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Abstract. Recent advancements in machine learning-based multi-label
medical text classification techniques have been used to help enhance
healthcare and aid better patient care. This research is motivated by
transformers’ success in natural language processing tasks, and the op-
portunity to further improve performance for medical-domain specific
tasks by exploiting models pre-trained on health data. We consider trans-
fer learning involving fine-tuning of pre-trained models for predicting
medical codes, formulated as a multi-label problem. We find that domain-
specific transformers outperform state-of-the-art results for multi-label
problems with the number of labels ranging from 18 to 158, for a fixed
sequence length. Additionally, we find that, for longer documents and/or
number of labels greater than 300, traditional neural networks still have
an edge over transformers. These findings are obtained by performing ex-
tensive experiments on the semi-structured eICU data and the free-form
MIMIC III data, and applying various transformers including BERT,
RoBERTa, and Longformer variations. The electronic health record data
used in this research exhibits a high level of label imbalance. Consider-
ing individual label accuracy, we find that for eICU data medical-domain
specific RoBERTa models achieve improvements for more frequent labels.
For infrequent labels, in both datasets, traditional neural networks still
perform better.

Keywords: Multi-label · Fine-tuning · Medical text · Transformers ·
Neural Networks

1 Introduction

There has been a significant advance in natural language processing (NLP) in the
last couple of years. Transformers such as BERT models (Bidirectional Encoder
Representations from Transformers) have outperformed state-of-the-art (SOTA)
results [6, 7, 4]. Such advancements are not restricted to general-domain tasks.
Biomedical and health-related domains have also seen evidence of improvements
in some medical domain-specific tasks such as question answering and recogniz-
ing question entailment [3, 2, 9]. This research sets out to fill the gap in the use of
transformers in multi-label medical domain-specific tasks for highly imbalanced
datasets.
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Multi-label problems predict multiple output variables for each instance.

Consider a datasetD = {x(i), y(i)}Ni=1 withN samples, where x(i) = (x
(i)
1 , ..., x

(i)
m )

and y(i) = (y
(i)
1 , ..., y

(i)
l ). Each instance is associated with L labels, and each label

is binary where y
(i)
j ∈ 0, 1. For example, given a patient admitted in a hospi-

tal with chest pain, any other medical condition that the patient has, such as
cholesterol, blood pressure, or obesity, can be considered as labels.

This research focuses on electronic health records (EHR) from two distinctly
different large publicly available medical databases: MIMIC-III contains huge
documents in a free-form medical text; eICU has concise, compressed medical
data presented in the semi-structured form. Automatically predicting medical
codes is the down-stream task for this research where we fine-tune pre-trained
transformer models, and we present results for multi-label medical code classifi-
cations with the number of labels being 18, 93, 158, 316, and 923.

The contributions of this work are: (i) we analyse the effectiveness of using
transformers for the task of automatically predicting medical codes from EHRs
for multiple document lengths and number of labels; (ii) we demonstrate that
for documents with sequence length truncated at 512 tokens, medical domain-
specific transformer models outperform SOTA methods for multi-label problems
with 18, 93 and 158 labels for both datasets; (iii) it is shown that for longer doc-
uments, larger multi-label problems, and infrequent labels, transformer models’
F1 scores are not as good as the traditional word-embeddings-based SOTA neu-
ral networks.

2 Related Work

This research is motivated by the recent advancements of transformer mod-
els which have shown substantial improvements in many NLP tasks, including
BioNLP tasks. With minimum effort, transfer learning of pre-trained models by
fine-tuning on down-stream supervised tasks achieves very good results [3, 2].
For example, PubMedBERT [9] achieves SOTA performance on many biomedi-
cal natural language processing tasks such as named entity recognition, question
answering and relation extraction and holds the top score on the Biomedical
Language Understanding and Reasoning Benchmark (BLURB) [9].

Automatically predicting medical codes from EHRs has been studied over the
years, where rule-based, machine learning-based and deep learning approaches
have been proposed. Techniques including CNNs, RNNs and Hierarchical Atten-
tion Networks are some examples of deep learning approaches [16, 2]. Mullen-
bach et al. (2018) [17] present Convolutional Attention for Multilabel classifica-
tion (CAML) which uses the MIMIC III dataset for ICD-9 code predictions. As
mentioned by the survey of deep learning methods for ICD coding of medical
documents presented by Moons et al. (2020) [16] CAML is considered the SOTA
method for automatically predicting medical codes from EHRs.

There is some evidence of the use of transformer models in automatically
predicting medical codes such as submissions to CLEF eHealth 2019 ICD-10
predictions from German documents [2, 19], and BERT and XLNet performance
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on most frequent ICD-9 codes from MIMIC III with a maximum number of
tokens set at 512 [20]. However, it is unclear how well transformer models can
perform with long clinical documents and in multi-label problems with a large
number of labels [20]. Also, many studies [20, 3] focus on high-frequency labels.
Nonetheless, datasets such as MIMIC III and eICU consist of many infrequent
labels where most codes only occur in a minimal number of clinical documents.
This research presents results of multiple transformer methods and compares it
with SOTA methods for various token lengths and number of labels.

For both word embeddings based networks and transformers, there is evi-
dence to show domain-specific pre-trained models outperform general text pre-
trained models [10, 9, 22]. This research uses word embeddings pre-trained on
health-related text and transformers pre-trained on general and health-related
data.

3 Data

Medical Information Mart for Intensive Care (MIMIC-III) [11, 8] is a publicly
available large database from the MIT with de-identified medical text data of
more than 50,000 patients. We make use of free-form medical text from the
discharge summaries. Figure 1 (top) presents a small sample of a discharge sum-
mary. MIMIC III discharge summary length varies between 50 to 8500 tokens
with an average pre-processed text length of 1500 tokens. There are approxi-
mately 9000 unique ICD-9 codes associated with the hospital admissions in this
database, with more than one code assigned to each patient.

Electronic Intensive Care Unit (eICU) is a database formed from the Philips
eICU program [8, 18], and contains de-identified data for more than 200,000
patients admitted to ICU. eICU data is found in tabular format with a drop-
down menu. Sample text data is presented in Figure 1 (bottom). The length
of medical text ranges from 10 to 1350, with an average of 130 tokens. eICU
contains 883 unique ICD-9 codes.

The frequency of ICD-9 codes in both MIMIC III and eICU is unevenly
spread with a large proportion of the codes occurring infrequently. For example,

MIMIC III - Discharge Summary (sample text)
82 yo M with h/o CHF, COPD on 5 L oxygen at baseline, tracheobronchomalacia
s/p stent, preseents with acute dyspnea over several days, and lethargy. This morning
patient developed an acute worsening in dyspnea, and called EMS. EMS found patient
tachypnic at saturating 90% on 5L. Patient was noted to be tripoding. He was given a
nebulizer and brought to the ER.

eICU - Drop down menu (sample text)
Admission |Non-operative |Diagnosis |Cardiovascular |Sepsis, pulmonary |Non-
operative Organ Systems |Was the patient admitted from the O.R. or went to the
O.R. within 4 hours of admission? |No

Fig. 1: Sample data of MIMIC III (top) and eICU (bottom) obtained from the
database. It includes acronyms and typos that are present in the data.
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in MIMIC III and eICU only 0.02% and 0.2% of the codes are associated with
at least 500 (1%) of the hospital admissions. One of the main reasons for the
infrequent nature of medical codes in MIMIC III and eICU is because data are
obtained from patients admitted in critical care. For this research, we consider
each level of the ICD-9 hierarchy, as categorised by the World Health Organisa-
tion, as an individual flat multi-label problem. We remove all codes that occur
in less than 10 unique hospital admissions. Consequently, our MIMIC III and
eICU datasets contain 18 labels at level 1, 158 and 93 labels respectively at level
2, and 923 and 316 labels respectively at level 3.

4 Neural Network Algorithms

4.1 Transformers

Transformers [21] are one of the main recent developments in NLP which have
achieved SOTA results in many language tasks [6, 9, 7]. Transformers are sequence-
to-sequence models based on a self-attention mechanism. Given the linear pro-
jections Q, K, V , self-attention is computed as following [21]:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

where the input queries and keys are of dimension dk, and values of dimension
dv. See Vaswani et al. (2017) [21] for details of the transformer architecture.

BERT [7] is a deep neural network model that applies bidirectional training
of the transformer encoder architecture [21] to language modelling. The BERT
model relies on two pre-training tasks, masked language modelling and next
sentence prediction. The 12-layer BERT-base model with a hidden size of 768,
12 self-attention heads, 110M parameter neural network architecture, was pre-
trained on BookCorpus, a dataset consisting of 11,038 unpublished books and
English Wikipedia.

ClinicalBERT model follows the same model architecture as the BERT-base
model and was continually pre-trained on all notes from MIMIC III [1] from the
BERT weights. PubMedBERT [9] uses the same architecture as the BERT-base
model. However, unlike ClinicalBERT, PubMedBERT is domain-specifically pre-
trained from scratch using abstracts from PubMed and full-text articles from
PubMedCentral to enable better capturing of the biomedical language [9].

RoBERTa [14] is a robustly optimized BERT approach with improved train-
ing methodology and 160GB of general-domain training data in comparison
to the 16GB data used in BERT. BioMed-RoBERTa-base [10] is based on the
RoBERTa-base [14] architecture. RoBERTa-base was continuously pre-trained
using 2.68 million scientific papers from the Semantic Scholar corpus starting
with the RoBERTa-base weights.

Longformer [4] is a transformer model that is designed to handle longer se-
quences without the limitation on the maximum token size of 512 set by other
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transformers such as BERT. Longformer reduces the model complexity by refor-
mulating the self-attention computation. This modified self-attention operation
scales linearly with sequence length, instead of quadratically as in the original
transformer models, making it possible to handle long documents. Longformer
combines attention patterns such as sliding windows, dilated sliding windows and
global attention (see Beltagy et al. (2020) [4] for more details). When compared
to Equation 1, Longformer uses two sets of projections, one to compute atten-
tion scores for a sliding window and another for global attention, providing the
needed flexibility for the best performance of downstream tasks [4]. Longformers
can be used for other NLP tasks in addition to language models. When compared
to Transformer-XL [6], which can also handle long documents, Longformer is not
restricted to the left-to-right approach of processing the documents.

After pre-training the models, the transformers are fine-tuned on task-specific
data. All the parameters are fine-tuned end-to-end. Pre-trained transformer
models learn good, context-dependent ways of representing text sequences which
can be used on a specific downstream task. The models only need to fine-tune
their representations to perform a particular task. Compared to the pre-training
cost of transformers, the subsequent fine-tuning is relatively inexpensive.

4.2 Traditional Neural Networks

TextCNN [12] combines a single layer of one-dimensional convolutions with a
max-over-time pooling layer and one fully connected layer. If xi:i+j is a con-
catenation of words from a sentence, each word, xi, xi+1, ... is mapped to its
embeddings using the lookup table of word embeddings. The final prediction is
made by computing a weighted combination of the pooled values and applying
a sigmoid function. In our experiments, we use TextCNN with four different
window sizes where each window takes 2, 3, 4 or 5 words with 100 feature maps
each; the drop out rate is set to 0.2 and the learning rate to 0.003.

Gated Recurrent Units (GRU) [5] are a type of recurrent neural networks,
with fewer parameters in comparison to long short-term memory (LSTM) net-
works. Bidirectional GRU (BiGRU) considers sequences from left to right, and
right to left simultaneously. The learning rate used for our experiments is 0.003.

Mullenbach et al. (2018) [17] present CAML which achieves SOTA results
for predicting ICD-9 codes from MIMIC III data [16]. CAML combines convo-
lution networks with an attention mechanism. A secondary module is used to
learn embeddings of the descriptions of ICD-9 codes to improve predictions of
less frequent labels and are used as target regularization. For each word in a
given document, word embeddings are concatenated into a matrix and a one di-
mensional convolution layer is used to combine these adjacent embeddings. The
document is represented by matrix H ∈ Rdc×N where dc is the size of convo-
lutional filter and N is the length of the document. Then a per-label attention
mechanism is applied, where HTul is computed for a given label l and a vector
parameter ul ∈ Rdc . The resulting vector is passed through a softmax operation
with an output αl. The vector representation for each label is calculated using
vl =

∑N
n=1 αl,nhn. The probability for l is calculated using a linear layer and a
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sigmoid transformation. A regularizing objective was added to the loss function
of CAML with a trade-off hyperparameter. This variant is called Description
Regularized-CAML (DR-CAML) [17]. The learning rate used for both CAML
and DR-CAML in our experiments is 0.0001, and the regularization hyperpa-
rameter λ for DR-CAML is 0.01.

5 Experiments

We present results for multi-label medical code predictions for MIMIC III and
eICU datasets. The number of labels being 18, 93, 158, 316, and 923. All experi-
mental results presented are obtained from validations based on training-testing
scheme, and are averaged over three runs. We explore a number of different
transformer models and compare the performance to some traditional word em-
beddings based neural networks, including SOTA networks. The medical docu-
ments are truncated to a maximum number of tokens (512 and 4000). MIMIC III
text was pre-processed by removing tokens that contain non alphabetic charac-
ters, including all special characters, and tokens that appear in fewer than three
training documents. As eICU is already pre-processed extensively, no additional
pre-processing was done for our research.

All neural network models presented in this research are implemented in
PyTorch, and evaluations were done using sklearn metrics. All transformer im-
plementations are based on the open-source PyTorch-transformer repository.1

Transformer models are fine-tuned on all layers without freezing. As the opti-
mizer we use Adam [13] with learning rates of 4e-6, or 4e-5. Training batch sizes
were varied between 1 and 16, and the cut-off threshold was set to t = 0.5. Em-
beddings used for TextCNN, CAML, DR-CAML and BiGRU are health domain-
specific fastText [15] pre-trained, skipgram word representation, 100-dimensional
embeddings.

6 Results

Results for levels 1, 2 and 3 of the ICD-9 hierarchy, where each level is treated
as an individual flat multi-label problem, for both eCIU and MIMIC III data
are presented in Table 1. For eICU, we present results for 18, 93 and 316 labels.
We find that using transformers for 18 and 93 labels, especially domain-specific
models, result in performance improvements. We experimented with a maximum
token length of 128, 512, and 1250 for eICU, and noticed a consistent improve-
ment in performance between 128 and 512 tokens. However, there was no change
between the micro and macro F1 scores for data truncated at 512 tokens and
1250 tokens. Due to space limitations, we only present results for the maximum
token length of 512. It is important to notice that only 0.2% of the eICU data
contains medical text with a sequence length greater than 512. This might ex-
plain the small variation in neural network performances when the maximum

1 https://github.com/huggingface/transformers
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Table 1: Micro and macro F1 scores for multi-label problem with labels ranging
from 18 to 923 are presented for eICU (left) and MIMIC III (right) datasets.
Bold is used to indicate the highest scores within the grouping of networks, and
underline to indicate the best score across all presented. Reported results are
from validations based on training-testing scheme, averaged over three runs.

eICU - 93 Labels MIMIC III - 158 labels
512 tokens 512 tokens 4000 tokens

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextCNN 0.54 0.30 0.62 0.32 0.69 0.39
CAML 0.57 0.31 0.64 0.32 0.72 0.42
DR-CAML 0.57 0.32 0.64 0.32 0.72 0.42
BiGRU 0.56 0.32 0.60 0.31 0.70 0.42

Longformer 0.60 0.28 0.64 0.35 0.70 0.38
BERT-base 0.59 0.28 0.62 0.37 n/a n/a
ClinicalBERT 0.59 0.28 0.64 0.36 n/a n/a
BioMed-RoBERTa-base 0.60 0.32 0.64 0.40 n/a n/a
PubMedBERT 0.58 0.24 0.65 0.41 n/a n/a

eICU - 512 tokens MIMIC III - 512 tokens
18 labels 316 labels 18 labels 923 labels

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextCNN 0.63 0.48 0.43 0.17 0.79 0.70 0.50 0.18
CAML 0.65 0.51 0.50 0.20 0.79 0.69 0.54 0.19
DR-CAML 0.65 0.51 0.51 0.20 0.80 0.70 0.53 0.19

BioMed-RoBERTa-base 0.68 0.52 0.50 0.13 0.79 0.72 0.52 0.15
Pub-MedBERT 0.68 0.52 0.50 0.14 0.81 0.74 0.53 0.16

sequence length is greater than 512 tokens. Compared to the word embeddings
based methods, there is an improvement in micro-F1 when transformers are
used. The overall best results are obtained using BioMed-RoBERTa-base for 93
labels, and Pub-MedBERT and BioMed-RoBERTa-base for 18 labels. However,
for larger multi-label problem, such as the 316 labels, CAML and DR-CAML
performs better with more significant differences in macro-F1 scores.

For MIMIC III, we present results for a maximum sequence length of 512
and 4000 tokens for 158 labels, and 512 tokens for 18 and 923 labels. As men-
tioned in Section 3, MIMIC III contains long documents and benefits from the
increase in the length of maximum sequence size. Results using 4000 tokens are
only presented for Longformer as the other transformer models are designed to
handle a maximum of 512 tokens. Compared to the SOTA methods CAML and
DR-CAML, most transformers show performance improvement for maximum
sequence length of 512 tokens for 18 and 158 labels. For 158 labels macro-F1 of
all transformers are considerably better than that of the SOTA methods, with
PubMedBERT setting a new SOTA results for ICD-9 code prediction. Similarly,
with 18 labels, PubMedBERT results are better than that of word embeddings-
based methods for 512 tokens. However, as observed for eICU with 923 labels,
none of the transformers perform as well as the traditional neural networks,
when the number of labels increases. However, we have only explored a subset
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of possible transformers. Future research might result in transformers that work
well for multi-label problems with many infrequent labels.

Longformer is one of the very few transformers that can handle long docu-
ments. The model used in this research is pre-trained using general-domain data;
however, like BERT and RoBERTa models, Longformer models trained on health
domain-specific data may improve performance. To the best of our knowledge,
there is no publicly available health domain-specific pre-trained Longformer, and
it requires extensive resources to undertake such a task. Hence, we only present
results for the general domain pre-trained publicly available model. It is essential
to point out we also explored the option of using XLNet. However, a down-stream
task for such large multi-label problem for text with tokens > 512 requires con-
siderable computational power and time. Also, preliminary experiments with 18
labels for MIMIC data did not improve the performance of Longformer.

Figure 2 presents the winning F1 score and the differences between the two
individual F1 scores for a given label for 93 labels for eICU and 158 labels for
MIMIC III data. The best performing (refer to Table 1) embeddings based neural
network and transformers for each dataset is represented by different impulses
in the Figure 2. Positive F1 scores represent the best F1 score for each label of
the two compared systems: Bio-Med-RoBERTa-base and DR-CAML for eICU,
and Longformer and CAML for MIMIC III. The negative F1 scores represent
the difference between the worst and the best compared F1 scores. Both data

30% 9% 4% 2% 0.9% 0.4% 0.2% 0.1% 0.03% 0.01%
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0
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Fig. 2: The winning F1 score for each label, and the difference between the F1
scores from two networks are presented. Best F1 score is represented in the
positive y-axis and the difference in the negative y-axis. F1 scores of 93 labels of
eICU (top) where is BioMed-RoBERTa-base and is DR-CAML, and 158
labels of MIMIC III (bottom) where is CAML, and is Longformer.
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labels are ordered per frequency of occurrence. For eICU, for most labels with
frequency > 0.2% F1 scores obtained using Bio-Med-RoBERTa-base are equal to
or better than the DR-CAML ones. In some cases, for label frequencies between
0.7% to 0.2%, F1 scores obtained using DR-CAML are zero, while this is not the
case for the transformer model. However, for infrequent labels, DR-CAML has
a slight edge over transformer models. For MIMIC III data, for most labels F1
scores obtained using CAML model are better than the Longformer ones. Also,
for rare labels the CAML model predicts some labels well, whereas Longformer’s
F1 scores are mostly zero.

7 Conclusions

This paper has shown that using transformers, especially domain-specific pre-
trained models, can be highly beneficial in multi-label medical text classifica-
tions. We have presented new SOTA results for predicting medical codes from
electronic health records for two very different text datasets, highly pre-processed
semi-structured eICU, and free-form MIMIC III, using a fixed sequence length
and a number of labels less than or equal to 158. We show that new transformer
models, such as Longformer, can be beneficial for long medical documents. Per-
formance is improved compared to standard transformer models, which can only
handle sequences of at most 512 tokens.

For longer documents and larger label sets transformers do not show improve-
ments in results when compared to traditional neural networks. Also, imbalanced
label distributions are poorly predicted when transformer models are used. Our
future works includes looking at ideas such as dual BERT and Siamese BERT
to enhance transformers’ performance for longer documents. Other research av-
enues include exploring extreme multi-label classification techniques using trans-
formers such as X-Transformer, and considering medical codes as a hierarchical
multi-label problem.
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