Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from the thesis.
Structural and biochemical characterisation of O-acetylserine sulphydrylase (CysK) from Neisseria gonorrhoeae

A thesis
submitted in partial fulfilment
of the requirements for the degree
of

Master of Science (Research) in Cellular and Molecular Biology

At

The University of Waikato

by

Jack McGarvie

2021
Abstract

Neisseria gonorrhoeae is the causative bacteria of the sexually transmitted infection (STI), gonorrhoea. Rapid emergence of antibiotic resistant strains of *N. gonorrhoeae* has given rise to almost untreatable gonorrhoea over the last few decades. There is an urgent need for development of new antimicrobial treatments for gonorrhoea infection. Synthesis of the amino acid cysteine is a promising new target for the development of new antimicrobials. Cysteine plays a vital role in protein folding and function, and synthesis of glutathione for protection against oxidative stress during infection.

The final step of the two-step cysteine biosynthesis pathway is catalysed by the enzyme *O*-acetylserine sulphhydrylase (OASS). Most bacteria have two isoforms of OASS, OASS-A/CysK that utilises sulphide and *O*-acetylserine for the synthesis of cysteine and OASS-B/CysM that utilises thiosulphate. *N. gonorrhoeae* has just one OASS isoform (annotated as CysK) in its genome. *N. gonorrhoeae* displays unique differences in its sulphate acquisition pathway for cysteine biosynthesis, yet little is known about these pathways in *N. gonorrhoeae*. We propose CysK is a potential antimicrobial target. This thesis biochemically characterises the structure and function of CysK to determine its role in cysteine biosynthesis. Kinetic characterisation demonstrates that CysK has *O*-acetylserine sulphhydrylase activity and displays positive cooperativity with respect to substrates, *O*-acetylserine and sulphide. Sulphide shows partial allosteric inhibition, and the enzyme does not use thiosulphate as a substrate. The structure of CysK was solved to 2.49 Å by X-ray crystallography and shows CysK belongs to the tryptophan synthase β superfamily and adopts a homodimeric structure consisting of two monomers. The structure supports positive cooperativity as co-factor binding residues are in inactive and active conformations in each monomer of the dimer, respectively. Many CysK enzymes form complexes with the first enzyme in the two-step cysteine synthesis pathway, CysE. It appears CysE and CysK from *N. gonorrhoeae* are unable to form a complex, indicating an alternate pathway for regulation of sulphur flux and cysteine production. Attempts to investigate the in vivo role of CysK were inconclusive.

The research presented in this thesis represents a major leap in our understanding of the uncharacterised cysteine biosynthesis pathway in *N. gonorrhoeae*. Data presented here is the basis for future work using the kinetics and structure of CysK to guide computational inhibitor design, to identify lead compounds for CysK inhibition, and thereby development of new antimicrobials for treatment of extensively drug resistant gonorrhoea.
Acknowledgements

I would like to thank my super supervisor Dr. Joanna Hicks. Thank you for your never-ending support and guidance during my masters. You were always available to answer my questions and to help me solve any issues I encountered, despite your extreme workload, whether it was a quick 5 minute zoom call or even a passing conversation in the hallway when you were on your way to teaching.

I would also like to thank Annmaree Warrender for being a fantastic supervisor over my time as a summer research student. You taught me the appropriate lab etiquette and procedure and introduced me to the exciting world of research. Your constant help and patience with my incessant questions was awesome and I would not have coped in the lab environment without your oversight. You helped me develop the confidence to work independently and problem solve on the spot, which I am ever grateful for.

Thank you to the past and present members of the Proteins and Microbes lab group: Dr Judith Burrows, Dr Emma Summers, Dr Erica Prentice, Dr Adele Williamson, Professor Vic Arcus, Carlin, Andrew, Keely, Emily, Liz, Jolyn, Bronwyn, Daniel, Meghan, Stacy, Hannah, Ricki, Ashleigh-Amanda, Allen, Rudi, Marion, Dr Olivia Patty, Dr Greg Jacobson and Dr. Ray Cursons. My years in this lab so far have been fun, inspiring and exciting thanks to all of you. A special thank you in particular to Keely, Annmaree, Emily and Carlin for your invaluable insights, constant help and support during my research. I would also like to thank Shaun and Savannah for enduring the frustrations of MSc research with me and helping me maintain my sanity.

Thank you to the University of Waikato for my MSc Research Scholarship and the Sir Edmund Hillary Senior Leadership Scholarship.

Lastly, a huge thank you to my family for their unwavering support and pride in what I do. Thank you for constantly reading my assignments, proposals and being interested in my research (despite not always understanding it). Your love and encouragement has kept me going on many a long night.
Table of Contents

Abstract ... i
Acknowledgements ... ii
Table of Contents ... iii
List of Figures .. vii
List of Tables ... ix
List of Equations ... x
Glossary ... i

Chapter 1 Introduction ... 1
 1.1 Introduction ... 1
 1.2 Pathogenesis of Gonorrhoea .. 1
 1.3 Surfacing of antibiotic resistant Neisseria gonorrhoeae ... 5
 1.4 Oxidative stress and the role of L-cysteine in N. gonorrhoeae ... 6
 1.5 Sulphate assimilation and cysteine biosynthesis in Neisseria species ... 8
 1.5.1 Active sulphate transport ... 8
 1.5.2 Sulphate Reduction ... 9
 1.5.3 L-Cysteine and L-Cystine transport ... 11
 1.5.4 Cysteine biosynthesis .. 12
 1.6 Regulation of cysteine biosynthesis ... 14
 1.6.1 Transcriptional regulation of sulphate acquisition and cysteine biosynthesis 14
 1.6.2 The cysteine synthase complex .. 15
 1.7 O-acetylserine sulphhydrylase/CysK .. 17
 1.7.1 Structural characteristics of CysK ... 17
 1.7.2 CysK kinetic mechanism ... 19
 1.8 CysK as a drug target .. 20
 1.9 Research objectives ... 22

Chapter 2 Materials and Methods .. 23
 2.1 Cloning of cysK for expression in Escherichia coli ... 23
 2.2 Long term storage of BL21 CysK expression strains ... 23
 2.3 CysK expression cultures .. 23
 2.4 Purification of CysK .. 24
 2.4.1 Immobilised metal affinity chromatography .. 24
2.4.2 Gel filtration chromatography ... 24
2.4.3 SDS-PAGE gel electrophoresis ... 25
2.4.4 Measuring the oligomeric state of CysK ... 26
2.4.5 Measuring protein concentration NanodropTM 27
2.5 Kinetic Assay Parameters .. 27
 2.5.1 Assay parameters .. 27
2.6 Kinetic analysis .. 30
2.7 Thiosulphate substrate assays .. 31
2.8 CysK inhibition assays .. 31
2.9 Crystallisation of CysK .. 32
 2.9.1 Protein purification ... 32
 2.9.2 High throughput crystallisation screens .. 32
 2.9.3 Hanging drop fine screens .. 32
 2.9.4 Crystal preparation for X-ray diffraction 33
2.10 Data collection .. 33
2.11 Data processing .. 33
 2.11.1 Indexing, integration and scaling .. 33
 2.11.2 Detection of twinning and non-crystallographic symmetry 33
2.12 Structural analysis .. 34
 2.12.1 Matthew’s coefficient ... 34
 2.12.2 Molecular replacement ... 34
 2.12.3 Model building and refinement .. 34
 2.12.4 Structural analysis ... 34
2.13 Cysteine synthase complex formation .. 35
 2.13.1 Purification of CysE .. 35
 2.13.2 Formation of the cysteine synthase complex 35
 2.13.2.1 Monitoring cysteine synthase complex formation by gel filtration chromatography .. 35
 2.13.2.2 Monitoring cysteine synthase complex formation by fluorescent spectroscopy .. 35
 2.13.2.3 Cysteine synthase complex formation using the CysE C-terminal tetrapeptide .. 36
2.14 cysK genomic deletion in \textit{Neisseria gonorrhoeae} 36
 2.14.1 Agarose gel electrophoresis .. 36
2.14.2 PCR to check for homologous recombination ...37
2.14.3 Measuring Nucleic acid (DNA) concentration Nanodrop™38
2.14.4 N. gonorrhoeae plate transformations ..38
Chapter 3 Results and Discussion ..39
3.1 Kinetic characterisation of O-acetylserine sulphydrylase/CysK from N. gonorrhoeae enzyme ..39
3.1.1 CysK kinetic analysis and enzyme mechanism ..39
3.1.2 Expression and purification of CysK ...40
3.1.3 Assay optimisation ..42
 3.1.3.1 Optimisation of enzyme (CysK) concentration42
 3.1.3.2 Optimisation of enzyme storage ...43
 3.1.3.3 Optimisation of reducing agent ...44
 3.1.3.4 Final assay optimisation ..46
3.1.4 CysK kinetic analysis ..47
 3.1.4.1 Variation of thiosulphate concentration ...47
3.1.5 CysK kinetics Conclusions and future directions57
3.2 Structural characterisation of CysK from N. gonorrhoeae58
3.2.1 O-acetylserine sulphydrylase/CysK ..58
3.2.2 Crystallisation of CysK ...58
3.2.3 CysK data processing ...58
3.2.4 Solving the CysK structure ..59
3.2.5 Analysis of the CysK structure ..61
 3.2.5.1 Analysis of the CysK dimer ...63
 3.2.5.2 Analysis of the CysK N-terminal domain ..63
 3.2.5.3 Analysis of the CysK C-terminal domain ...64
 3.2.5.4 Structure of the CysK active site ...65
 3.2.5.5 Interaction of the CysK active site with PLP70
 3.2.5.6 N. gonorrhoeae CysK structure conclusions and future directions72
3.3 Investigating Cysteine Synthase Complex formation in N. gonorrhoeae74
3.3.1 The Cysteine Synthase Complex ..74
3.3.2 Monitoring CSC formation by fluorescent spectroscopy74
3.3.3 Binding of CysE to CysK to form the CSC ...75
3.3.4 Binding of a CysE C-terminal tetrapeptide to CysK78
3.3.5 Monitoring CSC formation by gel filtration chromatography81
3.3.6 CysK peptide inhibition assays...83
3.3.7 CSC formation conclusions and future directions......................................84

3.4 Characterisation of the in vivo role of CysK by genetic manipulation of N. gonorrhoeae...86

3.4.1 Essentiality of CysK and proposed role in vivo..86
3.4.2 N. gonorrhoeae cysK deletion construct for homologous recombination....86
3.4.3 Transformation of N. gonorrhoeae...88
3.4.4 cysK genomic deletion conclusions and future research88

Chapter 4 Conclusions and Future Research..90

References ...95

Appendices ...106

Appendix A: Cloning information for CysK...106
Appendix B: Protein purification, assay and kinetic information108
Appendix C: PCR and Gene Knockouts...113
Appendix D: Crystallisation and Structure solving information115
List of Figures

Figure 1.1: Schematic representation of a *N. gonorrhoeae* infection .. 3

Figure 1.2: Sulphate acquisition and cysteine biosynthetic pathways in *Neisseria* species ... 9

Figure 1.3: Comparison of the sulphate reduction operons from *N. meningitidis* and *N. gonorrhoeae* ... 11

Figure 1.4: Comparison of L-cysteine and L-cystine ABC transporters in *N. gonorrhoeae* and *N. meningitidis* ... 12

Figure 1.5: Cysteine biosynthesis pathway. CysE denoted as SAT and CysK denoted as OASS ... 12

Figure 1.6: Analysis of the cysteine synthase complex from E. coli .. 15

Figure 1.7: Cartoon representation of the *S. typhimurium* CysK structure (PDB # 2J3C) ... 17

Figure 1.8: Active site residues of CysK ... 18

Figure 1.9: *Mycobacterium tuberculosis* CysK catalytic mechanism. Figure from (Joshi et al., 2019) ... 20

Figure 3.1: IMAC Purification of CysK ... 41

Figure 3.2: Gel filtration purification of CysK ... 42

Figure 3.3: Determination of CysK concentration for use in kinetic assays ... 43

Figure 3.4: CysK activity with varying OAS concentration ... 48

Figure 3.5: CysK activity with varying Na$_2$S concentration ... 50

Figure 3.6: Constrained non-linear regression fit of an allosteric sigmoidal substrate inhibition model for Na$_2$S ... 52

Figure 3.7: CysK activity with varying OAS concentration in the presence of 7 mM Na$_2$S ... 53

Figure 3.8: Thiosulphate CysK activity assay non-linear regression fit of a Michaelis-Menten model ... 57

Figure 3.9: ENDscript analysis of the secondary structure of CysK from *N. gonorrhoeae* ... 60

Figure 3.10: Structure of the CysK monomer from *N. gonorrhoeae* ... 63

Figure 3.11: Structure of the CysK N-terminal domain from *N. gonorrhoeae* ... 64

Figure 3.12: Structure of the CysK C-terminal domain from *N. gonorrhoeae* ... 65
Figure 3.13: CysK protein sequence alignment ... 66
Figure 3.14: Structural overlay of *N. gonorrhoeae* and *M. tuberculosis* CysK monomers .. 67
Figure 3.15: Alignment of *N. gonorrhoeae* and *M. tuberculosis* CysK active site and PLP interacting residues .. 68
Figure 3.16: CysK active site cleft formed by the active site (71-TSGNTG-76 and 223-GIGA-226) and PLP interacting (Val-43, Lys-44, Asn-74, Ser-267 and 179-GTGTT-183 motif) residues .. 69
Figure 3.17: CysK and CysM monomers from *M. tuberculosis*, *E. coli* and *N. gonorrhoeae* focused on the active site cleft .. 70
Figure 3.18: Aligned PLP interacting residues from *N. gonorrhoeae* monomer A and *M. tuberculosis* CysK monomer with PLP present 71
Figure 3.19: Aligned PLP interacting residues from *N. gonorrhoeae* monomer D and *M. tuberculosis* CysK monomer with PLP present 71
Figure 3.20: Monomer A electron density residue map with 179-GTGTT-183 motif in the same conformation as monomer D ... 72
Figure 3.21: Fluorescent spectroscopy emission wavelength scans of CysK:CysE ratios for CSC formation .. 76
Figure 3.22: Fluorescent spectroscopy emission wavelength scans of CysK:CysE C-terminus tetrapeptide ratios for CSC formation .. 79
Figure 3.23: Monitoring formation of the CSC by gel filtration chromatography 82
Figure 3.24: Activity of CysK in the presence of the CysE tetrapeptide 83
Figure 3.25: DNA construct of the *N. gonorrhoeae* cysK knockout with the kanamycin resistance gene (*kanR*). ... 87
Figure 3.26: PCR amplification and purification results of cysK KO construct run on a 1% agarose gel ... 87
Figure 4.1: Sulphate transport and reduction pathways ... 92
Figure 4.2: Calibration curve of the gel filtration BioEnrich 650 column 109
Figure 4.3: L-cysteine standard curve .. 109
Figure 4.4: Invitrogen 1kb+ DNA ladder used in agarose gel 114
Figure 4.5: Contents of the asymmetric unit for CysK model 115
Figure 4.6: Screenshot of initial input settings for *phenix.autobuild* used for building the model of CysK .. 115
Figure 4.7: Screenshot of initial input settings for *phenix.autobuild* used for building the final model of CysK .. 116
List of Tables

Table 2.1: Components for five SDS-PAGE gels .. 26
Table 2.2: CysK activity assays with varying O-acetylserine concentrations 28
Table 2.3: CysK activity assays with varying sodium sulphide concentrations 28
Table 3.1: CysK glycerol (0.8 mg.ml$^{-1}$, in final concentration 25% glycerol) aliquot activity testing assay ... 44
Table 3.2: Reducing agent efficacy testing absorbance readings at 560 nm 46
Table 3.3: Summary of kinetic parameters for initial OAS data 48
Table 3.4: Summary of kinetic parameters for Na$_2$S data fit with Michaelis-Menten, allostERIC sigmoidal and substrate inhibition models 51
Table 3.5: Summary of enzyme kinetic parameters for substrates OAS and Na$_2$S 53
Table 3.6: Comparison of kinetic parameters amongst CysK homologues 54
Table 3.7: Data collection statistics for CysK ... 59
Table 3.8: CysK final model quality statistics .. 62
Table 3.9: Fluorescent spectroscopy emission wavelength measurements of the CysK:CysE ratio for CSC formation ... 76
Table 3.10: Changes in fluorescence peak intensity over varied CysK:CysE ratios 77
Table 3.11: Fluorescent spectroscopy emission wavelength measurements of CysK binding to the CysE tetrapeptide ... 80
Table 3.12: Changes in fluorescence peak intensity over varied CysK:CysE tetrapeptide ratios .. 80
Table 4.1: Description of the pET28b Vector .. 107
Table 4.2: Purification buffers for CysK kinetics (Potassium phosphate) 108
Table 4.3: Purification buffers for CysK crystallography (Tris) 108
Table 4.4: CysK structure statistics for each monomer in the ASU 116
List of Equations

Equation 2.1: Formula for calculating gel phase distribution co-efficient 26
Equation 2.2: Beer-Lambert equation.. 27
Equation 2.3: The Michaelis Menten equation... 30
Equation 2.4: The allosteric sigmoidal equation... 30
Equation 2.5: The substrate inhibition equation .. 30
Equation 2.6: The allosteric sigmoidal with substrate inhibition equation......... 31
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>alanine, amino acid</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>Ala</td>
<td>alanine, amino acid</td>
</tr>
<tr>
<td>AMR</td>
<td>antimicrobial persistence</td>
</tr>
<tr>
<td>APS<sup>1</sup></td>
<td>adenosine 5’-phosphosulphate</td>
</tr>
<tr>
<td>APS<sup>2</sup></td>
<td>ammonium persulphate</td>
</tr>
<tr>
<td>Arg</td>
<td>arginine, amino acid</td>
</tr>
<tr>
<td>Asn</td>
<td>asparagine, amino acid</td>
</tr>
<tr>
<td>Asp</td>
<td>aspartate, amino acid</td>
</tr>
<tr>
<td>ASU</td>
<td>asymmetric unit</td>
</tr>
<tr>
<td>ATP</td>
<td>adenine tri-phosphate</td>
</tr>
<tr>
<td>AWH</td>
<td>(3-((Z)-((Z)-5-(4-Fluorobenzylidene)-3-methyl-4-oxothiazolidin-2-ylidene) amino) benzoic Acid)</td>
</tr>
<tr>
<td>C</td>
<td>cysteine, amino acid</td>
</tr>
<tr>
<td>CDC</td>
<td>centre for disease control and prevention</td>
</tr>
<tr>
<td>CEACAM</td>
<td>carcinoembryonic antigen cell adhesion molecule</td>
</tr>
<tr>
<td>Cl<sup>-</sup></td>
<td>chloride ion</td>
</tr>
<tr>
<td>CSC</td>
<td>cysteine synthase complex</td>
</tr>
<tr>
<td>C-terminal</td>
<td>carboxy terminus</td>
</tr>
<tr>
<td>CysE</td>
<td>serine acetyltransferase</td>
</tr>
<tr>
<td>CysK</td>
<td>O-acetylserine sulphhydrylase-A</td>
</tr>
<tr>
<td>CysM</td>
<td>O-acetyserine sulphhydrylase-B</td>
</tr>
<tr>
<td>D</td>
<td>aspartate, amino acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribose nucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>DUS</td>
<td>DNA uptake sequence</td>
</tr>
<tr>
<td>ESC</td>
<td>extended-spectrum cephalosporin</td>
</tr>
<tr>
<td>F</td>
<td>phenylalanine, amino acid</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast protein liquid chromatography</td>
</tr>
<tr>
<td>FWD</td>
<td>forward sequence</td>
</tr>
<tr>
<td>G</td>
<td>glycine, amino acid</td>
</tr>
<tr>
<td>GC</td>
<td>gonococcus</td>
</tr>
<tr>
<td>GCB</td>
<td>gonococcus base</td>
</tr>
<tr>
<td>Gln</td>
<td>glutamine, amino acid</td>
</tr>
<tr>
<td>Glu</td>
<td>glutamate, amino acid</td>
</tr>
<tr>
<td>Gly</td>
<td>glycine, amino acid</td>
</tr>
<tr>
<td>h</td>
<td>hill constant</td>
</tr>
<tr>
<td>His</td>
<td>histidine, amino acid</td>
</tr>
<tr>
<td>I</td>
<td>isoleucine, amino acid</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>concentration of inhibitor where activity is reduced to 50%</td>
</tr>
<tr>
<td>Ile</td>
<td>isoleucine, amino acid</td>
</tr>
<tr>
<td>IMAC</td>
<td>immobilised metal affinity chromatography</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropylthio-B-D-galactosidase</td>
</tr>
<tr>
<td>K</td>
<td>lysine, amino acid</td>
</tr>
<tr>
<td>K<sub>av</sub></td>
<td>gel phase distribution co-efficient</td>
</tr>
<tr>
<td>k<sub>cat</sub></td>
<td>enzyme rate constant</td>
</tr>
<tr>
<td>k<sub>cat</sub>/K<sub>M</sub></td>
<td>catalytic efficiency constant</td>
</tr>
</tbody>
</table>
kDa kilodalton
\(K_{\text{half}} \) Michaelis constant
\(K_i \) inhibitor constant
\(K_M \) Michaelis constant
KO knockout
LB Luria Bertani
Leu leucine, amino acid
LOS lipooligosaccharide
Lys lysine, amino acid
M methionine, amino acid
MFS major facilitator superfamily
min minutes
MOPs 3-(N-morpholino)propanesulfonic acid
MQ milliQ ultrapure water
MW molecular weight
N asparagine, amino acid
Na\(_2 \)S sodium sulphide
nm nanometer
NOD nucleotide-binding oligomerisation domain
NRA no reducing agent
N-terminal amino terminus
OAS \(O \)-acetylserine
OASS \(O \)-acetylserine sulphhydrylase
OMVs outer membrane vesicles
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opa</td>
<td>opacity-associated</td>
</tr>
<tr>
<td>P</td>
<td>proline, amino acid</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PAPS</td>
<td>phosphoadenosylphosphosulphate</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>protein databank</td>
</tr>
<tr>
<td>Phe</td>
<td>phenylalanine, amino acid</td>
</tr>
<tr>
<td>PLP</td>
<td>pyridoxal 5'-phosphate</td>
</tr>
<tr>
<td>PMNs</td>
<td>polymorphonuclear neutrophils</td>
</tr>
<tr>
<td>Pro</td>
<td>proline, amino acid</td>
</tr>
<tr>
<td>Q4</td>
<td>quenching buffer</td>
</tr>
<tr>
<td>REV</td>
<td>reverse sequence</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RSAP</td>
<td>reductive sulphate assimilation pathway</td>
</tr>
<tr>
<td>S</td>
<td>serine, amino acid</td>
</tr>
<tr>
<td>S<sup>-2</sup></td>
<td>sulphide ion</td>
</tr>
<tr>
<td>SAT</td>
<td>serine acetyltransferase</td>
</tr>
<tr>
<td>sbp</td>
<td>sulphate binding protein</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>sec</td>
<td>seconds</td>
</tr>
<tr>
<td>Ser</td>
<td>serine, amino acid</td>
</tr>
<tr>
<td>STI</td>
<td>sexually transmitted infection</td>
</tr>
<tr>
<td>T</td>
<td>threonine, amino acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>TAE</td>
<td>tris-acetate-EDTA</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
<tr>
<td>TEMED</td>
<td>tetramethylethylenediamine</td>
</tr>
<tr>
<td>Thr</td>
<td>threonine, amino acid</td>
</tr>
<tr>
<td>TLRs</td>
<td>toll-like receptors</td>
</tr>
<tr>
<td>TNB</td>
<td>5-thio-2-nitrobenzoate</td>
</tr>
<tr>
<td>tNCS</td>
<td>translational non-crystallographic symmetry</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>Trp</td>
<td>tryptophan, amino acid</td>
</tr>
<tr>
<td>Tyr</td>
<td>tyrosine, amino acid</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>v</td>
<td>rate</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>Val</td>
<td>valine, amino acid</td>
</tr>
<tr>
<td>Vmax</td>
<td>maximum reaction rate</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>XDS</td>
<td>X-ray detector software</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction

1.1 Introduction

Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection (STI) gonorrhoea (Hill *et al.*, 2016; Wi *et al.*, 2017). *N. gonorrhoeae* is a Gram-negative, diplococcus (referred to as gonococcus, GC), obligate human pathogen primarily transmitted through sexual contact (Hill *et al.*, 2016). Records of the contagious nature of *N. gonorrhoeae* can be seen in biblical times, indicating gonorrhoea to be one of the oldest recorded human diseases (Edwards & Apicella, 2004). More than 60 million cases of gonorrhoea were reported annually in 1996 (Gerbase *et al.*, 1998), with numbers increasing to an estimated over 85 million cases worldwide in 2016, making it the third most prevalent STI worldwide (Rowley *et al.*, 2019). Alongside this, an increasing number of strains have developed antimicrobial resistance (AMR) to every available antibiotic used for its treatment (Wi *et al.*, 2017). Due to the combination of both increasing prevalence and increasing AMR, the World Health Organisation (WHO) has labelled *N. gonorrhoeae* as a high priority pathogen (WHO, 2017). All three of these factors have created an increased demand for the development of new antimicrobial agents to treat this disease in the future. Targeting and prevention of amino acid biosynthesis in bacteria is one such new and promising avenue for this development. The amino acid cysteine is not only crucial for protein folding and function, and protection from oxidative stress during infection, but its biosynthesis is the primary pathway for sulphur acquisition in bacterial cells (Hatzios & Bertozzi, 2011; Takumi & Nonaka, 2016; Ren *et al.*, 2017; Anderson *et al.*, 2019). Therefore, making cysteine biosynthesis a promising target for development of new antimicrobial drugs. This pathway, however, remains uncharacterised in *N. gonorrhoeae*. This research investigates the enzyme CysK O-acetylserine sulphhydrylase (CysK), which is involved in the final step of cysteine biosynthesis, as a potential antimicrobial target in *N. gonorrhoeae*.

1.2 Pathogenesis of Gonorrhoea

N. gonorrhoeae has evolved alongside humans for millennia, resulting in its host restriction to humans, and thus its obligate human pathogenicity (Landig *et al.*, 2019). The ability of *N. gonorrhoeae* to mitigate host immune responses through a variety of mechanisms heavily contribute to its pathogenic success. *N. gonorrhoeae* infects a variety
of mucosal surfaces such as the urethra, the endocervix, the ectocervix, the nasopharynx, conjunctiva (inside of eyelids and the white surface of eyes) and the rectum with the urogenital epithelia (urethra, endocervix and ectocervix) being the most common sites of infection (Edwards & Apicella, 2004; Edwards & Butler, 2011; Hill et al., 2016; Wi et al., 2017; Landig et al., 2019; Rowley et al., 2019). It is also common for new-born babies to contract *N. gonorrhoeae* infection in their anus, nasopharynx and eyes from mothers with gonorrhoea (Sandstrom, 1987).

Gonorrhoeal infection begins with colonisation of the mucosal membrane, via adhesion to the epithelial cells through four established adhesins; (1) the major outer membrane protein, porin, (2) two types of opacity-associated (Opa) proteins, Opa50 and Opa52, (3) a major glycolipid of the outer membrane of gonococcus (GC), lipooligosaccharide (LOS) which lacks the repeating O-antigen of lipopolysaccharide, and (4) long polymers of pilin proteins that protrude from the GC surface, type IV-A pili (Edwards & Butler, 2011). The mode of adhesion used by GC is dependent on specific cell type, site of infection, and gender (Edwards & Apicella, 2004). Once initial adhesion occurs, the gonococci begin to form micro-colonies on non-ciliated columnar epithelial cells 1 – 2 hours after infection (Hill et al., 2016). From this stage, the general process involves the pilus-mediated attachment of the GC to the CD46 host cell-surface receptors. This begins once the micro-colonies reach a cell density of 100+ GC (Figure 1.1) (Hill et al., 2016). Tighter binding to the host cells is mediated via PilE depolymerisation of pilus structures which is followed by Opa binding to CEACAM receptors (Figure 1.1) (Hill et al., 2016). Actin polymerisation and rearrangement is induced within the host cells. This results in bacterial endocytosis into host cells, transcellular transcytosis or trafficking of bacteria to the basolateral side of cells where they are exocytosed into the subepithelial layer (Figure 1.1) (Hill et al., 2016). GC isolated from the male urethra show co-expression of pili and at least one of several Opa proteins. In women however, Opa expression varies depending on the stage of the menstrual cycle, and the consumption of oral contraceptives (Hill et al., 2016). The adhesion process GC undertakes is thus dependent upon the nature of its host. In some infections, *N. gonorrhoeae* is able to remain inside mucosal cells, in a dormant state, avoiding activation of the immune system (Hopper et al., 2000).
Figure 1.1: Schematic representation of a *N. gonorrhoeae* infection. (1) Piliated, Opa-expressing gonococci interact with the mucosal epithelium. The thin, hair-like pilus appendages provide the initial contact with receptors on the surface of the mucosal cells. (2) Pili are then retracted which allows for more intimate, Opa-mediated attachment of the bacteria with the CD66 antigens located on the mucosal cells. (3) Following Opa-mediated attachment, the bacteria are engulfed and are internalised into the mucosal cells. (4) Following internalisation, some bacteria can transcytose to the basolateral side of the mucosal epithelium. (5) Depending upon which Opa protein is being expressed, gonococci can also reside and survive inside of neutrophils. (6) Following transcytosis, gonococci can enter the bloodstream where heavy sialylation of lipoooligosaccharide (LOS) renders the bacteria serum resistant. Figure from (Hill et al., 2016).

Upon attachment to mucosal cells, or entrance into the sub-epithelial layer, an immune response is triggered (Hill et al., 2016). This immune response involves recruitment of pro-inflammatory cytokines and neutrophils to the infection site, leading to the observable symptoms of GC infection, localised inflammation and pustular discharge (Ramsey et al., 1995; Fisette et al., 2003; Hill et al., 2016; Anderson et al., 2019). This initial infection causes uncomplicated cervicitis in women, and urethritis in men, both of which present observable symptoms and are local infections (Unemo & Shafer, 2014). However, in many cases, *N. gonorrhoeae* is in a persistent state, presenting an asymptomatic subclinical infection where no immune response is triggered (Workowski & Berman, 2011). Asymptomatic subclinical infections result in persistent GC infection. This affects women disproportionately to men, occurring in 50% of cases compared to 10% respectively (Workowski & Berman, 2011).
Persistent bacteria are a subpopulation of bacteria that differentiate to become dormant and significantly decrease their rate of division (Kussell et al., 2005; Balaban, 2011). This improves the bacteria’s ability to survive environmental stresses such as nutrient starvation or antibiotic treatments (Kussell et al., 2005; Balaban, 2011). Bacteria in this persistent state have a higher tolerance to antibiotics as they downregulate the replication and division cellular processes that are targeted by antibiotics, sometimes completely avoiding antibiotic exposure (Lewis, 2010; Balaban, 2011; Maisonneuve & Gerdes, 2014). This persistence is different to antibiotic resistant phenotypes, which prevent antibiotics from binding to their targets (Lewis, 2010). Once environmental stresses have attenuated, the dormant subpopulation can upregulate its cellular growth pathways, actively dividing, thus repopulating their environment (Balaban, 2011).

Untreated asymptomatic GC infections can over time enter a carrier state. In the carrier state, apparently healthy individuals carry the disease and are able to transmit the infection, or it can allow GC to ascend into the upper urogenital tract leading to more complicated infections (Hopper et al., 2000; Edwards & Apicella, 2004; Edwards & Butler, 2011). Complications include pelvic inflammatory disease, salpingitis (acute inflammation of the fallopian tubes) and endometritis, all of which can lead to infertility or an ectopic pregnancy (where pregnancy occurs outside the uterus and is often life-threatening) (Hopper et al., 2000; Fisette et al., 2003; Edwards & Apicella, 2004; Edwards & Butler, 2011; Rowley et al., 2019). In rare cases, certain strains are capable of dissemination, crossing the endothelium, resulting in septic arthritis, pustular skin lesions, and bacteraemia (presence of bacteria in the blood stream, which can cause serious harm to the body and spread to other organs) (Hopper et al., 2000; Fisette et al., 2003; Edwards & Apicella, 2004; Hill et al., 2016; Rowley et al., 2019). Nasopharyngeal infections are of particular concern, due to their asymptomatic nature and hypothesised role as one of the main routes for acquisition of antimicrobial resistant genes (Unemo & Shafer, 2014). *N. gonorrhoeae* is naturally transformable, readily accepting DNA, such as antibiotic resistant plasmids, from the environment into its chromosome, even if these plasmids are present during periods of persistence (Ochman et al., 2000). The ability to naturally transform, plays a large role in the antigenic variation generated by *N. gonorrhoeae*. This allows evasion of the immune systems recognition of the pathogen, thus allowing multiple infections to occur in an individual over their lifetime (Stern et al., 1986; Criss et al., 2005; Hill et al., 2016).
1.3 Surfacing of antibiotic resistant *Neisseria gonorrhoeae*

The WHO has labelled *N. gonorrhoeae* as a high priority pathogen due to the rapid surfacing of antibiotic resistant strains (WHO, 2017). *N. gonorrhoeae* has the highest levels of AMR across all STIs. Over the last 70 to 80 years, *N. gonorrhoeae* has become increasingly resistant to an extensive range of antibiotic classes including: fluoroquinolones, macrolides, sulphonamides, penicillins, tetracyclines, and early generation cephalosporins (Unemo & Shafer, 2014; Wi *et al.*, 2017; Bodie *et al.*, 2019). The only remaining empirical monotherapy for gonorrhoeal treatment is the injectable extended-spectrum cephalosporin (ESC) ceftriaxone. However, treatment failures and *in vitro* resistance to cefixime and ceftriaxone alongside high-level clinical resistance to all ESCs has been found in many countries (Unemo & Shafer, 2014; Wi *et al.*, 2017). Combined with the possibility of *N. gonorrhoeae* developing AMR to any monotherapy antibiotic, it was thought that monotherapy was no longer an option (Unemo & Shafer, 2014; Bodie *et al.*, 2019; Unemo *et al.*, 2020). Thus, to combat AMR development, particularly to ceftriaxone as the only effective monotherapy antibiotic, dual-therapy of the ESC ceftriaxone combined with the oral antibiotic azithromycin was recommended (Unemo & Shafer, 2014; Kidd & Workowski, 2015; Wi *et al.*, 2017; Unemo *et al.*, 2020). However, AMR to ceftriaxone and azithromycin is on the rise, on a global scale (Unemo & Shafer, 2014; Eyre *et al.*, 2018; Fifer *et al.*, 2018; Bodie *et al.*, 2019; George *et al.*, 2019; Cyr *et al.*, 2020). In 2018, strains of *N. gonorrhoeae* that were completely resistant to both ceftriaxone and azithromycin were isolated in the UK (Eyre *et al.*, 2018; Jennison *et al.*, 2019). These cases resulted in three days of hospitalisation with last resort intravenous antibiotic treatment for the patients. There have been no cases of treatment resistant gonorrhoea in New Zealand, however, ceftriaxone and azithromycin resistance have been detected in several district health boards (Lee *et al.*, 2018). Antimicrobial susceptibility of 400 New Zealand *N. gonorrhoeae* was tested in a recent study, revealing around 4 and 10% of isolates had decreased susceptibility to ceftriaxone and azithromycin respectively (Lee *et al.*, 2018). Combined with the increasing incidence of gonorrhoea infection in New Zealand and across the globe (Lee *et al.*, 2018; Rowley *et al.*, 2019), the possibility of ceftriaxone and azithromycin resistant gonorrhoea emergence in New Zealand is ever increasing.

As a result of increasing evidence of strains resistant to dual-therapy and azithromycin in particular, the United States (US) Centre for Disease Control and Prevention (CDC) updated its treatment guidelines in 2020, recommending monotherapy with ceftriaxone
(Cyr et al., 2020). Subsequently, the ‘super-bug’ status, alongside *N. gonorrhoeae*’s labelling as a ‘high priority pathogen’ by the WHO demonstrates the urgent need for research to develop both vaccines to reduce the spread of gonorrhoea, and new antimicrobial agents for treatment of AMR gonorrhoea infections (WHO, 2017). New antimicrobial targets for the design of new antibiotics are in critical demand. One such approach, is targeting the pathways and mechanisms essential for infection and survival of *N. gonorrhoeae*.

The sulphur assimilation and cysteine biosynthetic pathways play an integral role in survival of many persistent pathogens and as such provide a new and promising area for antimicrobial research (Campanini et al., 2014). This avenue has been investigated for development of antimicrobials for treatment of pathogens such as the tuberculosis causing bacterium, *Mycobacterium tuberculosis*, or the acute gastroenteritis causing bacterium, *Salmonella typhimurium* (Campanini et al., 2014). We hypothesise these pathways are also a valid target in *N. gonorrhoeae*.

1.4 Oxidative stress and the role of L-cysteine in *N. gonorrhoeae*

The primary method of environmental inorganic sulphur acquisition in almost all bacteria requires L-cysteine biosynthesis. Cysteine residues play a vital role in protein folding, structure and therefore function, through the disulphide bonds they form (Takumi & Nonaka, 2016). Cysteine is also used to form an array of vital biomolecules such as biotin, co-enzyme-A and iron sulphur clusters (Kredich, 2008; Takumi & Nonaka, 2016; Hicks & Mullholland, 2018). Cysteine is also utilised for producing reducing agents thioredoxin and glutathione, which are essential for mitigating intracellular oxidants (Carmel-Harel & Storz, 2000; Kredich, 2008; Hicks & Mullholland, 2018).

One of the primary challenges for bacteria, in particular pathogenic bacteria, is surviving the hostile host environment and evading the host immune system, both of which *N. gonorrhoeae* is proficient in (Quillin & Seifert, 2018). *N. gonorrhoeae* inhabits an environment of unrelenting oxidative stress and is constantly under pressure of oxidative killing from the host (Seib et al., 2006). Thus, making mechanisms to mitigate this oxidative stress of extreme importance. There are two main sources of oxidative stress *N. gonorrhoeae* is exposed to; oxidative stress produced by commensal *Lactobacillus* species, and the host immune system. The immune system exerts this oxidative killing
mechanism primarily through polymorphonuclear neutrophils (PMNs) (Seib et al., 2006; Quillin & Seifert, 2018).

Lactobacilli are one of the most prevalent micro-flora of the female urogenital tract (Larsen & Monif, 2001). *Lactobacillus* species have been shown to inhibit *N. gonorrhoeae* colonisation of the urogenital tract (Larsen & Monif, 2001; Seib et al., 2006). *Lactobacillus* species secrete lactate, which lowers pH, promoting aerobic respiration, which leads to endogenous production of reactive oxygen species (ROS) (Seib et al., 2006). *Lactobacilli* also secrete hydrogen peroxide, which is shown to inhibit growth of *N. gonorrhoeae* at a more acidic pH (Larsen & Monif, 2001; Seib et al., 2006). It was also found that *Lactobacillus* and *Candida* species may co-colonise the female urogenital tract (Larsen & Monif, 2001). In addition, *Candida* species were found to produce gliotoxin, a substance that suppresses the growth of *N. gonorrhoeae* (Hipp et al., 1974; Larsen & Monif, 2001).

Oxidative stress from the host immune system begins with colonisation of the surface of cell epithelia. During colonisation, *N. gonorrhoeae* releases outer membrane vesicles (OMVs) and LOS, which bind to nucleotide binding oligomerisation domain (NOD) and toll-like receptors (TLRs) on dendritic cells and macrophages (Fisette et al., 2003; Liu et al., 2006; Quillin & Seifert, 2018). Upon binding, a signalling cascade results in release of chemokines and cytokines (Fisette et al., 2003; Liu et al., 2006; Hill et al., 2016; Quillin & Seifert, 2018). Release of the cytokines recruits PMNs to the site of infection (Edwards & Apicella, 2004; Hill et al., 2016; Quillin & Seifert, 2018). PMNs phagocytose *N. gonorrhoeae*, using antibacterial peptides, proteases and neutrophil mediated oxidative burst (rapid release of ROS). The oxidative burst results in superoxide anion formation, which leads to further ROS (Seib et al., 2006; El-Benna et al., 2016; Quillin & Seifert, 2018). Phagocytosis is an effective method for killing most bacteria, however, *N. gonorrhoeae* has evolved the ability to survive this process, mitigating the oxidative burst and replicating within the PMNs (Simons et al., 2005). The purulent excretion, which is characteristic of gonorrhoea infection, is largely comprised of PMNs infected with *N. gonorrhoeae* (Hill et al., 2016). For *N. gonorrhoeae* to be capable of
mitigating this oxidative stress, an effective intracellular reducing system is required. Most of the compounds that comprise this system are derived from L-cysteine.

One such compound is glutathione, which is synthesised by glutathione reductase. Glutathione’s role in the cell is to regulate the redox balance when encountering free radicals released by the host cell and to prevent unwanted oxidation of cellular contents (Meister & Anderson, 1983; Pinto et al., 2013). Therefore, glutathione levels are one of the main oxidative stress mitigating mechanisms encountered during infection. Glutathione synthesis systems are present in *N. gonorrhoeae* (Hicks & Mullholland, 2018), however, there is a distinct lack of glutathione transportation systems (Seib et al., 2006). Given the lack of transporters, glutathione synthesis in *N. gonorrhoeae* is dependent on the cysteine biosynthetic pathway (Hicks & Mullholland, 2018).

1.5 Sulphate assimilation and cysteine biosynthesis in *Neisseria* species

The *de novo* biosynthesis of L-cysteine has been extensively studied and is conserved across bacteria, protozoa and higher plant species (Mino & Ishikawa, 2003; Jeelani et al., 2017). This is the main pathway for these organisms to acquire environmental inorganic sulphur (Nozaki et al., 1999; Jeelani et al., 2017). *Neisseria meningitidis* and *N. gonorrhoeae* share a large degree of genome similarity (90%) (Hicks & Mullholland, 2018), however, there are key differences between these two pathogenic *Neisseria* species. Namely, sulphate acquisition and cysteine synthesis pathways, which will be discussed in this section.

1.5.1 Active sulphate transport

Cysteine biosynthesis begins with the import of sulphur into the cell, and subsequent reduction via the reductive sulphate assimilation pathway (RSAP) (Campanini et al., 2014). There are two main families of sulphate transporter proteins responsible for the uptake of inorganic sulphate into microbial cells, the major facilitator superfamily (MFS) and the ATP-binding cassette (ABC) superfamily (Kertesz, 2001; Guédon & Martin-Verstraete, 2007). These transporters actively import sulphate into the cell. Genomic analysis of pathogenic *Neisseria* species (*N. meningitidis* and *N. gonorrhoeae*) showed
that \textit{N. gonorrhoeae} only has one sulphate uptake system, from the ABC transporter superfamily (Figure 1.2) (Hicks & Mullholland, 2018).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.png}
\caption{Sulphate acquisition and cysteine biosynthetic pathways in \textit{Neisseria} species. The sulphate reduction pathway absent in \textit{N. gonorrhoeae} is shown in red. Red and black pathways are functional in \textit{N. meningitidis}. Differences between \textit{Neisseria} species and other bacterial species are shown by two dotted lines. Figure from (Hicks & Mullholland, 2018).}
\end{figure}

This is composed of a transporter permease (\textit{cysW}), an ATP-binding protein (\textit{cysA}), periplasmic sulphate-binding protein (\textit{sbp}) and a sulphate permease (\textit{cysU}) (Kertesz, 2001; Hicks & Mullholland, 2018). The sulphate permease (\textit{cysU}) is present in both \textit{Neisseria} species except for the FA1090 \textit{N. gonorrhoeae} strain (Hicks & Mullholland, 2018). The \textit{sbp} transporter has previously been shown to transport sulphate (Kredich, 2008) and given that \textit{N. gonorrhoeae} is able to grow with thiosulphate as a sole source of sulphur (Le Faou, 1984), this indicates that \textit{sbp} is able to transport thiosulphate in \textit{N. gonorrhoeae} (Hicks & Mullholland, 2018).

\subsection*{1.5.2 Sulphate Reduction}

After importation into the cell, sulphate is prepared for incorporation into L-cysteine through successive reduction of sulphide (Figure 1.2). In \textit{E. coli}, sulphate is first reduced to adenosine 5'-phosphosulphate (\textit{APS}^1) by the multi-enzyme complex ATP sulphhydrlyase (CysDN) (Sekowska \textit{et al.}, 2000). In most bacteria, \textit{APS}^1 is reduced to
phosphoadenosylphosphosulphate (PAPS) by ATP-kinase (CysC), and is subsequently reduced by PAPS reductase (CysH), to sulphite and phosphoadenosylphosphate (PAP) (Sekowska et al., 2000; Kredich, 2008). However, in *Neisseria* species, both reduction of APS\(^1\) to PAPS, and subsequent reduction to PAP is carried out by a single enzyme, APS\(^1\) reductase (which is also denoted as CysH). This is therefore a single step reaction from APS\(^1\) reduced directly to sulphite (Figure 1.2) (Rusniok et al., 2009). The final step of the sulphate reduction pathway involves reduction of sulphite to sulphide by the sulphite reductase (CysIJ) (Kredich, 2008). Sulphide is then incorporated with O-acetylserine to form L-cysteine (Figure 1.2).

Genome analysis of *Neisseria* species revealed the variance in completeness and arrangement of the sulphate reduction pathway (Hicks & Mullholland, 2018). In *N. meningitidis*, both import and reduction genes are controlled by a single operon cysGHDNJI. However, in all *N. gonorrhoeae* strains examined by Hicks and Mullholland (2018), a 3.5 kb deletion between cysG and cysN genes, has removed cysH and cysD from this operon (Figure 1.3) (Hicks & Mullholland, 2018). These genes are not found anywhere else in the *N. gonorrhoeae* genome (Hicks & Mullholland, 2018). The sulphite reductase encoding genes, cysIJ, are present in the *N. gonorrhoeae* genome, however, they are non-functional due to an in-frame stop codon present in each coding sequence (Figure 1.3) (Hicks & Mullholland, 2018). cysD deletion would prevent *N. gonorrhoeae* from reducing sulphate to APS\(^1\), alongside cysH deletion preventing subsequent reduction of APS\(^1\) to sulphite. The in frame stop codons in cysIJ would prevent reduction of sulphite to sulphide. The combination of these deletions and in frame stop codons renders this pathway of sulphate reduction non-functional in *N. gonorrhoeae*. Investigation of the sulphur requirements of *Neisseria* species, demonstrated the inability of *N. gonorrhoeae* to grow on sulphate as its sole source of sulphur (Le Faou, 1984). This is consistent with the non-functional sulphate reduction pathway in *N. gonorrhoeae* described above. Other commensal species and some strains of *N. meningitidis*, however, can grow on sulphate as a sole sulphur source. Previous growth experiments demonstrated *N. gonorrhoeae*’s ability to grow on media supplemented with thiosulphate, in the absence of L-cysteine (Le Faou, 1984). The requirement for L-cysteine, being met by thiosulphate links to the non-functional sulphite reducing pathway and suggests that the ABC transporter complex is able to import both thiosulphate and sulphate (Hicks & Mullholland, 2018).
1.5.3 L-Cysteine and L-Cystine transport

It is well established that de novo cysteine biosynthesis is well conserved across bacteria and many other species, however, bacteria can also obtain L-cysteine directly from the environment. Under oxidative conditions, L-cysteine is more commonly found in its oxidised form L-cystine (a disulphide bond is formed between two L-cysteine molecules) (Korshunov et al., 2020). In Neisseria species, L-cysteine and L-cystine are actively imported into the cell via ABC-transporters. *N. gonorrhoeae* has ABC transporters for both L-cysteine (*ngo2011-2014*), and L-cystine (*ngo0372-0374*) (Figure 1.4) (Bulut et al., 2012; Hicks & Mullholland, 2018). Interestingly, in *N. meningitidis*, homology searches of the genome showed the presence of only the L-cystine transporter *nmb0786-0789* (Figure 1.4). The cystine ABC transporter operon in *N. meningitidis* shows 97% identity to the *ngo0372-0374* L-cystine ABC transporter operon indicating similar modes of cystine transport in both species (Hicks & Mullholland, 2018). *N. gonorrhoeae* and *N. meningitidis* genome comparisons (90% sequence homology), however, demonstrated complete deletion of the L-cysteine ABC transporter operon from *N. meningitidis*. Further research indicated these genes were not present anywhere in the *N. meningitidis* genome (Hicks & Mullholland, 2018). This suggests *N. meningitidis* relies on L-cystine import and de novo cysteine biosynthesis to meet its L-cysteine demands, or otherwise, has an alternate transporter for L-cysteine (Hicks & Mullholland, 2018). This difference may be due to variance in cysteine/cystine availability in the host infection sites of *N. gonorrhoeae* and *N. meningitidis*.

![Figure 1.3: Comparison of the sulphate reduction operons from N. meningitidis and N. gonorrhoeae. Dotted lines show a deletion between cysG and cysN in N. gonorrhoeae, resulting in a deletion between cysG and cysN in N. gonorrhoeae. This causes deletion of cysH and cysD and the partial truncation of cysG and cysN. Direction of arrows indicates direction of transcription. Dashed lines show stop codons in pseudogenes of N. gonorrhoeae. Figure from (Hicks & Mullholland, 2018).](image-url)
Figure 1.4: Comparison of L-cysteine and L-cystine ABC transporters in \textit{N. gonorrhoeae} and \textit{N. meningitidis}. The complete cystine ABC transporter is present in both \textit{Neisseria} species (top). The cysteine ABC transporter operon present in only \textit{N. gonorrhoeae} (bottom). Directions of arrows indicate direction of transcription. Dashed lines represent areas of homology. Figure from (Hicks & Mullholland, 2018).

Importation of L-cysteine and L-cystine from the environment is well conserved across many species of bacteria, particularly in pathogens. This provides an advantage over \textit{de novo} synthesis of L-cysteine, as importation is a less energy dependent process (Takahashi \textit{et al.}, 2018). However, transportation alone would not be ideal in an oxidative environment, such as the infection sites of both \textit{N. gonorrhoeae} and \textit{N. meningitidis}, or a cysteine/cystine deplete environment, therefore justifying the need for \textit{de novo} biosynthesis of L-cysteine.

1.5.4 Cysteine biosynthesis

The cysteine biosynthesis pathway is a two-step reaction, catalysed by two enzymes, serine acetyltransferase (SAT) and \textit{O}-acetylserine sulphydrylase (OASS), denoted as CysE and CysK/CysM (OASS isoforms), respectively. First, CysE catalyses the acetylation of L-serine, forming \textit{O}-acetylserine and CoA (Figure 1.5). In the final step, \textit{O}-acetylserine undergoes a CysK catalysed condensation reaction with sulphide to form L-cysteine (Figure 1.5). This two-step pathway is regulated at its first step by feedback inhibition with L-cysteine (Figure 1.5).

Figure 1.5: Cysteine biosynthesis pathway. CysE denoted as SAT and CysK denoted as OASS. Red line indicates cysteine feedback inhibition of CysE. Figure adapted from (Yi \textit{et al.}, 2013)
CysE is a member of the left-handed parallel β-helix family that catalyse the committed step in the de novo synthesis of L-cysteine in both plants and bacteria (Johnson et al., 2005). CysE has been identified as an essential gene in *N. gonorrhoeae* (Remmele et al., 2014) and while it is non-essential in *N. meningitidis*, the cysE deletion strain has impaired growth in media (Capel et al., 2016). The cysteine feedback inhibition of CysE is well conserved across bacteria and is the primary method for prevention of high concentrations of L-cysteine, which are toxic to bacteria (Takumi & Nonaka, 2016; Benoni et al., 2017b).

OASS belongs to the tryptophan synthase β superfamily and the β-family of pyridoxal 5’-phosphate (PLP) dependent enzymes making it a PLP dependent enzyme (Mino & Ishikawa, 2003; Guédon & Martin-Verstraete, 2007; Takumi & Nonaka, 2016). PLP is utilised as a cofactor in the active site of the enzyme. OASS has two isoforms, OASS-A (CysK) and OASS-B (CysM) (Kredich, 2008). Most bacteria have both CysK (OASS-A) and CysM (OASS-B) isoforms for cysteine biosynthesis using sulphide or thiosulphate respectively. *S. typhimurium* is one such example, where both OASS isoforms are present, however, CysK (OASS-A) was shown to be expressed in excess of CysM (OASS-B) under aerobic conditions, and vice versa under anaerobic conditions (Tai et al., 1993). CysM differs from CysK, as it can directly utilise thiosulphate to produce S-sulphocysteine, which is then reduced to L-cysteine (Tai et al., 1993). Interestingly, *Neisseria* species are unique in that they only have one OASS isoform. This has greatest homology to CysK (OASS-A) and is hypothesise to utilise sulphide for cysteine biosynthesis (Hicks & Mullholland, 2018). This raises interesting questions regarding the role of CysK in *N. gonorrhoeae*, with the bacterium’s inability to reduce sulphate to sulphide and its reliance on thiosulphate for cysteine biosynthesis, a substrate that is usually utilised by the alternate OASS isoform CysM. While *cysK* is not an essential gene for pathogenic *Neisseria* species (Remmele et al., 2014), it has been shown to be important for colonisation of epithelial cells in *N. meningitidis* and when knocked out results in both decreased fitness and increased susceptibility to antibiotics (Turnbull & Surette, 2010; Capel et al., 2016).
1.6 Regulation of cysteine biosynthesis

1.6.1 Transcriptional regulation of sulphate acquisition and cysteine biosynthesis

Transcriptional regulation of the cysteine regulon is controlled by the master regulator CysB, a homotetramer, and a member of the LysR family of transcription factors (Jovanovic et al., 2003; Hicks & Mullholland, 2018). The CysB N-terminal domain contains a helix-turn-helix motif which allows DNA binding to occur (Lochowska et al., 2004). The CysE product OAS is unstable and rapidly non-enzymatically forms the isoform N-acetylserine, both of which cause CysB to positively regulate the sulphate acquisition and cysteine biosynthesis genes, however, N-acetylserine produces a markedly higher response (Ostrowski & Kredich, 1989; Hryniewicz & Kredich, 1991). It is proposed that binding of N-acetylserine causes a conformational change in CysB, which then binds to CysB binding regions and recruits RNA polymerase (Hicks & Mullholland, 2018). CysB has been shown to upregulate expression of sulphate acquisition genes *cysJIH, cysK*, and *cysP*, alongside negatively autoregulating its own transcription through binding upstream of its own promoter (Ostrowski & Kredich, 1989, 1991; Lochowska et al., 2004). The DNA binding repeat for CysB (CCGTTG-N_{17}-CAACGG) was found in the *cysB* promoter region in both *N. gonorrhoeae* and *N. meningitidis* (Hicks & Mullholland, 2018). However, these binding sites could not be confirmed at the start of either the cysteine biosynthesis or the sulphate reduction regulon genes in *N. gonorrhoeae*. This could be a consequence of low conservation of the CysB binding sequences.

Transcriptional regulation of both the cysteine regulon and the sulphate acquisition pathway are of particular importance to pathogenic bacteria, as successful infection depends on the ability of the pathogen to rapidly adapt and overcome host defences. Alongside this, *cysB* has been identified as an essential gene in *N. gonorrhoeae* (Remmele et al., 2014). CysB transcriptional regulation has control over many sulphate acquisition genes including that of *cysK* and thus, also has complete control over expression of the CysK protein.
1.6.2 The cysteine synthase complex

Feedback inhibition of CysE is not the only method through which sulphur flux throughout the cysteine biosynthesis pathway is regulated. The other mechanism for regulating sulphur flux in this pathway is the formation of the cysteine synthase complex (CSC). The complex is composed of the two enzymes that catalyse the two step cysteine biosynthesis pathway, CysE and CysK. Gel filtration chromatography and fluorescence studies have shown that this complex consists of a 3:2 protomer ratio, consisting of one CysE hexamer and two CysK dimers (Figure 1.6) (Kredich et al., 1969; Johnson et al., 2005; Benoni et al., 2017b; Hicks & Mullholland, 2018).

![Figure 1.6: Analysis of the cysteine synthase complex from E. coli.](image)

This complex was first discovered during the purification of CysK and CysE from *S. typhimurium* (Kredich & Tomkins, 1966; Kredich et al., 1969). Further evidence of CSC formation has been found in other bacterial species, including *E. coli* (Mino et al., 2000; Benoni et al., 2017b), *Haemophilus influenzae* (Huang et al., 2005), and *M. tuberculosis* (Schnell et al., 2007), as well as some plant species (Yi et al., 2013). In this formation, the C-terminal tail of CysE inserts into the active site of CysK to inhibit its activity.

Formation of the CSC is essentially controlled by sulphur availability. When the complex is formed, CysE loses sensitivity to feedback inhibition by L-cysteine, and catalytic activity increases as a result of reduced substrate inhibition by L-serine (Benoni et al., 2017b). With high availability of sulphur to the cell, the CSC is stabilised by bisulphide, conversely, when sulphur availability is low, *O*-acetylserine (OAS) accumulates, signalling sulphur starvation and dissociation of the complex (Zhao et al., 2006; Benoni...
et al., 2017b). Dissociation of the CSC can occur at μM OAS concentrations (upwards of 50μM OAS) (Kredich et al., 1969; Wang & Leyh, 2012), OAS is then able to non-enzymatically isomerise to N-acetylserine, which can bind to transcriptional regulator CysB, promoting expression of sulphate acquisition genes (Jovanovic et al., 2003; Kredich, 2008; Wang & Leyh, 2012). In contrast to the CSC formations effect on CysE, CysK becomes almost completely inhibited (Saito et al., 1995).

Binding of the CysE C-terminal peptide into CysK’s active site has been confirmed through fluorescent spectroscopy peptide binding studies, where a blue shift in emission (500 nm) is observed by PLP, the co-factor of CysK (Campanini et al., 2014). The CSC is an important regulator of the cysteine biosynthesis pathway and has yet to be characterised in N. gonorrhoeae.

The CSC structure has not yet been established, however, there is a crystal structure of CysK from H. influenzae, with a 10 amino acid C-terminal peptide bound in the active site (Huang et al., 2005). The key residues required for binding were determined via screening a tetrapeptide library. Binding ability was monitored by CysK activity and PLP fluorescence (Campanini et al., 2014). It was determined that a C-terminal isoleucine (Ile) is essential for binding and inhibition of CysK. This residue is well conserved across CSC forming organisms, including S. typhimurium, H. influenzae and E. coli (Huang et al., 2005; Salsi et al., 2011; Benoni et al., 2017b).

Previous research using Clustal Omega (Madeira et al., 2019), generated a sequence alignment of CysE bacterial homologues that was analysed using ESPript 3.0 (Robert & Gouet, 2014). This analysis concluded that CysE from N. gonorrhoeae had moderate sequence similarities to other CysE homologues (57%, however, with a 97% similarity to N. meningitidis being the exception) (Oldham, 2020). The C-terminus four peptide fragment, GDGI was well conserved across three species with DFMI being the conserved peptide sequence in Neisseria species (Oldham, 2020). The conservation of this terminal Ile indicates potential formation of the CSC in N. gonorrhoeae. It has also been confirmed that the CysK active site serves as the anchor for the formation of the CSC (Campanini et al., 2015). Given the complete inhibition of CysK by the CSC formation and key differences in sulphur acquisition and cysteine biosynthesis shown in other bacterial species, characterisation both CysK and the CSC in N. gonorrhoeae would provide
further insight into elucidating the sulphur assimilation and synthesis of L-cysteine in *N. gonorrhoeae*.

1.7 *O*-acytetylserine sulphhydrylase/CysK

1.7.1 Structural characteristics of CysK

O-acytetylserine sulphhydrylase (OASS), CysK, is a pyridoxal 5’phosphate (PLP) dependent enzyme belonging to the OASS belongs to the tryptophan synthase β superfamily (Fold type II) (Takumi & Nonaka, 2016). Characteristic of this, the lysine (Lys) residue key to forming a Schiff base with the aldehyde group of PLP is located closer to the N-terminus of each monomer, while the loop region that binds to the phosphate group of PLP is closer to the C-terminus of each monomer (Liang *et al.*, 2019). Another important distinction, the active site of the enzyme is made up of residues all from one subunit, compared to the fold type I family where the active site is made of residues combined from different subunits (Liang *et al.*, 2019). CysK is a homodimer comprised of two subunits, each of approximately 315 amino acid residues, composed of two domains, an N-terminal domain (formed predominantly by residues 1-145) and a C-terminal domain (formed predominantly by residues 146-315) (Rabeh & Cook, 2004). Each domain consists of an α/β fold with a central twisted β-sheet surrounded by α-helices Figure 1.7) (Rabeh & Cook, 2004). Crossover of N-terminus residues (13-34) into the C-terminal domain form the first two strands of these central β-sheets (Rabeh & Cook, 2004). The active site of each subunit is located deep within the protein at the interface of the N-terminal and C-terminal domains.

Figure 1.7: Cartoon representation of the *S. typhimurium* CysK structure (PDB # 2J3C). (a) Structure of the CysK dimer, with monomers coloured purple and green respectively. Bound PLP shown in licorice-stick format in green and orange respectively. (b) Structure of the CysK monomer, coloured from N-terminus (blue) to C-terminus (red). The central twisted β-sheet is surrounded by α-helices in both domains. Entry to the active side is seen on the left of the monomer. Figures generated in PyMOL.
Combination of improved stability and an allosteric anion-binding site at the dimer interface give purpose to the formation of the dimeric structure CysK forms (Rabeh & Cook, 2004).

To date there are 34 bacterial CysK structures deposited in the Protein Data Bank (PDB). Both structural and functional conservation of CysK is found across gram-negative bacteria and plant species, independent of sequence similarities (Benoni et al., 2017a). Within the active site, the PLP cofactor is in Schiff base linkage with the amino group of Lys-41 (Figure 1.8), whilst its pyridine ring is supported at the back by Valine (Val)-40. Main and side chain functional groups within the Glycine (Gly)-176-Threonine (Thr)-180 loop, anchor the 5’-phosphate of PLP (Figure 1.8) (Rabeh & Cook, 2004). The amide nitrogen and Schiff base nitrogen of the Asparagine (Asn)-71 residue can hydrogen bond with the O-3’ of PLP. The asparagine loop alongside Glutamine (Gln)-142 bind the substrate carboxylate group in the external Schiff base (Rabeh & Cook, 2004). Serine (Ser)-272 is within hydrogen bonding distance of PLP’s pyridine nitrogen (Figure 1.8).

Consensus sequence analysis of CysK enzymes has indicated 5’-phosphate PLP anchoring by a Gly-Thr loop (GTGGT) is conserved across 10 bacterial species ranging from residues 166-170 to residues 191-195 (Joshi et al., 2019). The exact same GTGGT motif is found in the N. gonorrhoeae CysK sequence at residues Gly-179-Thr-183 (Figure 3.13). The Schiff base linkage forming Lys-41 found in S. typhimurium is also conserved across 11 bacterial species ranging from residue position 35-58. This lysine is analogous to Lys-44 in N. gonorrhoeae. The asparagine that hydrogen bonds to O-3’ of PLP, and the asparagine loop alongside the Gln-142 that bind the carboxylate group of the substrate.
are also conserved across 11 bacterial species and are found in *N. gonorrhoeae* at residues Asn-74 and Gln-145, respectively. Ser-272 which hydrogen bonds with PLP’s pyridine nitrogen is also conserved across these 11 bacterial species and is found in *N. gonorrhoeae* at Ser-267. The active site residues Thr69-Thr73 and Gly228-Ala231 are conserved across nine bacterial species and are found in *N. gonorrhoeae* at Thr71-Thr75 and Gly223-Ala226, respectively. The presence of these similarly positioned and conserved residues involved in the active site and cofactor binding in CysK indicates similar structure and function of the previously uncharacterised *N. gonorrhoeae* CysK enzyme to other CysK enzymes found in literature.

However, structural characteristics will only partially elucidate *N. gonorrhoeae* CysK’s function and role in the sulphur acquisition and cysteine biosynthesis pathways. The kinetic mechanism will help further characterise the function of *N. gonorrhoeae* CysK.

1.7.2 CysK kinetic mechanism

The kinetics of CysK homologues have been studied extensively in both bacteria and plant species. As CysK uses two substrates in its reaction to produce L-cysteine, there are two possible catalytic mechanisms for its action: sequential and ping-pong. Many studies in literature have already determined the CysK reaction mechanism to be bi-bi ping-pong (also known as a non-sequential mechanism) (Rabeh & Cook, 2004; Joshi *et al.*, 2019). The ping-pong mechanism involves release of one of the products before all substrates have bound to the enzyme, generating an enzyme intermediate in the process (Ulusu, 2015). The bi-bi ping-pong mechanism utilised by CysK begins with diffusion of OAS into the active site, and an elimination reaction occurs, removing acetate, forming the intermediate α-aminoacrylate. Nucleophilic attack of sulphide results in formation of L-cysteine (Figure 1.9) (Joshi *et al.*, 2019).
This mechanism has been identified in CysK from both *S. typhimurium* and *M. tuberculosis* (Rabeh & Cook, 2004; Joshi et al., 2019), indicating *N. gonorrhoeae* may utilise the same mechanism of cysteine production.

1.8 CysK as a drug target

Given the importance of the cysteine biosynthesis pathway in pathogen virulence and overcoming oxidative stress, targeting this pathway has become of particular interest in development of new antimicrobials. Mammals synthesise L-cysteine through reverse-transulphurisation of methionine obtained in the diet, thus, the lack of cysteine biosynthesis and a reductive sulphate acquisition pathway, makes this pathway a particularly promising target for drug development (Stipanuk *et al.*, 2006; Hicks & Mullholland, 2018). Development of inhibitors for targeting CysK isoforms in pathogenic bacteria, including *S. typhimurium* (Spyrakis *et al.*, 2013), *H. influenzae* (Salsi *et al.*, 2010) and *M. tuberculosis* (Jean Kumar *et al.*, 2013) has already begun.

A transcriptomic study showed that *cysK* is not an essential gene for *N. gonorrhoeae* (Remmele *et al.*, 2014). This transposon-mediated mutagenesis study was conducted in the presence of cysteine, and under these conditions the first enzyme (CysE) in the two-step cysteine biosynthesis pathway was essential, yet curiously the second enzyme (CysK) was not. This demonstrates that L-cysteine requirements for *N. gonorrhoeae*
cannot be met solely from environmental import of L-cysteine, and is supported by *N. gonorrhoeae* being able to grow in the absence of cysteine and the presence of thiosulphate (Le Faou, 1984). However, CysK is important for colonisation of epithelial cells in *N. meningitidis* and when deleted results in both decreased fitness and increased susceptibility to antibiotics (Turnbull & Surette, 2010; Capel *et al.*, 2016).

Although CysK has been evaluated as a drug target in *S. typhimurium, H. influenzae*, and *M. tuberculosis*, cysteine biosynthesis has not been investigated in *N. gonorrhoeae*. *N. gonorrhoeae* lacks the necessary transporters for glutathione uptake and therefore, relies on the precursor cysteine for synthesis of glutathione (Seib *et al.*, 2006). Although *N. gonorrhoeae* has cysteine and cystine transporters, it is likely *N. gonorrhoeae* relies on *de novo* cysteine biosynthesis to maintain high intracellular glutathione concentrations given the essential nature of both *cysB* and *cysE*. Given CysK is the final step in the *de novo* biosynthesis of L-cysteine, this places high importance on elucidating its function in the pathogenicity of *N. gonorrhoeae*.

Although *N. gonorrhoeae* cannot grow on sulphate as its lacks the enzyme required for reducing sulphate to sulphide (due to genome deletions and in frame stop codons), it is able to grow on thiosulphate as the sole source of sulphur. We suggest that *N. gonorrhoeae* has a different, yet functional cysteine biosynthesis pathway from other *Neisseria* species, and as a function of that pathway, a dual-functioning CysK which utilises both thiosulphate and sulphide for the final step in the synthesis of cysteine. Genome searches and sequence comparisons identified and annotated a likely functional *O*-acetylserine sulphydrylase in *N. gonorrhoeae* strain FA1090 and MS11.
1.9 Research objectives

The aim of this research is to characterise a key enzyme in the N. gonorrhoeae cysteine biosynthesis pathway, O-acetylserine sulphhydrylase/CysK. Characterisation of the biochemical and biophysical properties of CysK from N. gonorrhoeae will guide future research into the development of new antimicrobials and will improve our understanding of the pathogenicity of N. gonorrhoeae. The following objectives were set to achieve this:

Objective 1:
Investigate the O-acetylserine sulphhydrylase activity and peptide inhibition of CysK from N. gonorrhoeae.

Objective 2:
Determine the three-dimensional structure of CysK using protein crystallisation and X-ray diffraction.

Objective 3:
Characterise the cysteine synthase complex of N. gonorrhoeae.

Objective 4:
Create genetic knockouts of the cysK gene from N. gonorrhoeae to test the essentiality of the CysK protein.
Chapter 2
Materials and Methods

2.1 Cloning of cysK for expression in *Escherichia coli*

The *cysK* gene NGO_0340 was codon optimised for *E. coli* and ordered from Geneart (Thermo Fisher) (Appendix A.1). The synthetic *cysK* construct was cloned into expression vector pET28b-PstI with a C-terminal hexahistidine-tag, between PstI and XhoI restriction sites by Dr Joanna Hicks (The University of Waikato). The NGO_0340 pET28b plasmid was checked by DNA sequencing before transformation into *E. coli* BL21 (DE3) for protein expression. Positive transformants were selected for by growing overnight at 37°C, Luria-Bertani (LB) agar (Appendix A.2) supplemented with 50 µg.ml⁻¹ kanamycin

2.2 Long term storage of BL21 CysK expression strains

Seeder cultures were prepared from positive transformants, by inoculating a single colony from a transformation plate into LB broth (10 ml) supplemented with kanamycin (50 µg.ml⁻¹) and incubated at 37 °C, shaking at 200 rpm, overnight. Glycerol stocks were prepared from seeder cultures, by adding 0.5 ml of seeder culture to 0.5 ml sterile 50% glycerol (w/v) and stored at -80 °C.

2.3 CysK expression cultures

Large scale expression cultures were prepared by inoculating the 10 ml seeder culture (prepared as per section 2.2) into 1 L LB broth, supplemented with kanamycin (50 µg.ml⁻¹). Cultures were incubated at 37 °C, 200 rpm until the culture reached mid-log phase (optical density at A₆₀₀ = 0.5-0.7), at which point protein expression was induced by the addition of 1 ml of 0.75 M isopropylthio-β D-galactosidase (IPTG, final concentration 0.75 mM). Cultures were incubated overnight at 22 °C, 200 rpm. Expression cultures were centrifuged at 4,600 g for 20 min at 4 °C, after which the supernatant was discarded. The remaining cell pellet was resuspended in 15 ml lysis buffer (50 mM potassium phosphate pH 7.0, 200 mM NaCl, 20 mM imidazole). The resuspended culture was transferred to a 50 ml falcon tube and centrifuged for a further 20 min at 4,600 g, 4 °C. After centrifugation, the supernatant was discarded, and the pellet was stored at -80°C.
2.4 Purification of CysK

CysK was isolated and purified using immobilised metal affinity chromatography (IMAC) and gel filtration chromatography. Protein solubility was assessed using SDS-PAGE gel electrophoresis. Oligomeric state was measured using gel filtration chromatography and native-PAGE gel electrophoresis.

2.4.1 Immobilised metal affinity chromatography

Frozen CysK cell pellets (section 2.3) were thawed at room temperature. Cell pellets were resuspended by vortexing in 12.5 ml lysis buffer (50 mM Potassium phosphate pH 7.0, 200 mM NaCl, 20 mM imidazole), 625 µL of 2mM PLP was added (for final concentration of 0.1 mM) and one cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail tablet (Roche, Switzerland) was added to inhibit cellular proteases. Cells were lysed on ice using a QSONICA Q700 sonicator using programme 2 with a 1/4” microtip probe (12.5-25 ml volume). Programme 2 involves alternating 2 second bursts at 12% power with 2 second intervals of no sonication for a total of 1.5 min. The sonicated lysate was centrifuged at 13 000 g for 20 min at 4 ºC. The supernatant was filtered through 1.2, 0.45 and 0.2 µm filters. IMAC purification was carried out using either an AKTA™ Purifier fast protein liquid chromatography (FPLC) system (GE Life Sciences) or an NGC FPLC system (BioRad). The same method for IMAC and gel filtration was used for either FPLC system. The filtered supernatant was manually loaded onto a HisTrap™ HP 5 ml column (GE Life Sciences) that was preequilibrated in lysis buffer. The column was attached to the FPLC and washed with 20 ml lysis buffer at 2 ml.min⁻¹ to remove unbound proteins. A gradient of elution buffer (50 mM potassium phosphate pH 7.0, 200 mM NaCl, 1 M imidazole) was gradually increased to 50%, over 25 ml, to elute the HexaHis-tagged CysK.

2.4.2 Gel filtration chromatography

At room temperature (22 ºC), 1 ml of a single IMAC peak fraction containing CysK was loaded onto an Enrich 650 analytical gel filtration column (Bio-Rad Laboratories, USA), preequilibrated in gel filtration buffer (50 mM Potassium phosphate pH 7.0, 100 mM NaCl) with a flow rate of 1 ml.min⁻¹. An IMAC protein fraction was manually loaded into the injection loop of the FPLC for injection onto the column. After sample injection, 28 ml gel filtration buffer was run at 1 ml.min⁻¹ through the column. Fractions of eluted protein were collected, nanodropped and diluted with gel filtration buffer to 1.6 mg.ml⁻¹ in 1 ml. 50% glycerol (1 ml) was added to diluted protein (2 ml, final concentration of
0.8 mg.ml-1 CysK) and stored at -80 °C. These CysK stocks (2ml, 0.8 mg.ml-1) were later thawed and 80 µL aliquoted into 1.5 ml tubes and stored at -80 °C.

2.4.3 SDS-PAGE gel electrophoresis

SDS-PAGE gels were composed of both a resolving and stacking layer, at 12 and 5% polyacrylamide, respectively. All gels were made in house in a multi-gel caster (Hoefer). The resolving layer was prepared by mixing the “Resolving layer” components listed in Table 2.1, and filling the gel caster, leaving a three cm gap at top of the gel plate. A thin layer of isopropanol was then applied to the top of the gel and was left until the resolving layer had polymerised ~30 min. Once set, the isopropanol layer was carefully removed, the stacking layer was prepared by combining “Stacking Layer” components listed in Table 2.1 and filling to the top edge of the gel caster. A ten well comb was inserted into the top of each gel, before leaving to set at room temperature ~30 min. Gels were stored wrapped in wet tissue at 4 °C for up to four weeks. Protein samples were prepared for gel-loading by mixing 15 µL sample with 5 µL 4x SDS loading dye (also known as Quench, Q4) (Appendix B.3). 20 µl of sample was loaded per well, along with 10 µl of Precision Plus ProteinTM ladder (Bio-Rad Laboratories, USA) per gel. The gels were run in 1 x Tris-Glycine SDS-PAGE running buffer (Appendix B.3) at 100 V, until the loading dye migrated past the stacking gel where it was increased to 150 V. The gel was stopped when the dye migrated to the end of the resolving gel. Protein bands were visualised by staining in Coomassie Fairbanks stain (Appendix B). Gels and stain were heating by microwaving for 30 s, followed by five min incubation at room temperature with agitation. Stained gels were rinsed with distilled water and left in destaining solution (10% acetic acid) overnight. Destained gel bands were visualised using an Omega LumTM gel imager (Aplegen, USA).
Table 2.1: Components for five SDS-PAGE gels. Ammonium persulphate (APS²) stock solution was prepared fresh weekly.

<table>
<thead>
<tr>
<th>Component</th>
<th>12% Resolving layer (ml)</th>
<th>8% Stacking layer (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolving buffer (1.5 M Tris pH 8.8)</td>
<td>7.5</td>
<td>-</td>
</tr>
<tr>
<td>Stacking buffer (1 M Tris pH 6.8)</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>30% Polyacrylamide/Bis (375:1) (v/v)</td>
<td>12.0</td>
<td>2.125</td>
</tr>
<tr>
<td>10% SDS (w/v)</td>
<td>0.30</td>
<td>0.125</td>
</tr>
<tr>
<td>10% APS² (w/v)</td>
<td>0.15</td>
<td>0.063</td>
</tr>
<tr>
<td>10% TEMED</td>
<td>0.015</td>
<td>0.0063</td>
</tr>
<tr>
<td>MQ H₂O</td>
<td>10.05</td>
<td>8.50</td>
</tr>
</tbody>
</table>

2.4.4 Measuring the oligomeric state of CysK

Previously, the Enrich650 gel filtration column (Bio-Rad Laboratories, USA) was calibrated in gel filtration buffer (50 mM Tris pH 8.0, 200 mM NaCl) using Gel Filtration Standards (Bio-Rad Laboratories, USA), by Dr Joanna Hicks (Appendix B). The molecular weight of CysK was calculated taking the peak elution volume (Vₑ) and calculate the Kav gel phase distribution co-efficient using Equation 2.1, where V₀ is the column void volume and Vₖ is the total column volume: The calibration standard curve relating Kav and molecular weight was used to determine the molecular weight of CysK from the calculated Kav.

Equation 2.1: Formula for calculating gel phase distribution co-efficient

\[
K_{av} = \frac{V_e - V_o}{V_c - V_o}
\]
2.4.5 Measuring protein concentration Nanodrop™

Protein concentration was determined by Nanodrop™ 2000 (Thermofisher, USA) measuring absorbance at 280 nm. Protein concentration was calculated using Beer-Lambert law (Equation 2.2), where absorbance readings were corrected by dividing the Nanodrop™ reading (1 Abs = 1 mg.mL⁻¹) by the molar absorption co-efficient of the CysK protein, (Ɛ = 0.590 L mol⁻¹/cm⁻¹) as determined by ProtParam (Gasteiger et al., 2005).

Equation 2.2: Beer-Lambert equation. A= absorbance, Ɛ = molar absorption co-efficient (L mol⁻¹ /cm⁻¹), l = pathlength (cm) and c = concentration (mL⁻¹).
\[A = \varepsilon cl \]

2.5 Kinetic Assay Parameters

CysK was purified by IMAC and gel filtration chromatography as per sections 2.4.1 and 2.4.2. Protein concentration was measured by absorbance at 280 nm using a NanodropTM (section 2.4.5). CysK protein used in the first assay sets was purified the same day. After glycerol stabilisation and freezer storage, all CysK enzyme used in subsequent assays was from the 0.8 µg freezer stocks stored at -80°C. All assays were carried out in MOPs buffer (100mM MOPs). Substrates O-acetylserine (OAS) and sodium sulphide (Na₂S) were freshly prepared for each set of assays (Appendix B3). Enzyme stocks (80 µL of 0.8 mg.mL⁻¹, 0.02 nM, CysK monomer 32.726 kDa) from the freezer were thawed at room temperature ~2 mins before assays were begun.

2.5.1 Assay parameters

Assay data was collected using MOPs buffer (100mM MOPs). Assays were carried out in Axygen 96-well PCR microplates, with a reaction volume of 75 µL, final volume 310 µL.
Table 2.2: CysK activity assays with varying O-acetylserine concentrations. Concentrations of substrate were varied by adjusting the volume of substrate 50 mM stock added, unless the volume to be added was less than 3 µl, then a 5 mM stock was used. This was done to prevent inaccuracy of pipetting at extremely low volumes. The amount of enzyme used for each reaction was kept constant (1.6 mg.ml\(^{-1}\)).

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-acetylserine (5/50mM, substrate)</td>
<td>3-30</td>
</tr>
<tr>
<td>Sodium sulphide (50mM, substrate)</td>
<td>10.5</td>
</tr>
<tr>
<td>MOPs (100mM, initial reaction)</td>
<td>32.5-62.5</td>
</tr>
<tr>
<td>CysK (0.8 mg.ml(^{-1}), Enzyme)</td>
<td>2</td>
</tr>
<tr>
<td>TCA (20%)</td>
<td>15</td>
</tr>
<tr>
<td>DTT (200mM)</td>
<td>16.5</td>
</tr>
<tr>
<td>MOPs (100mM, reduction step)</td>
<td>3.5</td>
</tr>
<tr>
<td>Acid Ninhydrin</td>
<td>100</td>
</tr>
<tr>
<td>Glacial Acetic acid</td>
<td>100</td>
</tr>
<tr>
<td>Total (95 ºC incubation step)</td>
<td>310</td>
</tr>
<tr>
<td>Ethanol (Ice cold, 100%)</td>
<td>100</td>
</tr>
<tr>
<td>Reaction mixture</td>
<td>100</td>
</tr>
<tr>
<td>Total (measuring step)</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 2.3: CysK activity assays with varying sodium sulphide concentrations. Concentrations of substrate were varied by adjusting the volume of substrate 50 mM stock added, unless the volume to be added was less than 3 µl, then a 5 mM stock was used. This was done to prevent inaccuracy of pipetting at extremely low volumes. The amount of enzyme used for each reaction was kept constant (1.6 mg.ml\(^{-1}\)).

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-acetylserine (50mM, substrate)</td>
<td>15</td>
</tr>
<tr>
<td>Sodium sulphide (5/50mM, substrate)</td>
<td>3-45</td>
</tr>
<tr>
<td>MOPs (100mM, initial reaction)</td>
<td>13-58</td>
</tr>
<tr>
<td>CysK (0.8 mg.ml(^{-1}), Enzyme)</td>
<td>2</td>
</tr>
<tr>
<td>TCA (20%)</td>
<td>15</td>
</tr>
<tr>
<td>DTT (200mM)</td>
<td>16.5</td>
</tr>
<tr>
<td>MOPs (100mM, reduction step)</td>
<td>3.5</td>
</tr>
<tr>
<td>Acid Ninhydrin</td>
<td>100</td>
</tr>
<tr>
<td>Glacial Acetic acid</td>
<td>100</td>
</tr>
<tr>
<td>Total (95 ºC incubation step)</td>
<td>310</td>
</tr>
<tr>
<td>Ethanol (100%, Ice cold)</td>
<td>100</td>
</tr>
<tr>
<td>Reaction mixture</td>
<td>100</td>
</tr>
<tr>
<td>Total (measuring step)</td>
<td>200</td>
</tr>
</tbody>
</table>
All substrate stocks were prepared in MQ H$_2$O. All components for the assays, except MOPs, acetic acid, ethanol and the enzyme were made fresh just before assays were conducted. OAS stocks were made fresh due to the rapid conversion of O-acetylserine to N-acetylserine (Campanini et al., 2005). O-acetylserine was purchased as a powder from Sigma Aldrich (MW = 183.59 g.mol$^{-1}$) and stored as a powder at -20 °C according to manufacturer’s instructions. Sodium sulphide stocks were made fresh to prevent any possible error in activity that could be caused by substrate degradation. Sodium sulphide was purchased as a fragmented solid from Sigma Aldrich (MW = 142.02 g.mol$^{-1}$) and stored at 4 °C according to manufacturer’s instructions. DTT was made fresh as it has a very short half-life (Stevens et al., 1983). DTT was purchased as a fragmented solid from Sigma Aldrich (MW = 154.253 g.mol$^{-1}$) and stored at 4 °C according to manufacturer’s instructions. TCA was made fresh to prevent any possible error in activity that could be caused by degradation of TCA. TCA was purchased as a clear crystalline solid from Sigma Aldrich (MW = 163.38 g.mol$^{-1}$) and stored at 4 °C according to manufacturer’s instructions.

O-acetylserine sulphydrylase activity of CysK was monitored via absorbance measurements of L-cysteine at 560 nm using an adapted method from (Gaitonde, 1967). Absorbance at 560 nm was recorded across five stopped assay time points (0, 2.5, 5, 7.5 and 10 mins) using a Thermo Scientific Multiskan GO spectrophotometer (ThermoScientific, USA). Absorbance readings were subsequently corrected for by subtracting any absorbance from blank samples and converted to cysteine produced (mM) using the cysteine standard curve determined during a summer research project (Appendix B.2). Cysteine produced for each varied substrate concentration condition was plotted and the catalytic rates (cysteine produced mM.min$^{-1}$) for each were derived from linear regression analysis of the first five minutes of the stopped assay reactions (unless otherwise stated).

OAS, sodium sulphide and MOPs were added in appropriate volumes for each reaction condition to individual wells in the 96-well plate. The enzyme was added directly to the side of the wells. Finally, the reaction was initiated via 30 second centrifugation at 3000 rpm, 4 °C (Heraeus Multifuge 3SR Plus centrifuge). The 96-well plate was covered (Platemax CyclerSeal Sealing Film, PCR-TS) and incubated for 10 mins at 37 °C. Each reaction was stopped by addition of 15 µL TCA (w/v) at 0, 2.5, 5, 7.5 and 10 minutes accordingly. 16.5 µL of 200mM DTT (final concentration 30 mM) and 3.5 µL of 100mM
MOPs were added to each well and incubated at room temperature for 30 mins. 100 µL of acid ninhydrin and 100 µL of acetic acid were added to each well and incubated for 5 mins, at 95 °C. The plate was cooled by incubating on ice for 5 mins, and 100 µL ice cold ethanol and 100 µL of each reaction mixture were added to a flat bottomed 96-well plate. Absorbance was measured at 560 nm (Thermo scientific, Multiskan GO). Enzyme rates were plotted using GraphPad Prism (version 8.2.0, Windows, GraphPad Software, La Jolla California USA). All datapoints were collected in duplicate, unless otherwise stated.

2.6 Kinetic analysis

The K_M and V_{max} were calculated for each substrate by varying the concentration of the substrate of interest, while keeping the other substrate at a saturating concentration, so it is not rate limiting. Saturating conditions are defined as concentrations 2 x K_M, and greater. O-acetyl-L-serine Michaelis Menten curves were collected over a range of O-acetyl-L-serine concentrations (0.2-10 mM). Sodium sulphide Michaelis Menten plots were collected over a range of sodium sulphide concentrations (0.2-12 mM). Both Michaelis Menten plots were collected at fixed saturating conditions (10mM OAS and 7mM Na$_2$S) of the other substrate.

K_M and V_{max} were determined by non-linear regression fit of the Michaelis Menten equation (Equation 2.3), the allosteric sigmoidal equation (Equation 2.4), the substrate inhibition equation (Equation 2.5) or the allosteric sigmoidal with substrate inhibition equation (Equation 2.6) (using GraphPad Prism (version 8.2.0, Windows, GraphPad Software, La Jolla California USA.).

Equation 2.3: The Michaelis Menten equation. $S =$ substrate, $K_M =$ Michaelis constant, $v =$ rate, $V_{max} =$ theoretical maximum rate.

$$v = \frac{V_{max}[S]}{K_M + [S]}$$

Equation 2.4: The allosteric sigmoidal equation. $S =$ substrate, $K_{half} =$ Michaelis constant, $v =$ rate, $V_{max} =$ theoretical maximum rate, $h =$ hill constant.

$$v = \frac{V_{max}[S^h]}{K_{half} + [S^h]}$$

Equation 2.5: The substrate inhibition equation. $S =$ substrate, $K_M =$ Michaelis constant, $v =$ rate, $V_{max} =$ theoretical maximum rate, $K_i =$ dissociation constant for substrate binding in a situation where two substrates can bind to the enzyme.

$$v = \frac{V_{max}[S]}{(K_m + S(\frac{1+S}{K_i}))}$$
Equation 2.6: The allosteric sigmoidal with substrate inhibition equation. $S = \text{substrate}$, $K_M = \text{Michaelis constant}$, $v = \text{rate}$, $v_{\text{max}} = \text{theoretical maximum rate}$, $h = \text{hill constant}$, $K_i = \text{dissociation constant for substrate binding in a situation where two substrates can bind to the enzyme.}$

$$v = \frac{v_{\text{max}}[S]^h}{(K_m^h + (S (1 + S/K_i))^h)}$$

Enzyme catalytic efficiency was determined by calculating the catalytic constant (k_{cat}) and the specificity constant k_{cat}/K_M. k_{cat} is a measure of the amount of product formed over time, per unit of enzyme (s^{-1}). This is calculated by dividing the V_{max} rate ($M.s^{-1}$) by the molar concentration of dimeric enzyme. The catalytic efficiency $k_{\text{cat}}/K_M (M^{-1}s^{-1})$ was calculated by dividing the k_{cat} (s^{-1}) by the K_M (M). Catalytic efficiency values were calculated for each substrate.

2.7 Thiosulphate substrate assays

Thiosulphate substrate assays were conducted using a modified method from section 2.5.1. The key modification was substitution of thiosulphate for sodium sulphide in the reaction. Thiosulphate was added at low to high varied concentrations (final reaction concentration, 1-50 mM).

2.8 CysK inhibition assays

The CysE C-terminal tetrapeptide (DFMI) was ordered from Thermo scientific ($\text{MW} = 523.54 \text{ g.mol}^{-1}$) as a white powder and stored at 4°C according to manufacturer’s instructions. CysE tetrapeptide was suspended in 1 ml of potassium phosphate gel filtration buffer (Appendix B.1) to a stock of 2 mg.ml$^{-1}$ (3820.15 pmol), which was further diluted to stocks of 0.2, 0.02 and 0.002 mg.ml$^{-1}$ (382, 38.2 and 3.82 pmol respectively) and stored at -21°C (Appendix B.4).

CysE C-terminus tail four peptide inhibitor assays were measured using a modified method from section 2.5.1. Modifications included the addition of the CysE C-terminus tail four peptide inhibitor (total inhibitor added, 0.08-191 pmol); using thawed 2 mg.ml$^{-1}$ stock or diluted stocks if volume added dropped below 2µL; to appropriate volumes of thawed CysK for pre-incubation of the enzyme with the peptide. OAS concentration was held at 1 mM instead of 10 mM as OAS is known to cause dissociation of the cysteine synthase complex at very low concentrations. The reaction was initiated via addition of the pre-incubated stock and centrifugation.
2.9 Crystallisation of CysK

2.9.1 Protein purification

CysK protein was expressed and purified following methods in sections 2.3 and 2.4 respectively using crystallisation buffers in Appendix B.2. Protein concentration was determined by Nanodrop™ as per section 2.4.5.

2.9.2 High throughput crystallisation screens

High throughput crystallisation screens were set up by Annmaree Warrender to identify promising crystallisation conditions that could be further optimised to produce crystals suitable for X-ray diffraction. The following screens: Index™-HR2-144, PEGRxHT™-HR2-086, CrystalHT™-HR2-130 and the SaltRxHT™-HR2-136 (Hampton Research, U.S.A.), were used. Screens were set up in low profile 96-2 well INTELLI-PLATE and were set up using the Mosquito crystallisation robot (TTP LabTech Ltd., USA). Each crystallisation condition had a reservoir solution (crystallisation solution) of 100 µl and 200 nl sitting drops of a 1:1 ration of protein (40 mg.ml⁻¹) and crystallisation solution. Screens were checked weekly for crystal formation using a dissection microscope (Nikon SMZ800).

2.9.3 Hanging drop fine screens

Purified protein was concentrated to 40 mg.ml⁻¹ and stored on ice for a short period of time, as prolonged incubation at room temperature led to precipitation. Promising crystallisation conditions from high throughput screens were further optimised by Annmaree Warrender through scaling up to hanging drop fine screens. 24 well VDX trays were set up with crystallisation solution volumes of 500 µl or 1000 µl from concentrated stock solutions. Hanging drops were prepared by mixing a 1:1 ratio (1:1 µl or 2:2 µl) of mother liquor and concentrated protein solution on a siliconised cover slip, before inverting drop-side down, over a well, lined with silicone grease. For each condition, crystallisation parameters such as pH, drop size and the concentration of protein and precipitant were optimised. Crystallisation drops were checked for crystal growth under a dissection microscope, daily for one week and weekly thereafter.

The fine screen that reproduced crystals from the robot screen was based on a condition from the CrystalHT™ robot screen (HR2-130, Hampton Research): 0.1 M HEPES sodium, pH 7.5, 2% polyethylene glycol 400 (v/v), 2.0 M Ammonium sulphate. Trays were set up as above. The hanging-drop the crystal looped from was from condition 0.1
M HEPES pH 7.5, 4% polyethylene glycol 400 (v/v), 2.5 M ammonium sulphate. Drop composition was 1:1 (mother liquor: protein concentrate) in a final volume of 2 µl. All crystals were grown at 18 °C.

2.9.4 Crystal preparation for X-ray diffraction

Each crystal was transferred using a cryo-loop, to a cryo-protectant solution, consisting of the crystallisation solution with the addition of 15% glycerol (v/v) as a cryo-protectant. Crystals were then flash cooled in liquid nitrogen. Crystals were stored short-term in liquid nitrogen (one to two days) before data collection.

2.10 Data collection

X-ray diffraction data was collected at the Australian Synchrotron (Melbourne, Victoria) on the MX2 beamline (McPhillips et al., 2002), equipped with an EIGER x 16M detector (Dectris, Switzerland). Data were collected over 360 ° rotation of the crystal over 360 sec, at 80% beam attenuation.

2.11 Data processing

2.11.1 Indexing, integration and scaling

The CysK diffraction images were indexed, integrated and scaled, using XDS (Kabsch, 2010). Datasets 0016 and 0017 were the best of three datasets obtained from the crystal diffraction. Unit cell dimensions of 0017 were changed to match 0016 and the space group changed from sg 19 (P2₁2₁2₁) to sg 4 (P2₁₁) via rerun of XDS (Kabsch, 2010). The Original space group was found to be incorrect as the resulting model had unexpectedly high R_work and R_free values. Datasets 0016 and 0017 were scaled together using XDS (Kabsch, 2010) and reflections merged using AIMLESS (Evans & Murshudov, 2013) from the CCP4 suite (Winn et al., 2011). Data quality was assessed through AIMLESS (Evans & Murshudov, 2013). FreeR flag dataset (5% of dataset reflections not to be used in refinement and used to compute R_free) was generated in AIMLESS.

2.11.2 Detection of twinning and non-crystallographic symmetry

Data was analysed for evidence of twinning and translational non-crystallographic symmetry (tNCS) in AIMLESS from the CCP4 suite (Winn et al., 2011; Evans & Murshudov, 2013) and phenix.xtriage from the PHENIX suite.
2.12 Structural analysis

2.12.1 Matthew’s coefficient

The total number of monomers in the asymmetric unit was determined by calculating the solvent content using the Matthew’s coefficient (Matthews, 1968) program, as a part of the CCP4 program suite (Winn et al., 2011).

2.12.2 Molecular replacement

The structure of CysK from *M. tuberculosis* (3ZEI) was retrieved from the protein data bank (PDB). A single monomer was extracted from this file, in PyMOL (The PyMOL Molecular Graphics System, Version 2.3.2 Schrödinger, LLC) and water and ligands were removed. This *M. tuberculosis* monomer with no ligands and water was used in molecular replacement carried out using *phenix.phaser* (McCoy et al., 2007), from the PHENIX suite (Adams et al., 2010).

2.12.3 Model building and refinement

The model was initially built and refined using the program *phenix.autobuild* (Terwilliger et al., 2008) from the PHENIX suite (Adams et al., 2010). The resulting structure was further built manually using the program COOT (Emsley & Cowtan, 2004). For manual building and refinement in COOT, the 2Fo-Fc and Fo-Fc electron density maps, were set to 1σ and 3σ, respectively. After each round of structure manipulation, *phenix.refine* and *phenix.autobuild* were used to run rounds of real-space refinement (Terwilliger et al., 2008).

2.12.4 Structural analysis

Images of the model and maps were generated using programmes PyMOL (The PyMOL Molecular Graphics System, Version 2.3.2 Schrödinger, LLC) and COOT (Emsley & Cowtan, 2004). Comparing structures was conducted through calculating root mean square distances (r.m.s.d) using alignment tool in PyMOL. The surface area and buried residue calculations for the trimer/hexamer interfaces were carried out using PDBePISA (Krissinel & Henrick, 2007). ENDscript 3.0 was used to identify secondary structural features (Robert & Gouet, 2014), alongside visual inspection in PyMOL.
2.13 Cysteine synthase complex formation

The protocol for forming the cysteine synthase complex (CSC) was based on a method by (Benoni et al., 2017b). CysK as per section 2.4 and CysE were purified individually before being used for CSC formation.

2.13.1 Purification of CysE

CysE was purified using IMAC and gel filtration chromatography as per section 2.4.1 and 2.4.2 with minor modifications by Keely Oldham. CysE pellets were resuspended and purified as per section 2.2.4 in Keely Oldham’s thesis (Oldham, 2020), buffer compositions found in appendix B.2.

2.13.2 Formation of the cysteine synthase complex

2.13.2.1 Monitoring cysteine synthase complex formation by gel filtration chromatography

CysK was freshly purified as per section 2.4.1 and 2.4.2 and CysE was freshly purified as per section 2.13.1. A 1 ml solution of CysE 6 μM: CysK 4 μM (monomer ratios) was manually injected into the injection loop of the FPLC for injection into the Enrich 650 analytical gel filtration column (Bio-Rad Laboratories, USA), preequilibrated in gel filtration buffer (50 mM Potassium phosphpate pH 7.0, 100 mM NaCl) with a flow rate of 1 ml.min\(^{-1}\). After sample injection, 28 ml gel filtration buffer was run at 1 ml.min\(^{-1}\) through the column. Fractions were collected and run on a 12% SDS PAGE gel. This was repeated with a CysE 4 μM: CysK 0.05 μM 1 ml solution, without fractions being run on a 12% SDS PAGE gel.

2.13.2.2 Monitoring cysteine synthase complex formation by fluorescent spectroscopy

CysK was freshly purified as per section 2.4.1 and 2.4.2 (buffers used were pH 8.0 rather than 7.0), and CysE was freshly purified using gel filtration chromatography as per the method in section 2.13.1. 300 μl of CysK was added to a quartz cuvette and an excitation wavelength scan from 350-550\(_{\text{nm}}\) was completed using a fluorometer (alphatech, F-7000 Fluorescence Spectrophotometer) determining the excitation wavelength to be 400nm. An emission wavelength scan from 350-600\(_{\text{nm}}\) determined the emission wavelength to be 494.6\(_{\text{nm}}\). 75 μl CysE was added to the quartz cuvette to give a CysK 4: CysE 1 monomeric ratio and the emission wavelength was measured at the time of addition and two minutes after. More CysE was subsequently added to give ratios CysK:CysE, 2:1, 1:1 and 2:3, all
of which the emission wavelength was measured in the same manner stated above using a fluorometer (alphatech, F-7000 Fluorescence Spectrophotometer). Emission peaks, the apex wavelength and the corresponding intensities were obtained using FL Solutions 2.1 for F-7000 and spectra plotted using GraphPad Prism (version 8.2.0, Windows, GraphPad Software, La Jolla California USA).

2.13.2.3 Cysteine synthase complex formation using the CysE C-terminal tetrapeptide

CysK and the CysE C-terminus tetrapeptide inhibitor were thawed. 350 µl of 0.8 mg.ml⁻¹ CysK was added to a quartz cuvette and an excitation wavelength scan from 350-550 nm was completed using a fluorometer (alphatech, F-7000 Fluorescence Spectrophotometer) determining the excitation wavelength to be 386.2 nm. An emission wavelength scan from 350-600 nm determined the emission wavelength to be 471 nm. 5.7 µl of 0.2 mg.ml⁻¹ CysE tetrapeptide (final quantity of peptide added, 2176.563 pmol) was added to 350 µl of 0.8 mg.ml⁻¹ CysK (final quantity of enzyme added, 8706 pmol) in a quartz cuvette (creating a 4:1 molar ratio of CysK monomer to peptide) and the emission wavelength measured at addition of the peptide and 2 mins after using a fluorometer (alphatech, F-7000 Fluorescence Spectrophotometer). An additional 5.7 µl of 0.2 mg.ml⁻¹ CysE C-terminus tail four peptide inhibitor was added (giving a 2:1 ratio of CysK to peptide) and emission wavelength measured as above using a fluorometer (alphatech, F-7000 Fluorescence Spectrophotometer). 11.4 µl of 0.2 mg.ml⁻¹ CysE C-terminus tail four peptide inhibitor was subsequently added to give various molar ratios (CysK:CysE peptide, 1:1, 1:2, 1:3, 1:4, 1:5), and emission wavelengths measured at addition of peptide and 2 mins after for each molar ratio. All measurements were taken whilst mixing occurred in the cuvette. Emission peaks, the apex wavelength and the corresponding intensities were obtained using FL Solutions 2.1 for F-7000 and spectra plotted using GraphPad Prism (version 8.2.0, Windows, GraphPad Software, La Jolla California USA).

2.14 cysK genomic deletion in Neisseria gonorrhoeae

2.14.1 Agarose gel electrophoresis

Agarose gels were made as per Appendix C and a 10 well comb was inserted into the top of the gel, before leaving to set at room temperature ~30 mins. After PCR, 10 µl of each PCR product were mixed with 2 µl of 6x loading dye (Appendix C) using a pipette. Mixed samples were loaded into a 1% agarose gel (HydraGene LE Agarose) made with 1x TAE Buffer (Appendix C) and run in a dedicated OWL electrophoresis tank (ThermoFisher
Scientific) containing 1x TAE (Appendix C) with a LighteningVolt OSP250-L electrophoresis machine (Biolab scientific) at 100V for 40 minutes at room temperature. Samples were run together with 7 µl of Invitrogen 1kb+ ladder (Appendix C). The gel was imaged using an Omega Lum™ gel imager (Aplegen, USA).

2.14.2 PCR to check for homologous recombination

The DNA template for homologous recombination was designed using Geneious Prime (Biomatters) to contain 150 bp of flanking sequence (corresponding to 150 bp upstream and downstream of the *cysK* gene respectively) either side of a kanamycin resistance gene (*kanR*). The DNA construct was ordered as a Geneblock from Twist Bioscience (USA). Lyophilised DNA was resuspended in TE buffer to a final concentration of 20 ng.µl⁻¹ for use as a DNA template in subsequent PCR reactions. Primers were designed using Geneious Prime (Biomatters) to amplify the entire DNA construct (*CysK* KO FWD: 5’-TTGTCACTGAAGCGGGAAGG-3’ and *CysK* KO REV: 5’-CCTTCCCGCTTCAGTGACAA-3’) and ordered from IDT (USA). Primers were resuspended in TE buffer to 100 µM and working stocks made by diluting in MQ water to 10 µM.

PCR master mix was set up as follows: 20 µl Hotfire Pol MasterMix, 3 µl *CysK* PCR Forward primer (10 mM), 3 µl *CysK* PCR Reverse primer (10 mM), 69 µl Ultra Distilled H₂O were added together into a 1.5 ml Eppendorf tube. 19 µl of this mixture was removed and added to a PCR tube and 1 µl of Ultra distilled H₂O was added to produce a negative control. 4 µl of DNA template (*CysK KanR* KO ordered from TWIST and resuspended in 1x TE buffer) was added to the master mixture. 20 µl of master mix with the DNA template was aliquoted into four PCR tubes. The five PCR tubes were added to BioRad DNA Engine using the following cycling conditions:

PCR Protocol

- 95 °C 15 min
- 95 °C 20 sec
- 55 °C 30 sec \(\text{Repeat 29x}\)
- 72 °C 1.5 min
- 72 °C 10 min
PCR products were purified using a Roche-applied-science DNA purification kit according to manufacturer’s instructions and run on an agarose gel to check purity as per section 2.14.1.

2.14.3 Measuring Nucleic acid (DNA) concentration Nanodrop™

Nucleic acid concentration was determined by Nanodrop™ 2000 (Thermofisher, USA).

2.14.4 N. gonorrhoeae plate transformations

Purified PCR DNA products were pooled and combined with Ultra Distilled water to a final concentration of 20 ng.µl⁻¹ in 50 µl. Two 10 µl amounts of PCR product were spotted onto GCB agar (Appendix C) and left to soak in to the agar and dry. This was repeated onto New York agar (Fort Richards, New Zealand). An N. gonorrhoeae colony was taken from fresh GCB agar and streaked across the plates through each spot of DNA and incubated at 37 ºC for 48 hours. Single colonies that grew within the spotted DNA circles from both GCB and New York agar were streaked onto GCB agar supplemented with 50 µg.ml⁻¹ kanamycin and incubated at 37 ºC for 48 hours to select for integration of the DNA construct into the N. gonorrhoeae chromosome.
Chapter 3

Results and Discussion

3.1 Kinetic characterisation of O-acetylserine sulphydrylase/CysK from *N. gonorrhoeae* enzyme

3.1.1 CysK kinetic analysis and enzyme mechanism

O-acetylserine sulphydrylase (CysK/ OASS-A, EC:2.5.1.47) is a key enzyme in the biosynthesis of cysteine in bacteria and plants. It catalyses the final step of the two-step cysteine biosynthesis reaction (Figure 1.2). OASS is a member of the tryptophan synthase β-superfamily (Fold type II) and the β-family of PLP dependent enzymes (Mino & Ishikawa, 2003; Guédon & Martin-Verstraete, 2007; Takumi & Nonaka, 2016). Many bacteria have two OASS isoforms; OASS-A/CysK and OASS-B/CysM. Both isoforms catalyse the same reaction, with OASS-A using sulphide and O-acetylserine to synthesis cysteine and OASS-B using thiosulphate in place of sulphide to give cysteine thiosulfonate as a product.

The kinetic mechanism of OASS-A is bi-bi ping-pong with a stable aminoacrylate intermediate. OAS binds to the internal aldimine of the enzyme and acetate is released as the first product forming the aminoacrylate intermediate. Bisulphide enters the active site attacking as the second substrate, and L-cysteine is released as the final product (Figure 1.10) (Rabeh & Cook, 2004; Joshi *et al.*, 2019). OASS-A activity is inhibited by binding to serine acetyltransferase (the first enzyme in the two-step pathway) to form the cysteine synthase complex (CSC) across many species (Saito *et al.*, 1995; Zhao *et al.*, 2006; Benoni *et al.*, 2017b). The OASS-B isoform does not bind to serine acetyltransferase and therefore does not form the cysteine synthase complex (Zhao *et al.*, 2006).

Given the elucidated mechanism, inhibition and family similarities in CysK enzymes across species, we predict that CysK from *N. gonorrhoeae* will have O-acetylserine sulphydrylase activity. CysK is being characterised as a new antimicrobial target for other bacterial pathogens and (Salsi *et al.*, 2011; Franko *et al.*, 2018; Joshi *et al.*, 2019) given the rapid emergence of antimicrobial resistance in *N. gonorrhoeae* we propose that CysK
is a good target for new antimicrobial design for treatment of antimicrobial-resistant \textit{N. gonorrhoeae}.

Inhibitor design relies on a detailed understanding of enzyme structure and mechanism. This section biochemically characterises CysK to understand the enzyme kinetics and mechanism of action.

3.1.2 Expression and purification of CysK

To successfully characterise CysK from \textit{N. gonorrhoeae}, active and soluble protein was purified. Prior to the start of this MSc research, Dr Joanna Hicks had cloned cysK from \textit{N. gonorrhoeae} into the expression plasmid pET28b for expression with a C-terminal His-tag in \textit{E. coli} (Section 2.3 and 2.4).

CysK was successfully purified by IMAC and gel filtration chromatography as per method 2.4. The IMAC purification chromatogram in Figure 3.1a shows CysK elutes at \sim 20\% elution buffer (200 mM of imidazole). The corresponding SDS-PAGE gel of the IMAC fractions, demonstrates that the majority of contaminating \textit{E. coli} protein present in the supernatant is removed during IMAC purification (Figure 3.1b). This results in relatively pure CysK protein of approximately 33 kDa (Figure 3.1b, blue arrow) consistent with the predicted molecular weight of the CysK monomer (32.726 kDa, calculated as per section 2.4.4). Fractions containing IMAC purified CysK (Figure 3.1, green bar) were measured for protein concentration and used for gel filtration purification (Figure 3.2a) as per section 2.4.2.
Figure 3.1: IMAC Purification of CysK. (a) IMAC chromatogram of A$_{280}$ nm shows volume (ml) (X-axis), absorbance 280 nm (left Y-axis) and concentration of elution buffer (%B) (right Y-axis). Data from protein loading between 0-20 ml has been excluded for scaling purposes. (b) 12% SDS-PAGE gel of CysK IMAC purification. CysK protein (32.726 kDa) is labelled with a blue arrow and is present in all samples (the insoluble pellet (P), the soluble supernatant (S), and the IMAC fractions (green bar)). Molecular weights of Precision Plus Protein Standards (L) in kDa are labelled. Purification was carried out at room temperature.

IMAC-purified CysK underwent a final purification step via gel filtration chromatography (section 2.4.2). CysK eluted as a single peak from an Enrich 650 analytical gel filtration column with an elution volume of 14.2 ml (Figure 3.2a, purple bar). Using the Enrich 650 calibration curve (Appendix B.2), the apparent molecular weight from the elution volume is 52.862 kDa. The predicted molecular weight of the CysK monomer is 32.726 kDa, which suggests that CysK elutes as a dimer (52.862/32.726 = 1.62). No protein was present in the void volume of the column (10.56 ml) indicating that CysK did not aggregate and remained soluble during purification. The corresponding SDS-PAGE gel of the gel filtration column show pure CysK protein of approximately 33 kDa (Figure 3.2).
3.1.3 Assay optimisation

I developed an assay to measure the enzyme activity of CysK from *N. gonorrhoeae* based on a method for quantifying cysteine produced in a stopped assay (Gaitonde, 1967). Acid ninhydrin reacts with cysteine forming a pink chromophore measurable at 560 nm, indicative of the amount of cysteine present in a reaction.

All assays were carried out in MOPs buffer (100 mM, pH 7) at 37 °C. Assays were set up as per section 2.5.1. No NaCl was present during purification of the enzyme, or in assay buffers as chloride ions inhibit activity of CysK (Burkhard *et al.*, 2000; Campanini *et al.*, 2005). All raw data collected is listed in Appendix B.5.

3.1.3.1 Optimisation of enzyme (CysK) concentration

Initially, trial assays were completed to determine an appropriate concentration of CysK to use in collecting kinetic data. Enzyme concentration was optimised to obtain steady
state (linear rate) across varied OAS and Na$_2$S concentrations. Assays were set up using 3 mM Na$_2$S and 50 mM OAS based on saturating substrate concentrations for CysK from *Arabidopsis thaliana* (Bonner et al., 2005). Na$_2$S is used for supply of the required S$^2-$ ion in the cysteine biosynthesis reaction. The following concentrations of CysK were trialled: 0.0058, 0.058, 0.58, 5.8 and 58 mg.ml$^{-1}$. Each enzyme concentration’s absorbances were measured in duplicate and incubated for 15 minutes at 37 ºC. A concentration of 0.58 µg was optimal for obtaining steady state rates for use in future kinetic assays (Figure 3.3).

![Figure 3.3: Determination of CysK concentration for use in kinetic assays. Concentrations of CysK measured include: 0.0058, 0.058, 0.58, 5.5 and 58 µg. Duplicates for each concentration were collected. Error bars represent standard error.](image)

3.1.3.2 Optimisation of enzyme storage

Following the lack of activity seen in week old CysK enzyme, the literature was interrogated for possible solutions for increasing stability, therefore maintaining long term activity of the enzyme. It is well documented for addition of 50% (v/v) glycerol to enzyme aliquots significantly improves stability the enzyme upon freezing (Vagenende et al., 2009). Thus, glycerol was incorporated for -80 ºC freezer storage. Two 1 ml aliquots of 0.8466 mg.ml$^{-1}$ CysK, 25% (v/v) glycerol final concentration were made and stored at -80 ºC. An aliquot was thawed and CysK activity measured using 10 mM OAS and 1.5 mM Na$_2$S (Bonner et al., 2005) at 0.8466 mg.ml$^{-1}$ and 1.6932 mg.ml$^{-1}$ CysK concentration. Absorbance readings indicated no freeze/thaw effect decreasing the activity of CysK (Table 3.1), resulting in storage of CysK aliquots (~ 0.8 mg.ml$^{-1}$) in 25% (v/v) glycerol at -80 ºC.
Table 3.1: CysK glycerol (0.8 mg.mL\(^{-1}\), in final concentration 25% glycerol) aliquot activity testing assay

<table>
<thead>
<tr>
<th></th>
<th>Blank</th>
<th>0.8466 mg.mL(^{-1}) (1 µl)</th>
<th>1.6932 mg.mL(^{-1}) (2 µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>0.040</td>
<td>0.200</td>
<td>0.382</td>
</tr>
<tr>
<td></td>
<td>0.043</td>
<td>0.175</td>
<td>0.293</td>
</tr>
</tbody>
</table>

3.1.3.3 Optimisation of reducing agent

Initial activity assays were conducted by varying the concentration of Na\(_2\)S from 0.004-1.5 mM based on concentrations used by (Bonner et al., 2005), holding the OAS final concentration at 10mM (saturating). Initial assay data (Appendix B.5) indicated no activity. Dithiothreitol (DTT, 100 mM, pH 7) was made fresh, 10 µl was added post-assay and incubated at room temperature for 30 minutes to reduce any cystine present to cysteine, as cystine is not detected by the acid ninhydrin method.

To alleviate the 30-minute room temperature incubation with DTT, the DTT reducing agent was replaced by a new reducing agent TCEP (Tris (2-carboxyethyl) phosphine hydro-chlorine). TCEP is known to effectively reduce substances in 5 min when added at a 1.5 times concentration to the substance being reduced and is able to be stored at room temperature for longer periods of time before oxidising (Hampton Research Solutions for Crystal Growth; Thermo Fisher Scientific, 2013).

Assays where the concentration of Na\(_2\)S was varied between 0.004-1.5 mM were performed using TCEP added to the assay reaction at a final concentration of 8mM, however, the results were inconclusive as absorbance readings (Appendix B.5) for each reaction condition indicated no activity, reading the same as both the blank and negative control conditions. CysK activity was tested without the presence of a reducing agent, indicating the enzyme was still active and TCEP optimisation was necessary (Appendix B.5).

Five different reaction conditions were set up to measure the ability of TCEP to reduce cystine to cysteine using a solution of 5 mM cysteine that had been left at room temperature for 14 days therefore converting to cystine. Reaction conditions included: no cysteine, no TCEP and addition of 8 mM TCEP (final concentration) after incubation for 30 sec, 5 min and 10 min, respectively. No enzyme or substrates were included in these assays, so we could observe the effect of the TCEP reducing agent vs no reducing agent. Results showed the reaction with no TCEP added had the highest absorbance (indicating
the highest cysteine concentration) and irregular, significantly lower absorbance readings were observed in all three 8 mM TCEP conditions, regardless of incubation time (Appendix B.5). With TCEP added as a reducing agent, we would expect these samples to have the highest absorbance and increase over time, indicating a higher cysteine:cystine ratio.

Therefore, the TCEP activity test was repeated with minor modifications. TCEP was added at a final concentration of 50 mM and the pH of the cysteine solution was adjusted to pH 2. Eight different assay conditions were set up to measure the ability of TCEP to reduce cystine to cysteine using a solution of 5 mM cystine (a 5 mM cysteine solution that had been left at room temperature for 14 days therefore oxidising to cystine). Reaction conditions included: no cysteine, no TCEP and 50 mM TCEP with incubation for 30 sec, 5 min and 10 min respectively, and 50mM TCEP with a fresh 5 mM solution of cystine. Again, no enzyme or substrates were included in these assays. Surprisingly, the fresh L-cysteine did not react with the acid ninhydrin added, giving absorbance readings equivalent to the blank samples. The cystine solution however, produced a similar pattern observed previously (Appendix B.5), the condition with no TCEP gave the highest absorbance reading, whilst the conditions with TCEP gave irregular and significantly lower absorbance readings.

Subsequently, assays without TCEP present and 6.32 µg of CysK were conducted to determine the approximate amount of cysteine produced using the cysteine standard curve (Appendix B.2). Following this, three sets of assays with 9.17, 2.478 and 1.626 µg of CysK respectively were conducted using final concentration 30 mM TCEP (Appendix B.5). These were all inconclusive, giving irregular absorbance readings with extremely high standard deviations making it impossible to draw accurate conclusions.

Review of the literature surrounding TCEP in these cysteine determination assays, indicated three issues. Desulphurisation of cysteine containing compounds occurs in the presence of TCEP when heated to 60 °C, resulting in conversion of cysteine to alanine (Wang et al., 2010). TCEP is also unstable in phosphate buffers (Thermo Fisher Scientific, 2013) and cannot be used in the presence of high protein concentration (defined as 6 mM +) (Melnikova et al., 2019). The CysK enzyme is purified in a potassium phosphate buffer and the assay method has an incubation step at 95 °C that is significantly higher
than 60 °C. We therefore hypothesised that the lack of enzyme activity in our assays was due to the conversion of cysteine to alanine during the 5 min 95 °C incubation step, which would be unable to react with the acid ninhydrin reagent to produce the pink chromophore that absorbs at 560 nm. Therefore, comparisons of different reducing agents in activity assays were compared to determine which reducing agent should be used in cysteine determination assays. Six reaction conditions were trialled: 30 mM TCEP, 30 mM DTT, no reducing agent (NRA) and blanks for each reducing agent condition (blanks had no enzyme added). Assays were conducted at saturating substrate concentrations of 10 mM OAS and 10 mM Na₂S with 2.4 µg of CysK. Higher concentrations of CysK were used in these reducing agent assays to allow for higher cysteine production hopefully making comparisons between reducing agents more stated. Reactions were set up without the addition of reducing agent and once all reactions were stopped by addition of 20% TCA, the reducing agents were added (TCEP, DTT and NRA) to a final concentration of 30 mM (addition of MOPS buffer in the NRA condition). All conditions were incubated at room temperature, and the assay method followed as per section 2.5.1. Absorbance readings indicated a stark contrast between the reducing abilities of TCEP and DTT in these assays (Table 3.2), with TCEP absorbance readings approximately half that of the DTT reducing agent absorbance readings, the NRA also had higher absorbance readings compared to TCEP (Table 3.2). Thus, it was established that DTT would be used in all cysteine determination assays from this point.

Table 3.2: Reducing agent efficacy testing absorbance readings at 560 nm. TCEP, DTT and NRA tested as reducing agents.

<table>
<thead>
<tr>
<th></th>
<th>Reaction 1</th>
<th>Reaction 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCEP (blank)</td>
<td>0.048</td>
<td>0.050</td>
</tr>
<tr>
<td>DTT (blank)</td>
<td>0.051</td>
<td>0.052</td>
</tr>
<tr>
<td>NRA (blank)</td>
<td>0.047</td>
<td>0.049</td>
</tr>
<tr>
<td>TCEP (30 mM)</td>
<td>0.513</td>
<td>0.531</td>
</tr>
<tr>
<td>DTT (30 mM)</td>
<td>1.153</td>
<td>0.961</td>
</tr>
<tr>
<td>NRA</td>
<td>0.669</td>
<td>0.619</td>
</tr>
</tbody>
</table>

3.1.3.4 Final assay optimisation

The assay method was redesigned accommodating the use of 100 mM DTT to give a final concentration of 30 mM in the reducing step as per section 3.1.3.3. Assays were set up as per section 2.5.1 with minor modifications outlined below. The addition of 39 µl 100 mM DTT to all reactions resulting in 130 µl final volume.
Preliminary results were more promising than previous assays, showing consistent activity across different varied OAS concentration conditions, however, outliers were still present with blank activity compared to their duplicates (Appendix B.5). After the 95 °C incubation step, the reaction solution overflowed over the reaction wells. To alleviate these outliers and the overflow, three modifications to the method were introduced. (1) The concentration of the DTT stock solution was doubled to 200 mM, changing the DTT and MOPs volume added to 16.5 and 3.5 µl respectively with a final volume of 110 µl. This change in volume prevented overflow during the 95 °C incubation step, therefore preventing potential loss of cysteine produced during the reaction. (2) The concentration of Na₂S was increased from 1 mM to 10mM to ensure saturating concentrations of Na₂S. (3) The frozen CysK stocks (0.8 mg.ml⁻¹ CysK, 25% v/v glycerol) were aliquoted into multiple tubes and stored at -80 °C to eliminate the effects of freeze thawing. These changes resulted in reliable, reproducible enzyme activity data.

All rates for kinetic analysis were taken from the linear section of each reaction (the first five minutes), indicating that the steady state for calculating enzyme rate in these stopped assays occurs in the first five minutes across all substrate concentrations (Appendix B.5). Thus, all assays were shortened to measure activity over 10 minutes rather than 20 with time points at 0, 2.5, 5, 7.5 and 10 minutes rather than the original 0, 5, 10, 15 and 20 minutes.

3.1.4 CysK kinetic analysis

Enzyme kinetic curves were collected for both substrates, OAS and Na₂S for the purpose of determining K_M and V_max for CysK. These kinetic parameters provide insights into the enzyme’s affinity for these substrates and can be used to calculate measures of catalytic efficiency including, k_cat and k_cat/K_M.

Assays varying the concentration of substrate OAS were conducted as per the final parameters in section 3.1.3.4. Rates (mM.min⁻¹) were calculated as per section 2.5.1 and plotted against increasing OAS concentrations (0.2 – 10 mM) at saturating concentrations of Na₂S (10 mM). The resulting non-linear regression Michaelis-Menten plot (R² = 0.7428, Figure 3.4, red line) does not follow a linear increase of rate as substrate concentration rises, however, showing a sigmoidal rate increase. This indicates an alternate kinetic model may be more accurate for CysK. Subsequently, a non-linear
regression allosteric sigmoidal model of catalysis (Equation 2.4) was fit ($R^2 = 0.8641$, Figure 3.4, blue line) to the data.

Figure 3.4: CysK activity with varying OAS concentration. Red line shows non-linear regression fit of the Michaelis Menten equation. Blue line shows a non-linear regression fit of an allosteric sigmoidal equation (occurs when the enzyme has cooperative subunits). Na$_2$S was held at a constant concentration of 10 mM. Assay reactions were conducted at 37 °C. All reaction conditions were collected in duplicate. Error bars represent standard error.

Table 3.3: Summary of kinetic parameters for initial OAS data. Values are means calculated from duplicates and are quoted with standard error. k_{cat} values are reported for the CysK dimer.

<table>
<thead>
<tr>
<th></th>
<th>Michaelis-Menten</th>
<th>Allosteric Sigmoidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{max} (mM.min$^{-1}$)</td>
<td>0.039 ± 0.005</td>
<td>0.032 ± 0.002</td>
</tr>
<tr>
<td>K_M (mM)</td>
<td>1.223 ± 0.474</td>
<td>-</td>
</tr>
<tr>
<td>K_{half} (mM)</td>
<td>-</td>
<td>0.911 ± 0.104</td>
</tr>
<tr>
<td>k_{cat} (s$^{-1}$)</td>
<td>7036 ± 902</td>
<td>5844 ± 362</td>
</tr>
<tr>
<td>k_{cat}/K_M (mM.s$^{-1}$)</td>
<td>5753 ± 1475</td>
<td>6417 ± 796</td>
</tr>
<tr>
<td>h</td>
<td>-</td>
<td>3.076 ± 0.953</td>
</tr>
<tr>
<td>R^2</td>
<td>0.7428</td>
<td>0.8641</td>
</tr>
</tbody>
</table>

The allosteric sigmoidal model, is a co-operative model, which occurs in enzymes with multiple binding sites and is defined by increased affinity of an active site for a ligand, when a ligand binds to another active site (Libretexts, 2020b, 2020a). An enzyme that demonstrates cooperativity is defined as allosteric and can demonstrate either positive or negative cooperativity. Positive cooperativity occurs when a ligand binding to an enzymes active site increases the affinity of one of the enzymes alternate active sites for a ligand, ultimately causing a rapid and co-ordinated increase in the reaction rate as the ligand concentration increases (an allosteric sigmoidal model) (Libretexts, 2020b, 2020a).
Whereas, negative cooperativity occurs when the ligand binding causes a decreased affinity in one of the enzymes alternate active sites for the ligand, ultimately causing a slowed reaction rate (an allosteric hyperbolic model) (Libretexts, 2020b, 2020a). Figure 3.4 shows an allosteric sigmoidal kinetic profile with a good fit ($R^2 = 0.8641$, Figure 3.4, blue line), and characteristic of this model, low enzyme activity at low OAS substrate concentration with a rapid and immediate increase in activity to the V_{max} as OAS concentration increases. The kinetic parameters quoted for the allosteric sigmoidal model also display significantly less error than the Michaelis-Menten kinetic model (Table 3.3). Thus, indicating OAS exhibits positive cooperativity in *N. gonorrhoeae*’s CysK dimer.

OASS-A enzymes display a wide variety of kinetic profiles in relation to OAS. Similar to the *N. gonorrhoeae* OASS-A (CysK) characterised here, the OAS kinetic profile for *Datura innoxia* OASS isozyme C (three OASS isozymes A-C were isolated) at low concentrations of OAS, exhibits positive cooperativity (allosteric sigmoidal model). However, although we did not measure activity at OAS concentrations higher than 10 mM, OAS does exhibit competitive inhibition at concentrations higher than 25 mM in *D. innoxia* (Kuske *et al.*, 1994). Interestingly, both *Phaseolus vulgaris* and *Phaseolus polyanthus* OASS-A display a standard Michaelis-Menten relationship to OAS (Bertagnolli & Wedding, 1977), in which the reaction rate increases linearly in relation to substrate concentration until a maximal point at which activity levels off at V_{max} (Libretexts, 2020c). Thus, resulting in an asymptotic rectangular hyperbolic curve. Alternatively, the *S. typhimurium* OASS-A enzyme, exhibits substrate inhibition for OAS at concentrations above 7.5 mM where enzyme activity decreases (Cook & Wedding, 1976; Tai *et al.*, 1993). Assays where the concentration of Na$_2$S was varied were conducted as per the final parameters in section 3.1.3.4. Rates (mM.min$^{-1}$) were calculated as per section 2.5.1 and plotted against increasing Na$_2$S concentrations (0.2 – 12 mM) at saturating concentrations of OAS (10 mM). The first six Na$_2$S concentrations (0.2 - 2 mM)
show virtually no enzyme activity (Figure 3.5), therefore not adhering to the typical Michaelis-Menten kinetic model ($R^2 = 0.5380$, Figure 3.5, red line). The sigmoidal

Figure 3.5: CysK activity with varying Na$_2$S concentration. Kinetic mechanisms modelled for varying Na$_2$S concentrations. Red line shows a non-linear regression fit of Michaelis-Menten kinetic model. Dotted black line shows a non-linear regression fit of substrate inhibition kinetic model. Blue line shows a non-linear regression fit of an allosteric sigmoidal (cooperativity) kinetic model. All models fit using the same data. OAS was held at a constant concentration of 10 mM (saturating). CysK was freshly thawed for these assays. Assay reaction was conducted at 37 ºC. All reaction conditions were collected in duplicate. Error bars represent standard error.

shape of the rates from 0.2 – 7 mM Na$_2$S suggest similar positive cooperativity to the OAS kinetic profile. Hence, an allosteric sigmoidal model ($R^2 = 0.7728$, Figure 3.5, blue line) was fit, giving a K_{half} and V_{max} of 3.933 ± 224.517 mM and 0.035 ± 0.003 mM.min$^{-1}$, respectively (Table 3.4). Despite the improved fit, the distinct lack of a plateau, indicated some form of inhibition was present at Na$_2$S concentrations higher than 7 mM. Therefore, a substrate inhibition model ($R^2 = 0.6190$, Figure 3.5, dotted black line) was fit to the data, giving a K_M and v_{max} of 14014.449 ± 4.743x107 mM and 97.924 ± 331330.28 mM.min$^{-1}$, respectively (Table 3.4). Given the error present for the K_{half} in the allosteric sigmoidal model exceeds both the K_{half} value quoted, and the concentration ranges plotted, this was deemed not scientifically relevant. Combined with the relatively poor goodness of fit ($R^2 = 0.7728$), it was clear this model was not accurate or scientifically relevant. The K_M and V_{max} values quoted for the substrate inhibition model are incredibly large and exceed the concentration ranges plotted by a huge margin, indicating these to also not be scientifically relevant. Despite these conclusions, it is possible both positive cooperativity and substrate inhibition are occurring in this kinetic profile.
Table 3.4: Summary of kinetic parameters for Na₂S data fit with Michaelis-Menten, allosteric sigmoidal and substrate inhibition models. Values are means calculated from duplicates and are quoted with standard error. k_{cat} values are reported for the CysK dimer.

<table>
<thead>
<tr>
<th></th>
<th>Michaelis-Menten</th>
<th>Allosteric Sigmoidal</th>
<th>Substrate Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{max} (mM.min⁻¹)</td>
<td>0.056 ± 0.027</td>
<td>0.053 ± 0.003</td>
<td>97.924 ± 331330.028</td>
</tr>
<tr>
<td>K_M (mM)</td>
<td>7.021 ± 6.676</td>
<td>-</td>
<td>14014.449 ± 4.743x10⁷</td>
</tr>
<tr>
<td>K_{half} (mM)</td>
<td>-</td>
<td>3.933 ± 224.517</td>
<td>-</td>
</tr>
<tr>
<td>K_i (mM)</td>
<td>-</td>
<td>-</td>
<td>0.006 ± 20.589</td>
</tr>
<tr>
<td>k_{cat} (s⁻¹)</td>
<td>10132 ± 4891</td>
<td>6319 ± 543</td>
<td>17738023 ± 6x10¹⁰</td>
</tr>
<tr>
<td>k_{cat}/K_M (mM.s⁻¹)</td>
<td>1443 ± 1393</td>
<td>1607 ± 276</td>
<td>1266 ± 8565045</td>
</tr>
<tr>
<td>h</td>
<td>-</td>
<td>50.66 ± 171493.243</td>
<td>-</td>
</tr>
<tr>
<td>R^2</td>
<td>0.5380</td>
<td>0.7728</td>
<td>0.6190</td>
</tr>
</tbody>
</table>

Therefore, the substrate inhibition and allosteric sigmoidal model equations were combined (Equation 2.6) and fit to the data ($R^2 = 0.9573$, Figure 3.6). This model fit the data relatively well, however, the Hill co-efficient value indicates the inaccuracy of the model. A hill co-efficient of 4.159 ± 0.854 (Table 3.5) suggests the enzyme is functioning as a tetramer, which is incorrect as CysK has been established as a dimer through gel filtration as per section 3.1.2. It was impossible to fit any simple model of substrate inhibition, Michaelis-Menten or allosteric sigmoidal kinetics to the profile. The initially allosteric sigmoidal curve did not smoothly approach an asymptote, instead abruptly decreasing due to substrate inhibition. It is this abrupt decrease in activity past 7 mM Na₂S that makes it difficult to fit any particular model to the data. Due to this, the kinetic constants obtained from the combined allosteric sigmoidal with substrate inhibition model are not particularly accurate, as was the case with both the P. vulgaris OASS-A and D. innoxia OASS (isozyme A and C) enzymes (Bertagnolli & Wedding, 1977; Kuske et al., 1994).
Interestingly, the *P. vulgaris* OASS-A, shows substrate inhibition after reaching its maximal rate at approximately 1.5 mM S²⁻. However, positive cooperativity (an allosteric sigmoidal model) is observed at concentrations lower than 0.3 mM (Bertagnolli & Wedding, 1977). Alongside this, *D. innoxia* OASS (isozyme C) exhibits an allosteric sigmoidal (positive cooperativity) response to S²⁻ at concentrations below approximately 0.18 mM with substantial substrate inhibition after 0.2 mM S²⁻ concentration (Kuske *et al.*, 1994). Both, the OASS isoenzyme C from *D. innoxia* and the OASS-A from *P. vulgaris* display very similar kinetic profiles to *N. gonorrhoeae*’s for Na₂S, initially an allosteric sigmoidal model, followed by strong substrate inhibition once the maximal rate is reached (Bertagnolli & Wedding, 1977; Kuske *et al.*, 1994). Alternatively, *P. polyanthus* OASS-A shows no allosteric sigmoidal (positive cooperativity) response to S²⁻, however, fits a substrate inhibition model (Bertagnolli & Wedding, 1977). *S. typhimurium* OASS also shows substantial substrate inhibition after 0.25 mM S²⁻ (Cook & Wedding, 1976). Although the organisms *P. polyanthus*’ OASS-A and *S. typhimurium*’s OASS do not fit the same kinetic profile as *N. gonorrhoeae*’s OASS-A (Figure 3.6), both display substrate inhibition in relation to S²⁻. Substrate inhibition by Na₂S is observed across many species OASS-A enzymes.

Substrate inhibition occurs with concentrations of Na₂S higher than 7 mM (Figure 3.6). In earlier assays CysK activity was analysed with varying OAS concentrations with Na₂S held constant at 10 mM. We therefore recollected rate data for CysK with varying OAS
concentrations at 7 mM Na$_2$S to give a more accurate kinetic representation of CysK’s utilisation of OAS, removing the potential substrate inhibition that may have been contributing in Figure 3.4. Rates (mM.min$^{-1}$) were calculated as per section 2.5.1 and plotted against increasing OAS concentrations (0.2 – 10 mM) at a Na$_2$S concentration of 7 mM. The allosteric sigmoidal model of catalysis was fit to the data ($R^2 = 0.9795$, Figure 3.7).

Figure 3.7: CysK activity with varying OAS concentration in the presence of 7 mM Na$_2$S. Allosteric sigmoidal (cooperativity) model fit to the data. CysK was freshly thawed for these assays. Assay reaction was conducted at 37 ºC. All reaction conditions were collected in duplicate. Error bars represent standard error.

Table 3.5: Summary of enzyme kinetic parameters for substrates OAS and Na$_2$S. Values are means calculated from duplicates and are quoted with SEM. k_{cat} values are reported for the CysK dimer.

<table>
<thead>
<tr>
<th></th>
<th>OAS</th>
<th>Na$_2$S</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{max} (mM.min$^{-1}$)</td>
<td>0.038 ± 0.001</td>
<td>2.530 ± 4.601</td>
</tr>
<tr>
<td>K_M (mM)</td>
<td>-</td>
<td>12.430 ± 8.133</td>
</tr>
<tr>
<td>K_{half} (mM)</td>
<td>1.01 ± 0.066</td>
<td>-</td>
</tr>
<tr>
<td>K_i</td>
<td>-</td>
<td>5.146 ± 5.012</td>
</tr>
<tr>
<td>k_{cat} (s$^{-1}$)</td>
<td>6907 ± 181</td>
<td>458360 ± 833426</td>
</tr>
<tr>
<td>k_{cat}/K_M (mM.s$^{-1}$)</td>
<td>6271 ± 329</td>
<td>36875 ± 134097</td>
</tr>
<tr>
<td>h</td>
<td>-</td>
<td>4.159 ± 0.854</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9795</td>
<td>0.9573</td>
</tr>
</tbody>
</table>
Table 3.6: Comparison of kinetic parameters amongst CysK homologues. Assay methods to measure cysteine produced are varied. 560nm/546nm = absorbance of cysteine at 560nm or 546nm wavelength, TNB 412nm = monitoring the disappearance of TNB at 412nm wavelength, Electrode S²⁻ = electrode used to measure depletion of sulphide ions (S²⁻). - = not reported. k_{cat} values are reported for the CysK dimer.

<table>
<thead>
<tr>
<th>Organism</th>
<th>K_M or K_{half} (OAS/Na₂S) (mM)</th>
<th>k_{cat} (OAS/Na₂S) (s⁻¹)</th>
<th>k_{cat}/K_M (OAS/Na₂S) (mM·s⁻¹)</th>
<th>pH, temperature, assay method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. gonorrhoeae</td>
<td>1.01/12.43</td>
<td>6.9x10⁻³/458360</td>
<td>6271/36875</td>
<td>7.0, 37 °C, 560nm</td>
<td>This thesis</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>3.83/0.28</td>
<td>-</td>
<td>-</td>
<td>7.6, 25 °C, Electrode S²⁻</td>
<td>(Bertagnolli & Wedding, 1977)</td>
</tr>
<tr>
<td>P. polyanthus</td>
<td>0.75/0.18</td>
<td>-</td>
<td>-</td>
<td>7.6, 25 °C, Electrode S²⁻</td>
<td>(Bertagnolli & Wedding, 1977)</td>
</tr>
<tr>
<td>D. innoxia (isozyme A)</td>
<td>5.3/260</td>
<td>-</td>
<td>-</td>
<td>7.6, 34 °C, 546nm</td>
<td>(Kuske et al., 1994)</td>
</tr>
<tr>
<td>D. innoxia (isozyme C)</td>
<td>5.1/80.5</td>
<td>7.6, 25 °C, Electrode S²⁻</td>
<td>546nm</td>
<td>(Kuske et al., 1994)</td>
<td></td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>2.135/0.130</td>
<td>7.6, 25 °C, Electrode S²⁻</td>
<td>7.6, 25 °C</td>
<td>(Cook & Wedding, 1976)</td>
<td>(Tai et al., 1993)</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>1/0.006</td>
<td>1.4x10⁴/2.4x10¹</td>
<td>7.0, 25 °C, /TNB 412nm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The difference in the K_M for Na₂S and the K_{half} for OAS (12.43 mM Na₂S vs. 1.01 mM OAS) suggests CysK has a higher affinity for the OAS substrate. The K_M (or K_{half}) values for OAS are comparable with those collected from other CysK homologues (Table 3.6). Interestingly the range of K_M values collected for Na₂S across CysK homologues is extensive, most likely due to difficulties encountered in fitting any single kinetic model to the Na₂S profile. Thus, no accurate comparisons can be made between the N. gonorrhoeae K_M for Na₂S and other CysK homologues.

The catalytic turnover (k_{cat}) values were derived from the V_{max} as per section 2.6, assuming a dimer of CysK monomers for comparison with literature values. k_{cat} values for the CysK homologues in Table 3.6 could not be found. The specificity constant (k_{cat}/K_M) values were calculated as per section 2.6. The k_{cat}/K_M values for CysK OAS and Na₂S are 6.271x10³ and 3.688x10⁴, respectively. k_{cat}/K_M values of $\geq 10^8$ M·s⁻¹ indicate an enzyme is diffusion limited, thus, k_{cat}/K_M values of $10^3/10^4$, indicate CysK is not diffusion limited (Schurr & Schmitz, 1976). These values are however, 100,000 and 1,000,000-fold lower than the literature values found for S. typhimurium (Tai et al., 1993). However, due to the issues encountered when fitting a model to the Na₂S kinetic profile, conclusions
cannot be drawn from many of these comparisons without further experimental interrogation of the kinetics.

Interestingly, there is a 10-fold k_{cat}/K_M increase for Na$_2$S compared to OAS. This, however, cannot be attributed to CysK having a greater affinity for Na$_2$S, as based on K_M/K_{half} values CysK has a higher affinity for OAS. The discrepancy in this explanation is a result of the difficulty in fitting a model to the Na$_2$S kinetic profile. K_M values tend to reflect concentrations of substrate observed in the intracellular environment. There are currently no reported values for S2- or OAS concentration for Neisseria species. In B. subtilis, the intracellular concentrations of OAS have been reported to vary between ~20 – 200 µM, depending on whether cells were grown in the presence of methionine or cystine (cystine causes lower intracellular concentrations of OAS) (Tanous et al., 2008). Assuming a similar intracellular concentration in N. gonorrhoeae, this would give a low intracellular concentration to K_M ratio for OAS (20-200 µM vs. 1010 µM, intracellular concentration vs. OAS K_M). This ratio would suggest CysK would not be saturated with OAS, likely limiting activity of CysK in vivo (Davidi et al., 2016). The lack of literature values for any bacterial intracellular S2- values does not allow for any conclusions about the effect Na$_2$S concentrations may have on in vivo CysK activity.

Many studies in the literature confirm that CysK uses a bi-bi ping-pong mechanism (also known as a non-sequential mechanism) (Cook & Wedding, 1976; Tai et al., 1993; Rabeh & Cook, 2004; Joshi et al., 2019). Based on this reaction mechanism seen in CysK homologues, we predict that CysK most likely has a bi-bi ping-pong mechanism, which is in keeping with the proposed enzyme:α-aminoacrylate intermediate during nucleophilic attack of the sulphide (Joshi et al., 2019). However, it has been reported that S2-, the inorganic anion, does not have a binding site within the CysK enzyme as a substrate, instead likely adding to the α-aminoacrylate intermediate immediately upon diffusion into the active site. An anion binding site has been confirmed with Cl$^-$ ions present in CysK, causing an inhibited enzyme, however, this allosteric binding site was non-specific, accepting a wide array of anions to bind (Tai et al., 2001). The role of S2- in competitive substrate inhibition has been found across many species, including D. innoxia, P. vulgaris, P. polyanthus and S. typhimurium (Cook & Wedding, 1976; Bertagnolli & Wedding, 1977; Tai et al., 1993; Kuske et al., 1994). The partial competitive inhibition observed in the Na$_2$S kinetic profile of N. gonorrhoeae’s CysK is typical of allosteric inhibitors,
indicating that at high S2- concentrations, S2- binds to an allosteric site, resulting in a partially inhibited enzyme (Tai et al., 2001). Thus, a slightly alternative mechanism to the typical bi-bi ping-pong mechanism is proposed where the S2- binds to an allosteric anion-binding site, causing a less active enzyme, however, despite binding of S2- to the allosteric site or not, the overall reaction mechanism remains ping-pong (Tai et al., 2001). The presence of an allosteric anion binding site explains the partial substrate inhibition we observe for Na\textsubscript{2}S.

3.1.4.1 Variation of thiosulphate concentration

Many bacteria have both OASS isoforms, OASS-A/CysK that utilises bisulphide and OASS-B/CysM that utilises thiosulphate producing S-sulphocysteine that is converted to L-cysteine via an unknown mechanism (Figure 1.2, black dotted line in the bottom left). Many bacteria have both isoforms for utilisation in either aerobic or anaerobic conditions, however, all Neisseria species have only a single OASS enzyme variant. The single Neisseria OASS enzyme appears more homologous to the OASS-A/CysK isoform (Hicks & Mullholland, 2018), and from the data presented above is capable of utilising Na\textsubscript{2}S as a substrate. Yet N. gonorrhoeae lacks the ability to produce sulphide via sulphate reduction (Hicks & Mullholland, 2018) and can grow on thiosulphate in the absence of cysteine. We therefore hypothesised that CysK from N. gonorrhoeae was a dual-functioning enzyme capable of utilising both thiosulphate and sulphide for the final step in cysteine biosynthesis. Thus, the ability of N. gonorrhoeae CysK to use thiosulphate as substrate was tested in a stopped assay as per section 2.7. Multiple concentrations (1, 2, 5, 10, 15, 20 and 50 mM) of thiosulphate were tested in the presence of 10 mM OAS (saturating).
Figure 3.8: Thiosulphate CysK activity assay non-linear regression fit of a Michaelis-Menten model. OAS concentration was held at 10 mM. Assay reactions were conducted at 37 °C. CysK was freshly thawed. Error bars represent standard error.

Non-linear regression fit of a Michaelis-Menten model gave a v_{max} and K_M of 0.00153 ± 0.0009 mM.min$^{-1}$ and 5.780 ± 11.476 mM, respectively. The error in the K_M is greater than the K_M itself and takes it to below 0. This, alongside the exceptionally low V_{max}, which is outside the values measured indicates there was no enzyme activity detected for any thiosulphate concentration, thus, indicating CysK from *N. gonorrhoeae* cannot use thiosulphate as a substrate (Figure 3.8).

3.1.5 CysK kinetics Conclusions and future directions

The CysK substrates OAS and Na$_2$S both display positive cooperativity (allosteric sigmoidal) kinetics, however, Na$_2$S also displays partial competitive substrate inhibition. This coincides with the potential presence of an allosteric anion-binding site on the CysK enzyme proposed by (Tai *et al.*, 2001). *N. gonorrhoeae* CysK is unable to utilise thiosulphate as a substrate indicating the enzyme may not be a dual-functioning enzyme.

Future work includes investigating the effect higher OAS concentrations has on the kinetics of CysK. This will help elucidate the presence of any substrate inhibition that may occur, which may also be explained by the presence of the allosteric binding site, where the α-carboxylate of OAS binds to the allosteric binding site (Tai *et al.*, 2001). Collecting curves of the established reaction with increasing concentrations of Cl$^-$ anions to observe the potential inhibition is also important for understanding the reaction mechanism of CysK. Understanding the reaction mechanism is crucial for computational inhibitor screening to identify lead compounds for CysK inhibition.
3.2 Structural characterisation of CysK from *N. gonorrhoeae*

3.2.1 O-acetylserine sulphydrylase/CysK

O-acetylserine sulphydrylase (CysK/OASS-A, EC:2.5.1.47) is a key enzyme in the biosynthesis of cysteine in bacteria and plants. OASS-A is a member of the tryptophan synthase β-superfamily (Fold type II) and the β-family of PLP dependent enzymes (Mino & Ishikawa, 2003; Guédon & Martin-Verstraete, 2007; Takumi & Nonaka, 2016). Although structures of CysK from other bacteria have been characterised, there has been no investigation into the structure of CysK from *N. gonorrhoeae*.

We propose CysK is a valid target for the design of new antimicrobial compounds for treatment of gonorrhoea. To effectively do this, we require a high-resolution structure of CysK (Reichau et al., 2011), which in turn can be used for computational inhibitor screening to identify leading compounds for future development. As there is currently no determined structure of CysK from *N. gonorrhoeae*, we aimed to purify, crystallise and determine the structure of CysK using X-ray crystallography.

3.2.2 Crystallisation of CysK

Prior to the beginning of this master’s research, Annmaree Warrender and I grew diffracting CysK protein crystals and collected three datasets from a 2.3 Å crystal as per section 2.9. The crystal was obtained from crystallisation condition: 0.1 M HEPES pH 7.5, 4% polyethylene glycol 400 (v/v), 2.5 M ammonium sulphate.

3.2.3 CysK data processing

The data collected was initially indexed in space group 19 (P2₁2₁2₁) and a single dataset (number 17) used for processing. However, using solely dataset 17 in this space group, I was unable to solve the structure, with R values not improving during refinement with the best final model having an R_work/R_free score of 0.2300/0.3083. The space group was subsequently determined to have been incorrectly assigned using zanuda (Lebedev & Isupov, 2014) from the CCP4 suite (Winn et al., 2011). The data was subsequently reindexed in space group 4 (P12₁₁) (based on zanuda_output), the unit cell dimensions changed to match dataset 16 and the two datasets (16 and 17) were integrated and scaled using XDS (Kabsch, 2010). Reflections were merged, resolution cut back to 2.49 Å, and a FreeR flag dataset for refinement and dataset quality statistics generated (Table 3.7) using AIMLESS from the CCP4 suite (Winn et al., 2011). AIMLESS and *phenix.xtriage*
analysis of twinning and tNCS indicated the dataset had a low percentage of twinning fraction (0.02), therefore, no attempt to detwin the dataset was made. The following data quality thresholds are met by the determined data quality statistics; CC$_{1/2}$ ≥ 0.3 (0.834), I/σI ≥ 2.0 (2.6), R$_{merge}$ ≤ 0.8 (0.654) and overall completeness >95% (99.9%) (values in the highest resolution shell are reported) indicating the data is of good quality. This data was used for downstream processing.

Table 3.7: Data collection statistics for CysK. Statistics for highest resolution shell are shown in brackets. Data statistics generated by AIMLESS and phenix.tableone.

<table>
<thead>
<tr>
<th>Data Statistic</th>
<th>Apo structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P12₁₁</td>
</tr>
<tr>
<td>Cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a/b/c (Å)</td>
<td>102.74/62.18/105.67</td>
</tr>
<tr>
<td>α/β/γ (°)</td>
<td>90/90.082/90</td>
</tr>
<tr>
<td>Mosaicity</td>
<td>0.00</td>
</tr>
<tr>
<td>Monomers in asymmetric unit</td>
<td>4</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>47.53-2.49 (2.58-2.49)</td>
</tr>
<tr>
<td>Numbers of observed reflections</td>
<td>330233 (32079)</td>
</tr>
<tr>
<td>Number of unique reflections</td>
<td>47132 (4605)</td>
</tr>
<tr>
<td>R$_{merge}$</td>
<td>0.056 (0.654)</td>
</tr>
<tr>
<td>R$_{pim}$</td>
<td>0.023 (0.266)</td>
</tr>
<tr>
<td>CC$_{1/2}$</td>
<td>0.999 (0.834)</td>
</tr>
<tr>
<td>Mean of I/σI</td>
<td>19.2 (2.6)</td>
</tr>
<tr>
<td>Completeness</td>
<td>100.0 (99.9)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>7.0 (7.0)</td>
</tr>
<tr>
<td>Wilson B factor (Å2)</td>
<td>60.19</td>
</tr>
</tbody>
</table>

3.2.4 Solving the CysK structure

Various CysK homologues present in the PDB were selected to be potential candidates for molecular replacement with good sequence similarity (≥ 30%) and conservation of secondary structural features (Figure 3.9). Based on this information, the M. tuberculosis CysK structure (3ZEI) (Poyraz et al., 2013) was chosen as the search model for molecular replacement as it exceeded the minimum requirements of sequence similarity (57%) and the majority of the structure was built (97%).
Figure 3.9: ENDscript analysis of the secondary structure of CysK from *N. gonorrhoeae*. For each residue solvent accessibility (acc) and hydrophobicity (hyd) are labelled below the sequence. acc is rated as blue being accessible, cyan less accessible, and white being completely buried from solvent (red being not calculated). hyd is ranked as cyan being hydrophilic, purple being hydrophobic and white being neutral. Secondary structure elements are labelled in grey above the peptide sequence, with helices, β-strands, and β-turns, represented by linked loops, arrows and TT, respectively. Letters indicate noncrystallographic interaction with chain denoted by letter. Refer to (Appendix D.1 Contents of the asymmetric unit for CysK) for chain labelling of the monomers in the ASU. Chain A was used for analysis. Figure generated using ENDscript 2.0 (Robert & Gouet, 2014).
The Matthew’s coefficient was used to predict the number of monomers in the asymmetric unit (ASU) (Matthews, 1968). The most likely number of monomer copies present was determined to be four, calculated with a predicted molecular weight of 32.726 kDa for CysK from Protparam as per section 2.4.5. Thus, the CysK monomer (3ZEI) was used as a search model for molecular replacement with four monomers in the ASU (phenix.phaser). Phaser found a solution with good TFZ and LLG scores of 19.6 and 687.620, respectively (McCoy et al., 2007).

The CysK model was built using the autobuild.phenix programme. The programme was supplied with the phenix.phaser output model and map, reflection file (with FreeR flag dataset) and the CysK amino acid sequence. Initially, default settings were used (Appendix D.2 Initial input settings for phenix.autobuild), except waters were not placed in the refinement. The building reached a threshold where the R_free and R_merge values were not improving. Therefore, default settings with minor alterations were used for the final rounds of structure building, where waters were not placed in the refinement, and rebuild in place was set to false (Appendix D.3 Final input settings for phenix.autobuild). The latter step allows the programme to edit the structure file based on the sequence file, as well as build outside the model (if there is unmodelled density present). The structure went through six iterative building rounds and three cycles of refinement. The resulting structure had a good R_work/R_free score for a starting model of 0.2305/0.3060. In the asymmetric unit, 4 monomers were built, with two forming a homodimer, while the two remaining monomers were positioned either side of the homodimer. The majority of each monomer was built by automated building using phenix.autobuild, however, there were large sections of the protein’s amino acid sequence missing. The sections missing from Pro-137-Asn-151 and Glu-204-Ser-240 in each monomer were manually built in COOT.

3.2.5 Analysis of the CysK structure

The final structure model for CysK has a R_work/R_free of 0.2099/0.2623 (Table 3.8). Structure and map files for the CysK model are listed in (Appendix D.4 CysK structural files). There was no density to support the C-terminal tail from Leu-297 onwards including the hexahistidine-tag in any of the chains within the ASU, or the first two residues of each monomer. There was also no density to support Pro-143-Asn-151 or Glu-204-Tyr-238 (± 2 residues in some chains) across all four monomers in the ASU. The overall structure of CysK is moderately well built, with an average monomer length of 254.5 residues (254.5/312, 81.6% built) (Appendix D.5 CysK chain statistics).
The CysK monomer consists of an N-terminal domain spanning residues Val43-Pro143 and a C-terminal domain spanning residues Ile11-Ser42 and Asn151-Tyr296. The N-terminal domain is potentially extended further than residue Pro143, however, due to resolution restrictions and the potential flexibility of this region, there is a gap in the structure from Arg144-Ala150. The C-terminal domain also has a gap in the residue sequence from Glu204-Ile229, and the C-terminal tail extends further beyond Tyr296, however, due to both resolution and the flexibility of the C-terminal tail, these are the limits of the C-terminal domain.

Table 3.8: CysK final model quality statistics. Statistics generated by *phenix.tableone.*

<table>
<thead>
<tr>
<th>Data statistic</th>
<th>CysK</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{work}</td>
<td>0.2099</td>
</tr>
<tr>
<td>R_{free}</td>
<td>0.2623</td>
</tr>
<tr>
<td>No. of protein residues</td>
<td>1038</td>
</tr>
<tr>
<td>Total number of non-hydrogen atoms</td>
<td>7967</td>
</tr>
<tr>
<td>Macromolecules</td>
<td>7674</td>
</tr>
<tr>
<td>Solvent</td>
<td>293</td>
</tr>
<tr>
<td>RMS</td>
<td></td>
</tr>
<tr>
<td>Bonds (Å)</td>
<td>0.021</td>
</tr>
<tr>
<td>Angles (°)</td>
<td>1.54</td>
</tr>
<tr>
<td>Average B value (Å)</td>
<td>64.25</td>
</tr>
<tr>
<td>Macromolecules</td>
<td>64.18</td>
</tr>
<tr>
<td>Solvent</td>
<td>66.08</td>
</tr>
<tr>
<td>Ramachandran analysis</td>
<td></td>
</tr>
<tr>
<td>No. of residues in favoured region (%)</td>
<td>97.33</td>
</tr>
<tr>
<td>No. of residues in allowed region (%)</td>
<td>2.38</td>
</tr>
<tr>
<td>No. of residues in outlier region (%)</td>
<td>0.30</td>
</tr>
<tr>
<td>Rotamer outliers (%)</td>
<td>0</td>
</tr>
</tbody>
</table>
3.2.5.1 Analysis of the CysK dimer

The CysK dimer has a height of 46.2 Å, and a width of 61.7 Å and has two-fold symmetry. The monomer-monomer formation of the dimer is a result of multiple hydrogen bonds and hydrophobic interactions between the monomers. A small portion of the dimer surface area is buried at the monomer-monomer interface, with 2840 Å² of a total dimeric surface area of 22230 Å² (12.8%) (calculated as per section 2.12.4). The calculated free energy for the dissociation (ΔG\text{diss}) of the dimer is 10.7 kcal.mol\(^{-1}\), demonstrating that the dimeric arrangement is thermodynamically stable. CysK has been confirmed to elute as a dimer by gel filtration chromatography (Figure 3.2).

3.2.5.2 Analysis of the CysK N-terminal domain

The N-terminal domain consists of a central three-stranded parallel β-sheet which is flanked by three α-helices on one side and a single α-helix on the other side (Figure 3.9, Figure 3.10 and Figure 3.11). Tyr-140 and Phe-141 are indicated to be the beginning of another β-sheet (STRIDE, (Frishman & Argos, 1995)), however, due to the gap from
Arg144-Ala150, this cannot be determined in this structure. The domain begins with an α-helix (α1, Val43-Ala58), and a meandering loop (Gly59-Val66) links to the first central β-sheet (β3, Ile67-Thr71). A sharp turn (Ser72-Gly73) links to the second α-helix (α2, Asn74-Arg86). The second β-sheet begins (β4, Lys90-Pro95), running parallel to β3 after a sharp turn (Gly87-Lys89). From β4 to α3 (Lys100-Phe109) there is a sharp turn (Glu96-Ser99). From α3 there is another sharp turn (Gly110-Ala111) to the third of the central parallel β-sheets (β5, Glu112-Thr116). A single residue sharp turn (Pro117) leads to the α-helix on the other side of the central parallel β-sheets (α4, Ala118-Ala135). From here, a meandering loop (His136-Thr139) looks to be linking to a fourth central parallel β-sheet that is suggested to begin at Tyr140 (STRIDE, (Frishman & Argos, 1995)). The linkage between the N-terminus and the C-terminus is missing as one of the residue gaps (Arg144-Ala150). The C-terminal domain begins at Asn151, however, there is also a small section of the C-terminal domain from residues Ile11-Ser42.

Figure 3.11: Structure of the CysK N-terminal domain from N. gonorrhoeae. Helices are coloured red and labelled with α. β-sheets are coloured yellow and labelled with β. Loops and turns are coloured green. Figure generated in PyMOL.

3.2.5.3 Analysis of the CysK C-terminal domain

The C-terminal domain consists of a central six-stranded mixed β-sheet with two α-helices on either side (Figure 3.9, Figure 3.10 and Figure 3.12). The domain begins with a loop (Ile11-Pro15) to the first β-sheet (β1, Leu16-Lys18) and continues with a meandering loop (Leu19-Ala28) to the second central β-sheet (β2, Glu29-Leu34). There is a short 3_10 (Glu35-Phe37) and sharp turn (Asn38-Ser42) linking to the beginning of the N-terminal domain.
The C-terminal domain continues from Asn151, and the first α-helix of the domain begins (α5, Pro152-Thr167). A loop (Asp168-Asp172) links to the third central β-sheet (β6, Val173-Gly177). The second α-helix (α6, Thr183-Tyr194) is linked to β6 by a short loop (Val178-Gly182) which includes the majority of the PLP interacting 179-GTGGT-183 motif. A turn (Lys195-Ile198) continues from α6 to the fourth central β-sheet (β7, Glu199-Val203) where the residue sequence ends at the Glu204-Ile229 gap. The C-terminal domain continues with a meandering loop (Pro230-Asp239) to the fifth central β-sheet (β8, Ser240-Ala242). A tight turn (Lys243-Pro245) links to the domains third α-helix (α7, Asn246-Glu260), which links to the domains fourth α-helix (α8, Ile266-Lys280) via a turn (Gly261-Gly265). A meandering loop (Gln281-Gly286) connects to the final β-sheet of the domain (β9, Lys287-Leu293), after which the C-terminal domain ends with a loop (Pro294-Tyr296). The C-terminal tail is missing 16 residues in this structure, however, this is consistently found across CysK structures in the PDB (Salsi et al., 2010; Poyraz et al., 2013), and is most likely a result of the C-terminal tail’s flexibility.

3.2.5.4 Structure of the CysK active site

The functional enzyme forms a homodimer of ~75.452 kDa and characteristic of the Fold type II family, the active site of the enzyme is made up of residues all from one subunit (Liang et al., 2019). Alignment of the CysK protein sequence from *N. gonorrhoeae* with other bacterial homologues, demonstrates moderate sequence similarity compared to other proteobacterial and plant species (average 54.20% sequence similarity), but shows strong conservation of the PLP co-factor interacting residues Lys-44, Val-40, Ser-266, the asparagine loop at Asn-74, the substrate carboxylate binding Gln-145 and the PLP interacting 179-GTGGT-183 motif (except in *B. abortus*) (Figure 3.13). The active site
residues 71-TSGNTG-76 (Joshi et al., 2019) (except the moderately conserved Serine) and 223-GIGA-226 (Joshi et al., 2019) are also strongly conserved in the six species across the ranges 68/72-76 and 222/228-225/231, respectively (Figure 3.13). The closest structural relatives of N. gonorrhoeae CysK are from M. tuberculosis (Poyraz et al., 2013) and H. influenzae (Salsi et al., 2010) with root mean square deviation values after

Figure 3.13: CysK protein sequence alignment. The N. gonorrhoeae FA1090 CysK amino acid sequence was aligned to the following CysK homologues; M. tuberculosis (65.7% sequence similarity); S. typhimurium (55.05% sequence similarity); H. influenzae (55.84% sequence similarity); A. thaliana (55.02% sequence similarity) and B abortus (39.41% sequence similarity). Highly conserved residues are highlighted in red, whilst less conserved residues are highlighted in yellow. Sequence alignment created using Clustal Omega. Figure created using ESPript 3.
Figure 3.14: Structural overlay of *N. gonorrhoeae* and *M. tuberculosi*s CysK monomers. (a) active site and PLP interacting residues shown in licorice-stick format. (b) active site and PLP interacting residues shown as the surface of the active site cleft. *N. gonorrhoeae* structure shown in green. *M. tuberculosis* structure shown in cyan. PLP shown in orange. AWH (3-((Z)-((Z)-5-(4-Fluorobenzylidene)-3-methyl-4-oxothiazolidin-2-ylidene) amino) benzoic Acid) shown in magenta. Red sections of the surface of the active site cleft indicate negative potential. Blue sections of the surface of the active site cleft indicate positive potential. Figure generated in PyMOL.
structural superposition of 1.1 Å (229 equivalent C-atoms) and 1.274 Å (219 equivalent C-atoms), respectively. The active site residues 71-TSGNTG-76 and 223-GIGA-226 are strongly conserved in *N. gonorrhoeae* and have been identified through sequence alignment (Figure 3.13). However, as a function of resolution constraints and the flexibility of the loop, residues 223-GIGA-226 are not visible in the CysK structure. Alignment of the *N. gonorrhoeae* and *M. tuberculosis* CysK structures indicate the 71-TSGNTG-76 active site residues from *N. gonorrhoeae* have the same conformation as *M. tuberculosis* CysK (Figure 3.15).

Figure 3.15: Alignment of *N. gonorrhoeae* and *M. tuberculosis* CysK active site and PLP interacting residues, in licorice-stick format. Active site residues 71-TSGNTG-76 and PLP interacting residues; Val-43, Lys-44, Asn-74, Ser-267 and 179-GTGTT-183 motif from *N. gonorrhoeae* are labelled. *M. tuberculosis* active site residues 223-GIGA-226 on the right are not labelled. *N. gonorrhoeae* monomer D residues shown in green. *M. tuberculosis* residues shown in cyan. PLP shown in orange. AWH (3-((Z)-((Z)-5-(4-Fluorobenzylidene)-3-methyl-4-oxothiazolidin-2-ylidene)amino)benzoic Acid) shown in magenta. Figure generated in PyMOL.

Overall, the active site residues and PLP interacting residues that form the active site cleft align in a very similar conformation in *N. gonorrhoeae* and *M. tuberculosis* structures (Figure 3.14, Figure 3.15 and Figure 3.16). Despite the absence of the 223-GIGA-226 active site residues from the *N. gonorrhoeae* CysK structure (Figure 3.15), it is clear the structures form a very similar active site cleft. The binding of AWH (3-((Z)-((Z)-5-(4-Fluorobenzylidene)-3-methyl-4-oxothiazolidin-2-ylidene)amino) benzoic Acid) into the *M. tuberculosis* active site gives a good indication of how O-acetylserine would bind into the active site of CysK in *N. gonorrhoeae*. AWH is a novel thiazolidine inhibitor of OASS, designed by (Poyraz *et al.*, 2013), which is bound in the active site of the *M. tuberculosis* CysK.
Figure 3.16: CysK active site cleft formed by the active site (71-TSGNTG-76 and 223-GIGA-226) and PLP interacting (Val-43, Lys-44, Asn-74, Ser-267 and 179-GTGGT-183 motif) residues from *M. tuberculosis* (a) and *N. gonorrhoeae* (b). PLP shown in orange. Note the region missing in the *N. gonorrhoeae* structure in (b) corresponds to the missing GIGA flexible loop in the active site. Figure generated in PyMOL.

Structural alignment of the *M. tuberculosis* OASS-A/CysK enzyme with our isolated OASS isoform from *N. gonorrhoeae* indicates, our enzyme is also an OASS-A/CysK enzyme rather than the alternate isoform OASS-B/CysM which has a larger active site. Due to the strong structural similarity between *N. gonorrhoeae* and *M. tuberculosis* CysK enzymes (Figure 3.14, Figure 3.15 and Figure 3.16), it is assumed that the overall surface structure between the two enzymes will be the same if the *N. gonorrhoeae* structure was not missing active site residues (223-GIGA-226) and Glu204-Pro230 stretch. Therefore, to confirm the OASS enzyme from *N. gonorrhoeae* is a true OASS-A/CysK isoform, we compared the structure of *M. tuberculosis* CysK (3ZEI (Poyraz et al., 2013)) with the OASS-B/CysM isoform from *E. coli* (2BHT (Claus et al., 2005)) (Figure 3.17).
Figure 3.17: CysK and CysM monomers from *M. tuberculosis, E. coli* and *N. gonorrhoeae* focused on the active site cleft. (a) CysK from *M. tuberculosis*. (b) CysM from *E. coli*. (c) CysK from *N. gonorrhoeae*. Active site cleft forming residues are shown in grey. PLP shown in orange.

The active site residue loop (Arg211-Asp227) from CysM extends further than the active site in CysK (Figure 3.17) showing a larger active site capable of accommodating the larger thiosulphate molecule compared to the smaller active site seen in CysK only capable of accommodating sulphide. This is largely due to the three residues found at the beginning of the CysM active site loop, Arg210, Arg211, and Trp212, whereas CysK has significantly smaller residues at a similar position, Lys210, Ser211, and Gly212 (Claus *et al.*, 2005). The *N. gonorrhoeae* CysK is missing a large section of its active site cleft due to the Glu204-Pro230 stretch absent from the structure as a function of resolution and flexibility of this loop.

3.2.5.5 Interaction of the CysK active site with PLP

The heavily conserved PLP interacting residues Val-43, Lys-44, Asn-74, Ser-267 and the 179-GTGGT-183 motif are present within the CysK crystal structure, however, although co-purified with PLP there is no density to support PLP bound in the active site. Interactions with PLP are assumed to be highly conserved across CysK enzymes from many organisms as these residues are highly conserved (Figure 3.13). In *M. tuberculosis*, the 3-hydroxyl group of PLP hydrogen bonds to the side chain of Asn-74 within the highly conserved sequence Glu69-Gly76. This highly conserved sequence is present in *N. gonorrhoeae* from Thr71-Gly76 (Figure 3.13) and so should share the same interaction. Ser-267 which hydrogen bonds to PLP’s pyridine nitrogen in *S. typhimurium* (Rabeh & Cook, 2004) is also highly conserved. Many related OASS-A enzymes show essentially
the same interactions with the PLP cofactor (Schnell et al., 2007), so we assume this will be the same in *N. gonorrhoeae*.

The PLP interacting residues from each monomer of the dimer seen in the ASU (Monomer A and D, Appendix D.2) were overlaid with the corresponding residues from the *M. tuberculosis* CysK structure (Figure 3.18 and Figure 3.19) to investigate active site architecture.

Figure 3.18: Aligned PLP interacting residues from *N. gonorrhoeae* monomer A and *M. tuberculosis* CysK monomer with PLP present, in licorice-stick format. This is monomer A from the ASU (Appendix D.2). *N. gonorrhoeae* CysK is shown in green. *M. tuberculosis* CysK is shown in cyan. PLP is shown in orange. *N. gonorrhoeae* residues are labelled. Right diagram is the left diagram rotated 90°. Figure generated in PYMOL.

Figure 3.19: Aligned PLP interacting residues from *N. gonorrhoeae* monomer D and *M. tuberculosis* CysK monomer with PLP present, in licorice-stick format. This is monomer D from the ASU (Appendix D.2). *N. gonorrhoeae* CysK is shown in yellow. *M. tuberculosis* CysK is shown in cyan. PLP is shown in orange. *N. gonorrhoeae* residues are labelled. Right diagram is the left diagram rotated 90°. Figure generated in PYMOL.

The 179-GTGGT-183 motif in monomer A is blocking the PLP binding site and is in a significantly different conformation to the same motif in the *M. tuberculosis* CysK structure (Figure 3.18). This would indicate that the monomer is in an inactive
conformation as CysK is PLP dependent and it is unable to bind with the PLP interacting residues here. Conversely, in monomer D, this same motif is in a different conformation that is not preventing binding of the PLP co-factor (Figure 3.19). The Thr-178 sidechain appears particularly close to the phosphate of the PLP. However, considering the slightly different conformation of Lys-43, Gly-179, Thr-180 and the different relative positions of the PLP interacting residues there is still room for the PLP co-factor to bind as this PLP molecule is aligned to the *M. tuberculosis* PLP interacting residues. This indicates monomer D is in an active conformation. To confirm monomer A is correct in the structure, the residue map was checked in WINCOOT, indicating there is no density supporting the 179-GTGGT-183 motif in the same conformation as monomer D (active conformation) (Figure 3.20).

![Figure 3.20](image)

Figure 3.20: Monomer A electron density residue map with 179-GTGGT-183 motif in the same conformation as monomer D. Oxygen is shown in red. Nitrogen is shown in blue. Carbon is shown in yellow. Figure generated in WINCOOT. 2Fo-Fc and Fo-Fc map contoured at one and three σ, respectively.

This indicates our structure of the *N. gonorrhoeae* CysK dimer has one monomer in an active conformation and the other in an inactive conformation.

3.2.5.6 *N. gonorrhoeae* CysK structure conclusions and future directions

N. gonorrhoeae CysK has all of the highly conserved PLP interacting (Val-43, Lys-44, Asn-74, Ser-267, 179-GTGGT-183 motif) and active site (71-TSGNTG-76 and 223-GIGA-226) residues, all of which form the active site cleft.
Interestingly, in the *N. gonorrhoeae* CysK structure we see two different conformations of the PLP interacting loop motif 179-GTG~GT~183 in adjacent monomers in the dimer. In monomer A the conformation blocks PLP from being able to bind, and in monomer D is an active form, capable of PLP binding. The other monomer, however, was in an alternate conformation that accommodated the binding of PLP. Therefore, it was surmised that one monomer within the *N. gonorrhoeae* CysK dimer is in an inactive conformation whilst the other is in an active conformation.

Comparison of the active site cleft also supports the conclusion that this OASS isoform is the OASS-A/CysK isoform. However, due to the residues missing from the crystal structure (Glu204-Pro230), which also contain the active site residues 223-GIGA-226, this comparison between the CysM (*E. coli*) and CysK (*M. tuberculosis*) active site clefts cannot conclusively state our OASS is CysK. However, this combined with the structural similarity between *M. tuberculosis* CysK and *N. gonorrhoeae* OASS, allows us to conclude we have isolated OASS-A, a CysK isoform from *N. gonorrhoeae*.

As a result of comparing the active site cleft from CysK (*M. tuberculosis*) with CysM (*E. coli*), a higher resolution structure is required to conclusively state our enzyme is the OASS-A/CysK isoform by structural comparison of the active site to a OASS-B/CysM isoform active site. Future research will also involve co-crystallisation of our CysK with substrates OAS and Na$_2$S in the active site to allow determination of the interactions between monomers and their active site conformations. Crystallisation in the presence of chloride could also elucidate the potential presence of an allosteric anion binding site within the dimer as seen in other CysK enzymes (Tai *et al.*, 2001).
3.3 Investigating Cysteine Synthase Complex formation in *N. gonorrhoeae*

3.3.1 The Cysteine Synthase Complex

The cysteine synthase bienzyme complex was first discovered during purification of CysE and CysK from *S. typhimurium* (Kredich & Tomkins, 1966; Kredich *et al.*, 1969). Complex formation has since been confirmed across many other species including *E. coli* (Mino *et al.*, 2000; Benoni *et al.*, 2017b), *H. influenzae* (Salsi *et al.*, 2010) and various plant species (Yi *et al.*, 2013). The CSC is an unusual protein complex, as most form to shuttle substrates/products from one enzyme to another. The CSC is different as it forms via binding of the CysE C-terminal tetrapeptide into the active site of CysK, halting all CysK activity and thus, cysteine production (Kredich *et al.*, 1969; Mino *et al.*, 2000; Salsi *et al.*, 2010; Yi *et al.*, 2013; Benoni *et al.*, 2017b; Hicks & Mullholland, 2018). One hypothesis for the formation of the CSC is for modulation of sulphur flux within bacterial metabolism (Hell & Wirtz, 2002; Wirtz *et al.*, 2012). The key residues required for binding of the CysE tail to the CysK active site were determined via screening a tetrapeptide library for binding ability, which was monitored by CysK activity and PLP fluorescence (Campanini *et al.*, 2005). It was established that a C-terminal isoleucine is both essential for binding and inhibition of CysK and is well-conserved across CSC forming organisms (Campanini *et al.*, 2005; Huang *et al.*, 2005; Salsi *et al.*, 2010; Benoni *et al.*, 2017b). The C-terminal tetrapeptide sequence in *N. gonorrhoeae* CysE was confirmed to have the conserved isoleucine with a four-residue sequence DFMI (Oldham, 2020), therefore it was predicted that CysK and CysE from *N. gonorrhoeae* are able to form the CSC. Formation of this complex has not yet been characterised in *N. gonorrhoeae*.

3.3.2 Monitoring CSC formation by fluorescent spectroscopy

Evaluation of CSC formation has been successful in studies by (Kumar *et al.*, 2011), (Campanini *et al.*, 2005) and (Wang & Leyh, 2012). This is a result of measuring the fluctuations in fluorescence linked to the binding of the CysE tail into the CysK active site and alternate conformations of the co-factor, PLP. Within CysK, the co-factor PLP is covalently attached to a conserved Lysine in the active site (Lys-44 in *N. gonorrhoeae* CysK) which forms a fluorescent protonated internal aldimine (Figure 1.9) (Wang & Leyh, 2012). This protonated internal aldimine has two tautomers, the ketoenamine and the enolimine, which each have distinct fluorescent spectral features. The ketoenamine
has an excitation wavelength of ~414 nm with an emission spectrum of ~510 nm which changes upon partial closure of the CysK active site (Wang & Leyh, 2012). Within the CysK active site, binding at a subsite that binds the α-carboxyl of substrates causes partial closing of the CysK active site. This closure is proposed to cause the observed ~15 nm blue shift in PLP emission spectra due to a lengthening of the ketoenamine excited-state lifetime (Wang & Leyh, 2012). The C-terminal carboxylate of CysE C-terminal peptides has been shown to bind to the CysK acceptor subsite, causing the same ~15 nm blue shift that substrate binding to the CysK subsite causes. Thus, indicating the CSC formation can be monitored by the ~15 nm blue shift as a result of the change in PLP fluorescence caused by binding of the CysE C-terminal tail or tetrapeptide into the CysK active site.

3.3.3 Binding of CysE to CysK to form the CSC

CysK and CysE were freshly purified by IMAC and gel filtration as per sections 2.4 and 2.13.1, respectively, using the previously described buffer for CysE and a modified buffer for CysK (pH 8.0 rather than 7.0). Both proteins were purified individually for use in CSC formation experiments.

Initially, the two freshly purified enzymes were combined in a quartz cuvette in a 4:1, CysK:CysE molar ratio and mixed manually using a stir rod. This manual mixing resulted in visible protein precipitation. To prevent protein precipitation after addition of CysE, the emission wavelength was measured at addition of CysE without manual mixing (0 min), and two minutes after to allow mixing to occur. Combination of the two enzymes for CSC formation experiments was conducted as per section 2.13.2.2.

CysK and CysE were combined at a variety of molar ratios and emission wavelength scans from 450-600 nm were carried out at an excitation wavelength of 400 nm (Figure 3.21).
Figure 3.21: Fluorescent spectroscopy emission wavelength scans of CysK:CysE ratios for CSC formation. CysK:CysE (a) 4:1 (b) 2:1 (c) 1:1 (d) 2:3 (e) 1:2 (f) CysK only scan. Measured at room temperature 22 ºC. Excitation wavelength 400 nm. Emission wavelength measured between 450-600 nm.

Table 3.9: Fluorescent spectroscopy emission wavelength measurements of the CysK:CysE ratio for CSC formation. Wavelength of the apex of each peak for each reaction condition are recorded. CysK and CysE were freshly purified. Measurements were taken at room temperature 22 ºC.

<table>
<thead>
<tr>
<th>CysK:CysE monomeric ratio</th>
<th>Peak Apex measurements (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:1</td>
<td>498 (0 min) 495 (2 min)</td>
</tr>
<tr>
<td>2:1</td>
<td>464.2 (Peak 1: 464.8) Peak 2: 497</td>
</tr>
<tr>
<td>1:1</td>
<td>Peak 1: 464 (Peak 1: 464.8) Peak 2: 516.6 (Peak 2: 498.6)</td>
</tr>
<tr>
<td>2:3</td>
<td>464 (Peak 2: 516.6) 464.2</td>
</tr>
<tr>
<td>1:2</td>
<td>463.8 463.4</td>
</tr>
<tr>
<td>CysK only</td>
<td>497.6 -</td>
</tr>
</tbody>
</table>

Data processing identified the number of peaks and their corresponding apex wavelength (Table 3.9). The wavelengths in Table 3.9 indicate an approximately 35 nm blueshift in the 2:1, 1:1, 2:3 and 1:2, CysK:CysE mixtures, alongside no shift in the 4:1 mixture.
However, visual interrogation of the spectra (Figure 3.21) shows this supposed blueshift peak at approximately 465 nm is present in all spectra at all CysK:CysE ratios. The emission peak at approximately 500 nm is also present in all spectra (Figure 3.21). Interestingly, despite the CysK concentration remaining constant, the peak seen at approximately 500 nm decreases in intensity as the ratio of CysK:CysE decreases (Table 3.10). The 465 nm peak also decreases in intensity until the 1:1, CysK:CysE ratio (Table 3.10).

Table 3.10: Changes in fluorescence peak intensity over varied CysK:CysE ratios. Both 500 nm and 465 nm peak are shown.

<table>
<thead>
<tr>
<th>CysK:CysE ratio</th>
<th>500 nm Peak</th>
<th>465 nm Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 min</td>
<td>2 min</td>
</tr>
<tr>
<td>4:1</td>
<td>11.43</td>
<td>10.81</td>
</tr>
<tr>
<td>2:1</td>
<td>8.489</td>
<td>8.917</td>
</tr>
<tr>
<td>1:1</td>
<td>7.997</td>
<td>8.318</td>
</tr>
<tr>
<td>2:3</td>
<td>6.842</td>
<td>7.191</td>
</tr>
<tr>
<td>1:2</td>
<td>6.689</td>
<td>6.450</td>
</tr>
</tbody>
</table>

As the peak seen at 465 nm is not present in the solely CysK fluorescent scan (Figure 3.21f), it is assumed this peak is due to the addition of the CysE protein. However, further fluorescent wavelength scans of solely CysE need to be conducted to confirm this.

The absence of a peak at 485 nm indicates no 15 nm blueshift in the fluorescence spectra, thus, showing the CSC has not formed in this experiment. A possible explanation for the CSC not forming, is the presence of O-acetylserine (OAS), which is able to dissociate the complex at OAS concentrations upwards of 50 µM (Kredich et al., 1969; Wang & Leyh, 2012; Benoni et al., 2017a). OAS is a common metabolite present in E. coli (Sajed et al., 2016), thus, making it possible that OAS from E. coli expression strain BL21 (DE3) could co-purify with CysK or CysE, therefore preventing CSC formation. However, OAS is unstable at pH values greater than 7.6 (Kredich & Tomkins, 1966), where it will non-enzymatically and rapidly convert to N-acetylserine, which is unable to bind to CysK (Kredich & Tomkins, 1966). Given CysK purification for this experiment was conducted at room temperature in potassium phosphate buffers with a constant pH of 8.0, there was likely little to no O-acetylserine present, and can therefore be ruled out as the cause of the CSC not forming.
3.3.4 Binding of a CysE C-terminal tetrapeptide to CysK

A four amino acid peptide corresponding to the last four amino acids of the CysE C-terminal tail was synthesised with the sequence DFMI to test for binding to CysK. A four amino acid peptide was chosen as in previous studies this was shown to bind to the enzyme and inhibit activity (Salsi et al., 2010; Kumar et al., 2011).

CysK and the tetrapeptide were freshly thawed for use in fluorescence spectroscopy and experiments were conducted as per section 2.13.2.3. CysK and the tetrapeptide were combined at a variety of molar ratios and emission wavelength scans from 450-600 nm were carried out at an excitation wavelength of 386.2 nm (Figure 3.22). The excitation wavelength for these CysK:CysE tetrapeptide fluorescent wavelength scan experiments differ from the CysK:CysE protein fluorescent wavelength scan experiments above as the preliminary excitation wavelength scan completed as per section 2.13.2.3 indicated a different excitation wavelength (386.2 nm). All measurements were conducted whilst mixing with a magnetic stirrer, and no precipitation was observed. Processed data indicated the number of peaks and their corresponding apex wavelength (Table 3.11). These apex wavelengths indicate an initial redshift (~30 nm) from the initial emission wavelength measured (471 nm) in the 4:1, CysK:CysE tetrapeptide mixture. All other CysK:CysE tetrapeptide ratios indicate essentially no change in wavelength as they fluctuate within the 490-500 nm range in a seemingly random pattern. Interestingly, despite the CysK concentration remaining constant, visual interrogation of the fluorescent spectra (Figure 3.22) indicate the intensity of the peaks in the 490-500 nm range increases as the CysK:peptide ratio decreases (Table 3.12).

The absence of a 15 nm blueshift in the fluorescence spectra indicates there has been no binding of the tetrapeptide to CysK, therefore partial closure of the CysK active site has not occurred and, no change in PLP fluorescence has occurred. Thus, further indicating the CSC does not from in N. gonorrhoeae. In this experiment, the presence of OAS due to carryover during expression in E. coli may be possible. CysK used in this experiment was purified in potassium phosphate buffers at pH 7.0 at which, OAS is more stable and does not rapidly convert to NAS (Kredich & Tomkins, 1966). Thus, OAS may have been
present in the thawed CysK aliquot at concentrations above 50 µM causing dissociation of any CysE C-terminus tail peptide that may have bound to the CysK active site.

Figure 3.22: Fluorescent spectroscopy emission wavelength scans of CysK:CysE C-terminus tetrapeptide ratios for CSC formation. CysK: CysE C-terminus tetrapeptide (a) 4:1 (b) 2:1 (c) 1:1 (d) 1:2 (e) 1:3 (f) 1:4 (g) 1:5 (h) CysK only. Measured at room temperature 22 °C. Excitation wavelength 386.2 nm. Emission wavelength measured in the 450-600 nm range.
Fluorescent spectroscopy emission wavelength measurements of CysK binding to the CysE tetrapeptide. Wavelength of the apex of each peak for each reaction condition are recorded. CysK and CysE C-terminus tetrapeptide were freshly thawed. Measurements were taken at room temperature 22 °C. Excitation wavelength 386.2 nm, Emission wavelength measured in the 450-600 nm range.

<table>
<thead>
<tr>
<th>CysK:CysE C-terminus tetrapeptide monomeric ratio</th>
<th>Peak Apex measurements (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (mins)</td>
</tr>
<tr>
<td>4:1</td>
<td>499</td>
</tr>
<tr>
<td>2:1</td>
<td>497.8</td>
</tr>
<tr>
<td>1:1</td>
<td>494.8</td>
</tr>
<tr>
<td>1:2</td>
<td>500.4</td>
</tr>
<tr>
<td>1:3</td>
<td>495.2</td>
</tr>
<tr>
<td>1:4</td>
<td>490.2</td>
</tr>
<tr>
<td>1:5</td>
<td>494</td>
</tr>
<tr>
<td>CysK only</td>
<td>471</td>
</tr>
</tbody>
</table>

The change in the excitation wavelength for the PLP cofactor between the CysE-CysK and tetrapeptide-CysK experiments (400 nm vs 386.2 nm) is unexpected and cannot be explained. There are three factors that differ between the CysK:CysE and CysK:CysE C terminus tetrapeptide fluorescence experiments; (1) 25% (v/v) glycerol was present in the peptide experiments, due to carryover from freezing CysK in glycerol (2) the CysK and CysE C-terminus tetrapeptide are in potassium buffers at pH 7.0 rather than pH 8.0 for the CysK:CysE experiment and CysE protein was in Tris buffer, and (3) the CysE C terminus tetrapeptide is present rather than the whole CysE enzyme. Despite these factors, the change in excitation and emission wavelength cannot be explained.

<table>
<thead>
<tr>
<th>CysK:CysE tetrapeptide ratio</th>
<th>490-500 nm Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 mins</td>
</tr>
<tr>
<td>4:1</td>
<td>18.41</td>
</tr>
<tr>
<td>2:1</td>
<td>18.96</td>
</tr>
<tr>
<td>1:1</td>
<td>18.89</td>
</tr>
<tr>
<td>1:2</td>
<td>19.63</td>
</tr>
<tr>
<td>1:3</td>
<td>20.67</td>
</tr>
<tr>
<td>1:4</td>
<td>20.76</td>
</tr>
<tr>
<td>1:5</td>
<td>20.95</td>
</tr>
</tbody>
</table>

Table 3.12: Changes in fluorescence peak intensity over varied CysK:CysE tetrapeptide ratios. 490-500 nm peak is shown.

Both CysK:CysE and CysK:CysE C-terminal tetrapeptide fluorescence spectroscopy experiments show no formation of the CSC occurring, as no 15 nm blue shift caused by
the partial closing of the CysK active site resulting in a change in the PLP fluorescence occurred. However, CSC formation has previously been confirmed in other organisms via gel filtration chromatography (Kredich et al., 1969; Kumaran et al., 2009), so we tested the ability of CysE and CysK from *N. gonorrhoeae* to form the CSC by gel filtration chromatography.

3.3.5 Monitoring CSC formation by gel filtration chromatography

Formation of the CSC was also investigated by gel filtration chromatography using freshly purified CysK and CysE as per sections 2.4 and 2.13.1, respectively, using the same buffers as previously mentioned for CysE and modified buffers for CysK (pH 8.0 rather than 7.0). Both proteins were purified individually for use in CSC formation experiments, and analysed using a calibrated gel filtration column. CysE elutes from an Enrich 650 analytical gel filtration column (BioRad) at 12.28 ml, corresponding to a molecular weight of 193.8 kDa, consistent with a CysE hexamer (Figure 3.23a) (Oldham, 2020). CysK elutes at 14.6 ml, corresponding to a molecular weight of 52.862 kDa, consistent with a dimer (Figure 3.23b), which is in keeping with section 3.1.2. CysK and CysE proteins purified in the expected multimeric forms of a dimer and a hexamer, respectively (Figure 3.23a, b).
Figure 3.23: Monitoring formation of the CSC by gel filtration chromatography. Elution profiles of CysE (a), CysK (b) and CysE:CysK at molar ratios of 3:2 (c) and 1:1 (d) shown. All peaks are labelled with elution volumes. The absorbance values for the 1:1 ratio are negative as the buffer background was not set to zero after previous use.

To monitor formation of the CSC, CysE and CysK were mixed at a 3:2 and 1:1 molar ratios and analysed by gel filtration chromatography (section 2.13.2.1).

If CysE and CysK formed the CSC we would expect to see an earlier elution peak compared to the CysE and CysK proteins only. A homologous CSC from *E. coli* indicates the CSC is composed of one hexamer and two CysK dimers (3:2 molar ratio) (Benoni *et al.*, 2017b). For *N. gonorrhoeae* this would form a CSC with a predicted molecular weight of ~332 kDa, corresponding to an elution volume of 11.9 ml which is not seen in either Figure 3.12c or Figure 3.12d, indicating the CSC had not formed.

The lack of elution peaks corresponding to the CSC indicates there is no formation of the CSC. The peaks observed at 12.34 and 13.98 mL (Figure 3.23c) correspond to CysE and
CysK, respectively. The peak observed at 12.5 ml and 14.14 mL (Figure 3.23d), also correspond to individual CysE and CysK proteins respectively.

3.3.6 CysK peptide inhibition assays

Given the apparent inability of CysE and CysK to form the CSC, and the inability of the four amino acid CysE C-terminal tetrapeptide to bind to CysK, we investigated if the CysE tetrapeptide could inhibit enzyme activity, which would indicate binding to the enzyme. Tetrapeptide inhibition assays were conducted with the four amino acid peptide that mimics the last four amino acids of the C-terminal tail of CysE. If the tetrapeptide binds into the CysK active site, inhibition of enzyme activity should occur, thus allowing activity assays to indicate potential CSC formation. Assays were set up as per section 2.8. A variety of tetrapeptide concentrations (0.0764, 0.1528, 0.2292, 0.3056, 0.764, 1.528, 7.64, 15.28, 22.92, 30.56, 114.6 and 191 pmol) were trialled in an attempt to collect an IC$_{50}$ curve for peptide inhibition (1.632 µg CysK = 49.75 pmol of CysK monomer) (Figure 3.24).

![Figure 3.24: Activity of CysK in the presence of the CysE tetrapeptide. Split scale with 30% of the scale showing 0.0764-1.528 pmol varied peptide conditions. Right 70% of the scale portrays activity of 7.64-191 pmol varied peptide conditions. OAS concentration constant at 1 mM. Na$_2$S concentration constant at 7 mM. All assays were conducted with 49.75 pmol of CysK monomer at 37 ºC with freshly thawed CysK. All reaction conditions were collected in duplicate. Error bars represent standard error.](image)

Figure 3.24 indicates a large variance in activity at varied peptide concentrations, making the fitting of a kinetic model particularly difficult. An accurate IC$_{50}$ curve was not obtained and, given the large error bars, kinetic parameters of an IC$_{50}$ curve cannot be determined. The maximum rates observed in the varied tetrapeptide concentration assays
(at peptide concentrations 22.92 and 30.56 pmol) are within the maximum rates observed in reactions with no tetrapeptide present. This indicates the CysE tetrapeptide does not bind to CysK and inhibit its activity. The OAS concentration was held at 1 mM (1 mM = 1000 µM) in these assays to mitigate the dissociation effect OAS may have on the tetrapeptide binding into the CysK active site. However, dissociation of the CSC can occur at µM concentrations of OAS (upwards of 50 µM OAS) (Kredich et al., 1969; Wang & Leyh, 2012; Benoni et al., 2017a). Therefore, the lack of inhibition seen in these assays may be a result of the presence of dissociating concentrations of OAS, thus, dissociating any tetrapeptide that may have bound to the CysK active site, making it difficult to draw any certain conclusions from these assays.

3.3.7 CSC formation conclusions and future directions

The CysE C-terminus tetrapeptide did not cause inhibition in the activity assay indicating it did not bind to the CysK active site. Both binding of CysK to CysE and CysK to the CysE C-terminus tetrapeptide did not show a change in fluorescence by a blueshift of 15 nm (equivalent to partial closing of the CysK active site creating a change in the PLP fluorescence). Gel filtration CSC formation trials also show no elution peak corresponding to the CSC. These results suggest the CSC does not form within *N. gonorrhoeae*.

Nanomolar concentrations of CysE (7 nM) and CysK (23 nM) (monomer concentrations) from *E. coli* have been used to form the CSC (Benoni et al., 2017b). This *E. coli* CSC had a reported dissociation constant (K_d) of 5 nM (Benoni et al., 2017b), indicating the CysE and CysK subunits have a strong affinity for each other, thus, strongly favouring CSC formation. A similar affinity was assumed of CysK and CysE from *N. gonorrhoeae* when planning the CSC experiments in this research. We have demonstrated that at more concentrated stocks (µM) of CysK and CysE, and lower concentrations of CysK and CysE C-terminus tail peptide (pmol), there is no indication of CSC formation, using multiple methods.

It is possible that the CSC is completely unable to form in *N. gonorrhoeae*. Organisms that have lost the ability to form the CSC would no longer have a CSC inhibited CysK enzyme, allowing increased L-cysteine production. Due to the resulting, unregulated OAS consumption by CysK, down regulation of gene expression in sulphate acquisition genes would occur. Given the high demand for cysteine, to produce reducing compounds
such as glutathione (Seib et al., 2006), it may be advantageous for *N. gonorrhoeae* to not be capable of CSC formation.

It is possible the lack of CSC formation is linked to the inability of *N. gonorrhoeae* to reduce sulphate to sulphide, and that the transcriptional regulator CysB controls two of the deleted genes from this pathway via operon control. *N. gonorrhoeae* OASS has the greatest homology to OASS-A isoform (CysK) as demonstrated via sequence alignment (Hicks & Mullholland, 2018). CysK utilises sulphide as a thiol donor, whereas CysM (OASS-B isoform) utilises directly imported thiosulphate. The inability of CysK to utilise thiosulphate and its ability to form the CSC where CysM cannot (Zhao et al., 2006) suggest that we would be able to from the CSC in *N. gonorrhoeae*. However, all experimental results suggest the contrary.

Further experimentation is required to rule out CSC formation altogether. Peptide inhibition assays and fluorescent spectroscopy will be repeated using a decapeptide corresponding to the last 10 amino acids of the CysE C-terminal peptide to conclude whether our experiments showed no binding of the peptide due to it only being four amino acids in length. Addition of sulphide to the CSC formation in both gel filtration and fluorometric spectroscopy solutions will be trialled as sulphide is shown to promote reassociation of the CSC (Wirtz & Hell, 2006). Co-lysis of the CysK and CysE proteins will be attempted as this method has been established to produce stable complexes for functional and structural studies in challenging protein families including, the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex (Levy et al., 2016). Another bacterium, *Brucella abortus* was unable to form the CSC, despite the required residues being present in the CysE C-terminal tetrapeptide (Dharavath et al., 2017). This was due to two CysK residues occupying the active site, thus, preventing the binding of the C-terminal tetrapeptide from CysE (Dharavath et al., 2017). Due to the active site missing from the *N. gonorrhoeae* CysK crystal structure, an improved resolution crystal structure of CysK is required to determine whether this is present in *N. gonorrhoeae* CysK as well.
3.4 Characterisation of the \textit{in vivo} role of CysK by genetic manipulation of \textit{N. gonorrhoeae}

3.4.1 Essentiality of CysK and proposed role \textit{in vivo}

\textit{Neisseria} species are particularly unique in that they have only one OASS isoform. This isoform has the greatest homology to CysK (OASS-A) and utilises sulphide for cysteine biosynthesis (Hicks & Mullholland, 2018). \textit{N. gonorrhoeae} has an inability to reduce sulphate to sulphide and relies on thiosulphate for cysteine biosynthesis, a substrate which is usually utilised by the alternate OASS isoform CysM. This raises interesting questions regarding the role of CysK in \textit{N. gonorrhoeae}. Whilst not being an essential gene for \textit{N. gonorrhoeae} (Remmele \textit{et al.}, 2014), CysK has been shown to be important for colonisation of epithelial cells in \textit{N. meningitidis} and when knocked out results in both decreased fitness and increased susceptibility to antibiotics (Turnbull & Surette, 2010; Capel \textit{et al.}, 2016).

Many studies are underway with CysK being characterised as an antimicrobial target for other bacterial pathogens (Salsi \textit{et al.}, 2011; Franko \textit{et al.}, 2018; Joshi \textit{et al.}, 2019) and given deleting \textit{cysK} from the genome has inflicted a decrease in fitness and increased susceptibility to antibiotics in other bacterial pathogens (Turnbull & Surette, 2010; Capel \textit{et al.}, 2016), coupled with rapid emergence of antimicrobial resistance in \textit{N. gonorrhoeae}, determining the effects of this knockout in \textit{N. gonorrhoeae} is vital to design of new antimicrobial agents. To determine whether CysK is essential in \textit{N. gonorrhoeae}, \textit{cysK} gene deletion by homologous recombination in \textit{N. gonorrhoeae} using a plate transformation was trialled.

3.4.2 \textit{N. gonorrhoeae} \textit{cysK} deletion construct for homologous recombination

A DNA construct was designed and ordered as a geneblock from Twist Bioscience. The construct contained the \textit{N. gonorrhoeae} kanamycin resistance gene (\textit{kanR}) from (Ramsey \textit{et al.}, 2012) flanked by 150 base pairs of DNA sequence homologous to the DNA sequence upstream and downstream of \textit{cysK} in the \textit{N. gonorrhoeae} genome. Included in the construct was a promoter and terminator for the kanamycin resistance gene and the \textit{Neisseria} DNA uptake sequence (DUS) necessary for uptake of DNA (Figure 3.25).
Figure 3.25: DNA construct of the *N. gonorrhoeae* cysK knockout with the kanamycin resistance gene (*kanR*), *kanR* seen in black. 150 bp of DNA sequence homologous to the DNA sequence upstream and downstream of the cysK gene in *N. gonorrhoeae* seen in grey. *kanR* promoter seen in green. *kanR* terminator seen in orange. DNA uptake sequences seen in purple. Figure created using Geneious Prime (Biomatter).

Forward and reverse primers for the amplification of the entire DNA construct were designed and ordered as per section 2.14.2. PCR was conducted as per section 2.14.2 to amplify the DNA construct for transformation into *N. gonorrhoeae*. PCR product purity was tested via agarose gel electrophoresis (Figure 3.26) as per section 2.14.1. The gel shows a single distinct band indicating our pure isolated DNA construct.

Figure 3.26: PCR amplification and purification results of cysK KO construct run on a 1% agarose gel. Pre = PCR product before purification, Neg = negative control with Ultra Distilled water, Pure = purified PCR product, DNA ladder = Invitrogen 1kb+ ladder.
3.4.3 Transformation of *N. gonorrhoeae*

PCR products were prepared for plate transformations and 10 µl of PCR product (20 ng.µl⁻¹) was spotted onto GCB agar plates in two places as per section 2.14.4. Piliated colonies from a fresh GCB agar plate were selected and streaked through the DNA circles for transformation. Single colonies from within these spotted DNA circles were streaked across GCB plates supplemented with 50 µg.ml⁻¹ kanamycin and incubated as per section 2.14.4. The plates were checked after a given 48 hours of incubation and no growth was found.

The lack of growth on the kanamycin substituted plates presents three possible conclusions, (1) the gonorrhoea colonies had not successfully been transformed with the DNA PCR products and had therefore not integrated the kanamycin resistance gene into its genome, meaning it could not grow or survive on the kanamycin plate, (2) there was contamination present leading to growth of microbes other than *N. gonorrhoeae* that were therefore unable to transform and could not grow on the kanamycin substituted plates, or (3) *N. gonorrhoeae* could not grow on the kanamycin plates despite successful transformation and hence, uptake of the kanamycin resistance gene into its genome as the *cysK* gene is essential in *N. gonorrhoeae*.

It was determined via colony PCR by Jolyn Pan that conclusion (2) was in fact correct. The colonies present on the initial New Yorker and GCB plates were tested via colony PCR and determined to be contaminants. Therefore, all solutions used from the beginning of PCR process were streaked on GCB plates. The elution buffer from the PCR purification kit (Roche-applied-science) was found to be contaminated. Therefore, *cysK* gene knockout testing was halted until a new purification kit could be obtained.

3.4.4 *cysK* genomic deletion conclusions and future research

No conclusions can be drawn from the *cysK* gene deletion experiments as the presence of contamination means we cannot be certain the colonies streaked onto the kanamycin substituted plates were *N. gonorrhoeae*.

Thus, this experiment will be repeated in future research to determine the effect of knocking out *cysK* on the ability of *N. gonorrhoeae* to grow. It has been found that when a gene knockout is lethal to a bacterium, it is particularly useful to knockdown the gene, causing reduced activity rather than complete removal (Gillaspie *et al.*, 2009). Therefore,
if the $cysK$ knockout proves to be lethal, causing $N. gonorrhoeae$ to not grow on the kanamycin substituted plates with no contaminants present, a knockdown of the $cysK$ gene will be attempted. This will allow more effective study of the effect $cysK$ has on the ability of $N. gonorrhoeae$ to grow. It has previously been shown a tetracycline-inducible promoter can be used in $N. gonorrhoeae$ (Ramsey et al., 2012). This inducible promoter will be used to replace the $cysK$ promoter in $N. gonorrhoeae$, allowing control of the activation of the gene using anhydrotetracycline which is effective at low concentrations without inhibiting growth of the bacterium (Ramsey et al., 2012). Combining the gene knockdown with testing cell adhesion and entry of $N. gonorrhoeae$ into human cells using a human cell line, will potentially give further insight into the effect $cysK$ has on the ability of $N. gonorrhoeae$ to infect its obligate host.
Chapter 4
Conclusions and Future Research

Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhoea (Hill *et al.*, 2016; Wi *et al.*, 2017). Rapid development of antibiotic resistance to every available antibiotic for its treatment over the last few decades, has led to increased demand for the development of new antimicrobial agents for future treatment of this disease (Wi *et al.*, 2017). Targeting of amino acid biosynthesis is a promising new avenue for antimicrobial research. The amino acid cysteine’s biosynthetic pathway has been demonstrated to be vital for both pathogenicity and virulence in *Neisseria* species (Hatzios & Bertozzi, 2011; Takumi & Nonaka, 2016; Ren *et al.*, 2017; Anderson *et al.*, 2019).

N. gonorrhoeae encounters constant oxidative stress during infection. The ability of this obligate human pathogen to spread to new hosts is wholly dependent on its ability to mitigate and survive the oxidative stress produced by commensal *Lactobacilli* within the urogenital tract and the phagosomes of neutrophils encountered in host immune defence (Seib *et al.*, 2006; Hill *et al.*, 2016). Mitigation of this host derived oxidative stress relies on reducing systems within *N. gonorrhoeae*. Given the necessity of L-cysteine for protein folding, structure and function, formation of vital biomolecules such as biotin, co-enzyme-A, and iron-sulphur clusters and the synthesis of reducing agents, such as glutathione (Carmel-Harel & Storz, 2000; Kredich, 2008; Takumi & Nonaka, 2016; Hicks & Mullholland, 2018), the pathway for *de novo* synthesis of L-cysteine is an ideal target for developing new treatments for *N. gonorrhoeae*. However, both the function of the cysteine biosynthesis pathway and its regulation are not well understood in *N. gonorrhoeae*. In this thesis we have biochemically and structurally characterised one of the key cysteine biosynthetic enzymes, CysK.

CysK is an *O*-acetylserine sulphhydrylase that catalyses the final step in cysteine biosynthesis. CysK catalyses the condensation reaction of *O*-acetylserine with sulphide, to form L-cysteine (Rabeh & Cook, 2004; Joshi *et al.*, 2019). The sulphur acquisition and cysteine biosynthesis pathways are regulated on multiple levels in response to the flux of sulphur concentrations (Wirtz *et al.*, 2012). For CysK, this regulation is primarily carried out via CysK:CysE cysteine synthase complex (CSC) formation (Benoni *et al.*, 2017b).
This thesis presents the structure of CysK from *N. gonorrhoeae* at 2.49 Å. In our structure, the key PLP co-factor interacting residues are conserved. However, only part of the active site residues are conserved in the structure where the 223-GIGA-226 residues are not visible. This is a function of low resolution and the flexibility of the active site loop within the crystal structure. Obtaining a structure at a higher resolution with either substrate, S\(^2\) or OAS, bound in either the allosteric anion binding site found by (Tai *et al.*, 2001) or the active site, respectively, will allow for better determination of the missing Glu204-Pro230 loop from our structure, as well as a better indication of the mechanism of the enzyme. Each monomer within the homodimer, has an alternate conformation of PLP interacting residues. In monomer A, the 179-GTGGT-183 motif is blocking the PLP co-factor from binding, hence it is assumed this monomer is in an inactive conformation as CysK activity is PLP dependent. Conversely, the monomer D 179-GTGGT-183 motif supports the ability of the PLP co-factor to bind, indicating this monomer is in an active conformation. The presence of these alternate conformations within the homodimer, explains the positive cooperativity displayed within the enzyme’s kinetic analysis. We hypothesise binding of substrate into the active site of the active CysK monomer will cause a conformation change in the 179-GTGGT-183 loop of the inactive monomer, allowing PLP to bind, thus changing the inactive monomer to an active conformation. We have also determined the OASS isoform isolated from *N. gonorrhoeae* to be OASS-A/CysK as was hypothesised due to the higher sequence homology to CysK (Hicks & Mullholland, 2018). However, for effective computational inhibitor screening, an understanding of kinetic mechanism is also vital.

CysK from *N. gonorrhoeae* has *O*-acetylserine sulphhydrylase activity, with kinetic constants (K\(_M\)/K\(_{\text{half}}\)) of 12.43 (K\(_M\)) and 1.01 (K\(_{\text{half}}\)), for sulphide and *O*-acetylserine, respectively, which are unique when compared with other CysK homologues. We demonstrate an allosteric sigmoidal (positive cooperativity) relationship is present for both substrates at low concentrations. This positive cooperativity is supported by the alternate conformations determined in the monomers of the CysK dimer within our crystal structure. The substrate sulphide also shows allosteric inhibition (partial inhibition), most likely due to the presence of an allosteric anion binding site determined by (Tai *et al.*, 2001). Interestingly, *N. gonorrhoeae* CysK was shown to be unable to utilise thiosulphate, even though the bacteria can grow thiosulphate as a sole sulphur source (Le Faou, 1984) and lack the OASS-B isoform that can utilise thiosulphate (Figure 4.1). This indicates the
CysK from *N. gonorrhoeae* is only capable of using sulphide as a substrate to produce cysteine and is therefore an OASS-A/CysK isoform and not a dual-functioning enzyme. The identification of the isolated OASS isoform from *N. gonorrhoeae* is also supported by our crystal structure analysis. Due to a genomic deletion and remnant pseudogenes corresponding to the sulphate assimilation pathway (Figure 1.2, red), *N. gonorrhoeae* is also incapable of reducing sulphate to sulphide to use in cysteine biosynthesis (Hicks & Mullholland, 2018). Therefore, we propose an alternative pathway for acquiring sulphide from a thiosulphate substrate, involving a sulphurtransferase enzyme, thiosulphate and glutathione (Figure 4.1, grey box on the right).

Figure 4.1: Sulphate transport and reduction pathways. Thiosulphate assimilation pathway in other bacteria shown in black on the left with dotted lines. Sulphate reduction pathway absent from *N. gonorrhoeae* shown in red on the right. Hypothesised sulphur acquisition in *N. gonorrhoeae* shown on the right in grey box.

We were unable to get any indication of cysteine synthase complex formation using purified CysK and either CysE or the CysE C-terminus tetrapeptide from *N. gonorrhoeae*. Based on the presence of the isoleucine essential for CSC formation at the end of the C-terminal tail of CysE (Huang *et al.*, 2005), and the flexible nature of the C-terminal tail (Oldham, 2020), we expected the CSC to form or give an indication of CysE tail/tetrapeptide binding to the CysK active site. The primary purpose of the CSC is to promote upregulation of the sulphate acquisition pathway as a response to low sulphur concentrations (Kumar *et al.*, 2011). Given that *N. gonorrhoeae* is unable to reduce sulphate to sulphide, but is capable of growth using thiosulphate as a sole source of sulphur (Le Faou, 1984), there may be no evolutionary advantage to CSC formation. The
lack of CSC formation may provide an advantage to *N. gonorrhoeae*, in that it would allow continuous production of L-cysteine by CysK as it is no longer inhibited by the CysE C-terminus tail binding into its active site. The complex is also unable to form in *E. histolytica*, and is attributed to the CysE forming a trimer rather than a hexamer conformation (Kumar *et al.*, 2011). Despite its inability to store glutathione, *E. histolytica* has high intracellular demands, which it relies on high cysteine concentrations to act as a reducing system to alleviate (Kumar *et al.*, 2011). Conversely, *N. gonorrhoeae* is documented to have high intracellular concentrations of glutathione, however, both organisms would require large amounts of L-cysteine to maintain these high metabolite concentrations. (Remmele *et al.*, 2014) suggests that *de novo* synthesis of cysteine is essential for *N. gonorrhoeae* and that L-cysteine/cystine importation alone, is not sufficient for meeting the L-cystine demands of *N. gonorrhoeae*.

We were unable to conclusively define *cysK* from *N. gonorrhoeae* as essential as contamination interfered with the *cysK* gene deletion experiments. However, if the inability of the streaked *N. gonorrhoeae* to grow on the kanamycin supplemented plates, is seen in future repeats of this experiment, a *cysK* knockdown strain in *N. gonorrhoeae* strain will be created. The promoter of *cysK* in *N. gonorrhoeae* will be replaced with a controllable tetracycline-inducible promoter. This will confirm essentiality by *in vitro* growth experiments in the presence and absence of tetracycline. Combining the gene knockdown with testing cell adhesion and entry of *N. gonorrhoeae* into human cells using a human cell line, will potentially give further insight into the effect *cysK* has on the ability of *N. gonorrhoeae* to infect its obligate host.

We have defined the isolated OASS isoform from *N. gonorrhoeae* as an OASS-A/CysK enzyme through both kinetic and structural analysis. Establishing this is a key point in understanding alternate sulphur acquisition pathways. *N. gonorrhoeae* can grow on thiosulphate as a sole source of sulphur and yet it lacks the enzyme capable of metabolising it. As we have established CysK is inactive at both low and high concentrations of thiosulphate. The apparent inability of the *N. gonorrhoeae* CysK and CysE enzymes to form the CSC is particularly interesting as many other organisms use this to regulate intracellular sulphur flux and cysteine biosynthesis. This suggests it is advantageous for *N. gonorrhoeae* to be unable to regulate either of these situations. However, there is also potential for an alternate mode of regulation. Establishing these alternate sulphur acquisition pathways will help in not only understanding of the
N. gonorrhoeae metabolic pathways but also to develop new potential targets for antimicrobial agents across a vast array of sulphur utilising bacteria.

The results presented here represent a major leap forward in our understanding of both cysteine biosynthesis and sulphur acquisition in *N. gonorrhoeae*. These results are also the basis for future work in identifying potential CysK inhibitors through computational inhibitor screening. Computational inhibitor screening streamlines the inhibitor discovery process via the ability to screen hundreds of thousands of inhibitors, compared to only thousands of inhibitors using typical *in vitro* laboratory based screening. However, computational inhibitor screening also relies on detailed understanding of both the kinetic mechanism and high-resolution protein structures with and without substrates bound. Using the results presented here, computational inhibitor screening is underway by Dr Wanting Jiao at Victoria University of Wellington. Using the structure of CysK presented here and the published structure of *M. tuberculosis* CysK structure with PLP cofactor and a peptide inhibitor bound, we generated a structural model of PLP-bound CysK from *N. gonorrhoeae* for virtual screening. A library of 10 million commercially available compounds that contain drug like features were screened against CysK, using the virtual screening workflow in Schrodinger Suite. The screening has completed and produced 1000 top scored compounds for further examination. Using an established selection workflow, consisting of short MD simulations, 10-20 compounds will be selected for further *in vitro* testing. These will be tested using the assays developed in this thesis. In addition ongoing research to obtain CysK structures with OAS, S²⁻ and Cl⁻ bound will be attempted based on the crystallisation of CysK presented here.

Overall, this research has contributed to a greater understanding of the sulphur acquisition pathway in *N. gonorrhoeae* which may help in elucidation of alternate sulphur acquisition pathways in other microbes. This research has also provided great insight into the previously uncharacterised enzyme, CysK and paved the way for the development of new inhibitors targeting the promising new antimicrobial target in *N. gonorrhoeae*, CysK.
References

cases, United Kingdom and Australia, February to April 2018. *Eurosurveillance*, 24(8).

biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis. *Genome Biology, 10*(10), R110.

Appendices

Appendix A: Cloning information for CysK

A.1 Sequences for CysK (NGO_0340)

CysK (NGO_0340) Neisseria gonorrhoeae (strain ATCC 700825/FA 1090) location

CysK FA 1090 nucleotide sequence NC_022240.1 (334792..335724)

ATGAAAAATTGAAAAACAGCATCACCCGAATTCGGAACAACGCCTTCTTTGGTC
AAACTGAAACGGCTTGAACCAAGTGACACGACGTGGCGGAAACTGATTCTTCTCTCC
CysK peptide sequence. C-terminal HexaHis-tag (underlined) 318 residues.

32.726/62.862 kDa (monomer/dimer)

MKIANSITELIGNTPLVKLNRLTKGLKAEVAVKLEFFNPGSSVKDRIAEAMIEAA
EKAGKINKNTVIVEATSNGTGIAGLAMVCAARGYKLAIIMPESMKERKMLLRT
FGAELILTPAAEAGMAIAKAKERQSFHNDYMPQFDNEANPEVHRKTTAE
EIWNDTDGVDFVAGVGTGGTITGGGVELVKYKPEIEVCAVEAGASPVLSSG
EKGPHIQGIGAGFIPVTLNTRYDIAKVPNEAFAETARAMAEGILAGISSGAA
AVWSALQLAKQPENEGKLIVVLLPYSGERYLSTPLFADLALFHHHHHH
pET28b description

Table 4.1: Description of the pET28b Vector

<table>
<thead>
<tr>
<th>Vector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pET28b</td>
<td>E. coli expression vector, 5368 bps, N-terminal thrombin cleavage site,</td>
</tr>
<tr>
<td></td>
<td>Kanamycin resistance, C and N-terminal His-tags, T7-promoter.</td>
</tr>
</tbody>
</table>

GMO approval numbers:

E. coli: GMD101146

N. gonorrhoeae: GMD102338

A.2 Luria Bertani (LB) Agar (1 L)

Combine the following:

- 5 g Peptone
- 10 g NaCl
- 5 g Yeast extract
- 5 g Agar
- 1 L of distilled water

Autoclave at 121°C before use.

LB Broth

Same method as LB agar, but no addition of agar.
Appendix B: Protein purification, assay and kinetic information

B.1 Purification buffers for CysK kinetics (Potassium phosphate)

Table 4.2: Purification buffers for CysK kinetics (Potassium phosphate)

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Lysis buffer</th>
<th>Elution buffer</th>
<th>Gel filtration buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysis buffer</td>
<td>50 mM Potassium phosphate (pH 8.0/7.0)</td>
<td>50 mM Potassium phosphate (pH 8.0/7.0)</td>
<td>50 mM Potassium phosphate (pH 8.0/7.0)</td>
</tr>
<tr>
<td></td>
<td>200 mM NaCl</td>
<td>200 mM NaCl</td>
<td>100 mM NaCl</td>
</tr>
<tr>
<td></td>
<td>20 mM Imidazole</td>
<td>1 M Imidazole</td>
<td></td>
</tr>
</tbody>
</table>

B.2 Purification buffers for CysK crystallography (Tris)

Table 4.3: Purification buffers for CysK crystallography (Tris)

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Lysis buffer</th>
<th>Elution buffer</th>
<th>Gel filtration buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysis buffer</td>
<td>50 mM Tris (pH 8.0)</td>
<td>50 mM Tris (pH 8.0)</td>
<td>50 mM Tris (pH 8.0)</td>
</tr>
<tr>
<td></td>
<td>200 mM NaCl</td>
<td>200 mM NaCl</td>
<td>100 mM NaCl</td>
</tr>
<tr>
<td></td>
<td>20 mM Imidazole</td>
<td>1 M Imidazole</td>
<td></td>
</tr>
</tbody>
</table>

108
BioEnrich 650 SEC Calibration Curve

\[y = -0.095\ln(x) + 1.3985 \]
\[R^2 = 0.9999 \]

Figure 4.2: Calibration curve of the gel filtration BioEnrich 650 column

L-cysteine Standard Curve

\[y = 1.8856x + 0.0164 \]
\[R^2 = 0.9986 \]

Figure 4.3: L-cysteine standard curve
B.3 SDS-PAGE gel buffer compositions

Quenching buffer (Q4)
250 mM Tris (pH 6.8)
20% glycerol (w/v)
4% SDS (w/v)
10% beta-2-mercaptoethanol (w/v)
0.025% bromophenol blue (w/v)

Tris-glycine SDS buffer
25 mM Tris (pH 8.5)
250 mM glycine
0.1% SDS (w/v)

Fairbanks staining solution
0.05% coomassie blue
25% isopropanol
10% acetic acid

Destaining solution
10% acetic acid

B.4 Required reagents and kinetic assay reagent compositions

O-acetylserine (50 mM)
91.8 mg O-acetyl-L-serine hydrochloride
10 ml MQH₂O

O-acetylserine (5 mM)
1 ml O-acetylserine (50 mM)
9 ml MQH₂O

Sodium sulphide (50 mM)
71.01 mg Sodium sulphide
10 ml MQH₂O
Sodium sulphide (5 mM)
1 ml Sodium sulphide (50 mM)
9 ml MQH₂O

Sodium thiosulphate (100 mM)
158.11 g
10 ml MQH₂O
Appropriate dilutions were made

Acid Ninhydrin Reagent
250 mg Ninhydrin
6 ml Glacial acetic acid
4 ml Concentrated hydrochloric acid (10 M)

Trichloroacetic acid (20% v/v)
2 g Trichloroacetic acid
10 ml MQH₂O

PLP (Pyridoxal 5'-phosphate, 2mM)
4.94 mg PLP
10 ml MQH₂O

MOPs buffer (100mM, pH 7)
2.093 g MOPs
Make up to 10 ml MQH₂O

DTT (Dithiothreitol)
308.5 mg DTT
Make up to 10 ml with MOPs buffer
pH to 7 with NaOH

CysE C-terminus tail four peptide inhibitor (3820 pmol, 2 mg.ml⁻¹)
2 mg CysE four peptide tail
1 ml Potassium phosphate gel filtration buffer
CysE C-terminus tail four peptide inhibitor (382 pmol, 0.2 mg.ml⁻¹)
20 μL of 2 mg.ml⁻¹ CysE C-terminus four tail four peptide inhibitor
180 μL Potassium phosphate gel filtration buffer

CysE C-terminus tail four peptide inhibitor (38.2 pmol, 0.02 mg.ml⁻¹)
20 μL of 0.2 mg.ml⁻¹ CysE C-terminus four tail four peptide inhibitor
180 μL Potassium phosphate gel filtration buffer

CysE C-terminus tail four peptide inhibitor (3.82 pmol, 0.002 mg.ml⁻¹)
20 μL of 0.02 mg.ml⁻¹ CysE C-terminus four tail four peptide inhibitor
180 μL Potassium phosphate gel filtration buffer

L-cysteine (50mM)
60.58 mg L-cysteine
10 ml MQ H₂O
pH to 2.0

L-cysteine (5 mM)
1 ml of 50mM L-cysteine
9 ml MQ H₂O

B.5 Raw assay data
Link to google drive folder:
https://drive.google.com/drive/folders/1ONR57u5S94uNSaFrP2WISeVSQkyPOuAE?usp=sharing
Appendix C: PCR and Gene Knockouts

Agarose gel
50 µl 1xTAE Buffer
0.5 g Agarose
Microwave (30 second bursts till dissolved)
Cool with running water over flask
4 µl Red Safe Stain
Pour into OWL electrophoresis gel caster (ThermoFisher Scientific)

TAE Buffer (50x)
242 g Tris-base
700 ml MQ H₂O
57 ml 100% glacial acetic acid
100 ml 0.5 M EDTA (pH 8.0)
Make up to 1 L with MQ H₂O

TAE Buffer (1x)
50 ml of 50x TAE buffer
Make up to 1 L with MQ H₂O

EDTA (0.5 M)
93.05 g EDTA disodium salt
400 ml MQ H₂O
pH to 8.0 with NaOH
Make up to 500 ml with MQ H₂O

DNA loading buffer (6x)
3ml 30% (v/v) Glycerol
25mg 0.25% (w/v) Bromophenol Blue
25mg 0.25% (w/v) Xylene Cyanol FF
Make up to 10ml with MQ water
GCB Plate

36.25 g GCBase
1.25 g Agar
1 L MQ H$_2$O

Split into two 500 ml Schott bottles

Autoclaved

500 μl of 50 mg.ml$^{-1}$ kanamycin added to one Schott bottle

Poured into petri dishes and set for ~20 mins

Set plates stored at 4º C

Invitrogen 1kb+ DNA ladder

Figure 4.4: Invitrogen 1kb+ DNA ladder used in agarose gel
Appendix D: Crystallisation and Structure solving information

D.1 Contents of the asymmetric unit for CysK

Figure 4.5: Contents of the asymmetric unit for CysK model. Space group P12_1. Waters are seen as red crosses. Figure generated in PyMOL.

D.2 Initial input settings for phenix.autobuild

Figure 4.6: Screenshot of initial input settings for phenix.autobuild used for building the model of CysK
D.3 Final input settings for *phenix.autobuild*

![Screenshot of initial input settings for phenix.autobuild used for building the final model of CysK](image)

Figure 4.7: Screenshot of initial input settings for *phenix.autobuild* used for building the final model of CysK

D.4 CysK structural files

Link to google drive folder:
https://drive.google.com/drive/folders/1ONR57u5S94uNSaFrP2WlSeVSQkyPOuAE?usp=sharing

D.5 CysK chain statistics

Table 4.4: CysK structure statistics for each monomer in the ASU.

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue chain built</th>
<th>Residues missing</th>
<th>Total built</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ile3-Pro143 Ala150-Glu204 Pro230-Tyr296</td>
<td>51</td>
<td>261/312</td>
</tr>
<tr>
<td>B</td>
<td>Ile3-Pro143 Asn151-Glu204 Pro230-Tyr296</td>
<td>52</td>
<td>260/312</td>
</tr>
<tr>
<td>C</td>
<td>Ile3-Pro143 Asn151-Gly206 Tyr238-Leu292</td>
<td>64</td>
<td>248/312</td>
</tr>
<tr>
<td>D</td>
<td>Ile3-Pro143 Asn151-Ala207 Tyr238-Tyr296</td>
<td>63</td>
<td>249/312</td>
</tr>
</tbody>
</table>