

differentiate between sensitive and insensitive drivers. 

Despite research that has examined the role of certain factors on drivers’ speed choice 

in general, there is relatively little research into how such characteristics influence 

drivers’ chosen speeds under different road conditions in particular. This question 

was raised in the study by Cantwell (2010), where novice and experienced drivers 

made different speed choices that appeared to be related to the amount of perceived 

risk (i.e., calibration). The use of an eye-tracker would provide valuable information 

into the characteristics that drivers visually attend to in relation to their speed choices. 

Considering that personal perception and judgements influence speed choice, 

examining the influencing factors is a critical avenue of research and may help 

improve the way novice drivers can be trained in making speed judgements and 

provide information supporting the use of certain perceptual countermeasures. 

While considering these areas for the advancement of knowledge, the ability of this 

new task to differentiate between novice and experienced drivers will indicate the 
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relative validity of this task for further research. Furthermore, investigating the visual 

behaviour of novice drivers compared with more experienced drivers may reveal 

what specific cues drivers utilise in making speed judgements. This could help explain 

the differences in speed choices observed across road conditions between Novice and 

Experienced drivers found by Cantwell (2010). It is expected that novice drivers will 

choose faster speeds and be less sensitive to changes in road condition. Differences in 

speed choices between road types and conditions could potentially support the 

validity and sensitivity of the task as a laboratory measure of drivers’ speed behaviour. 

 

Research Questions 

Following the reviewed literature, the following questions were addressed in relation 

to road environment, type, and condition in this experiment: 

1. Does the video-based laboratory-based speed choice task show ecological 

validity? 

Can the ecological validity of the video speed task be inferred by examining the 

chosen speeds that drivers of different age and experience make in the laboratory 

compared to expected real-world behaviour? 

It is possible to infer that the laboratory speed task is ecologically valid if, as 

expected based on previous research by Horswill and McKenna (1999) and 

Cantwell (2010), young novice drivers choose significantly faster speeds than 

more experienced and experienced drivers and that the choice of speed overall 

corresponds to observed speeds measured in the real world.  

Are the speed choices of all drivers dependent on the level of the driving risk (wet 

versus dry road, day versus night-time driving, no road markings versus road 

markings)?  

The hypothesis drawn from the literature is that drivers will slow down under 

more difficult conditions. In response to increased driving task demand, and as 

the risk present in the situation increases, there should be a subsequent reduction 

in speed. This, in turn, could demonstrate the ecological validity of the laboratory 

speed choice task, according to the various theories of risk, such as homeostasis 

theories (e.g., Wilde, 1982, 1994; Fuller 1992). It is expected that as the traffic 

environment becomes more complex, drivers will reduce their chosen speed 
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(Edquist et al., 2011), consistent with their perception of risk (Elliott et al., 2003; 

Lewis-Evans & Rothengatter, 2009). The use of eye-tracking may provide insight 

into the factors during night driving that contributed to the faster speeds 

observed by Renge (1998). Additionally, a reduction of speed on the more 

demanding roads will demonstrate the sensitivity of the video speed task measure.  

 

2. What visual cues do novice and experienced drivers focus on when making 

speed choices? 

The hypothesis is that novice drivers will scan the road less broadly than 

experienced drivers and potentially fail to identify cues that assist in making 

appropriate speed judgements. In real-world driving situations, inexperienced 

drivers have longer fixation times accompanied by fewer fixations (Crundal & 

Underwood, 1998; Underwood et al., 2013), with a narrow spread of visual search 

compared to experienced drivers (Konstantopolous et al., 2010; Vlakveld, 2011). 

Eye movements are expected to reflect differences in visual expectancy and value 

between novice and experienced drivers (Lappi, 2014). If the same differences 

can be found in a laboratory speed choice task, this provides stronger support for 

the task’s validity based upon Wang et al. (2010), and further examination of the 

effect of eye movements on chosen speed is worthwhile considering.  
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Method 

Participants  

This research was conducted in line with the University of Waikato Ethical Guidelines 

concerning human testing (the University of Waikato Handbook on Ethical Conduct 

in Research, 2001). Participants' eligibility criteria were that they held a valid New 

Zealand driver’s learner, restricted, or a full license, and had corrected to normal or 

close to normal vision. Participants were recruited from the School of Psychology at 

the University of Waikato (Hamilton Campus) using posters and online-course 

advertisements. Eligible students received course credit for participating. Due to a 

teaching recess, participant testing occurred in two batches over approximately two 

months. Based on previous research conducted by Cantwell (2010) and the effect size 

given the number of participants in that study, a sample of 42 participants was 

determined to be appropriate for this first experiment. 

Given the significant age difference, as well as referring to previous research related 

to age and the development of the prefrontal ‘executive’ systems of the brain (Isler, 

Starkey, Drew, & Sheppard, 2008; Dahl & Spear, 2004; Steinberg, 2005, 2008, 2009), 

as well as the significance of age as a predictor of crash involvement, drivers were 

assigned to one of two driver age and experience groups, with participants aged 

younger than 25 years old assigned to the “<25 <” driver group (referred to as novice), 

and participants aged 25 years and older assigned to the “> 25 and older” driver group 

(referred to as experienced). A total sample of 42 participants (22 males, 20 females) 

participated in this study. The mean age of drivers in the Novice group was 19.3 years 

(SD = 0.68), and for the Experienced driver group was 29.5 years (SD = 4.19). 

Novice drivers had driven an average of 3.5 years (SD = 0.69) and reported driving an 

average distance of 198km (SD = 64.43) per week. Twelve of the young drivers had 

full licences, seven held restricted licences, and two held learner licences. 

Experienced drivers all had full NZ driver licences, had driven an average of 14.8 years 

(SD = 2.60), reporting a distance of 135km (SD = 29.12) driven per week. Measures of 

self-reported incidences of crashes/collisions, near misses and vehicle fines in the 

past 12-months, are presented in Table 1: 
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Measures of self-reported incidences of crashes, near misses and vehicle fines in the past 12-months, distance driven in the average week, and 

participant age are presented in Table 1: 

 _______________________________________________________________________________________________________________________________________________________________________ 

Table 1:  
 
The Demographic Information and Driver History of Participants. Total (T) are shown, followed by Means (M) with Standard Deviations in brackets. 

 

 

 

 

 

The number of near-misses was very high for the novice driver group. Given this disparity, it is unknown whether the reported ‘near misses’ are 

genuine, potentially indicating that the question was worded without enough specificity. Hence, near misses will not be used as a measure of driver 

history, while crashes will be used. Self-rated skill as a driver was found to differ significantly between driver groups t(41) = 2.457, p< 0.05, with young 

drivers rating “somewhat better than the average driver” and experienced drivers rating “about the same”. 

Driver Group N Age (years) Distance Driven (km/h) Years Driving T / M Crash Rate T / M Near-misses Mean no. of Fines 

Novice  21 19.3 (0.68) 198 (64.43) 3.5 (0.69) 3 / 0.04 (0.200) 48 / 1.76 (2.471) 7 / 0.24 (0.523) 

Experienced  21 29.5 (4.19) 135 (29.12) 14.8 (2.60) 1 / 0.21 (0.535) 8 / 0.89 (1.696) 2/ 0.21 (0.535) 

Total 42    4 56 9 
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Research Design  

The experiment was designed as a within and between-subject study with multiple 

repeated measures. The independent variables being examined are the road 

environment (urban or rural), road type (i.e., with or without shoulders/markings), 

and condition (i.e., day or night, dry or wet). The dependent variable was the driver’s 

choice of speed for each of the clips, measured in km/h. This design allows for 

comparison between driver age groups for different road environments (rural and 

urban), conditions (dry or wet, day or night), and various road types (e.g., presence of 

shoulders; width and visual distance). 

In this experiment, the examination of the differences in speed choice between the 

two driver age groups was important in determining whether the task was 

ecologically valid by differentiating between Novice and Experienced Drivers. 

Secondly, to demonstrate task sensitivity, the speed choices of drivers was examined 

under different weather conditions and different road types. It was expected that if 

the task was valid, drivers would choose slower speeds on wet roads as opposed to 

dry roads, and slower speeds during the night compared to daytime. Different roads 

with marking should also affect drivers' behaviour, with drivers selecting faster 

speeds on roads that are perceived to be less risky. 

 

Video Speed Task (VST) 

The Video Speed Task (VST) was used to examine drivers’ ability to estimate the 

speed of the camera vehicle in the video clip and determine appropriate speeds for 

the road conditions. Video clips covered several different traffic environments (Rural 

and Urban) and road conditions (Wet or Dry, Night or Day) and were recorded at 

different speeds. Participants watch a total of 30 video clips with a duration of 6 

seconds each, showing the different traffic environments (Urban and Rural roads) and 

road traffic/weather conditions (e.g., Wet and dry).  

The clips were carefully selected as not to include speed signs or other roadside 

signage that might influence drivers speed choices, in keeping with the general 

guidelines established by Horswill and McKenna (1999). Although some road 

environments contained few static or dynamic hazards (e.g. rural roads), urban 

situations almost invariably include hazards that a driver ought to be mindful of when 

making speed judgements. As real-world drivers rarely seem to consult their 
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speedometers while engaging in speed-related behaviour (Mourant & Rockwell, 

1972), there was no speedometer displayed during the clip. This ensured participants 

relied on their own perception to inform their speed choice and estimates. 

Participants could select the speed they felt was most appropriate by moving the 

needle on a speedometer styled menu (Figure 14). 

 

Figure 14: The Speedometer display presented in the Video Speed Task. Participants were 
presented with a speedometer. Initially, participants were to estimate the vehicle speed, and 
then they could choose their ‘ideal’ speed by moving the needle. In this example, the needle 

is set to 75km/h. 

 

Road Conditions and Types 

There were two different traffic environments used in this task, rural/open and urban 

roads. For example, urban road environments were differentiated into two types 

based on their fixed features and then according to the road condition (e.g., day or 

night). Video footage was collected for both day and night road conditions at camera 

vehicle speeds of 50, 30, and 10 km/h. The filming occurred during the mid-late 

afternoon (1-3 pm) for the day condition, and then again after ‘nautical’ sunset (9-10 

pm) for the night condition. This is illustrated in Figure 15: 
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Figure 15: A diagram showing the arrangement of the Urban Road Environment, Type, Condition, 
and then finally, the vehicle speed when the video was filmed. For example, Urban Road 1 Day 

(UD1) is the Urban Environment, the Type being Road 1, filmed during the Day condition. 

 

Urban roads (see Figure 16), with a legal speed limit of 50km/h, were filmed under 

the road conditions of day and night, with numerous hazards, including stationary 

hazards (e.g., parked cars) and moving hazards (e.g., pedestrians). Urban Road 1 was 

narrow with a sharp turn approximately 50m ahead. Urban Road 2 had a centre lane, 

was straight and extended into the visible distance with reasonable clearance to the 

left-hand side of the vehicle (roadside).  

 

Figure 16: Urban Road Conditions (Day/Night) with Road Markings and Centre and Edge 
Medians either Absent (Road 1) or Present (Road 2). 
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Rural roads with a legal speed limit of 100km/h (see Figure 17) were filmed with the 

wet and dry road conditions and with and without lane markings and shoulders. In 

the New Zealand context, frequently rural roads feature median-strip markings and 

reflective ‘cat’s eyes’ at the centre of the road, with reflective batons skirting the 

shoulder at spaces of approximately 50 meters increasing in frequency on approach 

to corners.  

 

Figure 17: A diagram showing the arrangement of the Rural Road Environment, Type, Condition, 
and then finally, the vehicle speed when the video was filmed. For example, the figure shows 

Road Type 1 under the Dry Condition. 

 

Rural Road 1 had no markings, no shoulder and was approaching a corner, and Rural 

Road 2 had clear markings, a wide shoulder, and ran level and straight. For the 

conditions in rural road environments, the footage was obtained in wet and dry 

conditions, with camera vehicle speeds set at 100, 70, and 30 km/h. Rural roads with 

different type and condition are shown in Figure 18: 
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Figure 18: Rural Road Conditions (Wet/Dry) and Types, where lane-markings and shoulder 
lines are absent (Road 1) or present (Road 2). 

 

The experiment was conducted in a quiet, air-conditioned room measuring 

approximately 16m2. The participant was seated in a recliner chair facing the display 

monitor. The participant was one metre away from the screen (giving a viewing angle 

to screen edges of ~60°). The participants used a mouse placed on a small platform 

to their preferred side of the chair. The room was illuminated during testing, as shown 

in Figure 19. 
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Figure 19: The laboratory setting demonstrating the task display and participant seating. The in-
set to the upper right shows one of the Video Speed Task clips. 

 

The computer screen was initially blank before the videos were presented. A mouse 

click on the button in the centre of the screen labelled “Start Video” began the task. 

Following a three-second countdown, a six-second-long video clip was shown of a car 

travelling along a section of road without sound. After viewing each video clip, a new 

screen was presented, which asked participants to answer two questions:  

a) How fast do you think you were going? Using the mouse, the participant 

could either drag the needle or click on the speed they wanted to select, to 

position an on-screen speedometer needle. Once the participant was happy 

with the speed they had selected, they clicked the “Okay” button move to the 

next screen 

b) The participant was then asked, “What do you think would be the most 

appropriate speed for this road condition?” and as in the previous screen, the 

participant was able to select the speed that they preferred driving in that road 

condition using the on-screen speedometer.  

The speedometer was based on a conventional vehicle display (ranging from 0-220 

km/h) with the starting position set to zero. This process was used across all trials of 

the VST.  
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Once participants had selected their estimated and preferred speeds, the original 

blank screen would reappear with the prompt “Next Video” began the three-second 

countdown for the next video trial in the sequence. The process for each trial was the 

same, and it was repeated until all video clips were shown (30 trials, two practice, and 

four repeated trials). Once all the video trials were completed, the program ended.  

To ensure that participants were making consistent speed estimates and choices, the 

task contained four repeating video trials (2 Urban, 2 Rural). These repeated video 

trials were correlated to determine the test-retest reliability for speed estimates and 

choices. 

 

Eye-tracking for Validating Video task 

Eye-tracking is a technique that measures changes in the relative position or 

movements of the eye(s) in relation to stimuli presented in the visual field. In this 

experiment, an eye-tracker will be utilised to examine any differences between novice 

and experienced drivers in how they view and use visual information related to speed 

choice and the different road environments/conditions. As different groups of drivers 

have been examined extensively, there is a good amount of information that can be 

used to compare and validate the speed choice task. If there are behavioural 

differences between the road conditions and type, this can be used to confirm the 

validity of the task. A more comprehensive discussion of eye-tracking can be found in   
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Appendix 9. 

The eye-tracker measures such factors as the spread and number of fixations, the 

amount of gaze devoted to particular on-road features, and the amplitude and pattern 

of saccadic movements. These measures can be used to infer what drivers are using 

to create a mental representation of the road environment (Horsley et al., 2013). 

The primary eye-tracker used in this thesis is the EyeLink II™. This head-mounted 

binocular eye-tracker allows the participant freedom of head movement while still 

recording eye movements with a high degree of accuracy. Participants have a greater 

degree of freedom to move with the head-mounted eye tracker; however, they were 

instructed to remain as still as possible throughout the experiments after being 

comfortably seated until the validation and calibration procedure was complete. 

Experiments using the EyeLink II™ were conducted using a Samsung high-resolution 

48” display, with a Dell Optiplex 780 to record the eye-movement data, and a Dell 

Minitower (Intel i5, 2.8GHz, 4Gb RAM,  4Gb Graphics Card) running Windows 8-10. 

Eye movements were sampled from both eyes at a rate of 250-500Hz.  

 

Eye-tracking Calibration and Validation 

In order to ensure that data collected by eye-tracker equipment is accurate it was 

calibrated for each participant. This procedure is identical for the EyeLink II and the 

EyeLink 1000 used in this thesis. The eye-tracker was securely fastened to the 

participants head, and the two cameras were positioned to allow for a clear view of 

both the pupil and reflected corneal light (see Figure 20).  
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Figure 20: The binocular eye-tracker used throughout this thesis (EyeLink II ™, SR Research). . As 
displayed, the Eye-tracker was secured to the participants head using three fastener straps, and 

two IR-cameras with IR-LEDs were used to record Binocular eye movements.  

 

For calibration, a matrix of 9-dots appeared one at a time at points about the screen 

(to map the edges and centre of the screen. Participants were instructed to focus on 

each point as they appeared. This procedure was conducted twice to enable validation 

before the start of each experiment. Using a 9 point calibration grid with an error 

threshold of +-2 degrees was the threshold for proceeding with the experiment. The 

initial calibration procedure took approximately 20 seconds and was followed by 

validation, which followed the same sequential target dot display. Where possible 

during the experiment, drift correction was conducted between each trial. Drift 

correction involved participants focusing on a single dot that appeared between trials, 

located in the centre of the screen, to ensure consistency in fixation location across 

the course of the task. The eye-tracker was able to use any variation to recalibrate if 

any drift was identified. If the participant’s head position shifted during the 

experiment, or participants altered position noticeably between trials during an 

experiment, a calibration and validation procedure was conducted to correct for any 

potential error. 

 

Measuring Saccades and Fixations 

The essential measures of eye movements are fixations and saccades. Saccades can be 

defined simply as rapid eye movement with direction and acceleration, typically 
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varying in duration from 10ms to 100ms (Duchowski, 2003). The perceptual system 

uses saccades to direct the eye from one point of interest to another. A fixation occurs 

when eye gaze is directed and is usually representative of mental processing. Fixation 

durations vary and are task-dependent. For example, the mean fixation duration on a 

reading task is 225ms, while for scene perception, it is 330ms (Rayner, 1998). 

Fixations and Saccades are shown in Figure 21, superimposed over Urban Road 2 

during the Day Condition: 

 

Figure 21: Fixations and Saccades, as shown in DataViewer™ (SR Research). Fixations are shown 
(top) as circles, with the diameter representing the duration. Saccadic eye movements (bottom) 
are presented as orange lines connecting fixations. The pattern of saccades, or ‘jumps’, between 

fixations can be used to determine the visual search strategy used. 

 

In this research, fixations that were shorter than an interval of 80ms were excluded, 

as these often preceded multiple short saccades that were considered corrective eye 

movements unrelated to the acquisition of visual information (Duchowski, 2004). 
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Fixations with a duration longer than 140ms were considered to relate to sustained 

focal processing (Holmqvist et al., 2011), indicating where drivers’ visual attention 

was orientated. This criterion was used to distinguish cognitive-process related 

fixations from non-cognitive fixations (e.g., Crundall & Underwood, 1998). In this 

research, the default SR Research DataViewer™ settings were used to calculate 

fixations and filter out micro-saccadic and tremor noise.  

Fixation durations ranging from 200ms are typical for the early stage of perceiving 

hazard-related stimuli within a driving-related context (Velichkovsky et al., 2002; 

Pollatsek & Rayner, 1982). Crundall and Underwood (1998) found that fixations 

associated with perceiving hazards range from 325 ms to 395 ms given the driving 

demands. Following on from this early research Geoffrey Underwood et al. (2002) 

found that novice drivers average gaze ranged from 836 ms on rural roads to 512 on 

urban roads. Experienced drivers gaze was found to range from 822 ms to 509 ms 

under the same conditions. Based on this previous research, it was anticipated that 

novice drivers would have longer fixations when perceiving hazards, while 

experienced drivers would have shorter fixations when perceiving hazards. 

Fixations provide a means of determining where a driver has gained visual 

information about the road or internal vehicle instruments. The duration and 

distribution of these fixations is an essential measure of both the total time spent 

assessing the importance of features in the visual field to the driving task and the 

efficiency of a person's visual search strategies (Vlakveld, 2014). These measures can 

be used to differentiate between novice and experienced drivers effectively9 as it is 

generally assumed that novice drivers require more sustained fixation time than 

experienced drivers to extract relevant driving-related information from the 

environment. Research also suggested that experienced drivers will make more 

saccadic movements across a broader area of the visual field and that the time 

between their saccades will be shorter. For more information, refer to   

                                                           
9 Konstantopolis (2011) focused his thesis on the effeciancy of visual search and the importance of driver education and 

the development of training interventions. 
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Appendix 9. 

 

Computer and Display Settings 

The video scenarios for the Video Speed Task (VST) were presented on a Panasonic 

48” high definition LCD at a resolution of 1920 x 1080i pixels (16:9 aspect ratio). The 

display settings were set to factory standard. Participants were seated in a desk chair 

positioned 1 meter from the display, giving a viewing angle of 54°. The experiment 

ran on a Dell OptiPlex 780 Minitower desktop computer (3.2GHz processor, 4GB RAM, 

Nvidia GeForce 360) running Microsoft Windows 7 Enterprise. 

Participants were tested using a head-mounted eye-movement tracker (EyeLink II, 

500Hz sampling rate) to collect eye-movement data. The participant setup and 

briefing, calibration and validation procedure was conducted. In this experiment, 

between-trial drift correction was performed in this speed choice task when required; 

however, the three-second countdown provided a reference for post-hoc drift 

correction. 

The need for drift correction or recalibration was determined by the real-time 

observation of drivers visual behaviour as fixations were superimposed in real-time 

over the video clip as it was played. This provided a unique view of where participants 

were focusing on a separate display, allowing the experimenter to determine when 

drift correction or recalibration was required (e.g., when gaze shifted from the count-

down between trials).  

 

Procedure 

Participants were provided with an overview of the experimental setup and the task 

requirements, including how the eye-tracker was attached. Participants were given 

an information sheet and ethics consent form (Appendix 2). After providing consent, 

participants were seated in front of the display, approximately one meter from the 

screen. The eye-tracker was placed on the participant’s head. Participants were asked 

to look at each edge of the display, and the cameras were adjusted to ensure the 

cornea and pupil were correctly measured. Once the eye-tracker was configured, 

participants were given a mouse and mouse-pad to select speeds. The eye-tracker was 
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configured using a 9-point calibration and validation grid, with an acceptable 

threshold of 2 degrees. 

The speed choice task began with two practice trials followed by 28 video clips 

representing different road scenarios. Four of the video clips are repetitions of 

previous clips to measure consistency across the experimental trials. The task 

consists of 24 video scenarios, covering the urban and rural road environments and 

type/conditions presented in a predetermined randomized order that was consistent 

for all participants. Participants were then asked (for each clip) to estimate how fast 

the vehicle was travelling (estimate measure) and what the appropriate speed would 

be for the road they were just shown (choice measure). Once the experiment 

concluded, participants were provided an informal debrief and thanked for their 

participation.  
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Results 

Speed Choices and Estimation 

Initial analysis was conducted on the raw data to test for validity and to determine 

what form of analysis would be the most appropriate. Statistics related to this initial 

analysis of the normality and descriptive information are found in Appendix 3. The 

speed choices for the different roads were grouped according to their primary 

characteristics (type, i.e., with and without markings) and road conditions (i.e., day or 

night, wet or dry). As the differing camera vehicle speeds (e.g., 10, 30, 50km/h) were 

not found to influence participants’ speed choices. The total mean speed choice for 

the two urban and two rural road types was calculated for each condition. This 

provided the dependent variable ‘speed choice’ measured in kilometres per hour 

(km/h).  

 

Aggregated Road Speed Choice and Driver Age Group 

In order to demonstrate ecological validity, it was anticipated that the video-based 

speed choice task would differentiate between Novice and Experienced drivers choice 

of speeds, as had been observed in the reviewed literature and previous research 

using video-based tasks. The differences in speeds between Driver Groups were of 

fundamental interest, as speed choice between Novice and Experienced drivers have 

been found to vary significantly in the literature (e.g., Cantwell, Isler, & Starkey, 2013), 

and the road condition is likely to have a powerful effect. The mean speed choices 

from the two different road types for each road environment were calculated to 

provide an overall measure of speed choice between conditions.  

For an analysis of the two driver groups, one being provided with the camera vehicle 

speed and the other having to estimate the camera vehicle speed before making speed 

choices, refer to Appendix 7.
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A graphical representation comparing Novice and Experienced Drivers is shown in Figure 22. From inspection of the figure, it appears that 

Experienced drivers choose slower mean speeds than Novice drivers: 

 

Figure 22: The Mean Overall Speed Choice for both Urban (left) and Rural (right) Road Conditions, by Driver Age Group. Speed Limit is indicated by the 
horizontal dotted line. Error bars represent  95% Confidence Intervals (CI). Significance values are indicated, p< 0.05 *, and p< 0.01 ** 
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Figure 22 indicated that there were differences in the speed choice between Driver 

Groups. Novice drivers, overall, chose faster mean speeds than Experienced drivers 

under both the Day and Night conditions for the Urban Road Environment and faster 

speeds for the Wet condition on the Rural roads. Both Driver Groups chose similar 

speeds for the Dry Condition on Rural roads. There appears to be a within-subject 

effect for Experienced drivers, who chose slower speeds under the Wet condition 

when compared to the Dry condition, while no within-subject differences can be seen 

for Novice drivers 

A mixed, two-way 2 (Driver Group, <25 years vs ≥25 years) x 2 (Road Condition 

(Urban Night vs Urban Day, repeated measures) ANOVA was conducted on the speed 

choices. The ANOVA was significant, Wilks Λ= 0.940, F(1,41)= 4.975, p< 0.05, ηp2= 0.06, 

with a significant main effect for Driver Group, F(1,41)= 35.50, p< 0.01, ηp2= 0.307, and 

no significant main effect for the Urban Road Condition, F(1,41)= 0.99, p=.331, ηp2= 

0.012. No significant interaction between Driver Group and Urban Road Condition 

was received, F(1,41)= .451, p= 0.51, ηp2= 0.006.  

A similar, mixed  two-way ANOVA was conducted  for speed choices in the rural Road 

Condition  (Rural Wet vs Rural Dry), revealing a statistically significant effect, Wilks 

Λ= 0.891, F(1,41)= 9.497, p< 0.01, ηp2= 0.109, with a significant main effect for Driver 

Group,  F(1,41)= 5.613, p< 0.01, ηp2= 0.06, and a significant main effect for rural Road 

Condition, F(1,41)= 36.86, p< 0.01, ηp2= 0.315. No significant interaction between Driver 

Groups and rural Road Condition was received, F(1,41)= .625, p= 0.43, ηp2= 0.008. 
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A series of post-hoc one-way ANOVAs were conducted for the Driver Groups’ speed 

choices for each road condition (Table 2: 

 

Table 2:  
 
Comparing the Mean Speed Choices (post-hoc ANOVAs) between Novice and Experienced Drivers 
for each Road Condition 

 

Speed choice was significantly different between the Driver Groups on Urban roads 

for Day and Night driving conditions. The Novice driver group chose faster mean 

speeds in the Urban Day and Night road conditions than the Experienced driver group. 

Speed choice was also significantly different between the Driver Groups for the Wet 

driving condition on Rural roads, with Novice drivers choosing faster speeds than 

Experienced drivers. There was no significant effect found between Driver Groups in 

the Rural Dry condition, with both groups of drivers choosing similar speeds. 

    Driver Group 

    Novice Experienced 

 F-value Sig ηp
2 M SE M SE 

Urban Day 17.463 0.01** 0.304 46.4 1.88 38.5 1.04 

Urban Night 18.852 0.05* 0.149 43.9 1.34 38.0 1.03 

Rural Dry 1.114 0.58 0.027 88.9 2.16 87.3 2.76 

Rural Wet 25.465 0.01** 0.309 88.2 2.21 79.3 2.11 

Significant values: * = p < 0.05, ** = p < 0.01 
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Road Environment, Type, Condition, and the Effect on Speed Choice 

Another way to demonstrate ecological validity is to focus on the different Road Types 

within each filmed Environment. This would demonstrate that drivers were sensitive 

to the differences in road width and markings, which have been shown to influence 

speed choices in the real world. The initial analysis focused on the differences 

between the Driver Groups responses to Road Environments and Conditions. 

Potential differences in the mean speed choices of novice and experienced 

participants according to differing road Conditions were anticipated by previous 

literature (Cantwell et al., 2012; De Craen et al., 2011). The following analysis 

determined whether there were overall effects between road conditions (Day/Night, 

Dry/Wet) and between road types that had different characteristics. 
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The mean speed choice was calculated for each road type and condition, as shown in Figure 23. Overall differences were calculated first, 

followed by the analysis of Driver Group effects (see Table 3). For context, Urban Road 1 and Rural Road 1 had narrow shoulders and 

limited markings, whereas Urban Road 2 and Rural Road 2 had wide margins and clear road markings. 

 

Figure 23: The difference between Urban (left) and Rural (right) Road Type and Condition. The stripes indicate Road Condition: Night for Urban (left pane) and 
Wet for Rural (right pane). The horizontal dotted line indicates the road speed limit. Error bars represent 95% CI. Significance values are indicated, p< 0.05 *, 

and p< 0.01 **
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Examining the Between and Within-subject effects for Road Condition and Types 

Visual inspection of Figure 23 indicates that road condition and type influence all 

participants' overall speed choices. Both groups of drivers selected slower speeds for 

Night than for Day conditions for Urban Road 1. There are substantially lower chosen 

speeds on Urban Road 1 (no markings) than Urban Road 2 (markings) when 

comparing urban road types. Participants chosen speeds were similar irrespective of 

the condition by choosing roughly the same speeds for both Day and Night conditions.   

Figure 23 also clearly showed that both road type and condition influenced drivers’ 

speed choices. Overall, participants selected slower speeds for the Wet when 

compared with the Dry condition. There were differences between Road Type, with 

Rural Road 1 (no markings) having lower speeds than Rural Road 2 (markings). 

  

Table 3:  
 
Comparing Speed Choices for each Road Condition (post-hoc ANOVA) for Urban and Rural Road 
Types 

 

A two-way ANOVA was conducted for Urban speed choices, with Road Type as the 

within-subjects factor, and Condition as the between-subjects factor. The ANOVA 

showed that speed choices differed between condition, Wilks Λ= 0.553, F(1,39)= 31.55, 

p< 0.01, ηp2= 0.447, but not between road type, Wilks Λ= 0.955, F(1,39)= 1.855, p= 0.181, 

ηp2= 0.45. A significant interaction between Type and Condition was identified, Wilks 

Λ= 0.915, F(1,39)= 13.249, p< 0.01, ηp
2= 0.254. Post-hoc ANOVAs between condition are 

shown in Table 3, and between types are shown in Table 4.  

 

Environment Type Condition F-Value Sig. ηp
2 

Urban Roads 1 (no markings) Day 15.875 0.01** 0.284 

 - Night - - - 

 2 (markings) Day 0.002 0.962 0.001 

 - Night - - - 

Rural Roads 1 (no markings) Dry 156.41 0.01** 0.796 

 - Wet - - - 

 2 (markings) Dry 94.648 0.01** 0.703 

 - Wet - - - 
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A post-hoc ANOVA confirmed that, overall, participants chose significantly faster 

speeds on Urban Road 1 (no markings), with faster speed choices in the Day compared 

to the Night condition. There was no significant difference in speed choice on Urban 

Road 2 (markings) between the Day and Night condition. 

A similar two-way ANOVA was conducted on Rural speed choices with Road Type as 

the within-subjects factor and Condition as the between-subjects factor. The ANOVA 

showed that speed choices differed between condition, Wilks Λ= 0.173, F(1,40)= 

191.663, p< 0.01, ηp2= 0.827, and between road type, Wilks Λ= 0.309, F(1,40)= 89.421, 

p< 0.01, ηp2= 0.691. No significant interaction between Type and Condition was 

identified, Wilks Λ= 0.983, F(1,40)= 13.249, p= 0.406, ηp2= 0.017.  Mean speed choice 

was significantly slower on Rural Road 1 (no markings) in the Wet compared to Dry 

condition. Similarly, mean speed choices were slower in Wet condition on Rural Road 

2 (markings) than the Dry condition.  

The main effects of a post-hoc ANOVA between the different Road Types are shown 

in Table 4. Figure 23 clearly indicated differences between Urban Road 1 and 2, and 

Rural Road 1 and 2, with drivers selecting faster speeds on the roads with markings 

and shoulders (Urban Road 2, Rural Road 2).  

________________________________________________________________________ 

Table 4:  
 
Comparing Speed Choices for each Road Type (post-hoc ANOVA) for Urban and Rural Road 
Conditions 

 

There were differences in speed choices between road environments, with apparent 

differences between the Urban and Rural Road Types under different driving 

Environment Condition Type F-Value Sig. ηp
2 

Urban Roads Day Urban 1 (no markings)  5.038 0.05* 0.112 

 - Urban 2 (markings) - - - 

 Night Urban 1 (no markings)  43.54 0.01** 0.521 

 - Urban 2 (markings) - - - 

Rural Roads Dry Rural 1 (no markings)  48.448 0.01** 0.548 

 - Rural 2 (markings)  - - - 

 Wet Rural 1 (no markings) 74.028 0.01** 0.649 

 - Rural 2 (markings)  - - - 
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conditions. Statistically significant differences in speed choice were found between 

Road Types using repeated mixed ANOVAs on both Urban roads for the Day and Night 

driving conditions. Participants chose slower speeds for the Day condition on Urban 

Road 1 (no markings) than for Urban Road 2 (markings) and slower speeds in the 

Night condition on Urban Road 1 (no markings) than for Urban Road 2 (markings).  

Observed differences between the two rural road types were confirmed as 

statistically significant for both the dry and wet road conditions. Participants chose 

slower speeds for the dry condition on Rural Road 1 (no markings) than for Rural 

Road 2 (markings) and slower speeds in the wet condition on Rural Road 1 (no 

markings) than for Rural Road 2 (markings). Overall, these findings suggest that 

drivers are more sensitive to conditional changes on Urban Road 1 (no markings) 

compared to Urban Road 2 (markings) and Rural Road 1 (no markings) compared 

with Rural Road 2 (markings). 
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Are Speed Choices of All Drivers Dependent on Driving Conditions? 

The mean speeds for each road type and condition were calculated for the two environments in order to determine whether fixed and 

variable road characteristics influence speed choice for Novice and Experienced Drivers. The speed choices are graphically represented in 

Figure 24: 

  

Figure 24: The Speed Choices for Road Type and Condition for Urban (left) and Rural (right) Environments, by Driver Group. The horizontal dotted line 
indicates the road speed limit. Error bars represent 95% CI. Significance values are indicated, p< 0.05 *, and p< 0.01 ** (Braces show between-group 

differences). Road 1 indicates a without lane markings, and Road 2 indicates lane markings. 
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From inspection of the figure, there are significant differences between the two driver 

groups for the Urban Roads, with Experienced drivers selecting slower speeds under 

both Day and Night conditions for both road types. There does not appear to be any 

significant within-subject differences between Condition and Type for Novice drivers, 

though Experienced drivers appear to choose slower speeds on both Night roads 

compared with Day roads, and there appears to be a difference in speed choice for 

Road 1 and 2 during Night conditions. 

For Rural road conditions and types, both driver groups select slower speeds on Road 

1 for Wet conditions compared to Day conditions. This difference does not appear 

significant for Rural Road 2 (markings) for Novice drivers, though it appears 

significant for Experienced drivers between conditions. Both driver groups selected 

faster speeds on Rural Road 2 (markings) than Rural Road 1 (no markings) under 

both Conditions, and there appears to be a between-subject difference in the speed 

choices for the Wet condition on Rural Road 2 (markings). 

Inferential testing using multiple mixed ANOVAs were performed to determine if 

speed choices significantly differed between Driver Groups in relation to different 

Road Types and Conditions.  

A mixed, two-way 2 (Driver Group,) X 2 (Road Condition, repeated measures) X 2 

(Type (Road 1 vs., Road 2), repeated measure) ANOVA was conducted, revealing a 

significant effect for Urban Road Condition Wilks Λ= 0.553, F(1,40)= 31.555, p< 0.01, 

ηp2= 0.447, but not for Urban Road Type, Wilks Λ= 0.955, F(1,40)= 1.855, p= 0.181, ηp2= 

0.060. There was a significant interaction between Driver Group * Type * Condition, 

Wilks Λ= 0.746, F(1,40)= 13.249, p< 0.01, ηp2= 0.118. No other significant interactions 

were observed.  

For Rural roads, a similar mixed, two-way 2 (Driver Group,) X 2 (Road Condition, 

repeated measures) X 2 (Type (Road 1 vs., Road 2), repeated measure) ANOVA was 

conducted, revealing a significant effect for Rural Road Condition Wilks Λ= 0.295, 

F(1,40)= 93.097, p< 0.01, ηp2= 0.705, and for Rural Road Type, Wilks Λ= 0.171, F(1,40)= 

188.439, p< 0.01, ηp
2= 0.829. However, there were no significant interactions 

observed.  

Post-hoc analysis using a mixed, two-way 2 (Driver Group, <25 years vs ≥25 years) x 

2 (Condition (Urban Day, Urban Night) ANOVA was conducted on speed choices for 

each road type. The ANOVA revealed that for speed choices on Urban Road 1 (no 
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markings), there was a significant main effect for Driver Groups, F(1,41)= 29.814, p< 

0.01, ηp2= 0.277, though no significant effect between Day and Night Conditions, 

F(1,41)= 3.670, p=.59, ηp2= 0277. The ANOVA revealed  that for speed choices on Urban 

Road 2 (markings), there was a significant main effect for Driver Group, F(1,41)= 15.852, 

p< 0.01, ηp2= 0.169, and a significant effect between Day and Night condition, F(1,41)= 

027, p= 0.87, ηp
2= 0.027. However, no significant interaction was perceived between 

Condition and Driver Groups for Urban Road 1, F(1,41)= .449, p= 0.50, ηp
2= 0.006., or 

for Urban Road 2 (markings), F(1,41)= 2.783, p= 0.99, ηp
2= 0.034. 

A similar post-hoc analysis was conducted for speed choices on Rural Road Types 

using a mixed, two-way 2 (Driver Group) x 2 (Condition(Rural Wet, Rural Dry) ANOVA. 

The ANOVA revealed that for speed choices on Rural Road 1 (no markings), there was 

a significant main effect for Driver Groups, F(1,41)= 4.007, p< 0.05, ηp2= 0.049, and a 

significant effect between Dry and Wet Conditions, F(1,41)= 38.437, p< 0.01, ηp2= 0.337. 

The ANOVA revealed that speed choices on Rural Road 2 (markings), there was a no 

significant main effect for Driver Group, F(1,41)= 0.461, p= 0.49, ηp2= 0.006, though 

there was a significant effect between Dry and Wet Condition, F(1,41)= 31.190, p< 0.01, 

ηp2= 0.286. No significant interaction was perceived between Driver Group and 

Condition for Rural Road 1, F(1,41)= .019, p= 0.89, ηp2= 0.019., or for Rural Road 2, 

F(1,41)= 0.367, p= 0.54, ηp2= 0.005. 

________________________________________________________________________ 
Table 5: 
 

Comparing Speed Choices for Driver Groups on Urban and Rural Road Types and Conditions  

 

    Driver Group 

    Novice Experienced 

 F-value Sig ηp
2 M SE M SE 

Urban Day 1 10.622 0.01** 0.214 43.7 1.66 32.5 1.15 

Urban Day 2 11.415 0.01** 0.226 49.3 2.97 36.4 1.29 

Urban Night 1 5.378 0.05* 0.121 41.8 1.72 41.81 1.56 

Urban Night 2 18.886 0.01** 0.326 46.3 1.22 38.2 1.56 

Rural Dry 1 0.415 0.52 0.01 84.9 2.58 80.0 1.78 

Rural Dry 2 0.01 0.93 0.001 92.3 2.23 92.1 2.22 

Rural Wet 1 2.212 0.14 0.052 70.3 2.76- 66.0 1.49 

Rural Wet 2 6.751 0.05* 0.144 88.6 2.67 77.6 2.15 

Significant values: * = p < 0.05, ** = p < 0.01 
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A one-way ANOVA was conducted to examine the individual road types for the urban 

road condition and found that novice drivers chose significantly faster speeds than 

experienced drivers on Urban Road 2 (markings) under both day and night driving 

conditions. Similarly, novice drivers chose significantly higher speeds than 

experienced drivers on Urban Road 2 (markings) during the day condition, and 

significantly faster for the night condition.  

For Urban Road 1 (no markings), Experienced drivers selected significantly slower 

speeds in the Night condition compared to the Day condition. Unexpectedly, 

experienced drivers chose a significantly faster speed choice on Urban Road 2 

(markings) with a speed choice of 41.8 km/h (SE= 1.56) during Night driving 

conditions than the slower speed choice of 38.2 km/h during Day Conditions (SE= 

1.56). 

In examining speed choice for the individual Rural road types, there was no significant 

effect on speed choice between driver age groups for Rural Road 1 in either Dry or 

Wet conditions. On Rural Road 1, Novice drivers’ speed choice was significantly 

different in wet compared to in the Dry condition. Experienced drivers’ speed choice 

was also significantly different in dry conditions compared to in wet conditions.  

Within-subject contrasts found that in the absence of shoulders or road markings, 

both Driver groups showed a significant reduction in speed choice in the Wet 

condition compared to Dry condition for both Rural Road 1, F(1,41)= 68.60, p< 0.01, 

ηp2= 0.774, and for Rural Road 2, F(1,41)= 39.23, p< 0.01, ηp2= 0.662.  Speed choice was 

significantly different between groups on Rural Road 2 where shoulder and road 

markings were present, F(1,41)= 41.37, p< 0.01, ηp2= 0.697. The experienced driver 

group selected a slower speed choice in the wet condition compared to the Dry 

condition. However, speed choice was not significantly (p= 0.756) different between 

the Wet compared to the Dry condition for Novice drivers. 

 

 

 

 

 



103 
 

 

 

 

Do Eye Movements differ between Driver Age Groups?  

 

Eye movement data was analysed10 at two different levels. The first level involved 

overall comparisons between the two Driver groups in relation to the number of 

fixations, fixation duration, spatial distribution of fixations, number and amplitude of 

saccades, number of blinks and pupil dilation. The second level involved a more 

nuanced approach, observing eye-movement comparisons between driver age 

groups for each road Environment, Type, and Condition. This approach will focus on 

fixations primarily and was intended to reveal any significant effects of variable visual 

cues, such as illumination and diminished visibility (weather), and the presence of 

other road users (vehicles and pedestrians), as well as the role of fixed road 

characteristics, such as visual cues related to the fixed infrastructure (e.g., markings 

and shoulders). The spatial distribution of fixations was examined to determine 

where drivers collect their visual information to make speed judgements. 

 

Initial Examination of Eye-movement Data 

The first stage of examining the eye-movement data was to determine if any 

participants or trials involved unusual patterns that would indicate miscalibration, 

distorted vision, or high drift levels. Six participants’ data (3 Novice, 3 Experienced) 

were removed from the sample due to poor quality of eye-movement data due to 

incomplete data output from the eye-tracker or extreme drift or other distortion in 

the data. Post-Hoc drift correction 11  was performed for each trial across all 

participants, and fixation cleaning (SR Research Data Viewer) removed fixations 

shorter than 80ms. 

 

Differences between Driver Age Groups 

The number of fixations and fixation duration provided a good indication of how 

drivers process the visual scene and have been used extensively in driving research 

as primary measures of both visual-spatial attention as well as a proxy measure of 

                                                           
10 We used either the SR Research Data Viewer, or our own specially written code in MatLab or Excel – though statistical 

analysis was conducted in SPSS 
11 The countdown timer was present before the beginning of each trial and provided a good reference for the centre of 

the screen (visual field). This fixed reference point was used to adjust for slight vertical and horizontal drift. 
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cognitive load. The mean number and duration of fixations were calculated, and the 

differences between Driver Groups are shown in Figure 25:  

 

Figure 25: The Total Number of Fixations across all trials (left) and Fixation Duration (right), by 
Driver Group. The bars represent 95% CI Significance values are indicated, p< 0.05 *, and p< 0.01 

** 

 

Figure 25 clearly shows that the number of fixations per trial was slightly greater for 

Experienced drivers than novice drivers, though the difference does not appear to be 

significant. In relation to the average fixation duration per trial, the Novice drivers 

appeared to have a greater mean fixation duration than the Experienced drivers, who 

had much more rapid fixations.  

A one-way ANOVA comparing the number of fixations across all trials between Novice 

and Experienced drivers revealed no statistically significant difference between 

groups, F(1,38)= 1.588, p= 0.217, ηp2= 0.047, with Novice drivers (N= 20) having an 

average of 424 fixations (SD= 93.02) and Experienced drivers (N= 19) an average of 

458 fixations (SD= 62.53). However, a one-way ANOVA revealed that the duration of 

fixations was significantly different between Driver groups F(1,38)= 6.301, p < 0.05, 

ηp2= 0.165, with Novice driver group (M= 424.3msec, SD= 113.78) having longer 

fixation durations, compared to the Experienced drivers (M=347.5msec, SD= 64.97). 

Saccades also provide useful information in relation to the distance between fixations, 

as the perceptual system uses saccades to direct the eye from one point of interest to 

another, which indicates search behaviour, with the number of saccades related to the 

general points of fixation and greater saccadic amplitude representing a greater 

distance between fixations within the visual field (Duchowsky, 2003; Velinchovsky, 

Rothert, Miniotas, Dornhofer, Joos, & Pannasch, 2003). 
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The Mean Number of Saccades and Saccadic Amplitude are shown in Figure 26: 

 

Figure 26: The Number (left) and Average Amplitude (right) of Saccades across all trials, by Driver Group. . Error bars represent 95% CI. Significance values are 
indicated, p< 0.05 *, and p< 0.01 **  
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As indicated in Figure 26, the Experienced driver group had a greater average number 

of saccades over all trials, as well as greater saccadic amplitude, indicating that the 

distance between fixations was overall larger than that of Novice drivers.  

A one-way ANOVA comparing the number and amplitude of saccades between Driver 

Group indicated that the total number of saccades was significantly different, F(1,38)= 

5.707, p< 0.05, ηp2= 0.151, with Novice drivers an average of 404 saccades (SD= 91.09), 

and Experienced drivers having an average of 472 saccadic eye movements (SD= 

76.79). The amplitude of saccades was also significantly different between the Driver 

groups, F(1,38)= 7.665, p< 0.01, ηp2= 0.193, with the Novice drivers (M= 5.6° arc., SD= 

2.29) having shorter saccades compared with the Experienced drivers (M= 7.3° arc. 

SD= 1.58). 

 

Blinks and Pupil Dilation 

As a measure of cognitive workload, blink rate and duration and pupil diameter were 

analysed between participant groups. A one-way ANOVA revealed that the number of 

blinks was not significant between Driver Group, F(1,38)= 1.944, p= 0.17, ηp2= 0.054 

with the average blink number per trial being 25.8 (SD= 25.67). The mean blink 

duration, F(1,38)= 0.597, p= 0.444, ηp2= 0.017 was also found not to be significantly 

different between Driver groups (M= 76.6msec, SD= 48.21. Pupil dilation was also 

found not to be significant between Driver groups, F(1,38)= 0.528, p= 0.444, ηp2= 0.012, 

with a mean diameter measure of 692.5 µm (SD= 161.90). 
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Do Road Environment, Type, and Condition affect Drivers Eye movements? 

The differences seen between Novice and Experienced drivers in fixation number and 

duration could be an initial indication that driver groups use alternative search 

strategies. Further analyses were conducted to examine how eye movements - in 

particular fixation behaviour - differ between Driver groups under various Road 

Conditions to understand better how drivers select ideal speeds.  

 

Within and Between-Group Effects for Differing Road and Traffic Conditions 

Considering that the duration of fixation, rather than the number of fixations, was 

significantly different between Driver groups in aggregate, two separate mixed 

ANOVA were conducted between driver groups to determine the effect of road type 

and condition on fixation duration. This analysis presents the results, with the 

number of fixations shown in Figure 27, and then fixations durations in Figure 28. The 

Figure illustrated that the only difference within Driver Groups for Urban road 

environments was that the duration of fixations was greater for the Novice driver 

group on Road 1 for Day and Night. 
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Figure 27: The Number of Fixations for each Road Environment, Type, and Condition, by Driver Group. Urban Environment for Day and Night Condition are shown (left), 
and Rural Dry and Night Condition (right). Error bars represent 95% CI. Significance values are indicated, p< 0.05 *, and p< 0.01 *  
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Figure 28: The Duration of Fixations for each Road Environment, Type, and Condition, by Driver Group. Urban Environment for Day and Night Condition are shown (left), 
and Rural Dry and Night Condition (right). Error bars represent 95% CI. Significance values are indicated, p< 0.05 *, and p< 0.01 * 
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Concerning the number of fixations displayed in Figure 27, there appears to be a 

significant difference between both driver groups for the Urban day scenario between 

both road type and condition, with drivers having a more significant number of 

fixations for Road 1 than Road 2, and interestingly, more fixations for day driving 

conditions than for night. A similar effect appears between drivers on Rural road, with 

greater fixations for Rural Road 1 compared with Road 2 under the Wet condition and 

a greater number of fixations for the Wet condition compared to the Dry on Rural 

Road 1. The number of fixations between conditions was also different for Novice 

drivers on Rural Road 2, which was not observed for the Experienced driver group. 

Experienced drivers had a greater number of fixations for all road conditions and 

types when compared to the Novice driver group.  

Referring to Figure 28, the main difference observed was between Driver groups with 

more Experienced drivers having more rapid fixations than Novice drivers for all 

scenarios with a high degree of statistical significance. There appear to be significant 

within-subject differences on the Rural road environment for Wet and Dry conditions 

for Road 1. This difference indicated that both driver groups required significantly 

longer fixation durations for the Road 1 Wet condition than the Road 2 Wet condition. 

There also appears to be a difference for fixation durations between Novice drivers 

for Wet and Dry conditions on Rural Road 2, with Novice drivers using longer fixations 

for Wet driving. This effect is not observed for Experienced drivers. 

For Rural roads, a similar mixed, two-way 2 (Driver Group,) X 2 (Road Condition, 

repeated measures) X 2(Road Type(Urban Day, Urban Night)) ANOVA revealed a 

significant between-subject effect for the number of fixations for Driver Group, Wilks 

Λ= 0.231, F(2,38)= 8.988, p< 0.01, ηp2= 0.321, with a significant main effect for Driver 

group, F(1,34)= 37.32, p< 0.01, ηp
2= 0.523. There was also a significant main effect 

between Day and Night road conditions, F(1,38)= 4.616, p< 0.05, ηp2= 0.120, though 

there was no significant main effect between the duration of fixations concerning 

Road Type, F(1,38)= 0.054, p= 0.81, ηp2= 0.056. The analysis also revealed a significant 

difference in fixation durations between driver groups in Night conditions, Wilks Λ= 

0.231, F(1,38)=54.92, p< 0.01, ηp2= 0.769, with Novice drivers having longer fixation 

durations for both roads compared to the Experienced driver group. No significant 

interaction between Driver Group and Urban Road condition (p= 0.58) or Type (p= 

0.51) was perceived.  
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A similar analysis using repeated mixed two-way ANOVA revealed a significantly 

different fixation duration for both Rural Wet and Dry road conditions, Wilks Λ= 0.500, 

F(1,38)=29.94, p< 0.01, ηp2= 0.500. Concerning between-subject effects between Driver 

Groups, the examination of the table indicates that there is little difference in fixation 

duration between road types. However, there were significant differences between 

Driver Groups for all road conditions.  

Planned contrasts from multiple one-way ANOVA are shown in Table 6: 

_________________________________________________________________________________________________ 

Table 6:  
 

Comparing the Mean Fixation Durations (post-hoc ANOVAs) between Novice and Experienced 
Drivers for each Road Condition  

 

Table 6 shows that the mean fixation duration was significantly different for all 

conditions between Novice and Experienced Drivers. There appeared to be similar 

fixation durations within groups in Dry conditions, suggesting that the visual 

demands between road types were not significantly different. This was confirmed by 

a mixed 2(Condition) X 2(Road Type) ANOVA between Driver Groups, Wilks Λ= 0.986, 

F(1,38)= 0.234, p= 0.631, ηp
2= 0.01. The fixation duration appeared to be different 

within-groups for the two road types under the Wet condition. Both groups had 

longer fixations for Rural Road 1 (no shoulder and markings).  

  

     Novice Experienced 

Environment Road F-Value Sig. ηp
2 M SE M SE 

Urban Roads UD 1 5.672 0.05* 0.159 413 17.6 318 23.8 

 UD 2 63.151 0.01** 0.678 424 11.1 311 9.4 

 UN1 21.829 0.01** 0.421 435 11.9 326 15.2 

 UN 2 25.185 0.01** 0.456 440 13.7 325 15.5 

Rural Roads RD 1 15.110 0.01** 0.335 535 47.3 342 19.5 

 RD 2 6.400 0.05* 0.176 502 25.3 366 29.7 

 RW 1 40.830 0.01** 0.576 630 20.4 416 23.9 

 RW 2 14.163 0.01** 0.321 554 35.3 381 23.3 

Significant values: * = p < 0.05, ** = p < 0.01 
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__________________________________________________________________________________________________________ 

Table 7: 
 
Comparing the Mean Number of Fixations (post-hoc ANOVAs) between Novice and Experienced 
Drivers for each Road Condition  

 

A mixed 2(Condition) X 2(Road Type) ANOVA revealed there was a significant 

difference between fixation duration on Wet Rural roads for Novice drivers F(1,20)= 

13.97, p< 0.01, ηp2= 0.318. Fixation durations on being longer in duration on Rural 

Road 1 compared to Rural Road 2. A mixed 2(Condition) X 2(Road Type) ANOVA 

between Driver Groups revealed that there was no significant difference in fixation 

durations between Rural roads for Experienced drivers, F(1,19)= 3.947, p= 0.056, ηp2= 

0.116. This may suggest that certain factors on Rural Road 1 require a longer fixation 

time to process under Wet conditions for Novice drivers. 

The Novice driver group had a lower number of fixations on all rural road conditions 

compared to the Experienced driver group, who had a higher number of fixations, 

especially on roads that required vigilance. Inferential testing determined a 

significant difference between driver age groups on Rural Road 1 under the Dry 

condition, although no significant difference was found on Rural Road 2. Under the 

Wet condition, there was no significant difference between driver age groups for 

either Rural roads. 

Referring to Table 7, planned contrasts using a two-way 2(Age Group) X 2(Condition) 

ANOVA confirmed this observation, with significant differences found in the number 

of fixations between Driver Groups for all Urban Road conditions. The analysis 

     Novice Experienced 

Environment Road F-Value Sig. ηp
2 M SE M SE 

Urban Roads UD 1 6.609 0.01** 0.163 51.1 2.12 57.6 1.37 

 UD 2 10.649 0.01** 0.244 48.0 1.61 54.5 1.15 

 UN1 11.835 0.01** 0.258 47.8 1.53 55.2 1.50 

 UN 2 10.267 0.01** 0.232 46.2 1.81 53.0 1.10 

Rural Roads RD 1 5.991 0.05* 0.063 45.8 2.04 53.0 1.50 

 RD 2 3.486 0.09 0.093 44.8 1.89 49.5 1.58 

 RW 1 2.944 0.09 0.080 38.9 1.87 42.0 1.53 

 RW 2 1.595 0.21 0.045 42.6 2.21 38.9 1.22 

Significant values: * = p < 0.05, ** = p < 0.01 
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revealed that for both Urban Day and Night driving conditions, the number of 

fixations was significantly different between Driver Groups for both road types. The 

Novice driver group had fewer fixations than the Experienced driver group. A 

separate repeated measure ANOVA searched for any within-group effects in relation 

to the number of fixations, with no significant difference between Urban road types 

identified. 

 

Within Group Effects between Road Types 

Repeated mixed-measure ANOVA was conducted to explore within-group on the 

number of fixations for 2(Condition X 2(Road Type) between Driver Groups, Wilks Λ= 

0.284, F(1,33)= 19.552, p< 0.01, ηp
2= 0.716 revealing that Experienced drivers differ in 

their fixation count in Day condition F(1,19)= 8.927, p< 0.01, ηp
2= 0.244, with a greater 

number of fixations for Urban Day 1 in comparison to Urban Day 2. However, there 

was no significant difference in the Night condition between Urban road types. For 

Novice drivers, there were no significant within-group effects for both Urban Day 

roads. Planned contrasts using a one-way ANOVA found a significant difference in the 

number of fixations between Wet roads F(1,19)= 11.842, p< 0.01, ηp2= 0.411, with 

Experienced drivers having significantly more fixations for Rural Road 1 compared to 

Rural Road 2. However, there was no difference observed for the Dry Rural condition. 

There were no significant with-subject differences in the number of fixations for 

Novice drivers found in any road condition. The only condition in which within-group 

effects were found to approach significance for Novice drivers were Wet Rural roads, 

where values approached but did not reach significance F(1,20)= 3.979, p= 0.062, ηp2= 

0.190. 

 

The Spatial Distribution of Fixations 

Deviation from the central field was calculated for both vertical and horizontal 

meridians as a measure of spatial distribution (spread of fixations) and are 

represented as distribution plots to demonstrate the differences in the horizontal 

spread of fixations between driver age groups, notably in the peripheral region. The 

Experienced driver group fixating on a broader area over the horizontal axis 

compared with Novice drivers, where attention is focused directly ahead in the 

centre-field.  
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One way of numerically indicating the spread of search is to use the standard 

deviation of the fixation distribution. While the mean represents the average visually 

attended location, the standard deviation provides an indication of the shape of the 

distribution. There was no significant difference in the deviation from the mean 

between Driver Groups for the vertical axis F(1,36)= 0.378, p= 0.543, ηp
2= 0.013. 

However, fixation distribution about the horizontal (x) meridian was found to be 

significantly different, F(1,36)= 5.460, p< 0.05, ηp2= 0.158, for the Experienced driver 

group, which had a larger average spread of horizontal fixations, indicated by the 

higher Standard Deviation (SD) of 333.6 pixels (M= 967 pixels), compared to the SD 

of 147.8 pixels for the Novice driver group (M= 1006 pixels). 

The representation of the spatial location of search (fixations) across trials was 

calculated and plotted for both groups of drivers, and these can be seen for Novice 

(Figure 29) and Experienced (Figure 30) driver groups. The spatial distribution was 

plotted directly from raw fixation data, with horizontal and vertical axes, as well as 

density-plots were shown over a frame from the corresponding video trial. This 

provides a way of observing eye-movement data without smoothing out the small 

details that indicate particular ways drivers search the road 12 . As discussed by 

Holmqvist et al. (2011), we note that attention maps represent the spatial distribution 

of data, and caution should be taken when assuming that where participants look is 

not the same as why they look at that location. This being said, Holmqvist et al. (2011) 

suggest that attention maps are a versatile and useful method for showing visual 

behaviour. 

 

                                                           
12 This was necessary at this stage, as while all members of a group can be aggregated, and numbers such as the range and 

mean values for spread of search. However, when trying to represent where drivers devote visual attention, aggregation 
from a large sample tends to leave a large “blob” in the center of the road, due to the noise present in the fixation data (i.e. 
drivers all view some aspect of the environment, such as a tree, but this is unique for each driver, creating large amount of 
visual noise). To remove visual noise, distributions are generated for all participants, and then sorted into 
novice/experienced groups for each condition so that the researcher can inspect the general trends. This also allows for 
the identification of distorted or invalid data before analysis. Following inspection of overall trends, data representing the 
overall trend is aggregated which removes the noise. Although this requires some subjective judgement, it remains the best 
solution that represents the visual behaviour of the most participants faithfully. Later analysis can be performed, and all 
data will be made available. 
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Figure 29: Representative Spatial Distribution of Fixations for Novice Drivers. Blue circles 
represent the Location of Fixations, and their size represents their Relative Duration in msec. The 
distribution plots show the horizontal and vertical spread of the distribution. The unit measure in 

pixels. 

 

Figure 30: The Representative Spatial Distribution of Fixations for Experienced Drivers. Blue 
circles represent the Location of Fixations, and their size represents their relative Duration in 

msec. The distribution plots show the horizontal and vertical spread of the distribution. The unit 
measure is in pixels. 

 

From a comparative observation of Figure 29 and Figure 30, it can be clearly seen that 

Experienced and Novice drivers look at different locations on the roadway. A 

distinctive double-peak on the vertical axis indicated that the majority of drivers 
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examined features in the distance ahead of the vehicle. Novice drivers seem to devote 

their attention to the centre of the marked carriageway and look quite close, almost 

directly ahead of the vehicle with short glances into the distance. Experienced drivers, 

by comparison, search both to the centre, left, and right-hand sides of the lane and 

dedicate a considerable amount of visual attention to scanning the road and traffic 

situation further ahead of the vehicle compared to Novice drivers. Furthermore, it 

appears as if drivers rely to some degree on the lane markings, especially novice 

drivers. When lane markings are absent or less apparent, visual search appears to be 

more broadly distributed. 

 

The Distribution of Search over Differing Road Environments and Conditions 

The distribution of search was calculated and then plotted for each participant in both 

Novice and Experienced driver groups for each of the different roads. In order to 

illustrate differences that might exist between driver groups across the different road 

situations, each distribution plot was examined in relation to the Driver Group, and 

representative plots were selected that best conveyed the overall behaviour of the 

group. These are represented below, in the order of Urban Road 1 (Figure 31) then 

Urban Road 2 (markings) (Figure 32). The distribution of fixations on Rural roads is 

shown for Rural Road 1 (Figure 33), followed by Rural Road 2 (Figure 34): 
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Figure 31: The Spatial Distribution of Fixations for Novice (left) and Experienced (right) Drivers for Urban Road 1 Environment and Road-Type for the Night 
(top) and Day (bottom) Conditions. The Distribution Plots show the Horizontal and Vertical Spread of The Distribution of Fixations. 
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Figure 32: The Spatial Distribution of Fixations for Novice (left) and Experienced (right) Drivers for Urban Road 2 (markings) Environment and Road Type for 
the Night (top) and Day (bottom) Conditions. The Distribution Plots show the Horizontal and Vertical Spread of The Distribution of Fixations. 

. 
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_________________________________________________________________________________________________________________________________ 
Table 8:  
 
The Statistical Values for both Urban Road Types and Conditions for Novice (<25) and Experienced (≥25) drivers. 

 

 

 

 

 

 

 

 

Table 8 shows considerable differences between the breadth of visual search between Novice and Experienced Drivers. Experienced 

drivers generally have broader search areas and a flatter horizontal distribution of fixations. It is apparent that there is a difference 

between Day and Night, with the distribution of search increasing during Night driving. There are also differences between road types, 

suggesting that lane markings and road width may play some degree in influencing drivers search, especially Novice drivers, with the range 

of fixation values coinciding with the coordinates of the lane margins. 

Environment Urban Roads (Horizontal Search) 

Road Type Road 1 (no markings) Road 2 (markings) 

Condition Day Night Day Night 

Driver Group <25 ≥25 <25 ≥25 <25 ≥25 <25  ≥25 

Mean 979.4 964.8 920.7 848.2 1007.1 890.5 810.5 916.4 

Standard Dev. 147.45 333.31 125.98 375.60 122.52 354.81 175.86 218.58 

Min 661 278 580 226 812 234 338 399 

Max 1296 1698 1113 1359 1229 1564 1489 1464 

Kurtosis -0.18 0.15 0.18 -1.33 -0.88 -0.63 1.07 1.52 
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Figure 33: The Spatial Distribution of Fixations for Novice (left) and Experienced (right) Drivers for Rural Road 1 Environment and Road-Type for the Wet (top) 
and Dry (bottom) Conditions. The Distribution Plots show the Horizontal and Vertical Spread of The Distribution of Fixations. 

. 



121 
 

 

 

 

 

Figure 34: The Spatial Distribution of Fixations for Novice (left) and Experienced (right) Drivers for Rural Road 2 Environment and Road-Type for the Wet (top) 
and Dry (bottom) Conditions. The Distribution Plots show the Horizontal and Vertical Spread of The Distribution of Fixations 
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_________________________________________________________________________________________________________________________________ 
Table 9:  
 
The Statistical Values for both Rural Road Types and Conditions for Novice (<25) and Experienced (≥25) drivers. 

 

 

 

 

 

 

 

 

 

Table 9 shows that drivers’ distribution of search is also broader for Experienced drivers on Rural Roads. There is a notable difference in 

the distribution of visual search between road type, with Road 1 having a greater amount of visual examination. The breadth of visual 

search also appears to narrow when the road is Wet compared to Dry, which means drivers may be more vigilant to the road itself, and 

less to the surrounding roadside features. Similar to Urban roads, the fixation pattern indicates that lane markings and road width may 

influence drivers’ visual search behaviour. 

 

Environment Rural Roads 

Road Type Road 1 (no shoulder or markings) Road 2 (shoulder and markings) 

Condition Dry Wet Dry Wet 

Driver Group <25 ≥25 <25 ≥25 <25 ≥25 <25  ≥25 

Mean 977.5 896.2 969.4 1019.7 911.0 890.5 952.8 841.6 

Standard Dev. 203.1 354.81 138.33 321.67 131.37 209.54 100.44 159.13 

Min 478 234 741 476 695 439 750 681 

Max 1447 1564 1386 1488 1246 1315 1314 1361 

Kurtosis 0.82 -0.63 2.42 -0.78 -0.34 -0.61 2.90 0.07 
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By observing the distribution of fixations, it is clear that there are significant differences between 

road environments, which appear to be consistent for both Driver Groups. On Rural Road 2, 

drivers from both groups do not scan the road as broadly as on the unmarked Rural Road 1 

environment, where drivers generally have broader scanning, primarily devoted to the 

approaching bend as well as the edge of the road. During Night driving on both roads, drivers had 

a broader search compared to day driving. This effect seemed to be related strongly to markings, 

with drivers having a distinct change in visual behaviour on the more challenging Urban Road 1, 

where distributions were much more devoted to the sides of the road as to the centre. This effect 

was supported by the differences previously reported regarding fixation number and duration. 

There is also a characteristic effect related to the lane markings, with drivers limiting the amount 

of visual scanning outside these corridors formed by the lane markings. A similar observation can 

be made about Urban road environments. There are significant differences in the search 

behaviour between Driver Groups and across conditions.  

Another interesting observation is a characteristic vertical two-peak effect, which is slightly more 

pronounced for experienced drivers. This seems to indicate that Experienced drivers devote 

more attention to further down the road as opposed to Novice drivers – as while this twin-peak 

phenomenon occurs, the second peak is smaller, indicating less vertical allocation. The 

distribution of fixations is not smooth and forms a bimodal distribution on the vertical axis, 

indicating discrete moments of search further ahead of the vehicle.  
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Discussion 

The first research question was to determine whether the video-based speed choice 

task had ecological validity. Determining ecological validity is essential, as 

participants’ behaviour in laboratory settings, while often representative, does not 

necessarily correspond to real-life behaviours (i.e., Iverson, 2004). A review of the 

literature and previous research suggested that young novice drivers tended to drive 

faster than experienced drivers and were less capable of assessing risks while driving, 

which would presumably lead them to respond less appropriately to different road 

and traffic conditions (Delhomme, 2002).  

This primary distinction between drivers formed the first aspect of this study, in 

determining whether the speed choice task was reliable in differentiating between 

drivers with more or less experience, in a way that reflected anticipated behaviour 

observed under real-world driving conditions – from which relative ecological 

validity can be inferred. In the current study, young novice drivers selected faster 

overall speeds than experienced drivers. Furthermore, novice drivers also tended to 

choose faster speeds than experienced drivers under differing road types and driving 

conditions. Overall, the speed selections were consistent with real-world 

observations (i.e., Ahie, 2012; Ministry of Transport, 2017, 2019). This observation 

provided reasonable evidence that the video speed task (VST) measure is ecologically 

reliable.  

Additionally, it was found that drivers were sensitive to different road types, which 

exceeded our expectations, as drivers adjusted their speed selections to differing road 

types as well as conditions (i.e., when marking were present or absent on the rural 

roads). If drivers speed choices did not differ across different roads under similar 

conditions (e.g., Urban Road 1 Urban Road 2 during daytime), it would be difficult to 

know whether the drivers were genuinely responding to different situational cues. 

However, the differences observed between the driver groups on different road types 

and conditions indicate that drivers are both engaged with the task and respond to 

various aspects of the road, as they were to differing conditions. This finding provides 

additional support for both task sensitivity and further supports relative ecological 

validity. Additionally, the findings from this study align with previous findings from 

similar video-based laboratory studies, which have shown young novice drivers tend 

to select faster speeds than older, more experienced drivers (Horswill & McKenna, 

1999; Cantwell, 2010).  
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In this experiment, novice drivers’ choice of speed was faster on urban roads in both 

day and night driving conditions, which NZTA (2017) has identified as a high-risk 

environment for pedestrian and cyclist crashes. Additionally, novice drivers also 

chose faster speeds in the wet rural condition, which is a situation in which young 

drivers are over-represented in loss of control crashes (Accident Compensation 

Corporation & Land Transport Safety Authority, 2000). This finding suggests that 

novice drivers may be less competent in selecting speeds that are appropriate for the 

road conditions for these two common road types, and might be an essential area to 

target in future driver training and education. 

In this experiment, the different road conditions influenced both Novice and 

Experienced drivers' speed choices. Both driver groups chose slower ‘ideal’ speeds in 

night conditions compared to day conditions. Bridger and King (2012) noted that 

there was an increased risk during night driving, potentially due to reduced visual 

clarity. Jackett and Frith (2012) also observed a reduction in drivers speed under 

night-time conditions, which may be due to drivers’ becoming aware of increased risk 

and reducing speed to accommodate this change. While drivers were not requested 

to rate the risk on the road in this experiment, we can conceptualise drivers’ choice of 

an appropriate subjective speed for each road as a proxy measure for risk. This 

approach is not unwarranted, as it has been used by other researchers, such as 

Horswill and McKenna (1999).  

In this experiment, the experienced driver groups chose significantly slower speeds 

on the narrower urban road during night driving conditions. In contrast, the novice 

driver group did not significantly reduce their choice of speed on either urban roads 

during the night condition. What is unusual is that experienced drivers selected faster 

speeds on the wider-laned urban road during night driving conditions than during the 

daytime conditions. This finding was inconsistent with studies that predict speed 

reduction at night (Williams, 2003). However, this finding reflects those made by 

Renge (1998), who observed that drivers do not reduce speed selections under night 

conditions to the same extent as day conditions. Renge (1998) also found that drivers 

noticed fewer hazards during night driving, which could partially explain this finding. 

Given that the reviewed literature showed that both alternatives (of either a decrease 

or increase of chosen speed) under night driving conditions were possible, it may be 

that the effect is dependent on factors such as road markings and traffic conditions, 

rather than solely on the night condition and accompanying reduction in visibility.  
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Overall, speed choice did not differ between Urban Road 2 (markings) conditions, 

which may indicate that drivers perceived less risk between day and night on roads 

where there were clear markings for both the roadside margins and centre-line. 

There were notable differences observed in the visual search behaviour, illustrated 

by the fixation distributions between the two urban roads under night conditions. 

This finding suggested that under night driving conditions, the limitation of visibility 

is potentially more taxing on drivers’ limited cognitive and perceptual resources. A 

similar number and duration of fixations were observed for both urban road types at 

night. There were significantly fewer fixations compared to the day condition.  

Moreover, there was a clear pattern that suggests novice drivers constrained their 

search within the road markings, which has been observed in other studies where 

novice drivers attend to road markings in order to maintain lane position (Mourant & 

Rockwell, 1972). This limited search behaviour related to markings may be the result 

of under-developed situation awareness, which is overly dependent upon the median 

and lane markings to maintain lateral position. When there are fewer markings 

available for navigation and lane positioning, drivers may require a broader search 

for vital information related to vehicle position (Underwood, 2005).  What is 

interesting in this experiment is that visual search was devoted to the aspects of the 

scene needed for lane positioning, which is usually a requirement for active driving, 

but less so when navigation is not an essential component of the task (Mackenzie & 

Harris, 2015). 

It was found that the rural dry road condition was the only driving scenario in which 

there was no significant difference in speed choice between the driver age groups. 

Both groups selected a mean speed choice slightly below the speed limit, which 

suggested that the perception of risk in the traffic situation did not differ substantially 

between the two driver groups (Yao, Carsten, Hibberd, et al., 2019). Similar speeds 

were observed in a separate study that involved similar roads, with speed choices on 

Rural Dry Road 2 being similar to speeds13 observed by Ahie (2012) using a radar 

speedometer and those discussed in New Zealand 2015 speed data (Ministry of 

Transport, 2015). Lewis-Evans (2012) also studied speed behaviour concerning risk 

and determined that subjective feeling of risk (and task difficulty) did not increase 

concurrently with speed until a threshold was met (i.e., Lewis-Evans (2012) estimates 

                                                           
13 Ahie (2012) observed real road speeds using a radar, and then asked drivers to provide their speed and risk rating for a 

range of roads. The road used in her experiment (Ruakura A & B) are remarkably similar in width, markings, shoulder 
width, visible horizon, and roadside furniture to the rural roads used in this experiment. Ahie’s results confime the results 
published by the Ministry of Transport (2019).  
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~110km/h on an open/rural road), after which subjective feeling of risk would 

proportionately increase with speed.  

Given the risk ratings from Ahie’s (2012) study, the threshold of risk provided by 

participants in that study seemed to be higher than actual measured speeds. These 

findings were remarkably similar to the ideal speed choices selected by participants 

in this experiment, which provided some additional ecological validity to the video 

speed task. Furthermore, the findings of this experiment were consistent with the 

mean recorded speed for both open road (96km/h), and urban road (47km/h) speeds 

reported by the Ministry of Transport (2019) Ministry of Transport (2017). 

The effect of shoulders and markings appeared to influence the driving behaviour of 

both groups of drivers, and it is a well-documented phenomenon that road markings 

do influence drivers speed choices (Charlton et al., 2018; Elliott et al., 2003; Eriksen 

& Yeh, 1985; Godley et al., 2004). This effect was highly consistent with the 

characteristics that Weller et al. (2008) found, with drivers perceiving roads without 

shoulder or markings as more demanding. This is illustrated by the marked reduction 

of speed by both driver groups in the rain condition on the rural road where shoulders 

and clear lane markings were absent. Both driver groups chose similar speeds on the 

rural road with shoulders and lane markings in the day condition. However, 

experienced drivers slowed significantly more than novice drivers in the wet 

condition. This finding shows that experienced drivers were sensitive to the increased 

risk of driving in wet conditions on roads that potentially had the appearance of 

greater safety due to the presence of width and lane markings (Davidse et al., 2004). 

Lewis-Evans (2012) mentions that perception of risk and task demand are related, 

suggesting, “… a feeling of risk provides continuous feedback to drivers allowing them 

to maintain the difficulty of driving within preferred levels”. (p. 61)  

Novice drivers selected significantly faster speeds than experienced drivers on both 

urban roads in day conditions, despite there being considerable differences in lane 

width and the presence or absence of roadside furniture (i.e., parked cars). During the 

day driving condition, experienced drivers selected slower speeds than novice drivers 

on both urban road types, but more so on the narrower urban road. This indicated 

higher sensitivity to risk factors affecting the speed choices of Experienced drivers 

and suggested that novice drivers were less sensitive to environmental cues when 

making speed judgements (Horswill & McKenna, 2004; Parmet et al., 2015). 
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Does eye movement behaviour differ between the two driver groups?  

Based on a review of the eye-movement data, it appeared that pedestrians and 

vehicles on the left-hand side seemed to be substantial potential risk factors. These 

were given more significant consideration by experienced drivers, whose visual 

search strategies were largely unaffected by driving conditions. Konstantopoulos et 

al. (2010) found that simulated night driving conditions resulted in increased 

processing time and reduced visual sampling for both novice and experienced drivers, 

with a decrease in the number of fixations, and a corresponding increase in fixation 

durations. However, the spatial distribution of visual search was unaffected. Similarly, 

in this experiment, while the number and duration of fixations were affected to a 

lesser degree, spatial search strategies remained consistent in day and night driving 

conditions. 

Godley et al. (2004) noted that one hypothetical explanation for slower speeds on 

narrow roads is the heightened perception of risk, although steering workload also 

contributes to reduced speeds. The speed selection of experienced drivers seems to 

be better explained by perceived risk, with night conditions being the most 

substantial contributor to slower speed choices, while similar speeds were observed 

between the two urban roads during day conditions despite the difference in lane 

width. This is not to say that (fixed) infrastructure does not play a role in speed 

choices, as overall speed choice was slower on the narrower urban road (Day Road 

1). This suggested that fixed road features are just one of the factors associated with 

the perception of risk, in which variable factors were found to be the strongest 

predictor of speed choice (Edquist et al., 2011; Wilmot & Khanal, 1999). 

Providing further support of the relative sensitivity of the task, driving in the night 

condition appeared to place a slightly higher demand on novice drivers’ visual search, 

as evident in their reduced number of fixations and longer fixation durations. 

However, this was not significantly different from the visual behaviour of novice 

drivers in the day condition. Konstantopoulos et al. (2010) also found that drivers 

typically had more fixations during day driving than during night driving. In addition, 

this experiment found that the duration of fixations was slightly elevated at night, but 

did not reach statistically significant values for either novice or experienced drivers. 

There were notable effects in drivers' visual behaviour on the rural roads both in 

response to type and condition. In dry conditions, neither driver group had significant 

within-group effects in relation to the number or duration of fixations. There were 
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significant within-group effects in wet conditions, with both groups demonstrating 

significantly increased visual processing load, potentially indicating a greater amount 

of perceived danger (Chapman & Underwood, 1998). Novice drivers required greater 

processing time and reduced visual sampling rate when shoulders and markings were 

absent compared to the road where both were visible. They also showed a similar 

pattern in the number of fixations, though this was non-significant. Experienced 

drivers showed a more significant number of fixations in wet conditions for both rural 

roads, with the greater visual load on the road without shoulders or clear marking, 

though the fixation durations were unaffected. This supports the idea that roads with 

markings and shoulders are perceived as less risky and require less visual attention 

(Charlton & Starkey, 2016).  

As discussed previously, fixed environmental factors, such as width, curvature, and 

length of roadway ahead, are not the only factors relevant to speed choice. Variable 

factors, such as weather and illumination, and the presence of other road users whose 

behaviour needs to be anticipated carefully, are also considerations drivers make 

when choosing an appropriate speed (Parmet et al., 2015). When driving, the majority 

of visual information is neglected (Desimone & Duncan, 1995), though if some feature 

is perceived as more relevant to the driving task and to increase risk, a driver who is 

quicker and more accurate in perception is more likely to be able to respond in a way 

which prevents a potential incident (Vlakveld, 2011). 

Visual search has been well studied as driver behaviour and is very closely associated 

with hazard perception, which has been identified as the greatest skill gap that divides 

experienced from novice drivers (Horswill & McKenna, 2004; McKenna et al., 2006). 

For hazard perception to be ‘efficient’, information needs to be rapidly extracted from 

the driving context and then evaluated. This demands an enormous processing load 

from a vast array of neuro-cognitive systems.  

Research by Mourant and Rockwell (1972) was supported by the findings of this 

experiment, which indicated that Novice drivers are more likely to have a narrow 

spatial distribution of fixations. In contrast, older drivers tended to have a wider 

horizontal spatial distribution of fixations. This effect has been consistently replicated 

in contemporary research (for example, Konstantopoulos (2009)). Greater spatial 

distribution of fixations suggests that older drivers are looking more broadly across 

the environment and potentially scouring it for implicit and explicit cues concerning 

appropriate speed given the perceived risk. This pattern of broad scanning of the road 
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environment is a behaviour critical for safe driving (Underwood & Crundall, 2002). It 

is worth noting that both groups of drivers allocate the majority of their attention to 

the centre of the roadway, likely to avoid potential collisions with other vehicles and 

that the direction of steering is related to the drivers' gaze (Land & Lee, 1994). This 

explained why devotion to peripheral search often involves rapid fixations rather 

than prolonged gaze (Mourant & Rockwell, 1972). 

In this experiment, a greater number of short fixations were observed among the 

experienced driver group than fewer long fixations in the novice driver group. This 

confirms results in previous research, which suggested experience leads to a general 

improvement in visual scene processing when driving (Underwood, 2007; Geoffrey 

Underwood et al., 2002; G. Underwood et al., 2002; Vlakveld, 2011). This capacity to 

extract meaningful information quickly from a visual scene demonstrates mental 

procedures that have become more finely tuned with experience, enabling a driver to 

determine what information is relevant for the driving task and enhancing the ability 

to ignore irrelevant information (Desimone & Duncan, 1995; Lappi, 2014; Lemonnier 

et al., 2015; Salvucci & Gray, 2004). 

The practical application of the effect of road markings is highly significant, as road 

markings, while being beneficial in identifying the drivers' side of the road and related 

margins, may also have the potential to adversely affect the range of drivers’ visual 

search, especially for inexperienced drivers (Mourant & Rockwell, 1972). Future 

research into the role of road markings for particular areas, especially shared spaces 

or locations where multiple road users intersect (e.g., where cyclists, pedestrians, and 

cars are all present) could have a significant effect on reducing the accident rate, 

especially for vulnerable road users such as pedestrians. 
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Limitations 

One of the main limitations of this experiment, common to the study of young novice 

drivers, is that the role of experience is a confounding variable. McDonald (2004) has 

noted that it is often difficult to disentangle the role of experience from age, as the two 

tend to be highly related, with few drivers older than 25 years with a learner or 

restricted licences available to participate in research. In instances where older 

novice drivers have been participants, a similar risk of crash involvement existed in 

the first 6-months after receiving their licence (Mayhew, Simpson, & Pak, 2003). 

However, the role that age has on older novice drivers’ visual search behaviour is 

virtually unknown.  The risk-taking behaviour that accompanies adolescence may 

likely be absent in this study cohort. In this respect, it would be helpful to better 

understand how different degrees of driving experience interact with age in seeking 

to determine speed choice behaviour.  

Following on from this point, in this experiment, limited information related to 

participants’ psychological makeup was collected, as this was not of primary interest 

beyond the collection of basic demographic data and driver history. However, 

previous research has linked psychometric measures to a propensity to speed or 

engage in risk-taking. Employing a diverse range of psychometric measures related 

to personality, risk-taking, and attitudes toward driving behaviours could help paint 

a clearer picture of those drivers likely to choose faster speeds. This may be useful in 

determining whether self-perceived skill differs significantly between driver groups, 

which could point towards ‘poor calibration’ and the willingness to accept greater risk 

when driving. It was noted that Novice drivers had a significantly higher self-rated 

level of driving skill than Experienced drivers, though this was just above the rating 

of ‘similar to the average driver’. 

Reasonable caution is always warranted when relying on visual information to 

support research findings when using video-based simulations compared to real-

world behaviour. Naturally, there will be differences between the engagement of 

participants between the real-world and laboratory setting (Mackenzie & Harris, 

2015; Steinman, 2003), especially as noted by Horswill and McKenna (1999) the 

absence of risk. Martens and Fox (2007) suggested that the resolution of video-based 

tasks may restrict participants’ ability to detect certain aspects contrasted with real-

world driving.  
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Driving in naturalistic settings is more dynamic, and hence there is a greater need for 

the driver to focus on multiple visual elements reducing fixation duration while 

increasing distribution and count. With these considerations in mind, we noted that 

repeated exposure to the same roads did not result in variation in fixation duration, 

unlike Martens and Fox’s (2007) study. Furthermore, fixation behaviour differed 

between Novice and Experienced drivers as anticipated, as well as there being a 

variation in fixations between road type and condition (Konstantopoulos et al., 2010). 

We, therefore, conclude that any video-based influence on visual search, while a noted 

constraint of laboratory tasks, was an ecologically valid representation of real-world 

behaviour with good physical correspondence (Blaauw, 1982), even though there 

may be small variations between the laboratory task and real-world driving (Santos 

et al., 2005). 

Another critical issue that was potentially present in this experiment, which cannot 

be ruled out, was whether there was a sampling bias in the way different video 

scenarios were selected, which could potentially favour experienced drivers over 

novice drivers. Selection of the clips was conducted partially based on the situation 

present, as scenarios needed to be consistent across speeds and contain sufficient 

detail to elicit a response from the participants. Driving speeds were often impractical 

or unsafe for filming the scenarios, so clips could be somewhat contrived in that the 

researchers were unwilling to subject pedestrians and other road-users to unsafe 

risks during filming, especially at greater speeds. This could introduce a bias with an 

unknown effect, as has been observed with other film-based tasks involving hazard-

type situations, which influenced the validity of the task (regarding task validity, refer 

to Horswill and McKenna, 2004). 

One of the most important considerations was the difference between risk-perception 

and hazard perception. There was a strong theme of risk appraisal and perception 

being related to speed choice in the literature review. However, it has been observed 

in several studies that there is no such corresponding relationship between perceived 

risk and hazard perception (Farrand & McKenna, 2001; Watts & Quimby, 1979). Using 

speed as a proxy measure for risk-acceptance, such as by Horswill and McKenna 

(1999), while reasonable when paired with additional measures, is not in itself the 

same as saying that speed is synonymous with risk-taking or acceptance. While there 

were observed differences between roads in this experiment which could be 

considered more or less risky than their rural or urban counterparts, using this as a 

means of justifying the differences in speed as evidence of the presence or absence of 
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actual risk, or the perceived risk of participants, needs to be considered with due 

caution. 

 

Additional Critique and Alternative for Analysis 

One area of this experiment that was not examined in detail were the differences in 

visual behaviour over the three filmed vehicle speeds for each road environment. 

Preliminary analysis revealed that there was no substantial difference between 

drivers’ speed choices on the three different vehicle speeds for both Urban and Rural 

Roads. Interestingly, there was also no significant difference between eye-movement 

behaviour on these different roads despite the slower vehicle speed providing 

presumably more opportunity to examine the roadsides. It is a well-known 

phenomenon that drivers narrow their visual search when the vehicle speed is 

greater (Bartmann et al., 1991). However, this was not observed in this study, and 

there are several potential reasons for this lack of narrowed search. As this task did 

not occupy a large amount of the peripheral visual field, drivers were not required to 

move their gaze far from the central field when inspecting the roadside. Experienced 

drivers selected different speeds that seemed to correspond to roads with higher risk 

while not substantially altering their search behaviour. This rapid speed selection 

may be due to experienced drivers ‘thin-slicing’ the visual scene. In the process of 

thin-slicing, drivers can rapidly collect information related exclusively to the most 

relevant aspects of the road and use this to make their judgements. 

On the other hand, novice drivers could merely be disregarding certain features 

despite the opportunity to observe them due to a lack of experience on what to focus 

on when selecting appropriate speeds. This, however, remains purely speculative. 

While this question could be presented as a limitation in the realism of the 

experimental method, it could also be revealing something important about drivers’ 

visual search when selecting appropriate speeds, even when the vehicle speed is 

different. A more comprehensive analysis focusing on specific visual cues could 

potentially provide greater insight into drivers' behaviour under different vehicle 

speeds. 

Hazard perception was a reasonable explanation for the observed differences 

between drivers’ visual search and was assumed to be as much. Although this 

interpretation is warranted, this task did not involve the specific perception of 
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hazards. Post-hoc coding and assessment of hazards is still an available option for 

determining the differences in visual search between novice and experienced drivers. 

This could be accomplished by inviting expert drivers such as Police Drivers with 

advanced training, or Driving Instructors to participate, then perform a post-hoc 

coding of all hazards that these expert drivers identified. Additionally, it may be 

possible to identify hazards based on the superimposed eye movements over the 

hazard clips. The characteristic features of the road environment that were the focus 

of participants’ visual attention could be coded similar to the consensus-based 

approach to hazard perception used by Renge (1998) in their first study. Following 

the coding of hazards, a cluster-analysis could be conducted to determine the sets of 

visual features which differentiated novice from experienced drivers. In a sense, this 

assessment was informally performed in a subjective evaluation by this researcher in 

viewing the available footage. However, a more scientific approach using post-hoc 

coding could yield more information about the role of specific road features and traffic 

conditions that could influence drivers speed choice. This could be a valuable addition 

to this experiment and confirm that hazard perception plays a role in speed choices, 

as speculated from observation of visual behaviour. 

While the estimates of speed choice were not reported in this experiment, the 

preliminary analysis indicated both groups of drivers over-estimated the vehicle 

speed. Novice drivers selected speeds that were closer to that of the actual vehicle 

speed when compared to Experienced drivers. However, this should not be 

considered a measure of accuracy given the range of unaccounted factors that could 

influence drivers perception of speed. The estimates of vehicle speed did not seem to 

relate to drivers’ speed choices. However, as drivers were asked to estimate the speed, 

this could mean that they were more reliant on a search of the roadside in making this 

judgment. While drivers who were told the vehicle speed did not substantially differ 

in their speed choices or visual behaviour to those drivers who were asked to estimate 

the speed, there could still be an effect simply by asking for an estimate, even when 

provided with the actual speed. 

An additional aspect to this experiment is the time that was taken for drivers to make 

their speed choice decision and the number of times that the participant adjusted the 

needle before clicking “Okay” and moving to the subsequent trial. It was thought that 

experienced drivers would be more homogenous in the time and number of decisions 

in selecting speed. In contrast, novice drivers would display a greater amount of 

variability as they are likely to be less confident in both estimating speeds and judging 
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what is appropriate for the road and traffic condition. This aspect of the experiment 

has not been examined in the present study. 

 

The Rationale for Experiment 2 

1. Increasing the number of participants and including a broader participant sample 

would provide the opportunity to examine the relationship between speed 

choice, age, and experience. There is value in investigating the division between 

drivers with different licence types, which could provide a means of determining 

the role of experience separate from the potential age-related developmental 

factors which accompany adolescence. 

 

2. An important next step is to investigate the role of hazard perception on speed 

choice. As noted in this study, drivers' speed behaviour differed based on the 

environmental variables (e.g., presence of pedestrians, absence or presence of 

lane markings and shoulders). Considering that eye-tracking data confirmed 

more experienced drivers viewed the road differently than novice drivers, this 

indicates that the awareness of hazards might play a significant role in 

determining drivers speed choice.
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Experiment 2 

  

Introduction 

In the previous experiment, there was a significant relationship between the road 

environment and the different speed choices made by drivers. Overall, ‘Novice’ 

drivers, on average, chose faster speeds than ‘Experienced’ drivers aged 25 years and 

older. This was an anticipated finding, with previous research showing similar 

patterns of young drivers choosing faster speeds than drivers aged 25 years and older 

(Accident Compensation Corporation & Land Transport Safety Authority, 2000). 

Furthermore, the previous experiment indicated that there was relative ecological 

validity for the video speed task, which indicated that this would be an appropriate 

task for further examination of drivers speed choice behaviour under differing 

conditions. 

One of the limitations noted in Experiment 1 was that ‘Novice’ drivers were treated 

as a homogenous group in relation to their driving behaviour. This was particularly 

relevant to their selection of speeds, which was taken as a primary indicator of 

attitude toward accepting speed related risk when driving. However, it is known that 

not all Novice drivers choose faster speeds than more experienced drivers. While it 

remains a broad generalization that young drivers tend to choose faster speeds due 

to lack of skill and a more risky driving style (McKnight & McKnight, 2000), it is 

incorrect to assume that all young drivers behave in the same way or have similar 

levels of competence or driving experience. For example, Day et al. (2018) found that 

young drivers self-perceived driving safety and sense of security improved over three 

months, though they note that necessary driving skills are not fully automatized at the 

age young drivers acquired a full licence, likely due to a lack of training. While it is 

well known that age is a predictor of crash likelihood before the age of 25 years, the 

amount of quality driving experience also plays a role in how drivers make 

appropriate speed choices.  

Examining the role of experience as a separate variable alongside age is an essential 

step in furthering our understanding of how motivational and performance-related 

factors influence a driver’s speed choice behaviour (Mayhew et al., 2003). Although 

age-related factors are somewhat fixed, driving experience can be enhanced (e.g., with 
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increased quality of driving instruction) through the development of essential driving 

skills. Drivers with a higher degree of experience tend to have a higher ability to 

perceive hazards and hence may choose slower, more appropriate speeds for the 

traffic conditions (A. R. Quimby & G. R. Watts, 1981). While drivers’ age and 

experience are often highly entangled, with novice drivers typically being young, 

there is still value in examining increasing experience on drivers’ speed choice and 

hazard perception ability, despite age being a factor that cannot entirely be 

discounted. 

In Experiment 1, the finding that specific road characteristics, such as the presence of 

road-side furniture, pedestrians, and lane markings, as well as weather and lighting 

conditions, have an essential influence on drivers speed choice behaviour was 

consistent with other research findings (Elliott et al., 2003; Goldenbeld & van Schagen, 

2007). What was noteworthy was that drivers, overall, irrespective of age group, 

chose slower speeds on roads which may have been potentially perceived as more 

challenging to negotiate safely; however, experienced drivers seemed to be generally 

more responsive. Novice drivers did not appear to differ in their choice of speed under 

day or night conditions between the two distinct urban road types (i.e., roads with 

and without clear markings and differences in lane width). Novice drivers generally 

selected faster speeds than experienced drivers on urban and rural roads when there 

was a greater potential risk (i.e., night driving or when the road surface was wet). 

While novice drivers did select slower speeds during the wet than the dry conditions 

on rural roads with no markings, showing they responded to some potential risk 

factors. However, their behaviour on roads with markings showed no difference in 

speed choices between dry and wet conditions.  This may indicate that novice drivers 

are less responsive to risk factors or may evaluate these cues differently from more 

experienced drivers, influencing their choice of speed.  

Additionally, it was found that visual search behaviour differed significantly between 

novice and experienced drivers; this appeared to be influenced by road and traffic 

situation and weather and lighting conditions. This was a significant finding and 

indicated that visual search behaviour could play an essential role in determining 

drivers speed choices. These observed differences in visual behaviour could indicate 

that experienced drivers were searching for specific features to make speed 

judgements. This observation could be an indication that experienced drivers were 

searching for hazards, as the pattern of visual search behaviour was similar to that 
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observed by Crundall and Underwood (1998), G. Underwood et al. (2002) and 

Konstantopoulos et al. (2010).  

In this thesis, we have speculated a connection between hazard perception and 

driver’s choice of speed, and there is clear evidence to support this. Hazard perception 

could play a critical role in drivers’ capability to make appropriate speed choices for 

the traffic and road conditions. The inability to perceive hazards may be related to 

drivers’ perception of whether road speed limits are credible, how drivers form 

habitual speed behaviour, and the inclination to drive at speeds that are not suited to 

the conditions.  

As previously discussed, hazard perception refers to the skill of ‘reading the road’ 

(McKenna et al., 2006; Mills et al., 1998) and the ability to recognize and anticipate 

dangerous traffic situations (Horswill et al., 2004). Despite numerous studies which 

identified a relationship between poor hazard perception and increased crash 

likelihood (Boufous et al., 2011; M. S. Horswill et al., 2013), relatively few studies have 

explicitly focused on the relationship between speed choice and hazard perception. 

Speed choice is recognized as one of the most critical factors related to crash 

likelihood and severity, and there is some evidence that a relationship with hazard 

perception exists (Edquist et al., 2011; McKenna et al., 2006; Renge, 1998). 

Furthermore, experiments in a naturalistic setting have demonstrated that slower 

driving speeds are frequently associated with higher hazard perception ability 

(Grayson et al., 2003).  

In summary, the available literature indicates that selecting appropriate speeds 

reflects both risk perception and the capacity for a driver to ‘read the road’. This 

“reading of the road” was demonstrated in the previous experiment by examining 

drivers visual search behaviour, which seems highly indicative of hazard perception. 

However, the relationship between these variables is poorly understood.  

McKenna et al. (2006) and Horswill and McKenna (1999) hypothesized that better 

hazard perception skills would be associated with more appropriate speed choices. 

The validated speed choice task from the previous experiment was paired with a 

separate, validated video-based hazard perception task to determine if this 

hypothesis was correct. The use of an additional hazard perception task may reveal 

whether drivers speed choices were related to their ability to perceive immediate 

hazards. Experiment 2, therefore, examines the influence of age and driving 

experience on hazard perception and speed choice using the speed choice task used 
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in Experiment 1, with the inclusion of a validated Hazard Perception task (Isler et al., 

2009; Williamson, 2008). 

 

Research Questions 

 

1. Do drivers’ hazard perception skills and speed choices improve with age and 

experience?  

As hypothesised from the reviewed literature, we anticipate that hazard perception 

skills will improve incrementally with age and accrued experience (Crick & McKenna, 

1991; Crundall, 2016; Farrand & McKenna, 2001; Horswill & McKenna, 2004). 

Concerning speed choice, the central hypothesis is that experienced drivers will 

demonstrate more advanced hazard perception skills and choose more appropriate 

speeds than younger, less experienced drivers. 

This hypothesis is composed of two complementary ideas. Firstly, (a) drivers will make 

more appropriate speed choices14 as they increase in age and experience. Secondly, (b) 

drivers with more experience will naturally possess a higher level of driving competence, 

which ought to manifest as more appropriate speed choices, especially in road and traffic 

situations lower in perceived risk (e.g., dry rural roads).  

However, drivers may feel comfortable selecting speeds proportionate to the amount of 

perceived risk. As argued previously, hazards are a significant factor in determining how 

risky the road is perceived. Therefore, we would expect drivers to adjust their speed 

choices concerning the perceived risk, though less so on roads where drivers are more 

competent in handling a range of different conditions. Overall, we expect the speed 

choices to be consistent with those observed in Experiment 1.  

 

                                                           
14 Using an approach related to Fullers’ model (2005), we can consider defining ‘appropriate’ speed choices as drivers 

adjusting their speed choice for varied road types and conditions in a way that minimises subjective-risk and maximises 
drivers perceived control and comfort.  Generally speaking, this means that as the road conditions become more risky (e.g., 
low-visability or wet surface conditions), drivers would select slower speeds if they are ‘calibrated’. This definition of 
appropriate speed was used by Fuller et al., (2007) as the maintainance of an “adequate margin between task demand and 
their capability” (p. 9). One consideration is that exceeding the speed limit, while illegal, may not be necessarily 
innappropriate, and as Fuller et al., (2007), determine innappropriate speed requires evaluation of specific accceptable 
speed margins of the particular traffic and road situation (p. 26). 
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2. Do more advanced hazard perception skills correspond to more appropriate speed 

choices?  

Based on the finding of visual search behaviour indicative of hazard perception in the 

previous Experiment 1,  as hazard perception improves with age and experience, it is 

anticipated that more experienced drivers will select slower speeds, which are 

appropriate for the road and traffic situation. The reviewed literature supports this 

hypothesis. This increased awareness of risk should correspond to speed choices 

appropriate for the road type and conditions. For instance, drivers with more 

advanced hazard perception skills will show higher compensation in speed choices 

between wet and dry road conditions or between roads with different lane width and 

markings. A relationship between speed choice and hazard perception is expected to 

present as a correlation, where slower speed choices will correlate with more 

advanced hazard perception. 
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Method 

Participants 

A total of 138 drivers (68 males and 70 females) were recruited to participate in this 

experiment. Participants ranged from 15 to 73 years of age, with a mean overall age 

of 29.7 years (SE= 1.37, SD= 15.94). The majority of participants identified as New 

Zealand European (N= 94) or of Maori descent (N= 15). The remaining 29 participants 

identified as Asian or Pacifica, so the sample was considered representative of the 

general New Zealand population. 

Eligibility requirements were that participants held a current New Zealand learner, 

restricted or full drivers’ license, and had normal or corrected to normal vision. 

Participants were assigned to one of five driver groups based on their self-reported 

license type and age, with each group being gender-balanced. This research was 

conducted in accordance with the University of Waikato Ethical Guidelines 

concerning human testing (the University of Waikato Handbook on Ethical Conduct 

in Research, 2001).  

A between subjects and mixed measures design was used in this research to examine 

speed choices and attitudes between five driver groups (between subjects), hazard 

perception ability and speed choices across different traffic environments and road 

conditions (repeated measures).  

Five driver groups were used in this experiment. The ‘Learner’ group contained 

drivers’ aged 15-18 years old drivers with learner license, and the ’Restricted’ group 

comprised drivers aged 15-21 years with a restricted license. Drivers were recruited 

using several strategies. ‘Learner’ and ‘Restricted’ drivers were primarily recruited 

from several local secondary (high-schools) schools in the Hamilton East area near 

the University campus. The ‘Full (<25)’ group contained drivers’ aged 18-24 years old 

drivers with a full license and were recruited from the Waikato University student 

body through poster boards and in-class advertisements. The majority of drivers in 

the ‘Full 25<50’ group were recruited from University noticeboards and had a full 

license, and  aged between 25 and 50 years of age. The drivers in the ‘Full (>50)’ group 

were required to be aged over 50 years old (with a cut-off at 70 years old) and hold a 

full license and were recruited through advertisements placed both about the 

University campus and through notices placed at community centres. 
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Table 10 presents, for each driver group, the (mean) age, driving experience, and 

distance travelled in the average week, as well as traffic histories for each group. 

Standard deviations are shown in the brackets. Table 11 shows the normality tests 

for each of the driver groups. 

 

Research Design  

Similar to the previous Experiment 1 video-speed task, this experiment was designed 

as a within and between-subject study with multiple repeated measures. The 

independent variables being examined are the road environment (urban or rural), 

road type (i.e., with or without shoulders/markings), and condition (i.e., day or night, 

dry or wet). The dependent variable was the driver’s choice of speed for each clip, 

measured in km/h. This design allows for comparison between driver age groups for 

different road environments (rural and urban), conditions (dry or wet, day or night), 

and different road types (e.g., presence of shoulders; width and visual distance). 

Additionally, this task is paired with a Hazard Perception Dual Task, which measures 

drivers hazard perception skills over eight trials. The dependant variables are the 

number of hazards, the time to detect hazards, the number of clicks on non-hazards, 

the number of tracking errors, and the total tracking error duration 15  for the 

secondary task. These measures will be introduced in the Apparatus section of this 

experiment. 

In this experiment, the validity of the Hazard Perception Dual-task will be confirmed 

based on the ability to differentiate between Novice and Experienced drivers (Wetton 

et al., 2011). The results of the Video Speed Task are thought to replicate what was 

observed overall, as well as between drivers in relation to speed choices for each road 

type and condition.  

                                                           
15 These tracking error measures from the Hazard Perception Task will be discussed in greater detail throughout the 

method section. 
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In order to explore the role of experience alongside age, drivers were grouped according to the driver licence that they held and the convention of 

Novice and Experienced based on separating participants according to their age, using a cut-off of 25 years old. The following Table 10 shows the 

demographic information of these five Driver Groups: 

 

Table 10:  
 
The Means and Standard Deviation (Brackets) of Self-Reported Driver History Demographics for the Five Groups 

 

The demographic information related to near-misses was excluded, as the self-reported rate varied by such a substantial degree. This indicated that 

the measure was open to interpretation by participants. Crashes provided a more concrete meaning, and while this meant the variable was a more 

useful self-report measure, the rates were low. Restricted drivers reported the highest number of crashes, with the lowest number being Novice drivers.  

Driver Group n Age (yrs) Driving Experience (yrs) Distance per Week (Km) Crashes / Near-miss (NM) Mean NMs Mean Crashes 

Learner 28 16.5 (2.09) 0.5 (1.32) 56.1 (81.48) 1 / 11 0.7 (0.34) 0.06 (0.063) 

Restricted 29 18.8 (2.10) 2.7 (1.71) 93.0 (98.95) 9 / 44 1.8 (0.43) 0.36 (0.140) 

Full (25<) 30 23.2 (2.37) 6.5 (2.19) 112.3 (123.00) 4 / 38 1.7 (0.57) 0.18 (0.084) 

Full (25<50) 24 34.9 (7.14) 18.4 (6.98) 190.4 (153.30) 4 / 96 4.0 (1.77) 0.17 (0.098) 

Full (>50) 25 57.5 (8.58) 38.2 (8.91) 222.3 (210.40) 1 / 25 1.8 (0.94) 0.08 (0.077) 
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Table 11:  
 
Kolmogorov-Smirnov Values Test for the Normality of the Five Driver Groups 

 
Driver Group df Urban Speed Choice Rural Speed Choice No. of Hazards Perceived Hazard Perception Time 

Learner 28 .136 .223 .202 .129 

Restricted 29 .134 .179 .153 .110 

Full (25<) 30 .127 .109 .203* .157* 

Full (25<50) 24 .140 .127 .166 .088 

Full (>50) 25 .187 .163 .181 .199 
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Apparatus 

The validated Video Speed Task (VST) used in Experiment 1 to measure drivers speed 

choice was used in this experiment. The task was identical in all respects to the 

previous task; however, all participants were required to estimate the vehicle speed 

before choosing their ideal speed for each condition in the present video task. 

The hazard perception dual-task involved showing video clips of various urban traffic 

situations to participants, in which they needed to click when they perceived a hazard 

while also moving the mouse to ensure a small circle remained within the confines of 

a rectangle superimposed on the screen. Participants were required to click and 

briefly mention the hazard they had seen whilst moving the dot with the mouse. 

Before the task commenced, participants were given the opportunity to practice the 

task. Once a level of 80% hazard perception competence was reached and 

participants were happy to advance, then eight separate video scenarios were shown. 

Once the experiment was complete, the program ended. 

 

The Hazard Perception Dual-Task (HPDT) 

In order to study the potential role of hazard perception in speed choice, the validated 

hazard perception task developed by Isler, Starkey, and Williamson (2009) was used 

in this experiment. In this task, participants were required to search for immediate 

hazards while also performing a secondary tracking task. An immediate hazard was 

defined as a hazard that could potentially get into the driver's way so that an evasive 

driving action would be required, such as braking or steering away. Examples 

included cars braking, pedestrians, road workers, and cyclists crossing the road. The 

secondary task involved the participant tracking a randomly moving dot with a small 

square that was controlled directly by the mouse, overlaid in the centre of the screen. 

If participants allowed the moving dot to leave the confines of the square, a tracking 

error occurred, accompanied by a buzzing sound and a change from blue to purple of 

the top and bottom areas of the screen. The still image taken from the task is shown 

in Figure 35: 
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Figure 35: Screenshot showing one of the video clips used in the Hazard Perception Dual Task. A 
simulated vehicle interior and mirrors can be seen, with the secondary dual-task (white rectangle 

and moving dot) overlaid. 

 

The Hazard Perception Dual-task was designed to give a realistic impression of a 

driver’s perspective travelling along a section of road where hazards could manifest. 

It included a digital ‘fully functioning’ dashboard including a moving steering wheel, 

a ‘functional’ speedometer, and wing and rear-view mirrors. The video scenarios 

were created using urban roads and ranged in duration from 8 to 75 seconds in length. 

There were eight video scenarios, with a total of 40 immediate hazards identified 

beforehand by driving instructors. The videos used in the experiment were created 

using footage of New Zealand roads, encompassing various urban and suburban 

situations (e.g., school crossings, multiple lane roads), displayed from a drivers’ 

perspective, including synchronised mirrors and dashboard (see Figure 3). The 

videos were compressed to 1080p resolution and presented without audio. 

Each video contained five immediate hazards for participants to identify. Initially, the 

participant was presented with a blank screen. A mouse click on the button in the 

centre labelled “Click here to Start Video” began the three-second countdown before 

displaying each clip. Initially, participants were able to practise the primary and 

secondary tasks before progressing to the experiment in a training loop. Once 

participants had correctly identified all four hazards in the training loop and were 

competent with both the tracking task and verbal identification of hazards, the 

experimenter allowed the testing to begin. The instructions given to the participants 

were: 
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Your task will be to detect immediate hazards by clicking on them with the 

mouse as soon as you detect them and then by verbally pointing them out. 

Immediate hazards are hazards such as braking cars, pedestrians walking 

over the road, cyclists, road workers etc., which potentially could get into 

your way so that a driving action would be required. (e.g., braking, steering 

away etc.,). You also need to track a randomly moving dot within a large 

rectangle with the mouse and make sure that you keep the dot always 

covered with a small rectangle. 

While watching each video, the participant was required to click the mouse as soon 

as they perceived a hazard as well as verbally identify what each hazard involved 

(e.g., “pedestrian to my left”). Audio recordings of the verbally identified hazards 

were made for each participant and matched with mouse clicks to determine the 

number of correctly identified hazards for each clip, as well as the time to detect the 

hazard from the moment it first appeared. 

Each click was associated with a beeping sound and was recorded by the computer 

along with a time-stamp in milliseconds from the start of each trial so that the time 

from the appearance of each hazard could be calculated (hazard perception time) 

along with the number of hazards perceived. Each hazard had previously been 

allocated a time window in which they occurred to calculate participants’ reaction 

times for each hazard perceived. In order not to skew the data in favour of more 

experienced drivers, only the reaction times for hazards perceived were analysed, 

with group means used for missed hazards, keeping with the original task developed 

by Isler et al. (2009). 

At the same time, the participant was required to perform a secondary tracking task. 

This secondary task involved participants ensuring a randomly moving dot (moving 

10 mm/s) was contained within a small square (30 x 30 mm), the position of the box 

controlled by using the mouse. Both the moving dot and the controlled box were 

contained within a larger stationary rectangle (130 x 80 mm), which was 

superimposed over the centre of the traffic scene within the confines of the front 

window. The dot ‘bounced off the edges of this larger rectangle. If the moving dot went 

outside the square, a buzzing was heard in conjunction with the screen background 

turning purple for 500ms. The computer recorded the time and occurrence of the 

tracking error.  
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Once participants had completed a trial, the original blank screen appeared, and 

participants could click to start the next video trial in the sequence. Each participant 

performed the traffic simulation trials in the same order, and after each clip had been 

displayed, the experiment concluded. 

 

Procedure 

Participants were initially briefed concerning the experimental procedure. After 

consenting to take part in the research, participants were seated on a reclining chair 

with the monitor directly in front at a 1-meter distance. They were provided with a 

mouse and mouse-pad which they could move to their preferred hand. Depending on 

the assigned order group (odd and even-numbered), participants either began with 

the hazard perception task or ended with the video speed choice task – or vice versa. 

The video-speed choice task was similar to the previously validated task; however, 

eye movements were not recorded in this experiment. Participants were instructed 

to watch each video clip. Afterwards, adjust the position of the needle using the mouse 

to select the speed they thought was most appropriate for themselves as the driver.  

Participants were asked to complete the hazard perception dual-task, which has been 

described above. They were instructed to click the left mouse button when they 

perceived an immediate hazard and asked to identify the hazard they had perceived 

briefly verbally. Participants were also required to move the mouse to position a 

square box over a moving dot, which simulated the typical cognitive demands when 

driving. They were provided several practice trials to become familiar with the task. 

Once they were comfortable and perceived above 80% of hazards on the practice clip, 

they were invited to begin the experiment. Once the final clip had been displayed, the 

task ended with a blank screen.  

Irrespective of the task order, all participants completed the online Questionnaire 

measures after the laboratory-based tasks. Once the laboratory-based experiment 

was completed, participants completed the questionnaire measured by computer 

using the Qualtrics™ online survey software. Once participants had completed the 

questionnaires, the answers were stored online along with the participants’ unique 

identification number. Participants were thanked for their involvement in the 

research and able to ask questions related to the research. Participants were either 
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provided a $10 MTA/Warehouse voucher for their involvement or 2% research 

participation course credit for first-year students. 
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Results 

An initial analysis of the speed choices for all participants was conducted, performed 

in a manner identical to the analysis in Experiment 1, to determine if the high level of 

ecological validity of the choices was reproduced in this experiment. Appendix 3 (p. 

335) shows this analysis, and very briefly, the results indicated that speed choices 

were remarkably similar to those in Experiment 1 for speeds across road types and 

conditions. This provided greater assurance that the speed choices in the laboratory 

had considerable ecological validity.  

The analysis also involved comparing the speed choices of ‘Novice’ and ‘Experienced’ 

drivers, identical to the approach used in Experiment 1. Both groups selected slower 

speeds for the night and wet driving conditions. However, a notable between-subject 

effect was that experienced drivers selected faster speeds than novice drivers for both 

night and dry conditions. This difference is examined in the context of the five driver 

groups used in this experiment. 
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Examining the Role of Age and Experience on Speed Choice 

In order to examine the role of experience more thoroughly, a large cohort was 

recruited, covering a range of age and experience levels. Results from the Speed 

Choice task were organised into five groups: ranging from ‘novice’ drivers aged under 

25 with ‘Learner’, ‘Restricted’, and ‘Full’ driver’s license, and drivers aged between 25 

and 50 years as ‘Full (25<50)’, and then an older driver group ‘Full (<50)’ with a Full 

licence for drivers aged over 50 years of age. The demographic information can be 

seen in the method section of this experiment (p. 142). The speed choices on both 

Urban and Rural roads under different conditions is displayed in Figure 36, arranged 

by Driver Group:  

 

Figure 36: The Mean Speed Choice for both Urban and Rural Road Conditions by Driver Group.  
Speed Limit indicated by the horizontal dotted line. Error bars represent 95% Confidence 

Intervals (CI). Significance values are indicated, p< 0.05 *, and p< 0.01 ** 

 

Visual inspection of Figure 36 indicated that the Learner group selected slower 

speeds under all road conditions compared with the other driver groups. Similar 

speeds were observed for each condition and road environment for each of the other 

driver groups, with a small increase of speed with age and similar confidence intervals. 

There was a slight decline in speed choice for the Full (>50) driver group. Drivers 

were observed to prefer slower speeds under Night (Urban) and Wet (Rural) 

conditions,  which was consistent with the findings from Experiment 1 (see Appendix 

3, p. 335).  
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The speed choices for the five driver groups are shown in Table 12, presented 

according to road condition in Figure 36: 

 

Table 12:  
 
The Mean Speed Choices (brackets represent the Standard Deviations) for each of the Driver 
Groups 

 

A one-way ANOVA was performed to compare the total of speed choices across the 

Driver Groups, with a significant difference being revealed, F(4,135)= 4.965, p< 0.01, 

ηp2= 0.132. Subsequently, individual road Environment, Type and Condition were 

analysed to determine the differences between Driver Groups. 

 

  

Environment Condition Learner Restricted Full 

(<25) 

Full 

(25<50) 

Full 

(>50) 

Urban Roads Day 41.8 

(7.47) 

43.8 

(4.01) 

43.3 

(7.38) 

44.2 

(5.16) 

45.2 

(4.32) 

 Night 39.5 

(6.95) 

40.9  

(5.93) 

41.9 

(8.16) 

42.9 

(4.78) 

43.8 

(6.06) 

Rural Roads Dry 82.4 

(12.17) 

92.1 

(10.25) 

92.9 

(7.67) 

95.4 

(6.66) 

90.7 

(9.13) 

 Wet 69.4 

(12.77) 

76.7 

(10.64) 

77.7 

(8.39) 

80.3 

(9.36) 

75.5 

(11.61) 
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The results of the analysis between driver groups for both Urban and Rural roads are 

shown in Table 13: 

 

Table 13:  
 
The Main Effects for the Speed Choices for each Road Environment, Type, and Condition for the  
five Driver Groups 

 

Post-hoc analysis of speed choices between driver groups revealed a significant 

difference in speed choice between Learner (M= 35.4km/h, SD= 7.37) and Full (>50) 

(M= 41.4km/h, SD= 7.63) drivers for Urban Road 1 (no markings) for the Night 

condition (p< 0.01), and between Learner drivers and all other groups (p< 0.01) for 

all Rural Road scenarios. None of the other groups showed pairwise differences. All 

drivers selected significantly slower speeds under the Rural Wet condition. There 

were no significant differences between Day and Night conditions for any driver 

group, though all drivers selected slower speeds under the Night condition. 

Across driver groups, the overall finding from this was that Learner drivers selected 

slower speeds. In comparison, the other driver groups chose faster speeds similar to 

each other (not significantly different). This distinguished the Learner driver group 

as unique regarding speed choice, being the only group that was significantly different 

in relation to speed choice. 

In order to examine the overall speed choices of driver groups across all road 

Environments, Types, and Conditions, speed choices were normalised, and then a 

total sum of ƶ-scores was calculated to represent the differences in speed choice 

Environment Type Condition F-Value Sig. ηp
2 

Urban Roads 1 (Narrow)  Day 1.789 0.14 0.054 

 - Night 2.481 0.05* 0.073 

 2 (Wide Margins) Day 1.229 0.30 0.038 

 - Night 1.114 0.35 0.034 

Rural Roads 1 (Markings) Dry 7.584 0.01** 0.194 

 - Wet 3.880 0.05* 0.110 

 2 (No Markings) Dry 4.733 0.01** 0.131 

 - Wet 3.242 0.05* 0.093 

Significant values: * = p < 0.05, ** = p < 0.01 
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despite the differences in speed limit and environment16. This composite sum of ƶ-

scores was graphed by driver group, and is shown in Figure 37: 

 

Figure 37: Mean Composite Speed Choice ƶ-scores, by Driver Group. Error bars represent 95% 
Confidence Intervals (CI).  Significance values are indicated, p< 0.05 *, and p< 0.01 ** 

 

Visual inspection of Figure 37 clearly shows that the pattern of normalised speed 

choices follows a half-crescent shaped pattern in relation to each driver group's 

increasing age and experience, with ‘Learner’ drivers showing the slowest speeds and 

the other driver groups not differing by a substantial degree. A one-way ANOVA was 

performed to examine the differences in overall normalised speed choice between 

driver groups, indicating a significant main effect F(4,135)= 4.870, p< 0.01, ηp
2= 0.134. 

Post-hoc analysis using a Bonferroni corrected Tukey’s HSD (Table 14) revealed that 

the Learner novice group chose significantly slower speeds than all the other driver 

groups, with a significance of p< 0.05 for the Restricted driver group and a 

significance of p< 0.01 for the remaining groups. There were no other significant 

pairwise interactions. This confirms the previous observation that Learner drivers 

select considerably slower speeds than their more experienced or older counterparts. 

                                                           
16 Because road enviornments had substantially different speed limits, as well as different conditions and type, normalizing 

the speed choices for each road condition and type, then calculating a total overall score, would provide a means for 
comparing the overall behaviour of each driver group. 
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Table 14:  
 
Post-hoc Pairwise comparisons in Normalized Composite Speed (ƶ-score) between Driver Groups 

 

 

 

 

 

 

 

 

 

      

Group n Mean SD Learner Restricted Full (<25) Full (25<50) Full (>50) 

Learner 28 -0.745 1.2318 -     

Restricted 29 0.018 0.8810 0.05* -    

Full (<25) 30 0.106 0.9706 0.01** 0.73 -   

Full (25<50) 24 0.367 0.7868 0.01** 0.19 0.36 -  

Full (>50) 25 0.082 0.9393 0.05* 0.81 0.93 0.38 - 

Significant values: * = p < 0.05, ** = p < 0.01 
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Within-subject differences for Road Types and Conditions 

The differences between drivers’ chosen speeds were examined for both Urban and 

Rural road types and conditions. Speed choices for each driver group are shown in 

Figure 38 as the difference between the road types (e.g., with or without clear marking 

and shoulders) for both Day and the Night condition:  

 

Figure 38: The mean Speed Choice for both Urban road types showing the difference between 
Day (left) and Night (right) conditions, by Driver Group.  Speed Limit is indicated by the horizontal 
dotted line. Error bars represent 95% Confidence Intervals (CI). Significance values are indicated, 

p< 0.05 *, and p< 0.01 ** 

 

On visual inspection of the figure, it is noted that speed choice seems to differ between 

the day and night condition on Urban Road 1 (narrow), whilst on Urban Road 2 (wide, 

clear markings), there is little difference between speed choices between Day and 

Night condition. Furthermore, the speed choice on Road 2 is consistently faster than 

the speed choices on Road 1.  

The difference between conditions for each road type can be seen in Figure 39: 
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Figure 39: Mean Speed Choices for Day and Night Urban Road Conditions Without (left) and With 
Markings and Shoulders (right), by Driver Group.  Speed Limit is indicated by the horizontal 

dotted line. Error bars represent 95% Confidence Intervals (CI). Significance values are indicated, 
p< 0.05 *, and p< 0.01 ** 

 

Inspection of Figure 39 indicated that there was a significant difference between Day 

and Night conditions on Urban Road 1 (no markings) for all Driver Groups, though 

there was no significant difference in speed choices for Urban Road 2 (markings). This 

was consistent with the findings of Experiment 1. All driver groups selected 

significantly slower speeds for the Night condition on Urban Road 1 (no markings) 

compared to Urban Road 2 (markings). All driver groups speed choices were slower 

for Urban Road 1 (no markings) in the Day condition compared with Urban Road 2, 

apart from the novice Restricted-licence group who made similar speed choices for 

both day-time roads. 

A mixed, two-way 5 (Driver Group) x 2 (Road Condition (Urban Night vs Urban Day) 

x 2(Road Type, repeated measure) ANOVA revealed a significant main effect between 

the speed choices made between Road Conditions and Type, Wilks Λ= 0.696, F(1, 135)= 

57.230, p< 0.01, ηp2= 0.304, confirming that speed choices were faster on Urban Road 

2 (markings) than Urban Road 1 (no markings) for both Day and Night Conditions. 

However, there was no significant interaction between Driver Groups for either Road 

Type, Wilks Λ= 0.973, F(4, 131)= 0.895, p= 0.469, ηp
2= 0.027, or for Condition, Wilks Λ= 

0.942, F(4, 131)= 2.005, p= 0.098, ηp
2= 0.058. and no significant interaction between 

Driver Group, Road Type, and Condition, Wilks Λ= 0.945, F(4, 131)= 1.902, p= 0.114, ηp2= 

0.055.  
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The mixed ANOVA revealed a significant within-subject effect in speed choices 

between Day and Night Conditions, F(1,135)= 117.803, p< 0.01, ηp2= 0.473, in which 

drivers chose slower speeds during the Night condition (M= 38.6km/h, SD= 7.77) 

compared with the Day condition (M= 42.3km/h, SD= 6.86). There was also a 

significant within-subject effect for Road Type, F(1,135)= 29.102, p< 0.01, ηp
2= 0.182 

which confirmed the observation that drivers chose a slower overall speed for Urban 

Road 2 (M= 38.6km/h, SD= 7.77) compared to Urban Road 1 (M= 44.9km/h, SD= 6.61). 

There was no significant difference between conditions for Urban Road 2 perceived. 

Post-hoc tests revealed that there were no significant differences between driver 

groups.   

Rural roads were graphed similarly to Urban roads, firstly by comparing Road Type 

(e.g., with and without shoulders and markings) and then comparing road condition 

(e.g., Dry or Wet). These are represented in Figure 40 (Road Type) and Figure 41 

(Condition), respectively: 

 

Figure 40: The mean Speed Choice for both Rural road Types showing the difference between 
Dry (left) and Wet (right) Conditions, by Driver Group.  Speed Limit is indicated by the horizontal 
dotted line. Error bars represent 95% Confidence Intervals (CI). Significance values are indicated, 

p< 0.05 *, and p< 0.01 ** 

 

Visual inspection of Figure 40 shows that there are differences between both road 

condition and type, with learner drivers selecting the slower speed and then the other 

driver groups selecting faster albeit relatively consistent speeds. There also are 
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apparent within-subject effects with drivers choosing faster speeds for both Dry and 

Wet conditions on the roads with clear markings and shoulders (Road 1) when 

compared with the roads without clear markings and shoulders (Road 2). The 

difference between drivers’ speed choices for Rural Road condition is shown in Figure 

41: 

 

Figure 41: The mean Speed Choice for both Rural Dry and Wet Conditions on road types without 
(left) and with markings and shoulders (right), by Driver Group.  Speed Limit is indicated by the 

horizontal dotted line. Error bars represent 95% Confidence Intervals (CI). Significance values are 
indicated, p< 0.05 *, and p< 0.01 ** 

 

Visual inspection of Figure 41 showed that there was a significant difference between 

speed choices on Wet and Dry Road conditions for all drivers, irrespective of road 

type. Drivers chose significantly faster speeds on Dry roads than wet roads, and speed 

choices were faster for roads with markings (Road 2) than roads without markings 

(Road 1).  

A similar mixed ANOVA investigating Drivers speed choices between Condition and 

Road Type was conducted for Rural Roads, revealing a weak significant interaction 

between drivers speed choices for different conditions and road types, Wilks Λ= 0.946, 

F(1, 135)= 7.463, p< 0.01, ηp
2= 0.054, however, there was no significant interaction 

between Driver Groups for either Road Type, Wilks Λ= 0.982, F(4, 131)= 0.586, p= 0.673, 

ηp
2= 0.018, or for Condition, Wilks Λ= 0.933, F(4, 131)= 2.365, p= 0.056, ηp

2= 0.067. and 

no significant overall interaction between Driver Group, Road Type, and Condition, 

Wilks Λ= 0.966, F(4, 131)= 1.136, p= 0.343, ηp2= 0.034. 
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Several significant within-subject effects were found for drivers speed choices on 

Rural roads under both Dry and Wet conditions, F(1, 135)= 7.463, p< 0.01, ηp2= 0.054. 

The main effect for Dry roads was F(1,135)= 93.074, p< 0.01, ηp2= 0.415, with drivers 

selecting slower overall mean speeds on Rural Road 1 (M= 86.6km/h, SD= 12.92) 

compared to Rural Road 2 (M= 94.7km/h, SD= 9.63). 

For Wet Rural roads, the significant main effects was F(1,135)= 236.828, p< 0.01, ηp2= 

0.664, with drivers selecting slower overall mean speeds on Rural Road 1 (M= 

70.7km/h, SD= 12.41) compared to Rural Road 2 (M= 80.9km/h, SD= 11.05). A 

significant between-subjects effect was observed for Driver  Group, F(4,131)= 6.139, p< 

0.01, ηp2= 0.158. Post-hoc tests indicated that Novice learner drivers selected 

significantly slower speeds than all other groups on Dry (p< 0.01), and Wet roads (p< 

0.05). No other between-subject effects were observed.  

All Driver Groups selected significantly slower speeds for the Wet condition than the 

Dry condition for both Rural Road 1 and 2. All groups favouring significantly slower 

speeds on Rural Road 1 compared with Rural Road 2 for both weather conditions. 

Appendix 3 includes a table of the differences between road type and condition for 

both Urban and Rural Roads. 

Overall, this finding is consistent with previous research findings that all driver 

groups select slower speeds on the narrow Urban road during the Night and the Rural 

road where shoulders and clear markings are absent. Novice learner drivers selected 

significantly slower speeds on both Rural roads, which is apparent when comparing 

different road conditions. 
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Hazard Perception and Driver Groups 

Hazard perception measures are primarily the number of hazards perceived and the 

time taken to perceive each hazard. Other measures, such as tracking errors and the 

number of clicks on non-hazards17 were calculated, but principally these results will 

be in relation to hazards perception measures. The number of hazards and hazard 

perception times are shown in Figure 42: 

 

 

Figure 42: The Mean Number of Hazards Perceived (left) and Hazard Perception Times (right), by 
Driver Group. Error bars represent 95% Confidence Intervals (CI). Significance values are 

indicated, p< 0.05 *, and p< 0.01 ** 

 

Visual inspection of Figure 42 indicates that the number of hazards increases linearly 

with age and experience (Driver Groups), declining slightly in the experienced (>50) 

age group. In a similar, albeit inverted pattern, it can be seen that the time taken to 

perceive hazards steadily declines in a staggered linear fashion with increased age 

and experience (across groups), with a slight increase in response latency for the 

experienced (>50) group.  

A one-way ANOVA was conducted to examine the differences observed in the number 

of hazards perceived and hazard perception times between Driver Groups. Significant 

main effects were observed between Driver Groups for the number of hazards 

perceived F(4,131)= 3.546, p< 0.01, ηp2= 0.098. 

                                                           
17 The number of clicks on non-hazards could be an indication of drivers perceiving covert hazards, so will be investigated 

briefly. Without eye-tracking, it is difficult to know whether these are related to actual covert hazards. 
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Post-hoc pairwise differences between Driver Groups were calculated with a Bonferroni corrected Tukey’s HSD test and are presented in 

Table 15: 

________________________________________________________________________________________ 
Table 15:  
 
Post-hoc Pairwise comparisons in Number of Hazards Perceived between Driver Groups 

 

 

 

 

 

 

 

 

 

 

    Tukey’s HSD Comparisons 

Group n Mean SD Learner Restricted Full (<25) Full (25<50) Full (>50) 

Learner 28 22.50 6.478 -     

Restricted 29 25.10 5.321 0.48 -    

Full (<25) 30 26.46 7.592 0.01** 0.90 -   

Full (25<50) 24 28.33 3.773 0.01** 0.30 0.79 -  

Full (>50) 25 26.88 5.897 0.05* 0.81 0.99 0.91 - 

Significant values: * = p < 0.05, ** = p < 0.01 
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There were also significant main effects found between Driver Groups in relation to hazard perception times F(4,131)= 7.332, p< 0.01, η2= 

0.183. The Bonferroni corrected post-hoc pairwise differences between groups are presented in Table 16: 

_________________________________________________________________________________________ 
Table 16:  
 
Post-hoc Pairwise comparisons in the Hazard Perception Time between Driver Groups 

    Tukey’s HSD Comparisons 

Group n Mean SD Learner Restricted Full (<25) Full (25<50) Full (>50) 

Learner 28 4.057 0.6901 -     

Restricted 29 3.547 0.7325 0.05* -    

Full (<25) 30 3.437 0.6668 0.01** 0.96 -   

Full (25<50) 24 3.109 0.5638 0.01** 0.11 0.35 -  

Full (>50) 25 3.449 0.5632 0.05* 0.98 1.00 0.36 - 

Significant values: * = p < 0.05, ** = p < 0.01 
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Tracking Errors between Driver Groups 

One potential issue that needs to be addressed is in relation to the effect of the 

secondary task on the driver's performance. It could be suggested that differences in 

task performance are the product of the amount of attention devoted to either the 

primary or secondary task. For instance, if a driver devotes significant attention to the 

secondary tracking task, they may not have the cognitive resources or perceptual 

ability to perceive hazards in the primary task, which they would otherwise observe 

without the distraction. Distraction has been identified as a significant issue in drivers 

psychology (Klauer et al., 2006). Driver distraction plays a role in the common ‘look 

but failed to see” accident accounting for a number of preventable crashes, due to the 

lack of detailed processing, or the sufficient presence of distractors that interfere with 

visual representations of the road environment (Werneke & Vollrath, 2012; Wickens, 

2005). 

In this experiment, participants were required to track a moving dot with the mouse 

whilst simultaneously clicking when identifying hazards. The tracking task intended 

to ‘simulate’ the natural demands placed on a driver present in the driving task itself, 

separate from the role of other related processes such as searching for hazards. The 

number and duration of tracking errors were recorded and are shown in Figure 43 

and Figure 44, respectively: 

  

Figure 43: The Number of Tracking Errors, by Driver Group. Error bars represent 95% Confidence 
Intervals (CI). Significance values are indicated, p< 0.05 *, and p< 0.01 ** 

 

* 
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Figure 44: The Mean Duration of Tracking Errors, by Driver Group. Error bars represent 95% 

Confidence Intervals (CI). Significance values are indicated, p< 0.05 *, and p< 0.01 ** 

Visual inspection of Figure 43 showed that the number of tracking errors seemed to 

be roughly the same for all Driver Groups. However ‘Full (>50)’ appears to have a 

significantly greater number of tracking errors compared to the other Driver Groups. 

A one-way (5 Driver Groups) ANOVA was conducted to determine differences in the 

number and duration of tracking errors for each Driver Group. The ANOVA revealed 

a significant main effect between Driver Groups for the number of tracking errors, 

F(4,131)= 2.537, p< 0.05, ηp2= 0.072, though the effect was not statistically significant 

with the mean duration or each tracking error, F(4,131)= 0.587, p= 0.67, ηp2= 0.018. 

Post-hoc analysis using Tukey HSD showed that there was a significant mean 

difference (MD= 1.79, SE= 0.65) in the number of tracking errors between Full (<25) 

drivers and Full (>50) drivers, with Full (>50) drivers having the greater number of 

tracking errors (p< 0.05). There were no other between-subject effects that reached 

statistical significance.  

The number of clicks on Hazards and on Non-hazards was calculated. For discussion, 

we can consider that Clicks on Hazards refer to coded immediate hazards, whereas 

clicks on Non-Hazards could be considered either uncoded hazards or mistaken clicks. 

The number of clicks is shown in Figure 45: 
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Figure 45: The Mean Number of Clicks on Non-Hazards in the Hazard Perception Dual Task, by 
Driver Group. Error bars represent 95% Confidence Intervals (CI). Significance values are 

indicated, p< 0.05 *, and p< 0.01 ** 

In Figure 45, there appeared to be a difference between Driver Groups in relation to 

the number of clicks on non-hazards, with learner novice drivers having the fewest 

and Full (25<50) drivers having the greatest number of clicks. A one-way ANOVA 

revealed a significant main effect observed between Driver Groups for the number of 

clicks on non-hazards, F(4,131)= 5.247, p< 0.01, ηp2= 0.138. The number of clicks on non-

hazards does appear to roughly mirror the number of clicks on immediate hazards, 

which was confirmed through a repeated-measure ANOVA, with a significant main 

effect, Wilks Λ= 0.930 F(4,131)= 2.460, p< 0.015, ηp2= 0.070. There was a significant 

between-subject effect for the number of clicks on hazards and non-hazards, F(4,131)= 

6.848, p< 0.01, ηp2= 0.169, with post-hoc Tukey’s HSD comparisons revealing that the 

only significant difference between driver groups was between Learner and ‘Full 

(<25<50)’ drivers (p< 0.01). The normalised number of clicks for both Hazards and 

Non-hazards is shown in Figure 46: 
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Figure 46: The Normalized number of Clicks on both (coded) Hazards, and Non-hazards, by Driver 
Group.  Error bars represent 95% Confidence Intervals (CI). Significance values are indicated, p< 

0.05 *, and p< 0.01 ** 
. 

 

The normalised number of clicks shown in Figure 46 reveals a similar pattern of clicks 

on Hazards to Non-hazards. This finding is significant, as it could be criticised that the 

reason that the more experienced drivers excelled at the task was that they were 

merely clicking in response to almost everything. However, the methodology of the 

task ensured that only those coded immediate hazards that met predefined criteria 

were accepted, which have been described in the method section and listed in 

Appendix 11. After analysing the recordings, many of the clicks on non-hazards could 

be considered potential or covert hazards that either did not present or had not yet 

materialised into immediate overt hazards. An eye-tracker would have been valuable 

in examining this identification of potential or covert hazards.  
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The Relationship between Hazard Perception and Speed Choice 

Leading out of Experiment 1, with the difference in eye-movement behaviour, one of 

the main questions was whether there would be a significant relationship between 

speed choice and the hazard perception measures. Similar to the correlation-based 

approach employed by Renge (1998), Pearson’s correlations between normalized 

composite speed choice, normalized number of hazards perceived, and normalized 

hazard perception times was conducted. A significant positive correlation was found 

between normalized speed choice and the number of hazards (r= 0.259, p< 0.01).  

 To visually represent the relationship between the two hazard perception measures 

and speed choice, normalised values were calculated and then plotted together. The 

left side represented normalized speed choice across Driver Groups, and the right-

hand side representing one of the normalised hazard perception measures. Figure 47 

shows the relationship between normalised speed choice and the normalised number 

of hazards perceived: 

 

Figure 47: The Relationship Between Normalized Speed Choice (left-axis) and the Normalized 
Number of Hazards Perceived (right-axis), by Driver Group. Error bars represent 95% CI.  
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From the positive correlation and visual inspection of Figure 47, it can be clearly seen 

that as the number of hazards perceived increases across Driver Groups, normalised 

speed choice follows a very similar trend. The relationship between speed choice and 

hazard perception suggests that as the number of hazards perceived increases, so too 

does the speed drivers choose. Learner drivers have the lowest speed choice and also 

perceived the least number of hazards. Restricted drivers were also found to be low 

in the number of hazards perceived, yet selected speeds that are more in line with 

those made by the more experienced Full (<25) and Full (>50) drivers. 

 

Figure 48: The Relationship between Normalized Speed Choice (left-axis) and the Normalized 
Hazard Perception Time (right-axis), by Driver  Group.  Error bars represent 95% CI.  

 

Figure 48 shows that speed choice follows an inverted U-shaped curve, while the time 

taken to perceive hazards follows a more quasi-linear trend down. A low value for 

hazard perception time means that participants perceived hazards in a small amount 

of time from when the first appearance. A negative relationship was found in relation 

to normalized speed choice and hazard perception time (r= -0.228, p< 0.01). This 

suggests that the relationship between speed choice and hazard perception is such 

that drivers chose faster speeds with quicker hazard perception times. 
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Given that learner drivers were significantly different from the other driver groups in 

both their hazard perception performance and speed choices, it was considered that 

learner drivers could strongly influence the correlation. Learner drivers were unique 

in that their typical driving context involved supervision, and their hazard perception 

was generally poor. When the learner driver group was removed from the analysis, 

the correlation between speed choice and the number of hazards perceived remained 

significant (r=0.212, p= 0.05). However, the correlation with hazard perception time 

was found to be non-significant (r= -0.203, p= 0.057). 
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Discussion 

 
This experiment set out to examine the relationship between drivers’ speed choice 

and hazard perception ability, using the video-based speed choice task validated in 

Experiment 1 accompanied by a separate, validated Hazard Perception dual-task 

developed by Isler, Starkey, and Williamson (2009). One of the significant findings 

was the positive relationship between the number of hazards perceived and speed 

choices. As we hypothesised based on the available literature, this finding was 

unexpected as drivers with more advanced hazard perception ability chose slower 

speeds. For instance, Renge (1998) found that slower speed choices were correlated 

to a higher number of identified hazards and greater recognition of situational risks. 

Additionally, McKenna et al. (2006) noted that drivers selected slower speeds in the 

presence of hazards following anticipation training (McKenna et al., 2006). It was 

noted that when learner drivers were excluded from the analysis, the correlation 

between speed choice and hazard perception time ceased to remain significant. 

Another unexpected finding was that older, more experienced drivers chose 

significantly faster speeds than Learner-licence drivers, irrespective of the road 

environment, type, or condition. These findings were contrary to the speed choice 

behaviour of ‘experienced’ drivers observed in Experiment 1, which had employed 

the same task. While overall, speed choices under different road type and condition 

were highly consistent with the findings from Experiment 1, this was the case only 

when drivers’ age or experience were not considered. 

While the anticipated relationship between hazard perception and speed choice was 

not identified, there may still be potential for such a relationship. As the speed choices 

made by most drivers could be considered modest and potentially did not exceed the 

threshold where there is a significant change in the amount of risk that drivers 

experience (Lewis-Evans, 2006). Considering that many experienced drivers would 

be familiar with driving at their chosen speeds on similar roads as presented in the 

speed choice task, they are likely to have developed speed habits for these commonly 

encountered conditions. This seems reasonable given that the strength of the 

correlation was influenced by the slower speed choices of learner drivers. Learners 

are likely unfamiliar with many road situations, and driving outside of their everyday 

context may mean they choose slower speeds. Lewis-Evans (2012) noted that ratings 

task difficulty and feeling of risk do not linearly increase with faster speeds, but rather 

perceived risk starts relatively low and plateaus, and then increased only once a 
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certain ‘threshold’ speed has been reached (Lewis-Evans, 2012; Lewis-Evans et al., 

2011).  

In this experiment, a noteworthy finding was that there were no significant 

differences in speed choice between the restricted drivers (novices) and experienced 

driver groups. This lack of difference suggests that restricted drivers (with 2.5 years 

of driving experience) may be overconfident in their abilities, which the literature 

defines as being ‘poorly calibrated’ (Kuiken & Twisk, 2001). Considering that 

restricted novice drivers were found to have significantly weaker hazard perception 

ability compared with experienced drivers, this may explain the discrepancy between 

their actual driving competency (hazard perception) and their perceived ability as 

demonstrated in their choice of faster speeds. When the role of experience (as 

indicated by age and license) was considered, one aspect consistent with the 

literature was that the learner novice drivers selected significantly slower speeds 

than the other driver groups.  

Learner drivers legally require another driver to supervise their driving, and 

statistically, this is the safest driving period when complying with the conditions 

attached to the license (Mayhew, Simpson & Pak, 2003). Day et al. (2018) performed 

a longitudinal study of novice drivers self-reported driving behaviour throughout 

three months. They found that novice drivers had poor situation awareness after 

gaining a learner licence. Initially, these drivers were under-confident initially and 

less inclined to drive at speed. However, with experience gained over three months, 

there was a corresponding increase in confidence, with some participants reporting 

increased aggression or thrill-seeking (Day et al., 2018). The dramatic increase in 

crash involvement observed in the statistics occurs at the point where a driver 

transitions to a restricted license, where they can drive ‘solo’ without an instructor to 

aid in managing potential risks (Lewis-Evans, 2010; Mayhew et al., 2003).  

Given the direction of the correlation, it was thought that the role of experience might 

play an essential role in the relationship between speed choice and hazard perception. 

Faster speeds were related to a more significant number of hazards identified. 

However, the relationship is likely more nuanced, as speed choices for novice 

restricted-license drivers were similar to those selected by experienced drivers, 

despite the substantial difference in driving experience (which may indicate that 

novice drivers were overconfident, displaying poor calibration). One of the best 

explanations for the observed positive relationship was that younger drivers might 
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have been overconfident in their ability and chose faster speeds despite having 

relatively poor hazard perception. In contrast, experienced drivers were more 

competent where their perceived ability aligns well with their actual ability, with 

speed choices falling within an acceptable range (e.g., calibration). As both drivers 

selected speeds under the speed limit, these selections could be considered 

appropriate for the conditions (Fuller et al., 2007). Experienced drivers might also 

have a more developed ability to drive faster while maintaining greater comfort levels 

in the chosen road environments. This contrasts with the younger learner-licence 

drivers who are still developing in their speed selection behaviour and may 

experience greater feelings of risk and task demands at higher speeds (i.e., referring 

to Kuiken and Twisk, 2001). This could explain the finding that novice learner drivers 

chose the slowest speeds of all driver groups, while novice restricted and full-license 

drivers chose similar speeds, despite being separated by a large difference in the 

amount of driving experience.  

What was consistent with Experiment 1 was that as road conditions changed, drivers 

speed choice changed consequently. All driver groups selected slower speeds for each 

night condition compared to daytime conditions, which may potentially indicate that 

drivers perceived the night driving to be marginally riskier. However, the effect was 

only significantly different for young learner drivers. Furthermore, the reduction in 

speed between day and night conditions was more pronounced for Urban Road 1 than 

Urban Road 2, reinforcing that speed choice for night driving depends very much on 

the road characteristics (e.g., lines, medians). All driver groups chose significantly 

slower speeds in wet driving than dry driving conditions for the rural roads. In both 

instances, speed choice was under the legal road speed limit.  

In parallel with the previous experiment, there was a significant difference between 

drivers when the road conditions were perceived as potentially more demanding, 

illustrating increased task demand (Fuller, 2005). Drivers seem to reduce their 

speeds when the road conditions became more demanding (e.g., narrow roads, lack 

of clear markings, night, or wet road conditions), consistent with the task capability 

interface model (Fuller, 2005). According to this model, drivers adjust their behaviour 

to maintain a stable workload as task demands increase. This is demonstrated in this 

experiment, with drivers choosing slower speeds on roads that are more challenging.  

Hazard perception ability was found to increase with age and experience as expected, 

with learner novice drivers perceiving the fewest hazards and having longer hazard 
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perception times. There was a substantial improvement between learner and 

restricted driving. However, both the learner and restricted novice drivers’ groups 

perceived a smaller number of hazards. They had significantly longer hazard 

perception times than their fully licensed peers (novice full), or the experienced group. 

This finding is consistent with much of the reviewed literature (McKenna, Horswill & 

Alexander, 1999), suggesting that hazard perception ability improves along with 

experience.  

The tracking error number and durations suggested that the Older Experienced (>50) 

driver group had a higher number of tracking errors. In contrast, the learner novice 

drivers made the fewest tracking errors, which could indicate that novice drivers 

devoted more attention to the secondary task and deprioritised the main hazard 

perception task. While there is a possibility that this was the case, the pattern of 

tracking error durations and number was inconsistent with the number of hazards 

correctly identified or the time taken to detect hazards overall. For instance, learner, 

restricted, full and full (25<50) drivers had similar error number and time. Yet, there 

was a significant linear increase in the number of hazards perceived accompanying 

age and experience.  

Additionally, there was a significant degree of variability within each of the driver 

groups as indicated by the large confidence intervals, suggesting that drivers ability 

to perform the tracking task varied substantially. In contrast, the confidence intervals 

on hazard perception times and the number of hazards perceived were comparatively 

small, suggesting that the primary task of detecting hazards was not interfered 

substantially by secondary task performance. The secondary tracking task could have 

been influential over primary task performance for the most experienced/aged driver 

group, and this was anticipated to some degree. However, their performance on the 

hazard perception task was only mildly lower than the other experienced driver 

(25<50 years old) group, suggesting significant secondary task interference, which 

points to even more advanced hazard perception in the older driver group. 

A review of the literature related to measuring hazard perception has shown that not 

all hazard perception tasks differentiate between the ability of novice and 

experienced drivers. One of the leading criticisms of hazard perception tasks is that 

they may be biased in favour of experienced drivers due to using actors to stage 

hazardous scenarios and selection criteria that demonstrate significant differences 

between experience groups (Horswill & McKenna, 2004). In this task, the video 
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scenarios, while having been shown previously to differentiate between experience 

groups, were not pre-selected with this criteria. The footage was taken from natural 

real-world traffic situations that are likely to minimize the influence of bias due to 

contrivance or preselection. The linear improvement of hazard perception ability 

across increments of both age and experience in this experiment suggests that the 

hazard perception task is sensitive to differences in driver experience. 

Previous research has observed that changes in visual search behaviour often 

accompany advanced hazard perception. This is worth investigating in greater detail 

in future experiments, as visual perception plays a critical role in hazard perception 

ability and may play a role in drivers speed choices. Novice drivers typically have a 

narrower horizontal range of search for hazards than experienced drivers, and they 

tend to fixate longer on hazards (Crundall & Underwood, 1998; Mayhew & Simpson, 

1995; Underwood, 2007).  

As drivers’ age exceeded 50 years, there was a slight decline in hazard perception time 

and the number of hazards perceived, with a corresponding reduction in speed choice. 

Quimby and Watts (1981) found that hazard perception times improved (e.g., became 

quicker) with age until the mid-50s and then began to worsen. This could be the 

consequence of degraded visual acuity and extended reaction times. While this is 

unlikely to be the cause of speed choices in this task, it could be that changes in speed 

choice could be the outworking of experienced drivers being aware of their 

limitations and adjusting their speed choices accordingly. What is interesting is that 

further research by Quimby et al. (1999) found that laboratory measures of speed 

choice and hazard perception were not correlated. They found that speed was not 

associated with any of the laboratory measures of visual performance or hazard 

perception, while age was correlated with measures of hazard perception. Visual 

acuity was found to decline with age as anticipated, while hazard perception times 

increased along with age, accompanied by a reduction in the number of observed 

hazardous manoeuvres. While older drivers determined more risky driving situations, 

this was not correlated with speed or hazard perception (Quimby et al., 1999). 

While the findings of this experiment do not necessarily discredit the concept of a 

relationship between more advanced hazard perception and more appropriate speed 

choices, the direction of the correlation seems to run counter to what was anticipated 

from Renge (1998) and McKenna, Horswill, and Alexander (2006). However, it is 

possible that drivers with more advanced hazard perception also possess a more 
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cautious approach to driving, despite choosing faster speeds than learner drivers. 

Greater caution for these drivers may manifest with speeds within their range of 

comfort and ability to manage, given their more developed skills. Slower speed 

choices may relate to poor hazard perception by coincidence due to learner drivers 

becoming prone to feeling unsafe on unfamiliar road and traffic situations while also 

possessing poor hazard perception. Regardless, the relationship between speed 

choice and the number of hazards perceived remained positive even when novice 

drivers were excluded from the analysis. An eye-tracker could help resolve these 

questions by demonstrating the factors drivers examine in making speed judgements 

(refer to Experiment 1). Additionally, a combined task that measures hazard 

perception and speed choice under the same conditions is more appropriate than 

measuring driver behaviour using two separate instruments. This will be the focus of 

the next experiment. 

 

Limitations 

One of the challenges in this experiment was clearly linking hazard perception and 

speed choice in a meaningful way. The two tasks provided anticipated improvements 

in hazard perception and speed choice measures with age, which were sensitive to 

different road conditions. However, it remained impossible to determine whether the 

more complex or demanding roads required more developed hazard perception skills 

in making an appropriate speed choice. This was due to the tasks being separate, 

measuring speed choice using one measure, and hazard perception ability on another. 

A combined task would overcome this limitation, allowing for speed choice and 

hazard perception to be measured under the same road conditions. 

Another explanation for the unanticipated relationship between hazard perception 

and speed choice may be due to the criteria used for the video task. Based on criteria 

established by Horswill and McKenna (1999) and replicated by Cantwell (2010), 

video footage was selected to ensure flexibility to change speeds, which meant that 

there were few immediate hazards ahead of the vehicle. McKenna et al. (2006) 

suggested that individuals trained in hazard perception only reduced their approach 

speed more than untrained individuals only when a hazard was present. When 

hazards were absent, speed behaviour did not differ between trained and untrained 

participants.  
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Without observing where the driver focused their attention, it was not possible to 

determine whether speed choices were influenced by the presence of hazards over 

mere chance or other factors – the effect of ambient visual search without a specific 

focus on hazards. This issue presented with Experiment 1, in that the hazards were 

not operationally coded. Instead, the assumption was that search to the side of the 

road was the key indicator of the possible search for hazards in making speed 

judgements. For example, suppose a driver failed to focus on a potential hazard 

although selecting a slower speed. In that case, the slowing may not be associated with 

the potential hazard but may be the mere chance of other non-specific effects, such as 

the appearance of the road. While this may technically be the perception of ‘hazards’ 

(i.e., the road and traffic environment features that increase the perceived risk), this 

may be different from immediate traffic hazards. This effect has been observed by 

Muttart (2013), where experienced drivers reduced speed on approach to 

intersections even when they were not explicitly glancing at other vehicles or road 

users. In contrast, novice drivers did not reduce speed unless they observed 

potentially risky traffic scenarios. 

Another issue was that the secondary task involved a dot that moved randomly so 

that the direction may differ between participants despite the starting point being the 

same. The unpredictable movement of the secondary-task dot introduced the 

problem that the dot may draw some participants visual attention closer to the 

location of hazards for some participants than for others. Given the random 

movement and sample size, it was unlikely that this would have a powerful biasing 

effect across an entire group of participants, though it is still worth considering. The 

secondary task may also create differences between novice and experienced drivers. 

Novice drivers are likely to have faster reaction times and higher computer ‘literacy’ 

than older drivers. While this may provide novice drivers with some advantage, it 

further shows the degree to which experienced drivers are more adept at detecting 

hazards. Additionally, it has been observed by Hills et al. (2018) that ‘carry-over’ eye 

movements have a more detrimental effect on novice drivers’ scanning behaviour 

than experienced drivers, which may bias the primary hazard perception task in 

favour of experienced drivers.  While secondary task performance was not 

significantly different between driver groups, it is unknown to what extent the 

additional task demand influences drivers. 
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The Rationale for Experiment 3 

Initially, a new experimental task will need to be developed and tested, which 

measures both hazard perception and speed choice reliably. The task could employ 

aspects of both tasks used in this experiment, merging them so that drivers hazard 

perception is measured in a similar way to the Hazard Perception dual-task, and then 

presenting the speedometer from the speed choice task after the video clip concludes.  

Additionally, the use of an eye-tracker would resolve the question raised concerning 

speed and more demanding scenarios, emphasising how different drivers search for 

hazards and how this influences their speed choice. The key research question 

concerns the relation between speed choice and the perception of specific hazards. In 

this experiment, it was not possible to compare speed choices under particular 

situations to specific hazards. This issue can be addressed through eye-tracking and 

a singular instrument measuring both variables. 
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Experiment 3 

Introduction 

In the previous experiment, an unanticipated positive relationship between hazard 

perception and speed choice was identified. In reviewing the available literature, 

there was little information to explain why speed choice would increase with more 

advanced hazard perception; instead, it was thought that there would be a 

corresponding reduction in speed choice. For instance, Renge (1998) found a negative 

correlation between speed choices and the number of hazards perceived. While there 

were several plausible explanations as to why more advanced hazard perception 

skills might correspond to the faster choice of speed, the questions related to this 

relationship could not be sufficiently resolved in Experiment 2 using two separate 

tasks. Hence, there is a need for further examination using a different experimental 

approach using a single task. 

Nevertheless, the finding of a positive relationship between hazard perception and 

speed choice led to the conclusion that the use of two separate instruments – one to 

measure speed and the other to measure hazard perception - was not ideal, as each 

task measured drivers’ behaviour on different roads with differences in traffic 

conditions, hazards, and levels of potential risk. It might be that drivers only reduce 

speeds when they become aware of immediate hazards, as McKenna, Horswill, and 

Alexander (2006) indicated. This conclusion led to a change in the experimental 

approach, with the development of a combined task that merged the hazard 

perception and speed choice tasks into one task. This new combined task was 

complemented by using an eye-tracker to measure participants’ visual behaviour. 

In Experiment 1 the different speed choices of novice and experienced drivers with 

concurrent differences in eye-movement behaviour suggested that more experienced 

drivers may have a more developed underlying process for selecting speeds, which is 

informed by visual factors related to hazard perception. Horswill and McKenna (2004) 

described hazard perception as the capacity to anticipate potentially dangerous risk 

factors by ‘reading the road’ – and this appears to be an accurate metaphor, as novice 

drivers were observed to have a limited range of visual search behaviour compared 

with experienced drivers in Experiment 1, which was consistent with other reviewed 

research (Konstantopoulos et al., 2010; Underwood, 2007; Geoffrey Underwood et al., 

2002).  
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To use Horswill and McKenna’s (2004) words and expand upon their metaphor, it 

may be the case that drivers read the road in the language of hazards. In this new 

combined task, the use of eye-tracking and measures of both driver’s hazard 

perception ability and speed choice behaviour can test the truth to this analogy by 

providing evidence that drivers use their perception of hazards when making speed-

related judgements.  

Underwood, Crundall, and Chapman (2011) argued that driving-related measures 

derived from the simulator, such as speed and braking, provide a behavioural 

signature that indicates whether drivers have spotted the hazard and what behaviour 

they have chosen to avoid it (i.e., hazard mitigation). Such behavioural signatures 

distinguish between experienced and novice drivers and between groups of learner 

drivers (e.g., Crundall, Andrews, van Loon, & Chapman, 2010). Hence, examining the 

behavioural signature of drivers may reveal information related to their 

responsiveness to hazards. 

Speed management encompasses drivers’ ability to choose an appropriate driving 

speed, considering traffic safety as the primary goal while compensating for prevalent 

conditions, such as other road users, access to the road (i.e., intersections), and 

volume of traffic (Global Road Safety Partnership, 2008). Suppose young novice 

drivers show inferior strategies in speed management, especially where potentially 

hazardous situations are involved. In that case, an argument can be made that poor 

hazard anticipation skills are at the root, or a determinant, of poor speed management. 

Since, together, inappropriate speed choices and poor hazard perception constitute 

the major causes of crashes among novice drivers (McKnight & McKnight, 2003), it is 

of considerable practical and scientific significance if one could trace failures in speed 

management skills to under-developed hazard perception skills.  

Evidence suggests that awareness (or lack of awareness) of hidden or obscured 

hazards may affect drivers’ speed choices (Borowsky et al., 2012; Parmet et al., 2015). 

For example, as part of a study designed to examine the behaviour of calibrated and 

uncalibrated drivers, De Craen, Twisk, Hagenzieker, Elffers, and Brookhuis (2008) 

presented randomly ordered pictures and asked participants to report their 

preferred speed for each picture. The pictures were non-sequentially presented pairs 

of nearly identical traffic scenes, with one picture in each pair modified to include an 

additional object that made the scene more complex. Participants were able to inspect 

each picture once throughout the experiment. De Craen et al., (2008) found that young 
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novice drivers were generally poorly calibrated (i.e., less able to assess their driving 

skill correctly) and chose higher speeds for the more complex scenes than the speed 

choices of older experienced drivers.  

The dependency of speed management on drivers hazard awareness skills have also 

been demonstrated in simulator-based studies (Fisher et al., 2002), reporting 

differences between novice and experienced drivers for several specific traffic 

scenarios. In one such scenario, which presents a curved road immediately followed 

by a stop sign, the novices braked much later and harder just before the stop, 

suggesting that they did not anticipate the stop sign, in contrast with the gradual 

reduction of speed by more experienced drivers. In another road scenario, in which 

participants drove straight through a two-lane signalised intersection while there 

was a truck in the left-turn lane, experienced drivers applied their brakes more often 

than the novices, suggesting that experienced drivers were aware of cars that might 

pull out into their driving path from behind the truck. A similar finding was made by 

Muttart (2013), showing that experienced drivers reduce approach speed to 

intersections irrespective of the extent of visual surveillance. Novice drivers are more 

likely to maintain speed unless accurately identifying and focusing visual attention on 

risky traffic scenarios (Muttart, 2013).  

These specific cases provide evidence that there may be dependencies between speed 

management and hazard anticipation but do not provide a complete understanding 

of when and where these dependencies occur. If a relationship between hazard 

anticipation and speed management can be confirmed, we would hypothesise that 

experienced drivers, as a group, would pay attention to the same elements of the road 

and the road environment at any given moment in a given scenario. The result would 

be selecting similar speeds that are more likely to be appropriate to the momentary 

road and traffic conditions. 

These drivers, as a group, would, therefore, demonstrate more homogenous speed 

choices than young novice drivers. On the other hand, young novice drivers, as a 

group whose members pay attention to a variety of elements in the environment at 

any given moment (sometimes these elements are attended to arbitrarily). This will 

result in more random and individual-based behaviour resulting in greater variability 

in speed choices. Each driver in this group will choose a different speed depending on 

the elements that he or she perceives at a given moment. This conjecture was 

explored briefly in Experiment 2. However, to examine this hypothesis, the use of a 
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more sophisticated speed-related task is required, where drivers’ attention to 

hazards can be measured simultaneously. The current study is designed to 

understand better how novice and experienced drivers behave under various traffic 

situations. 

The cumulative case so far is that there were differences in the speed choices made 

by novice and experienced drivers in Experiment 1. There was a correlation between 

hazard perception and speed choice in Experiment 2. Hence, it was decided that a 

single task that bought together both speed choice and hazard perception measures 

provide a more reliable indication of the relationship between the two measures. 

Observations about speed, hazard perception, and eye-movement behaviour could all 

be made to a single road situation. A combined measures task was developed, which 

united the two tasks using the same hazard task video clips used in the previous 

experiment for consistency. 
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Research Questions  

1. Do drivers choose slower speeds when aware of concurrently occurring hazards? 

As anticipated from the reviewed literature, as hazard perception improves, drivers 

become orientated towards safer driving generally, accompanied by slower and more 

appropriate speed choices in particular (e.g., Renge, 1998). However, the findings of 

the previous experiment suggested that drivers with more advanced hazard 

perception chose faster speeds than those with less developed hazard perception 

skills. It might be the case that a) these faster speeds did not correspond to an 

appreciable increase in the amount of perceived risk, and hence, ought to be 

considered appropriate to the conditions. Alternatively, b) as we measured speed 

choice and hazard perception under different road and traffic conditions, it is not 

methodologically sound to compare hazard perception performance in one setting to 

speed choice decisions occurring in another setting. This second explanation seemed 

reasonable, and hence this experiment further examines the relationship between SC 

and HP using a single combined task. The original hypothesis based upon the work of 

Renge (1998) and McKenna et al., (2006) remains standing. 

 

2. Do eye movements mediate hazard perception ability? 

The reviewed literature would indicate that accompanied improved hazard 

perception would be a broader and strategic visual search behaviour (e.g., G. 

Underwood et al. (2002). This will involve a broader horizontal search pattern, a 

higher number of short fixations, and lower fixation duration on perceived hazards, 

as well as a more top-down knowledge-driven approach to perceiving hazards 

(evidenced by fixations on higher priority hazards: e.g., Konstantopoulos (2009); 

Vlakveld (2011).  
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Method 

The findings presented in this Experiment were collected over six months between 

2016 and 2017, comprising three distinct data collection periods throughout which 

the experimental technique remained consistent. An initial pilot study was conducted 

to validate the new combined Hazard Perception - Speed Choice task and ensured that 

the eye-tracker and related equipment were performing accurately. A small sample 

study followed this. Based on the findings of this initial study, a much larger 

participant sample was recruited to investigate the effects observed.  

 

Participants 

This research was conducted in line with the University of Waikato Ethical Guidelines 

concerning human testing (the University of Waikato Handbook on Ethical Conduct 

in Research, 2001). Application for human testing was submitted to the University 

Ethics Committee in 2014 with an amendment in 2015. 

Eligibility requirements were that participants held a current New Zealand learner, 

restricted or full drivers’ license, and had normal or corrected to normal vision.  

Participants were recruited using convenience sampling by placing advertisements 

throughout the Faculty of Arts and Social Sciences and through word of mouth from 

participants who had taken part already. Additionally, a broad and representative 

sample of New Zealand drivers was preferable in understanding the general public 

drivers’ behaviour. Consequently, advertisements were placed on community notice 

boards in the suburb surrounding the Hamilton campus and in the School of 

Psychology and School of Engineering and placed on Social Media and community 

bulletin boards. Eligible first-year psychology students received course credit for 

participation. Demographic questions were focused on driving experience, and so no 

information regarding citizenship or ethnicity was collected. 

Participants contacted the researcher, and a time was arranged for them to take part 

in this experiment. In total, 89 drivers (39 male, 50 female) participated in this 

experiment. In relation to driver license, 16 participants held a Learner license 
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(Novice= 15, Experienced= 2), 26 held a Restricted license (Novice= 23, Experienced= 

3), and 47 held a Full license (Novice= 15, Experienced= 32)18.  

 

Demographic Information on Participants 

Demographic information was collected from participants, including driver history. 

The demographic information for each of the driver groups is shown in Table 17 

below. The number of near-misses was determined to be an unreliable measure of 

driver history, though crashes and fines were discrete events, and so they are used to 

represent the average rate of the number of incidents per person in each group in the 

final column (avg. Incidence).  

What is important to note from Table 17 in comparison to the previous experiment is 

that the Novice Learners are more similar to the Restricted Novice drivers rather than 

the Learner Novice from Experiment 2. This is likely due to convenience sampling for 

this experiment, which relied heavily on participation from University undergraduate 

students as opposed to High School Students, as has been used in Experiment 2 for 

the novice ‘Learner’ group. Because of the similarity between the different learner, 

restricted, and full-licence novice groups in relation to age, we decided to collapse the 

experience/age groups into two ‘novice’ and ‘experienced’ groups according to driver 

age. 

                                                           
18 As novice and experienced drivers held multiple license types, the distinction between experienced and inexperienced 

becomes a categorical issue. An experience group was created which did not consider the age of the participant, but rather 
their license status and number of kilometers travelled. 
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Information regarding distance driven and traffic incidents are reported in Table 17.  

____________________________________________________________________________________________________________________________ 

Table 17:  
 
The Demographic information for the Driver Groups 

Driver Group n Age (Y) Driving Experience (Y) Med. Distance per Week 

(Km) 

Crashes  Fines Near Misses Ave. 

Incidents 

Learner 16 18.7 (0.67) 1.7 (0.95) 1 – 30 0  0 24 0 

Restricted 20 19.5 (2.14) 2.3 (1.66) 31 – 60 6  4 46 0.5 

Full (<25) 14 20.1 (2.20) 3.9 (1.57) 31 - 60 2  3 30 0.35 

Full (≥25) 38 33.8 (11.12) 15.8 (12.18) 61 - 120 10  4 68 0.36 
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Apparatus 

The two instruments employed in previous experiments have been the Hazard 

Perception dual-task, and the Video Speed Choice task. Both these laboratory 

methods have demonstrated good ecological validity and clearly differentiated 

between drivers with differing levels of’ driving experience. As discussed in the 

previous experiment, the natural evolution of these tasks from their separate use was 

developing a singular combined task that incorporated aspects of both tasks. Despite 

the two tasks measuring different aspects of driving behaviour, due to this standard 

video-based method, they may be effectively combined to explore a relationship 

between hazard perception and speed choice.  

This combined Hazard Perception and Speed Choice task utilised the video clips used 

in Experiment 2 (refer to p. 146), combined with the digital speedometer from the 

Video Speed task used in Experiment 1 (refer to p. 77). The videos used from the 

previous hazard perception task were used as they had clearly defined immediate 

hazards. The sequence for each trial in the task is displayed in Figure 49: 

 

 

Figure 49: The sequence for each trial of the combined task Hazard Perception & Speed Choice 
task.  
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As shown in Figure 49, participants clicked on a button to initiate each of the eight 

trials. The trial began with the presentation crosshair in which drivers were 

instructed to focus their eyes. This was done to calibrate the eye-tracker drift before 

each trial. Following a three-second countdown, a single video clip from the hazard 

perception dual-task began. Participants could identify immediate hazards through a 

mouse click along with a verbal indication of each hazard. The task involved the 

secondary tracking task in a manner identical to the task used in Experiment 2. 

Following the completion of each hazard perception video clip, a digital speedometer 

appeared, asking participants to indicate what speed they perceived to be ideal for 

the road condition they had just viewed. During the task, participants’ eye movements 

were measured, which allowed for comparison in eye-tracking and hazard perception 

performance. This process was repeated for each of the eight hazard perception clips.  

The measures used in this experiment are the number of hazards perceived, hazard 

perception time, and mean speed choices selected, both overall and according to each 

clip. Additionally, the eye-tracker provides measures of the number and duration of 

fixations, the number and amplitude of saccades, the number of blinks, and pupil 

dilation.  

 

Eye movements  related to the Secondary-task 

As there was a secondary task that added additional visual focus within the centre of 

the road,  the eye-tracking data was processed before analysis to control for the 

influence of eye movements of drivers attending to the secondary task. Including eye 

movements associated with the secondary task could influence the overall 

examination of fixation number and duration, particularly the distribution of visual 

search by drawing the majority of fixations into the centre field. Preliminary analysis 

of the fixation data without removing the secondary-task fixations was found to not 

significantly distort or misrepresent the fixation number and durations between 

driver groups. Removal of the secondary task fixations was primarily performed in 

order to examine the distribution of visual search. 

The removal of tracking task fixations was performed frame-by-frame, with Area of 

Interest (AOI) assisting the process in isolating fixations within the confines of the 

secondary task rectangle. As fixations related to the tracking task were rapid dwell on 

the dot's position, these were easily identified. Gaze devoted to the mouse position 
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was also an indication of secondary task focus, and these were also identified as 

tracking task fixations.   

Regarding performance on the secondary task, preliminary analysis revealed no 

significant differences between the driver group(s) concerning the number or 

duration of tracking errors. 

 

Procedure 

Participants were instructed as to what would be involved in the experiment, and the 

eye-tracker was demonstrated to participants. Following consent, participants were 

then asked to be seated comfortably in front of the display (in a fixed location). The 

head-mounted eye-tracker was attached and made as comfortable as possible. The 

positions of the cameras were adjusted, and lenses focused as required for each 

participant.  

 

Figure 50: A participant demonstrating the use of the Head-mounted Eye-tracker while engaging 
in the Hazard Perception Task. 

 

Participants were then run through a practice run of the hazard perception task to 

familiarise themselves with the task and be able to adjust their posture to comfortably 

sit in the chair facing the monitor and were instructed to move as little as possible 
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during testing. The eye-tracker was calibrated and validated for each participant prior 

to the hazard perception task commencing, then practice trials were conducted.  

The Hazard Perception Task practice trials involved two video scenarios. Participants 

identified hazards and clicked the mouse button, verbally stating the identified hazard 

and maintaining the mouse cursor's location over the moving-dot secondary task.  

Once participants identified approximately 80% of the hazards in these scenarios and 

were comfortable with the secondary task, the experiment commenced. The 

combined task involved eight video-based trials. Once the trials had completed, the 

experiment ended, and participants were thanked for their time and provided a 

debrief. Eligible students received course credit.  
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Results 

The results in this experiment will be reported with the initial examination into any 

potential relationship between speed choice and the hazard perception measures. 

Analysis of between-group differences will be examined to determine if there are 

measures that differentiate between novice and experienced drivers. This will be 

followed by an analysis of between-group differences for hazard perception and 

speed choice. Analysis of the eye-tracking measures will then be presented regarding 

hazard perception ability between novice and experienced drivers. 

 

The Relationship between Hazard Perception and Speed Choice 

The primary focus of this experiment was to examine further the relationship 

observed in Experiment 2 through the use of a combined task explicitly designed for 

this experiment. A correlation-based analysis was conducted between drivers hazard 

perception skills and speed choices, and this relationship is visually represented in 

Figure 51: 

 

Figure 51: The relationship between Hazard Perception Time and Mean Speed Choice, by Driver 
Group. The hollow circle represents the Novice driver group, and the solid circle (grey in box plot) 

represents the Experienced driver group. The continuous line represents the linear regression 
line, and the dotted line represents 95% CI. Box-plots are also included to show the distribution 

of Hazard perception time (vertical axis) and Speed Choice (horizontal axis). 
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Mean speed choice and measures of hazard perception skill (e.g., mean number of 

hazards perceived, mean time to perceive hazard), were correlated using bivariate 

Pearson product-moment to see if there were significant relationships. The single 

most striking observation to emerge from the analysis was a significant strong 

positive correlation between speed choice and hazard perception time, with a 

coefficient of r= 0.609, p< 0.01. This correlation suggested that as hazard perception 

response times increase, so too do speed choices (i.e., the longer it takes to perceive a 

hazard, the faster speed choices).  

Interestingly, the correlation in the combined task goes in a different direction to that 

found in Experiment 2, which had suggested faster speeds were related to quicker 

hazard perception times. The opposite result was found in this combined task. What 

can be observed in the above scatterplot (Figure 51) is that novice drivers have 

relatively large variability in both speed choice and hazard perception times. By 

contrast, experienced drivers display less variability and are more tightly clustered 

together towards slower speeds and quicker hazard perception times. This may 

indicate that novice drivers have a much more varied degree of capability contrasted 

with experienced drivers. 

 

Figure 52: The relationship between Speed Choice and Number of Hazards Perceived by Driver 
Group. The continuous line represents the linear regression line, and the dotted line represents 

95% CI. Box-plots are also included to show the distribution of Number of Hazards Perceived 
(vertical axis) and Speed Choice (horizontal axis). 
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The number of Hazards perceived was correlated with Speed Choice, and this is 

represented in Figure 52. Visual inspection of the scatter plot indicates that there does 

not appear to be a relationship between the two variables, with the regression line 

being almost horizontal. A Pearson product-moment correlation between speed and 

the number of hazards perceived confirmed the absence of a relationship, r=0.039, p= 

0.78, which was unexpected. It was anticipated that both measures (e.g., number of 

hazards and perception times) of hazard perception would be related to speed choice 

behaviour. What is worth noting from visual inspection of the figure is, like 

Experienced drivers hazard perception times, the number of hazards perceived 

shows a minor degree of variability when compared to Novice drivers, who show a 

much more considerable amount of variation. 

 

Hazard Perception between Novice and Experienced Driver Groups 

The number of hazards perceived, as well as the hazard perception times, were 

calculated for Novice and Experienced driver groups and are displayed in Figure 53: 

 

Figure 53: The Number of Hazard Perceived (left) and the Mean Hazard Perception Time (right), 
by Driver Group. Error bars represent 95% Confidence Intervals (CI).  

 
Visual inspection of Figure 53 shows that the Experienced driver group had more 

advanced hazard perception skills than Novice drivers, as demonstrated by the 

greater number of perceived hazards and shorter hazard perception times.  

A one-way ANOVA was conducted to determine significant differences between the 

mean hazard perception times of the two driver groups. A significant main effect 

between driver groups was identified for the mean hazard perception time, F(1,88)= 
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5.685, p< 0.05, ηp2= 0.062, with perception times for Experienced Drivers (M= 2.6 sec, 

SD=0.39) being significantly quicker than Novice drivers mean of 2.9 sec (SD= 0.74).  

A one-way ANOVA also revealed that Experienced drivers perceived significantly 

more hazards, F(1,88)= 14.996, p< 0.01, ηp2= 0.148, perceiving an average of 33 hazards 

(SD= 4.2), compared with Novice drivers who averaged 28.8 correctly identified 

hazards (SD= 5.85). There were no significant gender effects identified. These results 

agree with those of Experiment 2, with Novice drivers perceiving fewer hazards than 

more Experienced drivers.  

 

Speed Selection and Hazard Perception for Individual Roads 

The second part of the analysis focused on the speed choice and hazard perception 

scores for each of the eight road scenarios. Figure 54 shows the overall speed choice 

for each of the eight road conditions with the mean hazard perception time for each 

road superimposed. Visual inspection of the figure indicates that there is overall 

significant speed variation between task trials, with speed choice selections well 

below the speed limit. The most surprising aspect to the trend in the hazard 

perception times for each road is how similar that trend is to the speed choices 

selected 
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Figure 54: The relationship between Overall Mean Speed Choice (Left Axis) and Hazard 
Perception Times (Right Axis) for the Eight Road Scenarios used in the combined task. Error bars 

represent 95% CI 

 

Visual inspection of Figure 54 indicated that there might be a relationship between 

the speeds that participants chose for each road, and the hazard perception times for 

those roads. Despite the appearance of a relationship between speed and hazard 

perception times at the level of individual roads, a mixed ANOVA showed no 

significant interaction between Road and Hazard Perception times F(1,88)= 1.022, p= 

0.486, ηp
2= 0.664.  

Considering this, a multiple linear regression was performed to determine whether 

hazard perception number, time, and road type predicted speed choices. Summary of 

the multiple linear regression analyses predicting speed choices using the number of 

hazards, hazard perception time, and the Road number. The results are shown in 

Table 18: 
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Table 18: The results of the step-wise regression, with hazard perception time, Road 1, 4, and 7 
predicting speed choice. 
 

Step r2 r2 change Variable Standardized β Sig. 

1 .121 .015 Number of Hazards 0.1213 0.16 

2 .306 .094 Hazard Perception Time 0.2811 0.01** 

3 .545 .297 Road 1 0.4919 0.01** 

   Road 2 0.0269 0.82 

   Road 3 0.1902 0.10 

   Road 4 0.2533 0.04* 

   Road 5 0.1957 0.09 

   Road 7 0.4042 0.01** 

   Road 8 0.0388 0.71 

Significant values: * = p < 0.05, ** = p < 0.01 

 

The analysis revealed the Hazard Perception time was a significant predictor of speed 

choices, along with roads 1, 4, and 7. There was no moderating relationship between 

hazard perception time and road, showing that the trend observed in Figure 54 was 

not significant. 

 
Table 19: 
 
Mean Speed Choice for each Road for Novice (n=42) and Experienced (n= 37) Drivers 

Inferential analysis revealed no between-group differences in speed choices across 

road scenarios (Table 19). 

 
  Novice Experienced 

Road Scenario M Overall SE M SD M SD 

Road 1 Commercial (L) 33.7 0.91 33.6 9.17 33.9 7.10 

Road 2 Construction 22.1 0.78 22.6 7.49 21.6 6.70 

Road 3 Busy 27.5 0.97 28.1 9.37 26.9 8.33 

Road 4 School Zone 1 27.3 0.96 28.3 9.06 26.1 8.54 

Road 5 School Zone 2 26.6 0.90 27.7 9.02 25.3 7.08 

Road 6 Shared Space 20.0 1.09 21.6 11.44 18.1 7.43 

Road 7 Central road 27.9 0.97 27.9 9.28 27.9 8.56 

Road 8 Commercial (B) 22.2 0.93 22.2 9.29 22.1 7.51 
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Eye-movement Behaviour 

Fixation and Saccade differences between driver groups: 

Table 20 shows the differences between eye-movement behaviour for novice and 

experienced drivers. One-way ANOVA revealed that the average number of fixations 

was found to be significantly different between Driver Groups, F(1,88)= 4.929, p< 0.05, 

ηp2= 0.011, as was average fixation duration, F(1,88)= 30.362, p< 0.01, ηp2= 0.064. The 

average number of fixations was 118 (SD = 72.4) for Novice drivers, and 135 (SD = 

80.05) for Experienced drivers). The average fixation duration was 316.43msec (SD 

= 83.38) for Novice drivers and 274.96msec (SD = 42.69) for Experienced drivers. 

_______________________________________________________________________________ 
Table 20:  
 
The measures of Eye-movement Behaviour for Novice (n=42) and Experienced (n=37) Drivers per 
clip 

 

Data from Table 20 shows that the average number and duration of fixations were 

significantly different between driver groups. Experienced drivers, on average, had a 

greater number of short fixations than the Novice driver group. Given that there was 

a significant difference between driver groups in relation to the number and duration 

of fixations19, the further analysis focused on the potential relationship with hazard 

perception measures, which were also different between Driver Groups. The primary 

                                                           
19 The findings of this experiment are consistent with the results in Experiment 1, with novice drivers having fewer 

fixations of longer duration compared with Experienced drivers. 

    Novice Experienced 

 F p ηp
2 M SD M SD 

Fixation Number 4.928 0.05* 0.011 117.9 72.43 135.0 80.05 

Fixation Duration 30.66 0.01** 0.064 316.4 83.38 274.9 42.69 

Saccade Number 4.928 0.05* 0.010 117.2 72.39 134.2 80.05 

Saccadic Amp. 0.378 0.53 0.110 6.79 1.778 6.68 1.690 

Number of Blinks 1.005 0.31 0.020 4.6 7.39 5.3 6.89 

Pupil Diameter 42.51 0.01** 0.087 878.5 304.59 690.8 217.72 

Significant values: * = p < 0.05, ** = p < 0.01 
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reason to focus on these factors was that differences in the number, duration, and 

distribution of fixations was the key difference between driver groups in relation to 

visual measures. Furthermore, hazard perception measures also clearly 

differentiated Novice and Experienced driver groups. 

A scatter diagram (Figure 55) and Pearson’s product-moment correlation was used 

to determine the relationship between the number of fixations and hazards perceived 

(r= 0.294, p< 0.05). The correlation suggests that as the number of fixations increases, 

so too does the number of hazards perceived. What is interesting is that despite the 

majority of participants having a total fixation count (M= 960, SD= 151.5) between 

750 and 1250, the Experienced drivers show less variability in the number of hazards 

perceived, clustering about 35 hazards perceived when compared to Novice drivers 

(see Figure 55). 

 

Figure 55: The Positive relationship between the Number of Fixations and the Number of Hazards 
Perceived. Markers are used to identify the different Driver groups. The solid line represents the 

linear regression line, and dashed lines represent 95% CI 

 



201 
 

 

 

The observed ‘clustering20’ between Driver Groups was examined by comparing the 

number of fixations per perceived hazard. A one-way ANOVA revealed that there were 

significant differences between Driver Groups, F(1,88)= 7.166, p< 0.01, ηp2= 0.107, with 

Experienced drivers requiring fewer fixations (M= 29, SD= 5.6) per hazard perceived 

compared with Novice drivers (M= 35, SD= 9.2). This suggested that Experienced 

drivers used their fixations more effectively to detect hazards21. 

A similar examination was conducted to determine the relationship between hazard 

perception time and the number of fixations, shown in Figure 56. A significant 

negative correlation was identified (r= -0.285, p< 0.01), suggesting that as the number 

of fixations increases, the hazard perception time decreases.  

 

Figure 56: The negative relationship between the Number of Fixations and Hazard Perception 
time. Markers are used to identify the different driver groups. The solid line represents the linear 

regression line, and dashed lines represent 95% CI 

                                                           
20 Parmet et al., (2015) used the homogeneity as a measure of how similar or different behaviour was between driver 

groups in a simulator-based study. While their method was used to show homogeneity in speed choice over time, a similar 
approach could be applied to this instance, where more experienced drivers have similar behaviour, whereas novice drivers 
have a more diverse range of behaviour based on their range of compitency. 
21 However, this can only be confirmed through the use of eye-tracking, to see whether indeed there are less fixations 

but visual information being more effectively used to identify hazards. 
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From a visual inspection of Figure 56, it appears that per fixation, Experienced drivers 

can perceive more hazards, potentially by extracting more useful information. 

Considering that the number of fixations is related to both hazard perception time 

and the number of hazards perceived, further examination of visual search behaviour 

needs to be conducted. The variability was similar for both Novice and Experienced 

drivers, suggesting that the number of fixations has less of a role in hazard perception 

times than the number of hazards perceived. Together, however, this provides 

evidence that experienced drivers deploy their fixations more strategically to identify 

hazards. 

 

Fixation Distribution 

To this stage in examining drivers’ behaviour, the number of fixations and their 

respective durations have been an essential element to the analysis and 

interpretation of visual behaviour. The first step was to perform post-hoc cleaning of 

the data to differentiate trial data related to the primary task (i.e., hazard perception) 

from the secondary tracking task (e.g., the moving dot). This process involved 

examining each fixation that returned to the tracking task and removing these from 

the analysis. 

As discussed earlier, the influence of experience and expertise on visual attention and 

visual search behaviour has been well documented. Concerning the driving task, 

proficient visual attention, the allocation of fixations strategically has been linked 

with overall safer driving (Ball et al., 1993). Crundall and Underwood (1998) 

proposed that novice drivers have less efficient visual search strategies than their 

more experienced counterparts - evidenced through a narrow breadth of visual 

search – and that failures of attention related to poor allocation of visual resources 

can play a significant role in crashes (Trick et al., 2004).  

Eye-measures have been used for many years in both assessing cognitive demands 

(e.g., Ahlstrom and Friedman-Berg (2019) and as a means of determining how drivers 

extract information regarding different aspects of the road environment (Underwood, 
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2007). These eye movement measures are highly informative in revealing what 

features of the road environment are attended to and essential for safe traffic 

navigation, indicating that there are strong links between eye movements and visual 

attention (Duchowski, 2003; Velichkovsky et al., 2003)22. Posner (1980) was an early 

pioneer of eye movements as predictive of overt attentional shifts across the visual 

landscape. Different objects compete for representation and are either reliant on 

bottom-up saliency of the stimuli or a top-down goal-directed search23. Examining the 

distribution of fixations provides an excellent means of determining how drivers 

allocate their visual attention across the road environment (Geoffrey Underwood et 

al. (2002).  

_____________________________________________________________________________________________ 

Table 21:  
 
The mean x-axis Fixation Distribution between Novice and Experienced Drivers. Standard 
deviation shown in brackets. 

 

 

 

The following fixation distributions represent where drivers are focusing their visual 

search: 

 

                                                           
22 The paper by Velichkovsky et al., (2002)  makes a strong case for the role of eye movements  in showing the how drivers 

allocate their visual attention. Their research indicated that in the process of hazard perception, there is a definitive shift 
in the way fixations move from pre-attentive to attentive accompanied by an increase in fixation duration and a decrease 
in the number of fixations allocated to other processes. Essentially, hazards captuare fixations upon perception. 

 
23 This later is the fingerprint that could be used to identify more efficient visual search strategies in experienced drivers. 

It is likely that novice drivers will be directed more by the saliency of objects in the road environment rather than hazards, 
especially those of a covert nature. 

    Driver Group 

Driver Group F-value Sig ηp
2 <25 ≥25 

Mean 11.227 0.01** 0.03 963.22 (191.7) 934.93 (253.3) 

Significant values: * = p < 0.05, ** = p < 0.01 
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Figure 57: The Distribution and Density Mapping of Fixations made by Novice (top) and 
Experienced (bottom) drivers on Medium Commercial road(Grey St.).The central field shows the 

Density of Fixations. Each axis shows the frequency of fixations as indicated by the KDE 
distributions. 
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 Figure 58: The Distribution and Density Mapping of Fixations made by Novice (top) and 
Experienced (bottom) drivers on Light Commercial Road (Victoria St.). The central field shows the 

density of fixations. Each axis shows the frequency of fixations as indicated by the KDE 
distributions. 
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 Figure 59: The Distribution and Density Mapping of Fixations made by Novice (top) and 
Experienced (bottom) drivers on a School Road (Knighton Road). The central field shows the 

density of fixations. Each axis shows the frequency of fixations as indicated by the KDE 

distributions. 
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 Figure 60: The Distribution and Density Mapping of Fixations made by Novice (top) and 
Experienced (bottom) drivers on a School Road(Knighton Road). The central field shows the 

density of fixations. Each axis shows the frequency of fixations as indicated by the KDE 

distributions. 
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Figure 61: The Distribution and Density Mapping of Fixations made by Novice (top) and 
Experienced (bottom) drivers on Light-road Construction( Kaikohi). The central field shows the 

density of fixations. Each axis shows the frequency of fixations as indicated by the KDE 

distributions. 
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 Figure 62: The Distribution and Density Mapping of Fixations made by Novice (top) and 
Experienced (bottom) drivers on Medium Commercial road (Grey St). The central field shows the 

density of fixations. Each axis shows the frequency of fixations as indicated by the KDE 

distributions. 

 

Analysis of the distribution of fixations made by driver groups showed significant 

differences, similar to those observed in Experiment 1. Notably, novice drivers tend 

to have a narrower spread of fixations across the horizontal meridian than 

experienced drivers, suggesting that novice drivers focus more on the centre of the 

carriageway and less on the periphery. Novice drivers seemed to have a more 

extensive vertical spread of search than experienced drivers, which could be 

significant. While the effect of secondary-task carryover is outside the scope of the 

current study, this may be something worth considering, as there may be detrimental 
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effects in Novice drivers visual search owing to greater visual attention to the vertical 

meridian (Hills et al., 2018)  

Novice drivers typically focused their attention in the centre of the visual field, while 

more experienced drivers searched in a broader distribution pattern. A common 

feature of both drivers was the frequent horizontal scan pattern with large central 

fixation clusters, then a slightly smaller fixation cluster further down the road, 

indicating that both driver groups search further ahead. What is clear is that 

experienced drivers allocate more fixations (equivalent to gaze)  in attending to visual 

targets even outside the central field. This indicates that the functional field of view 

becomes greater with driving experience since experienced participants identified a 

higher number of hazards. 

It also appears that under some conditions, novice drivers limit their search to within 

the lane-markings, which delimitate the carriageway, and this was found in 

Experiment 1 to play some role in making speed choice decisions. This finding was 

suggested that where there were relatively fewer hazards and when there was more 

capacity for speed variability.  
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Qualitative Observations of Eye-movement Behaviour 

In experiment one, fixation distribution maps were generated to show where 

participants devoted their visual attention. However, it is essential to acknowledge 

the limitations between knowing where participants look, and why they looked there 

(Holmqvist et al., 2011). The following qualitative observations regarding visual 

search behaviour provides some additional context to support the findings observed 

in the distribution of fixations  – proximate measures of visual search.  

Duchowski (2003) discusses the use of performance metrics (e.g., usability) being of 

value in corroborating the commonly used process metrics (e.g., fixation duration), 

which provides valuable insight not easily captured by process metrics alone. Such 

techniques, which involve combining qualitative and quantitative measures, have 

previously been used effectively in education and human factors research, and more 

recently in driving-related research (Lappi & Lehtonen, 2013; Lemonnier et al., 2015).  

In using qualitative observations to supplement more traditional metrics of eye-

movement behaviours, Lappi et al. (2017) note that using multiple ways to represent 

observations of eye-movement behaviour “is conducive to giving the reader an overall 

understanding of the dynamical aspects of the phenomenon: how gaze target 

selection, and more generally gaze-interaction with the complex natural settings, 

evolve over time” (p. 2).  

Lappi et al. (2017) identify seven unique natural gaze behaviours and how these apply 

to drivers’ behaviour, and the qualitative observations in this section will be 

discussed generally within the order of these behavioural signatures, which Lappi and 

colleagues (2017) describe as laws. While the observations here may fall into more 

than one category, as they may involve more than one behavioural signature, they 

have been located based on the primary type identified: 

 

Law 1: Gaze patterns are highly repeatable and stereotypical (L1) 

Drivers did not seem to follow any particular search pattern that was universal across 

each trial or age and experience group; however, there are some common search-scan 

sequences. These seem to illustrate differences between novice and experienced 

drivers, though not all novices displayed poor visual search. Overall, experienced 
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drivers pass swift and staggering glances at peripheral objects and then return their 

visual attention to the secondary task (L5). The most common search pattern 

appeared to be a loop extending out to encompass the left-hand roadside, starting and 

ending with the tracking task (or centre field), or involved a series of apparently 

planned ‘jump ahead’ glances from distant objects to those nearer (L2). On the other 

hand, novice drivers tended to maintain search within the limitations of the 

carriageway and the tracking task. This was similar in many respects to the confined 

visual search observed in Experiment 1 concerning road-markings. Drivers scan 

pattern appeared to consist of sequential searches, composed of discrete ‘jumps’ to 

major areas, then returning to the secondary task. In this respect, novice drivers’ 

visual search typically moved between the centre-field and other objects, returning 

immediately to the centre-field again without much additional search. 

During moments where the car stopped directly behind another vehicle, experienced 

drivers continued to broadly scan the roadsides, while novice drivers tended to fixate 

more on the vehicle ahead, as well as the oncoming traffic in the right-hand (opposing) 

lane. As the opposing traffic did not pose an immediate risk, this could indicate that 

novice drivers were concerned with their relative lane positioning and their distance 

to the vehicles directly ahead. While experienced drivers noticed both the vehicles 

ahead and other traffic/road users, this appeared to be lower in priority to searching 

the left-hand for hazards or cues that could foreshadow the likely emergence of a 

hazard. 

When the camera vehicle slowed or came to a stop, this seemed to cue participants to 

the probable emergence of an immediate hazard directly ahead (which could be a 

limitation to the task). However, novice drivers seemed to fixate on this while 

experienced drivers appeared to anticipate the possibility but continued to search 

ahead. Novice drivers appeared to wait for the immediate hazard to emerge and focus 

on the secondary tracking task.  For example, during the road works sequence (Road 

Scenario 3), novice drivers anticipated a hazard during the ‘pause’ and quickly 

identified the man walking across the road; however, this was at the cost in neglecting 

risks further down the road, particularly the turning vehicle and elderly man crossing 

the street. Many novice drivers did not notice the road-worker until they were 

walking directly across the car's path, even though he was visible for some time 

beforehand. 
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Additionally, novice drivers tended to devote visual search in tracking the progress of 

the pedestrian crossing the road at the expense of looking back for other hazards. 

Many experienced drivers mentioned that the roadworks and the unstable surface 

could be an additional hazard, though this falls beyond the description of immediate 

hazards as defined in this experiment24. This is certainly a consideration for future 

research or an extended analysis. 

Most drivers did not notice that the speedometer on the dash is functional and 

generally devoted little attention to the interior depiction of the vehicle and do so only 

when task demand decreases, such as when the car comes to a halt. Focus, however, 

was still primarily devoted at these times to the performance of the secondary 

tracking task. Participants who did notice the dash speedometer generally neglected 

the reading. Though several participants mentioned their observation of the 

speedometer in the post-task debrief, no participants noted that the needle moved 

during the trial (and were surprised to learn that it was functional in the post-trial 

debrief). Comparison of speedometer readings to participants’ speed choices 

indicates they were not relying on the speedometer reading. Speed choices, as a result, 

do not seem to be influenced by the speedometer, so this can be reasonably ruled out 

as a confounding factor. Interestingly, Recarte and Nunes (1996) noted in their study 

that drivers do not devote much attention to the speedometer. While this is consistent 

with their finding, a direct comparison should not be made. 

 

Law 2: Gaze is focused on task-relevant objects and locations: 

Focus on visually salient stimuli seems to be a decisive factor between drivers with 

differing hazard perception abilities. The most noticeable and consistent visual 

phenomenon observed for novice drivers was that they focused on visually salient 

aspects of the road and traffic situation (e.g., moving objects). In comparison, 

experienced drivers seem to be more knowledgeable and anticipatory in their visual 

search behaviour (e.g., checking between cars) and devoted less sustained attention 

to irrelevant moving objects. 

                                                           
24 Analysis into the difference between implicit and explicit hazards, as well as infrastructural characteristics of the road, 

while of tremendous value, fell outside the scope of the present analysis in this thesis. While this is a limitation to the 
definition we employed regarding hazards, we remained with the definition as it provided more discrete instances of 
hazards, rather than the more general definiton of road and traffic related danger discussed in the Literature Review. 
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One prime example that stands out for its almost ubiquitous nature is the road scene 

of a coastal village. During the clip, a seagull swoops down in front of the car, moving 

from the left to the right side of the road. This is followed shortly after by a woman 

who rushes out from behind a car on the left-hand side. Many novice drivers identified 

the seagull as a hazard at the expense of not noticing the woman with adequate time 

to respond. Experienced drivers tended to notice the seagull but disregarded it 

without becoming distracted from the primary task of searching for hazards on the 

roadside. This is illustrated in Figure 63: 

 

Figure 63: Illustration of the difference between an Experienced and Novice driver. The Novice 
driver is distracted by the Bird flying across the path of the vehicle, whereas the experienced 

driver notices but then returns immediately to search the side of the road. 
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Novice drivers did seem to be reasonably good at perceiving immediate hazards that 

were either visually salient (suggesting bottom-up processing), or hazards that were 

immediately ahead of the vehicle. Interestingly, despite being a visually salient event 

directly ahead of the vehicle, young drivers did not generally identify a car braking 

immediately ahead to be a hazard compared to experienced drivers. 

One of the most important videos in the task was the school scene (Knighton Roads 1 

& 2) which involved the combination of vehicular hazards, pedestrians, braking 

vehicles, mirror use, and anticipatory hazard perception. As this was such an 

important road and traffic scenario, these two video clips may be worthwhile focusing 

on in a shorter version of the hazard perception task.  

Young drivers tend to group hazards, such as in the final trial, novice drivers 

mentioned hazards in groups (e.g., “cars, truck”). In contrast, experienced drivers 

seem to have a more nuanced approach and mention hazards in a string with the 

expected action (e.g., “people on side, car turning, truck in the centre, car on left 

pulling out, parked car”). 

 

Law 3: Individual fixations have interpretable functional roles 

 
Of all drivers tested, only three identified the car pulling in behind the camera vehicle 

on the second Knighton Road school video. Overall, there is relatively little mirror use 

between driver groups.  

In general, experienced drivers noticed the behaviour of other road users, such as 

turning vehicles, and routinely searched for ways that other vehicles on the left-hand 

side might behave. This observation seemed to be highly contextual and seemed to be 

influenced by the type of road and traffic situation. Novice drivers tended to see the 

most immediately recognizable aspects of other vehicles (e.g., stop lights). They failed 

to notice less obvious or partially obscured hazards such as pedestrians preparing to 

cross the road. 
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Law 4: If possible, targets are fixated “just in time”, with gaze tightly coupled to the 

information requirements in complex tasks, with gaze typically leading action by about 

1 second25 

There appeared to be some degree of hazard prioritization that differed between 

novice and experienced drivers. For instance, many experienced drivers will 

prioritize the child on the roadside over a person shutting the boot. In contrast, novice 

drivers seemed to prioritize on-road hazards more. It is important to note that not all 

novice drivers inadequately performed the hazard perception task or visual search.  

One important consideration is that some drivers did anticipate that the camera 

vehicle would stop for other road users, and as a consequence, they would cease to 

track them. This may be a limitation in the use of video footage and will be discussed 

more in the limitations section. 

Almost every novice driver investigated the turn as the camera vehicle negotiated a 

corner. This often resulted in visual neglect of features on the left-hand side of the 

road (e.g., in one scene, a pedestrian is standing to the side with a backdrop of trees). 

Experienced drivers also were divided in where they looked during this turn. 

However, there did appear to be a greater amount of smooth pursuit involved with 

experienced drivers tracking pedestrians.  

In one scenario, pedestrians run across the road from the right-hand side, while 

another pedestrian is exiting a vehicle to the left. Even though both pedestrian(s) are 

likely to encounter the vehicle as hazards, novice drivers seemed to focus more on the 

pedestrians running from the right-hand side. As the right-hand pedestrians are on 

the opposing side of the median, many experienced drivers seemed to devote more 

attention to the left-hand side of the road. This seems to be another example of the 

difference in prioritisation between novice and experienced drivers, with 

experienced drivers focusing on the exiting pedestrian with maintenance glances at 

the running people, who are visually salient, attracting greater attention from novice 

drivers.  

 
 

                                                           
25 This is related to the following Law 5 which describes the intermittent sampling, which can be either guiding fixations 

interleaved with look-ahead fixations, or in dual tasks, guiding fixations are interleaved with fixations to targets relevant to 
the parallel task. This is suggested to be due to the way visual information is processed in the brain as discrete as opposed 
to as a continuous stream. 
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Concluding remarks on Qualitative Observations 

While these qualitative observations are not exhaustive and do not apply to all drivers, 

they illustrate some distinctions between drivers with differing degrees of experience. 

It is important to remember that the two groups of drivers are not homogenous, and 

these observations are some of the more noteworthy differences between drivers. 

Qualitative observations do seem to assist the interpretation of quantitative findings, 

and they provide insight into the broader differences in driver behaviour. It is 

essential that these observations not be removed from their context and are intended 

to be viewed in conjunction with the superimposed eye-tracking videos that 

accompany this thesis. The significant differences between drivers appear to be 

related to both the strategy that is used to search for hazards and how hazards are 

prioritised. These two aspects of hazard perception have been noted by other 

researchers and are deserving of consideration in assessing drivers hazard 

perception ability. Additionally, training in hazard perception can benefit from 

emphasising these two crucial skills. 



218 

 

 

Discussion 

The most noteworthy finding in this experiment was the strong relationship between 

hazard perception time and speed choice. The correlation's direction was different 

from that found in Experiment 2, reflecting the more anticipated relationship 

between hazard perception and speed choice as anticipated from the reviewed 

literature – namely, that as hazard perception (time) improves, speed choices would 

correspondingly decrease. This relationship was expected based on the research 

conducted by Renge (1998), who determined that as hazard perception improved, 

there was an improvement in risk-awareness and a reduction of speed. Following the 

same reasoning, McKenna et al. (2006) found that anticipation training resulted in 

reduced speed choices by increasing risk awareness for particular scenes where 

immediate hazards were present. Using a different methodology, Crundall et al. (2010) 

found drivers reduced speed on approach to perceived hazards. The findings of the 

current experiment are consistent with the reviewed theories of risk-homeostasis 

and risk-allostasis, which suggest that as the amount of risk in the environment 

increases (such as an increase in the number of perceived hazards), there is a 

corresponding compensatory reduction in speed.  

Interestingly, the number of hazards correctly identified did not correlate with 

statistical significance with speed choice; instead, it is how quickly the hazards were 

identified. This finding has not been observed previously from a review of the 

literature. This finding suggests that hazard perception performance may have the 

most substantial influence on speed choice - and may involve developing hazard 

perception skills alongside drivers’ speed choice habits. This seems to agree with 

Fuller’s (1998) conception of risk mitigation. However, as Lewis-Evans demonstrated, 

risk ratings seem to increase only after a threshold speed has been met (Lewis-Evans, 

2012). 

It is essential to consider how the current findings relate to the theory that speed 

choice is based on habitual behaviour, which De Pelsmacker and Janssens found 

(2007). Drivers rely on habit concerning speed selection as much, or more than, 

intentional behaviour. The simplest explanation would be to suggest that the 

development of habitual speed behaviour develops concurrently with the 

development of hazard perception skills. This may be seen in the differences in eye-

movement behaviour that not only accompanies more advanced hazard perception. 
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Interestingly, the relationship between the number of hazards perceived and speed 

choice was non-significant; rather, the time taken to identify hazards was the measure 

that seemed to correspond to speed choice selection. This may indicate that the 

relationship between hazard perception and speed choice is mediated by the 

efficiency of the hazard perception process. The role that the development of hazard 

perception skills and the corresponding reduction in crash risk takes a considerable 

amount of experience to develop, during which time other driver behaviours such as 

driving style may develop as well (Groeger, 2013). The time taken to perceive hazards 

is vital in safer driving behaviour, and in theory, relates to the efficiency of the 

underlying cognitive mechanisms that are involved in both situation awareness 

(Endsley, 1995; Wetton et al., 2013) and risk-appraisal (Kinnear et al., 2013). 

When investigating the relationship between hazard perception time and speed 

choices, there was a significant degree of variability amongst novice drivers 

compared to experienced drivers, who were clustered much closer together, 

suggesting that they had more uniform speed choice and hazard perception times. It 

may be that through accrued experience from driving over an extended period, 

schemata become more responsive to rapidly appraising risk in the environment 

(Cohen et al., 1996; Molesworth et al., 2006) and moderating speed consequently. 

This could explain in part why experienced drivers were more uniformly distributed. 

Previous research has found a consistent difference between novice and experienced 

drivers. The finding of a significant difference between novice and experienced 

drivers in this experiment corresponds well with the reviewed literature. The ability 

for a hazard perception task to differentiate between drivers of differing experience 

has been a method of ensuring that the task has ecological validity (e.g., Wetton et al. 

(2011).   

This ‘clustering’ was also observed in the relationship between the number of hazards 

perceived and the number of fixations. While both driver groups had similar numbers 

of fixations, experienced drivers perceived significantly more hazards, suggesting 

that the fixations were deployed (or ‘spent’) more efficiently in the perception of 

hazards. Experienced drivers perceived immediate hazards with more speed and 

accuracy than novice drivers and indicated that they were searching for covert 

hazards, as evidenced in their eye-movement behaviour (Geoffrey Underwood et al., 

2002). This suggests differences in the schemata used to extract information from the 

visual environment found in the qualitative observations of eye-movement behaviour. 
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As with earlier experiments, visual attention was primarily directed to the centre of 

the roadway, most probably as drivers steer in the direction of gaze (Land & Lee, 

1994). 

In the present experiment, there were significant between-group differences in eye-

movement behaviour, with the fixations of experienced drivers being significantly 

shorter and more frequent than the fixations of novice drivers. This is in keeping with 

the reviewed literature and could indicate more advanced cognitive processing of 

hazards by more experienced drivers (Vlakveld, 2011). Underwood (2007) has noted 

that efficient visual search strategies are one of the fundamental skills marking the 

transition from novice to experienced driver (Underwood, 2007). 

One indication of increased cognitive load is the dilation of the pupil during the task, 

which was significantly greater for novice drivers – this could suggest that novice 

drivers experience higher mental load during the task (Eckstein et al., 2017; 

Holmqvist et al., 2011; Palinko et al., 2010). It is noteworthy that experienced drivers 

had lower performance on the secondary ‘tracking’ task. One explanation is that older 

participants have less computer experience that influenced their mouse control and 

subsequent tracking time; however, this is questionable given the average age of 37. 

An alternative explanation is that this could be a trade-off between cognitive 

resources devoted to the primary (hazard perception) and secondary task. The more 

experienced drivers likely have a greater capacity to divert attention from potential 

distractors toward the more important task of perceiving hazards. There were 

indications in examining the eye-tracking data that prioritization of visual search is 

essential for optimal hazard perception.  

This is where the role of top-down knowledge becomes essential, as experienced 

drivers tend to focus their visual attention on areas of the road where hazards are 

anticipated, whereas novice drivers are influenced more by salient bottom-up aspects 

of the visual environment (Werneke & Vollrath, 2012; Wickens & McCarley, 2008).  

suggest that visual attention is based on ‘expectancy and value’ or ‘salience and effort’. 

Further, it was indicated by examining the initiation of saccades associated with the 

perception of hazards that experienced drivers could make more rapid assessments 

concerning the visual scene contents and hazards in particular (Seideman et al., 2018). 

As drivers become more experienced, they tend toward expectancy (i.e., the 

likelihood of seeing an event at a particular location) and value (i.e., the importance 

or relevance of the event). Eye movements in the current experiment suggest that 
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experienced drivers demonstrate a reduced likelihood to scan the road environment 

broadly. Novice drivers tend to fixate on the vehicle they are following rather than 

scan the periphery for anticipated hazards or dedicate time to check mirrors to 

determine their position in relation to other road users (Konstantopoulos et al., 2010). 

One observation made concerning the eye movements of novice drivers is that they 

quickly search with several successive fixations before returning to the centre field, 

which demonstrates less flexibility in visual search routines (Crundall & Underwood, 

1998). This may be due to novice drivers not developing a complex search schema for 

hazard perception as they have limited driving experience.  In contrast, this pattern 

of ‘search return’ will likely not be as inflexible for experienced drivers. This could be 

because novice drivers may prioritize avoiding collision with the leading vehicle and 

maintaining lane position over hazard perception and anticipation. Novice drivers 

search pattern will generally return to the centre-field where they can monitor the 

leading vehicle and their lane position; while experienced drivers may not need to 

look directly at a hazard, relying more on parafoveal information 

Hazard Perception times and the number of hazards perceived were significantly 

different between driver groups, with experienced drivers performing better on both 

hazard perception measures. This data was compared to a larger sample derived from 

the eDrive training program (Isler & Isler, 2011) and was highly consistent, indicating 

that the hazard perception measures had a high degree of internal validity (see 

Appendix 4).  

One unexpected finding was that the frequency of mirror use did not differ 

substantially between novice and experienced drivers, with both groups using the 

mirrors infrequently. The reviewed literature suggested that experienced drivers will 

likely look at the rear and side mirrors more frequently than novice drivers 

(Konstantopoulos, 2009). In this experiment, there was no substantial difference 

between novice and experienced drivers in relation to mirror use, and this was 

reflected in the failure of most participants to notice the car pulling in to park visible 

firstly in the rear-view mirror, then the left-hand wing mirror – of which only 3 

participants identified.  
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Limitations 

The first issue concerning this task is that the speeds selected by participants did not 

differ between driver groups on any of the road scenarios used in this task. This was 

an unexpected finding, though it may be due to the ceiling effect of limited speed range 

given the environments. For example, drivers were not given a vast range of available 

options as far as speed choice as there were often vehicles or pedestrians ahead 

limiting the maximum reasonable speed, and there were also often vehicles behind 

(or at least passing), creating a reasonable minimum speed. The footage for each 

scenario did not meet the criteria used by Horswill and McKenna (1999), which 

required as few obstructions ahead as possible to allow drivers to accelerate, and this 

potentially restricted ‘free speed’ choices. All of the roads used were in the suburban 

setting, where differences between drivers speed choice have not been found in 

previous research (Cantwell, 2010; Cantwell et al., 2012). Despite this, the drivers 

who resided at the faster end of the distribution of speed choices were all novice 

drivers. This illustrates that not all drivers aged under 25 years old are at high risk, 

relatively, that the capacity to perceive hazards, appraise risk, and choose appropriate 

speeds is what differentiates competent from overconfident drivers.  

While the selection of roads has shown to differentiate between drivers’ in their 

ability to perceive hazards, a broader range of scenarios and conditions, such as those 

shown in the previously used video-speed task, could potentially better illuminate the 

relationship between hazard perception and speed choice. This is because speed 

choice was also found to differ between driver groups on the different roads and 

conditions used in the video-based speed choice task. It is debatable whether the 

hazard perception skills would transfer to rural road settings that lack the abundance 

of immediate hazards found in urban environments if trained. It may be that there is 

a benefit to speeds on rural roads by hazard perception training, as this may alter the 

way drivers notice and appraise risk. An alternative strategy may be to develop a 

training protocol that focuses on the specific hazards likely encountered on rural New 

Zealand roads. 

Another aspect of this experiment worth considering is that while visual behaviour 

differentiates between drivers’ hazard perception ability, there is no correlation 

between visual behaviour (i.e., the process measures such as fixation count) and 

speed choice. This may indicate the inadequacy of variation in the selected roads used 

in this experiment. For instance, in Experiment 1, a correlation was found between 
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average fixation duration and speed choice on both rural roads under wet and dry 

conditions.  

As with all video-based methodologies, there are benefits and downsides. While 

video-based methodologies have demonstrated remarkable success across numerous 

studies (Crick & McKenna, 1991; Evans, 1970) and have demonstrated internal and 

ecological validity within some contexts (Horswill & McKenna, 1999; Isler et al., 2009), 

there are also potential disadvantages over more complex simulator environments. 

Kuiken and Twisk (2001) point out that one such downside is that participants may 

not fully engage with the task, with young people especially viewing the video 

scenarios more like a game than a real-world representation. While there are benefits 

to the use of video as a research tool, such as the high degree of realism, there are also 

downsides in some instances involving predictability. It is reasonable to expect that 

the experimenter collecting the footage will act safely and rationally, and this may 

mean participants become detached from the genuine risks inherent when driving in 

the real world. This is one disadvantage to the use of video in comparison to more 

engaging simulators. 

Kuiken and Twisk (2001) also note that the driver is not in control of the scenario; 

hazards can become predictable and lose their impact. Although the genuine 

difference in eye movements is a good illustration that video tasks are engaging (e.g., 

Underwood, 2000), there is still the issue where participants may not treat the task 

in the same way as if they had control over the decisions the driver makes, such as the 

steering and speed of the vehicle in a simulated environment. In this task, participants’ 

engagement with the task was supported by visual behaviour. However, some 

scenarios involving the vehicle coming to a stop may cue participants that a hazard is 

likely to emerge directly in front of the vehicle.  

Using a static task rather than a dynamic task (e.g., simulator) has limitations, as 

drivers cannot continually adjust the vehicle's speed in response to hazards and road 

scenarios. Due to this, it is hard to be confident that the relationship between hazard 

perception and speed choice results from a genuine interaction than an artefact of the 

filmed vehicle speed. This experiment assumes that drivers choose speed based on 

mostly habitual behaviour elicited by cues found in hazards. However, this cannot be 

guaranteed as drivers subconsciously make speed judgements and are often not 

required to monitor and adjust speed in exact speed measures. This is where further 

testing in a simulator would be of great benefit. Naturally, speed choice varies as the 
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task demands of the traffic environment changes, and the changing risk or task 

demands would be reflected in participants’ speed choice (e.g., Lewis-Evans (2012)).  

In overcoming that limitation, we considered a method to allow drivers to respond to 

the perception of hazards by allowing participants to manipulate the rate (e.g., the 

speed) at which the clip played through the use of foot-pedal. This idea was 

disregarded, as changing the frame rate of the video clips produces very unnatural 

scenarios (e.g., pedestrians move awkwardly, quickly or slowly). The alternative 

would be to film staged scenarios at different vehicle speeds, which participants could 

select in increments of ±10km/h through the use of a foot pedal. This solution is not 

ideal, as contrived scenes may inadvertently provide an advantage to one age or 

experience group over another. 

The dual-task aspect of this experiment, though justified, also presents as a potential 

issue when investigating eye-movement behaviour. Secondary tasks can increase task 

demand, which can interfere with the capacity for participants to engage fully with 

the primary hazard perception task. While the secondary task was used to place some 

loading on cognitive resources similar to what could be expected during real-world 

driving, it could potentially influence otherwise regular eye movements by 

introducing fixations unrelated to driving. While the fixations associated with the 

secondary task were removed from the analysis, simply attending to the secondary 

task meant that many fixations were devoted to monitoring the moving dot and 

cursor position, which may have influenced their overall distribution. 

Additionally, there is substantial research that drivers tend to steer in the direction 

they are looking and that this can be achieved by having participants follow a moving 

dot. In this task, the dot moved randomly, though it could bias perception times (i.e., 

the dot could be relatively closer or further in relation to where a hazard may appear). 

Future experiments that do not involve a secondary task or the artificial task demands 

produced by acting within a hi-fidelity simulator may be worth considering. 
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The Rationale for Experiment 4 

The relationship between hazard perception and speed choice indicates that 

improved hazard perception may have a subsequent influence on speeds selected by 

drivers. However, the causal relationship is unknown. For example, maybe driving 

slower allows more visual inspection of the roadway, whereas a driver may need to 

rely on gut feeling and intuition at higher speeds. Learning more about the 

relationship is highly beneficial. This will confirm which side driver education needs 

to focus on in the future (i.e., education emphasising hazard perception or training 

drivers in making more appropriate speed choices). 

Despite various attempts at reducing drivers’ speeds, both through educational 

campaigns and perceptual countermeasures, speed remains a serious concern. It may 

be possible to improve speed choice by training hazard perception. The next chapter 

will focus on the development of a hazard perception training program using road 

commentary. 
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Experiment 4 

General Introduction 

The purpose of this experiment was to examine whether the road commentary used 

by Isler et al. (2009) could help improve drivers hazard perception skills and result 

in a subsequent change in speed choices. Road commentary training requires drivers 

to provide a verbal running commentary of the hazards perceived and possible 

courses of action in responding to these hazards. Road commentary, as noted by Isler, 

et al., (2009) may “encourage drivers to actively search for hazards and may improve 

their situation awareness and lead to a better appreciation of the risks involved.” (p. 

446). Thus, road commentary may provide a valuable tool to effectively improve 

young novice drivers' hazard perception and be easily implemented as part of the 

graduated licensing program. 

Another purpose of this experiment was to investigate how road commentary may 

influence eye-movement behaviour and the corresponding perception of hazards. 

This experiment is composed of two studies; the first will examine whether road 

commentary is a viable means of improving hazard perception abilities in drivers. The 

second study will investigate whether road commentary will influence drivers’ 

hazard perception and have a consequential effect on drivers’ speed choices using the 

combined task used in the previous Experiment 3. Some promising research showed 

that training in hazard perception using video-based traffic scenarios improved the 

risk-taking behaviour of young drivers within a short period (McKenna, Horswill & 

Alexander, 2006). McKenna et al. (2006) found improved hazard anticipation and 

perception skills using road commentary in a video-based task. Commentary trained 

participants demonstrated improvements in following distances and gap acceptance, 

accompanied by fewer self-reported driving violations and instances of speeding. 

Isler et al., (2008) found that following higher-order training involving commentary, 

that attitudes to many risky driving behaviours improved (e.g., speeding, close 

following and overtaking) while also reducing over-inflated levels of confidence in 

their driving skills (Isler, Starkey, Drew, et al., 2008). 
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Study A: Does Road Commentary Improve Hazard Perception? 

Introduction 

For many years, road commentary has been used as a training tool for advanced 

driver education, and has shown promise as a cost-effective and straightforward 

training tool for improving hazard perception skills (Castro et al., 2016; Crundall et al. 

From the reviewed literature, commentary training has been used to improve the 

hazard perception abilities of both novice (Isler et al., 2009) and experienced drivers 

(M. Horswill et al., 2013). 

Road Commentary can be conducted in different ways and has been applied in driver 

education for over forty years in a range of different contexts from training novice 

drivers through to Police who perform advanced high-speed urgent duty driving. 

These methods can be divided into two general approaches. The first, developed by 

Cole and Hughes (1984) as a ‘think aloud’ paradigm, came to be referred to as 

‘continuous report’, where participants comment the entirety of their driving-related 

contents of awareness. Renge (1980) used this method of commentary to explore 

where drivers were devoting their visual attention, and involved drivers providing a 

continuous verbalised stream of consciousness, specifically focused on the driving 

task. 

The second approach, used by Isler et al. (2009), involves participants verbally 

reporting hazards only when identified, leaving pauses when nothing relevant to the 

driving task occurs. This type of commentary training is known as ‘concurrent 

verbalisation’ (Young et al., 2014). Commentary can be used while the participant is 

‘online’ and actively engaging with the driving task or trained ‘offline’ before the 

participant begins the driving task. Horswill (2017) suggests that it usually takes 

decades of experience for drivers to achieve peak hazard perception skills due to 

scarcity and poor quality of safety-related feedback. However, Horswill et al. (2013a) 

demonstrated that these deficits in hazard perception could be potentially bypassed 

in the space of a few hours of directed training involving road commentary and ‘what 

happens next?’ anticipation-based training.  

The use of feedback modelled from experts, then self-generating feedback is at the 

core of Isler’s et al. (2009) training approach and is similar to educational approaches 

first proposed by Wittrock (1974). Wittrock’s thesis was that the learner should not 

be understood as “a passive recipient of information” but rather as an “active 
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participant in the learning process, working to construct a meaningful understanding 

of the information found in the environment” (p. 720, in Grabowski, 2014). Road 

commentary could be conceptualised as drivers choosing elements from the road and 

traffic situation that are important, then integrating these elements into a coherent 

mental model. Such a mental model is composed of existing knowledge to which new 

knowledge is fused as the learner engages with information (Fiorella, 2015). 

According to Wittrock’s (1974) theory, “learning can be predicted and understood in 

terms of what the learners bring to the learning situation, how they relate the stimuli 

to their memories, and what they generate from their previous experiences” (p. 93).  

This is similar in principle to the rationale behind commentary training, a process that 

challenges participants to engage with the road situation and broadly construct a 

comprehensive mental representation of the road environment. Prabhakharan and 

Molesworth (2011) evaluated a training program using simulated driving 

accompanied by feedback directed at reducing young drivers speeding. The training 

narrative leads the learner step by step through the story of a crash from the driver’s 

perspective and then later deconstructs the sequence of failures (hazards ignored or 

violated rules) that led systemically to the crash (feedback). Their study revealed that 

the group of drivers who received the personalised feedback and narrative training 

exhibited considerably less speeding behaviour in subsequent driver testing than 

either the control group or the simplified training group (Fisher, 2006). While Isler’s 

et al., (2009) commentary method does not involve the same degree of examination 

or feedback into driver’s behaviour, the training involves expert commentary to guide 

the driver’s examination of the traffic situation. Additionally, Isler et al. (2009 

requested drivers to provide a verbal response to how they would avoid or manage 

the hazards they had identified. While these responses by participants were not used 

to provide feedback, this act of verbalising may encourage a greater amount of 

engagement with the task and the planned management of perceived hazards. 

Prabhakharan and Molesworth (2011) describe this process of combined education 

and practical exercises as a process that develops cognitive structures (e.g., 

knowledge) that will aid future driving behaviour. These cognitive structures, known 

as scripts and schemata, amalgamate knowledge and experience to provide a 

cognitively economical way to process information and plan actions. However, 

schema can be potentially faulty, which results in poor behavioural outcomes. 

Prabhakharan and Molesworth (2011) presume that the shortcoming of the 

graduated licencing system in reducing risky behaviour is that there is a disconnect 
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between the educational knowledge that novice drivers are provided, and the 

episodic experiences that are acquired through actual driving. In this disconnect, 

commentary training may help improve novice drivers hazard perception by 

requiring them to run through mental simulations of the outcome and avoidance of 

perceived hazards. By using such methods, young drivers can improve their hazard 

perception within a relatively short time frame (Borowsky et al., 2010; Horswill & 

McKenna, 2004)26. Hence, it is important to assess the influence of road commentary 

to determine whether novice driver’s ability can be fast-tracked to a similar level of 

competence as more experienced drivers.  

Understanding how commentary affects eye-scanning behaviour may reveal how 

drivers use visual information of the road environment and whether this informs 

awareness of hazards and the subsequent vehicle speed (Study B). As verbalisation 

may act as a secondary task, studying drivers’ eye movement behaviour may show 

whether commentary training has adverse effects (Wickens, 2005). 

There has been some debate as to the effectiveness of performing commentary 

compared to merely silently engaging in the hazard perception task (Young et al., 

2017). Young et al. (2014) demonstrated that online commentary had a deleterious 

effect on hazard perception performance, with commentary acting as a secondary 

task, diminishing the cognitive and perceptual resources needed for the driving task, 

which had been proposed by Crundall and Underwood (1997). Young et al. (2017) 

acknowledge that there may still be benefits to using commentary training, noting 

that their participants had held UK driver licenses for at least a year and potentially 

much longer, which could influence findings due to the influence of experience.  

Vlakveld (2011) raises several important questions regarding the effectiveness of 

road commentary training that are important to consider. Firstly, whether 

commentary training merely increases vigilance for unexpected events, and this 

accounts for improved performance seen in laboratory tasks which does not 

correspond to the real-world 27 . Additionally, there are questions as to whether 

                                                           
26 This not to diminish the importance of the 25 year old age distinction, but there this evidence the drivers accrue a lot of 

skills within the first three months of driving, some of which relate to hazard anticipation (Day et al., 2018). 
27 Young, Chapman, and Crundall (2014) found that commentary training might influence actual hazard perception during 

actual real-world driving. This is contrasted with the improvements seen in laboratory situations. 
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commentary actually alters the cognitive processes that participants utilise when 

searching for hazards.  

Angela Young of the University of Nottingham, notes that fatigue or boredom may be 

a factor worth considering when investigating training. The positive effects observed 

through commentary may result from the training group remaining engaged with the 

driving task, while the control group may become bored or fatigued and subsequently 

show a reduction in performance, though this effect may be subtle and hard to detect 

(Young, 2016). An eye-tracker would help show whether both commentary and 

control groups remain engaged with the hazard perception task through an active 

search for hazards, and potential measures of arousal (i.e., pupil dilation and blink 

rate). 

The use of an eye-tracker would provide evidence as to whether commentary does 

indeed alter the underlying cognitive control processes of hazard perception, or 

whether it merely heightens vigilance to unexpected events. Vlakveld (2011) makes 

this observation in his doctoral thesis, noting that “[if] an eye-tracker was used in the 

aforementioned studies, the alternative explanation [of increased vigilance] could 

have been tested” (p. 199). In this respect, the eye-tracker will provide essential 

information on how participants search out for hazards, whether commentary alters 

eye movements and further insight into the underlying cognitive control processes. 

This would provide evidence of whether participants attend to, and discriminate 

between, visual stimuli based upon anticipation rather than saliency (Posner et al., 

1980).  

Despite these potential limitations of commentary as a training method, there is a 

large amount of research as well as anecdotal evidence that commentary training 

provides a quick and straightforward method to improve drivers hazard perception 

and visual search. Hence, it is worth investigating the value in using commentary to 

improve drivers hazard perception and the potential benefits that commentary may 

provide on drivers speed choices.  
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Research Questions 

1. What effect does commentary training have on hazard perception measures? 

From the reviewed literature, we hypothesise that commentary training is likely to 

improve novice driver’s performance (Isler, Starkey, & Williamson, 2006), and 

potentially the performance of experienced drivers based on the finding made by 

Horswill etc. However, it is also possible that commentary may not significantly affect 

hazard perception performance, which would be hypothesised as the control and 

training group not significantly differing in performance.  

Additionally, there are anticipated differences between novice and experienced 

drivers. Experienced drivers will likely perceive hazards earlier than novice drivers, 

with experienced drivers more likely to prioritise specific hazards over others, 

whereas novice drivers will more likely state them in the order in which they are 

perceived (Horswill & McKenna, 2004; Underwood, 2007), and with greater accuracy 

when compared to novice drivers (Isler et al., 2009). Experienced drivers are also 

more likely to identify potential hazards irrespective of whether these hidden hazards 

overtly materialise (Vlakveld, 2011). Experienced drivers may potentially comment 

more on the covert hazards (e.g., cars skirting the roadside) than novice drivers, who 

will more likely respond only to the overt and immediate hazards present throughout 

the task28.  

 

2. What is the influence of commentary training on eye-movement behaviour as 

opposed to the control groups eye-movement behaviour?  

If commentary improves hazard perception, this will likely accompany changes in 

visual search behaviour in the commentary group compared with the control group. 

In the previous experiment, different hazard perception skills with greater age and 

driving experience seem to accompany a more advanced eye-movement strategy, 

suggesting that eye-movement behaviour plays an essential role in hazard perception.  

It is possible that road commentary could act as a secondary task (Cao & Liu, 2013; 

Young et al., 2014), which would diminish the number of fixations while elongating 

                                                           
28 It is thought that this will clearly be supported by eye-tracking data, as search for covert hazards will involve focus on 

areas where precursors to hazards are likely found, even should no hazard present. Overt hazard search is likely to result 
in fixations on moving objects that could become hazards, whereas concern for covert hazards will result in fixations on 

static elements of the scene that might hide a hazard. 
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their duration for the commentary group in comparison to the control group. 

However, the cognitive load may remain similar to baseline in the commentary group, 

even though the number of hazards detected increases. In this case, there could be a 

change in eye-movement behaviour in the commentary group, though this will likely 

be similar to more experienced drivers in the control group. This contrast between 

commentary and experience groups may reveal insights into how road commentary 

influences driver’s behaviour, and potentially resolve the questions posed by Vlakvald 

(2011) and Young (2016). 
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Method 

Participants 

Participants were recruited from the public through advertisements placed on 

community notice boards in the Hamilton campus suburb. University campus 

students were recruited through posters placed throughout the School of Psychology 

and the School of Engineering and an online noticeboard for Psychology Students. A 

message calling for participants was also placed on Facebook.  

Novice drivers were invited to participate in the study if they currently held a New 

Zealand learner license and began driving within six months of participating in the 

study. For the recruitment of novice drivers, two high schools in Hamilton were 

approached and agreed to recruit participants from their respective student bodies, 

with selection undertaken by teachers, who could release two-four students per class 

to take part in University Research.  

Experienced drivers were required to hold a full drivers licence for at least two years 

and be aged over 25 years old. Participants were placed into one of two trial sequence 

groups to ensure that ordering effects could be minimised.  

Experienced adult and novice adolescent drivers were allocated into either a training 

or control (non-training) group by order of participation. The sequence of baseline 

and post-training assessment videos alternated using an alternating order. The 

majority of participants identified themselves as New Zealand European (n=38), 

whereas one participant identified as New Zealand Indian, and three participants 

identified as New Zealand Maori. Ethnicity was not a factor in the analysis, though this 

was considered sufficiently representative of a New Zealand sample. 

Novice drivers were recruited from local high-school psychology classes from local 

schools. The novice driver group (n=20) was composed of sixteen male and four 

female drivers, all with learner licences. The average age of the participants was 16.6 

years (SD= 0.6). The average self-reported time since obtaining a learner licence was 

11.6 months (SD= 11.7), and the average self-reported distance driven per week was 

reported as 38km (SD= 38.9). 

Experienced drivers were recruited from the student body and the public using 

advertisements placed at local community centres. The experienced driver group (n= 

20) was composed of sixteen male and four female drivers who held a New Zealand 
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full license and were aged over twenty-five years, with an average age of 31.1 years 

(SD= 2.4). The average self-reported time since obtaining a learner licence was 10.4 

years (SD= 1.3), and the average self-reported distance driven per week was reported 

as 134km (SD= 48.6).  

Previous research has indicated that drivers who rate as being more reckless were 

less responsive to training (Zhang et al., 2018), and therefore psychometric measures 

of driving attitudes were analysed using a one-way ANOVA to compare differences 

between training groups. The measures used were self-rated driving skill, Barrett’s 

(1994) Impulsivity Scale (BIS), the Probability of Future Driver Violations (PFDV) by 

Reason et al. (1990), Driver Attitude Questionnaire (DAQ) by Parker et al. (1995), and 

drivers self-evaluated ability (SEQ) by Horswill et al. (2004). Results are shown in 

Table 22. There were no significant differences in psychometric measures between 

driver training groups. 

Table 22:  
 
The Differences in Psychometric Measures of Driving Risk between Control (n=20) and 
Commentary (n=20) Drivers 

 

Design Outline 

This experiment employed a between-subject mixed-measure design. The first 

between-subject factor was driving experience contrasting novice and experienced 

drivers, and the second between-subjects factor was contrasting commentary 

training with the placebo control. Novice drivers were recruited from local high 

schools and held learner licences for no longer than six months. Experienced drivers 

were 25 years of age or older and held a full drivers licence for a minimum of 2 years. 

    Control Commentary 

 F-value p ηp
2 M SD M SD 

Self-rated Skill 0.253 .62 .007 3.29 1.105 3.24 0.768 

DBQ Risk Score 0.036 .85 .001 3.08 0.22 3.07 0.19 

PFDV Risk Score 2.861 .10 .078 3.5 0.73 3.2 0.65 

SEQ Score 0.378 .43 .018 5.3 0.86 5.1 0.68 

Impulsivity 1.020 .32 .028 4.5 1.74 3.9 1.95 
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This research used a mixed-measures between and within-subjects design to examine 

the baseline hazard perception ability of novice drivers and experienced drivers 

(between subjects) and to determine if these skills can be improved in the novice 

drivers using video-based road commentary training (within and between subjects). 

The forty participants were randomly assigned into one of two equally sized groups, 

with one group receiving road commentary training and the control group receiving 

a placebo training. The study used a repeated measures design with a baseline and 

post-training assessment of hazard perception ability for all participants. The 

dependent measures of hazard perception were the number of hazards correctly 

identified and the time taken to detect hazards. Measures of eye movement behaviour 

included the number, location, and duration of fixations as described in previous 

experiments. 

 

Measures 

Immediate Hazards and Perception Times 

In measuring immediate hazards, the definition used in previous experiments (2 & 3) , 

which was proposed by Isler et al. (2009) has been employed in this study (refer to p. 

146 for a description). With the advantage of seeing where participants are devoting 

their visual attention and the hazards they click on, it is possible to measure the 

relative search times and time from the first fixation to perception as a more precise 

measure of hazard perception time. The hazards are the same in this task as in the 

previous Hazard Perception Tasks, and hazard description and window are listed in   
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Appendix 11.  

 

The Hazard Perception Commentary Task  

This experiment was distinctive in that there was no on-screen secondary task, and 

the experiment was performed using a chin-rest EyeLink 1000 eye-tracker (for which 

the calibration procedure was identical to that discussed earlier). The Hazard 

Perception Commentary Task used for the baseline and post-training assessments 

involved participants viewing five video traffic scenarios for each assessment while 

searching and identifying any immediate hazards that appeared through the course 

of the videos. The verbal description of the hazards was recorded as an audio file by 

computer. The video traffic scenarios ranged in length from 8 to 75 seconds and 

depicted different hazards found on urban and suburban roads.  The videos used in 

this experiment were identical to those used in the Hazard Perception Dual-task. 

However, the two longest video clips (Knighton Rd 1, Kawakawa) were bisected to 

create a total of 10 videos from the original eight video scenarios described previously 

(see   
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Appendix 11).  

The absence of a secondary task was deemed appropriate for this task, as 

commentary was considered a cognitively taxing process that uses resources similar 

to the secondary task. Using a tracking-based secondary task in conjunction with a 

verbalisation protocol may unduly hinder participants’ performance by requiring 

excessive cognitive load.  

 

Instructions provided to Participants for Road Commentary 

Participants were instructed to move a circle on the screen using the mouse, click on 

hazards as they identified them, and then verbally identify the hazard. The time and 

number of clicks were recorded by a computer providing the exact time during the 

video and the exact location of the mouse clicks (x, y coordinates) of the hazards that 

participants identified. This task was similar to that designed for UK driver evaluation 

developed by McGowan and Banbury (2004). The number of hazards that were 

perceived and the hazard perception times could be calculated along with the 

associated fixation location and duration. The task as presented to participants is 

shown in Figure 64: 

 

Figure 64: A still image is taken from one of the Hazard Perception Commentary Task(HPC) video 
scenarios. Participants could move the circle using the mouse to identify the location of 

immediate hazards by clicking. 

The Dependent Variables for Commentary task 

The total number of hazards correctly identified, and the time to perceive hazards for 

each trial were recorded as measures of hazard perception ability. For the hazard 

perception task, the dependent variables were: a) the number of hazards correctly 

identified, b) the mean time taken to identify hazards within each trial correctly. The 
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total number of clicks, and the number of clicks on non-hazards were not assessed in 

this experiment.  

The hazard perception task used for the baseline and post-training assessments 

involved participants viewing five video traffic scenarios for each assessment 

(ranging from 20-50 seconds duration) while searching and identifying any 

immediate hazards that appeared through the course of the videos. Participants were 

instructed to move a circle on the screen using the mouse, click on hazards as they 

identified them, and verbally identify the hazard. The time and number of clicks are 

recorded by a computer providing the exact time during the video participants 

identified hazards and the number of perceived hazards. The verbal description of the 

hazards is recorded as an audio file by computer. There was no secondary ‘moving-

dot’ task used in this experiment29. The video traffic scenarios ranged in length from 

8 to 75 seconds and depicted different hazards found on urban and suburban roads.  

Other instructions given to participants were: 

Your task will be to identify immediate30 hazards by clicking on them with 

the mouse as soon as you perceive them. Immediate hazards are hazards 

such as braking cars, pedestrians walking over the road, cyclists, road 

workers, etc., which potentially could get into your way so that a driving 

action would be required (e.g., braking, steering away, etc.).  

A ‘beep’ sound accompanied each mouse click. This task measured the percentage of 

hazards identified by participants for both the baseline and post-training assessment. 

For each assessment, there were a total of 20 immediate hazards throughout the five 

video scenarios. The videos which were used in the experiment were the same as 

those used in the previous Experiment 3 and 2 in the Hazard Perception tasks. 

Commentary Training  

The participants selected for training received instructions on how commentary 

should be performed in the experiment. The participants who received the road 

commentary training were instructed to provide a running verbal commentary about 

any hazards they perceived, including potential and immediate hazards. This form of 

                                                           
29 Despite the secondary task being included in previous versions of the Hazards Perception Dual Task (HPDT), it was 

considered that active commentary might serve as a secondary task as noted by Hughes and Cole (1986), and hence no 
tracking task was used in this experiment. 

 
30 While this task called for participants to identify immediate hazards, some participants were also vigilant during the 

commentary training to point out things such as road side signage, as well as areas where hazards (covert) might emerge. 
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commentary training is known as concurrent verbalisation, as it involves participants 

providing a continual stream of driving-related contents of conscious awareness. 

Concurrent verbalisation methods similar to those employed in this experiment have 

been utilised by many researchers, demonstrating improved hazard perception times 

and greater vigilance for hazards (Isler et al., 2009); Williamson, 2004). Commentary 

training has also demonstrated improvements in real-world driving assessments 

(Mills et al., 1998) and reduction in speeds when approaching hazardous situations 

(Crundall et al., 2010). While there are other commentary methods, the method 

employed here provides the greatest amount of information about the drivers’ 

contents of awareness and hazard perception and their strategies in responding to 

hazards. 

The training involved participants’ verbally identifying immediate hazards, and 

expressing how they might alter their driving behaviour (e.g., “I am approaching a 

school patrol, so I am watching for children crossing and slowing down”). Participants 

were given the following instructions regarding commentary: 

Road commentary is a training intervention that involved participants 

verbally identifying real or potential hazards which occur while driving. You 

will be asked to provide a running verbal commentary about any hazards 

that you perceive, and how you would respond to them (e.g., slowing using 

the break). A potential (covert) hazard is anything that may develop into an 

immediate hazard over time. You will be shown two videos with experts 

providing a commentary for you to watch, and then the same videos will be 

shown so you can practice your commentary. This will be followed by twelve 

training videos, during which you will need to provide commentary. 

During the practice trials, participants were reminded to comment on any thought 

that came to mind regarding the road. There were two practice trials: for the first trial, 

participants were provided with an example of road commentary performed by a 

driving expert on a busy urban section of road, and they were required to produce 

their own commentary on the same section of road. For the second practice trial, 

participants were required to provide commentary for a second filmed road and 

listen to the accompanying expert commentary afterwards.  

The training session for the participants involved twelve video scenarios, which for 

each participant was to provide commentary without any expert commentary or 

feedback. During the training videos, eye-movement data was collected. As some 
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participants could be potentially nervous providing commentary during the 12 

training trials, the experimenter was not present in the room, and commentary was 

recorded using a Dictaphone for later analysis.  
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Procedure 

Participants were provided with an information sheet regarding the experimental 

setup and the computer tasks. Participants were shown how the eye-tracker worked 

along with the chin and forehead rest and brief information of how the eye-tracker 

recorded eye movements. The ethical information regarding participation was 

presented, which was followed with participants providing informed consent. 

Participants were seated in front of the monitor. The eye-tracker was adjusted, along 

with the forehead and chin rest, as shown in Figure 65: 

 

Figure 65: A participant demonstrating the use of the EyeLink 1000 eye-tracker. As the eye-
tracker was fixed, a chin and forehead rest was used to ensure that the participants remained as 

still as possible during the experiment. 

Similar to the previous Experiments, participants were provided with a practice run 

of the hazard perception task to familiarise themselves with the task and be able to 

adjust their posture to use the chin and forehead rest comfortably. The eye-tracker 

was calibrated for each participant prior to the hazard perception task commencing. 

The Hazard Perception Task practice trials involved two video scenarios, in which 

participants were able to identify hazards verbally and locate them using the mouse. 

Once participants were identifying approximately 80% of the hazards in these 

scenarios, the experiment commenced. The baseline assessment and post-training 

assessments involved a unique set of four of the eight video clips, taken from the 

Hazard Perception task used in Experiment 2 and 3. Each set of clips contained 20 
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immediate hazards and were presented to participants in one of two counterbalanced 

sequences to prevent any bias resulting from ordering. 

After baseline assessment, participants who had been assigned to the commentary 

training group were taken through the road commentary training (as described 

previously) and then asked to provide a running verbal commentary for each of 12 

videos, while an audio recording of the commentary was taken. Participants in the 

control (no-training) group were instructed to simply watch the 12 videos as if they 

were the drivers. The post-training hazard perception assessment was the final stage 

of the experiment. The eye-tracker was calibrated and validated before each stage of 

the experiment. Additionally, before each trial, a cross-heir would appear, which 

participants were instructed to look directly at, which was used to correct for any 

potential drift in eye movement between trials.  

After the laboratory-based measures, participants completed questionnaire 

measures online using Qualtrics™. This was often completed in another lab while 

other participants were being run through the computer-based measures. After 

completing the full experiment, participants were given an informal debriefing and 

allowed to view the data collected by the eye-tracker31. Participants were thanked for 

their involvement and given a $10 gift voucher as an appreciation for their 

involvement in the experiment. 

 

  

                                                           
31 As many younger drivers were participating as part of their high-school psychology class, this provided them the 

opportunity to view a psychological experiment and observe the way eye movements  were recorded and how this was 
thought to be related to safe driving. 
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Results 

Differences between Driver and Training Groups  

The initial analysis was to rule out any bias between training groups. In order to 

determine whether there is an effect of the training, it was essential to initially 

determine whether the two training groups were significantly different both in 

hazard perception time and the number of hazards correctly identified.  

A mixed two-way 2 (Driver Group) x 2 (Training Group (Commentary, Control)) x 

2(Baseline, post-training, repeated measure) ANOVA was conducted on measures of 

hazard perception time and the number of hazards perceived. The analysis revealed 

that there was a significant interaction for Driver Group on the measures before and 

after training, Wilks Λ= 0.720, F(2, 36)= 7.008, p< 0.01, ηp2= 0.280., as well as a 

significant effect for the Training Group, Wilks Λ= 0.505, F(2, 36)= 21.608, p< 0.01, ηp2= 

0.546, though no significant interaction effect was identified between Driver group 

and Training Group, Wilks Λ= 0.852, F(4, 34)= 1.650, p= 0.206, ηp2= 0.084.  

Between-subject effects revealed that there was a significant difference between 

driver groups before training for the number of hazards perceived, F(1, 37)= 10.987, p< 

0.01, ηp2= 0.229, but not for hazard perception times, F(1, 37)= 1.049, p= 0.31, ηp2= 0.028, 

with experienced drivers perceiving significantly more hazards than novice drivers. 

For the Training groups, between-subject effects revealed that there was no 

significant difference between control and commentary groups before training for 

both the number of hazards perceived, F(1, 37)= 0.212, p= 0.64, ηp2= 0.01, and hazard 

perception times, F(1, 37)= 0.408, p= 0.53, ηp
2= 0.011.  

This indicated that while there was a difference between Novice and Experienced 

drivers before training, there was no significant difference between the Control and 

Commentary group before training. The lack of between-subject effects at baseline 

indicated it was unlikely there were any significant differences in ability in hazard 

perception performance between the control and the commentary group before  

training commenced.  
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The Influence of Commentary Training on Hazard Perception  

Drivers in the control groups showed a marginal improvement in the post-training 

assessment regarding the number of hazards perceived and hazard perception times. 

However, this difference between baseline and post-training assessment was non-

significant. Following the training, novice participants assigned to the control group 

increased the number of hazards they perceived, which approached though did not 

reach statistical significance (p= 0.057). Novice drivers in the control group also had 

no significant difference in hazard perception times (p= 0.147) between baseline and 

post-training. Similarly, experienced drivers in the control group increased in 

measures of hazard perception between baseline and post-training. However, the 

number of hazards perceived (p= 0.262) or hazard perception time (p= 0.463) was 

not statistically significant between baseline and post-training.  

 

Figure 66: The mean number of hazards identified for the two groups (no training, with 
training).Visual inspection of the figure shows that road commentary training improved the 
number of hazards identified, while there was little change visible in the no-training group. 

 

* ** 
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Figure 66 shows the number of hazards perceived was significantly greater for both 

drivers who received commentary training when contrasted with their control group 

peers. 

 

Figure 67: The hazard perception time for the two groups (no training, with training).Visual 
inspection of the figure shows that road commentary training improved the time taken to 

perceive hazards, while there was little change visible in the no-training group. 

 

As with the previous findings, Figure 67, shows the drivers in the commentary 

training group had a reduction in their hazard perception times following the training 

when contrasted with the control group. 

** 

* 
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A mixed, repeated measures MANOVA (control/training and novice/experienced as 

between-subject factors and baseline / post-training as a repeated-measure factor) 

was conducted to determine whether training had a significant effect on the number 

of hazards and hazard perception times. The inferential analysis showed no 

significant effect between the Driver Groups, Wilks Λ= 0.871, F(2,36)= 0.184, p= 0.832, 

ηp2= 0.010. However, there was an effect between Training Groups, Wilks Λ= 0.668, 

F(2,36)= 8.685, p< 0.01, ηp2= 0.332, where drivers who received commentary training 

showed improved hazard perception ability contrasted with drivers in the control 

group. There was also significant interaction between Training and Driver Groups, 

Wilks Λ= 0.728, F(2,35)= 6.527, p< 0.01, ηp2= 0.272, with novices in the training group 

outperforming their peers more so than the mature group. 

 

Comparisons between Control and Commentary Groups 

Two mixed one-way ANOVA were conducted to compare the number of hazards 

detected between baseline and post-training for the commentary and control groups 

(one for novice and another for experienced drivers, respectively). This revealed that 

novice drivers who received the commentary training perceived significantly more 

hazards than their peers in the Control group, F(1, 18)= 16.350, p< 0.01, ηp2= 0.476. 

Novice drivers also had shorter hazard perception times for those in the Commentary 

Group, F(1,18)= 8.800, p< 0.01, ηp2= 0.328 contrasted with novice drivers in the Control 

group. 

A one-way ANOVA revealed that experienced drivers in the Commentary Group 

perceived significantly more hazards following training when compared to drivers in 

the Control Group, F(1,19)= 4.569, p< 0.05, ηp
2= 0.194. There was also a substantial 

difference in the hazard perception times, with Experienced drivers in the 

Commentary Group perceiving hazards significantly quicker than drivers in the 

Control Group F(1,19)= 5.615, p< 0.01, ηp2= 0.228. 
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Referring to Table 23, novice drivers seemed to benefit more from the commentary 

training than their experienced counterparts, who did not significantly perceive more 

hazards after commentary training.  

_______________________________________________________________________________ 
Table 23:  
 
The Number of Hazards (Total n= 20) for Novice and Experienced Drivers, grouped by Control and 
Training before and following training  
 

 

Table 24 shows a significant decrease in the time to perceive hazards between novice 

participants who received commentary training compared with novice drivers in the 

control group. For experienced drivers, there was no significant post-training 

reduction in hazard perception time for either participants’ in the commentary or 

control groups. 

_______________________________________________________________________________ 
Table 24:  
 
The Hazard Perception Time for Novice and Experienced Drivers, grouped by Control and Training 
before and following training 
 

 

  Driver Group 

  Novice Experienced 

  M SD M SD 

Control 
Baseline Hazards 11.70 3.057 16.11 1.167 

Post-training Hazards 13.20 3.084 16.78 1.394 

Training 
Baseline Hazards 13.10 3.784 16.17 1.528 

Post-training Hazards 17.70 2.908 18.25 1.138 

  Driver Group 

  Novice Experienced 

  M SD M SD 

Control 
Baseline Time 953.8 170.13 881.5 144.59 

Post-training Time 901.0 139.70 785.8 81.67 

Training 
Baseline Time 949.3 152.23 759.9 202.33 

Post-training Time 754.9 159.79 613.4 117.33 
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The number of hazards perceived in post-training was greater for both groups of 

drivers, with novice drivers identifying significantly more than baseline compared to 

their control group counterparts.  

 

Eye-movement Behaviour 

Eye-movement data was passed through the same filter as described in Experiment 1 

and then viewed by the experimenter to confirm the absence of significant drift or 

distortion. Significant differences were identified in relation to the training and driver 

age groups. To ensure that the observed differences between driver groups were not 

the result of bias in the sample before training, a one-way ANOVA was conducted on 

the baseline eye-movement behaviour for the two training groups. The ANOVA 

revealed that the two training groups were similar in their eye-movement behaviour 

at baseline, F(1,38)= 0.180, p= 0.67, ηp2= 0.005. There was also no significant influence 

observed in the ordering sequences of the hazard perception clips. 

To examine the effect of commentary training on drivers eye-movement behaviour, a 

repeated-measures MANOVA was performed for all eye-movement measures 

between the two training groups and age/experience groups. Levene’s tests show that 

variance equality can be assumed for all variables (p> 0.05).  

A significant effect was found between the training group, Wilks Λ= 0.939, F(1,38)= 

5.247, p< 0.01, ηp2= 0.061, though no significant effect was observed between driver 

age groups,  Wilks Λ= 0.977, F(1,38)= 1.938, p= 0.08, ηp
2= 0.02. There was a significant 

interaction found between Driver group and Training group, Wilks Λ= 0.884, F(1,38)= 

10.555, p< 0.01, ηp2= 0.116,
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______________________________________________________________________________________________________________________________ 
Table 25: 
 
The interaction effects for measures of Eye-movement Behaviour between Novice (n=20) and Experienced (n=20) Driver Group * Training Group in Post-
training Assessment 

 

As can be seen in Table 25, there was a significant interaction between the Training and Driver group for mean fixation duration, mean 

saccadic amplitude, and the number of blinks per trial. Commentary training appeared to increase the number of fixations for novice 

drivers significantly. However, it had no significant effect on experienced drivers, with commentary trained drivers having a significantly 

greater number of fixations than the control group. The mean fixation duration was significantly lower for the experienced commentary 

     Novice Experienced 

 Training F-value p ηp
2 M SD M SD 

Number of Fixations * C 10.461 0.05* .225 276.4 33.34 314.1 31.98 

 T - - - 300.8 52.03 332.4 30.35 

Fixation Duration ** C 20.034 0.01** .080 369.2 35.42 319.4 42.36 

 T - - - 333.7 37.19 294.13 45.01 

Number of Saccades* C 6.188 0.05* .015 74.1 24.23 64.8 21.00 

 T - - - 69.7 27.17 74.3 29.27 

Mean Saccadic Amplitude * C 12.684 0.01** .030 5.43 1.150 5.72 1.889 

 T - - - 5.70 1.889 4.92 1.004 

Number of Blinks  C 0.615 0.43 .002 4.65 3.905 3.41 2.880 

 T - - - 6.79 7.99 6.60 6.57 

Pupil Diameter C 10.153 0.01** .023 1839 450.7 1490 541.8 

 T - - - 2188 667.3 1979 345.6 

Significant values: * = p < 0.05, ** = p < 0.01 
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trained group contrasted with the control group. Commentary trained novice drivers had longer fixation durations compared to 

participants in the control group.  

 

Figure 68: The mean number of fixations (left) and mean fixation duration (right) per trial, organized with Novice (top) and Experienced Drivers (bottom), and 
Training Group with Commentary indicated with stripes. The bars represent 95% CI Significance values are indicated, p< 0.05 *, and p< 0.01 ** 
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Figure 69: The mean Number of Saccades (left) and mean Saccadic Amplitude (right) per trial, organized with Novice (top) and Experienced 

drivers (bottom), and Training Group with Commentary indicated with stripes. The bars represent 95% CI Significance values are indicated, p< 0.05 *, 

and p< 0.01 ** 

 

 

 

 ** 

** 
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Distribution of Eye movements  between Training Groups 

The differences between drivers’ visual search behaviour between baseline and post-

training assessments is an important consideration. Heatmaps were generated for 

both training groups, with eye movements from the baseline paired with the same 

videos from post-training. 

 

Figure 70: Heatmap illustrating the fixation behaviour of drivers at baseline (left) and following 
training (right) for the Commentary training group. 
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Figure 71: Heatmap illustrating the fixation behaviour of drivers at baseline (left) and following 
training (right) for the Control group. 

 

Commentary trained drivers have a broader field of view following training compared 

with the control group. The most significant difference is that the clustering of 

fixations appears to be greater in the commentary training group, indicating the 

drivers focused their visual attention differently following commentary contrasted 

with the control group. One interesting observation is that both groups of drivers 

were more inclined to use the wing and rear-view mirrors during the baseline 

compared to the post-training assessment. This may be due to the relative absence of 
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hazards in the mirrors and could indicate that drivers prioritise the search for hazards 

in the forward field of view as the task progresses.  

The training videos were shown to both the training and control group, with the only 

significant difference being how each training group were to engage with the videos. 

One group would be required to watch and actively comment on hazards that enter 

their awareness (commentary group), while the other group was instructed to watch 

the videos from the driver's perspective. Eye-movement information was recorded as 

participants watched the videos, and this is shown in Table 28: 

_________________________________________________________________________________________________ 

Table 26:  
 
Eye-movement Behaviour while producing Road Commentary, contrasted with Control 
Participants, for both Novice and Experienced Drivers  

 

Overall, during training compared to control, experienced drivers appeared to 

increase the number of rapid fixations, though showed a smaller saccadic amplitude 

than the control group drivers. Novice drivers, on the other hand, seemed to show the 

opposite behaviour. During the commentary, novice drivers had fewer fixations with 

longer duration, though they increased the number of saccades compared with the 

control group (refer to Figures 72 and 73). Both novice and experienced drivers in the 

commentary group showed a significant increase in the number of blinks, F(1,38)= 

14.983, p< 0.01, ηp2= .035 and pupil dilation, suggesting an increased cognitive load 

as a result of the training. The values shown in Table 28 are presented in Figures on 

the following page.  

 Control Commentary 

 Novice Experienced Novice Experienced 

 M SD M SD M SD M SD 

Number of Fixations 74.8 24.23 65.6 20.99 70.4 27.13 75.3 29.29 

Fixation Duration 307.5 51.08 361.4 63.69 328.9 62.11 308.8 57.81 

Number of Saccades 74.1 24.24 64.8 21.00 69.7 27.17 74.5 29.27 

Saccadic Amplitude 5.43 1.150 5.72 1.123 5.70 1.889 4.92 1.004 

Number of Blinks 4.65 3.905 3.41 2.880 6.79 7.978 6.60 6.572 

Pupil Dilation 892 105.8 724 114.6 1136 186.3 816.5 151.7 
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Figure 72: The Mean Number of Fixations (left) and the Mean Duration of Fixations (right), by 
Driver and Training Groups 

 

 

Figure 73: The Mean Number of Saccades (left) and the Mean Saccadic Amplitude (right), by 
Driver and Training Groups 
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Figure 74: The Mean Number of Blinks (left) and the Mean Pupil Dilation (right), by Driver and 
Training Groups 
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Table 27:  
 
The interaction effects between Driver Group * Training Group for Eye-movement Behaviour during the training task for Control (C) and Trained (T) 
drivers. 
 

     Novice Experienced 

 Training F-value p ηp
2 M SD M SD 

Number of Fixations * C 6.188 0.05 .015 74.8 24.23 65.6 20.99 

 T - - - 70.4 27.13 75.3 29.29 

Fixation Duration ** C 35.509 .001 .080 307.5 51.08 361.4 63.69 

 T - - - 328.9 62.11 308.8 57.81 

Number of Saccades* C 12.684 .001 .030 74.1 24.24 64.8 21.00 

 T - - - 69.7 27.17 74.5 29.27 

Mean Saccadic Amplitude * C 6.153 0.05 .015 5.43 1.150 5.72 1.123 

 T - - - 5.70 1.889 4.92 1.004 

Number of Blinks  C .615 .433 .002 4.65 3.905 3.41 2.880 

 T - - - 6.79 3.905 3.41 2.880 

Pupil Diameter C 2.397 .130 .130 892  105.8 724 114.6 

 T - - - 1136 186.3 816.5 151.7 

Significant values: * = p < 0.05, ** = p < 0.01 
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Fixation Duration Immediately Preceding Hazard Detection 

As a measure of sustained visual attention, the duration of fixations that coincided 

with the perception of hazards is shown in Figure 75:  

 

Figure 75: The Duration of Fixations that Immediately Preceding the Perception of a Hazard. 

 

The fixation duration preceding the immediate detection of a hazard (as indicated by 

a mouse-click) was shorter in post-training trials than at baseline for all groups. The 

fixation durations were observed to be shorter following commentary for novice 

drivers but not for experienced drivers, who demonstrated greater hazard perception 

ability.  

A mixed ANOVA with two between-subject factors, 2(Driver Group) x 2 (Training 

Group) and a repeated measure factor (Baseline vs Post-training), was performed on 

the fixation durations coinciding with hazard perception, confirming that there was 

no significant main effect between Driver groups (p= 0.24) or between Training 

groups (p= 0.52). However, a significant interaction was observed between Training 

and Driver Group, Wilks Λ= 0.998, F(3,36)=  4.309, p< 0.01, ηp2= 0.08. 
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Post-hoc inferential analysis on the fixation duration between baseline and post-

training using multiple one-way ANOVAs, F(1,19)= 1.932, p= 0.16, ηp2= 0.008, showed 

that novice drivers in the control group did not differ significantly between baseline 

(M= 879.4, SD= 645.45) and post-training (M=776.1, SD= 518.05). A significant 

difference was found between baseline (M=809.1, SD=519.35) to post-training (M= 

653.9, SD= 407.10) in the commentary group, F(1,19)= 13.697, p< 0.01, ηp2= 0.027, 

though the effect size was small. It was found that the experienced driver group had 

shorter fixation durations in the post-training compared with baseline, irrespective 

of the training group.   
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Discussion 

This experiment investigated developing commentary training for novice and 

experienced drivers based upon Isler et al. (2009) and measuring effectiveness in 

relation to hazard perception and eye-scanning behaviour. An initial investigation 

found that there was a significant difference between the number of hazards 

perceived during baseline testing between novice and experienced drivers, with 

experienced drivers perceiving more hazards than novice drivers do before training. 

As both previous experiments in this thesis, this was anticipated, and evidence from 

the reviewed literature suggested that experienced drivers should perceive more 

hazards with greater speed (M. Horswill et al., 2013). 

The current study found that road commentary significantly increased participants’ 

ability to identify hazards on video-based traffic simulations. This finding is similar to 

the reviewed literature, especially that of Isler et al. (2009) who found that 

commentary training increased the number of hazards that young novice drivers’ 

identified in a hazard perception dual-task. The improvement in hazard perception 

gained through the use of commentary training has been examined in several studies, 

and the present findings support its use as part of any driver training programme 

focussing on higher-level driving skills.   

The current study's findings are consistent with those of both Isler et al., (2009) and 

Horswill et al. (2013a), with commentary training improving the hazard perception 

performance of both young novice drivers’ and more experienced drivers. 

Commentary trained drivers noticed approximately twenty-percent more hazards 

and identified hazards on average ~200ms sooner. One consideration was that 

drivers in the control group did improve, with novice drivers performing better 

following the control group training, although this effect was not significant. As the 

sequence of baseline and post-training videos alternated, this is not accounted for by 

difficulty inherent in the video scenarios and may result from mere exposure to the 

training scenarios. 

Analyses of the fixation data indicated that there were differences between the two 

training groups regarding the allocation of fixation in distinctly different ways in the 

post-training assessment. The commentary group demonstrated more fixations 

devoted to the roadside where hazards are most likely present (Crundall et al., 2010; 

Crundall & Underwood, 1997). These differences indicate that commenting on the 

road situation may change the way drivers process the visual scene, with commentary 
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training promoting fixations to hazard-rich areas of the visual scene, and dedicating 

more fixation duration to the areas of the road where hazards might occur.  

When focusing on the fixations that immediately preceded the detection of hazards, 

these fixations were observed to be more rapid in post-training trials than those at 

baseline, which suggests that there may be a mere exposure or training-type effect. 

The fixation durations were observed to be shorter following commentary for novice 

drivers but not for experienced drivers, who demonstrated greater hazard perception 

ability. This might partially confirm the findings of Young et al. (2017), who found 

improved performance in the post-training testing of their control group, suggesting 

that merely silently performing hazard perception may improve performance over 

time. However, in this experiment, drivers in the commentary group showed 

increased hazard perception performance, associated with shorter fixation durations. 

Experienced drivers in the commentary group had more frequent rapid fixations than 

control drivers and had more elongated saccadic eye movements. This could indicate 

changes to the way participants acquired visual information from the environment 

while generating commentary. Considering that breadth of the search was not 

changed, experienced drivers likely used short successive fixations to scan the 

environment before returning to the centre of the visual field. These findings support 

Chapman et al. (2002), who found that commentary training produced different visual 

search patterns in young drivers when combined with hazard anticipation and visual 

search training. However, it is worth noting that nonspatial secondary tasks (such as 

verbalisation) have been associated with decreased fixation durations during driving 

(Nunes & Recarte, 2002). Young et al., (2017) considered that this might be the reason 

why their commentary drivers had shorter fixations without a corresponding change 

in hazard perception. In this experiment, hazard perception ability did improve with 

commentary training, so changes in their visual behaviour are likely related to hazard 

perception. 

In the study by Crundall and Underwood (1998), it was found that novice drivers who 

drove on several different road environments demonstrated a pattern of inefficient 

visual search behaviour compared with more experienced drivers who travelled the 

same route. Isler et al. (2009) speculated that this was due to an inability to redirect 

attentional resources to hazard perception task or that novice drivers lack the skills 

needed for efficient search of the road scene. The current study may provide some 

evidence to suggest that commentary training may promote the more efficient search 
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for hazards, either through improving search strategy or through the allocation of 

attentional resources to the task of perceiving and responding to immediate hazards. 

This may address the question raised by Vlakveld (2011); however, further research 

is required.  

While participants were required to identify immediate hazards in their commentary, 

many went beyond this to identify covert hazards. It was noted that participants seem 

to prioritise the importance of road environment features differently. Young people 

seem to assess hazards principally responding to visual salience, whereas 

experienced drivers make judgements dependent more on situation and context. This 

might be evidence of more advanced knowledge of the road environment and 

potential hazards, rather than the largely bottom-up saliency driven attention to 

environmental features, which novice drivers attend to visually.  

Both groups tended to focus ahead of the vehicle rather than attending to the mirrors. 

The way the two groups attended to the mirrors did not show a statistically significant 

difference between baseline and post-training. Participants attended more to the 

central visual field. Previous studies have shown that young novice drivers typically 

focus their attention on the centre of the visual field (Konstantopoulos et al., 2010), 

as this is required for the primary driving task of maintaining lane position and 

avoiding immediate on-coming hazards (e.g., slowing vehicles). It is worth noting that 

there was no instruction given regarding hazards occurring in the mirrors, and it 

could be assumed that the use of mirrors in this experiment may not be 

representative of actual driving behaviour, as the majority of immediate hazards 

occur within the centre-field. 

Both driver groups demonstrated a higher number of blinks during commentary 

training compared to control drivers. Blinks might be evidence of an increase in the 

cognitive load required to process the road environment and identify hazards and 

then verbalise this process. Suppose commentary places additional load onto the 

primary driving task. In that case, this could be a challenge to implementation, as blink 

rate evidences a more significant loading on cognitive resources than visual 

information acquisition. Additionally, on the presentation of hazards, the pupillary 

response suggests that drivers experienced a physiological response. 
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Limitations 

Several limitations should be addressed in the current study. Firstly, the small sample 

size might not be sufficiently large to address the high degree of variability observed 

within groups adequately. As there was a departure from the methodology used in 

previous hazard perception experiments, validity can only be assumed based on the 

distinct difference in behaviour between driver experience and age groups.  

Secondly, the road commentary task used in this experiment did not employ a 

secondary dual-task (as was used in other studies, for example, Isler et al., 2009; 

Crundall et al., 2010). The use of a secondary task created an ‘artificial’ cognitive 

demand that is to represent that task demand for actual driving. In simulator tasks, 

the secondary task would be steering and vehicle control on the virtual road, where 

the primary task would be hazard perception. Without using a secondary task in this 

experiment, participants were free to allocate all their cognitive resources to the task 

of searching for hazards. Therefore, hazard perception performance in this 

experiment may not have accurately represented the actual hazard perception 

competency when driving in the real world. This is most notable by the considerably 

higher number of hazards perceived by both groups and the shorter duration needed 

to recognise hazards compared with other tasks. However, given these considerations, 

the secondary task was the most appropriate way to inflate task demand artificially. 

For instance, a verbal secondary task would interfere with participants commentary 

production, and a steering task would not work within the framework of using  a 

video-based methodology. 

While eye-movement behaviour was recorded during training, and this provided 

some insight into whether participants were engaged with the task, it remains 

challenging to determine whether the differences in the training group versus the 

control group engaged with the task in the same way. There was no significant 

difference between the control and training groups before training as a measure of 

control, which suggests that drivers had been allocated to either training group 

without prejudice. Despite the training videos being the same for both groups, merely 

asking the control group to view the videos as if they were the driver may affect their 

level of engagement, despite eye movements reflecting search behaviour. A lack of 

engagement could diminish the control group’s capacity and provide an unequal 

advantage to more engaged commentary participants. 
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Crundall and Underwood (1997) mention that verbal overshadowing could have the 

potential to interfere with visual search behaviour, and this is and further that by 

requiring drivers to make verbal reports, they may focus attention on non-relevant 

aspects of the driving task, as noted by Hughes and Cole (1986). As commentary is a 

verbal process, the results might vary significantly from participant to participant 

irrespective of the level of competency driving. Novice drivers may struggle to 

generate commentary with the same fluidity as experienced drivers, as the verbal task 

may impact more of searching out hazards – hazard perception is likely partially 

automatized to some degree with experienced drivers. Additionally, verbal 

overshadowing may play a role in disrupting drivers ability to focus on hazards.  

The experimental setup, which involved a chin and forehead rest, may place 

restrictions on the natural viewing conditions participants might use, limiting the 

range of visual strategies and presenting all hazards within the immediate front field 

of view, which could present issues of ecological validity. 

Another issue that may be a potential unaccounted variable is the quality of road 

commentary, which was found to vary substantially between individuals within the 

training group. While this has not been examined in this current study, it was noted 

that some participants found commenting on hazards much more challenging than 

others. While not within the scope of the present study, the analysis of the extent and 

quality of commentary and the use of covariates in the future analysis may reveal a 

more accurate picture when it comes to evaluating the effects of road commentary 

training. Returning to the criticism raised by Vlakveld (2011) of Isler, Starkey, and 

Williamsons (2009) original task, a longitudinal approach, as well as an additional 

training group, could provide a great deal of important information. An additional 

participant group of initial control subjects then go on to perform commentary would 

provide insight regarding both the long-term effectiveness of commentary as training 

and the role of simply viewing traffic scenarios. This could help determine whether 

observed changes were the result of altered cognition and not merely increased visual 

sampling of objects 

Finally, it is important to consider that participants listened to expert commentary in 

the commentary training and were then required to self-generate a similar 

commentary. Participants then repeated the process in reverse before going into the 

twelve self-produced commentary videos. This approach is not dissimilar from what 

is referred to as “feed-forward training”, where participants are instructed where to 
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look, and subsequently, they tend to dedicate much more attention to those locations 

compared with drivers who are not provided with instruction (Sadasivan et al., 2005). 
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Study B: Does improving Hazard Perception influence Speed Choice? 

In the previous experiment, there was a notable improvement in drivers hazard 

perception time under the commentary training condition for both novice and 

experienced drivers, which has also been observed by other researchers in the 

reviewed literature (M. Horswill et al., 2013). The development of hazard perception 

and efficient visual search strategies is one of the fundamental skills marking the 

transition from novice to experienced drivers (Horswill & McKenna, 2004; 

Underwood, 2007) and is a driving skill related to reduced crashes likelihood.  

Road commentary is a simple training technique and was demonstrated in the 

previous study to improve drivers hazard perception using video-based traffic 

scenarios, with similar findings to the research conducted by Isler et al. (2009). 

Furthermore, improvements to drivers hazard perception performance were 

accompanied by changes in visual search behaviour, similar to Chapman, Underwood, 

and Roberts (2002). Given the observed relationship between speed choice and 

hazard perception observed in Experiment 3, it was hypothesised that improving 

hazard perception through road commentary may also improve drivers’ speed 

choices. It might be possible that improving hazard perception with commentary may 

lead to a subsequent reduction in drivers’ speed choice, with previous research 

supporting this possibility.  

The potential benefits of improved hazard perception are a possible change in drivers' 

speed choices, likely in response to greater awareness of risk. Isler, Starkey, Drew, et 

al. (2008) found that among other training methods, commentary improved hazard 

perception within a group of young novice drivers and was accompanied by a 

reduction in drivers’ speeds in a real-world setting (i.e., driving on a race-track). 

Renge (1998) found that drivers reduced speed after training, which improved 

hazard perception, which has also been observed in hazard anticipation tasks 

(McKenna et al., 2006). Mills et al. (1998) found commentary training improved 

hazard perception and response times in on-road driving assessment ratings, and this 

finding is supported by Crundall et al. (2010), who found commentary resulted in 

increased responsiveness to hazards, including a reduction of speed when 

approaching hazards. 
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Introduction 

Several decades of research has demonstrated that training speed adaptation is 

notoriously challenging to educate and is managed mainly by enforcement through 

policing. While efforts have been made with varying degrees of success, speed is still 

the greatest contributing factor to fatal crashes (Accident Compensation Corporation 

& Land Transport Safety Authority, 2000). Australian researchers Kloeden et al. 

(1997) analysed crashes in Victoria and New South Wales. They noted that excessive 

vehicle speed is potentially misjudged by other drivers, which reduces the available 

driver reaction times and the effectiveness of braking or counter-manoeuvres while 

dramatically increasing the energy released upon impact. Such crashes may be the 

result of under-developed hazard perception (McKnight & McKnight, 2000).  

The relationship between speed choice and hazard perception may be mediated by 

the ability to search the road for hazards effectively. For instance, when a driver is 

travelling at a high rate of speed, there is less time available to acquire visual 

information and respond to potential hazards before encountering them (Aarts & van 

Schagen, 2006). Parmet et al. (2015) argue that poor hazard anticipation may be the 

root cause of poor speed management when young drivers display inferior speed 

management strategies in the presence of potentially hazardous traffic and road 

situations.  

In the reviewed literature, there has been a strong theme that educational programs 

that focus on hazard perception have a subsequent reduction in speed choice. Isler 

and Starkey (2008) tested this concept in a longitudinal study, the Frontal Lobe 

Project. Amongst other things, they tested the influence of driver education, focusing 

on higher level skills such as hazard perception and situation awareness. After an 

extensive training program, they observed that novice drivers showed improved 

performance and reduced speeds on a track. Using the road commentary training 

used in Study A, this second study explores the potential for commentary-based 

training to improve the critical relationship between hazard perception and speed 

choice. This corresponds to changes in visual search behaviour.  
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Research Question  

Does improving Hazard Perception through Road Commentary have a positive-safety 

influence on Speed Choices? 

There is an indication in the literature that advanced hazard perception is related to 

more appropriate speed choices, and if the findings from Experiment 3 are reasonable, 

then it would be expected that there should be a subsequent reduction in speed as 

hazard perception improves. By training hazard perception, the hypothesis is that 

there would be a corresponding reduction in speed choice, as measured using the 

previously developed combined task from Experiment 3.  
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Method 

In this experiment, the role of commentary training on hazard perception and speed 

choice was examined using the Hazard Perception & Speed Choice task developed for 

Experiment 3 and the commentary training that tested in the previous study. In order 

to accomplish this, twenty-two participants volunteered to return from previous 

participation in Experiment 3 to be retested, with half participants receiving 

commentary training developed in the previous study.  

In the previous experiment, the training participants actively engaged in commentary, 

while the control group were asked to watch the videos as if they were the driver. 

This experiment will use the same training method, using the same clips, with the 

combined Hazard Perception and Speed Choice task used in Experiment 3 as the 

instrument used to measure participants behaviour. This study examines the 

relationship between hazard perception and speed choice and the effects of 

commentary training on visual search behaviour using road commentary training. 

 

Participants  

Participants who had volunteered and completed the hazard-speed computer task 

used in Experiment 3, and had indicated their interest in future research were invited 

to return to participate in this study, which was conducted approximately six weeks 

after the original experiment. Twenty-two participants returned, with 10 novice 

participants (M= 22.4 years, SD= 1.26; 5 male, 5 female) and 12 experienced (M= 28.5 

years, SD= 3.26; 5 male, 7 female) from Experiment 3 volunteering to repeat the same 

computer-based combined Hazard Perception Speed Choice task. Ten participants 

received commentary training before repeating the computer-based task (M= 25.7, 

SD= 2.61; 5 male, 5 female). The other 12 participants (M= 26.8, SD= 4.97; 5 male, 

seven female) observed the same videos used for the commentary training but did 

not receive training so that they repeated the task as a control group.  
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Baseline assessment bias: 

There was no significant difference between gender and training groups concerning 

baseline speed choice or hazard perception measures. However, there was a 

significant difference in baseline with driver groups, with novice drivers choosing 

faster speeds than experienced drivers and having shorter hazard perception times, 

which is discussed in the results section. There were no significant interaction effects 

identified between gender, training, or driver groups. 

 

Hazard Speed Computer Task  

The laboratory task used in this second commentary experiment was the Hazard 

Perception Speed Choice task developed for Experiment 3. Participants were required 

to watch eight different traffic-related videos and asked to perceive immediate 

hazards by pressing the mouse and verbally stating the hazard identified as quickly 

as possible while simultaneously tracking a randomly moving dot using a mouse. 

Following each video, participants selected the speed they considered ideal for that 

road condition using a digital speedometer. The head-mounted eye-tracker (SR 

Research EyeLink II) was used to record participants’ eye movements, and the eye-

tracker was fitted and calibrated before the task in a similar way to Experiment 1 and 

3. 

 

Procedure 

Similar to the previous study, participants in the training group received road 

commentary training, which involved watching two videos while listening to expert 

commentary and then were required to reproduce commentary for the same two 

videos to familiarize themselves with the training. Participants in the training group 

were then required to produce verbal commentary for the twelve training videos used 

in the previous experiment. Participants in the control group were asked to watch the 

videos as if they were the vehicle's driver but did not provide any commentary. Both 

groups then repeated the computer task. Unlike the previous study, participants were 

not using an eye-tracker during the training session. 
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Participants’ data were paired with the data recorded from the first time (baseline) 

they had run through the combined task. Additionally, participants were asked some 

brief demographic questions related to driver history. 

 

Results 

The values for the different measures related to hazard perception and speed choice 

were calculated and matched for baseline and post-training assessment - and are 

presented in Table 28. Hazard perception measures improved for both training groups, 

referring to Table 31; baseline measures indicate that there were no significant 

differences within driver groups (i.e., novice drivers did not significantly differ 

between training groups, suggesting that they were similar in their ability). However, 

there was found to be significant differences between driver groups in both pre-

training assessments. 

Following training, there was an improvement in the hazard perception times for both 

groups of drivers in the commentary training group compared with drivers in the 

control group. The baseline and post-training descriptive and inferential statistics are 

shown in Table 28:
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_______________________________________________________________________________________________________________________________________________________ 

Table 28:  
 

The Measures of Hazard and Speed Behaviour for Novice (n=10) and Experienced (n=12) 

 

 

 

 

 

 

 

Referring to Table 28, no significant difference was identified between the Driver groups regarding the number of hazards perceived. 

However, hazard perception time was significantly different between novice and experienced drivers in both baseline and post-training32. 

Speed choice was significantly different between groups at baseline but did not differ between Driver at post-training assessment. There 

was no identified interaction effect observed between the Training and Driver groups. 

                                                           
32 This was an anticipated effect, as in Experiment 3, experienced drivers generally had faster hazard perception times than novice drivers. 

     Novice Experienced 

  F-value p ηp
2 M SD M SD 

Baseline Number of Hazards 0.131 .721 .007 33.2 3.85 32.5 4.98 

Hazard Perception Time ** 12.418 0.01** .383 3.19 .357 2.71 .284 

Mean Speed Choice ** 15.063 0.01** .430 31.9 3.03 27.2 2.76 

Post - Training Number of Hazards 0.634 .435 .031 35.0 2.71 36.6 3.10 

Hazard Perception Time * 5.804 0.05* .225 2.71 .325 2.38 .309 

Mean Speed Choice 0.987 .332 .047 27.4 4.61 25.8 2.67 

Significant values: * = p < 0.05, ** = p < 0.01 
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The measures of hazard perception and speed choice were graphically represented in Figure 76: 

Figure 76: Mean Hazard Perception time (left) and mean Speed Choice (right) for the first and second trials of Trained (above) and Untrained 

Drivers (below).Error bars indicate 95% confidence intervals. 

Figure 76 indicates that the Training group who received the commentary training had slower speed choices and reduced hazard 

perception time following training assessment and in contrast with the control group.
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The Effects of Commentary Training: 

The difference between baseline and training for the control and commentary 

training group was calculated and is shown in Table 29. There is a general 

improvement in all measures in the post-training assessment, which was anticipated 

considering participants had previously performed the task. 

_____________________________________________________________________________ 
Table 29:  
 
Hazard Perception and Speed Choice before and after training 

 

A mixed two-way 2 (Driver Group) x 2 (Training Group (Commentary, Control)) x 

2(Baseline, post-training, repeated measure) MANOVA was conducted on measures 

of hazard perception time, the number of hazards perceived, and speed choices. The 

analysis revealed that there was a significant effect for Driver Group on the measures 

before and after training, Wilks Λ= 0.412, F(2, 18)= 7.627, p< 0.01, ηp2= 0.558., as well 

as a significant effect for the Training Group, Wilks Λ= 0.579, F(2, 18)= 3.874, p< 0.05, 

ηp2= 0.421, with drivers in the commentary group improving in hazard perception 

ability, and selecting slower speeds following training when compared with the 

control group. However, no significant interaction effect was identified between 

Driver Group and Training Group, Wilks Λ= 0.758, F(2, 18)= 1.700, p= 0.207, ηp2= 0.242.  

The analysis revealed no significant difference following training between Training 

Groups in relation to the number of hazards perceived F(1,18)= 1.472, p= 0.241, 

ηp2= .076. However, following training, drivers in the commentary group had quicker 

hazard perception times, F(1,18)= 25.20, p< 0.01, ηp2= .583 compared with drivers in 

the control group. Commentary trained participants’ were also found to have 

  Baseline Post-Training 

  M SD M SD 

Control 

Number of Hazards 33.8 4.21 36.00 2.68 

Hazard Perception Time 2.85 .401 2.70 .344 

Mean Speed Choice 29.3 4.42 28.8 3.16 

Training 

Number of Hazards 31.67 4.37 35.09 3.18 

Hazard Perception Time 2.94 .397 2.36 .281 

Mean Speed Choice 29.4 3.11 24.3 2.64 
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significantly slower speed choices, F(118)= 9.251, p< 0.01, ηp2= .339, compared to their 

control group counterparts. 

Within-subject effects were identified for both the Training Group, Wilks Λ= 0.331, F(2, 

18)= 10.760, p< 0.01, ηp2= 0.669, and Driver Group, Wilks Λ= 0.634, F(2, 18)= 3.471, p< 

0.05, ηp2= 0.366, though no significant interaction within Training and Driver Group, 

Wilks Λ= 0.980, F(2, 18)= 0.108, p= 0.95, ηp2= 0.020. There was a significant within-

subject effect for the Training Group, both for the hazard perception times F(1,18)= 

25.20, p< 0.01, ηp2= .583 as well as speed choice, F(1,18)= 9.251, p< 0.01, ηp2= .339, with 

commentary trained drivers showing a significant improvement in both the time 

taken to perceive hazards, as well as slower speed choices following training as 

compared to baseline. While a within-subject effect was identified for Driver Group, 

there was no significant difference between baseline and post-training for measures 

of hazard perception ability, with speed choice approaching but not reaching 

statistical significance, F(1,20)= 4.193, p= 0.54, ηp2= .173. 
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The Relationship Between Speed Choice And Hazard Perception Time: 

 

The relationship between hazard perception measures and speed choice was of interest, as previous experiments had indicated a 

relationship between hazard perception time and the speed at which participants chose as ideal. 

  

Figure 77: The relationship between Hazard Perception Time and Speed Choice for Baseline (left), and Post-training assessment (right). 

 Participants who received commentary training are represented as dots. 95% CI are shown as the dotted line.
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The relationship between speed choice and hazard perception was analysed using 

Pearson correlations. There was no significant correlation between speed choice and 

the number of hazards perceived in either baseline (p= 0.418) or post-training (p= 

0.293) assessments. However, there was a significant correlation identified between 

speed choice and hazard perception time both at baseline (r= 0.698, p< 0.01) and 

post-training (r= 0.584, p< 0.01), which was consistent with the findings from 

Experiment 3. Notably, there was greater homogeneity in the baseline assessment, 

and three drivers from the control and one driver from the commentary group were 

outliers with faster speed choice and longer hazard perception times. 

 

Analysis from Eye-tracking Data 

Eye-tracking data were collected from 16 of the participants, with 4 participants 

indicating signs of unreliable data in post-training, which was excluded from the 

analysis.  

The eye-tracking analysis revealed that overall, in the repeated task, that road 

commentary trained drivers had longer fixations per trial (M= 314msec, SD= 32.3) 

compared to control drivers (M= 295msec, SD= 31.9), which was significantly 

different between Training groups, F(1,15)= 5.435, p< 0.05, ηp2 = 0.361. The mean 

number of fixations was significantly lower following training for drivers in the 

commentary group than the control group, F(1,15)= 7.903, p< 0.05, ηp2 = 0.280).  
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________________________________________________________________________________________________________________________________________ 
Table 30:  
 
The Measures of Eye-Movement Behaviour for Control (n= 7) and Commentary Training (n= 9) Groups at Baseline and Post-Training 

     Baseline Post-training 

 Training F-value p ηp
2 M SD M SD 

Number of Fixations C 7.406 0.01** 0.346 200.43 71.942 245.86 63.326 

 T - - - 236.44 52.247 205.89 48.403 

Fixation Duration C 5.504 0.05* 0.282 322.00 100.816 296.3286 84.27 

 T - - - 342.78 83.681 229.8889 71.893 

Number of Saccades C 3.934 0.067 0.219 827.43 133.448 881.14 101.29 

 T - - - 894.00 73.273 1065.31 113.05 

Mean Saccadic Amplitude C 9.739 0.01** 0.410 6.693 1.8217 6.629 1.629 

 T - - - 6.562 1.4683 9.400 1.704 

Number of Blinks  C 10.928 0.01** 0.438 16.43 12.313 18.00 12.08 

 T - - - 16.22 9.576 25.44 12.58 

Pupil Diameter C 0.759 0.398 0.051 734.8 271.109 629.00 105.192 

 T - - - 758.9 410.351 847.00 185.376 

Significant values: * = p < 0.05, ** = p < 0.01 
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Differences between visual search behaviour: 

Road commentary trained drivers appeared to have a broader distribution of visual 

search and seemed to focus more on ‘hazard rich’ areas compared to participants with 

no training.  

 

Figure 78: The Distribution and Density Mapping of Fixations made at Baseline (top) and Post-
training (bottom) for both Control (left) and Commentary (right) drivers. The top frames are from 
the Light Commercial scenario, and the bottom frames are from the Construction road scenarios. 
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Figure 79: The Distribution and Density Mapping of Fixations made at Baseline (top) and Post-
training (bottom) for both Control (left) and Commentary (right) drivers The top frames are from 

the School scenario, and the bottom frames are from the Heavy Commercial road scenarios. 

 

There are differences for both Control and Commentary drivers in the post-training 

assessment from observing the distribution of fixations (Figure 78 and Figure 79). 

Generally speaking, commentary trained participants had a broader field of search in 

the post-training evaluation when contrasted with baseline measurement. 
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Discussion 

The present study was designed to determine the effect of road commentary on 

drivers speed choice, with the hypothesis that drivers who improved their hazard 

perception skills would show a speed reduction. This hypothesis was confirmed, with 

drivers who performed road commentary showing a significant decrease in chosen 

speeds following commentary training than the untrained control group who did not 

show a significant difference in speed choices between baseline and post-training 

assessments. This finding confirms previous research by Crundall et al. (2010), who 

noted that drivers with more advanced hazard perception reduced speed on 

approach to hazards. This finding was also noted to be similar to the study by 

McKenna et al. (2006), who noted that drivers who had received hazard perception 

training selected slower speeds when hazards were present in the traffic situation 

Initial observations were similar to Experiment 3, showing that the number of 

hazards perceived by participants had no significant relationship with their speed 

choices. However, the relationship between hazard perception time and speed choice 

showed a high statistical significance level both at baseline and post-training. This 

finding confirms the association between hazard perception times and speed choices 

observed in Experiment 3. Surprisingly, no differences were found in the number of 

hazards perceived between either driver age or training group, with a non-significant 

albeit marginal improvement in the post-training assessment for all drivers.  

Novice drivers who received the commentary training selected slower speeds 

compared to the baseline assessment, which seemed to be related to an improvement 

in hazard perception times, confirming the findings from the previous road 

commentary study. This may result from improved search behaviour and may be 

related to anticipation of hazards or an increase in the awareness of risk, based on 

where commentary trained drivers focused compared to baseline. Commentary 

drivers search a broader area of the road compared to controls and baseline. As found 

in the previous study, they appeared to anticipate hazards by focusing their visual 

search to areas of the road where hazards are likely to occur, which suggests 

anticipation of hazards. Novice drivers benefited from the commentary training in 

relation to hazard perception time, but not to the same extent in the number of 

perceived hazards.  

Experienced drivers also seemed to show improved responsiveness to hazards, and 

there is evidence to suggest that commentary training is beneficial to experienced 
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drivers (Horswill et al., 2013). Experienced drivers showed a significant improvement 

in the number of hazards perceived, as well as a reduction in hazard perception time, 

and it may be that commentary encourages drivers to allocate more attention on 

where hazards are likely to present based upon existing knowledge (Prabhakharan & 

Molesworth, 2011). The potential that baseline experience could influence 

experienced drivers more than novice drivers, given experienced drivers possess 

more hazard-related knowledge, may explain the significant improvement in hazard 

perception and speed choice. Suppose the cognitive processes of experienced drivers 

were significantly affected by the training. In that case, this provides some evidence 

that commentary training does more than increase vigilance for hazards, though this 

cannot be thoroughly established from this study. 

Experienced drivers did not seem to reduce speed, though they had slower speeds 

than novice drivers overall, and this was consistent with speed choices made in the 

previous experiment. Charlton and Starkey (2017b) noted that participants grouped 

roads based in part on prior experience and the presence of pedestrians and school-

aged children. Prior schemata related to the road type and potential hazards could be 

the strong determinant of speed selection and may explain why there was not a 

significant change in the speed choice between baseline and post-training 

assessments, which is in keeping with the findings made by Prabhakharan and 

Molesworth (2011).  

Commentary training did seem to come with an apparent increase in cognitive load. 

This is not unexpected, as dual-task interference has been extensively studied and is 

anticipated when multiple tasks compete for limited higher-order resources 

(Wickens, 1982; Wickens & McCarley, 2008). Despite the commentary training being 

‘offline’, the number of fixations decreased under the commentary condition, 

indicating a ‘tax’ or increased demand on cognitive resources. Both pupil diameter 

and blink rate support this suggestion and agree with the reviewed literature 

(Holsanova, 2008). This was unexpected, as, in the previous study where the 

commentary training was developed, training seemed to come with increased fixation 

count and a reduction in fixation duration, despite the increased load during training. 

One explanation for this is the difference in the hazard perception task. The 

commentary training task in the previous study did not have a secondary tracking 

task, which potentially released otherwise devoted cognitive resources entirely to the 

perception of hazards. In this experiment, the secondary tracking task could have 

potentially interfered with the commentary being generated. 
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Furthermore, the previous study involved a more extended break between training 

and post-training assessment, affording drivers more time to integrate the practice 

into their mental model before post-training assessment33. The increase in cognitive 

load observed may indicate that commentary training is better suited for situations 

where the learner is not directly controlling a vehicle, such as driving as a passenger 

or as an online or computer-based training tool.  

Overall, this study suggests that road commentary training might be useful in 

improving hazard perception skills while improving the speed choices of drivers, 

though further research needs to be conducted to determine the robust nature of this 

effect.  

Commentary trained drivers had slower speed choices and faster hazard perception 

times. The number of hazards perceived did not significantly improve for either 

driver group. Speed choice was strongly correlated with hazard perception time but 

was not related to the number of perceived hazards. Eye-tracking data revealed 

commentary trained drivers allocated more visual attention to regions of the road 

where hazards were more likely to present. However, this was associated with longer 

fixations as well as a decrease in the total number of fixations compared to control 

measures. The improvement in hazard perception time was suggestive that road 

commentary training might be useful in improving hazard perception skills and 

improving the speed choices of drivers’ towards safer driving. 

In this experiment, evidence supports Experiment 3 that hazard perception time is 

related to drivers speed choices, with the same relationship in the correlation. This 

experiment indicated that improving hazard perception may result in reduced speed 

choices, and this relationship may be causal. According to Chambliss and Schutt 

(2018), to establish causality, establishing a causal effect requires a plausible causal 

mechanism that has reasonable explanatory power and an empirical association 

between the independent and dependent variables (correlation). Additionally, 

causality requires temporal ordering, such as the dependent variable not changing 

before the independent variable; and contextualisation, that is, the setting where the 

change occurs, and non-spuriousness, which is essentially the control for other 

external factors that could influence the findings. On the assumption of all things 

being equal, the training group significantly improved in hazard perception measures 

                                                           
33 It is possible that the increased cognitive demand observed in this task is a result of a training ‘hang-over’, though as 

no eye tracking was used on the training portion of this experiment, this cannot be easily determined. 
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and had a slower choice of speeds. Firstly, there is a reasonable mechanism to explain 

this effect found in models of risk and speed choice and previous experimental 

evidence from both Experiment 3 - that a greater number of hazards elevates the 

perceived risk, which is compensated by a reduction in speed. Secondly, there was an 

observed relationship between hazard perception time and speed choice, which 

correlates independent of age/experience or gender; and that improving hazard 

perception accompanies reduced speed choices. 

The caveat that ‘all things being equal’ is always necessary when considering causal 

relationships, so that change to the independent variable results in a change to the 

dependent variable when all other variables are controlled or accounted for. Ensuring 

this criterion is met is essentially impossible in the field of psychology, as there are 

always interpersonal and intrapersonal factors that cannot be controlled in the same 

way that a physicist or chemist can manipulate (Rohrer, 2018). 

The proposed relationship that we suggest is that visual search behaviour is related 

to hazard perception, as visual information informs that process. Hazard perception 

influences speed choice by adjusting the level of perceived risk, and as hazard 

perception improves, drivers detect greater risk in the traffic situation and reduce 

their speed accordingly.  

 

Practical Considerations regarding Commentary Training 

There are, however, some practical issues in applying commentary training to driver 

education. In a comprehensive review, Helman (2009) highlights the possibility that 

concurrent verbalisation is related to a reduction in drivers performance, owing to its 

secondary task nature. It may be difficult for trainees to alternate between the 

commentary task and the higher priority driving task. Young et al. (2014) identified 

that ‘online’ (concurrent) commentary training negatively influenced drivers' hazard 

perception performance. Young et al. (2014) performed two experiments. The first 

involved participants’ performing ‘live’ commentary contrasted with a silent 

untrained group. The second involved a shorter ‘clipped’ commentary training to 

reduce task demands. The results did not suggest any change in the accuracy of hazard 

perception in the commentary group compared with the control group, but response 

times to hazards were slower for those in the commentary group. While the 
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commentary group demonstrated shorter fixation times, no significant effect on time 

to first fixate on hazards was unaffected (Young et al., 2014).  

They speculated that this prolongation of hazard time was due to the duration of the 

verbal report interfering with attentional resources, and this has sound theoretical 

foundations (Huettig et al., 2012; Ranney et al., 2001). Young, Chapman, and Crundall 

(2014) suggest that commentary interferes with the primary task at one or several 

stages in drivers cognition. Despite this, however, a wealth of research suggests 

commentary has a positive effect on hazard perception. However, there is a need for 

considering the potential for task demands on drivers performing concurrent 

commentary34. 

 

Limitations 

The findings in this report are subject to at least three limitations. First, the design of 

the experiment involved a recall of participants who had already experienced the task, 

which could introduce the potential for the recollection of particular hazards, which 

could explain the improvement in hazard perception time and speed choice. As the 

project used a convenience sample of students willing to participate again, inherent 

biases were potentially introduced. Although these participants were not debriefed 

comprehensively, unlike the Experiment 3 group, there is still the possibility that 

participants may have been made aware of the nature of the study in the period 

between participation.  

There was also a small sample size which may not be representative of the general 

population. For instance, caution must be applied with a small sample size, as the 

findings might not be transferable to the broader driver education demographic. 

Though the two training groups were assigned at random, and only provided with the 

instruction in relation to commentary, there is still the possibility that there was some 

form of priming or influence of the experiment, which could present with a small 

sample. However, given that the commentary trained participants showed a 

significant difference to the untrained participants in post-training assessment 

compared to baseline assessment, there is likely to be an effect from the commentary 

                                                           
34 The hazard perception task used throughout this thesis has involved a degree of verbal report, which itself may have 

an influence on task performance, and this cannot be discounted. Comparison was made between the hazard times for 
the data acquired from eDrive Solutions Ltd. (Isler & Cockerton, 2003; Isler & Isler, 2011), and this showed similar results 
in hazard perception time for each immediate hazard, suggesting the effect of verbal report may not be as prominent an 
issue. 
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training over mere exposure or explicit awareness of what is expected (i.e., from the 

debriefed students), though this cannot be ruled out completely. The general 

improvement in the number of hazards perceived and hazard perception times for 

the untrained control group suggests some exposure effect.  

Additionally, there is the potential that experienced drivers were able to incorporate 

the previous ‘baseline’ experience of the video scenarios into their cognitive episodic 

memory, which may explain the improvement observed. It is noteworthy that the 

baseline study findings had not been discussed with participants before the post-

training assessment. One of the key indicators of behavioural differences can be found 

in observing the eye-movement behaviour of participants, with emphasis on the 

differences between the two groups. While the additional load of having to perform 

commentary alongside the secondary task may influence speed choice in a more 

dynamic simulator, it is unlikely to influence this experiment based on how speed is 

selected. However, observing hazards may change the perception of risk, which could 

influence speed choice. Further research into this field is required in relation to the 

role of commentary training, hazard perception and speed choice in a more advanced 

simulator which is a closer representation to real-world driving and moment by 

moment decision-making.  

A final limitation comes from the research findings from Zhang et al. (2018), who 

found that training interventions were only effective for careful drivers. Careless 

drivers, by comparison, were found to be less influenced by training. While 

carelessness was defined as a combination of aggression and sensation-seeking, 

which in this experiment is likely to balance between groups, it could be worth 

measuring in future research. The addition of psychometrics could prove to be 

significantly valuable in determining which drivers benefit from commentary training, 

as this could allow more focused training towards individuals who are more or less 

benefited by driver education. 
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Summary and Future Research 

In the current experiment, it was found that a simple commentary based training 

intervention could be useful in improving both novice and experienced drivers hazard 

perception, with a subsequent reduction in speed choice. This finding is of 

significance as if commentary can simultaneously improve hazard perception as well 

as reduce speeds. The implementation of a training method based on commentary 

training would be of immense value. While the generalisability of these results is 

subject to certain limitations, much more research is required to ensure the 

relationship between hazard perception and speed choice and the scope and 

application of the commentary training method.  Despite this, road commentary could 

be used as a training method alongside other existing techniques to improve driver 

safety and assist drivers in reading the road and making more appropriate speed 

choices. 
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General Discussion 

The main aim of this thesis was to establish a greater understanding of the 

relationship between hazard perception and speed choice. The extensive literature 

review concluded that choice of speed is one of the leading contributing factors in 

drivers crash likelihood. Given this, drivers could easily control the amount of risk 

they are willing to accommodate in the natural course of driving (Fuller, 2005, 2008) 

simply by selecting appropriate speeds.  

Young novice drivers, in particular, are vulnerable, being twice as likely as 

experienced drivers to be involved in a speed-related crash (Ministry of Transport, 

2009), and generally demonstrate under-developed hazard perception ability 

(McKnight & McKnight, 2003). Horswill and McKenna (2004) suggest that hazard 

perception is the most likely trainable source of any skill gap between novice and 

experienced drivers. This is accompanied by the development of more efficient visual 

search strategies (Crundall, 2016; Underwood, 2007). Despite the importance of 

understanding the relationship between hazard perception and speed choice, they 

are typically studied separately (Elander et al., 1993). As there has been relatively 

little research published on hazard perception's role in drivers speed choices, this 

thesis was designed to fill this critical gap in the literature. The key findings will be 

discussed in this section. 

 

Summary of Key Findings 

Hazard Perception Time is Related to Drivers’ Speed Choices  

The most significant finding to emerge from this thesis was identifying a causal 

relationship between hazard perception time and speed choice. This finding is 

distinguished from previous research in that hazard perception times play a central 

role instead of the number of hazards drivers identified. All reviewed prior research 

had found relationships between drivers’ speed choice and the number of hazards 

perceived (e.g., Renge, 1998), or a reduction in speed following training in hazard 

perception (Isler, Starkey, Drew, et al., 2008; McKenna et al., 2006). While these 

previous studies have shown that there may be some connection between these two 

factors, this is the first study, to the best of our knowledge, that drivers’ speed choices 

are directly related to the time taken to perceive hazards. Hazard perception time (or 
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latencies) has been generally regarded as a more valid measure of drivers’ hazard 

perception ability and is a strong predictor of drivers crash likelihood (A. Quimby & 

G. Watts, 1981). The examined relationship indicates that the ability to appraise risk 

efficiently through the perception of hazards is a central consideration when drivers 

make speed choices.  

 

Hazard Perception is Related to Drivers’ Visual Search 

The present study confirmed previous findings and added empirical evidence 

suggesting that hazard perception was directly dependent on drivers’ visual search, 

which was demonstrated in both the distribution and number of fixations associated 

with hazard perception time. This also confirms previous research, which has found 

that visual behaviour significantly differs between novice and experienced drivers. 

Rapid perception of hazards could be related to a drivers awareness of situational risk, 

and the efficiency in processing visual information may be critical to how quickly 

drivers perceive hazards (Crundall & Underwood, 1998; Konstantopoulos, 2009).  

It was found in this thesis that experienced drivers searched strategically for roadside 

features, and this included searching for both overt and covert hazards. Novice and 

experienced drivers’ visual search strategy were comparatively limited in its breadth, 

suggesting that experienced drivers placed greater value and expectancy on ‘hazard 

rich’ regions of the road, maximizing the amount of useful information a driver 

retrieved from the visual scene (Lappi, 2014; Lemonnier et al., 2015). It was observed 

that attention to roadside features and pedestrians were significant focal points for 

experienced drivers’ attention. In contrast, novice drivers devoted their visual 

attention less strategically and not to areas where a potential hazard may emerge. 

This finding does not mean that novice drivers neglected hazard-rich regions entirely. 

Rather, novice drivers looked to where hazards were already readily apparent, 

whereas experienced drivers looked to where hazards were anticipated to appear, 

even if they did not materialise (Underwood, 2007; Crundall, Underwood, & Chapman, 

2013; Konstantopolous, 2010).  
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Improving Hazard Perception Modifies Speed Choice Behaviour 

Another significant finding was that following road commentary, drivers whose 

hazard perception improved made slower speed choices. Although these findings are 

based on a small sample of participants, the findings provided reasonable evidence 

that drivers who received commentary training not only improved in their hazard 

perception but also selected slower speeds. This finding could be interpreted as 

reinforcing the findings made by McKenna, Horswill, and Alexander (2006), who 

noted that drivers who underwent anticipation-based training also selected slower 

speeds under traffic scenarios that contained hazards. More generally, this finding has 

some profound implications for road safety education, as training in hazard 

perception may assist drivers in making more appropriate speed choices. 

Furthermore, improving the perception of hazards may help to add credibility to road 

speed limits as drivers become aware of greater amounts of risk. 

 

Risk Appraisal varies with Driving Experience 

Although risk was not directly measured, the present study provides a strong 

indication that novice drivers were less sensitive to certain aspects present on the 

road and traffic situation, suggesting less awareness of risk. This was not only shown 

by novice drivers’ choice of faster speeds across different road conditions and types 

compared to experienced drivers but was also confirmed through evaluation of 

novice drivers limited visual search behaviour (G. Underwood et al., 2002). Novice 

drivers selected faster speeds on more risky roads, whereas experienced drivers 

selected more appropriate speeds and searched the road for hazards (Underwood, 

2007; Crundall, Underwood, & Chapman, 2013; Konstantopolous, 2010). 

It is well known that different road characteristics influence drivers speed choice, and 

while these generally are not regarded as ‘hazards’, they certainly fall within the 

definition as features of the road and traffic environment that increase the danger of 

which the driver must be mindful (Mills et al., 1996). Examining these risk factors may 

be valuable in assessing a driver’s ability to manage dangerous traffic situations. 

These are important considerations for future research devoted to understanding 

how these factors influence drivers' speed and their place in driver education. 
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Road Markings Influence Drivers’ Visual Search Behaviour 

The present study provides additional evidence with respect to the influence that 

specific road markings have on drivers’ visual search behaviour, beyond merely 

influencing their speed choices. Drivers appeared to focus their visual attention 

within the confines of the lane markings, and this effect was particularly evident for 

novice drivers. This finding supports previous research showing that fixed road 

characteristics can influence drivers’ perception of risk and consequent speed choice 

(Elliott et al., 2003). Based on this observation, it is important to consider that road 

markings play an influential role in how drivers approach the road and traffic 

situation (Davidse et al., 2004; Mourant & Rockwell, 1972) and how this may affect 

their driving behaviour.  

Road-markings seem to be an essential feature in traffic safety (Charlton & Baas, 2006) 

and this finding has several significant implications for how roads are designed and 

the use of markings to influence drivers behaviour which will be discussed later. 

However, the current findings suggest that lane markings can create an unrealistic 

sense of ease for drivers who neglect important cues that occur on the sides of the 

road and events happening in the distance that may evolve into hazardous situations. 

Novice drivers, in particular, may fail to notice these factors and adjust driving 

behaviour, which may potentially lead to a crash (Chapman et al., 2002; 

Konstantopoulos et al., 2010; McKnight & McKnight, 2000).  

 

Significance of the Findings and Research Contribution 

Validation and Usefulness of Video-Based Techniques 

This thesis demonstrated that video-based approaches are a reliable experimental 

methodology in an age where, increasingly, research is conducted in vehicle 

simulators that employ computer-generated scenarios. Video has several advantages 

over simulators in that video can be easily recorded across a diverse range of different 

conditions with relative ease. Furthermore, video is cost-effective and versatile 

compared to more advanced simulators that rely on less realistic computer-rendered 

scenarios and are generally geographically fixed to laboratories. This study has 

provided support for the validated video-based methodology developed by Horswill 

and McKenna (1999). It contributes a reliable research tool for measuring speed 

choice in a New Zealand context under different situations involving weather 



293 
 

 

 

conditions and lane-markings. The combined task has been shown in this thesis to 

measure drivers’ hazard perception ability reliably.  

Another advantage is that video-based methods provide a useful tool for driver 

education. The use of a video-based commentary task in this thesis was found to 

enhance both novice and experienced drivers’ hazard perception skills (M. Horswill 

et al., 2013; Isler et al., 2009). This finding has numerous practical applications in 

driver education and assessment, as video-based tools can be provided under a range 

of conditions, including classroom and online driver training (Isler & Cockerton, 

2003). 

 

Methodology is an Essential Consideration when examining Speed Choice and 

Hazard Perception 

This thesis has established that it is essential to gather hazard perception and speed 

choice measures within the same setting. It was found that when hazard perception 

and speed choice data were acquired using separate tasks involving different road 

scenarios, the relationship between these two measures was the reverse to what was 

hypothesised. This could explain why there has been a lack of research findings on 

the important relationship between these two important driving skills  (Elander et al., 

1993; Wetton et al., 2011). It was found that when speed choice was measured 

immediately after participants were presented with hazards, their speed choice 

strongly related to perception times. This finding is significant in that it may be only 

when drivers are made aware of hazards at the same time and under the same 

conditions do speed choices reflect how drivers respond. This could explain why 

speed choice has been related to hazard perception following training (Isler, Starkey, 

Drew, et al., 2008; McKenna et al., 2006). 
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Implications for Road Safety  

The findings of this thesis have several implications for road safety. As observed in 

this study, hazard perception can be trained with relative ease, and this is in 

agreement with previous research by M. Horswill et al. (2013) as well as Crundall et 

al. (2010) and Isler et al. (2009). This contrasts with speed choice, which is 

challenging to modify with training and is usually reliant on enforcement or 

perceptual countermeasures to manage. However, drivers can choose inappropriate 

speeds and still be driving legally under the speed limit, which exposes them to higher 

crash risk. Developing habitual behaviour on a limited range of roads does not allow 

drivers to accommodate the diversity of New Zealand road conditions. This has 

enormous implications for how driver education is conducted concerning speed in 

New Zealand. 

Driver training needs to emphasise the importance of hazard perception for 

immediate hazards (as we examined in this thesis) and covert hazards that fall within 

the broader definition of aspects of the road that increase the danger to the driver. 

Speed Choice is related to a driver’s ability to correctly appraise risk, described by 

Deery (1999) as the subjective experience of risk in potential traffic situations. This 

description of the ability to detect risk has considerable overlap with many definitions 

of Hazard Perception (e.g., Helman, 2009). This definition encompasses aspects of the 

traffic and road situation that can be easily overlooked, such as vehicles on the 

roadside, the influence of road condition, and markings. 

As observed in the speed choice task, the impact of road marking on drivers visual 

behaviour can be quite pronounced. It seems visual search influences speed choice, 

with markings and roadside features being important features when making 

judgements, similar to the effect of road weather and lighting conditions. There are 

some essential applications here to the way that roads are designed. Design principles 

need to convey as much information as possible to the driver so that they 

automatically select an appropriate speed and steering behaviour for the roadway 

without depending on road signs or enforcement. 
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Limitations 

The main limitation of this research is that risk was not directly measured. Perception 

of risk related to drivers’ speed choice in the literature (Fuller, 2010) was the primary 

way drivers would be influenced by the perception of hazards. As noted, previous 

research has observed the presence (Renge, 1998) or absence (Wetton, et al., 2011) 

of a relationship between hazard perception and risk. While it is reasonable to assume 

that risk is a viable means by which speed choice connects to hazard perception, 

further research is required in demonstrating this presupposition. In the literature 

review, a case was made for the important connection between speed choice and risk, 

and how risk may be an important factor in the role hazard perception plays in drivers’ 

behaviour. A significant limitation in this experiment was that risk was not directly 

measured. While it is possible to use speed choice as a proxy measure for risk, this is 

limited as it is not a direct measure of risk awareness or risk-taking proclivity. 

While useful for clear on-road risks, the definition of immediate hazards may not fully 

acknowledge the importance of other road factors that fall under the broader 

definition of hazard being something that increases the risk for the driver. Although 

immediate hazards are a reasonable measure of drivers’ ability, it was noted that 

other aspects to the road and traffic situation could influence speed choice, which 

could be considered as hazards that still discriminate between drivers with varying 

degrees of experience. Evidence for this was observed for experienced drivers who 

identified covert or potential hazards, and the potential role that foreshadowing has 

on speed choices should be considered in future research. As suggested, one such 

method would be to classify identifiable risks from an expert perspective and then 

determine what subtle elements are taken into account when participants make 

speed choices. 

Due caution is always warranted in relying upon eye-tracking data, and results need 

to be interpreted with care. There is evidence suggesting that participants watching 

video have greater variability. This is not always representative of natural behaviour 

as video-based tasks do not require a driver to determine the lane position or 

direction of the vehicle. Determining where a driver focuses their visual search does 

not guarantee that the participant deliberately extracts information from the scene. 

However, as Crundall and Underwood (2011) note the link between what the eye is 

looking at and what the viewer is thinking about is still very robust.  
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Future Research 

This thesis has addressed several critical areas in the field of road safety research. The 

findings of this thesis have several important implications for both the future of driver 

training and education and potential applications to current New Zealand 

transportation policy. With these real-world applications resting on findings from this 

laboratory-based thesis, it is essential that future research work to ensure their 

validity. 

The finding of a relationship between speed choice and hazard perception is of central 

interest and deserves considerable further examination of this relationship needs to 

be conducted to both verify and learn more about this exciting finding. A natural 

progression of this work is to analyse how drivers hazard perception influence speed 

choices in the real world. While validating the results in a simulator would provide 

greater control across participants, and allow for the precise measurement of changes 

in speed when participants encounter hazards, moving this research to a real-world 

context seems to be a more advantageous approach when considering the practical 

applications to driver education. Therefore, the next step in extending this research 

into a more complex experimental setting is highly dependent on what outcomes we 

expect. A simulator would be beneficial in further understanding of the role of eye-

movement behaviour in hazard perception and speed choice. However, given the 

decreasing cost of eye-tracking, there is great value in moving to naturalistic settings 

and exploring the potential for commentary-based training to reduce speed choice 

while enhancing hazard perception skills. 

Further research needs to closely examine the links between hazard perception and 

risk, and how these factors interrelate and influence speed choice behaviour. While 

the role of risk in drivers speed choice is a well-studied subject, there is relatively 

sparse evidence to suggest that hazard perception relates to risk. This may in part be 

owing to the way that perception of risk is examined in the laboratory setting. 

Typically, researchers have asked drivers to rate risk on a Likert scale, or to adjust a 

lever to indicate increases and decreases in risk (e.g., such as the task pioneered by 

Watts & Quimby, 1979). While these methods are practical for evaluating risk at a 

conscious level, they may be insensitive to risk perception if drivers experience risk 

as a feeling or somatosensory response (Slovic et al., 2004). Evidence suggests that 

this may be the case, explaining why several studies have not found a relationship 

between risk and hazard perception ability. 
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Additionally, with road commentary as the means of improving hazard perception, 

there is the opportunity to study and potentially begin to explain why road 

commentary seems to work for some participants and not as well for others. 

Addressing the effectiveness of commentary as a driver education tool would be an 

essential avenue for research. However, given that it has shown the potential to 

improve hazard perception and speed choices within a laboratory context, 

commentary could provide a simple but effective tool in the New Zealand driver 

education toolbox.  

 

The Potential Role of Emotional Wellbeing 

While it is outside the scope of this thesis, there is evidence that the driver’s state of 

mind has a considerable bearing on their ability to drive safely. As noted in a literature 

review, speed is often studied in relation to driver’s attitudes, beliefs, and values, 

which are commonly associated with driving style. However, Isler and Newstead 

(2017) found that those individuals with higher emotional wellbeing have safer 

driving behaviour. This raises the intriguing possibility that poor emotional wellbeing 

may adversely affect driver hazard perception skill and their style of driving. 

Furthermore, young drivers may be more vulnerable to psychological effects on 

driving behaviour. A preliminary evaluation found that drivers’ well-being might 

positively influence their hazard perception skills and subsequent speed choices. 

While these early findings are outside the scope of this thesis, there is potential for 

further analysis of the existing data along with future research into the moderating 

role of emotional well-being on driver performance and corresponding safety. 

 

Implications for Practice  

This thesis highlights the importance of making roads ‘readable’ by the driver and 

possessing credible speed limits. As noted, driving is an intensely visual process (Rogé 

et al., 2004), and hence conveying the most information to the driver in the least 

taxing means is vital in reducing crash rates. While there is a significant need to 

develop, improve, and maintain our current infrastructure, it remains essential to 

continue developing ways to improve drivers’ hazard perception abilities. In New 

Zealand, novice drivers generally have poor hazard perception ability. Not all 

experienced drivers have optimal hazard perception skills either, and this should be 
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a significant consideration that accompanies changes to roading. Drivers often rely on 

personal judgements and habitual speed behaviour, which reflects the awareness of 

the risk perceived in the traffic environment. Hence, training needs to be developed 

to provide clear and appropriate information related to speed choices. Moreover, 

drivers need to be educated to detect the situational risks that are often not 

considering in the traditional approach to hazard perception training. 

 

Conclusion 

In conclusion, this thesis revealed that hazard perception time, arguably the most 

crucial measure of driving skill, is associated with speed choice, and this relationship 

seems to be causal. This finding has implications for both driver training, as well as 

transport policy. More efficient visual search that accompanies rapid detection of 

hazards can be influenced by a range of road characteristics and the traffic situation; 

this needs to be considered when developing New Zealand road infrastructure. While 

appropriate speed is subject to the driver’s perception and management of risk, this 

places further emphasis on drivers' ability to appraise the traffic situation correctly 

and roads being designed to convey information about appropriate speeds 

automatically to the driver.  

In creating safer journeys, training hazard perception can reduce the number of 

preventable crashes and positively influence drivers’ speed choices. Drivers’ choice 

of more appropriate speed is of enormous benefit to decrease the road toll and reduce 

fuel consumption and emissions while smoothing out drivers' travelling speed in 

reducing traffic congestion. The fact that speed choices can be improved by training 

hazard perception is of great value in future road safety initiatives aimed at 

preventing speeding and could help decrease the number of crashes in New Zealand 

and globally. 
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Appendix 1: Ethical Applications 

This research was conducted in line with University of Waikato Ethical Guidelines 

concerning human testing (University of Waikato Handbook on Ethical Conduct in 

Research, 2009). Ethical applications for human testing was approved by the Psychology 

School Ethics Committee, with amendments or addendum submitted when required for 

adjustments in procedure or extension of data collection. Testing was authorized for a 

period of three years from the date of ethical approval. 

Ethics application reference numbers were 2011:21, 2012:46, 2013:15, 2015:21, 2017:09, 

with amendments to 2011:21 approved in July 2015 

Participants were briefed concerning their rights as participants under the department 

ethical guidelines and were informed about the nature of the experiment with an 

opportunity to enquire regarding the research. Participants gave written consent before 

undergoing testing. Participants enrolled in first-year psychology papers were given 

course credit for their involvement towards their final grade. Participants were presented 

with a $10 MTA voucher in appreciation for their involvement.  

Participants who requested a summary were emailed a breakdown of research findings, 

and were given the opportunity to obtain a complete copy of this report from the Faculty 

Thesis Library and online Research Commons. 

  

http://researchcommons.waikato.ac.nz/
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Appendix 2: Information Sheets and Participant Information 

The following are the information sheets that participants were provided 

accompanying ethical approval forms. Instructions given to participants is described 

in the General Method. 

 

Standard Ethical Information for Participants 

What will happen to my information? 

All information received from you will remain strictly confidential, and will not be made available 

to anyone in a way that will identify you. Your information will be immediately stored on a 

computer using an anonymous identification number, so even the researchers will not be able to 

connect your data with your identity.  After data collection from all participants, the analysis of the 

data and an electronic summary will be emailed to participants would like to see the findings.  

 

What can I expect from the researchers? 

If you decide to participate in this project, the researchers will respect your right to: 

• Ask any questions of the researchers about the study at any time during participation; 

• Decline to answer any particular questions or carry out any of the tasks; 

• Withdraw from the study at any stage and request your data be excluded or 

destroyed; 

• Provide information on the understanding that it is completely confidential to the 

researchers. All forms are identified by a code number, and are only seen by the 

researchers. It will not be possible to identify you in any articles produced from the 

study; 

• Be  provided with an electronic summary of the findings if you would like; 

• Be kept aware of future publications, newspaper or journal articles related to our 

research. 

Who can I speak with about my participation in this project? 

If you, or anyone you know is interested in taking part in this research please contact 

either: 

Steve Cantwell (scant@waikato.ac.nz) 

Dr Robert Isler (r.isler@waikato.ac.nz 

This research has been approved by the School of Psychology Research and Ethics committee. If 

you have any concerns about the experiment, please contact the convenor: NAME, EMAIL 

mailto:scant@waikato.ac.nz
mailto:r.isler@waikato.ac.nz
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Experiment 1 Information Sheet 

What is this study about? 

You are being invited to participate in a research project that examines the way age and 

experience influence driver behaviour. I am primarily focused on the way drivers perceive 

the road and choose appropriate speeds for road conditions. 

This research will be conducted at the University of Waikato, and it is hoped that the 

findings from this experiment will lead to future crash interventions and improvements 

to driver training which will be of benefit to all New Zealand road users. 

Am I eligible to take part? 

You are eligible to take part in this study if you hold a New Zealand learner, restricted or 

full drivers licence and are 16 years or older.  

What am I being asked to do? 

If you agree to take part in this study, it will involve one session of approximately 60 

minutes. There will be a tasks involving viewing filmed roads on a computer monitor, then 

selecting your preferred speed for each road using a computer. This will be followed by 

online questionnaires related to your personal driving behaviour and demographic 

information (age, gender, etc.). The computer based task will involve a special eye-

tracking camera that records where you are looking, and uses a chin rest so that you are 

sitting in consistent position throughout the experiment. We will endeavour to ensure 

your comfort throughout the entire experiment, and you a free to pause or discontinue 

the experiment at any stage. 

To show our appreciation for your involvement in this research, you will receive either 

2% course credit (if you are enrolled as a first year psychology student, the experiment 

will be a useful learning experience) or a $10 voucher. 
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Experiment 2 Information Sheet 

 

What is this study about? 

You are being invited to participate in a research project that examines the way the factors 

age and experience influences driver behaviour. We are primarily focused on the way 

drivers perceive hazards on the road; choose appropriate speeds, and how this relates to 

attitudes and beliefs about road usage.  

This research will extend the findings of the DRIVERGE research project, and is being 

conducted in the Applied Cognitive Psychology lab at the University of Waikato. We 

believe that the findings from this research will greatly benefit all New Zealanders, and 

lead to future crash interventions and improved driver training. 

Am I eligible to take part? 

You are eligible to take part in this study if you hold a New Zealand learner, restricted or 

full drivers licence and are 15 years or older.  

What am I being asked to do? 

If you agree to take part in this study, it will involve one session of approximately 60-90 

minutes. The experiment involves a number of computer-based tasks related to hazard 

perception and speed selection, carried out in the Applied Cognitive Psychology 

laboratory (I-block) on the Hamilton Campus. You will also be asked to complete several 

questionnaires related to your personal driving behaviour and demographic information 

(age, gender, etc.) If you are interested in participating, please email us, and a researcher 

will arrange a suitable time with you to take part in the study. You may need to provide 

your own transport to the University of Waikato. To show our appreciation for your 

involvement in this research, you will receive either 2% course credit (if you are enrolled 

as a first year psychology student, the experiment will be a useful learning experience) or 

a $10 MTA fuel voucher. 
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Experiment 3 Information Sheet 

What is this study about? 

You are being invited to participate in a research project that examines the way the factors 

such as age, experience, and emotional wellbeing influence driver behaviour. We are 

primarily focused on the way drivers perceive hazards on the road; choose appropriate 

speeds, and how this relates to attitudes and beliefs and emotional wellbeing.  

This research will be conducted by Steve Cantwell from the University of Waikato under 

the supervision of Assoc. Prof Robert Isler and Dr. Nicola Starkey, and it is hoped that the 

findings from this research will greatly benefit all New Zealanders, and hopefully lead to 

future crash interventions and improvements to driver training. 

Am I eligible to take part? 

You are eligible to take part in this study if you hold a New Zealand learner, restricted or 

full drivers licence and are 15 years or older.  

What am I being asked to do? 

If you agree to take part in this study, it will involve one session of approximately 30-45 

minutes. There will be a number of tasks involving hazard perception and speed selection 

carried using a computer, and also some questionnaires. There will also be several 

questionnaires related to your personal driving behaviour and demographic information 

(age, gender, etc.), as well as attitudes and beliefs surrounding driving, and measures of 

emotional wellbeing and mindfulness. For this, you will need to arrange transport to be 

at the University of Waikato to meet with a researcher at a pre-arranged time. To show 

our appreciation for your involvement in this research, you will receive either 2% course 

credit  or a $5 voucher. 
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Experiment 3 Post-experiment Debrief 

The purpose of this study is to investigate whether emotional well-being plays a role in the 

likelihood of crash involvement. Vehicle crashes take a huge toll on not only those involved directly, 

but also on the economy. One of the highest risk populations is young drivers aged under 25 years 

old. However, there is emerging interest in the role that personal mental well-being plays in vehicle 

crashes, as unhappy drivers have slower reaction times and are more likely to miss important visual 

cues (Zimasa, Jamson, & Benson, 2017). Poor hazard detection is a leading cause of crashes 

(McKenna, Horswill, & Alexander, 2006), so it is critical that we train drivers to scan the road more 

broadly with their eye’s and detect hazards sooner (Underwood, Crundall, & Chapman, 2002). 

Research has shown that the frontal cortex of the brain is responsible for ‘executive processes’ 

such as working memory and attention as well as emotional regulation (Dahl & Spear, 2004), and 

this is related not only to personal well-being, but also safe driving practices (Isler, Starkey, Drew, 

& Sheppard, 2008). There may be good evidence that poor mental well-being is related to limited 

attention, which could lead to crash involvement (Fredrickson, 2001). 

This study looks to investigate a range of different aspects of driver behaviour, namely a) the 

relationship between personal well-being (IV) and hazard detection (DV) performance, b) the 

relationship between hazard detection (IV) and speed choice behaviour (DV), and c) the differences 

in eye-movement behaviour (DV) between novice and experienced drivers (IV). Principally 

however, the key objective is to further explore the concept of whether happy drivers are safer 

drivers. 

We expect to see that in keeping with Zimasa et. al., (2017) that drivers with more positive mental 

well-being have more effective hazard perception, and that they scan the road more broadly with 

their eyes (Zimasa et. al., (2017). Additionally, we expect that there is a relationship between 

hazard perception and speed choice, with faster detection of hazards related to slower speeds, 

and lastly, that novice drivers will scan less of the road than experienced drivers (Underwood, 

Crundall, & Chapman, 2002). 

Thank you again for taking part in this study. We hope that you have learnt more about how driving 

research is conducted in a laboratory setting using eye-tracking technology to observe where visual 

attention is allocated, as well as the importance of both mental well-being and hazard detection in 

producing safer drivers. If you have any further comments or thoughts, feel free to contact Steve at 

sjc29@waikato.ac.nz  

IV: Independent variable 

DV: Dependant variable 

 

 

mailto:sjc29@waikato.ac.nz
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Experiment 4 Study A Information Sheet 

 

What is this study about? 

You are being invited to participate in a research project that examines the way the factors 

age and experience influences driver behaviour. We are primarily focused on the way 

drivers perceive hazards on the road; choose appropriate speeds, and how this relates to 

attitudes and beliefs about road usage. Furthermore, we will be investigating the use of 

‘commentary training’ as a means of improving drivers hazard detection. 

This research will be conducted by Steve Cantwell from the University of Waikato under 

the supervision of Assoc. Prof Robert Isler and Dr. Nicola Starkey, and it is hoped that the 

findings from this research will greatly benefit all New Zealanders, and hopefully lead to 

future crash interventions and improvements to driver training. 

Am I eligible to take part? 

You are eligible to take part in this study if you hold a New Zealand learner, restricted or 

full drivers licence and are 15 years or older.  

What am I being asked to do? 

If you agree to take part in this study, it will involve one session of approximately 30-45 

minutes. There will be a number of tasks involving hazard perception and speed selection 

carried using a computer, and also some questionnaires. There will also be several 

questionnaires related to your personal driving behaviour and demographic information 

(age, gender, etc.) For this, you will need to arrange transport to be at the University of 

Waikato to meet with a researcher at a pre-arranged time. To show our appreciation for 

your involvement in this research, you will receive either 2% course credit  or a $5 voucher. 

What is Road Commentary? 

Road commentary is a training intervention that involves participants verbally identifying 

real or potential hazards that occur while driving (or viewing footage of driving). For this 

task, participants are asked provide a running verbal commentary about any hazards they 

perceived including potential as well as immediate hazards. A potential hazard is defined 

as a hazard that may develop to an immediate hazard over time. 



336 

 

 

Experiment 4 Study B Information Sheet 

Experiment 4B was an extension of Experiment 3, and involved the information sheet 

used in that experiment, along with the description of Commentary Training found on 

the Experiment 4 Information Sheet. The following email was sent to participants who 

indicated in a questionnaire that they were interested in returning to complete the 

experiment a second time following training. These participants were not provided 

the post-experimental debrief information from Experiment 3. 

 

Dear Participant, 

 

Thank you for expressing your interest in taking part in the continuation of the research that you 
participated in involving hazard detection and speed choice. I wanted to get in contact and extend 
the invitation for you to participate in the follow-up study that will examine how driving behaviour 
is affected by watching filmed traffic scenes. The filmed scenes will take approximately 20 minutes 
to view, and you may be asked to comment on certain aspects of the films. 

The experiment is identical to the experiment you participated in beforehand and uses the same 
measures, including eye-tracking, and should take about the same amount of time to complete, 
with the addition of the time needed to view the videos. This study will continue to advance our 
knowledge into the use of video as a tool in driver education.  

If you are interested in participating, feel free to email or call, and we can arrange a time that suits 
your schedule. I look forward to hearing from you, and thank you again for your prior participation. 

 

Kind regards, 

 

Steve Cantwell 

 

PS – For enrolled psychology students, course credit is not available for this semester. However, 
it is possible to add course credit to any psychology paper that you do next semester so long as 
they accept research participation credits. 
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Appendix 3: Additional Validity of the Speed Choice Task 

As with Experiment 1, the speed choices for the urban and rural road types and 

conditions were calculated, shown in Figure 1. As there appeared to be significant 

within and between-subject effects, inferential testing using repeated-measures 

ANOVAs explores the speed choices for all drivers related to the different road types 

and conditions (presented in Tables 32 and 33). 

 

Figure 80: The mean overall speed choice for both Urban and Rural road scenarios. The graph 
legend displays the road condition for both road scenarios. Speed Limit indicated by the dotted 
line. Error bars represent 95% Confidence Intervals (CI). All between and within (shown) subject 

effects are significant with p < 0.01 
 
 
 
 

What is immediately noteworthy is that the speed choices made in Experiment 2 were 

highly consistent with those made in Experiment 1 (refer to Table 31). Furthermore, 

the results demonstrated a similar difference in speed choices between road type and 

condition as found in experiment one, with drivers selecting faster speeds for day 

time (urban) and dry (rural) conditions (see Table 32), and selecting slower speeds 

on the more ‘difficult’ roads (see Table 33), which was consistent with the measure of 

sensitivity found in Experiment 1.  
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_________________________________________________________________________________________________

Table 31:  

Speed Choices from Experiment 1 (n = 48) compared with Experiment 2 (n = 136) 

 

These figures are close to those reported by the Ministry of Transport (2019), the 

Rural Dry 2 speed measured is remarkably close to that of the MoT for Waikato 

drivers at 93.9km/h. The mean speed for Urban Roads by drivers in the Waikato was 

50.5km/h. 

The speed choices between the road conditions were found, indicating that driver 

preferred slower speeds under night driving for Urban Road 1 (narrow with no 

median) but not for Urban Road 2 (left-hand margin and median). Speed choice was 

slower for the wet condition on both of the Rural Roads 1 (without shoulders and 

marking) and 2 (with shoulders and markings) compared to the dry condition. 

   Experiment 1 Experiment 2 

Environment Type Condition M SD SE M SD SE 

Urban Roads 1 Day 40.0 7.844 1.206 42.3 6.125 0.587 

 - Night 37.6 8.222 1.286 38.6 6.609 0.666 

 2 Day 44.1 12.100 1.890 44.9 6.856 0.525 

 - Night 43.9 6.630 1.028 44.8 7.775 0.566 

Rural Roads 1 Dry 82.7 10.470 1.642 86.5 12.928 1.108 

 - Wet 68.2 10.421 1.652 70.6 12.417 1.064 

 2 Dry 92.4 9.910 1.558 94.6 9.6357 0.826 

 - Wet 79.9 8.756 1.734 80.9 11.052 0.947 
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_______________________________________________________________________________ 
Table 32:  
 
The difference in Speed Choice between Road Conditions (for each Road Type) 

 

When road type (e.g., With shoulders and markings) was compared, as with 

Experiment 1 the speed choices were different between the two urban roads, and the 

two rural roads were consistent with Experiment 1. This indicated that the measure 

was sensitive in differentiating between the road characteristics that influence speed. 

 

 

 

 

 

 

 

Environment Type Condition F-Value Sig. Part.  η2 M SE 

Urban Roads 1 Urban 1 Day 70.894 0.01 0.344 42.3 0.587 

 - Urban 1 Night - - - 38.6 0.666 

 2 Urban 2 Day 0.019 0.89 0.001 44.9 0.525 

 - Urban 2 Night - - - 44.8 0.566 

Rural Roads 1 Rural 1 Dry 505.90 0.01 .789 86.5 1.108 

 - Rural 1 Wet - - - 70.6 1.064 

 2 Rural 2 Dry 332.07 0.01 .711 94.6 0.826 

 - Rural 2 Wet - - - 80.9 0.947 
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_________________________________________________________________________________________________ 

Table 33:  
 
The difference in Speed Choice between Road Types (for each Condition) 

 

 

  

Environment Type Conditions F-Value Sig. ηp
2 M SE 

Urban Roads 1 Urban 1 Day 33.180 0.01 0.197 42.3 0.587 

 - Urban 2 Day - - - 44.9 0.525 

 2 Urban 1 Night 161.216 0.01 0.544 38.6 0.666 

 - Urban 2 Night - - - 44.8 0.566 

Rural Roads 1 Rural 1 Dry 93.778 0.01 0.409 86.5 1.108 

 - Rural 2 Dry - - - 94.6 0.826 

 2 Rural 1 Wet 239.75 0.01 0.639 70.6 1.064 

 - Rural 2 Wet - - - 80.9 0.947 
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Comparing Speed between Novice and Experienced Drivers 

Consistent with the approach used in Experiment 1, the speed choices were first 

examined between the two age/experience groups. As there was a substantial 

difference in age between driver groups, this served as a useful distinction between 

the amount of driving experience of ‘novice and ‘experienced’ drivers before 

examining drivers age and experience in more detail. The speed choices of both 

groups are shown in Figure 81: 

 

Figure 81: The Mean Overall Speed Choice for both Urban and Rural Road Scenarios, by Driver 
Group. The graph legend displays the road condition for both road scenarios. Speed Limit 

indicated by the dotted line. Error bars represent 95% Confidence Intervals (CI). Significance 
values are indicated, p< 0.05 *, and p< 0.01 **  

Visual inspection of Figure 81 indicates that there are differences between road 

conditions for both driver groups, with drivers selecting slower speeds under the 

night condition compared to the day on urban roads, and wet compared to dry 

condition on rural roads. There also appear to be differences between driver groups 

in the speed choice for the urban night, and both the rural road conditions. What is 

noteworthy is that the experienced driver group tends to select faster speeds 

compared to novice drivers, in contrast to the previous experiment (Exp. 1).  
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A two-way mixed repeat-measures ANOVA was performed for both Urban and Rural 

Road Environments, 2(Driver group) X 2(Gender) X 2(Condition) showed that there 

was a significant effect between the speed choices for driver age groups, Wilks Λ= 

0.856, F(6, 128)= 2.077, p< 0.05, ηp2= 0.144, though no significant effect between gender, 

Wilks Λ= 0.916, F(6, 128)= 1.124, p= 0.350, ηp2= 0.084.  There was no interaction 

between age and gender, Wilks Λ= 0.919, F(6, 128)= 1.078, p= 0.384, ηp2= 0.081. 

Between-subject effects revealed significant differences between the speed choices of 

novice (M= 40km/h, SD= 6.15) and experienced drivers (M= 43km/h, SD= 5.18) for 

the urban night road condition, F(1,134)= 5.032, p< 0.05, ηp
2= 0.037, and rural dry road 

condition, F(1,134)= 4.646, p< 0.05, ηp2= 0.034, with, experienced drivers selected 

slightly faster (M= 93km/h, SD=8.2) speeds than novice drivers (M= 89km/h, SD= 

11.1). Planned within-subject contrasts revealed a significant difference between day 

and night condition for novice drivers, t(68)= 4.515, p< 0.01, and for dry and wet 

conditions, t(68)= 16.502, p< .01. Planned contrasts revealed significant differences 

between night and day speed choices for experienced drivers, t(48)= 2.915, p< 0.01, 

and wet and dry rural conditions, t(48)= 13.889, p< 0.01. 
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 The mean speeds for each of the five driver groups were calculated and is shown in Table 34: 

Table 34:  
 
The Speed Choices for each Urban Road Condition and Type for the Five Driver Age/Experience Groups. 

 

 

 

   Driver Group 

Environment Road Type Condition Novice 

Learner 

Novice 

Restricted 

Novice Full Full  <25 Full >50 

Urban Roads 1 Urban 1 Day 40.1 (8.17) 43.6 (4.72) 41.5 (8.99) 42.4 (5.59) 44.4 (4.75) 

 - Urban 1 Night 35.4 (7.37) 38.3 (7.41) 38.4 (8.87) 40.4 (6.31) 41.4 (7.64) 

 2 Urban 2 Day 43.5 (7.69) 44.1 (4.87) 45.1 (7.12) 46.1 (5.47) 46.1 (4.56) 

 - Urban 2 Night 43.5 (7.63) 43.7 (5.96) 45.5 (8.25) 45.5 (5.05) 46.3 (5.04) 

Average 1&2 Urban Day 41.8 (7.47) 43.8 (4.01) 43.3 (7.38) 44.24 (5.16) 45.2  (4.32) 

 - Urban Night 39.5 (6.95) 40.9 (5.93) 41.9 (8.16) 42.9 (4.78) 43.8 (6.06) 



344 

 

 

 

Table 35: 
 
The Speed Choices for each Rural Road Condition and Type for the Five Driver Age/Experience Groups. 

   Driver Group 

Environment Road Type Condition Novice 

Learner 

Novice 

Restricted 

Novice Full Full  <25 Full >50 

Rural Roads 1 Rural 1 Dry 76.5 (14.68) 87.5 (13.03) 88.9 (9.86) 93.2 (9.27) 87.6 (11.28) 

 - Rural 1 Wet 63.4 (13.99) 71.7 (11.48) 71.7 (10.28) 75.7 (10.58) 71.6 (12.91) 

 2 Rural 2 Dry 88.3 (12.72) 96.7 (9.59) 96.9 (6.98) 97.6 (5.48) 93.9 (8.79) 

 - Rural 2 Wet 75.5 (13.38) 81.7 (11.07) 83.7 (7.98) 84.8 (9.33) 79.4 (10.98) 

Average 1&2 Rural Dry 82.4 (12.17) 92.1 (10.25) 92.9 (7.67) 95.4 (6.66) 90.7 (9.13) 

 - Rural Wet 69.4 (12.77) 76.7 (10.64) 77.7 (8.39) 80.3 (9.36) 75.5 (11.61) 
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Figure 82: Comparison between different camera vehicle speed conditions for both Urban and Rural road environments  for each of the driver groups, shown 
in relation to the different vehicle speeds. The top frames show day and night speed choices on Urban Roads, and the bottom frames show dry and wet speed 

choices for Rural Roads
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The differences between speed choices made by the five driver groups can be seen in 

Figure 82. From initial inspection, speed preferences are consistent across the three 

different camera vehicle speeds for each road environment – suggesting that the 

speed at which the camera vehicle was travelling had little influence on the speed at 

which drivers preferred for either environment. Generally speaking, drivers were 

more conservative in the speed preference in either night and wet conditions 

compared to day and dry conditions, with the latter being the more favourable 

condition for higher speeds. 
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Appendix 4: Validating Experiment 2 Hazard Perception Times using 

the eDrive™ Data Set 

One crucial question that remains is whether there is ecological or external validity 

regarding hazard perception times in this experiment. Other research into hazard 

perception often presented perception times within 1-2 seconds (e.g., Crundall et al., 

2012) with few studies presenting hazard perception times greater than 4 seconds. 

Across all eight hazard perception trials, the average hazard perception time within 

this thesis sample (N = 19) was 3.12 seconds (SD = .499) with a range of between Min 

= 2.13 and Max = 4.07. In order to validate the hazard perception times within this 

study, there is a considerable set of external data available from the eDrives program 

(Isler & Cockerton, 2003; Isler & Isler, 2011), which has used the same video clips as 

this study.  

It is, therefore, possible to compare the pre-training hazard perception times from the 

eDrive sample (n = 6800) to determine whether the response times in this research 

have similar statistical properties. An analysis was conducted to determine whether 

the distribution and mean hazard perception times and the number of hazards 

perceived were similar to those found in this experiment. Firstly, the eDrive data was 

mapped to correspond to each immediate hazard (40 hazards across eight video 

scenarios), and the descriptive statistics were calculated, and this is shown in Figure 

83.  

 

Figure 83: The distribution of Hazard Perception times for both the Hazard Perception tasks used 
in this thesis and those taken from the eDrive™ driver education program from 2016 data 
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For the current experiment, the mean hazard perception time was 3.06 seconds (SD 

= 1.07), and the external data from eDrives the mean hazard perception time was 3.47 

seconds (SD = 1.47). Given that the internal and external mean hazard perception 

times are similar and have similar distributions, there is reasonable confidence that 

the hazard perception times for this experiment are reflective of those of the general 

population, and that the way hazard windows are measured is the reason for the 

enlarged hazard perception times in relation to other research. 
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Appendix 5: Difference between Driver Experience Groups 

(Discounting Age) 

As there were a number of learner and restricted-licence drivers who were over the 

age of 25 years, groups were created based on how much driving experience and the 

licence type held. Inexperienced drivers were those drivers who held a learner or 

restricted licence. Experienced drivers were those drivers who held a Full licence and 

had been driving for at least 2 years. 

If  several reasonable assumptions are made regarding group allocation: (a) that a 

driver who has 6-9 months of total driving experience is essentially a learner even if 

they had just recently received their Restricted licence in the past (which was 

inconsistent reporting unless they had just received their license before the law 

change); and (b) that drivers over 25 who have been driving 5 years or over, egardless 

of license, are equivalent to Full licence, then the between-group difference becomes 

significant, with the main effect F(3,85)= 5.745, p< 0.05, ηp2= 0.174.  

 

The finding would seem to contradict the 2nd experiment, which showed that Novice 

Learner drivers were the slowest group, not that fastest. However, in Experiment 2, 

the Novice Learner (NL) group were recruited from Highschool students, with an 

average age of 16.5 years (SD= 2.09) with an average of 6 months driving experience. 

In Experiment 3, we used convenience sampling from University students, which 

means that these ‘novice learner’ drivers in Experiment 3 have an average age of 19.7 

years (SD= 1.78) with an average driving experience of 2.5 years (SD= 1.65), four 

times the reported near-misses, and twice the distance driven per week compared to 

Exp. 2.  

 

Using data from Exp. 3, drivers’ speed choices were plotted in relation to hazard 

perception times in a scatterplot, and this is shown in Figure 84: 
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Figure 84: The relationship between Hazard Perception Time and Mean Speed Choice. The 
hollow circle represents the inexperienced driver group, and the solid circle (grey in box plot) 
represents the experienced driver group. The continuous line represents the linear regression 

line, and the dotted line represents 95% CI. Box-plots are also included to show the distribution 
of Hazard perception time (vertical axis) and Speed Choice (horizontal axis). 

 

Figure 84 shows that Learner and Restricted licence drivers had longer hazard 

perception times, and generally chose faster speeds than the older and more 

experienced driver groups. Furthermore, when analysis was conducted based upon 

driver age and experience based on several assumptions, there were differences in 

age and experience groups for Number of Hazards Perceived, F(3,82)= 10.371, p< 0.01, 

ηp2= 0.275.,  and Hazard Perception times, F(3,82)= 7.494, p< 0.01, ηp2= 0.215. 
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Figure 85: The Speed Choices (km/h) made by the four-driver age/experience groups in 
Experiment 3 

 

A one-way ANOVA was conducted to examine the differences observed in the speed 

choices between driver groups. Significant main effects were observed between 

driver groups for the speed choice F(3,82)= 3.957, p< 0.01, ηp2= 0.174. Bonferroni 

corrected post-hoc pairwise differences between driver groups are presented in 

Table 35 (Speed Choice), Table 36 (Number of Perceived Hazards), and Table 37 

(Hazard Perception time): 
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Table 36:  
 
Pairwise comparisons in Speed Choice by Driver Age/Experience Group 
 

 

 

Table 37:  
 
Pairwise comparisons in Number of Hazards Perceived by Driver Age/Experience Group 
 

 

Table 38:  
 
Pairwise comparisons in Hazard Perception Time by Driver Age/Experience Group 

   Driver Groups 

Group n Mean SD Novice Learner Novice Restricted Novice Full 

Novice Learner 16 32.44 6.455 -   

Novice Restricted 20 26.39 6.920 0.10 -  

Novice Full 13 24.54 8.346 0.05* 0.95 - 

Experienced Full 37 25.55 5.128 0.01** 0.91 0.99 

     Driver Groups 

Group  n Mean SD NL NR NF 

Novice Learner NL 16 28.75 6.728 -   

Novice Restricted NF  20 25.95 4.729 0.32 -  

Novice Full NF  13 32.38 4.113 0.19 0.01** - 

Experienced Full MF  37 32.94 4.142 0.05* 0.01** 0.98 

     Driver Groups 

Group  n Mean SD NL NR NF 

Novice Learner NL 16 28.75 6.728 -   

Novice Restricted NF  20 25.95 4.729 0.64 -  

Novice Full NF  13 32.38 4.113 0.05* 0.05* - 

Experienced Full MF  37 32.94 4.142 0.01** 0.05* 0.95 
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Appendix 6: Young Driver Statistics 

Research has shown that crash rates of the 15 ½ years old drivers are particularly 

high during the first month of restricted licensure, with about 8 times the risk of the 

supervised period and decline rapidly by about 50 % over the next 6 months (De 

Craen et al., 2007; Lewis-Evans & Lukkien, 2007). A newly qualified driver is 

significantly more at risk in a road traffic accident than the same driver ten years later 

(Underwood, 2007). Despite these objective data, New Zealand is the only jurisdiction 

in the OECD apart from the United States of America, that allow teenagers currently 

to get a restricted driver’s license at 15 ½ years of age.  

According to the literature concerning young driver behaviour and accident 

involvement, there are several approaches to understanding the young driver 

problem. One way is to analyze accidents and accidents distributions through in-

depth accident investigations or comprehensive statistical analysis. Another 

approach is to analyze the psychological, social and educational processes which are 

related to or attributed to the development of a driver. Analysis of accident statistics 

has given some evidence that several and context- and individual-related factors may 

contribute to the high crash risk of young drivers. From the context-related 

perspective, relevant risk factors include night-time driving (Williams, 2006), low 

compliance with seat-belt laws (Williams, 2006), speeding (McKnight & McKnight, 

2000) and distraction by frequent cell-phone use (Charlton, 2009; Foss et al., 2009) 

amongst others. Engström et al. (2003) mentioned single, loss-of-control and left-turn 

accidents where young drivers are over-represented, but also overtaking and 

negotiating bends can be found in literature as typical accident reasons for this group 

of drivers (RoSPA, 2002).  

Other reasons for the high accident involvement are alcohol, sleepiness, non-usage of 

seat belts and badly adapted speed (as already mentioned above) (Engström et al., 

2003). 

As mentioned earlier, young novice drivers are worldwide at high risk of death or 

injury. Teen drivers (16-19 years old) have crash rates that exceed those of drivers of 

any other age group, with 16-years olds having the highest crash rates of all (Mayhew 

et al., 2003). In 2007, of the thirty countries that contributed to the OECD traffic crash 

database, New Zealand had the second-highest population-based crash fatality rate 

for the 15 – to 24-year old age group (OECD, 2006) . The Ministry of Transport 

provided recent statistics regarding young driver crashes. In 2008 young drivers 
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(those aged 15-24) were involved in 124 fatal traffic crashes, 787 serious injury 

crashes and 3,800 minor injury crashes. Of these crashes, the 15 to 24-year-old 

drivers were at fault in 106 of the fatal crashes, 632 of the serious injury crashes and 

2,915 of the minor injury crashes, resulting in 122 deaths, 808 serious injuries and 

4,262 minor injuries.  

 

Figure 86: Ministry of Transport statistics of crash injuries and deaths by age group (Ministry of 
Transport, 2011) 

  

The total social cost of the crashes in which 15 to 24-year-old drivers were at fault 

has been calculated at $1.1 billion, which equates to almost one-third of the social cost 

associated with all injury crashes. Male drivers in the 15 to 19-year-old age group are 

approximately eleven-and-a-half times more likely to crash (per 100 million 

kilometres driven) than male drivers in the lowest risk age group of 55 to 59 years. 

Female drivers aged 15 to 19 have a lower crash risk than males of the same age but 

are still nearly eight times more likely to crash (per 100 million kilometres driven) 

than female drivers in the lowest risk group of 55 to 59 years. Male and female drivers 

in the 20 to 24-year-old age group are approximately three to five times more likely 

to crash than the lowest risk of 55 to 59-year-old drivers of the same gender. 

Recent figures show that 15 to 19-year-old drivers make up just seven percent of all 

licensed car drivers. Between 2006 and 2008, 15 to 19-year-old drivers accounted for 

15 percent of all drivers involved in minor injury crashes, 16 percent of those in 

serious injury crashes, and 13 percent of drivers involved in fatal crashes. Similarly, 
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20 to 24-year-old drivers make up approximately nine percent of licensed car drivers 

but, between 2006 and 2008, they accounted for 14 percent of drivers involved in 

minor injury crashes, 15 percent of those in serious injury crashes, and 13 percent of 

drivers involved in fatal crashes. Of all young drivers (15 to 24 years old) involved in 

fatal crashes between 2006 and 2008, 73 percent were male. Males accounted for 71 

percent of young drivers involved in serious injury crashes, and 64 percent of those 

involved in minor injury crashes over the same period. Alcohol, drugs, and speed are 

the major contributing factors for young drivers involved in fatal crashes.  

Young drivers are more than two and half times as likely to have speed as a factor 

than drivers over the age of 25. Crashes that involve drivers losing control of their 

vehicles are a major feature in crashes involving young drivers. Thirty-nine percent 

of 15 to 24-year-old drivers involved in fatal crashes were in single-vehicle loss-of-

control or run-off-road crashes, compared to twenty-one percent for older drivers. In 

addition, many head-on crashes also involve drivers losing control of their vehicles 

(Ministry of Transport, 2009).
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Appendix 7: Does Knowing vs Estimating the Speed of the Vehicle 

influence Speed Choices?  

One intriguing question that has been raised is whether knowledge of vehicle speed 

plays a role in the speeds drivers choose to travel. For instance, the implementation 

of speed indicating devices along the roadside has been somewhat effective in altering 

drivers speed choice temporarily, and it is also worth noting that knowledge of vehicle 

speed means a driver has a good concept of the how fast the vehicle is travelling which 

may influence their comfort and consequently cause them to reduce speed.  

Cantwell et al. (2012) considered how estimated speed might relate to speed choice 

in a video-based task. These researchers suggested there could potentially be an 

unknown influence caused by drivers adjusting their ideal speed to compensate for 

an overestimation of the vehicle speed. Horswill and McKenna (1999) note that visual 

(e.g., ‘speed adaptation effect’ Denton, 1976) and audio cues can significantly 

influence the accuracy of speed perception, and potentially subsequent subjective 

feeling of risk. This question needs to be addressed in developing an ecologically valid 

laboratory-based instrument. 

While this is a somewhat naïve approach to understanding the dynamic factors 

involved in speed choice, the general rule of drivers tending towards the 85 percentile 

as the safest general vehicle speed might play an important role. Another possibility 

is that drivers rarely inspect their speedometers while driving, and so knowing the 

actual vehicle speed without having to divert their eyes from the road could be helpful 

– and support the idea of augmented windshields that display the drivers' speed 

without them having to divert their attention from the road. 

 

Does knowing vs estimating the current speed of the vehicle influence the speed choice?  

The perception of speed may influence speed choice, though it is also possible that 

judgements, mainly rule-governed judgements, are made independent of perceived 

speed. In the context of the present experiment, the author has found that this vital 

question does not appear to have been answered in the road safety literature but 

emerges from previous research using video-based speed tasks. Nevertheless, drivers 

perception of vehicle speed has been well explored (Elliott et al., 2003), and there is 

some indication that the differences between perceived and ideal speed may 
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influence drivers subsequent speed selection (Goldenbeld and Van Schagen, 2007), 

though no concrete hypothesis can be drawn at this stage. 

 

The effects of Vehicle Speed Awareness on Speed Choice 

One of the questions raised in previous research was whether awareness of camera 

vehicle speed affected participants’ speed choice. The experiment was designed so 

that one group of participants would be aware of the camera vehicle speed - as 

indicated on the speedometer - when making their speed choice. The other group 

would be unaware of the speed, and would be required to estimate the vehicle speed 

before making their speed choice. 

The group estimating speed had 22 participants, while the group that was aware of 

the vehicle speed had 20 participants. Groups were gender-balanced, with the age of 

both groups approximately equal (Unaware: Age = 29.32, SD= 1.818; Aware: Age = 

28.50, SD= 1.528). Self-rated skill did not significantly differ between these groups.   

Figure 88 shows the speed choices of both awareness groups:  

 

Figure 87: The mean speed choice for both Urban and Rural Road scenarios (when combined), 
grouped according to speed-knowledge groups. The graph legend displays the road condition for 

both road scenarios. Speed Limit indicated by the dotted line. Error bars represent a 95% CI. 
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Visual inspection of the figure revealed that there appeared to be little difference is 

speed choices made by those participants who were aware of the vehicle speed 

compared to those who were unaware. This finding was confirmed using inferential 

statistics, with no significant effect being found for either urban or rural condition. 

Further analysis did not reveal any significant gender or driver group effect. 

A 2(Age Group) x 2(Awareness group) ANOVA did not determine a significant effect 

in speed choices. Both awareness groups made similar speed choices across the roads 

and conditions between groups, irrespective of whether participants were aware of 

the vehicle speed, with both groups making similar speed choices across the roads 

and conditions. The results from the inferential analysis for knowledge of vehicle 

speed for each road type and condition are shown in Table 38: 

 

Table 39:  
 
The results from the inferential analysis for knowledge of vehicle speed. 

 

The inferential analyses comparing aware and unaware groups (Table 38) clearly 

show no difference in speed choices between road environment, types, or conditions. 

Additionally, among unaware participants, there was no significant difference in 

speed choice between driver age groups.  

     Estimates Aware 

Environment Road F-Value Sig. ηp
2 M SD M SD 

Urban Roads U1 Day 0.478 0.494 0.013 42.1 6.25 43.5 7.62 

 U1 Night 0.044 0.836 0.001 44.4 7.04 44.0 6.24 

 U2 Day 0.653 0.424 0.017 39.4 7.51 41.3 8.02 

 U2 Night 0.066 0.799 0.002 37.1 8.38 37.9 8.27 

Rural Roads R1 Dry 0.680 0.415 0.018 81.1 11.01 84.2 10.01 

 R1 Wet 0.556 0.461 0.015 64.8 9.39 72.0 10.72 

 R2 Dry 0.878 0.131 0.023 90.8 11.79 93.7 7.64 

 R2 Wet 2.385 0.131 0.062 76.6 12.33 81.9 9.17 
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Similar means and confidence intervals were found in estimates speeds and speed 

choices made by Experienced drivers on several road conditions. Overall35,  Novice 

drivers estimated the vehicle to be travelling 33.7 km/h (SD= 5.74) on urban roads 

and 63.2 km/h (SD= 8.92) on rural roads, whereas Experienced drivers estimated the 

vehicle to be going at a greater speed on both urban 39.8 km/h (SD= 2.60) and rural 

roads 74.9 km/h (SD= 10.98). The actual average vehicle speed on urban roads was 

30 km/h (the average of 10, 30, and 50), and on rural roads, the actual average vehicle 

speed was 66.6 km/h (the average of 30, 70, 100).  In this respect, younger drivers 

were more accurate in their speed estimations. 

Does knowing vs estimating the current speed of the vehicle influence the speed choice?  

In this study, drivers’ awareness of vehicle speed was compared to drivers who were 

unaware of vehicle speed. The awareness of vehicle speed was considered analogous 

to a drivers ability to check the speedometer before selecting an ideal speed to travel. 

The analysis clearly indicated that there was no significant difference in speed choice 

between drivers who were aware of the speed of the vehicle and drivers who were 

unaware and asked to estimate the vehicle’s speed.  

Furthermore, in this experiment, no perceptual effects were observed in relation to 

speed choice. This was unexpected, as Recarte and Nunes (1996) found that as vehicle 

speed increased, estimation error decreased. If drivers who were unaware were 

influenced by the lack of explicit knowledge of vehicle speed, some effect would likely 

be observed in error of estimation over the three filmed vehicle speeds for each road, 

however, no effect was observed in inferential testing.  

Previous research conducted by Briziarelli and Allan (1989) found that drivers 

preferred speed was unaffected by participants being able to view a heads-up display 

of the vehicle speed compared to a traditional speedometer. Recarte and Nunes (2000) 

analysed the effect of driver distraction of speed choice and found that as mental load 

increased there was a reduction in speedometer inspection. However, if the drivers 

were not under high-speed control demands, their speed remained unaltered despite 

lack of speedometer inspection. This suggests that drivers utilize perceptual cues to 

regulate their speed, and are not dependant on explicit awareness of vehicle speed. 

                                                           
35 As the type and condition means and confidence intervals were sufficiently similar, estimates averaged into a single 

measure road each driver group.  
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Primate brains are devoted to perceiving motion to the extent that almost half of the 

cortex and subcortical structures are devoted to the processing of visual information 

(Luria, 2012)36 . As driving is visually engaging, likely, the perception of speed is 

constantly being evaluated at a subconscious level. Hence, drivers are likely to be 

naturally estimating speeds when they are attending to the driving task, irrespective 

of frequent checking the speedometer. Therefore, it would appear that although 

drivers speed is influenced by cognitive load and various motivations (e.g., such as 

arriving on time), awareness of speed in the context of this experiment appears to 

have no effect. 

On the whole, drivers tended to overestimate vehicle speed, whereas other research 

indicates that drivers are more likely to underestimate vehicle speed (Beardsley et al., 

2011), albeit this is highly dependent on several aspects related to visual perception. 

For example, suppose drivers rely on fixed-point cues such as ‘cats-eyes’ (retro-

reflectors mounted at the centre-line of the road). In that case, this may in part explain 

why drivers over-estimate the ‘time to passage’ and correspondingly imply a faster 

vehicle speed from this (Kim et al., 2017; Regan, 2002). What was curious is that 

novice drivers estimated speeds slightly slower than older experienced drivers, who 

are inclined to overestimate the vehicle's speed, and this is worthy of further study 

using a larger sample.  

 

  

                                                           
36 Luria published ‘The Higher Cortical Functions in Man’ in 1962. The 2012 republishing pays homage to the original 

masterpiece whilst including revisions by Luria (1980) and into the later part of his research career. 
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Appendix 8: Initial analysis of Experiment 1 Data 

The repeated video scenarios showed that speed choice was highly consistent across 

trials (r= 0.892, p< 0.01), suggesting significant test-retest reliability as a measure of 

internal consistency. As there had been different vehicle speeds (e.g., 10, 30, and 

50km/h for Urban roads, and 30, 70, 100km/h for Rural Roads), two ANOVA were 

performed 2(Type) X 2(Condition) X 3(Camera Speeds) were conducted to determine 

whether camera vehicle speed influenced participants speed choice. No significant 

main effects were found in relation to camera vehicle speed, with the results for rural 

roads F(2,41)= 0.880, p= 0.416, ηp2 = 0.004, and for urban roads F(2,41)= 0.794, p= 0.453, 

ηp2 = 0.003  and there were no significant interactions when gender, age group, and 

between drivers who were required to estimate versus drivers who were made aware 

of the vehicle speed. This indicated that there was no significant difference between 

the speed choices related to vehicle speed, which meant that an overall mean could 

be calculated from each of the three vehicle speeds. 

The normality of all speed choice variables was assessed using Q-Q plots, histograms, 

and measures of skew and kurtosis. The distributions of participants speed choices 

for the Urban Day D(23) = 0.210, p< 0.01 and Rural Dry D(23) = 0.227, p< 0.05 

conditions were significantly non-normal. A Box-Cox transformation was performed 

to reduce skew, and given the sample size was small, between-group effects were 

analysed using the Kolmogorov-Smirnov Z test, though the Mann-Whitney U test was 

also utilized, to reduce the likelihood of committing a Type-I error. 

Outliers were defined as values that exceeded 1.5 times the interquartile range or are 

values outside two standard deviations from the mean. A single outlier that was 

evidence of unreasonable or erroneous behaviour (88 km/h) was excluded from the 

analysis of urban road data, where the speed limit is 50km/h. However, the outliers 

that range from 110 km/h to 60 km/h might represent normal behaviour on rural 

roads. An experienced driver chose the faster speed, and the four slower speeds 

belonged to novice drivers, who may be less confident and hence select slower speeds. 

After some consideration, these outliers were determined to be within the publicly 

accepted range of driving speeds for New Zealand motorists37, as determined by the 

                                                           
37 This does not imply that these selected speeds are safe. An NZTA commissioned report found that motorists do travel 

these speeds on public roadways, and that the range of speeds observed in this experiment encompasses those observed 
in public driving. These findings are consistent with the Automobile Association of New Zealand (AANZ) commissioned 
report by Starkey, Charlton, and Malhotra (2017), and AANZ survey results from 2005-2007 
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New Zealand Transport Agency (NZTA) report by Turner, Bosher, Logan, Khoo, and 

Trumper (2014). 
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Appendix 9: Eye-tracking Overview and Techniques 

Eye-tracking is a technique that measures changes in the relative position or 

movements of the eye(s) concerning stimuli presented in the visual field. Eye-trackers 

have been employed as research instruments across many disciplines for the last 

twenty years, and reduced costs and size have made eye-trackers a versatile and vital 

instrument for investigating human cognition and visual behaviour. In recent years, 

many researchers investigating the psychology of driving behaviour have employed 

eye-tracking techniques to identify how drivers interact with other road users and 

navigate roadside features.  

When studying the cognition of driving behaviour, eye tracking provides several 

useful insights into the hidden visual processes that are otherwise unobservable. In 

this thesis, eye-tracking technology will be utilised to explore how drivers view and 

use visual information related to the driving task, particularly the perception of 

hazards. 

Driving as a process can be considered a hierarchical process involving strategic, 

tactical, and operational levels (Dario D. Salvucci & Taatgen, 2011), so the perceptual, 

cognitive, and behavioural elements must be duly considered when undertaking a 

study of driving behaviour. Furthermore, driving involves navigating a complex and 

dynamic situation where rapid changes often occur. These changes place the demand 

on a driver to adjust their behaviour’ to control for factors leading to a potential 

collision, which might fit the looser definition of an immediate hazard.  

Within this loose definition, there is almost an endless number of on-road and off-

road features that might be or become hazards that drivers must navigate safely. 

Immediate hazards are those things that demand an immediate response from 

drivers, whereas latent or potential hazards are those things that, while not being 

immediately hazardous, might become hazards as a potential series of possible events 

unfolds. For instance, a car braking immediately ahead presents as an immediate 

hazard, and pressure must be applied to the brakes to prevent a collision. Likewise, a 

child playing with a ball on the side of the road is a potential hazard that could quickly 

become an immediate hazard if that child should run out into traffic. 
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The following section will discuss the measures of visual behaviour used throughout 

this thesis; they are: 

1. Number of fixations 

2. Fixation location 

3. Fixation duration 

4. Saccadic amplitude (distance) 

5. Number of saccades 

6. Blink events 

7. Pupil dilation 

 

Corneal Reflection (CR) and Pupillary (PR) Eye-tracking 

The cornea is a transparent protective protrusion of the eye, through which light 

flows into the eye, separating the external environment from the vitreous fluid of the 

eye's interior. Eye-tracking takes advantage of the entoptic reflection of infrared (IR) 

light off the cornea to determine where the eye is fixated. This method is known as 

corneal-reflection (CR), and is the preferred method of measurement, as it remains 

remarkably consistent over time, allowing the position of the eye to be accurately 

measured to a high degree of spatial and temporal acuity. In this thesis, the CR method 

is the primary means of collecting eye-movement data. 

Pupillary Reflection (PR) like the CR methods, pupillary methods rely on the distance 

between reflected IR light and the centre of the pupil to determine where the eye is 

looking. While this method is preferable in some situations (e.g., when corrective 

lenses are worn), it is less accurate a method. In this thesis, PR methods were used 

when the conditions for CR methods are not suitable. 

 

EyeLink™ 1000 (desk mounted) and EyeLink II (head mounted) 

 

Two eye-trackers were utilised in this thesis, measuring such factors as the spread 

and number of fixations and the amplitude and pattern of saccadic movements. These 

measures can be used to infer what drivers are using to create a mental 

representation of the road environment. 
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The primary eye-tracker used in this thesis is the EyeLink II, a head mounted 

binocular eye-tracker, which allows the participant freedom of head movement while 

still recording eye movements with a high degree of accuracy. As it is head-mounted, 

participants have a greater degree of freedom to move; however, they were instructed 

to remain as still as possible throughout the experiments after being comfortably 

seated and the validation and calibration procedure is complete. The EyeLink II 

experiments were conducted using a Samsung high-resolution 48” display, with a Dell 

Optiplex 780 to record the eye-movement data, and a Dell Minitower (Intel i5, 2.8GHz, 

4Gb RAM,  4Gb Graphics Card) running Windows 8-10. 

Fixed eye-tracking equipment requires a participant to keep their head in a stationary 

position, often using a chin and forehead rest that keeps the participants’ eyes in a 

single position relative to the eye-tracker; this kind of eye-tracker affords 

exceptionally high degrees of spatial accuracy. The EyeLink 1000 is a desk mounted 

monocular eye-tracker which records at a very high temporal resolution and is used 

in conjunction with a chin-rest and consistent screen and computer setup. 

Experiments using the EyeLink 1000 were developed using the Experimental Builder 

(V1.4) from SR Research Ltd. and run using two Dell OptiPlex 760 Minitower desktop 

computers (3GHz processor, 4GB RAM) running Microsoft Windows 7. One computer 

deploys the experiment, and the other computer processes the eye-tracker 

information. The computer deploying the videos is equipped with a 2GB graphics card, 

and videos were shown using a ViewPIXX 22 inch LCD monitor with a resolution of 

1920 x 1200 pixels.  

Eye movements were recorded using the participant's dominant eye at a sampling 

rate of 500Hz for the EyeLink-II and 1000Hz for the EyeLink 1000. As the eye-scanner 

was fixed, this required participants to use a chin and forehead rest to maintain a 

constant position and distance relative to the eye-tracker lens(es). In order to ensure 

that the eye movements recorded were accurate, the eye-tracker was calibrated 

before each experiment. Calibration removes any potential setup effects and 

standardizes the experiment by correcting for differences that occur between 

participants.  
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Eye-tracking Calibration and Validation 

In order to ensure that data collected by eye-tracker equipment is accurate, it must 

be calibrated for each participant. This procedure applies and is identical for both the 

EyeLink II and the EyeLink 1000 used in this thesis. For calibration, a matrix of 12-

dots appeared one at a time at points about the screen (to map the edges and centre 

of the screen. Participants were instructed to focus on each point as they appeared. 

This procedure was conducted twice to enable validation to be conducted before the 

start of each experiment. Using a 9 point calibration grid with an error threshold of +-

2 degrees was the threshold for proceeding with the experiment. The initial 

calibration procedure took approximately 20 seconds and was followed by validation, 

which followed the same sequential target dot display.  

Where possible during the experiment, drift correction was conducted between each 

trial. Drift correction involved the appearance of a single dot located in the centre of 

the screen, which participants focused. The eye-tracker was able to use any variation 

to recalibrate if any drift was perceived. If the participant’s head position shifted 

during the experiment, or participants altered position noticeably between trials 

during an experiment, a calibration and validation procedure was conducted to 

correct for any potential error. 

 

Real-time superimposition of Eye-movement over task 

Initial pilot research was conducted to determine the best calibration settings for the 

head-mounted eye-tracker to ensure the fidelity of recorded visual information. 

During this process, the initial results showed there was the potential for 

miscalibration to occur at either that initial setup or ‘drift’ in eye movements to 

progress through the experiment, especially throughout all trials. While post-hoc drift 

correction is a useful means of correcting minor measurement errors, it is limited in 

compensating for larger measurement error, which was observed with a head-

mounted eye-tracker. 

We determined that it would be beneficial to the experimental process and future 

experiments for the experimenter to observe in real-time the eye-movement 

behaviour of participants during the experiment. This would allow for correction to 

be performed between trials (i.e., re-calibration or drift-correction) and give the 
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experimenter a unique view into how participants viewed the road and traffic 

situation and what details attracted participants attention.  

The software was developed, which would accomplish this role by superimposing 

participants' eye movements over the video clips as they played and allowed for this 

real-time data to be recorded for later inspection. The eye-movement overlay was 

shown ‘live’ on a separate display visible to the experimenter but not to the 

participants. This was rendered on a Dell Minitower (Intel Core i5, 2GHz, 4GB RAM) 

running Microsoft Windows 8.1. 

 

Measuring Saccades and Fixations 

An essential measure of eye movements is the saccade. Saccades can be defined 

simply as rapid eye movement with direction and acceleration, typically varying in 

duration from 10ms to 100ms (Duchowski, 2003). The perceptual system uses 

saccades to direct the eye from one point of interest to another. Eye movement is 

controlled by the planned output of the frontal eye field located adjacent to the 

dorsolateral prefrontal cortex (DLPFC); however, it can also be triggered by the 

posterior eye field located in the visual cortex. The saccadic movement of the eye is 

characterised as ballistic, in the sense that once it is initiated, it cannot be altered. This 

ballistic motion is probably due to the rapid movements not providing enough 

feedback to the visual system to alter the saccade after it has started (Duchowski, 

2003). During a saccade, the perceptual input from the scene is also possibly 

decreased. This phenomenon, which is due to blurring that occurs during saccadic 

movement, is called saccadic suppression (Rayner, 1998). Whether the perceived 

stimuli remain in visual memory or is completely unprocessed is not clear. 

Interestingly, Duchowski (2003) proposed that during saccadic suppression, the 

perceptual system might become blind. The momentary state of blindness seems to 

have been supported by complementary studies in monkey and human subjects that 

have used neural imaging and interpretation of related processing regions within the 

visual system (Pierrot-Deseilligny, Milea, & Muri, 2004).  
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Figure 88: Fixations are shown (top) as circles, the diameter of which represents their duration. 
Saccadic eye movements are shown (bottom) in orange, indicative of both the rapidly ‘jumps’ 

between fixations as well as the scan-path strategy used. 

 

A fixation occurs when eye gaze is directed and is usually representative of 

processing. Fixation durations vary and are task-dependent. For example, the mean 

fixation duration on a reading task is 225ms while for scene perception, it is 330ms 

(Rayner, 1998). Duchowski (2003) has stated that during fixation, the eye is not 

entirely still but, as tremor drifts and micro-saccades occur. There is no an agreed 

minimum or maximum fixation duration throughout the literature, but Duchowski 

has claimed that fixation duration varies from 150ms to 600ms, although there are 

cases of fixations as short as 50ms appearing during reading (Rayner, 1998). During 

visual inspection, the eye’s are fixated approximately 90% of the time. In this 

research, the default SR Research DataViewer settings were used to calculate fixations 

and filter out micro-saccadic and tremor noise. When alternative tools were used for 

analysis 38 , the interval between saccades was determined to be a fixation. The 

distinguishing feature of a saccade from the background eye-movement noise was 

when the movement velocity exceeds the default threshold of 22 degrees per second 

(SR Research, 2014).   

Fixation duration of 200ms is typical for perceiving hazard-related stimuli within a 

driving-related context (Velichkovsky et al., 2002; Pollatsek & Rayner, 1982). Fixation 

durations are highly task-related; their relative durations are influenced by the 

content and context of the information that a person is attempting to extract and 

process from the environment before a subsequent saccadic movement is triggered. 

As driving involves both salient components and knowledge (top-down) components, 

it is essential to consider that fixation duration may be strongly dependant on the type 

                                                           
38 The Python script that was used to generate fixation distributions using Kernal Density Estimation (KDE) relying on the 

fixation coordinates, with each coordinate corresponding to a fixed duration (250-500Hz), so the distributions are 
proportunate to both the length of the trial and the dwell time.  
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of information needed from the traffic environment. Longer durations approaching 

600ms may be required to process complex traffic scenarios, whereas shorter 

fixations are more likely to relate to pre-attentive scanning for potential changes in 

the traffic situation that are controlled by a different schema. Kastner et al. (2009) 

provide a comprehensive overview of the cognitive neuroscience of selective visual 

attention, which I would recommend to the reader. 

Fixations provide a means of determining where a driver has gained visual 

information about the road or internal vehicle instruments. The duration of these 

fixations is an essential measure of both the total time spent assessing the importance 

of features in the visual field to the driving task and the efficiency of a person's visual 

search strategies (Vlakveld, 2011). These measures can be used to differentiate 

between novice and experienced drivers effectively39as it is generally assumed that 

novice drivers require more sustained fixation time than experienced drivers to 

extract relevant driving-related information from the environment. Research also 

suggests that experienced drivers will make more saccadic movements across a 

broader area of the visual field and that the time between their saccades will be 

shorter, as they are more pre-attentive unless otherwise controlled by top-down 

knowledge governed schema.  

While visually salient events cause most fixations, some cognitively salient processes 

such as knowledge governed processes are expected. These are likely to be closely 

related to hazard perception and situation awareness. Interpreting the difference 

between salience-driven eye movements and cognitively salient top-down eye 

movements is a complex task beyond this thesis's scope. It is anticipated that 

cognitively salient fixations of longer duration likely had a direct relationship with 

driving behaviour and that longer fixations on visually salient features were expected 

in novice drivers eye movements. 

In this research, fixations that were shorter than an interval of 80ms were excluded, 

as these often preceded multiple short saccades and were considered corrective eye 

movements that were not related to the acquisition of visual information (Duchowski, 

2004). Fixations with a greater duration than 140ms were considered to relate to 

sustained focal processing, potentially indicating where drivers’ visual attention was 

orientated. This criterion was used to distinguish cognitive-process related fixations 

                                                           
39 Konstantopolis (2011) focused his thesis on the effeciancy of visual search and the importance of driver education and 

the development of training interventions. 
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from non-cognitive fixations (e.g., Crundall & Underwood, 1998). Additionally, to 

prevent blinks from interfering with data collection, fixations following blinks were 

removed to ensure reduced artefacts in the data.  

 

Pupil Dilation as a Measure of Cognitive Workload 

Another measure of visual attentiveness that researchers have used is pupil 

responsiveness. The pupillary response is an automatic process that regulates the 

amount of light entering the eye and reaching the retina (Beatty and Locero-Wagoner, 

2000). Measuring the diameter of the pupil can indicate the amount of mental 

workload that is being undertaken (Beatty, 1982; Kramer, 1991). As a measure of 

underlying cognitive workload, it is expected that novice drivers will have a greater 

pupillary response to hazards than experienced drivers. The higher pupillary 

response was anticipated for novice drivers, as experienced drivers have a top-down 

cognitive process that activates schema associated with situation awareness and 

hazard responses. These schemas are underdeveloped or non-existent for novice 

drivers, and they do not have the same neural pathway and physiological response as 

the visually salient pathway that is more likely to be triggered in novice drivers who 

encounter complex and changing traffic situations. 

Pupil dilation has also been used in commentary training, as it provides a useful 

insight into the extent of mental resources consumed by a secondary commentary 

task. Because commentary is a mentally demanding process that is secondary (albeit 

attendant) to the demands of driving, measuring pupil dilation has been used to 

provide a measure of ‘first perception’ of hazards, much like the traditional measures 

of physiological arousal, such as galvanic skin response (Marshall, 2007; Cai and 

Wang, 2006; Bailey and Iqbal, 2008). Pupil dilation is higher for participants 

conducting online commentary (i.e., commentary actively being conducted during a 

task) than for those participants who are not required to produce commentary or 

participants who have received commentary training but are performing offline post-

commentary training testing.  

Although pupil dilation may influence the calibration of some eye-trackers (Wang, 

2009), it provides a useful indication of mental workload and physiological arousal 

(particularly when encountering demanding or unexpected hazardous traffic 

scenarios) and which has been used in several different studies related to task-

demand and driver workload. 
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Blinks as a measure of Cognitive Workload 

Blinks are also a useful measure of task-demand; however, several other eye-tracking 

measures can also be used to indicate mental workload (for instance, Ahlstrom and 

Friedman-Berg, 2005). As Wang (2009) suggests, blink rate and blink duration and 

saccadic duration may provide useful insight into the cognitive load during particular 

tasks. 

 

Caution when using Eye-tracking to Provide Task Validity 

Caution is always warranted in relying on visual information collected using video-

based simulations compared to real-world behaviour, as there naturally are 

differences between the engagement of simulators compared to real-world driving 

(Mackenzie & Harris, 2015; Steinman, 2003). For example, Martens and Fox (2007) 

conducted a study to compare the fixation times of participants exposed to video 

footage against participants in real-world driving over the course of repeated trials. 

They found that initial fixation times did not significantly differ between driver 

groups, with fixation time and behaviour being similar on the first trial. However, as 

participants became more familiar with the route over time, the fixation times 

diverged, with fixation times decreasing for real-world drivers compared to the 

fixation duration of participants observing video. They suggested that the resolution 

of video footage may restrict participants ability to detect certain aspects, or that real-

world driving is more dynamic and hence there is a greater need to focus on multiple 

visual elements.  

In this experiment, repeated exposure to the same roads did not result in variation in 

fixation duration, although fixation behaviour did differ as anticipated between 

novice and experienced driver groups as expected. We, therefore, conclude that any 

video-based influence on visual search, while a constraint of laboratory tasks, is an 

ecologically valid representation with good ‘physical correspondence’ (Blaauw, 1982) 

to real-world behaviour, even though there may be small variations between the 

laboratory task and real-world driving (Santos et al., 2005).  
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Appendix 10: Laboratory-Based Measures 

While traffic statistics and crash reports provide useful information about drivers' 

speed choice, it is not possible to control for the many variables that often lead to a 

crash. One method which has been used is naturalistic studies, where instruments are 

installed in participants vehicles,   and their behaviour is monitored over some time. 

The most well-known example of this is the 100 car naturalistic study (Dingus et al., 

2006), where drivers behaviour was examined for a year using in-vehicle telemetry 

and dashboard cameras.  

 

The Frontal Lobe Study as an Example of Observational Methods 

Another method of naturalistic study is having participants drive in a vehicle that has 

been fitted with instrumentation, often requesting participants to navigate either a 

pre-arranged route on public roadways or a race-track (Eby, 2011). For example, Isler, 

Starkey, Sheppard, et al. (2008) studied 38 young novice drivers who participated in 

a two-week ‘Driver Training Research’ camp based in Taupo, New Zealand. In order 

to examine drivers behaviour, their project utilised psychometric measurements of 

attitudes and beliefs, measures of cognitive function, and observation of driving 

behaviour on a nearby racing-track. The results of the study found that before training, 

attitudes towards speed were directed toward greater risk,  and self-rated confidence 

was also high. Observational assessment on track involved coding drivers behaviour, 

as well as drivers self-generated verbal report related to the driving task, such as the 

identification of hazards.  

Drivers were randomly allocated to three training groups, which involved differing 

techniques of training, ranging from a ‘higher-order’ coached commentary training to 

basic training of vehicle handling skills. Isler, Starkey, Sheppard, et al. (2008) found 

that drivers who received the higher-order training performed the best out of the 

three training groups, with drivers who received the simple training performing 

worst. They also found that driving competency was related to more advanced 

executive functions. 

While this form of observational study and a naturalistic method are possible, they 

are often both resource-intensive and often expensive. There is no guarantee that 

participants will complete an entire series of longitudinal assessments, limiting the 

generalisability of the results.  Because of these constraints, researchers often rely on 
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a combination of self-report measures and laboratory-based simulators that attempt 

to replicate the natural driving behaviour of participants. 

 

Laboratory-Based Simulators: Advantages and Disadvantages 

Carsten and Jamson (2011) provide an excellent overview of traffic simulators, 

acknowledging that they are now a primary method of driving research. According to 

their review, there is no clear definition of a simulator, as a laboratory-based methods 

range from a (low-fidelity) single computer monitor attached to a simple controller 

(e.g., joystick or steering wheel) to an immersive (high-fidelity) vehicle interior with 

360° field of view and functioning mirrors. However, they do generalise the 

characteristic features of a simulator having screens or an image-projected surface, 

vehicle controls such as steering wheel and pedals, a sound system that replicates the 

sound of the road and vehicle, and a dashboard with displays such as vehicle speed 

(Carsten & Jamson, 2011). While the first available simulators utilised either filmed 

or pre-rendered traffic scenarios, with advances in computer graphics technology in 

recent years, many simulators function using real-time image generation. 

There are a broad array of reasons that researchers utilise traffic simulators over 

naturalistic or observational techniques. Firstly, naturalistic studies are limited in 

their scope, as generating experiments involving elevated risk is accompanied by the 

possibility that participants could be harmed. Because harm is minimised in a 

simulator,  studies can involve aspects that would be unsafe or unethical in 

naturalistic or observation-based research (e.g., the effects of alcohol on drivers 

performance). 

Another advantage to simulators is that the range of extraneous variables that cannot 

be controlled for in naturalistic studies can easily be removed in a simulator. For 

instance, participants in a naturalistic study may be required to drive a fixed route; 

however, as traffic and weather conditions can be highly variable, no two drives are 

the same. In a simulator, all participants can be exposed to the same environment and 

stimuli, which adds a dimension of control not available to real-world methodologies. 

This degree of control affords the researcher the ability to manipulate variables in a 

precise way for all participants while being able to make close observations of driving 

behaviour such as speed, following distance, and/or lane-position (Carsten & Jamson, 

2011), including tests such as physiological measures of heart rate variability, 

galvanic skin response (Kinnear, 2009), and eye movements. 
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However, with laboratory-based measures, there is always the question as to how 

reliable the measures of drivers performance is, and how well drivers behaviour in a 

laboratory setting corresponds to real-world behaviour. For example, in measuring 

drivers risk-taking behaviour in a lab where there is no risk, do drivers behave in a 

similar way to how they would in the real world where risk is a reality?  This question 

then is at the forefront of researchers thinking when conducting laboratory 

experiments, especially when related to risk-taking. 

While simulators obviously of great value to researchers, they are not without their 

limitations. The question of ecological validity often hangs over simulator-based 

experiments, as there is the potential that participants behave differently in a 

simulated environment than they would in the real world.  

 

Advantages to Video-Based Methods in the Laboratory 

As hi-fidelity simulators are expensive and involve much development for 

experimental roads and conditions, some researchers have turned to use video 

footage as a research tool, which does not require the same degree of resources or 

development. Video footage of real-world driving filmed from the drivers perspective 

can be easily obtained by researchers, and can cover a range of naturally occurring 

driving conditions without  the need to develop computerized scenarios and 

renderings, and can be quickly deployed as a laboratory tool over a range of 

laboratory or online settings (Isler & Cockerton, 2003; Isler & Isler, 2011). 
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Appendix 11: More information on the Hazard Perception Task 

This section will discuss the measures of hazard perception used in this thesis: 

1. Number of immediate hazards correctly identified 

2. Time to detect hazard from the appearance 

3. The number of clicks that were not associated with immediate hazards 

(errors, covert hazard) 

Moreover, where appropriate, secondary task measures will include: 

4. The number of tracking errors 

5. The duration of tracking errors  

Hazard perception has two components: the ability to anticipate road and traffic 

events, and the ability to assess risks; perception is just one stage of this process, as it 

involves not only the ability to recognize a possible hazard but also the preparatory 

actions that allow for timely intervention in order to prevent a potential incident 

(Vlakveld, 2011). Vlakveld (2011) condenses the definitions of hazard to two 

components a) the ability to anticipate road and traffic events, and b) the ability to 

assess risks. Furthermore, Vlakveld (2011) notes that perception is just one stage of 

the process. It is not only the recognition of a possible hazard but also the preparatory 

actions that allow for timely intervention to avoid a crash should the hazard 

materialise.  

In this thesis, the primary measure of hazard perception was the perception of 

immediate overt hazards, rather than covert hazards, which include situations in 

which an overt hazard may or may not materialise.  Hazard perception time for 

immediate hazards can be measured from the moment the hazard becomes visible 

until the point where the driver (participant) attends to it through either sustained 

visual attention (visual time on target) or by indicating perception through some 

signal (hazard window). The distinction between hazard anticipation and hazard 

perception is of importance, as anticipating a hazardous road environment despite 

the absence of immediately visible hazards may influence a driver’s eye-movement 

behaviour, as well as other behaviours such as speed choice.  

However, the hazard perception task used in this thesis only provided a measure of 

drivers’ perception of immediate hazards, that is, hazards that required them to 

respond with a vehicle manoeuvre potentially. Across the driver research literature, 
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there are several definitions covering hazard perception. Deery and Love (1996) 

define hazard perception as the process of identifying hazardous objects and events 

in the traffic system and quantifying their dangerous potential, whereas Groeger and 

Brown (1988) provided an expanded definition: the ability to detect hazards, assess 

the risk involved, and compare the outcomes of each assessment to determine 

whether or not one can cope with the hazard. Helman (2008) defines hazard 

perception as “the ability to identify potentially dangerous traffic situations as early 

as possible” (p. 8). Here a distinction needs to be made between the perception and 

the anticipation of hazards (McKenna, Horswill and Alexander, 2006). A driver may 

anticipate hazards, but until the hazard manifests itself, it is not detectable. Various 

methods have been developed over the past several decades ranging from verbally 

identifying hazards, to the more commonly employed video and simulator-based 

tasks which involve participants either using a mouse click or pressing a touch-screen 

when they identify a visually apparent hazard (Horswill and McKenna, 2004; Isler, 

Starkey, and Williamson, 2009).  

There are an almost endless series of on-road and off-road features that might be or 

might become hazards and must be navigated safely by drivers. A distinction can be 

made between immediate hazards which demand an immediate response from 

drivers, and covert or potential hazards, which are not immediately hazardous but 

might become hazards as a potential series of events unfolds. For instance, a car 

braking immediately ahead presents as an immediate hazard, and pressure must be 

applied to the brakes to prevent a collision. Whereas, a child playing with a ball on the 

side of the road might not be an immediate hazard, although this situation could 

quickly become an immediate hazard if that child should mistakenly run out into 

traffic.  

The essential difference between immediate (overt) and covert hazards is that 

immediate hazards readily present themselves as apparent, whereas covert hazards 

are anticipatory and are based on the context in which driving is occurring. For 

instance, covert hazards may always be present in the mind of the driver and eye 

movements  may indicate the active scanning for such hazards, but this may only 

influence behaviour once probability of emergence becomes sufficiently high (i.e., a 

driver may slow down in anticipation of covert hazards when driving past parked 

vehicles during school recess).  
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Immediate hazards have been loosely defined as ‘Changes in the road situation, which 

place a demand on a driver to adjust their behaviour’. The perception of an immediate 

hazard requires drivers to change their behaviour either to avoid or control for 

factors that may lead to a potential collision. In contrast, covert hazards are not 

readily apparent, and both novice and experienced drivers have greater difficulty in 

predicting whether a potentially hazardous event is imminent.  

Research conducted by Pradhan et al., (2005) noted that young novice drivers have a 

harder time anticipating hazards which are not visible than older and more 

experienced drivers. This finding was subsequently supported by Sagberg and 

Bjornskau (2006). It is thought that hazard anticipation is related to contextual 

factors which trigger top-down knowledge-based schema experienced drivers 

possess, leading to modifications to driving behaviour, whereas novice drivers have 

not yet had sufficient time to develop these schemata. This assumption bears some 

consideration in light of findings made by Kelly et al., (2010) who concluded that 

novice and experienced drivers sorted videos of different traffic scenarios containing 

overt and covert hazards differently based on contextual factors that rely on higher-

level cognitive processing rather than visual salience.  

 

Measures Employed for Perception of Hazard-related Events 

Based on Isler et al (2009) research, primary measures of hazard perception will 

be a) the number of hazards identified, and b) the time from onset of hazard to 

the time the hazard is identified. If a hazard is not identified, the time the hazard 

was visible was used. Secondary measures of hazard perception based on 

Vlakvald used are c) the time between the nearest fixation on the hazard and the 

time to which the participant identified the hazard, and d) The number of non-

hazardous environmental features identified (e.g., traffic signs) which 

nevertheless may inform the driver of future hazardous situations which could 

emerge. 

The Roads Used in the Hazard Perception Task 

In this experiment, eight distinct road situations were used to explore the relationship 

between hazard perception and eye movements between novice and experienced 

drivers as pre and post-training measures, as well as determining the relationship 

between hazard perception measures and speed choice. The videos for all hazard 
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perception tasks have been consistent across the two experiments for the sake of 

consistency, save for two videos that were bisected into two additional shorter videos 

in the commentary training task due to software and hardware limitations in smooth 

playback.  

In this section, each of the eight videos will be described, and a list of the immediate 

hazards provided. The images are also displayed with the secondary task overlaid, as 

well as the eye-movement fixations indicated by red dots. 

 

Grey Street (High Density) 

Grey Street is a section of medium to high-density commercial buildings with several 

side roads and intersections with a single lane in either direction with clear markings 

and traffic islands. There are a large number of immediate hazards, and in order to 

safely traverse this section of road then there needs to be adequate visual attention 

both to pedestrian activity on edges of the roads, as well as the possibility for vehicles 

to cross the path of traffic or stop in the lane ahead.  
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The first Grey Street scenario had multiple cars braking immediately ahead, 

pedestrians on the left-hand side of the vehicle preparing to cross the road, and 

drivers on the left-hand side exiting their vehicles. The second Grey Street scenario 

involved drivers exiting their vehicle on the left-hand side, a truck parked on the 

centre medium displaying hazard lights, cars turning across the oncoming path of 

traffic and vehicles entering the traffic stream from the left-hand side. Additionally, 

there were vehicles parked on the left-hand side with passengered preparing to exit 

the vehicle. 
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Knighton Road (High Density Primary School Zone) 

Knighton Road scenario is a section of road that acts as a moderately dense arterial 

road, with a primary school and pedestrian crossing, as well as multiple vehicles 

parked along the side of the road. The traffic flow is prone to substantial changes in 

density throughout the day, with the maximum amount of traffic and pedestrian 

activity occurring during the beginning and end of the school day. This was the time 

where the video scenarios were generated for this road. 

 

The first of the Knighton Road scenarios involved vehicles turning immediately across 

the path of oncoming traffic, multiple drivers exiting/entering vehicles parked on the 

left-hand side, a pedestrian crossing on approach with vehicles slowing. The second 

scenario involved cars stopping ahead, people exiting the vehicle on the left-hand side, 

and the presence of multiple pedestrians, and persons getting into a vehicle on the 

left-hand side. These two scenarios were the most demanding as far as requiring 

participants to be mindful of both the left-hand sides of the road for pedestrian 

activity and vigilant for vehicles ahead to be braking frequently. 
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Kawakawa (Low density, road maintenance) 

The Kawakawa Road involved travelling through the main street of a small rural town 

while road construction was underway. This involved vigilance not only for 

pedestrians and road workers but also intersecting traffic and road working 

machinery. This scenario presented initially with road workers on the right and left-

hand sides and a number of pedestrians crossing from the left-hand side, and an 

obscured intersection where a vehicle was exiting crossing the path of traffic and 

entering the opposing carriageway. 

 

 

Christchurch (high-density arterial road) 

The Christchurch traffic scenario involved a moderately active arterial road in a 

commercial region. In this scenario there are multiple vehicles braking, pedestrians 

crossing from the right-hand side, pedestrians exiting a vehicle from the left-hand side, 

and vehicles crossing the path of traffic and coming to a stop in an entranceway 

partially blocking the road ahead. 
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Victoria Street (medium density) 

Victoria Street is a central city street in the Hamilton CBD, which is speed limited due 

to the high number of pedestrian activity. A partition and pedestrian walkway 

separate the opposing carriageway. In this scenario, there is a pedestrian crossing 

ahead with one pedestrian crossing from the right-hand side using the crossing, and 

several pedestrian-crossings further down from both the right and left-hand sides of 

the road. There are also vehicles ahead and parked along the side of the road. 

 

 

Kaikoura (multiple pedestrians and braking vehicles) 

Another scenario involving the main road of a rural town, this road scenario involves 

multiple vehicles parked along the sides of the road, with vehicles oncoming and 

pedestrians crossings down the road from the right-hand side. There is also an 

obscured pedestrian who emerges from behind a vehicle on the left-hand side with 

short notice, and a vehicle being followed that crosses a traffic bump, then proceeds 

on several occasions to brake suddenly. 
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The hazard scenarios provide both a cross-section of commonly encountered on-road 

hazards such as braking vehicles, whilst also requiring the participant to be vigilant 

of the sides of the road in locations where pedestrians and other hazards might 

spontaneously emerge. 

 

Tables of Identified Immediate Hazards in the Video Clips 

Throughout this experiment, eight individual video clips covering a range of Urban 

road situations and hazards are used. As these remain consistent throughout the 

entirety of the thesis and are used in both variation of the hazard perception task, as 

well as for pre- and post-training for the commentary experiment. The two sequences, 

A and B, are alternated for each sequential participant (i.e., for participant one, the 

sequence is A->B, for the following participant, B->A ). This was done to reduce the 

likelihood of bias should one sequence be easier than the other. 
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Table 0.1. 
 
Film Sequence 1 with Immediate Hazards Identified for use in Hazard Perception Tasks 
  

Road Scenario Immediate Hazard Time of onset of hazard 

 
TRIAL1: 
  
HAMILTON  EAST 

 
1. Car on the left  
2. Car in front braking  
3. Schoolboy on the left  
4. Car braking again  
5. Drivers leaving their cars (one 

click) 
 

 
0:00 - 0:05 
0:03 - 0:06 
0:00 - 0:13 
0:24 - 0:29 
0:24 - 0:29 

 
TRIAL 2: 
 
KAWAKAWA 
 

 
1. Road worker on the right  
2. Pedestrian on the left  
3. Road worker  
4. Pedestrian far  
5. Pedestrian near  
6. Car turning  

 

 
0:00 -0.02 
0:09 - 0:13 
0:13 - 0:19 
0:34 - 0:47 
0:36 - 0:42 
0:46 - 0:53 

 
TRIAL 3: 
 
CHRISTCHURCH  
 
 
 

 
1. Car in front is braking  
2. Pedestrian from the right  
3. A driver leaving the car on the 

left  
4. Car turning right is getting 

stuck  
5. Pedestrian from the left  

 
0:00 - 0:11 
0:19 - 0:23 
0:23 - 0:31 
0:23 - 0:31 
0:31 - 0:36 

 
TRIAL 4: 
HAMILTON 
KNIGHTON ROAD 
SCHOOL 

 
1. Oncoming white van turning  
2. The driver and car on the left  
3. School patrol  
4. Mother gets into car left  

 
0:00 - 0:09 
0:13 - 0:20 
0:15 - 0:38 
0:53 - 0:58 
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Table 0.2. 
 
Film Sequence 2 with Immediate Hazards Identified for use in Hazard Perception Tasks 
 

Road Scenario Immediate Hazard Time of onset of 
hazard 

 
TRIAL 5 
Knighton Road 
  
 

 
1. Car in front stopping  
2. Family leaving car left 0:06 – 

0:22 
3. Car in front stopping again  
4. Car stopping once more   
5. Car stopping again (School 

patrol)  
6. People getting into a car  

 

 
0:00 - 0:01 
0:06 – 0:22 
0:15 - 0:17 
0:19 - 00:25 
0:35 - 0:45 
1:11 – 1:15 

 
TRIAL 6 
VICTORIA STREET 

 
1. Lady in a red coat on the left  
2. Two pedestrians crossing (one 

click)  
3. Pedestrian from the left  

 
 

 
0:00 - 0:03 
0:01- 0:04 
0:03 -0:04 

 
TRIAL 7  
KAIKOURA 
 

 
1. Car in front stopping speed 

bump  
2. First pedestrian from the 

right?  
3. Car front braking again  
4. Second pedestrian from the 

right  
5. Pedestrian from the left  
6. Pedestrian from the left  

 

 
0:00 - 0:07 
0:23 - 031 
0:25 - 0:30 
0:27- 0:34 
0:27- 0:29 
0:34 - 0:41 

 
TRIAL 8 
Hamilton East 
 

       
1. Drivers left leave car  
2. Truck with hazard lights on  
3. A car turning right behind a 

truck  
4. Car in front braking  
5. Car parked left  

 

 
0:00 - 0:02 
0:00 - 0:06 
0:00 - 0:06 
0:05 - 0.08 
0:05 - 0:08 
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Appendix 12: Scripts, Schema, and Hazard Perception 

When drivers encounter similar situations repeatedly over time, they develop 

cognitively economic ways of dealing with them, allowing them to negotiate traffic in 

ways that maximise cognitive resources to the driving task. Human cognition appears 

to be based on categorical thinking, and being able to sort things into categories 

quickly allows for rapid judgements to be made. The cognitive structure is referred to 

as scripts and schema. Schema is the most basic routine, a simple rule when 

encountering an event or object. These are bundled together to form scripts. 

 

Hazard Perception and the consumption of Cognitive Resources 

As we have noted, hazard perception requires considerable cognitive resources and 

attention, and although much of the visual search saccade and salience network 

processes are subconscious (e.g., Supervisory Attentional System), this skill may still 

be regarded as deliberate – requiring conscious effort – and unlikely to become 

automatized, requiring working memory and devoted cognitive resources, in 

contraposition to lower-level vehicle handling skills (Bellet et al., 2009; Isler et al., 

2009; Konstantopoulos et al., 2010).  It follows that experienced drivers have more 

available cognitive resources free to be allocated to hazard perception and visual 

search, as the primary vehicle control skills are sufficiently automatized as not to 

compete for available resources (Horswill & McKenna, 2004; Underwood, 2007).  

However, in one study, Kass et al. (2007) investigated the situation awareness (SA) of 

novice and experienced drivers, and found that experienced drivers had more 

comprehensive recall of aspects of the traffic environment when queried. However, 

both groups showed similar degradation of SA under cognitive distraction caused by 

mobile phones; indicating that both novice and experienced drivers are susceptible 

to the effects of distraction on attentional resources, and that drivers are not passive 

recipients of visual information, but must be actively engaged in the driving task 

(Kanwisher & Wojciulik, 2000; Lemercier et al., 2014). 

Furthermore, it has been proposed that hazard perception is a skill that competes 

with other driving tasks for attentional resources before it becomes an automatic and 

sub-conscious process. Hence, young and inexperienced drivers may experience an 

inability to simultaneously dedicate cognitive resources to the task demands of 

hazard search and vehicle control (McKenna & Crick, 1991; Underwood, 2007; 
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Geoffrey Underwood et al., 2002). Driving is a complex task and needs prioritisation 

over other processes/activities. Wickens (2005) suggests that incidences (such as 

crashes) occur as a result of ‘cognitive or attentional tunnelling’ which occurs when 

the management of tasks (e.g., speed choice) breaks down or are incorrectly 

prioritized. 

The regulation of conscious processes and attention has been strongly connected with 

the brain's prefrontal and anterior cingulate circuitry, which has previously been 

noted to continue maturing into the mid-twenties (Eshel et al., 2007; Isler & Starkey, 

2008). This has numerous implications for adequate hazard perception, as these 

neurological systems are responsible for a wide range of executive processes (Keating, 

2007). In particular, control of eye movements  and awareness of visual information 

and assessment and response are dependent upon the prefrontal circuit, which may 

not be fully developed in younger persons (Passingham & Wise, 2012).  
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Appendix 13: Driver Education and Training: Road Commentary 

As discussed earlier, training of higher-level skills and executive functions seems to 

play an essential role in driving behaviour and in reducing crash risk of young drivers. 

The crucial question is if the development of these life-saving ‘executive functions’ 

can be fast-tracked in young novice drivers? Some promising research shows that 

training of executive functions, such as hazard perception using video-based traffic 

scenarios, improves the risk-taking behaviour of young drivers within a short period 

of time (Isler & Starkey, 2008; Isler et al., 2009; McKenna et al., 2006). There is also 

evidence that visual search and attention in young drivers can be improved using an 

innovative training intervention of eye-tracking technology (Underwood, 2007).  

 

Training to Repair Defective Schema 

Another approach used by Prabhakharan and Molesworth (2011), looks to modify 

faulty cognitive processes related to speeding using episodic-based training based on 

the work of Molesworth et al. (2006), which engages the trainee as if integrating them 

into a story or narrative. By utilising narrative and feedback in the form of traffic rules, 

this engages the cognitive structures that are deeply grounded in knowledge-based 

semantic memory and story-based episodic memory, which, when simultaneously 

activated, assists the consolidation of memory (Schank & Abelson, 2013). We will 

later explore this approach in the context of generative learning and commentary as 

a training technique. 

 

Video-based Road Commentary Training 

Results from the “Frontal Lobe Project” support these findings, it showed some 

evidence that frontal lobe executive functions were indeed associated with driving-

related performance (Isler, Starkey, Drew, et al., 2008). In the same study, a clear 

association between training in higher-level skills on driving-related assessments 

was identified and improved attitudes towards driver risk-taking, suggesting that 

young drivers behaviour can be significantly improved using higher-order 

commentary-based training, Higher-level training skills significantly improved 

search behaviour regarding on-road assessment. Furthermore, it has been shown, 

that by using the specific road commentary training method which involves verbally 

pointing out all immediate hazards and how to manage them, the number of hazards 
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perceived and the number of actions in response to hazards was increased in a brief 

period (Isler et al., 2009).  

Overall, it seems that by targeting high-order metacognitive skills and reflective 

thinking (i.e., self-awareness, self-monitoring, self-evaluation, and risk management) 

there is promise in counteracting the high crash risk of young novice drivers. 

Improving road safety is internationally regarded as a vital issue of ‘Best Practice in 

Road Safety’ (e.g., Bartl, 2010; European Commission, 2007), and are recommended 

by the National Road Safety Committee in New Zealand (The National Road Safety 

Committee, 2008). 

Despite the promising results on short-term effects of those studies, it is still unclear 

whether this higher-level driving skills training will have any long-term safety 

benefits in young driver’s every-day driving. To address this matter research 

literature has identified a need for more sensitive and objective post-training 

outcome measures than using self-reported driving diaries, which could be biased, 

and quite general or data from police reports. Using new technology, it is also possible 

to gain more understanding and influence young drivers’ behaviour, which is 

essential to improve road safety.  

In driver education, much of the work in developing good driving behaviour involves 

developing or replacing absent or faulty scripts and schema with safe and well-

constructed scripts and schema. This could be likened to the process of training used 

by Parker et al. (1996), which focused on identifying and modifying beliefs related to 

speeding, using the Theory of Planned Behaviour (TPB), in which social, moral norms, 

and actively acknowledging control over conduct are used to reduce deliberate 

violation of the speed limit. This technique attempts to persuade that the driver has 

control over his or her behaviour, and that speeding or traffic violations are both 

socially and morally unacceptable – such that speed would be disapproved by peers, 

and can lead to serious negative consequences. This method has become a primary 

means of televised traffic campaigns to reduce drivers' risky behaviours (Phillips et 

al., 2011). 

As visual behaviour varies during stages of human development, notably when the 

human brain is progressing through adolescence, this needs to be understood in the 

context of both driver research and the development of future training programs. 

Konstantopoulos makes a suggestion that is particularly relevant to training methods 

in this thesis: 
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Some additional practical implications of the present findings might 

include the development of training interventions for more efficient 

visual search strategies. In the past training interventions about eye 

movements of learner drivers have been successful but time-limited 

(Chapman et al., 2002). One of the reasons that such training might be 

short lived could be the general nature of any instruction. Future 

training should consider the fragmentation and adoption of different 

visual allocation under different conditions such as rain and night 

driving. (p. 833) 

Konstantopoulos (2010) adds a word of caution while providing this promising 

approach, in that driver's process visual information in very different ways under 

different driving circumstances, and this needs to be considered in future research.  
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Appendix 14: Visual Attention and Perception 

Renowned neuroscientist Daniel Kahneman (1973) has proposed that there is far too 

much information 40  to be reasonably attended to by the brain, so behaviourally 

irrelevant information is filtered out to allow for more relevant information to be 

attended to at a higher level of processing. There are thought to be two systems that 

process the flow of visual information; one is bottom-up, which draws attention to 

objects moving that might be of a threatening nature. The other system involves top-

down cognition: information needed by the brain to complete some task or operation 

based on existing knowledge or schema (Beck & Kastner, 2009; Cowan, 1988; Groeger, 

2013). The brain contains many representations of knowledge, structured in multiple 

levels, and directed by both voluntary and involuntary influences (Monsell & Driver, 

2000). 

As a fundamental survival mechanism, it is the case that humans focus attention 

quickly on unfamiliar or potentially threatening objects. This bottom-up, saliency 

driven system draws unexpected elements from the raw visual stream and 

immediately thrusts these into the forefront of attention, often initiating a response 

before entering conscious awareness (Purves et al., 2004). A heightened sensitivity 

drives the bottom-up system to novelty, and this is not surprising given its neural 

afferents run deep into the recesses of the limbic system (Sarter et al., 2001). 

The top-down approach is the alternate system competing for visual resources. It is 

driven almost entirely by knowledge and established schema and controls the eyes in 

a way that is conducive to extracting the essential visual elements to complement a 

particular planned mental process (Castro, 2008; Desimone & Duncan, 1995). The 

evolution of this system is a much more recent and complex development than its 

bottom-up counterpart, with only the mammalian family present with this 

remarkable feature. The top-down system engages existing knowledge to drive the 

recognition, application, and manipulation of the environments and is in part 

responsible for the creation of new knowledge, for knowledge of any sort the kind 

humans employ, such as reading this sentence would not be possible without it 

(Hopfinger et al., 2000). For example, it is the knowledge-driven top-down control of 

the eyes that carefully scans each word of this sentence and comprehend its meaning 

                                                           
40 High resolution foveal vision is neurophysiologically expensive, in that, for each of the foveal cells, many thousands of 

neurons in the visual cortex are required to process the visual information at even the most primary level. Higher levels of 
visual processing increase exponentially in order of magnitude. The remainder of the retina is low resolution, and hence, 
the brain directs attention of the high-resolution visual system at features which are important, and the vast remainder of 
visual information is unoticed or diregarded (Azzopardi & Cowey, 1993; Ptak, 2012).  
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before scanning the next line. However, should something suddenly intrude into the 

environment, the bottom-up system would immediately engage and seize visual 

attention immediately (Beck & Kastner, 2009; Itti & Koch, 2000). 

A common analogy regarding visual attention is that it operates much like a ‘spotlight’ 

scanning over areas of interest and disregarding irrelevant details from the visual 

scene (Erikson & Erikson, 1974), and is associated directly with eye movements 

overtly (Itti & Koch, 2000). However, it is noteworthy that attention can occur without 

eye movements, known as covert attention (Itti & Koch, 2000). Visual attention is 

either space-based or object-based, such that the ‘spotlight’ moves in relation to 

objects or areas of interest before reintegrating (Driver, 2001; Lavie & Driver, 1996; 

Logan, 1996). 

Neglect of information outside of this theoretical visual ‘spotlight’ about the locus of 

attention has led researchers to consider the importance of visual neglect, namely the 

phenomenon of change and inattentional blindness. Change blindness occurs when 

some aspect of the scene changes and the brain is unaware that an element in the 

scene has been removed. Inattentional blindness, by contrast, occurs when visual 

attention is focused onto one location while neglecting changes occurring in another 

area of the visual field which falls outside of the ‘spotlight’. This effect has been most 

famously demonstrated by Daniel Simons (2003) in the classic ‘dancing gorilla’ task, 

where participants are asked to count how many passes of a basket-ball are made by 

players wearing white shirts. During the game, a gorilla walks through the centre of 

the players. Most people are oblivious to the gorilla if they are attentively engaged 

with the ball counting task41. 

For example, results of the ‘100 car naturalistic study’ showed that 78% of crashes 

and 65% near-crashes were attributed to driver inattention, with young drivers 

disproportionately involved in distraction-related crashes (Klauer et al., 2006). These 

results are in line with the findings of Whelan et al. (2004) who showed that novice 

drivers concentrate more on cars in other lanes and focus too little on cars in their 

own lane, which could also support the cause for the involvement in rear-end 

collisions. Studies done by Crundall and Underwood (1998) gave evidence that young 

drivers have difficulties in gathering relevant visual information while driving, 

especially when driving conditions become more complex, which is supported by the 

                                                           
41 For more information, I would refer the reader to Kahneman, D. (2011). Thinking, fast and slow. Macmillan.   
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findings of Whelan et al. (2004); there, novice drivers show to be more disrupted by 

distraction in their situation awareness.  

Both change and inattentional blindness has been studied in relation to driving 

behaviour (Crundall et al., 2004; Galpin et al., 2009). For instance, in a study of 

following a simulated car through a city scenario, participants who were attentive of 

the car failed to notice pedestrians, resulting in more traffic violations (such as driving 

through red lights) and crashes, and also limited horizontal visual scanning and 

produced longer fixations on the car being followed (Crundall et al., 2004). 

 

 


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Literature Review
	The Psychology of Speed Choice
	Speed Choice and Risk-Appraisal
	What Factors cause a Driver to Perceive a Road as Risky?
	Speed Choice and the Credibility of Speed Limits
	Speed Choice as a Habitual Process
	The Problem with Habitual Speed, and the Role of Perceptual Countermeasures

	Speed Choice and ‘Reading the Road’

	The Critical Skill of Hazard Perception
	Measuring Hazard Perception in Laboratory Settings
	Hazard Perception and Driving Experience
	Hazard Perception and Visual Perception
	Hazard Perception: Where’s the Risk?
	Defining Hazard Perception in this Thesis

	Critical Review of Previous Research
	An Examination of Renge’s (1998) Study
	An Examination of McKenna, Horswill, and Alexander (2006)
	An Examination of Edquist, Rudin-Brown, and Lenné (2011)
	Summary of the Existing Gap in Knowledge

	The Vulnerability of Young and Novice Drivers
	Developmental Factors
	Experiential Factors

	The Aim of this Thesis

	Experiment 1
	Introduction
	Research Questions
	1. Does the video-based laboratory-based speed choice task show ecological validity?
	Can the ecological validity of the video speed task be inferred by examining the chosen speeds that drivers of different age and experience make in the laboratory compared to expected real-world behaviour?
	Are the speed choices of all drivers dependent on the level of the driving risk (wet versus dry road, day versus night-time driving, no road markings versus road markings)?
	2. What visual cues do novice and experienced drivers focus on when making speed choices?


	Method
	Participants
	Research Design
	Video Speed Task (VST)
	Road Conditions and Types

	Eye-tracking for Validating Video task
	Eye-tracking Calibration and Validation
	Measuring Saccades and Fixations

	Computer and Display Settings
	Procedure

	Results
	Speed Choices and Estimation
	Are Speed Choices of All Drivers Dependent on Driving Conditions?
	Do Eye Movements differ between Driver Age Groups?
	Differences between Driver Age Groups

	Do Road Environment, Type, and Condition affect Drivers Eye movements?
	Within and Between-Group Effects for Differing Road and Traffic Conditions
	The Spatial Distribution of Fixations


	Discussion
	Limitations
	Additional Critique and Alternative for Analysis

	The Rationale for Experiment 2


	Experiment 2
	Introduction
	Research Questions
	1. Do drivers’ hazard perception skills and speed choices improve with age and experience?
	2. Do more advanced hazard perception skills correspond to more appropriate speed choices?


	Method
	Participants
	Research Design
	Apparatus
	The Hazard Perception Dual-Task (HPDT)
	Procedure

	Results
	Examining the Role of Age and Experience on Speed Choice
	Hazard Perception and Driver Groups
	Tracking Errors between Driver Groups

	The Relationship between Hazard Perception and Speed Choice

	Discussion
	Limitations
	The Rationale for Experiment 3


	Experiment 3
	Introduction
	Research Questions
	1. Do drivers choose slower speeds when aware of concurrently occurring hazards?
	2. Do eye movements mediate hazard perception ability?


	Method
	Participants
	Demographic Information on Participants

	Apparatus
	Eye movements  related to the Secondary-task

	Procedure

	Results
	The Relationship between Hazard Perception and Speed Choice
	Hazard Perception between Novice and Experienced Driver Groups
	Speed Selection and Hazard Perception for Individual Roads

	Eye-movement Behaviour
	Fixation Distribution
	Qualitative Observations of Eye-movement Behaviour

	Discussion
	Limitations
	The Rationale for Experiment 4


	Experiment 4
	General Introduction
	Study A: Does Road Commentary Improve Hazard Perception?
	Introduction
	Research Questions
	1. What effect does commentary training have on hazard perception measures?
	2. What is the influence of commentary training on eye-movement behaviour as opposed to the control groups eye-movement behaviour?

	Method
	Participants
	Design Outline
	Measures
	Immediate Hazards and Perception Times
	The Hazard Perception Commentary Task
	The Dependent Variables for Commentary task
	Commentary Training
	Procedure

	Results
	Differences between Driver and Training Groups
	The Influence of Commentary Training on Hazard Perception
	Eye-movement Behaviour
	Distribution of Eye movements  between Training Groups
	Fixation Duration Immediately Preceding Hazard Detection

	Discussion
	Limitations


	Study B: Does improving Hazard Perception influence Speed Choice?
	Introduction
	Research Question
	Does improving Hazard Perception through Road Commentary have a positive-safety influence on Speed Choices?

	Method
	Participants
	Hazard Speed Computer Task
	Procedure

	Results
	The Effects of Commentary Training:
	The Relationship Between Speed Choice And Hazard Perception Time:
	Analysis from Eye-tracking Data

	Discussion
	Practical Considerations regarding Commentary Training
	Limitations
	Summary and Future Research



	General Discussion
	Summary of Key Findings
	Hazard Perception Time is Related to Drivers’ Speed Choices
	Hazard Perception is Related to Drivers’ Visual Search
	Improving Hazard Perception Modifies Speed Choice Behaviour
	Risk Appraisal varies with Driving Experience
	Road Markings Influence Drivers’ Visual Search Behaviour

	Significance of the Findings and Research Contribution
	Validation and Usefulness of Video-Based Techniques
	Methodology is an Essential Consideration when examining Speed Choice and Hazard Perception

	Implications for Road Safety
	Limitations
	Future Research
	The Potential Role of Emotional Wellbeing

	Implications for Practice
	Conclusion

	References
	Appendices
	Table of Appendices
	Appendix 1: Ethical Applications
	Appendix 2: Information Sheets and Participant Information
	Standard Ethical Information for Participants
	Experiment 1 Information Sheet
	Experiment 2 Information Sheet
	Experiment 3 Information Sheet
	Experiment 3 Post-experiment Debrief
	Experiment 4 Study A Information Sheet
	Experiment 4 Study B Information Sheet

	Appendix 3: Additional Validity of the Speed Choice Task
	Comparing Speed between Novice and Experienced Drivers

	Appendix 4: Validating Experiment 2 Hazard Perception Times using the eDrive™ Data Set
	Appendix 5: Difference between Driver Experience Groups (Discounting Age)
	Appendix 6: Young Driver Statistics
	Appendix 7: Does Knowing vs Estimating the Speed of the Vehicle influence Speed Choices?
	Does knowing vs estimating the current speed of the vehicle influence the speed choice?

	Appendix 8: Initial analysis of Experiment 1 Data
	Appendix 9: Eye-tracking Overview and Techniques
	Corneal Reflection (CR) and Pupillary (PR) Eye-tracking
	EyeLink™ 1000 (desk mounted) and EyeLink II (head mounted)
	Eye-tracking Calibration and Validation
	Real-time superimposition of Eye-movement over task

	Measuring Saccades and Fixations
	Pupil Dilation as a Measure of Cognitive Workload
	Blinks as a measure of Cognitive Workload
	Caution when using Eye-tracking to Provide Task Validity

	Appendix 10: Laboratory-Based Measures
	The Frontal Lobe Study as an Example of Observational Methods
	Laboratory-Based Simulators: Advantages and Disadvantages
	Advantages to Video-Based Methods in the Laboratory

	Appendix 11: More information on the Hazard Perception Task
	Measures Employed for Perception of Hazard-related Events
	The Roads Used in the Hazard Perception Task
	Tables of Identified Immediate Hazards in the Video Clips

	Appendix 12: Scripts, Schema, and Hazard Perception
	Hazard Perception and the consumption of Cognitive Resources

	Appendix 13: Driver Education and Training: Road Commentary
	Training to Repair Defective Schema
	Video-based Road Commentary Training

	Appendix 14: Visual Attention and Perception


