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Abstract 

While mathematics is an essential tool for both professional and trades mechanical engineers, 

little is known about how mathematics is used and learned in the mechanical engineering 

trades. Using an interpretivist paradigm and informed by a social constructivist epistemology, 

this mixed methods study aimed to identify key features of mathematical learning in the New 

Zealand mechanical engineering trades: specifically, the nature of the mathematical 

knowledge and skills, and how they are applied and developed.  

A purposive sample of 199 apprentices, skilled tradespersons and mechanical engineering 

trades educators completed a questionnaire about the mathematics and numeracy skills they 

used, how they used and learned those skills, and the role of ancillary skills such as higher-

order thinking and social interaction. Seventeen of these participants also took part in semi-

structured interviews. The data were analysed thematically using Engeström’s (1987) 

Cultural Historical Activity Theory (CHAT) and Lave and Wenger’s (1991) Situated 

Learning as theoretical frameworks.  

Regarding the mathematics skills employed in the mechanical engineering trades, the study 

found that a thorough knowledge of, and proficiency in, basic mathematics and numeracy 

skills were essential. In addition, those basic mathematical skills were frequently used in 

sophisticated, real-life contexts involving higher-order thinking skills such as problem-

solving, creativity, and extended reasoning, as well as metacognitive skills, such as critical 

thinking, learning to learn, working in teams, and planning. However, many engineering 

decisions were made not on mathematical considerations alone, but using non-formal 

heuristics and engineering judgment following particular rules generated and accepted by the 

engineering communities.  

Regarding developing the mathematical skills, learning at both individual and community 

levels appeared to be done eclectically. Learning and knowledge creation took place both 

formally and informally, whether in the classroom or on-the-job, and hence by acquisition 

and participation as well as by individual reflection.  

This study contributes to our knowledge of the role of mathematics in mechanical 

engineering trades. It does this through its demonstration of the importance of basic 

mathematics and numeracy skills and the new insights gained into the interconnectedness of 

these basic skills with higher-order thinking and metacognitive skills. Moreover, this study 

contributes to our knowledge of the influences of social interaction, collaboration, and 

communication as important tools for learning, problem-solving, and creating new 

knowledge in workplaces’ communities of practice. Therefore, learning is revealed as an 

iterative process involving developing relationships between tools and subjects as part of an 

evolving historical process where communities play a central role.  
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The study should be of interest to mechanical engineering communities and other vocations 

that are high users of mathematics because of the interconnections the study makes between 

physical tools and higher-order thinking skills situated in real contexts, the learning needed to 

change school habits and perspectives regarding well-developed numeracy and mental 

calculation skills for the workplace, ongoing professional development of mathematics 

knowledge skills related to real contexts, and conceptual understanding of the holistic 

interconnectedness of mathematics within workplace contexts.  

The study also has implications for other vocations because it demonstrates that developing 

workplace mathematics knowledge and skills is a much more complex process than a simple 

transference of school mathematics skills. Successful practice depends on combining 

technical skills with higher-order thinking, metacognitive skills, social interaction, 

collaboration and communication.  
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Chapter 1. Introduction 

This study investigates key features of the mathematical learning of mechanical engineering 

tradespersons as they progress from beginning apprentice to skilled tradesperson and then 

possibly to expert engineer. It focuses on the nature of the numeracy and mathematical 

processes the engineers use and how they use, develop, learn and transmit those numeracy 

and mathematical tools.  

The broad context of this thesis is mechanical engineering, which may be described as the 

design, construction and use of physical tools and machines. Tools and machines are usually 

made of metal, but sometimes wood, plastic and many other materials may be used. There are 

many branches of mechanical engineering, ranging from the fine, intricate work of machinists 

and toolmakers making dies for moulding plastic items, to the design, construction and 

installation of componentry in massive turbines for power stations. Mechanical engineers 

may be skilled tradespersons who have completed an apprenticeship or professional 

engineers who have completed a university degree. This thesis focuses on skilled 

tradespersons. A glossary of technical terms is included in Appendix A.    

The remainder of this chapter explains my personal motivations for doing this research and 

my researcher positionality. I introduce the research questions and also discuss the 

differences, similarities and overlaps between the concepts of 'mathematics' and 'numeracy'. I 

provide a background to the mechanical engineering trades in New Zealand and describe the 

context of the New Zealand mathematics curriculum. I then explain the nature of mechanical 

engineering trades mathematics and its relevance to this study. I end the chapter with an 

overview of the whole thesis.   

1.1. Personal motivations for doing this research 

My personal motivations for doing this research have emerged from the practical nature of 

my childhood mathematics experiences. My interests were also influenced by the more 

theoretical experiences of mathematics and physics I learned at school and later at university, 

and which I then taught in New Zealand secondary schools for more than three decades. 

These experiences resulted in various tensions, or contradictions, in my life, especially 

regarding the cleft between abstract mathematics and the workplace. For many years I have 

observed those same contradictions in mechanical engineering tradespersons and the students 

I taught.  

My introduction to mathematics and engineering began with my childhood interactions with 

my father who was a mechanical engineer. I grew up surrounded by physical tools such as 

spanners, screwdrivers and feeler gauges. Later I learned about non-physical, intellectual 

tools like thousandths of an inch to measure spark plug gaps, tolerances, scale diagrams and 

weights measured in pounds and ounces. Through observation, discussion and practice, I 

developed a feel for certain physical tools, what they were used for and how they worked. 

While I was conscious of the influence of pragmatism in my life, unconsciously I was also 
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absorbing intellectual tools that were necessary to solve problems and allow new physical 

tools and techniques to be constructed. Using Cultural Historical Activity Theory (CHAT) 

(see Section 3.2) as a lens to investigate the associations between intellectual and physical 

tools is an important theme that runs through this thesis, and has ramifications for practical 

problem solving and learning, both for apprentices and skilled tradespersons.  

I also joined in the discussions with my father and his engineer friends and became accepted 

as the smallest member standing on the periphery of a “community of practice” (Lave & 

Wenger, 1991, p. 29). The community members became inventive as a result of their social 

interaction and strong communication. With time, I learned the jargon of their work and how 

to share my theories and stories, complete with diagrams and began to move from the 

periphery to the centre of the community of practice. Therefore, communication was an 

integral part of my learning. Several processes involving practicing, reflection and social 

interaction were operating in my life. I gradually learned to live in and feel comfortable in 

several different worlds where my learning was both socially and personally influenced (Cole 

& Wertsch, 1996).  

My exposure to the engineering world included both pragmatic and intellectual activities. 

Pragmatically, pulling bikes to bits and putting them together again, and helping out with 

valve grinds on cars gave me useful skills using physical tools. Intellectually, I began to 

develop an understanding of when mathematics should be used instead of near enough, 

approximate heuristical methods (Gigerenzer & Gaissmaier, 2011), or engineering judgment 

(Gainsburg, 2007, 2013). In time I would have likely moved progressively towards the centre 

of the engineering community had I not decided to become a mathematics and physics 

teacher. This decision suspended my pragmatic inclinations in favour of more theoretical 

pursuits and steadily increased two important contradictions in my mind.  

The first concerned conceptual understanding and procedural knowledge. I discovered that 

conceptual understanding often took time to develop and could follow the development of 

procedural knowledge after reflection and discussion with others (Lamberg, 2013; Rittle-

Johnson & Schneider, 2014; Sfard, 1998; Skemp, 2006). These processes worked iteratively 

together to eventually develop considerable growth in my theoretical knowledge, or what 

Engstrom (1987, 1999) calls expansive changes in conceptual learning and understanding. 

Also, my interactions with engineers taught me the limits of procedural knowledge; that 

attempts to replace conceptual understanding with procedural knowledge had only limited 

effectiveness, and progress in developing practical engineering projects could be limited by a 

corresponding lack of development in mathematical understanding. The second contradiction 

was between the real (being useful, in my view) and the abstract. This contradiction is 

widespread and is an important and recurring theme in this study. The difficulty arises 

because gaining greater conceptual understanding usually involves theorising, or verticalising 

thinking, which frequently involves greater abstract, higher-order thinking (Treffers, 1993). 

While various mathematical tools may have pragmatic origins, appreciating verticalisation 

and its connections to reality may take time to develop. This led to a strong contradiction in 

my mind, one shared by many engineers, that much of mathematics was useless, either 
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because the mathematics was too abstract to be helpful in a practical sense, or because the 

links between abstraction and reality were not yet fully appreciated (Hernandez-Martinez & 

Vos, 2018; Marr & Hagston, 2007; Ridgway, 2002).  

This tension appeared in my father’s community of practice - both basic mathematical skills 

and metacognitive and higher-order thinking skills used in practical contexts were part of 

their discussions. The value of “critical thinking, learning to learn, planning and problem-

solving” (FitzSimons, Mlcek, Hull, & Wright, 2005, p. 4), and the ability to question and 

reflect on one’s thinking, were tacitly, even if not always explicitly, acknowledged. Listening 

to my father’s later experiences as an instructor of toolmaking apprentices frequently gave 

me insights not only into the use of numeracy skills in sophisticated contexts but also of the 

role of social interaction in its development (Steen, 2001; van der Kooij & Strässer, 2004).  

In conclusion, my father has left me with a rich heritage. The practical side of mathematics 

still appeals very strongly to me. In an important sense this thesis is taking me back to my 

roots, but this time with a wider understanding of the issues around the philosophical debates, 

especially the role of higher-order thinking in developing practical skills. In the next section, 

I relate how my motivations for doing the research influenced my researcher positioning.  

1.2. Researcher positionality  

In this section, I explain my researcher positionality and how it has influenced the outcomes 

of this research study. Philosophical assumptions may be consciously or unconsciously held 

and are influenced by issues like age, upbringing, cultural values, politics, social class, 

ethnicity, religion, education, and career and life experiences (see Section 1.1). Given the 

increasing ethnic and religious diversities in our communities (Msoroka & Amundsen, 2018), 

a corresponding and increasing awareness of the variety of possible interpretations of social 

data is becoming evident. In order to accommodate, rather than trying to eliminate the effect 

of these diversities of interpretation, some scholars have adopted the stance that “researchers 

should acknowledge and disclose their selves in their work, aiming to understand their 

influence on and in the research process” (Holmes, 2020, p. 3). However, carefully 

examining, reflecting on, and then openly stating the researcher’s positionality is a long-term 

process, possibly without end, where the researcher may change perspectives and view the 

data in a renewed way with each perspectival change (Stetsenko, 2005). Such processes of 

continual social-individual changes are linked to the Cultural Historical Activity Theory 

(CHAT) framework (see Section 3.2) and activated by agency whereby people “co-create 

their world and themselves so that each individual person makes a difference and matters in 

the totality of social practices” (Stetsenko, 2020, p. 5). The focus on aspects of change and 

development, whether in apprentices, skilled tradespersons, or in my own perspectives, 

provides a unified philosophical approach to this study (see Section 2.5). Regarding my own 

positionality, I now discuss my philosophical assumptions, then the necessity for adopting a 

reflexive attitude, my attitude to the participants in this study, and the insider-outsider aspects 

of my relationship with them.  
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My worldview as a researcher contains certain beliefs and philosophical assumptions that 

have influenced the way I have approached this study. Many of these are attributable to the 

experiences and interaction with others during my childhood and schooling, and later as a 

university student and secondary school teacher (see Section 1.1). Positivist belief 

assumptions, often associated with the notion of exactness in the physical sciences, were 

important factors at school in the formation of my philosophical beliefs about intellectual 

endeavour and attempts to understand reality (Oliveira, 2020). Positivist assumptions were 

gradually abandoned in my late teens as a young mathematics and physics student. Among 

several issues that influenced my thinking on physics was Heisenberg’s Uncertainty Principle 

which states there are fundamental limits to the accuracy with which values of certain pairs of 

physical quantities of a particle can be measured (Hawking, 2002; Heisenberg, 1927; Smolin, 

2013; Young, 1992). My earlier regard for the efficacy of mathematics was also shaken by an 

introduction to mathematical logic where paradoxes abounded. For example, Kurt Gödel, 

who ironically subscribed to Platonism, theism and mind-body dualism, became famous for 

proving the so-called Incompleteness Theorem. This states that it is impossible using the 

axiomatic method to construct a mathematical system that is simultaneously complete and 

consistent, and that mathematical theories in any branch of mathematics cannot contain all of 

the truths in that branch of mathematics (Balaguer, 2021; Gödel, 1992). Such encounters left 

me with a profound scepticism about grand, all-encompassing theories and an emerging 

understanding that multiplicities of viewpoints and paradoxes would continue to abound. The 

abandonment of a positivist stance, however, also granted me release. As Geertz (1973a) has 

written, I too became unimpressed with the view that “computer engineering, or some other 

advanced form of thought is going to enable us to understand men without knowing them” (p. 

10). In consequence, I regarded later debates on the relative merits of qualitative and 

quantitative research as meaningless because I had already come to terms with the duality of 

metaphors in the so-called exact sciences and the limitations of dealing with just one 

metaphor (Sfard, 1998).  

The acceptance of a plurality of views was the result of my ongoing process and development 

of a reflexive approach. Reflexivity also involved interpretivism, which manifested itself in 

studying history and languages. As with my childhood and school experiences, my interests 

in history and languages still continue to influence my positionality as a researcher. 

According to Holmes (2020), reflexivity in research informs positionality and requires “an 

explicit self-consciousness and self-assessment by the researcher about their views and 

positions and how these might, may, or have, directly or indirectly influenced the design, 

execution, and interpretation of the research findings” (Holmes, 2020, p. 2). Reflexive self-

assessment involves examining the preconceptions brought to the study. Those 

preconceptions may be far-reaching and sometimes only vaguely understood.  

Positionality also overlaps with researchers “locating themselves about the participants” 

(Holmes, 2020, p. 3). This includes considering how the participants view themselves and 

appreciating the cultural values of their local and broader communities. I believe that the 

mechanical engineering tradespersons who participated in my research are highly skilled and 

worthy of respect, not only for their contribution to society but also for their understanding 
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and practical application of highly technical matters. Although the mathematics is seldom 

advanced, the way they use mathematics is often highly sophisticated (Steen, 2001). This 

necessitates a potential change in a researcher’s perspective to appreciate both the basic and 

the higher-order mathematical skills that engineers use in practical contexts.  

As a former mathematics teacher with no direct expertise in the finer skills of mechanical 

engineering trades, I was to some extent an outsider in the mechanical engineering trades 

communities. This necessitated having a listening attitude. The researcher may have an 

insider (emic) or an outsider (etic) relationship with the participants of the study (Holmes, 

2020). Some advantages of being an insider are that the researcher already has some 

knowledge and experience of the context of the study and its participants. This allows the 

researcher to ask insightful questions that reflect and draw out the community’s 

understandings of the context and to write thick descriptions about them, perhaps involving 

interconnections between apparently unrelated issues (Drew, 2019; Geertz, 1973a, 1973b). 

On the other hand, the emic researcher may be too close to the community and fail to see 

beyond the assumptions already made about the context and, consequently, allow the 

participants’ responses to pass without further clarification. Hence, the emic position is suited 

to situations where reality is viewed within a cultural relativist perspective where actions are 

reasonable and meaningful in that culture. The researcher actually becomes part of the 

research process (Holmes, 2020).   

In contrast, the advantages of etic accounts are that they attempt to be culturally neutral and 

are written independently of culturally specific terminology or references. Hence, outsiders 

attempt to act as external scientific observers. Another advantage is that outsiders may ask 

questions, or make interconnections, that insiders with their long exposure to the context 

would possibly not consider. However, outsiders may not have sufficient background 

knowledge to probe and their insights may consequently lack depth. Moreover, outsiders’ 

lack of understanding of the culture may lead to their interpretations of the data being greatly 

different from those of the members of the community being studied (Holmes, 2020).    

It is important to appreciate that the insider-outsider status is dynamic and not static, and 

perhaps changes from moment to moment. There may be a dichotomy between the two 

positions and the emic-etic debate may even be regarded as a continuum (Holmes, 2020; Zhu 

& Bargiela-Chiappini, 2013). Hence, in my study, I was regarded by the participants as both 

insider and outsider. As someone who knew something of the mechanical engineering 

background, who could ask sufficiently deep, probing questions and who had come from a 

mathematics and physics background, I was partially accepted as an insider. I was also 

simultaneously an outsider because I was open about my need to deepen my engineering 

contextual knowledge. Therefore, as someone learning about engineering and also inquiring 

about the engineers’ views at the same time I effectively became part of the research process 

(Holmes, 2020).  
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1.3. The research questions  

There has been minimal research examining and reporting on mechanical engineering trades, 

the mathematics they use and how they develop their mathematical thinking. There appears to 

be a large literature on professional engineering, but very little on mechanical engineering 

trades mathematics, with none in the New Zealand context. This gives another key rationale 

for the project and its contribution to the field.  

Therefore, the main, overarching research question of my study was:  

What key features of mathematical learning characterise the pathway from beginning 

apprentice to skilled tradesperson and then possibly to expert engineer in mechanical 

engineering?  

The keywords ‘mathematical learning’ and ‘pathway’ are intended to encompass not only an 

investigation of the mathematics skills that are developed but also how they are applied by 

mechanical engineers. Mathematical learning and pathway also signal the potential inclusion 

of multiple influential factors that could emerge as the study progressed.  

To support the main research question, three specific associated sub-questions were defined:  

1. What is the nature of the mathematics skills employed in the mechanical engineering 

trades?  

2. How do apprentices and skilled tradespersons in mechanical engineering trades apply 

mathematics skills in their work?  

3. How do apprentices and skilled tradespersons in mechanical engineering trades 

develop the mathematics skills necessary for their work? 

The word “skills” in the first sub-question refers both to knowledge about mathematical 

content topics (such as understanding number and performing calculations) and also to the 

ancillary skills needed for successfully employing that content knowledge in practice. These 

ancillary skills may not technically be strictly mathematical but may include skills such as 

metacognitive and higher-order thinking, working in teams, and so on.  

The second sub-question sought to explore topics such as technical ingenuity and how 

higher-order thinking or problem solving are used in mechanical engineering contexts. 

Together, sub-questions one and two sought to capture the mathematical demands of the 

mechanical engineering trades. Therefore, these demands delineate the mathematical learning 

that is required of those on “the pathway from beginning apprentice to skilled tradesperson 

and then possibly to expert engineer in mechanical engineering” (see main research 

question). 

The third sub-question refers to the ways the engineers learned and developed this body of 

mathematical and related skills. The role of the mechanical engineering context is introduced 
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here because mathematics is applied in workplaces in different ways and from different 

perspectives from those at school, such as the use of innovation, creativity and imagination 

(FitzSimons, Mlcek, Hull, & Wright, 2005; Steen, 1990). In the next section, I discuss the 

interrelationships between mathematics, numeracy, and the mechanical engineering trades.     

1.4. Mathematics and numeracy 

While there is a substantial literature surrounding numeracy, there is no general agreement 

about its terminology, nature or definition. Thus, the terms numeracy, mathematical literacy, 

and quantitative literacy have been commonly used at various times and convey subtle 

differences in meaning. However, there is widespread agreement that numeracy is different 

from mathematics and that it includes more than skill in performing calculations (Anthony, 

2020; FitzSimons et al., 2005; Karaali, Villafane Hernandez, & Taylor, 2016; Liljedahl, 

2021; National Numeracy, 2020a, 2020b; Wright, 2007). Commenting on this difference, 

Steen (2001) contrasts the abstract structures of mathematics with numeracy that is “often 

anchored in data derived from and attached to the empirical world” (Steen, 2001, p. 5). 

Hence, mathematics and numeracy have important similarities and differences and engage 

with issues that may either overlap or be mutually exclusive.  

Definitions chosen for numeracy tend to be influenced by the actualities of the context. In my 

study, the actualities frequently include both the numerical aspects of numeracy and a 

complex set of ancillary skills that govern both mathematics and numeracy usage. These 

ancillary skills include “authentic problem-solving in real or simulated tasks in small groups 

with shared responsibilities … [and] the development of metacognitive skills, such as critical 

thinking, learning to learn, planning and problem-solving” (FitzSimons et al., 2005, p. 4). I 

shall use FitzSimons’ description above of metacognitive skills throughout the study. Another 

ancillary skill is being confident and comfortable in judging whether to use mathematics in a 

particular situation, what mathematics to use, how to do it, what degree of accuracy is 

appropriate, and what the answer means in relation to the context (Coben, 2000; Tout et al., 

2017).  

Definitions of numeracy may be narrow or wide. Wide definitions may be helpful when 

focussing on numeracy skills of workers where numeracy involves much more than 

mastering certain basic mathematical skills, or where recognition needs to be given “to the 

changing socio-political landscape that positions numeracy as part of reflective, 

discriminating, and responsible citizenship” (Anthony, 2020, p. 352). A wide definition may 

also emphasize the integration of mathematics with communication, culture and personal 

aspects of individuals in context (T. Maguire & O’Donoghue, 2003). Therefore, applying 

mathematics in the workplace involves using numerical, cognitive and metacognitive skills 

and social interaction in context. All these ideas are pertinent and referred to throughout this 

study.  

Throughout the study, the important place I give to the numerical aspects of numeracy is 

consistent with Skills Matter New Zealand which takes its definition of numeracy from 

OECD (2016a) as “the ability to use numerical and mathematical concepts” (p. 1) and with 
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Te Kete Ipurangi where numeracy is defined as “the ability to understand numbers and 

calculations” (Ministry of Education, 2019, n.p.). It also resonates well with FitzSimons et 

al.’s (2005) description of numeracy in workplaces as “the practical application of rational 

numbers [sic]1 and the metric measurement system with contextualised approximations and 

estimations in critical calculations” (p. 6). Further, specifically acknowledging the numerical 

aspects of numeracy reflects Dutz’s (2021) comment that “discussing and learning about 

numeracy is especially important in times when there is a great need not only to understand 

numbers and graphs, but also to think critically about figures and information” (p. 1), and the 

Scottish government statement that numeracy is having “the confidence and competence in 

using number which will allow individuals to solve problems, analyse information and make 

informed decisions based on calculations” (Smarter Scotland, 2021, p. 1; my emphasis).  

Therefore, since numeracy is much more than the sum total of its numerical aspects, and 

involves a plethora of understandings and definitions in the literature (Geiger et al., 2015), for 

the purposes of this thesis, I will use the term numeracy in a broad perspective:  

 

‘Numeracy’ therefore refers to the application of mathematics in real-life contexts, including 

the workplace, and taking cognizance of its numerical, social, cognitive, metacognitive and 

political aspects.  

Moreover, since mathematics and numeracy overlap, neither is subsumed in the other. I see 

aspects of both in many topics. As a result, I regard a topic such as trigonometry primarily as 

mathematics, but misunderstanding arising over decimal point placement in solving a 

trigonometry problem as a numeracy issue. Similarly, substituting in formulas involves both 

algebraic and numeracy understanding. Hence, I treat topics like trigonometry and 

substituting in formulas as mathematics topics with important numeracy connotations.  

Regarding how I refer to mathematical learning, since learning about trigonometry or 

substituting in formulas involves both mathematical and numeracy understandings, it is 

simpler to describe the learning as mathematical learning, with the links to numeracy being 

taken as understood. Therefore, as is sometimes found in the literature, I sometimes use the 

terms mathematics and numeracy interchangeably in this thesis.  

1.5. Background to the mechanical engineering trades in New Zealand 

This section discusses the various specialised branches of mechanical engineering and some 

aspects of the background of mechanical engineers. There is a wide range of different titles 

 
1 The rational numbers can all be written as fractions. Their decimal equivalents either terminate or repeat. 

There are some important numbers, such as 𝜋 and √2, which cannot be written as fractions, and which have 

decimals that are infinite and non-repeating. It would be more correct to say ‘real numbers’, rather than rational 

numbers in this case.  

‘Numeracy is a term used to identify the knowledge and capabilities required 

to accommodate the mathematical demands of private and public life and to 

participate in society as informed, reflective, and contributing citizens’ 

(Geiger, Goos, & Forgasz, 2015).  
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for the mechanical engineering trades specialisations. Competenz, the Industry Training 

Organisation (ITO) responsible for mechanical engineering trades in New Zealand, retains 

the more traditional and well-known names: fitters, fitters and turners, fitters and welders, 

maintenance and diagnostics engineers, maintenance fitters, toolmakers, and precision 

machinists. Engineers work in various settings, such as general engineering workshops as 

general engineers, manufacturing companies as maintenance engineers, or highly specialised 

precision engineering workshops as toolmakers or machining engineers (Competenz, 2013, 

2021).  

Statistics New Zealand allows limited public access to census data. However, their published 

occupation categories are constructed too broadly for the data to be used by researchers 

investigating particular engineering specialisation groups and access to more detailed 

information is expensive. Allowing free public access to detailed data would considerably 

enhance many studies, including this one, especially when investigating such key elements as 

age distribution, the likely effects of retirement on the trades’ human resource needs, 

ethnicity, gender, school qualification, and trades qualifications. Moreover, the data from the 

New Zealand 2018 census were controversial (B. Edwards, 2019). The best information 

available to me for this study has been obtained from Competenz and based on the 2006 

census: 

• Around 14,520 workers across more than 50 industries identified themselves as 

mechanical engineers, their average age was 43 years and more than 17% were over 

the age of 55 years.  

• Around 97% were male and 3% female. About 61% identified as New Zealand 

European, 13% New Zealanders, 9% Māori and 5% Pacific Peoples.  

• Around 68% left secondary school with a qualification compared with 75% of the 

New Zealand workforce.  

• Around 65% gained a post-secondary school qualification compared with 47% of the 

New Zealand workforce. The majority of those with post-school qualifications had 

gained a Level 4 certificate (63%).  

(Source: Competenz, 2013)  

Statistical data is important to the trades and concern has frequently been expressed in recent 

years over the aging of the engineering workforce and the loss of skills to New Zealand as 

they retire. In 2011, for example, only 12 people were training to become toolmakers 

(Competenz, personal communication, 2011), which prompted someone to ask “Is 

toolmaking a dying trade?” (Competenz, 2013, p. 13). Such concerns at least partly explain 

the efforts being made by Competenz and other groups to persuade young people to take up a 

trade (BCITO et al., 2015; Competenz, 2015, 2018; Sole, 2015).  



Chapter 1 Introduction 

10 

 

An important issue regarding the current relevance of the 2006 census data is the likelihood 

of substantial shifts in the demographic data over time. Toolmaking is an example of a shift 

within an occupational subcategory. The ethnicity balance may also have substantially shifted 

with recent immigration trends in New Zealand. One point of interest, for which data is also 

currently not available, is the number of skilled tradespersons for whom English is a second 

language and the effects this might have on workplace communication, relationships, 

efficiency and mathematics skills.  

To become a qualified tradesperson in New Zealand it is necessary to complete an 

appropriate apprenticeship and pass all the requisite Unit Standards (Careers New Zealand, 

2015; Competenz, 2021; O'Leary, 2014; Tertiary Education Commission, 2015). An 

apprenticeship is an agreement and commitment between an apprentice, a trainer such as a 

polytechnic, and an employer who serves as a mentor. During the years of the apprenticeship, 

study is combined with practical work experience. Each trade requires a set number of hours 

of theory and practice to be completed before the apprentice can become formally qualified in 

that trade. The training and completion requirements are vested in the New Zealand 

Qualifications Authority (NZQA). The corresponding Industry Training Organization (ITO) 

for each trade which has various statutory obligations such as maintaining proper standards of 

performance and ensuring apprentices receive appropriate supervision and support (Careers 

New Zealand, 2015). Competenz, the ITO for mechanical engineering trades in New Zealand, 

offers two sets of nationally recognised qualifications, the older National Certificates and 

their reviewed and updated replacements, the New Zealand Certificates.  

Competenz also provides teaching resources, oversees and administers the assessment, liaises 

with engineering departments in secondary schools, and promotes interest among young 

people in engineering and other trades. Apprentices have traditionally done their theory 

studies in block courses, night classes and by correspondence. However, Competenz has also 

instituted a programme of eLearning which is accessible to apprentices at any time they find 

convenient. The programme contains a number of practice sessions for each unit of learning 

which the apprentice does before gaining confidence to attempt the online assessment 

(Competenz, 2021).  

While prospective mechanical engineering apprentices are encouraged to study drawing and 

design, and mathematics and science subjects in their final years at secondary school, there is 

no minimum entry-level standard required in mathematics to enter an apprenticeship 

(Competenz, 2021; Competenz: Skills for Industry, 2018). As far as mathematics for 

completing a mechanical engineering apprenticeship is concerned, the current qualification 

required in most specialisation branches is Unit Standard 21905: Demonstrate knowledge of 

trade calculations and units for mechanical engineering trades (NZQA, 2010). There is 

considerable overlap between the mathematics content required for mechanical engineering 

apprenticeships and the NCEA Level 1 Achievement Standards involving Number and 

Measurement - Achievement Standard 91026: Apply numeric reasoning in solving problems 

(NZQA, 2019a) and Achievement Standard 91030: Apply measurement in solving problems 

(NZQA, 2019b). A similar overlap exists between US 21905 and the mechanics section of the 
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NCEA Level 2 physics curriculum, Achievement Standard 91171: Demonstrate 

understanding of mechanics (NZQA, 2011). Thus, most of the NZQA documentation that 

details the relevant mathematical skills and numeracy goals needed for this study can be 

found in AS 91026, AS 91030, AS 91171 and US 21905, together with their associated 

supporting documents.  

It is important to note that, while the mathematics and numeracy requirements for the 

mechanical engineering trades are contained in US 21905, not all of the topics in this Unit 

Standard are used extensively in all the mechanical engineering trades specialisation 

branches; each branch has its own emphases and ways of doing things. Toolmaking, for 

example, requires fine measurement, often with tolerances of thousandths of a millimetre, 

which is not usually required in an area such as sheet metal working. Sheet metal working, 

however, has its own challenges in problem solving that are not necessarily encountered often 

in toolmaking. It is not uncommon for apprentices to express an inclination to eventually 

specialise in one particular branch. Moreover, many mechanical engineering tradespersons 

appear to move quite freely from one branch specialisation to another throughout their 

careers. My father, for example, was apprenticed as a fitter and turner, then became a ship’s 

engineer, then a maintenance engineer, then a toolmaker, before becoming an instructor of 

toolmaking apprentices.  

1.6. The New Zealand mathematics curriculum 

This section is included to help international readers understand how references throughout 

this study to the New Zealand education system might correspond to those in their own 

countries. New Zealand children typically begin school at Year 0 aged about five years. 

There is a national curriculum, the New Zealand Curriculum (NZC) that defines several 

Learning Areas, one of which is Mathematics and Statistics (Ministry of Education, 2007) for 

all thirteen years of schooling. Most students advance to Year 11 aged about fifteen years 

when many will enter a nationally organised assessment system, known as the National 

Certificate for Educational Achievement (NCEA). The NCEA comprises three levels, Level 1 

in Year 11, Level 2 in Year 12 and Level 3 in Year 13. Each NCEA level has various 

Achievement Standards attached to the Learning Areas, and these are either internally or 

externally assessed, or both. Throughout the thesis, I will refer to senior secondary school 

mathematics as the more academically-oriented New Zealand Year 12 and Year 13 

mathematics courses students might study during their final years of secondary schooling 

before entering university.  

The mathematics required for almost all mechanical engineering trades applications is part of 

NCEA Level 1: AS 91026 Apply numeric reasoning in solving problems that pertains to 

numeracy, and Achievement Standards in geometry, measurement, Pythagoras and 

trigonometry (NZQA, 2019a, 2019b, 2019c, 2019d). The focus of learning is on real-life 

contexts.  

The topics for AS 91026 are the following:  
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Reason with linear proportions; use prime numbers, common key elements and multiples, 

and powers (including square roots); understand operations on fractions, decimals, 

percentages, and integers; use rates and ratios; know commonly used fraction, decimal, 

and percentage conversions; know and apply standard form, significant figures, rounding, 

and decimal place value; apply direct and inverse relationships with linear proportion; 

extend powers to include integers and fractions, and apply everyday compounding rates. 

Students are expected to be familiar with methods related to ratio and proportion; key 

elements, multiples, powers and roots; integer and fractional powers applied to numbers; 

fractions, decimals and percentages; rates; rounding with decimal places and significant 

figures, and standard form (NZQA, 2019a, n.p.) (see Appendix B).  

These topics relate very closely to the mechanical engineering trades requirements (NZQA, 

2010) which are discussed further later (see Appendix C and Section 2.1.1). Given the 

international character of numeracy and engineering, the New Zealand numeracy topics are 

likely to be similar to those of other countries, for example, the Scottish system which includes 

“estimation and rounding; number and number processes; fractions, decimal fractions and 

percentages; money; time; measurement; data and analysis, and ideas of chance and 

uncertainty” (Smarter Scotland, 2021, p. 1).  

The Program for International Student Assessment (PISA) studies are also relevant to the 

mathematical needs of mechanical engineering trades apprentices. PISA claims to be “not 

only the world’s most comprehensive and reliable indicator of students’ capabilities, it is also 

a powerful tool that countries and economies can use to fine-tune their education policies…” 

(Schleicher, 2019, p. 2). PISA studies draw attention to numeracy performance in a global 

context and give insights into New Zealand trends. While PISA is not perfect (K. Mills, 

2014), I believe it has accurately traced long-term declines in numeracy performance in New 

Zealand and some other countries. Presently, young people are less prepared to meet the 

mathematical demands of trades such as mechanical engineering than they were prior to the 

1990s (May, Flockton, & Kirkham, 2017). As a result, my study focuses on the nature of 

numeracy and mathematical processes that engineers use, their links to problem solving, and 

how they use, develop, learn and transmit those numeracy and mathematical tools.  

1.7. Mathematics and mechanical engineering trades 

This section discusses the nature of mechanical engineering trades mathematics and other 

factors that are important to its application in the trades context. This thesis focuses on two 

key features of the pathway of mathematical learning that take place during and beyond the 

apprenticeship years: how skilled tradespersons use mathematics in their work, and how they 

develop those mathematical skills as they progress to become expert engineers near the centre 

of Lave and Wenger’s (1991) community of practice. It is important to appreciate that the 

mathematical components of an apprentice’s pathway are quite different from those intending 

to become professional engineers. In particular, professional engineers need much higher 

cognitive skills in algebra and calculus in their senior school mathematics courses (Alpers, 

2010; Alpers et al., 2015; Dubibsky, 1994; Gravemeijer & Doorman, 1999; Holtzapple & 

Reece, 2008; Kaput & Roschelle, 1997).  
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The lack of more senior secondary school mathematics in trades training preparation does not 

mean that trades mathematics applications are unsophisticated. Two important key factors are 

involved. First, applying mathematics in the workplace requires well-developed fluency with 

numbers (see Section 2.1.1) (Atkinson & Mayo, 2010; Henderson & Broadbridge, 2009; 

Lomas & Mills, 2013a, 2013b; K. Mills, 2011, 2012; Steedman, 1997) (see Section 1.3). 

Numeracy is therefore an important theme throughout this thesis since many of the 

applications of mathematics in mechanical engineering trades involve calculation and other 

numeracy skills (see Section 2.2). Second, many studies have demonstrated that numeracy in 

the workplace requires more than basic number skills, such as personal and social qualities, 

and higher-order thinking. Examples of such studies include chemical spraying (FitzSimons 

et al., 2005); nursing (Coben & Weeks, 2014; Galligan, 2011; Hutton et al., 2010); 

paramedicine (Bell, Galligan, & Latham, 2020); professional engineering (Berkaliev & 

Kloosterman, 2009; Carr et al., 2014; Deans, 1999; Gainsburg, 2006, 2007), and boat 

building (Zevenbergen & Zevenbergen, 2009).  

Personal and social qualities are sometimes referred to as Key Competencies in the New 

Zealand school curriculum and include skills needed for working cooperatively in teams. 

These exist in various forms in many countries (Hipkins, 2007; Ministry of Education, 2005; 

OECD, 2009b). Another area comprises problem solving, planning, critical thinking, 

creativity, conceptual understanding, employing engineering judgment in decision-making 

processes, and the development of metacognitive skills. This study investigated the 

interactions of these multifarious factors in the successful application of mathematics in 

mechanical engineering trades workplaces. The study should therefore have implications 

nationally and internationally for mechanical engineering trades workplaces as well as other 

vocations.  

1.8. Rationale  

Following the discussion in the last section of the nature and importance of mathematics and 

numeracy in the mechanical engineering trades, I now justify the study. Three potential 

contributions to the academic literature will be discussed: mathematics in mechanical 

engineering workplaces; correspondences between mathematics in mechanical engineering 

trades and other vocations and workplaces, and adult numeracy.  

There appears to be a worldwide paucity of knowledge of the training of apprentices in 

mechanical engineering trades workplaces. I mention four important exceptions: first, a study 

by Akor, bin Subari, binti Jambari, bin Noordin, and Onyilo (2019) on Nigerian engineering 

apprentices which calls for a greater emphasis on “critical thinking, innovation and creativity, 

problem solving, teamwork, life-long learning, and communication skills” (p. 1279), second, 

a study by Audu (2014) on the employability skills of graduates from a Nigerian engineering 

trades programme, third, a study by Audu, bin Kamin, bin Musta’amal, and bin Saud (2014) 

on comparing the efficacy of various teaching methods with the acquisition of practical 

mechanical engineering skills in Nigeria, and fourth, a study on the mathematical needs of 

engineering apprentices in the United Kingdom by Ridgway (2002). However, among these 
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four studies, only Ridgway’s study focuses specifically on the role and usage of mathematics 

and numeracy.   

The meagre literature on engineering trades mathematics is in contrast to the large literature 

on mathematics in professional engineering workplaces (Alpers, 2010; Engelbrecht, 

Bergsten, & Kågesten, 2017; Gainsburg, 2006, 2013; Harlim, 2014; Horowitz, 1999; Sobek 

& Jain, 2004; van der Wal, Bakker, & Drijvers, 2017). There is also a large workplace 

mathematics literature on trades’ areas such as chemical spraying (FitzSimons et al., 2005), 

boat building and pre-apprenticeship plumbing (LaCroix, 2010, 2014; Zevenbergen & 

Zevenbergen, 2009). These latter studies provide strong indications of the importance of both 

the social and technical aspects of workplace mathematics. Given the clear shortage of 

literature on mechanical engineering trades mathematics, the present study offers an original 

contribution to the role played by mathematics in the mechanical engineering trades 

workplaces.  

There are three areas where the present study is likely to provide insights and understandings 

of mechanical engineering trades of interest internationally and in New Zealand. First, one 

focus of the present study is on the nature of the mathematics knowledge and skills in 

mechanical engineering trades contexts. This extends existing literature because, while 

finding the skills is relatively straightforward (NZQA, 2010; Ridgway, 2002), little is known 

about the ways the knowledge and skills are used in the workplace. Second, the study focuses 

on the ancillary skills needed to apply mathematics in workplace contexts. While studies like 

FitzSimons et al. (2005) on chemical sprayers acknowledge the importance of cooperating in 

small groups with “shared responsibilities … [and] the development of metacognitive skills, 

such as critical thinking, learning to learn, planning and problem-solving” (p. 5), little is 

known about how these skills are used in mechanical engineering workplaces. Third, there 

are few studies on how learning takes place in the trades area. A notable exception is Wake’s 

(2014) study of apprentice locomotive drivers, although even here the connection with 

mechanical engineering is not direct. The present study contributes to this area through the 

third research sub-question, which includes an examination of the metacognitive processes 

and socio-constructivist aspects involved in mechanical engineering trades training and 

skilled practice, and how learning takes place.  

My study contributes knowledge to address these three significant gaps in our understanding 

and is likely to help apprentices, engineers and expert engineers to develop these skills 

beyond their current levels to become more effective skilled tradespersons or expert 

mechanical engineers. While this thesis focuses on the mechanical engineering trades, 

vocational numeracy concerns are not limited to the trades areas but are spread 

internationally across all levels of society, vocations and workplaces, including university 

students intending to become professional engineers and doctors (FitzSimons et al., 2005; 

Henderson & Broadbridge, 2009; Hoyles, Noss, Kent, & Bakker, 2010, 2013; Hoyles, Wolf, 

Molyneux-Hodgson, & Kent, 2002; Marr & Hagston, 2007; Parsons, 2008; Satherley, 2012; 

Tariq, 2002). However, while workplace applications of mathematics may differ, their 

understandings are often transferable across vocations, which suggests that a study of the role 
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of mathematics in mechanical engineering trades may possess similarities to those in other 

workplace contexts (see Section 1.3). Therefore, lessons learned here may have applications 

in a wide range of different vocations and workplaces internationally. 

It is possible that this study on mathematics and numeracy in mechanical engineering trades 

could have wider significance in adult literacy and numeracy. Despite its specific focus on 

the workplace, it could contribute to the developing literature on numeracy skills worldwide, 

similar to the Adult Literacy and Lifeskills Survey (ALL), the Programme for the 

International Assessment of Adult Competencies (PIAAC) survey and other studies (Alkema 

& Rean, 2013; Carnevale, 2013; Coben, Miller-Reilly, Satherley, & Earle, 2016; Earle, 2013, 

2015; Jonas, 2018; Jones & Satherley, 2017; Lane, 2010; Marr & Hagston, 2007; OECD, 

2012a; Satherley, 2012, 2014; Satherley & Lawes, 2009).  

Finally, there are two issues where this study may contribute to the academic literature. First, 

this study focuses on participation in communities of practice that may be of relevance to 

adults in their everyday life and workplace experiences (S. Harris & Shelswell, 2005). 

Second, this study may contribute to our understanding of the formal and informal ways that 

engineers develop and communicate their knowledge and skills. This includes how their 

skills are learned both socially and through personal reflection, how basic skills are applied in 

subtle and sophisticated contexts using creativity and imagination (Steen, 1990, 2001), and 

how individual and group problem-solving skills contribute to the workplace and other 

environments (Jonas, 2018; Ministry of Education and Ministry of Business Innovation and 

Employment, 2016; OECD, 2012b, 2013, 2016b; Satherley, 2014; Tertiary Education 

Commission, 2008).  

1.9. Overview of the thesis 

Following on from this introduction, Chapter 2 provides a critical review of the literature. 

The review highlights the importance of numeracy to the study and its relationship to the 

mechanical engineering trades context. It also discusses the important themes of conceptual 

understanding and procedural knowledge, higher-order thinking skills and the ways 

mathematics is learned formally and informally. Chapter 3 develops the methodological 

considerations of the study such as the interpretivist paradigm, mixed-methods research, the 

CHAT framework and the study’s associated activity systems, the methods used to conduct 

the research, how the data were analysed, and ethical considerations. Chapter 4 focuses on 

presenting and interpreting the findings from the questionnaires and the semi-structured 

interviews regarding mathematics knowledge and skills. This chapter includes their important 

applications in sophisticated contexts that require problem solving, creativity and flexible 

thinking, extended reasoning, and integrating multiple skills. Chapter 5 presents the findings 

regarding the way mathematics skills and knowledge are learned through childhood, school 

and workplace experiences. I provide formal and informal learning examples of social 

interactions and report the influence of modern technology, such as electronic calculators and 

computer software. Chapter 6 contains the discussion of the findings about the nature of the 

skills, how they are applied in context, and how they are developed both formally and 

informally. Finally, Chapter 7 draws conclusions about the study, provides a discussion of the 
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contribution the study makes to new knowledge, outlines its implications and limitations, and 

presents suggestions for future research.    

1.10. Chapter summary 

In this introduction chapter, I have expressed my personal motivations and reasons for doing 

this research, alongside how I see my researcher positionality influencing the study. The main 

research question was introduced and then followed up by clearly defining key terms for this 

study like numeracy and quantitative literacy. To provide background and context for this 

study, I then gave some background of the mechanical engineering trades and the 

mathematics curriculum in New Zealand. Finally, to provide a justification for this study, I 

indicated the worldwide paucity of knowledge of the role and usage of mathematics and 

numeracy in mechanical engineering trades workplaces that are high users of mathematics 

and numeracy. 
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Chapter 2. Literature Review 

Introduction  

This chapter evaluates the literature which substantially influences mathematics and 

numeracy in mechanical engineering trades. It is aligned with the research questions of the 

study which focus on the various associated areas that impinge upon the pathway from 

beginning apprentice to skilled mechanical engineering tradesperson. There are three main 

areas of interest outlined in the research questions: the nature of the mathematical knowledge 

and skills in engineering trades, how the mathematical knowledge and skills are applied, and 

how the knowledge and skills are developed and learned (see Section 1.3). These areas will 

be followed throughout the thesis and notably, here, in this literature review chapter.  

Contextual and ancillary issues are important to the ways mathematics is used in mechanical 

engineering trades workplaces. Therefore, I begin in Section 2.1 by analysing international 

studies of numeracy in society as a whole and in particular, the literature related to the data 

concerning adult and young adult numeracy skills in New Zealand from the Programme for 

International Student Assessment (PISA), the Adult Literacy and Life Skills Surveys (ALL), 

and the Programme for International Assessment of Adult Competencies (PIAAC). Physics 

provides important contexts for applying mathematics in mechanical engineering trades 

workplaces, especially mechanics. Therefore, Section 2.2 examines the links between school 

mathematics and physics curricula regarding the mathematics and mechanics topics used for 

mechanical engineering trades in New Zealand. In Section 2.3, I focus on ancillary and 

higher-order skills such as conceptual understanding and problem solving because these are 

substantial influences when applying mathematics in mechanical engineering trades contexts. 

This leads to an investigation of the role played by higher-order skills in the Science, 

Technology, Engineering and Mathematics (STEM) programme that has been designed to 

encourage more young people to enter technological vocations.  

Concerning developing mathematics skills for mechanical engineering trades, Section 2.4 

discusses various modern theories and controversies of how mathematics should be taught 

and learned. This is because the ways mathematics skills are developed in mechanical 

engineering trades have been influenced by historical debates over mathematics education 

philosophy. Finally, Section 2.5 discusses the influence of Situated Learning (SL), which is 

an important and widespread part of apprentice learning. SL also provides a framework to 

investigate how collaboration and communication, problem solving and conceptual 

understanding enhance the engineering workplace context. Section 2.6 summarizes the 

chapter.    

At the outset, it is important to acknowledge the dearth of literature on mathematics in 

mechanical engineering trades contexts. However, there is a very large, diverse range of 

academic literature on mathematics in workplaces. Some studies feature mathematics and 

numeracy in specific vocations, such as chemical spraying, cabinetmaking and boatbuilding 

(FitzSimons et al., 2005; Saló i Nevado & Pehkonen, 2018; Zevenbergen & Zevenbergen, 
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2009). These studies are valuable for the contributions they make to understanding those 

particular workplaces and some broad principles of workplace mathematics. There is also a 

plethora of studies on mathematics and STEM, such as the contributions made by 

mathematics researchers to STEM education (Anderson, English, Fitzallen, & Symons, 2020; 

Anthony, 2020), the role of “big ideas” in STEM (Chalmers, Carter, Cooper, & Nason, 2017, 

p. S25) and the role of mathematics in interdisciplinary STEM education (Maass, Geiger, 

Ariza, & Goos, 2019). I have located one PhD dissertation on vocationally-oriented 

mathematics tasks given to secondary school students following vocational courses. Although 

it does not focus on mechanical engineering trades, it does contain a section on technical and 

industrial production (Sundtjønn, 2021). A Google search for “mathematics+mechanical 

engineering+trades” yields many results. One result is entitled “Mechanical Engineering 

Education: Not Just About the Math” (Foroudastan & Saxby, 2004), but unfortunately the 

mechanical engineering is at the professional level, not trades as in my study. The same 

applies to a STEM study of higher-order thinking skills in senior high school students, which 

despite its title, is not oriented to the trades area (Subia, Marcos, Pascual, Tomas, & Liangco, 

2020).  

To summarize, I have been unable to locate more than a few scholarly articles, and no 

doctoral studies, that relate specifically to mechanical engineering trades mathematics 

contexts. Therefore, in important areas that influence this study, such as problem solving, I 

have referred to the extensive literature on professional engineering contexts.  

2.1. Mathematics and numeracy in New Zealand society 

I begin with a discussion of mathematics and numeracy from a societal perspective. 

Mechanical engineering trades are among the highest users of mathematics and numeracy 

(OECD, 2016a, 2016b). While all the mathematics and numeracy skills they use can be found 

in other vocations, they are almost unique in the breadth of skills they use, the way they use 

them, and the variety of their contextual applications. Initial consideration of mathematics 

and numeracy from a societal perspective is therefore helpful in understanding mathematics 

and numeracy in mechanical engineering trades.  

2.1.1. Lack of numeracy skills and their economic consequences 

Numeracy impinges on most aspects of our personal lives and particularly on our ability to 

perform efficiently in the workplace. Most western governments now recognise this and in 

recent decades efforts have been made to enhance both school and post-school numeracy 

education (Bynner & Parsons, 2006; Evans, 2000; FitzSimons, Coben, & O’Donoghue, 2003; 

Kane, Patel, & Rawiri, 2006; Martin & Hunter, 2021; Satherley & Lawes, 2009; Voss, 

Lynch, & Herbert, 2021; Wedege & Evans, 2006). However, the general levels of adult 

numeracy continue to remain low at a time when numeracy skills are becoming increasingly 

important in the workplace and for everyday living.  

This problem exists in many countries. Concerning life skills, David Blunkett, when Minister 

of Education in the United Kingdom, described the fact that seven million adults in England 
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lacked even basic numeracy skills as a “silent scandal” (Coben et al., 2003, p. 36). This 

situation does not appear to have improved in the meantime. According to Westwood (2021), 

data from a survey by the Organisation for Economic Cooperation and Development 

(OECD) “suggests that England is the only country in the developed world where the older 

generation approaching retirement is more numerate than younger adults” (p. 67). The 

situation in New Zealand regarding numeracy skills is similar, with the PISA survey of 2012 

reporting that 23% of young people were unable to show competencies to enable them to 

participate actively in mathematics-related life situations (May, Cowles, & Lamy, 2013).  

Low numeracy skills have consequences for both society and its individual members. While 

only anecdotal evidence of the current numeracy skill levels in the mechanical engineering 

trades in New Zealand is available, the literature at a societal level indicates that low 

numeracy skill levels reduce the potential of workers to contribute to the economy and they 

may require more training. Reduced financial rewards, career advancement and job 

satisfaction are important disadvantages at an individual level (Grotlüschen, Mallows, Reder, 

& Sabatini, 2016; OECD, 2016a, 2016b). However, mitigating these consequences requires 

more than developing basic skills. For example, Carnevale (2013) writes of a changing 

situation where critical thinking, problem solving and other higher-level skills are needed for 

most workers and not only senior management, and Skagerlund, Lind, Strömbäck, Tinghög, 

and Västfjäll (2018) trace numeracy and emotional attitudes towards numbers as 

impediments to financial literacy development. In response to these concerns, some 

universities have begun to include more broad-based, numeracy-oriented courses alongside 

formal university programmes in mathematics, especially for liberal arts students (Lovric, 

2017). 

Low mathematics skills have implications for workplace vocations. Concerns about 

insufficient mathematics skills have been expressed in the United States (Atkinson & Mayo, 

2010; Wu & Atkinson, 2017), Australia (Henderson & Broadbridge, 2009), the United 

Kingdom (Office for Standards in Education, 2011; Steedman, 1997), and in New Zealand 

(Martin & Hunter, 2021; Radford, 2012). In the United Kingdom universities, Tariq (2002) 

reports the results of a mathematics and numeracy entrance test for university biology 

students where “a high proportion … (42 - 63%) encountered difficulties with … questions 

that required an understanding of fractions, indices, logarithms, or units of measurement [and 

that] only 6% of students answered all 15 questions correctly” (p. 76). Regarding medical 

students, in a United States study, Sheridan and Pignone (2002) reported deficiencies in 

medical students’ ability to interpret numeric data and probabilities. The problem still appears 

to exist because a recent survey of medical students’ dosing calculation skills recommended 

that their “student training and assessment should include both extraction of embedded 

dosage information from guidelines and use of the equipment used in dosing” (Harries & 

Botha, 2021, p. 487).  

Concerns about low levels of mathematics and numeracy attainment were expressed in the 

debates during the latter half of the twentieth century on how mathematics should be taught 

in schools and workplaces. These issues have extensive literature, some of which focuses on 
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workplace numeracy and literacy in low paid work (Higgins, 2016). There were many 

reasons why these debates took place. For example, the loss of labouring jobs to 

mechanisation led to apprentices remaining longer at school, which led in turn to attempts to 

make mathematics more easily understood and more relevant to their needs, and 

consequently more motivating to them.  

Before discussing those debates in greater detail, I discuss another debate that has been taking 

place for many years, particularly involving trades, concerning broad versus minimal 

mathematics skills. Minimalism holds that sufficient workplace mathematics learning can be 

achieved solely by cultivating skills directly related to the specific context of the trade itself. 

This view seeks to avoid having to relate learning to broad principles that are regarded as 

abstract, and therefore, unreal and irrelevant. The debate manifests itself in the attitude that 

school mathematics is useless and that things change once apprentices are out on the job and 

in the real world (Marr & Hagston, 2007; Steen, 2001). The case for a broad mathematics 

education to prepare students for the flexibility of thinking required in the workplace has 

been made by Ridgway (2002). Reporting on the mathematical needs of engineering 

apprentices, Ridgway observed that the mathematical challenges of engineering differed from 

the mathematics taught in school, especially in the demand for great precision and the need to 

do a good deal of practical problem solving. Most importantly, concerning predicting future 

success in the trade, the conventional measures of educational attainment had high predictive 

validity, whereas a test created to sample the mathematical skills directly involved in 

engineering had low predictive validity. Ridgway concluded that  

high-level skills required for a successful educational career generalise to practical 

work, whilst the acquisition of mathematical technique does not …, that ‘basic skills’ 

are not a foundation but rather are a component of mathematical education …, and 

[that] practising the deployment of [a broad range of] skills in a range of contexts 

should be encouraged (p. 189)  

Despite the debate recurring from time to time, greater emphasis has been placed in more 

recent decades on high-level skills for workplace application rather than trade-specific 

training. This has been accompanied by an ever-widening interest in such issues as what 

constitutes a good school (OECD, 2020), gender (OECD, 2019b; Zeldin & Pajares, 2000), 

ethnic; gender; and socio-economic equity (Easton, 2013; Mackay, Fawcett, & Cadzow, 

2018; OECD, 2019b), mathematics avoidance (Hoffman, 2010), mathematics anxiety 

(Dunkels, 1995; Frankcom-Burgess, 2017), self-efficacy (Bandura, 1994, 2012; Bandura, 

Barbaranelli, Caprara, & Pastorelli, 2001; Hekimoglu & Kittrell, 2010; Zimmerman, 

Bandura, & Martinez-Pons, 1992), and the dispositions of adult learners to education 

(FitzSimons, 2002a, 2002b; Zevenbergen, 2011; Zevenbergen & Zevenbergen, 2004). In 

short, mathematics education at school and in the workplace has become strongly influenced 

by key social and economic elements.  
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2.1.2. Numeracy skills of children, young adults and adults in New Zealand 

From a governmental standpoint, international surveys of mathematics provide insights into 

the way governments might plan official policy regarding programmes of mathematical 

learning. New Zealand primary school students take part in the Trends in International 

Mathematics and Science Survey (TIMSS) and secondary school pupils take part in the PISA 

studies.  

The PISA studies are directly relevant because they focus on the mathematical literacy levels 

of fifteen-year-old secondary school students and provide an indication of the likely 

proportions of people having numeracy and problem solving skills that will enable them to 

begin apprenticeships. The mathematical literacy levels of beginning mechanical engineering 

apprentices is unknown, even from the PISA studies. However, due to the spiral approach of 

New Zealand education, trends in primary school attainment are likely to compound into 

secondary school performance and then into the workplace. Therefore, in this section, I 

examine the contributions of TIMSS, PISA, ALL and the more recent PIAAC surveys to 

adult numeracy in workplaces.  

2.1.2.1. The TIMSS surveys of primary school students 

The International Mathematics and Science Survey (TIMSS) targets mathematics attainment 

levels of students at Grade 4 and Grade 8 levels in the United States (Years 4 and 8 in 

Australia, and Years 5 and 9 in New Zealand and the United Kingdom). Concerns have 

recently been expressed in the media in New Zealand about trends in the TIMSS results 

which show declining mathematics performances of both Grade 4 and Grade 8 students 

(Collins, 2020a; Sutcliffe, Marshall, Rendall, & Medina, 2021). I first consider the 2019 

advanced, intermediate and low benchmark scores for Grade 4 students for the United States, 

Australia, England, Ireland, and New Zealand (see Table 1).   

Table 1 TIMSS results for benchmarks in the 2019 survey, Grade 4 students 

(Mullis, Martin, Foy, Kelly, & Fishbein, 2020, p. 175) 

Cumulative percentage benchmarks for five countries in TIMSS 2019 survey, Grade 4 students 

Country Advanced 

Benchmark Score 

(625) 

High Benchmark 

Score             (550) 

Intermediate 

Benchmark Score 

(475) 

Low Benchmark 

Score             (400) 

United States 14 38 66 87 

Australia 11 36 68 90 

England 11 35 69 90 

Ireland 7 38 76 94 

New Zealand 6 22 53 82 
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These countries might be considered similar to New Zealand. The table represents cumulative 

scores. Therefore, 14% of United States students were advanced compared with 6% of New 

Zealand students. Similarly, 76% of Irish students were intermediate or above compared with 

53% in New Zealand. Comparing the New Zealand percentages for each benchmark level 

with those of other countries, it can be seen that New Zealand students are significantly 

behind all the other countries even at Grade 4 level in their schooling.  

I now consider the TIMSS data for Grade 8 students’ performance in mathematics over four-

yearly intervals from 2003 to 2019. The average scores for the same five countries are shown 

in Figure 1. New Zealand Grade 8 (Year 9) students’ mathematics scores are below all of the 

other countries in each of the five surveys. Also, New Zealand students have shown a long-

term decline in their TIMSS average mathematics scores while each of the other four 

countries has shown long-term increases. This has resulted in the gap between Year 9 

students in New Zealand and the other four countries increasing. 

  
Figure 1 Average TIMSS scores for Grade 8 students in five countries, 2003 - 2019  

Note. Data obtained from The International Mathematics and Science Survey 2019 (Mullis et 

al., 2020, pp. 160-163) 

The primary school years are foundational in developing numeracy and mathematical skills. 

Since mathematics learning is cumulative with one level of knowledge and understanding 

being built on another, the TIMSS surveys which are taken several years before young people 

enter the workplace nevertheless give an early indication of limitations to future learning. In 

particular, the Grade 8 results suggest that mathematics learning in New Zealand secondary 
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schools and later in the mechanical engineering trades may be adversely affected. In the next 

section, I focus attention on the growth of mathematical skills during the secondary school 

years.  

2.1.2.2. The PISA surveys of secondary school students 

PISA is an international assessment programme for secondary school students. The results 

are important to this study because the PISA surveys measure numeracy skills with test items 

that reflect both real-life contexts and problem solving at a time shortly before young people 

will leave school and take up apprentice training. Problem solving is important in the 

mechanical engineering trades context. Almost 6200 fifteen-year-old New Zealand students 

took part in the 2018 PISA survey (May, Jang-Jones, & McGregor, 2019; Medina & 

Sutcliffe, 2020). Two earlier New Zealand reports specifically related to the PISA studies are 

the PISA 2009: Our 21st Century Learners at Age 15 (Telford & May, 2010) and PISA 2012 

Summary Report (May et al., 2013). These reports enable trends in mathematics performance 

of New Zealand fifteen-year-olds to be established.  

PISA Mathematics Literacy scores are published as Levels on a 1 to 6 scale, with Level 6 

representing the highest achievement. In the PISA 2012 Summary Report, several tables of 

data were devoted to low-achieving students who were defined to be those who performed 

below Level 2 in Mathematics Literacy. Level 2 is the baseline at which students are 

considered to begin to show competencies that will enable them to participate actively in 

“mathematics-related life situations” (May et al., 2013, p. 10). Students below Level 2 can 

complete only relatively basic mathematical tasks and their lack of skills is a barrier to 

learning. These students have probably yet to develop numeracy skills likely to be suitable 

for entry into a mechanical engineering apprenticeship. In New Zealand, 23% of students in 

2012 performed at below Level 2, almost one quarter, the same as the OECD average (May et 

al., 2013).  

With respect to the long-term trends reported from the PISA assessment in 2015, 

the change in average score since 2003 for New Zealand reflects a larger proportion of 

New Zealand students performing below Level 2. … In 2015, 22% of New Zealand 

students were below Level 2 compared with 15% in 2003, (May et al., 2017, p. 22).  

There has been a steady decline in PISA mathematics proficiency in New Zealand between 

2003 and 2018 across all levels, though the downward trend seems to have stabilised from 

2015. The percentage of those performing below Level 3 has increased from 34% to 45%, 

and the percentage of Level 5 or Level 6 students who can perform at the highest 

mathematical level is 9% below the 2003 figure (see Figure 2).  
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Figure 2 Percentage of New Zealand students achieving at PISA mathematics proficiency 

levels, 2006–2018 

Note. Figure used under permission from Creative Commons 3.0 BY, New Zealand Ministry 

of Education (May et al., 2017, p. 23; May et al., 2019, p. 15). 

It is possible that some PISA Level 2 students may have numeracy skills suitable to begin a 

mechanical engineering apprenticeship, even though Level 2 understanding seems to be 

confined to whole numbers. However, since PISA Level 3 is more closely aligned with the 

mathematical skills outlined in a required assessment known as Unit Standard 21905 (see 

Section 2.2), Level 3 may therefore be a more suitable PISA indicator of mathematics skills 

needed by apprentice engineers. According to Kelly et al. (2013), this is because  

Level 3 students can execute clearly described procedures, including those that require 

sequential decisions. Their interpretations are sufficiently sound to be a base for 

building a simple model or for selecting and applying simple problem-solving 

strategies. Students at this level can interpret and use representations based on different 

information sources and reason directly from them. They typically show some ability to 

handle percentages, fractions and decimal numbers, and to work with proportional 

relationships. Their solutions reflect that they have engaged in basic interpretation and 

reasoning (p. 3).  

In New Zealand, 45% of students in 2012 performed below Level 3, and these students 

presumably demonstrated few, if any, of these skills (May et al., 2013). The results for the 

PISA 2018 cycle were released in December 2019 (OECD, 2019a). The OECD publication 

outlining what students know and can do commented that New Zealand’s performance in 

mathematics had been steadily declining from 2003 to 2018 from initially high levels of 
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performance (OECD, 2019a). Moreover, the proportion of top-performing students in 

mathematics (scoring at Level 5 or 6) decreased in mathematics between 2012 and 2018.  

Since this study is concerned mainly with the proportion of students likely to have 

mathematical skills suitable for entry into an engineering trades apprenticeship, the statistic 

of most interest is the percentage of students who scored Level 3 or higher in mathematics. 

Between 2003 and 2018 the proportion of New Zealand students who scored PISA Level 3 

and above in mathematics declined from 66% to 55%; a difference of 11%. While the 

proportions of prospective mechanical engineering apprentices scoring Level 3 or higher in 

mathematics are not known for either 2003 or 2018, trades apprentices tend to be drawn from 

those whose mathematical skills are near the middle of the proficiency range. Therefore, it is 

likely that there is a smaller proportion of current prospective apprentices who have the 

necessary PISA Level 3 mathematics skills to begin mechanical engineering apprenticeship 

training.  

Two points need to be considered concerning the use of PISA data for 15-year-olds as 

indicators of apprentices’ numeracy skills when they begin their trades apprenticeships after 

Year 12 at school in New Zealand, at perhaps 17 years of age. First, it is possible that further 

PISA Level 3 numeracy skills could be developed in the interim. Second, Year 12 

mathematics courses contain no numeracy as such. We are left to consider Steen’s (2001) 

comments that “more mathematics does not necessarily lead to increased numeracy” (p. 108), 

and that when students follow mathematics courses, seldom do they “gain parallel experience 

in applying quantitative skills in subtle and sophisticated ways” (p. 108). Steen concludes that 

“mathematics and numeracy should be complementary aspects of the school curriculum” (p. 

108).  

Consequently, indications from the declining TIMSS and PISA scores and other sources have 

led to public concern about school mathematics and the setting up of a commission by the 

Royal Society of New Zealand to make recommendations for change (Collins, 2020a, 2020b; 

Royal Society Te Apārangi, 2021). From the viewpoint of this study, the long-term declines 

in TIMSS and PISA scores strongly suggest that young people beginning mechanical 

engineering trades apprenticeships are less well prepared in terms of mathematics, numeracy 

and problem solving in 2018 than in 2003. I next consider the ALL and PIAAC surveys of 

mathematics needs and attainment related to workplaces.  

2.1.2.3. The Adult Literacy and Life Skills survey 

The 2006 ALL survey studied the numeracy demands of New Zealand workplaces and 

reported attainment results on a 1 to 5 scale. While the workplace activities may now have a 

greater orientation to Information Technology than in 2006, Satherley (2012) believes the 

activities “are very likely to be still relevant in a wide range of workplaces” (p. 3). He 

displays graphical information of the frequency of the use of numeracy in the workplace for 

several vocational groups that show that tradespersons are the highest of the vocation groups 

for measuring and weighing things, and second in counting, reading numbers, or keeping 

track of things (Satherley, 2012). Satherley also presents overall statistics for the frequency of 



Chapter 2 Literature Review 

26 

 

numeracy activities at work by different occupation groups, where tradespersons occupy 

second place. More recent studies have shown that the need for numeracy is a long-term and 

growing phenomenon with important ramifications for the workplace (Jones & Satherley, 

2018; OECD, 2016a, 2016b; Redmer & Dannath, 2020). Moreover, numeracy skills are 

important for mechanical engineering tradespersons because compared with some other 

trades vocations, mechanical engineers use a wide range of mathematical skills with high 

frequency (Satherley, 2012).  

2.1.2.4. The Programme for the International Assessment of Adult Competencies survey 

The PIAAC survey conducted in New Zealand from 1 April 2014 to 31 March 2015 targeted 

some 6177 adults aged 16 - 65 years old. Like PISA, PIAAC focuses on both real-life 

contexts and problem solving. In contrast to PISA, the PIAAC test items focus directly on 

workplace quantitative situations that are often more specialised than those in everyday life. 

Representative of these are “completing purchase orders; totalling receipts; calculating 

change; managing schedules, budgets and project resources; using spreadsheets; organising 

and packing different shaped goods; completing and interpreting control charts; making and 

recording measurements; reading blueprints; tracking expenditures; predicting costs, and 

applying formulas” (OECD, 2012b, p. 35). PIAAC reports its results in levels where PIAAC 

Level 2 numeracy skills include “the application of two or more steps or processes involving 

calculation with whole numbers and common decimals, percents and fractions; simple 

measurement and spatial representation; estimation; and interpretation of relatively simple 

data and statistics in texts, tables and graphs” (OECD, 2016a, p. 18). Unfortunately, PIAAC 

uses a scale of 1 to 5 for reporting attainment levels, while PISA uses a scale of 1 to 6. 

According to Gal and Tout (2014), different reporting levels are just one of several 

difficulties that hinder comparing PISA and PIAAC numeracy scores.   

However, PIAAC also surveys adults’ attainments in problem solving in technology-rich 

environments (OECD, 2016a). The New Zealand data revealed that:  

• 4.9% of adults indicated that they had no prior experience with computers or lacked 

basic computer skills, one-third the size of the OECD average (14.7%) 

• 45.3% scored at or below Level 1 in problem solving in technology-rich environments, 

slightly above the OECD average (42.9%) 

• around one in three adults (34.0%) attained proficiency Level 2 in problem solving 

compared with the OECD average of 25.7%  

• 10% were proficient at Level 3, the highest proficiency level for problem solving in the 

technology-rich environments survey; this figure being the largest proportion of adults 

scoring at this level among all participating countries and almost twice as large as the 

OECD average of 5.4%.  

Based on (OECD, 2016a, p. 2) 

Regarding the two highest levels of problem-solving proficiency (Level 2 or 3) in 2016, the 

top five countries were “New Zealand (44.2%), Sweden (44.0%), Finland (41.6%), the 
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Netherlands (41.5%) and Norway (41.0%)” (OECD, 2016b, p. 54). Therefore, it would seem 

that New Zealand adults are among the most technologically aware people in the world, and 

this may have relevance to the mechanical engineering trades and the attitudes of young 

apprentices, in particular, to new technology.  

However, international rankings can mask important features. In this case, while New 

Zealand’s international rankings in the 2014 PIAAC study were high, about a third of the 

working-age population was assessed as having overall skill Levels 1 and 2 (Alkema, 2020; 

Coben & Earle, 2014).  

2.1.3. Section summary 

In this section, I have demonstrated that there is widespread concern about inadequate 

numeracy levels in many countries, especially basic number skills. TIMSS conducts 

international surveys of primary school age students and the PISA studies assess numeracy 

levels in fifteen-year-olds in many OECD countries. PISA uses test items that focus on 

contextually based, everyday scenarios that often require multiple mathematical skills. The 

test items are therefore suitable to investigate higher-order skills such as problem solving. 

The TIMSS and PISA studies reviewed in this section show there has been a steady, long-

term decline in numeracy levels of young people in New Zealand and some other countries. 

The PISA data, in particular, suggests apprentices may not be as well prepared in 

mathematical skills to enter the workplace compared with 2003. Therefore, the full 

ramifications for the training of apprentices are unknown, but may include factors such as the 

time taken, the extra physical and human resources needed, and the inefficient use of 

resources which results in both short-term and long-term economic loss.   

Numeracy is an important issue for mechanical engineering tradespersons because of their 

high ranking as numeracy users. While the statistics reviewed in this section do not provide 

conclusive evidence of numeracy deficiencies among mechanical engineering tradespersons, 

they are consistent with the view that conceptual difficulties understanding basic number 

skills like percentages, fractions, ratios and decimal place value are lacking in students 

coming out of high school in New Zealand (Lenz, Dreher, Holzäpfel, & Wittmann, 2020; K. 

Mills, 2011; Resnick, Rinne, Barbieri, & Jordan, 2018). These statistics also suggest that a 

sizeable proportion of mechanical engineering tradespersons may be below PISA Level 3 in 

mathematics. Finally, PIAAC also assesses adult problem solving in technology-rich 

environments, which are directly related to mechanical engineering trades skills such as 

Computer Aided Design (CAD) and Computer Numeric Control (CNC). Technology-rich 

environments are further discussed in connection with problem solving in Section 2.3.  

2.2. Mathematics knowledge and skills 

This section compares school and workplace mathematics and reviews the New Zealand 

mechanical engineering trades topics and their assessment.   
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2.2.1. School and workplace mathematics compared 

The differences in philosophy and approach between school and workplace mathematics have 

been noted frequently (Harth & Hemker, 2013; Herheim & Kacerja, 2019; Hoyles et al., 

2013; K. Mills, 2011). I shall refer to the differences as a school and workplace mathematics 

tension. In engineering trades, the tension manifests in mathematical challenges that “differ 

from the mathematics taught in school. In particular, great precision is required, applied to a 

variety of mathematical techniques; a good deal of practical problem-solving is necessary, 

too” (Ridgway, 2002, p. 189).  

Mathematics application in mechanical engineering trades workplaces bears similarities with 

chemical spraying. The calculations may be mathematically straightforward, but the way they 

are done differs according to conditions, such as temperature and humidity (FitzSimons & 

Boistrup, 2017; FitzSimons et al., 2005). Moreover, the calculations must be completely 

accurate and checked for both calculation errors and for choosing the right method. Hence,   

learning in the workplace differs from school mathematics education in that workers 

are always reminded to check their calculations for reasonableness, to ask repeatedly if 

they are not sure, and to consider their own and others’ personal safety (FitzSimons et 

al., 2005, p. 16). 

Concerning how knowledge and processes for making calculations in chemical spraying are 

accumulated, it appears that experience and practicing are involved; a process of embedding 

knowledge in ongoing practices and repeated, if necessary, until the particular competence is 

fully acquired (FitzSimons et al., 2005). This knowledge is directed towards specific and 

immediate goals that are relevant to life contexts (Bernstein, 2000). FitzSimons et al. (2005) 

find a theoretical framework for this method of learning in Bernstein’s concepts of vertical 

and horizontal discourses. Vertical discourses are coherent, explicit and systematically 

principled while horizontal discourses are everyday or common sense (Bernstein, 1999; 

FitzSimons & Boistrup, 2017). Distinctions can therefore be drawn between rote learning and 

learning by practicing. Parallels can also be drawn between learning by practicing and a 

(possibly) behaviourist teaching approach that is integrated with socially constructed 

knowledge gained on-the-job (K. Mills, 2011). How these discourses are worked out in the 

mechanical engineering trades context is currently unknown.  

Another school and workplace tension involved electronic calculators and computer 

technology. Calculators made their introduction into New Zealand primary and secondary 

schools several decades ago. Many people were sceptical of their introduction at the time, 

suggesting that their use would lead to poorer performance in mental calculation skills. In the 

intervening years, calculators have become broadly accepted, as is reflected in the NZQA 

policies for their use in assessment (NZQA, 2013, 2019d). Many other electronic calculation 

and graphical aids have been developed and are used extensively. These include smartphones, 

CAD and CNC in engineering, as well as sophisticated statistical analyses done by SPSS 

computer software in the social sciences. All of these software programmes are like “black 
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boxes”, where the mathematics is hidden and unknown to most users (Black & Wiliam, 1998; 

Guidotti et al., 2019; Williams & Wake, 2007).   

Moreover, as educational software has become more sophisticated, so has experimentation 

with its use as a teaching device with diverse groups of students. For example, Calder and 

Campbell (2014, 2016) studied how using technologies in real-life contexts was likely to 

interest and motivate young people. Their study reported on two aspects: Māori and Pasifika 

students, and reluctant learners. Both aspects of the study reported enhanced learning 

involvement and attainment. Thus, electronic calculating technology may be an effective 

means of promoting learning for calculating, problem solving, and developing understanding 

in mechanical engineering trades contexts.  

However, while modern calculation technology provides release from time-consuming 

mental calculation tasks that increase the likelihood of errors, it is not a substitute for mental 

calculation skills, especially in some vocations. On that account, from a STEM perspective, 

“We must be able to do mental calculations in the absence of pencil and paper; further, we 

must be able to calculate with pencil and paper, in the absence of a calculator” (Ochkov, 

2020, p. xvii). An Australian study reveals that paramedics need to do mental calculations in 

emergency situations with perfect accuracy and without the use of calculators (Bell et al., 

2020). Such skills are pertinent to mechanical engineering trades workplaces where mental 

calculations need to be done more quickly than can be done on calculators and where 

sometimes calculators may not be available. Therefore, there is a place for both modern 

calculation technology and profound understanding of fundamental mathematics (PUFM) 

with its emphasis on mental skills. Calculator and non-calculator components are needed in 

both school and workplace contexts (Dabell, 2018; Daher & Baya'a, 2009; Ma & Kessel, 

2001; Roble, Tandog, & Maglipong, 2017; Tandog, Roble, Maglipong, & Luna, 2019). The 

roles that both mental skills and modern calculation technology play in the mechanical 

engineering trades is currently unknown. 

A proposal for resolving the school and workplace mathematics tension and the difficulties it 

poses for many people has been made by Grootenboer, Edwards-Groves, and Kemmis 

(2019), who suggest that the school mathematics curriculum should be reconceptualised and 

its primacy located in practices. Their argument is framed around the core purpose of 

education; to help people “live well in a world worth living in” (p. 1). Thus Grootenboer et al. 

(2019, p. 1) state that:  

Living well and learning about what this means is typically guided by 

epistemologically based curricula, and conversely, school curricula determine the 

substance of education. We argue that this understanding of education is too narrow, 

and as a consequence, it severs the relationship between knowing and practising. We 

propose that a curriculum of mathematical practices is required for human flourishing, 

where the focus is on mathematical practices rather than predominantly on knowledge.  

While the authors express the hope that a practice approach to mathematics curriculum might 

better equip individuals and societies to respond to conditions that disrupt our everyday 



Chapter 2 Literature Review 

30 

 

circumstances, such as Covid pandemics, it might also help apprentices and tradespersons 

adjust to new situations as they occur in workplaces.  

2.2.2. The mechanical engineering trades mathematics topics 

Investigating the requisite official government documents is an initial step in identifying the 

mathematics and numeracy requirements for mechanical engineering trades. These are 

contained in the NZQA Unit Standard US 21905 Engineering core skills - Demonstrate 

knowledge of trade calculations and units for mechanical engineering trades. The Unit 

Standard is currently delivered by Competenz through eLearning. Competenz is an official 

organisation that develops and assesses national trades qualifications throughout New 

Zealand. The summary below outlines the mathematics topics and their contextual 

applications to be studied to complete engineering trades qualifications (see Appendix C): 

• Arithmetic and algebraic operations for mechanical engineering 

• Trigonometry 

• Tables and graphs in mechanical engineering 

• Define and apply quantities and units of measure in a mechanical engineering 

environment   

These topics closely parallel the New Zealand secondary school mathematics NCEA 

Achievement Standards AS 91026 and AS 91030. Similarly, the mechanics requirements for 

mechanical engineering trades overlap with the Level 2 Physics Achievement Standard 2.4: 

AS 91171 Demonstrate understanding of mechanics, which contains the topics of motion, 

force, and momentum and energy. Indeed, many of the applications of mathematics in 

mechanical engineering are motivated by physics contexts, which have conceptual difficulties 

for students at least as challenging as those in mathematics. Therefore, physics and 

mechanics are part of the apprentices’ mathematical learning because they provide contexts 

to apply mathematics in the mechanical engineering trades (Ates & Cataloglua, 2007; 

McDermott, 1984; Saiman Mat & Puji Wahyuningsih, 2017).  

2.2.3. Assessment of mechanical engineering trades mathematics  

The assessment of mathematics for mechanical engineering tradespersons in New Zealand 

includes numeracy and mathematics skills, such as calculating and understanding decimal 

place value and practical problems related to engineering contexts. However, the assessment 

regime has limitations. Although it can be sat online, the assessment format is nevertheless 

equivalent to traditional pencil-and-paper testing because there is no attempt to integrate the 

mathematical skills with the practical skills needed in the engineering workplace. The 

assessment does not guarantee the successful application of numeracy skills in daily 

engineering practice. The lack of satisfactory numeracy skills among apprentices has been 

shown to be a major source of concern and frustration to mechanical engineering trades’ 

educators (K. Mills, 2011, 2012; K. Mills & Lomas, 2013). The assessment also does not 
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include higher-order skills or the ability to use mathematical skills in a team situation. 

Moreover, US 21905 is a one-off performance in an assessment that is recognised 

permanently and does not ever need to be updated.  

While there appears to be no academic literature regarding the assessment of US 21905, there 

is substantial literature critiquing the efficacy of assessment systems in general. For example, 

the PISA studies of fifteen-year-olds have been criticised for assessing only pencil-and-paper 

skills and lacking assessment of important societal skills such as entrepreneurship (Duru-

Bellat, 2011; Fuhrmann & Beckmann-Dierkes, 2011; Helsingin Sanoma, 2007; Kreiner, 

2013; Kreiner & Christensen, 2014; K. Mills, 2014; Stewart, 2013; Zhao & Meyer, 2013).  

One attempt to make assessment more realistic and related to actual workplace conditions is 

provided by nursing. Among the vocations that are high users of mathematics (see Section 

1.8), nursing and paramedicine seem similar to mechanical engineering trades both in the 

breadth of the mathematical content required and in their multi-faceted applications, 

including stringent requirements for accuracy (Bell et al., 2020). A study of how various 

aspects of mathematical education might be brought together and carried out in the nursing 

workplace is described in ‘Meeting the mathematical demands of the safety-critical 

workplace: Medication dosage calculation problem-solving for nursing’ (Coben & Weeks, 

2014). They devised a model for competence in medication dosage calculation problem 

solving (see Figure 3). The model recognises three competencies regarding medication 

dosage calculation problem solving - conceptual, calculation, and technical measurement 

(Coben & Weeks, 2016; Weeks, Clochesy, Hutton, & Moseley, 2013; Weeks, Hutton, Coben, 

Clochesy, & Pontin, 2013). Conceptual competence involves the correct interpretation of the 

medication dosage calculation problem and accurately setting up dosage and rate equations. 

Calculation competence involves the correct calculation of accurate numerical values for the 

medication dose and its rate of administration. Technical measurement competence involves 

the selection of appropriate measurement vehicles and the accurate measurement of the dose 

and rate of administration. Satisfactory performance in all three competencies is necessary 

when considering safety. Given the importance of conceptual understanding, calculation 

accuracy and the use of physical tools and instruments in engineering, it is possible that a 

similar model for satisfactory calculation practice could well serve the needs of the 

mechanical engineering trades (see Section 7.4.1.2).  

The apparently widely accepted view in the numeracy literature of the desirability of focusing 

on a wider range of skills than just calculations calls for assessing skills in their practical 

context (Anthony, 2020; FitzSimons et al., 2005). A more holistic picture of students’ 

abilities is required that could include actively taking part in cooperative activities in small 

groups involving problem solving, and employing metacognitive skills such as the ability to 

be creative, critical and self-reflective in situations requiring the use of mathematics. 

Moreover, such a system would be compatible with the aims of promoting equity and social 

justice and allowing individuals to be empowered.  
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Figure 3 Competence in medication dosage calculation problem-solving 

Note. Figure used with permission from Springer Nature (Coben & Weeks, 2014, p. 262)2 

2.2.4. Section summary 

Analysis of official government documents showed that school mathematics and numeracy 

topics related well to those required in the mechanical engineering trades. However, 

apprentices needed to make an adjustment to meet workplace mathematics and numeracy 

requirements. In addition, the mathematics assessment systems in engineering situations 

relied on pencil-and-paper tests, without recourse to practical, higher-order, social and 

physical considerations. Hence, there is a need to integrate mathematics and numeracy skills 

with their wider mechanical engineering trades contexts.  

 
2 Permission applied for but not yet received 
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2.3. Ancillary and higher-order skills 

This section continues the review of the literature about the mathematics knowledge and 

skills that are required in the mechanical engineering trades. In Section 2.1, the societal 

effects of mathematics and numeracy were considered, and in Section 2.2 there was a focus 

on school mathematics and physics curricula relating to mechanical engineering trades. In 

this section, the literature concerning ancillary and higher-order skills is reviewed for its 

connections to the relevance and application of mathematical skills in the mechanical 

engineering trades. Higher-order skills are important in the mechanical engineering trades 

because they are needed to analyse complex information, establish connections between 

ideas, and solve problems. Therefore, they go beyond basic knowledge which simply recalls 

facts, and are connected closely to conceptual understanding and critical thinking, creativity 

and extended reasoning. Problem solving with its associated skills of creativity and extended 

reasoning is especially important in the mechanical engineering trades.  

2.3.1. Conceptual understanding 

This section deals with a fundamental issue in mechanical engineering: the role of conceptual 

understanding (J. Mills & Treagust, 2003; Sobek & Jain, 2004). While many mechanical 

engineering tasks require the application of standard routine procedures, there are also the 

needs for: 

• flexible thinking to make multiple decisions, such as what mathematics to use, and 

how to access the necessary information  

• choosing an appropriate method to calculate a numerical answer 

• interpreting the answer, and applying the answer in the context of the problem with an 

appropriate number of decimal places  

• communicating the results to other people  

(Coben, 2000; OECD, 2012b; Star, Rittle-Johnson, Durkin, Shero, & Sommer, 2020).  

Fundamental to the successful completion of these tasks is the issue of conceptual 

understanding of the numeracy and mathematical context, and also of the subtle complexities 

of the engineering ethos, which Gainsburg (2007) refers to variously as the engineering 

disposition, using engineering judgment, and having an attitude of “skeptical reverence” (p. 

477).  

Concerns about numeracy issues in the workplace often focus on the inability of people to 

perform particular numeracy procedures. This sometimes ignores the important issue of the 

tension between school numeracy and real life (Roth, 2010; Steen, 1990, 2001). For example, 

the use of averages in the workplace is often more complicated than the simple average at 

school, as with Wake’s (2014) apprentice locomotive drivers who tried to find train stopping 

distances using gradients of the railway tracks. The apprentices needed to consider the 
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different lengths of each slope of railway track and therefore needed to apply the concept of 

weighted averages; something they had not encountered at school. Procedural knowledge 

alone was not sufficient for the apprentices to find the stopping distances, and success in 

solving the problem could not be addressed until the conceptual framework had first been 

established. Therefore, the apprentices required all three competencies - conceptual, 

calculation and technical measurement - to become successful locomotive drivers (see Coben 

& Weeks’s (2014) model depicted earlier in Figure 3).  

The example of Wake’s locomotive drivers illustrates three important workplace issues with 

numeracy: procedural knowledge, conceptual understanding, and the different ways of 

applying numeracy in the workplace. While views emerging from the workplace tend to 

focus on the lack of numeracy skills and ignorance of numeracy procedures, the lack of 

conceptual understanding is often a more fundamental cause (Engelbrecht, Bergsten, & 

Kågesten, 2009; Engelbrecht et al., 2017). Some authors suggest that the development of 

conceptual understanding and procedural knowledge are an iterative process (Devlin, 2007; 

Rittle-Johnson & Schneider, 2014; Rittle-Johnson, Siegler, & Alibali, 2001). This runs 

counter to some on-the-job training (OJT) approaches where it is assumed that the apprentice 

can be shown “how to do” the mathematics and learns solely by observing and then repeating 

the procedure. It seems then that procedural knowledge alone can only go so far before 

conceptual difficulties prevent further progress in learning.  

2.3.2. The nature of problem solving and creativity in engineering 

Having identified problem solving as a key theme in mathematics curricula and in other 

important areas of our lives (see Section 2.1 and Section 2.2), this section discusses the nature 

of problem solving and creativity, how they interact, and the fundamental role each plays in 

mechanical engineering trades workplaces.  

First, the importance of problem solving is now recognised by the OECD in PISA and 

PIAAC surveys, where the initial focus is on the types of problems people encounter when 

using information and communication technologies, such as obtaining information by 

searching websites (Ministry of Education, 2017; OECD, 2016a, 2019a, 2019c; Redmer & 

Dannath, 2020). The numeracy practices in the workplace that PIAAC focuses on include: 

reading financial statements, diagrams, maps or schematics; calculating costs or budgets; 

using and calculating fractions and percentages; using calculators; preparing charts, graphs or 

tables, and using simple algebra or formulae. New Zealand is consistently ranked in the top 

four placings alongside Australia, Finland and the United States as countries with the highest 

frequencies of social engagements at work, problem solving at work, and using numeracy at 

work (Jonas, 2018; OECD, 2019c).  

Second, according to Pillaya (1998), employers in a wide variety of vocations now require 

higher-order thinking skills in all their employees to enable them to cope with the changing 

demands of the workplace. Regarding professional mechanical engineering, there is 

widespread agreement in the literature that problem solving and creativity skills are 

necessary. This perception is expressed in statements like: “solving open-ended problems is 
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arguably the cornerstone of the engineering endeavour” (Sobek & Jain, 2004, p. 1), and 

engineers are “hired, retained, and rewarded for solving problems” (Jonassen, Strobel, & Lee, 

2013, p. 139). On the other hand, regarding trades engineering, the literature on problem 

solving and creativity is sparse. However, in a previous study one toolmaker told me that you 

do not know “what’s coming in the door next … [and there’s] no formula that pops into your 

brain straight away… [so you have to] sit down and think about a way of doing it ... [you 

have to find] a method” (K. Mills, 2011, p. 46). Therefore, problem solving in an engineering 

context incorporates many key cognitive, cross-disciplinary and collaborative elements. 

Hence, “workplace problems often have conflicting goals, multiple solution methods, non-

engineering success standards, non-engineering constraints, unanticipated problems, 

distributed knowledge, and collaborative activity that rely on multiple forms of problem 

representation” (Jonassen et al., 2013, p. 148). Taken as a whole, scholars are in agreement 

that the engineering community views problem-solving skills as vital to their work. 

Therefore, given its importance, the next section focuses on the development of problem 

solving (see Section 2.4).  

Three important thinkers, de Bono, Elkjaer and Pólya, have advocated problem solving and 

creative thinking to be more broadly included in mathematics education. De Bono (1969) did 

this to counter what he saw as creative and independent thinking being stifled by the formal 

education system (Elkjaer, 2018). While Pólya’s (1945) examples sometimes seem more in 

keeping with more abstract contexts favoured by mathematicians, some engineers have found 

his thinking to have important practical applications (e.g., Horowitz, 1999). Pólya 

commented on the controversial question of how far removed from the student’s current life 

experience the problem had to be for it to be considered a discovery, as opposed to recalling 

and applying some similar problem the student had seen previously or had been solved by 

someone else. In a widely acclaimed classic, How to solve it: A new aspect of mathematical 

method, Pólya (1945) wrote that if you find the solution to some problem by your own 

means, then you may “experience the tension and enjoy the triumph of discovery” (p. v). 

Therefore, it is not the originality of the solution to a problem that is important, but rather, the 

ongoing inculcation of a discovery and problem-solving mentality in students and workers. 

This finding in turn carries the mindset to powerfully motivate learning and innovation in the 

workplace.  

Encouragement to build up a problem-solving attitude is found in PISA, where students are to 

“analyse, reason and communicate ideas effectively as they pose, formulate, solve and 

interpret mathematical problems” (OECD, 2009b, p. 105). Such exercises in discovery are 

intended to build up greater insight and a “fruitful set of techniques” (Confrey & Kazak, 

2006, p. 307). The New Zealand Curriculum recognises this but adds extra recognition of the 

influence of a creativity component to problem solving. Therefore, it calls for thinking to 

involve “creative, critical, and metacognitive processes to make sense of information, 

experiences and ideas” (Ministry of Education, 2007, p. 12).  

In engineering and in other contexts, the path to a solution may have many imaginative and 

ingenious methods of solution, some of which may be quite radical. These solutions arise 
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from many individuals sitting down and thinking about ways of doing things or finding their 

own method, as with the toolmaker above, and ending up with multiple acceptable 

possibilities (K. Mills, 2011). However, “with learning and practice, some activities that were 

initially experienced as problem-solving may become routine activities” (OECD, 2009a, p. 

7). What is unfamiliar, and therefore counts as problem solving for one engineer, may be 

routine for another engineer who has seen the problem before (or one like it) and who may 

perhaps have memorised a way to solve it. Therefore, there is a conflict between genuine 

problem solving and tricks of the trade. With experience, engineers develop a repertoire of 

techniques, or even more powerfully, classes of techniques, which they can quickly draw on 

and decide which approach might best lead to a solution. Ideally, the test for genuine 

creativity and problem solving should involve the engineer being confronted by “cross-

disciplinary situations where the solution path is not immediately obvious” (Kolovou, van 

den Heuvel-Panhuizen, & Bakker, 2009, p. 35). 

Perhaps paradoxically, in an engineering context, when problem solving becomes solving a 

problem, or vice versa, there is a transition between levels of thinking and therefore a 

verticalisation process, which is not a prime consideration for engineers (see Section 2.4.3). 

Earlier, the engineer may have needed higher-order thinking skills to think through a solution 

but now the development and memorisation through experience have made the problem 

instrumental, even if full conceptual understanding had not been attained (see Section 2.4.2). 

This experience can now be taught to others to add to their repertoire of experiences, and as 

long as they can recall the appropriate method of solution from their repertoire, they too need 

no more than instrumental knowledge to solve such problems in the future. However, there is 

a difficulty here in determining which process is taking place - instrumental thinking or 

higher-order thinking. Without questioning the engineer in detail, it cannot be ascertained 

which approach they have used (Ernest, 1989; Kolovou et al., 2009). Therefore, an engineer 

who successfully solves a problem may be young, inexperienced, but very creative. 

Alternatively, the engineer may be speaking from many years of experience. Without further 

questioning, it is simply not possible to tell.  

Regarding engineering contexts, there are debates about how some engineers acquire 

problem-solving and creative abilities and how they can be taught to others. The work of 

Pólya and de Bono was mentioned in connection with this (see also Section 2.4.4). While de 

Bono’s writings and ideas on lateral thinking are widely acknowledged and applied, for 

example, in the business world (de Bono, 2013), Pólya’s influence has tended to be less well 

known to the general public. This may perhaps be a result of Pólya’s examples often 

appearing obviously mathematical in both context and notation, and reminiscent of school 

mathematics textbook problems of an earlier age (Pólya, 1945). However, in more recent 

times, creativity has become acknowledged in engineering with direct links made to the 

writings of de Bono and Pólya (Adams, Stefan, Picton, & Demian, 2008; M. Othman & 

Bamasood, 2021; Sharp, 1991).  

Similarly, in a PhD thesis on creative problem-solving in professional engineering design, 

Horowitz (1999) acknowledges both Pólya and de Bono as being crucial to the development 
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of problem solving. In particular, according to Horowitz, Pólya produced pioneering work 

when he offered his “four-stage process for solving mathematical problems and puzzles: 

understanding the problem; devising a plan; carrying out the plan, and, finally looking back” 

(1999, p. 5). In addition, Pólya demonstrated that this process could be applied in areas 

previously thought not to be amenable to methodical treatment. Horowitz also acknowledged 

the work of de Bono in lateral thinking, distinguishing between routine thinking where 

thoughts are allowed to drift in existing channels and creative thinking where thoughts are 

directed or when they accidentally drift laterally across channels. When drifting across 

channels occurs, it results in what is frequently called “surprising ideas” (Horowitz, 1999, p. 

15). Therefore, often quite abstract ideas eventually come to find acceptance in practical 

activity.  

Regarding stimulating creativity among engineers, stating the problem is easier than defining 

possible solutions. Therefore, Horowitz (1999) states that  

engineers are expected to be creative, but most of them seldom are. The fact that 

innovative engineering products appear almost on a daily basis is due to the fact that 

companies employ very few highly creative engineers and inventors that ‘do the 

thinking’ while the others are occupied in routine engineering (p. 11) 

There have been formal attempts to teach problem solving to engineers, as there have been in 

schools. However, workplace engineering problems differ greatly from the kinds of problems 

that engineering students most often solve in the classroom, so learning to solve classroom 

problems does not necessarily prepare engineering students to solve workplace problems 

(Adams et al., 2008; Jonassen et al., 2013; Sharp, 1991). This is one further confirmation of 

the school and workplace tension. Similarly, attempts have been made to systematise the 

problem-solving process. One such system comprises six steps: (1) Identification; (2) 

Synthesis; (3) Analysis; (4) Application; (5) Comprehension; and (6) Solution. Steps 2 to 5 

are “Optional Iterations” (Holtzapple & Reece, 2008, p. 88), meaning that the problem-

solving process can be interrupted and its strategies altered if a person finds the solution not 

suited to the context of their problem, or they wish to consider other possibilities or models. 

Reductionism is also identified as being important, where the problem is split into separate 

parts that will be integrated holistically into the final solution, but which can be dealt with 

separately and independently in finding the solution.  

In many vocations in more recent times, especially in the mechanical engineering trades, 

problem solving requires a large range of tools and artefacts. These include information 

gathering, design, and calculation resources, including computer technology, such as 

spreadsheets, and design software, such as CAD and CNC. The technology is constantly 

being developed, requiring the professional development of workers (Bzymek, Vahidi, & 

Spottiswoode, 2007; Engineering Technology Group, 2018). However, as remarked earlier in 

this section, an essential ingredient of problem solving is that it is impossible to achieve the 

goal through routine actions alone. If a person has to often solve the same problem or a 

similar type of problem, then it becomes part of their stock of routine activities, perhaps even 

a trick of the trade. Therefore, the boundary line between problem solving and routine 
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activity becomes blurred, and the satisfaction disappears that might otherwise have resulted 

from challenging novel contexts requiring mental stimulation and higher-order thinking.   

2.3.3. Learning problem solving and creativity in engineering trades contexts 

Higher-order skills such as problem solving and creativity are closely connected with 

knowledge and learning as important intellectual tools in mechanical engineering trades 

contexts. Therefore, knowledge can be regarded as a tool that combines data and information, 

expert opinion, skills, and experience to aid decision making. Learning, however, refers to the 

way knowledge and understanding are generated, so that a learning community is “skilled at 

identifying, creating, storing, sharing, and using knowledge, and then modifying its behaviour 

to reflect new knowledge” (Serrat, 2010, p. 1059). Therefore, increasing knowledge levels in 

one area may have the effect of increasing the ability to learn in other areas, especially when 

problem-solving is involved. This may partly explain why mature engineers are so adamant 

about the need to know certain facts which they regard as precursors to conceptual 

understanding.  

2.3.4. Science, Technology, Engineering and Mathematics (STEM) 

The recognition of the need for higher-order thinking skills in the workplace has influenced 

school mathematics education programmes. For example, Anthony and Walshaw (2009a) 

write of effective pedagogical practices intended to enhance mathematics learning outcomes 

for a diverse range of students that will help them in their individual lives. The STEM 

programmes focus on developing higher-order thinking skills of students, especially in their 

later years of secondary schooling. STEM has resulted from a debate over falling student 

numbers in science, technology, engineering and mathematics subject areas, particularly of 

females (Attard, Grootenboer, Attard, & Laird, 2020; Klymchuk & Thomas, 2020; Osman, 

2020; Owen, 2018; Struthers & Strachan, 2019). However, a contrary view about the 

shortage has been put forward by Xue and Larson (2015), who claim that there is no overall 

shortage, but rather an oversupply of graduates in academia and an undersupply entering 

industry.   

STEM emphasizes higher-order thinking skills through its use of concepts and procedures 

obtained from mathematics and science in problem-solving situations to promote creativity in 

technological design processes. Its approach also incorporates social elements of teamwork in 

developing creativity (Attard et al., 2020). However, while there is an extensive literature 

regarding STEM and future professional engineers, STEM is also aimed at future 

tradespersons for which the literature appears to be much less. Some authors have introduced 

objectives into STEM outside of STEM’s academic area. For example, Bennison and Geiger 

(2020) believe numeracy across the curriculum may integrate mathematical and scientific 

concepts, while Kohen and Orenstein (2021) believe STEM’s use of authentic real-world 

problems may reflect the applied nature of mathematics which is not prevalent in formal 

secondary school settings. Others have added other components, such as improving the 

personal scientific literacy of citizens, enhancing international economic competitiveness and 

links with business, and laying an essential foundation for responsible citizenship, equity and 
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social justice, including the ethical custodianship of our planet (Maass et al., 2019). The 

primary viewpoint of this study which focuses on engineering trades, therefore aligns well 

with STEM which also supports a broad range of objectives, such as the principles of 

dialogue and communities of inquiry, and interconnections with other disciplines, especially 

science (Anthony, 2020; Attard, Edwards-Groves, & Grootenboer, 2018; Maass & Engeln, 

2019; Maass et al., 2019).  

STEM’s emphasis on both technological and ancillary skills in the workplace also aligns well 

with this study. In a study by Anderson et al. (2020), engineers were found to generally value 

solving problems, learning, and working in a team more than other aspects of their jobs. They 

also saw clear communication as the most important skill. Similarly, Li and Schoenfeld 

(2019) emphasized the integrative and problem-solving side of engineering versus 

engineering as a mathematical discipline, and Fan and Yu (2017) concurred with the 

importance of the integration of concepts and higher-order skills, especially in engineering 

design. They claimed there is a disconnect between school mathematics and school 

knowledge, yet both conceptual understanding and procedural knowledge were necessary.  

STEM programmes have also been found to be effective in promoting student interest in 

following a technological career (Roberts et al., 2018). With regard to the effectiveness of the 

STEM programme, in a meta-analysis of studies Zeng, Yao, Gu, and Przybylski (2018) claim 

to have demonstrated the effectiveness of STEM’s teaching methods over other methods in 

improving higher-order thinking and cognitive skills.  

2.3.5. Section summary 

This section has focused on conceptual understanding, problem solving and creativity in real-

life situations such as meeting the non-routine demands of the workplace. Together, 

conceptual understanding, problem solving and creativity are essential and mutually 

interacting elements in technological workplaces. Horowitz applied the ideas of de Bono and 

Pólya to engineering situations where problem solving requires changing levels of thinking. 

The advocacy and encouragement to study STEM subjects in schools is one attempt to solve 

a perceived shortage of school students studying science, technology, engineering and 

mathematics subjects. It uses teaching approaches that align with problem solving and 

creativity to provide training in engineering skills that is integrated with mathematics and 

science perspectives. STEM also emphasizes the interconnectivity between the various 

science, technology, engineering and mathematics specialist teams which is consistent with 

the ancillary skills, such as communication, which are a focus throughout this study. 

Therefore, STEM principles and programmes are likely to have implications for the use of 

mathematics in the mechanical engineering trades. 

2.4. How mathematics is learned and taught 

This section reviews the literature about how mathematics knowledge and skills are learned 

in the mechanical engineering trades. The discussion of STEM in Section 2.3.4 prefigured the 

important question of how mathematics is learned and taught in the mechanical engineering 
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trades context. In this section, I discuss the historical, philosophical and political influences 

and debates on school and workplace mathematics education, and the theoretical and 

practical contributions made by Ernest, Freudenthal, Realistic Mathematics Education, and 

authentic mathematics to these debates. I also consider the implications for pedagogy, formal 

and informal learning, and the complexity of workplace mathematics.  

2.4.1. Historical, philosophical and political issues 

To understand the current situation regarding mathematics in schools and workplaces it is 

necessary to investigate a series of debates throughout the 1990s known as the Maths Wars 

(Schoenfeld, 2004). These wars were a series of debates over such issues as which 

mathematics pedagogy would be most effective in equipping young people to meet modern 

workplace and social challenges, the perceived mutual exclusiveness of mathematical 

excellence versus social equity, and the place of mathematics as a social and political 

democratizing force versus a vehicle for maintaining the status quo (Schoenfeld, 2004). One 

social equity issue may have been circumvented to some extent in New Zealand during the 

late 1960s with the abolition of core mathematics, which prevented students taking technical 

and other non-academic courses in secondary schools from studying algebra, geometry and 

trigonometry, and hence made it difficult for them to change from trades to professional 

vocations (K. Mills, 2011). From the late 1960s, every secondary student studied full 

mathematics while they were at school, thereby removing one source of disempowerment and 

discrimination against many students who had earlier opted to enter technical courses in 

secondary school, including many future mechanical engineering trades apprentices (Ernest, 

2002).  

From a pedagogical perspective, the ongoing debates over several decades were between 

traditionalists who feared that reform-oriented curricula would “undermine classical 

mathematical values”, and reformers who wanted curricula that reflected “a deeper, richer 

view of mathematics than the traditional curriculum” (Schoenfeld, 2004, p. 253). This 

included the need to consider and incorporate into mathematics education curricula other 

issues, such as problem solving, group cooperation, and the importance of context. The 

debates were also the result of a perceived need for modernisation to meet the future needs of 

the workplace as “technologies [became] more sophisticated, and the demands of the 

workplace … more complex” (Ministry of Education, 2007, p. 4).  

The faults of traditionalist pedagogical approaches eventually led to questions being asked 

about the usefulness of core mathematics programmes for New Zealand secondary school 

technical students. For example, my father received a traditionalist mathematics education in 

the late 1930s, where students learned formulae and algorithms, and how to apply them to 

specific contexts. However, they were unable to transfer their thinking beyond that context, 

sometimes not even to closely related contexts, let alone to completely different contexts, 

which Brookhart (2010) regards as a higher-order skill. Requests from students for 

explanations were almost always met with the comment, “I’ll show you again”, which 

revealed that the student wanted to understand the concepts, but instead received a repetition 



Chapter 2 Literature Review 

41 

 

of rules and procedures without understanding, or “rules without reasons” (Skemp, 2006, p. 

89) (see Section 2.4.2).  

The reformers who wanted a deeper, richer mathematics curriculum were relatively few in 

number, but very enthusiastic for change. Therefore, the much larger middle ground tended to 

be masked. This group was eclectic in their philosophy and practice, acknowledged the 

strengths, limitations and usefulness of each perspective, and sought to employ the best of 

both according to the particular context of the teaching situation (Schoenfeld, 2004; Sfard, 

1998).  

There is a parallel here with engineers’ eclectic approaches to mathematics and problem 

solving. Acknowledging the usefulness and limitations of a perspective is an important aspect 

of engineering, where pragmatic considerations quickly lead to the replacement of one 

perspective (or mathematical model) by another, simply because the model does not 

adequately describe the physical reality of their work (Gainsburg, 2006, 2007, 2013).  

The middle-ground approach advocated by Sfard (1998) involved the acceptance of a 

“patchwork of metaphors rather than a unified, homogeneous theory of learning” (p. 12) - 

Sfard characterises these metaphors as “the most primitive … objects of analysis” (p. 4) as 

they often:  

cross the borders between the spontaneous and the scientific, between the intuitive and 

the formal … [and when] … conveyed through language from one domain to another, 

enable conceptual osmosis between everyday and scientific discourses, letting our 

primary intuition shape scientific ideas and the formal conceptions feed back into the 

intuition. (p. 4)  

Philosophical considerations and the development of grand, unified theories were also part 

and parcel of the maths wars debates (Goenner, 2004). However, grand theories are 

incompatible with metaphors; adopting metaphors tends to create dualisms in thinking. Sfard 

(1998) found a precedent for the contradiction between grand theories and dualisms in the 

well-known wave and particle theories of light. In some situations, light appears to be 

particles (or photons) and in others, it appears to be waves. Trying to produce a single, grand 

theory for light has proven to be fruitless, and a dualism has been created. Einstein and Infeld 

(1938) described the dualism this way 

It seems as though we must use sometimes the one theory and sometimes the other, 

while at times we may use either. We are faced with a new kind of difficulty. We have 

two contradictory pictures of reality; separately neither of them fully explains the 

phenomena of light, but together they do. (pp. 262-263) 

Therefore, there appears to be no answer to the question of whether a photon of light is a 

particle or a wave. The resulting conundrum has never been resolved one way or the other 

and is known as the wave-particle duality of light.  
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Dualities are also shown in the writings of Piaget and Vygotsky, two key theorists who 

analysed “the growth of knowledge in the process of learning … in terms of concept 

development” (Sfard, 1998, p. 5). Both processes are important in the mechanical engineering 

trades. Sfard (1998) describes their perspectives in terms of the Acquisitionist Metaphor 

(AM), which stresses the processes that take place in the individual mind, and the 

Participationist Metaphor (PM), which focuses on the relationships between the individual 

and others. The PM model is shown strongly among “structural engineers [who] exemplify 

that people make subjective decisions about how and what mathematics to use with socially 

constructive aims, for example, to design buildings that maximize safety and cost” 

(Gainsburg, 2007, p. 503). The metaphor chosen to describe any given case, therefore, 

depends mainly on its context. Sfard (1998) states that if:  

one's purpose is to build a computer program that would simulate human behaviour, 

then the acquisition metaphor is likely to be chosen as one that brings forward the issue 

of representations - something that has to be constructed and quite literally put into a 

computer. If, on the other hand, one is concerned with educational issues - such as the 

mechanisms that enable successful learning or make its failure persistent, then the 

participational approach may be more helpful as one that defies the traditional 

distinction between cognition and affect, brings social key elements to the fore, and 

thus deals with an incomparably wider range of possibly relevant aspects (p. 11). 

(emphasis in the original)  

Sfard’s metaphors of acquisition and participation can both be identified in workplaces, 

including mechanical engineering trades. Recognition of both the conceptual understanding 

of individuals and the corporate collaboration within the group are needed to explain different 

aspects of their activities, without unifying them into a single grand scheme. Despite this, 

strict rules may be laid down by communities of practice on what constitutes an acceptable or 

unacceptable departure from orthodoxy.  

To summarize, the pathway of apprentices to skilled tradespersons is influenced not only by 

engineering considerations but also by wider historical, philosophical and political issues. 

Debates over political issues like social equity and democratisation impinge on mathematics 

topics and the ways mathematics is used. Therefore, these political debates impact on young 

people’s opportunities to learn before beginning their apprenticeships. Regarding debates 

about pedagogy, traditionalists and reformers clashed over the philosophy of mathematics 

education, with reformers wanting broader and richer approaches to mathematics topics and 

the way they were taught. Their philosophical differences were reflected in the dualistic 

acquisitionist and participationist viewpoints, which in turn were linked to personal and 

social aspects of learning and to higher-order skills, such as problem solving.  

2.4.2. Influences of Ernest and Freudenthal’s views on mathematics education 

Understanding the ideas of two other thinkers, Paul Ernest and Hans Freudenthal, helps 

establish a bridge between school and workplace, and between traditional and modern ways 

of thinking about mathematics education. Ernest (1989) identifies three philosophies of 
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teaching mathematics in common use: instrumentalist; platonist; and problem solving, which 

he arranged hierarchically. Instrumentalism is viewed as an “accumulation of facts, rules and 

skills” for some external end; platonism as a “static but unified body of certain knowledge … 

[that is] discovered” rather than created; and problem solving as a “dynamic, continually 

expanding field of human creation and invention, a cultural product … a process of enquiry 

and coming to know, [and] not a finished product, for its results remain open to revision” 

(Ernest, 1989, n.p.). While the examples cited by Ernest and other advocates of problem 

solving may appear to have limited practicability, an appreciation of the transference role of 

problem-solving skills is important to understanding how mathematics is applied in the 

workplace (see Section 2.3).  

Hans Freudenthal is associated with Realistic Mathematics Education (RME); (van den 

Heuvel-Panhuizen, 2001), a theory of mathematics education where mathematics is regarded 

as a human activity. Real-world contexts are systematically investigated to promote 

progressive increases in conceptual understanding through both horizontal and vertical 

processes of mathematization (Zulkardi, 1999). The following list summarizes some of the 

main characteristics of RME (Treffers, 1987): 

• RME uses contexts derived from everyday situations familiar to students as starting 

points for learning 

• RME constructs models whose function is to form a bridge between the abstract and 

the real to help students learn mathematics at different levels of abstraction 

• Students are encouraged to create strategies to solve problems as a result of 

investigating the contexts 

• Social interaction between students and teachers is seen as an important means of 

assisting learning in mathematics 

• Connections are sought between mathematics and meaningful problems in other 

learning disciplines.    

The above discussion reveals parallels between the ideas of RME, the New Zealand 

Curriculum and workplace mathematics. One example of this is forming and then solving 

simultaneous equations, which is relevant to both trades and professional engineering 

contexts (Schukajlow, Kaiser, & Stillman, 2018). From a trades perspective, an NCEA Level 

1 Achievement Standard entitled ‘Apply linear algebra in solving problems’, students are to 

form and solve simultaneous equations in two unknowns; form and then use an appropriate 

mathematical model in a real-life context; apply a chain of logical reasoning to convey their 

mathematical ideas and conclusions to others, and explain the differences between graphical 

and algebraic approaches in problem-solving situations (NZQA, 2014). Such an approach 

also involves the important mechanical engineering skill of substituting in formulas (see 

Chapter 4 for both problem solving and mathematical models).   

In conclusion, Skemp, Ernest and Freudenthal all advocated philosophies and learning 

methods that were relevant to the workplace. Their focus on constructivist methods 

incorporated both the individual and social aspects of mathematics education. From a 
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workplace perspective, an important attribute of RME is the way attitudes of investigation 

and problem solving are engendered in apprentices and constitute a feature of both learning 

and practice in mechanical engineering trades workplaces (see Section 2.5). 

2.4.3. Realistic Mathematics Education and authentic mathematics 

Here I provide examples of two mathematics education philosophies with applications to the 

workplace. They both acknowledge the importance of context, problem-solving skills and 

conceptual understanding. They also both encourage students to participate actively in 

learning mathematics (Zakaria & Syamaun, 2017). However, they also differ; authentic 

mathematics employs strictly real-life contexts while RME places more emphasis on the 

abstract processes of verticalisation and generalisation of thinking (Confrey & Kazak, 2006). 

From an engineering perspective, interest tends to be focused more on horizontal 

investigations and experimentation, especially if this leads to an algorithm that engineers can 

use in their work. They are not interested usually when the verticalisation process reaches a 

level of abstraction beyond what they perceive to be useful. There is therefore a disjunction 

between the aims of school classrooms and practice in the workplace. Despite this, many 

apparently abstract (and ipso facto, impractical) ideas do eventually find practical application.  

In contrast to the above discussion of RME and verticalisation processes, authentic 

mathematics is applied most frequently in vocational mathematics because of its exclusive 

adherence to real-life settings. According to Roth (2010, p. 307), authentic problems “are 

messy, ill-defined and call for true problem-solving”. Authentic mathematics also requires a 

“fidelity [to] the task and the conditions under which the performance would normally occur” 

(Gulikers, Bastiaens, & Kirschner, 2004, p. 69). The intention is to imitate the work of 

professionals working in the field. Therefore, authentic mathematics includes conceptual 

understanding (Koh & Low, 2010; Lamberg, 2013; Vosniadou, 2006), mastery (Ranellucci et 

al., 2013), open-ended enquiry (Ben-Hur, 2006), thinking skills (Chappell & Killpatrick, 

2003), and critical thinking, reflection, communication and collaboration (Gulikers et al., 

2004).  

The PIAAC survey questions follow a similar philosophy and are therefore relevant to the 

present study (see Section 2.3.2). One PIAAC numeracy test item shows a thermometer and 

the instruction “Fill in the temperature shown on the thermometer in degrees Fahrenheit (ºF)” 

(OECD, 2012b, p. 41). This test item involves identifying an appropriate scale, reading the 

scale and then interpolating between values. These skills are relevant to mechanical 

engineering trades (see Section 2.2). The sample item has a Level 3 difficulty on a 1-to-5 

scale. However, like the PISA surveys, the PIAAC studies reflect performance only in the 

artificial situation of a formal test where the question and all the data are provided. They have 

nothing to say about workplace actualities where the worker must create the question, deal 

with several complex issues, and interact with other people to solve problems (see Section 

2.2).  

For many years, Competenz has used standard assessment items when assessing mathematics 

competency that are similar in style and structure to typical mathematics assessments found 
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in schools and the NCEA (Glaeser, 2006; Glaeser, Harrington, & Watson, 2006). While the 

details of the assessment under Competenz’s eLearning system for curriculum delivery and 

assessment remain unpublished, the assessment system continues to be limited to the 

objectives and scope of calculations as reflected in the title of US 21905. However, while 

mathematics assessment may be limited, it is quite possible that other objectives such as the 

ability to work in small groups and interpret numeric data in context are assessed in other 

Engineering Unit Standards.  

2.4.4. Implications for pedagogy - conceptual understanding and social learning 

Arguments over philosophy were accompanied by debates over the lack of emphasis in 

traditional mathematics teaching on the development of conceptual understanding and the 

social aspects of learning. Traditional approaches were often labelled “mechanistic” (van den 

Heuvel-Panhuizen, 2001, p. 1), but other classifications were also possible, such as 

instrumentalist, Platonist and problem solving (Ernest, 1991). The focus that PISA and the 

New Zealand Curriculum now place on problem solving and conceptual understanding is one 

outcome of these debates. Conceptual understanding is also important in mechanical 

engineering trades workplaces (see Sections 2.3.1 and 6.2.3) and is reflected in the increased 

emphasis placed on the way mathematics is now taught in schools (Agaç & Masal, 2017; 

Ministry of Education, 2007; Yuanita, Zulnaidi, & Zakaria, 2018).  

The advantages and disadvantages of conceptual and mechanistic approaches and the 

circumstances where one approach is to be preferred over the other have been set out by 

Skemp (2006). Skemp elucidated the differences between two types of understanding - 

relational understanding, which he describes as “knowing both what to do and why”, and 

instrumental understanding, or “rules without reasons” (Skemp, 2006, p. 89). While relational 

understanding was usually considered superior to instrumental understanding, Skemp found 

the following advantages for instrumental mathematics: it is usually “easier to understand”; 

the “rewards are more immediate, and more apparent”; “one can often get the right answer 

more quickly and reliably by instrumental thinking”; and it is “easier to remember” (Skemp, 

2006, p. 92). These considerations are important in workplace situations where calculations 

have to be repeated many times. Once the method for a calculation has been created the 

worker simply needs to check that the first calculation has been done correctly to feel 

confident that the method is reliable.  

The workplace considerations outlined above have influenced the reforms of mathematics 

teaching methods in schools, for example, problem solving and cooperating in small groups 

with “shared responsibilities … [and] the development of metacognitive skills, such as 

critical thinking, learning to learn, planning and problem-solving” (FitzSimons et al., 2005, p. 

4). The overall intention is to provide students with formal and informal mathematical 

experiences to work cooperatively together and to know “why [something is] true” (Steen, 

1990, p. 5). The outworking of problem solving in small groups in the mechanical 

engineering trades environment is currently unknown.  
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Those wanting to reform traditional mathematics teaching practices also placed an emphasis 

on the social aspects of learning. One approach was Collaborative Learning (CL), which 

according to Hakkarainen, Paavola, Kangas, and Seitamaa-Hakkarainen (2013, p. 20) takes 

place productively; 

… in mediated interaction between personal and collective activities. In many cases, 

individual agents may have a key role in knowledge-creation processes but are not, in 

fact, acting individually; their activities rely on a fertile ground provided by collective 

activities. Becoming a collaborative inquirer is a developmental process of its own. 

Therefore, while CL accepts the role of collective processes, it also highlights the 

contribution made by individuals who exhibit creative abilities. These individuals, however, 

are still reliant on the ideas of others, both for their initial inspiration and for ongoing 

critique, which follows the participationist ideas of Vygotsky (1930). Therefore, in an 

engineering trades community, CL views the solutions that are eventually adopted as a 

complex series of interactions between individuals participating together in collaborative 

problem solving, but with an expert engineer providing breakthroughs in thinking at crucial 

times.  

To summarize, the reforms of mathematics education in New Zealand and some other 

countries have been strongly influenced by philosophical considerations connected with the 

need for conceptual understanding (Ministry of Education, 2007). Developing conceptual 

understanding has been linked to problem solving and a broad range of social objectives. The 

need to prepare students for the workplace is recognised as an important factor in these 

reforms and social interaction in classrooms is now an important objective of mathematics 

learning in the New Zealand Curriculum.  

2.4.5. Formal and informal learning 

The process of learning begins with informal experiences. I begin with informal childhood 

experiences of mathematical and practical experiences in places such as the home, early 

childhood centres and kindergartens. I then discuss formal and informal learning in the 

workplace.  

2.4.5.1. Childhood learning experiences 

Formal mathematical learning begins in informal settings long before the child begins school. 

According to Anthony and Walshaw (2009b), children become immersed in mathematics 

learning experiences that begin at birth. At a very young age, they can demonstrate skills 

relevant to engineering contexts such as arithmetic, measurement and problem solving. This 

is regardless of their socioeconomic and cultural contexts. This view is supported by 

Downton, MacDonald, Cheeseman, Russo, and McChesney (2020) who state that children 

are often capable of mathematical thinking at a very young age. They perform mathematics 

holistically compared with school approaches that can become formalised, segmented and 

less richly involved in context.  
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The home cultural milieu can therefore be an important influence. A study of the home 

experiences of six children by Young-Loveridge (1988) of varying levels of socioeconomic 

status showed that children entered school with greatly different kinds of experiences and 

concepts of numbers. Moreover, exposure to domestic activities such as baking and shopping; 

playing games like Monopoly and dominoes; using calendars, clocks, and car speedometers; 

and handling calculators and money seemed to increase number skills. Therefore, a family 

culture of valuing and informally promoting numeracy skills, even with games, aided 

numeracy development in young children.  

In a kindergarten study of mathematics development in young children, children in an 

experimental group were taught mathematics according to the principles of RME, and a 

control group was taught mathematics following the basic pedagogical principles of 

curriculum for kindergarten students. The study found that the RME technique contributed 

significantly to the development of mathematical competence of young children, regardless 

of gender, age and nonverbal cognitive ability (Papadakis, Kalogiannakis, & Zaranis, 2016).  

In another study of kindergarten children, children in China and the United States were tested 

on a variety of mathematical tasks (Siegler & Yan, 2008). The problems involved arithmetic 

and numbers, or games like Snakes and Ladders. It was found that compared with the 

children in the United States the Chinese children were more exposed to mathematics 

problems at home and showed greater numerical knowledge for both arithmetic and number-

line estimation problems. The authors concluded that analysing everyday activities may 

induce concept formation and “understanding of cross-cultural, individual, developmental, 

and social-class differences in knowledge and learning” (Siegler & Yan, 2008, p. 762).  

To summarize, both informal and formal mathematical experiences are important for young 

children’s short-term intellectual growth. The nature of the mathematical skills and their 

conceptual understanding of them may be primitive, but emulation of others may lead to 

increasing procedural knowledge. The children may also be building up a store of historical 

experiences and knowledge and how the knowledge is used in context. Moreover, the 

attitudes instilled by the involvement with, and the approval of, others may be long-term and 

formative in their development.  

2.4.5.2. The workplace 

There is an ongoing debate about the relative merits of formal and informal teaching and 

learning methods in the workplace. On-the-job training is one example of informal learning, 

and this may consist of a variety of methods, such as observation followed by practicing, or 

discussions with mentors and peers. Formal teaching and learning may take the form of block 

courses held in classrooms or doing online assignments.  

There has been much research into formal methods, but less into informal methods. However, 

according to Clardy (2018), it is now widely accepted that informal learning plays a critical 

role in all workplace learning. Moreover, Clardy refers to a so-called “70% rule” (p. 153) that 

states informal learning dominates workplace learning at the expense of formal and other 
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methods. Clardy doubts the accuracy of this rule because its evidential basis is weak, and 

based on poor scholarship and inconsistent conceptualizations. Clardy’s views are reiterated 

by Jeong, Han, Lee, Sunalai, and Yoon (2018), who suggest that further research needs to be 

done to synthesise the current literature, particularly on how informal learning is to be 

conceptualised and measured, and the empirical identification of factors influencing informal 

learning in the workplace. Therefore, the relative efficacy of formal and informal teaching 

and learning methods remains an open question, including in the mechanical engineering 

trades.  

An important aspect of mechanical engineering trades involves knowledge and skills in 

measurement. Measurement skills can be learned both informally through involvement in 

practical scenarios and formally in classroom settings. However, in common with all 

scientific disciplines, measuring and machining are never perfect in engineering situations. 

Therefore, there is a need for tolerances, which for the purposes of this study, I shall define as 

the maximum allowable differences between the product specifications and the finished 

product (Kent, Bakker, Hoyles, & Noss, 2011; Velling, 2020). In addition, engineering 

contexts often involve small measurements which require a detailed conceptual 

understanding of numeracy, especially decimal place value and a feeling for the size of 

measurements (Tout et al., 2017). Since gaining this understanding requires school 

experience to be deepened, then recognising how tolerances express the differences between 

engineering trades contexts and specialisations is a key feature of mathematical learning.  

Tolerance is associated with other words such as precise, precision, fit, fits, margin, margins, 

within, limit, limits, thou, micron, microns, and the symbol ±. While tolerances refer to 

variation in the lengths in a finished product, they are not associated with human mistakes or 

blunders while calculating or measuring. They are “unavoidable imperfections of 

workmanship” (Oberg & Jones, 1964, p. 1337). There are many sources of variation, among 

which are tool wear and the impossibility of reading a scale to more than just a few decimal 

places. Temperature change between a cold morning and a warm afternoon can create crucial 

changes in lengths where fine, accurate work is required in machining. Therefore, machinist 

engineers must always be involved in a constant process of thinking, measuring, checking 

and resetting their machines to keep their work within the tolerances.  

Toolmakers and surgical instrument makers employ fine tolerances for much of their work 

and as a result have different perspectives on tolerances from other mechanical engineering 

trades branches, such as jig making and boiler making. Exceeding the acceptable tolerances 

could easily render an item useless, with serious consequences such as waste of time, 

materials, and money, and impact negatively on safety. In contrast, producing an item with 

unnecessarily fine tolerances also wastes time and money. The strategies engineers use in 

their work depend on the acceptable tolerances, the tools available, and the skill of the 

tradespersons (Marr & Hagston, 2007).  

Therefore, deciding on permissible tolerances becomes an important numeracy issue, 

involving careful consideration of decimal place value, and is a delicate blend of art and 

science. Also, the ways apprentices develop this skill and relate it to decimal place value is an 
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important aspect of their mathematical learning on the path to becoming a skilled 

tradesperson.  

2.4.6. Workplace mathematics is complex 

Regarding the way mathematics is learned and taught, it is important to understand how 

engineers (whether apprentices or skilled tradespersons) develop and apply mathematics in 

their work. This literature review has shown that modern mathematics learning is 

multifaceted, whether in the school or the workplace environment. Moreover, both school 

and mechanical engineering trades workplaces acknowledge that mechanical, rote-learned 

skills are insufficient to meet modern workplace demands. Therefore, modern demands for 

contextualised learning, problem solving, development of higher-order thinking skills and 

lateral thinking all require a wider view of mathematical education that incorporates a greater 

emphasis on understanding, language and communication in mathematics teaching and 

assessment. Problems in context have been carried over into the classroom from the real-life 

world of business and the workplace. However, the transition is not simple, since contexts in 

real life are often much more sophisticated than the classroom; the learner needs to rely less 

on understanding abstract concepts and more on finding mathematical solutions to problems 

that are open-ended, technology-dependent and multi-step in nature (FitzSimons et al., 2005; 

Steen, 2001; van der Kooij & Strässer, 2004).  

Therefore, mathematics education reflects a contradiction between two essential and not 

necessarily mutually exclusive needs - conceptual understanding and problems to be set in 

the real world. This is illustrated in the case of authentic mathematics (see Section 2.4.3), 

which seeks to ensure competence in mathematics in specific real contexts that are relevant 

to life and the workplace. With authentic mathematics, however, there is also an 

acknowledgement of the necessity to acquire understanding at the highest conceptual level.  

Therefore, there is a paradox. The distinction that was made once between theoretical 

mathematics and mathematics you can use has now largely disappeared. Workplace 

mathematics has now become an area of study in its own right and is no longer an adjunct to 

school mathematics. Moreover, the socio-cultural aspects of workplace philosophy and 

practice reflected in Sfard’s (1998) acquisition and participation metaphors are now part of 

the classroom. The result is that “learning a subject is now conceived of as a process of 

becoming a member of a community … with the learners being newcomers and potential 

reformers of the practice, [and] teachers [being] the preservers of its continuity” (Sfard, 1998, 

p. 6). Consequently, newcomers have the potential to influence the old-timers3, as well as 

vice versa. This may be relatively new for the classroom, yet engineers and other 

 
3 The terms expert and old-timer have been uplifted from the Situated Learning (SL) context of Lave and 

Wenger (1991). Both are understood subjectively in this thesis. Experienced engineers are jocularly referred to 

as old-timers by apprentices. Experts are simply those people respected in the community of practice for having 

high-level all-round engineering skills or perhaps advanced skills in one area, such as welding. There is no 

formal mathematics requirement to be an expert.  
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tradespersons have been using socio-constructivist methods of learning for centuries (Lave, 

1977, 1989; Lave & Wenger, 1991) (see Section 2.5).  

2.4.7. Section summary 

To summarize, traditional ways of teaching mathematics have often been based on a teacher 

speaking and writing, with minimal, if any, learner input or participation. Learners were 

asked to observe and then reproduce what the teacher, or apprentice instructor, had done. The 

problems were closed and predictable, and their solutions could sometimes be learned by 

rote. Student questions were often answered by the transmission approach with the teacher 

having to frequently repeat what had already been said.  

In contrast, more modern approaches focus on group learning with learner interaction and 

involve problem solving with open questions whose outcomes have not been predetermined. 

In this scenario, more than one mathematical outcome can be regarded as an acceptable 

solution. RME and authentic mathematics are two learning systems that attempt to put 

modern approaches into practice. RME does this by emulating real-world scenarios using 

verticalisation, by which it produces generalised mathematical abstraction. In contrast, 

authentic mathematics attempts to create scenarios as close as possible to real-world 

scenarios. Authentic mathematics is interested in horizontalisation, or finding practical 

applications of mathematics, without necessarily being interested in a verticalisation process.  

2.5. Social interaction and the workplace environment 

In the last section, I began reviewing the literature regarding how people learn the 

mathematics knowledge and skills used in the mechanical engineering trades. Social 

interaction was mentioned in the discussion there but now needs further analysis to 

understand more fully its influence in the mechanical engineering trades and other workplace 

contexts. Fortunately, there is a greater literature on social interaction than on other aspects of 

the trades workplace environment (FitzSimons, 2001; FitzSimons & Mlcek, 2004; 

FitzSimons et al., 2005; Zevenbergen, 2002). An important Nigerian study by Audu et al. 

(2014) found that constructivist methods were superior to earlier methods of learning 

problem-solving skills, and retention of knowledge of mechanical engineering apprentices. 

Therefore, in this section social interaction becomes the main focus, not only in learning but 

also in daily workplace practice involving decision making, communication and problem 

solving in mechanical engineering trades contexts.  

One theory that incorporates social interaction in learning is Situated Learning (SL) proposed 

by Lave and Wenger (1991). The situatedness of SL means it is able to incorporate a specific 

focus on the needs, actions, and social interactions of learners. Therefore, SL is particularly 

relevant to apprentice learning. This thesis will use two theoretical frameworks; Cultural 

Historical Activity Theory (CHAT) as the main framework and SL as a second framework. 

The reason SL is introduced here before the discussion of CHAT is that SL synthesises the 

overarching principles of the main CHAT framework approach with respect to workplace 

learning (see Section 3.2).  
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I first review the reasons that led Lave and Wenger (1991) to develop their theory of SL and 

its nature. I then discuss the roles that communication plays in human interaction in the 

workplace and the eclectic nature of learning in mechanical engineering trades workplaces.  

2.5.1. Situated Learning 

SL is defined by Lave and Wenger (1991) as a socio-cultural theory where learning is 

situated in activity. It emphasizes how people’s thoughts and actions are negotiated socially 

and culturally through their social interactions (Johri & Olds, 2011). Lave and Wenger 

developed their theory in response to the various assumptions and limitations they identified 

when conventional theories of learning were applied to workplace situations. First, there was 

the issue of transfer of knowledge, which they believed oversimplified learning as an 

“unproblematic process of absorbing the given, as a matter of transmission and assimilation” 

(1991, p. 47). Second, they believed that conventional explanations underestimated the 

process of learning within “the broader context of the structure of the social world” (1991, p. 

48). A third issue was informal learning, which they believed involved observation and 

imitation. Therefore, informal everyday numeracy activities like shopping were opportunities 

for learning where people followed strategies that appeared to be self-made. This stood in 

contrast to following algorithms taught in school (Greiffenhagen & Sharrock, 2008; Lave, 

1988; Lave, Murtaugh, & de la Rocha, 1984). A fourth issue was the decontextualization of 

knowledge. Lave and Wenger (1991) believed that abstractness needed to be made specific to 

the situation at hand. Therefore, difficulties may be caused for some learners who come to 

regard mathematics as useless, irrelevant and without practical application. An example is the 

transposition of formulas, where I found that two of the toolmakers I interviewed claimed to 

have learned to transpose formulas in chemistry, physics and engineering classes (K. Mills, 

2011). Similarly, Astrop (2020) attempted to resolve the difficulties of teaching the 

transposition of simple engineering formulas to prisoners by using illustrations and drawings. 

In the cases above, the discussions while shopping or studying chemistry, physics or 

engineering provided real contexts that led to students internalizing understanding. It would 

seem then that conventional contextless approaches to mathematics teaching have limited 

effects on the development of either conceptual understanding or procedural knowledge.  

Lave and Wenger (1991) proposed an alternative approach to the difficulties they identified 

in conventional learning, particularly the social role in learning, which they outlined in an 

important theoretical treatise, Situated learning: Legitimate peripheral participation (1991). 

They define learning as a situated activity whose central defining characteristic is legitimate 

peripheral participation (LPP). LPP is a process by which newcomers join a community of 

practice, which can be regarded as a “set of relations among persons, activity, and world, 

over time and in relation with other tangential and overlapping communities of practice” 

(Lave & Wenger, 1991, p. 98). Recent newcomers are initially on the periphery of the 

community of practice, but with increasing experience, knowledge and skill, they gradually 

move towards the centre of the community (Matusov, Bell, & Rogoff, 1994). Therefore, 

learners must participate in communities of practitioners to master knowledge and skills 

which enable them to participate fully in the sociocultural practices of the community.  
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SL is important to this study because of the emphasis it places on community and its ability 

to analyse human interactions in workplaces. For example, LPP enables discussion about the 

relations between newcomers and old-timers, and about activities, identities, artifacts, and 

communities of knowledge and practice. In this way, the social process “includes, indeed it 

subsumes, the learning of knowledgeable skills” (Lave & Wenger, 1991, p. 29; Matusov et 

al., 1994). SL is therefore viewed by Lave and Wenger (1991) as fundamentally a social 

process, as opposed to the cognitive development and understanding of the individual. The 

central role of the community of practice stands in marked contrast to other methods of 

learning, especially those employed in much formal schooling. Consequently, Lave and 

Wenger (1991) regard conventional theories about school learning as too restrictive to 

provide “the historical-cultural breadth to which [they] aspire” (p. 61). Moreover, SL affects 

the relationship between teachers and learners because SL “points to a richly diverse field of 

essential actors and, with it, other forms of relationships of participation” (p. 56).  

2.5.1.1. Social relationships and identity 

Relationships of participation and the relations between individuals in a community of 

practice are important in SL because development and change in individuals and the 

community are dependent on participation in the community. Change in individuals implies 

changes in identity. Lave and Wenger view identity as the “way a person understands 

himself, and is viewed by others” (1991, p. 81). Therefore, since SL is a theory of dynamic 

change involving movement from the periphery to the centre of the community of practice, 

the roles and hence the identities of individuals change. Under SL, the novice apprentice 

gradually gains skills, which can be viewed as learning a trade. Eventually, the mechanical 

engineering apprentice will arrive at, or close to, the centre of the community of practice and 

hence adopt the identity of a skilled mechanical engineering tradesperson (Chan, 2020).  

However, the process of novice learners moving centripetally from the periphery towards the 

centre is not without its contradictions. Lave and Wenger (1991) see contradictions between 

new ideas and long-established practices, different methods of learning, conflicting values, 

power relationships, and family and school traditions. An example of this is older members of 

the community being replaced by those who have more recently arrived at the centre, and 

who perhaps have more energy, more creative ideas they wish to experiment with, more 

modern skills, or are able to adapt more easily to new conditions and technologies such as 

smartphones. Workplace learning is therefore shown to be an increasingly complex process 

with increasing potential for intergenerational contradictions. These contradictions can occur 

when groups of newcomers begin to innovate by searching things out on the internet, finding 

new information or designing new techniques. Such changes challenge existing power 

relationships about who has the knowledge and the authority to problem solve in new and 

perhaps unusual ways. The nature of these intergenerational contradictions and the specifics 

of how they are resolved in the mechanical engineering trades context are unknown.   
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2.5.1.2. Situated Learning and this study 

Lave and Wenger (1991) applied SL to several vocations. The cases of apprentice tailors and 

US Navy quartermasters are likely to have relevance for this study. Lave and Wenger saw 

apprentices becoming skilled and respected master tailors without formal teaching, 

assessment or merely copying everyday tailoring tasks. The tailors began as learners in each 

community and gradually learned by observing what masters and journeymen already did. 

They made simpler items before moving on to formal garments and then “Higher Heights” 

suits (p. 71). Lave and Wenger also identified a similar process with apprentice 

quartermasters in the U.S. Navy. They too began with rather limited tasks and progressed to 

more complicated challenges under the supervision of more experienced tutors. However, 

while quartermaster training was primarily on the job, “some of the experience aboard ship is 

a bit like school with workbooks and exercises”, and apprentices who had gone to specialized 

schools before joining a ship sometimes had to have “bad habits [broken which they had] 

acquired in school” (p. 73). This suggests the existence of a background discussion within the 

community, and perhaps even tension, between formal and informal methods of learning.  

SL has been used in a variety of contexts. In a New Zealand study, Vaughan (2017) used SL 

to investigate general practice medicine, carpentry, and engineering technician work and their 

workplace mentors and teachers. She concluded that not only were soft skills specific to 

fields and were learned rather than being general, abstract and fixed, but that their 

development was strongly influenced by workplace mentors and teachers. In a study of 

teaching process skills to pre-engineers, it was found that opportunities to engage in formal 

public speaking helped in overcoming fear of making mistakes or disseminating false 

information (Maher, Bailey, & Tucka, 2018). Given the applicability of SL to analysing 

social components of engineering contexts, it is also able to focus on the social aspects of the 

pathway from apprentice to skilled tradesperson and expert engineer. Hence, SL is an 

appropriate frame of reference for this study.  

In summary, Lave and Wenger (1991) discovered that the tailors’ and quartermasters’ 

apprenticeship learning was in marked contrast to school learning (within developed 

countries). Since it is possible that engineering trades apprenticeship learning might also 

occur in the same way, then this study has set out to explore how apprentices learn and 

develop mathematics skills necessary for their work by taking into account Lave and 

Wenger’s situated learning theories and examples.  

2.5.2. Language and communication 

According to Lave and Wenger, language is a part of practice, and “it is in practice that 

people learn” (p. 85). Being able to talk with and gain access to the community’s collective 

knowledge, skills and wisdom is, therefore, an important factor in determining how well 

apprentices succeed as learners. This success in turn is more dependent on access to 

“peripherality than [to] do with knowledge transmission” (Lave & Wenger, 1991, p. 105). 

One illustration of the importance of language, not only in the workplace communication 

context but also in the development in apprentices’ centripetal movement to insider status, is 
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the strong influence of sharing stories when skilled tradespersons and apprentices talk about 

their work. In this process, newcomers not only listen to and learn to tell stories themselves, 

but through the stories, they learn the more important and difficult skills of the trade. 

Therefore, learning the art of storytelling is part of their becoming “legitimate participants in 

the community of practice” (Lave & Wenger, 1991, p. 109).  

Communication was therefore important, both written and verbal. Talking allowed both 

apprentices and skilled tradespersons to share together in the practice of the community, to 

signal their desire to become accepted at new levels in the community, or rather, closer to the 

insider status at the centre of Lave and Wenger’s community, and to engage and focus on the 

general problem solving and lore of the community. This fostered social acceptance as well 

as knowledge and skill acquisition.  

As outlined in Section 2.4.4, Collaborative Learning (CL) also involves interaction between 

members of a community. Therefore, talking and dialogue within a community are crucial to 

promoting CL among its members. Attard et al. (2018) studied pedagogical practices in 

mathematics classrooms. They concluded that rich and robust dialogic interactions were 

necessary to develop reasoning abilities in learners and for them to explain their processes of 

mathematical thinking to others. Nerona (2019) reported the results of an important study in 

the engineering context which measured pre-test and post-test scores of respondents. She 

found that the experimental groups engaged in CL obtained significantly higher post-test 

scores than their control group counterparts, who had been “exposed to the traditional lecture-

discussion and individual learning methods” (p. 114).  

The effectiveness of CL methods in developing technical skills has been corroborated by 

Archer (2008), who argues that dialogue is necessary to transform engineering practice in 

response to changing global realities where a top-down approach needs to be replaced by 

educators and engineers needing to learn by drawing on each other’s knowledge and 

experiences rather than imposing knowledge in a top-down process.  

However, perhaps the most unexpected source of CL is story-telling, which Lloyd (2000) 

believes is taken for granted. Therefore, Lloyd views engineering design as cohering only as 

a social activity mediated by a common language, the existence of which is regarded as 

indicating good design. Maslen and Hayes (2020) further develop the symbiosis between 

social and technical understandings regarding strategies engineers adopt when reasoning 

through disaster scenarios, such as the Überlingen mid-air aircraft collision. They first 

reasoned with abstract principles and then sought to appreciate the events through stories. 

The stories not only applied to making value judgments but also altered their professional 

engineering practices, which older members of the community quickly adapted to through 

communicating with younger people. A further use of storytelling in workplace contexts is 

made by Swap, Leonard, Shields, and Abrams (2001) who focus on leveraging the 

knowledge within an organisation and elucidating how mentoring and storytelling can be 

most effective in spreading knowledge. The roles of communication and storytelling in the 

mechanical engineering trades context are currently unknown (see Section 5.2.5).   
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To summarize, language is an essential skill in an effective workplace. Language is not only 

useful for conveying mathematical and other information but it also changes people and the 

way they regard the technical aspects of their work. Therefore, the social aspects of work 

impact workplace efficiency and effectiveness.  

2.5.3. Eclecticism of learning strategies  

This section reviews various learning theories that may appear to be mutually exclusive, but 

which some learning theorists believe can be used eclectically. Eclecticism is a pragmatic 

approach that does not resolve the dualities between different theories but attempts to create 

an alternative method which when applied, can sometimes lead to theoretical progress. This 

is currently the situation in some other disciplines, such as physics, which is often described 

as an ‘exact’ science (Hawking, 2002; Smolin, 2007, 2013).  

I have already discussed one example of dualism - the Acquisitionist and Participationist 

metaphors and noted the danger of using just one (Sfard, 1991, 1998, 2009) (see Section 2.4.1 

and Section 2.4.6). These metaphors encapsulate a major contradiction between the 

individual and social aspects of educational theories. I asked Anna Sfard if dualities in 

education philosophy would ever be resolved into one grand theory. She replied in the 

negative (private conversation, University of Auckland, 30 June 2017). Instead, with dualities 

of metaphors, there are times and situations when using one metaphor is appropriate, and 

others when an alternative metaphor is appropriate.  

Other learning theorists adopt a similar view. For example, Illeris (2018) regards all learning 

as integrating external interaction processes such as the learner’s social, cultural or material 

environment, and internal psychological processes like elaboration and acquisition. Neither 

process covers the whole field of learning, and both processes must be actively involved if 

learning is to take place. Then, perhaps surprisingly given his association with Lave and SL, 

Wenger states that the kind of social theory of learning he proposes does not seek to replace 

other theories of learning, nor that his social perspective “says everything there is to say 

about learning” (Wenger, 2018, p. 226). Rather, there is a complex relationship between the 

individual and the community where the individual learns by engaging in and contributing to 

the practices of the community, yet individuals within the community can contribute as 

individual agents. This implies that society can no longer be understood without the agency 

of individuals who use and produce artifacts (Engeström, 2018; Wenger, 2018).  

By way of contrast, Engeström (2001) finds major differences between the workplace and 

other learning environments. For example, standard theories of learning focus on learners 

acquiring some identifiable knowledge or skills so that their behaviour is altered. However, 

this approach assumes that the knowledge or skill is stable, well-defined and that there is a 

knowledgeable teacher capable of imparting what is to be learned. The difficulty is that much 

time is spent in workplaces on tasks that are “not stable, not even defined or understood 

ahead of time” (p. 137), and that transformations are “literally learned as they are being 

created. There is no competent teacher. Standard learning theories have little to offer if one 

wants to understand these processes” (p. 137). Therefore, workplace learning is firmly 
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situated in novel scenarios that require problem solving, creativity and communication. In 

some engineering trades contexts, especially those involving routine procedures, standard 

learning theories will often suffice and often competent co-workers are available to act as 

teachers. However, this is not always the case in non-routine contexts.  

One final factor in workplace learning requires mention - apprentices and qualified engineers 

are adults who have left school and therefore tend to have different perspectives from school-

age students. Amongst other things, adults tend to be 

• conscious of their need to know and why they need to learn it 

• conscious of being responsible for their own decisions  

• exposed to greater and different life experiences than younger people  

• sufficiently mature to learn those things they need to know to cope with real-life 

situations  

• concerned with problem-centred approaches to learning because they see its relevance 

to real-life situations  

• motivated by practical considerations such as better jobs, more money, job 

satisfaction, self-esteem 

• engaged in personal reflection and mutual discourse to identify and assess 

assumptions made by the teacher  

(Knowles, Holton, & Swanson, 2011; Merriam, 2018; Mezirow, 1994, 2018).  

In particular, adult engineers see learning as a transformative process that, combined with 

their maturity raises them to a greater height than recent school leavers can currently attain or 

appreciate. The question of maturation processes and their effects on the learning of 

apprentices is also unknown.  

2.5.4. Section summary 

In summary, there are aspects of SL that are relevant to this thesis and to the mechanical 

engineering trades context. From the apprenticeship perspective, this includes legitimate 

peripheral participation which novices use to advance in knowledge, skill and status in the 

community. From the community’s perspective, SL acknowledges and describes the nature of 

relationships within the community, how these relationships change over time as people 

mature, and technology changes. In the next chapter, consideration is given to the theoretical 

frameworks for this thesis. SL has an important contribution to make to this study because it 

synthesises the overarching principles of a CHAT approach to workplace learning with a 

focus on the needs and actions of learners.   

SL is a theory of learning involving legitimate peripheral participation (LPP) where 

newcomers join a community of practice that already comprises others who exercise varying 

degrees of responsibility depending on their skills and competence. The community of 

practice also takes responsibility for the newcomers’ learning, which is mainly done 

informally, although the United States quartermasters were an exception because they also 



Chapter 2 Literature Review 

57 

 

learned by formal teaching methods (Lave & Wenger, 1991). SL is appropriate to 

apprenticeship learning with the apprentices being initially on the periphery and moving 

towards the centre as they become more skilled. Since SL is a socio-cultural theory, 

communication is crucially important, for both day-to-day work and the ongoing learning of 

the total community - apprentices, skilled tradespersons, and experts. The stories the 

community members tell are important learning devices because they raise the learning level 

of the community, and transmit the folklore and culture of the community to the next 

generation.  

2.6. Chapter summary 

There are two issues to be considered here: how the relevant literature informs the research 

questions of the study that surround the pathway of mathematical learning from beginning 

apprentice to skilled tradesperson and to expert engineer, and the limitations and gaps that 

have been identified in the literature.  

First, the literature has helped answer the research questions directly regarding the 

mathematics and numeracy content. The mathematical content mechanical engineering trades 

apprentices require is contained in the NZC and NCEA curricula statements, and in US 

21905. Indirectly, the literature review has identified the importance of ancillary skills in 

mathematics learning. The NZC and NCEA documents mention problem solving, creativity, 

but do not specify in detail what these skills involve. There is a large body of literature on 

problem solving and creativity in mathematics (see Section 2.3). In addition, the NZC 

emphasizes the socio-cultural aspects of learning which also has a large body of literature 

(see Section 2.4). Moreover, there is a growing literature surrounding mathematics and 

numeracy usage in specific workplaces, and these often relate to higher-order skills and 

socio-cultural theoretical frameworks (see Section 2.3.4). Each of these areas directly, or 

indirectly informs the research questions for this study.  

Second, regarding the gaps in the literature, while there is a growing literature of workplace 

mathematics studies there is also a lack of specific workplace studies on mechanical 

engineering trades. This perhaps tempts us to make the dangerous assumption that 

mathematics is applied in the mechanical engineering workplace in a similar way to those 

reported in the literature involving other trades workplaces, or even in other workplaces in 

general. Moreover, studies on professional engineering by writers such as Gainsburg (2006, 

2007, 2013) and Horowitz (1999) might perhaps lead us to a further doubtful assumption, 

viz., that mathematics and numeracy in the professional and trades engineering areas will be 

similar. This assumption is not valid regarding mathematical content, because professional 

engineers require much higher levels of school mathematics, notably algebra and calculus. 

Nor do Gainsburg and Horowitz stress the widespread role and importance of numeracy. 

Furthermore, given the hands-on nature of the mechanical engineering trades, little appears to 

be known of how tradespersons employ problem solving and creativity in practical contexts, 

except among the tradespersons themselves. Therefore, there are likely to be substantial 

differences of emphasis, and perhaps even of the relative importance of the various issues 

between my study and those of Gainsburg and Horowitz.  
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In conclusion, the literature informs us in detail about the mathematical topics that 

mechanical engineers need for their work. The literature also recognises the importance of 

ancillary skills in applying mathematics in workplaces, and the ways that mathematics skills 

are learned and developed in the workplace. However, there are only a few studies relating to 

the details of how mathematics is applied, learned and developed in mechanical engineering 

trades workplaces, and this creates a niche for the contribution this study makes to the field of 

knowledge.  
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Chapter 3. Methodology 

Introduction  

This chapter gives an account of the methodology and particular methods used in this study. 

The discussion of the methodology includes the interpretivist paradigm employed, the mixed 

methods methodology, Engeström’s (1987) Cultural Historical Activity Theory framework 

(CHAT) and Situated Learning (SL); (Lave & Wenger, 1991). Later sections describe the 

methods employed in the study: the development of the questionnaire items and the questions 

for semi-structured interviews, the sampling procedures, procedures for recruiting 

participants, the data collection techniques, how the data were analysed and presented, and 

the presentation of findings. A chapter summary follows the final section on ethics.  

3.1. Methodology  

This section sets out the methodology for the study, the purposes of which include evaluating 

research decisions before implementing them, examining the study’s underpinning theoretical 

frameworks, justifying why certain approaches have been taken, explaining the logic behind 

the methods and techniques, as well as the reasons why some methods were found to be 

appropriate to the study and other methods rejected (Kothari, 2004; Morgan, 2007). I first 

discuss general paradigmatic considerations and the reasons for choosing interpretivism as a 

paradigm for this study in preference to critical social science, positivism, and post-

positivism. I then provide further detail around the interpretivist paradigm as well as the 

mixed methods methodology chosen for the study. 

3.1.1. Paradigmatic considerations 

Adopting and discussing paradigms is necessary for research because a paradigm describes 

the way the researcher thinks, their worldview and basic assumptions, their epistemological 

and ontological positions, the questions they consider to be important, the techniques they use 

to perform their research, and what good scientific research looks like (Alharahsheh & Pius, 

2020; Neuman, 2003; Punch, 2009; Willis, 2007).  

The choice of paradigm is dependent on how the research questions are framed. In this study, 

the overarching research question concerned the nature of mathematical learning that 

characterises the pathway from beginning apprentice to skilled tradesperson and then to 

expert engineer in mechanical engineering. Three associated sub-questions relate to the 

nature of the mathematics skills employed in the mechanical engineering trades, how they are 

applied, and how they are developed (see Section 1.3). An important first step, therefore, is to 

find a paradigm that best suits the context and nature of the research question. In this section, 

I examine three paradigms currently in usage, and the reasons I have not selected them: 

critical social science, positivism and post-positivism. In the next section, I then discuss 

interpretivism which best fits with the nature of this study.  
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Critical social science was not selected as a paradigm for this study. Critical social science 

tends to suit studies oriented towards political and social action, as would be the case if the 

focus of this study was on political philosophy and its effects on apprenticeship training 

schemes, or “with conflict theory, feminist analysis, and radical psychotherapy” (Neuman, 

2003, p. 81). Positivism was not considered appropriate for this study because it has been 

criticised as offering an incomplete picture of human beings. This study incorporated a large 

focus on human beings who cannot be reduced to numbers, abstract laws or formulas. 

Moreover, human beings exercise freedom, individuality and moral responsibility (Cohen, 

Manion, & Morrison, 2000; Neuman, 2003). Post-positivism was also not considered 

appropriate for the present study. While post-positivism differs from positivism in that its 

knowledge claims are no longer absolute, but imperfect, tentative and therefore fallible 

(Creswell, 2009), it still retains features of determinism, reductionism, measurement, and 

develops numeric measures of observations. Hence, while tentative in making known its 

knowledge claims, post-positivism still lacks the ability to examine situations where humans 

make decisions according to personal preferences.  

The research questions of this study were framed with the intention of allowing the 

mechanical engineering tradespersons to express their voices on the nature of mathematical 

learning in the mechanical engineering trades, the mathematics skills that were employed, 

how they were applied, and how they were developed (see Section 1.3). Thus, the research 

questions guiding this study called for a paradigm that relates to real-life situations in which 

human beings make choices, have the freedom to act and exercise individual preferences 

(Crotty, 1998). Interpretivism was chosen as the paradigm for this mixed methods study 

because it could interpret, analyse and deepen the broad data obtained from human testimony, 

their various experiences, and personal preferences.  

3.1.1.1. Interpretivism - knowledge, reality and truth 

I now discuss the assumptions of interpretivism regarding knowledge (epistemology), reality 

(ontology), and truth. First, since interpretivism employs a social constructivist epistemology, 

knowledge is understood to be contextually situated. One consequence of this is that 

epistemology has no absolute character, but focuses on trying to “get as close as possible to 

the participants being studied” (Creswell, 2007, p. 20). Therefore, the constructivist 

worldview constructs meanings on a social basis and that are located in various specific 

contexts. The knowledge so constructed is influenced by human beings making personal 

choices interacting with their world, and is therefore subjective, active, individualistic, 

personal, and founded on previously constructed knowledge (Punch 2009).  

Second, the socio-constructivist ontology of interpretivism means that realities are seen as 

local, specific, social and experimental. Moreover, reality is constructed through the 

interaction between language and aspects of an independent world which is culturally derived 

and historically situated (Crotty, 1998; Scotland, 2012). Therefore, interpretivism is 

particularly well-suited to the engineering context where the plethora of constantly changing 

scenarios forces engineers to rethink the nature of reality and how it needs to be modified to 

suit different circumstances and contexts. In the engineering context, reality is not regarded 
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as unique because different engineers have different life experiences, cultural values and 

workplace exposures that influence their view of a problem and how it should be treated. 

Therefore, the ontological position of interpretivism is relativism where reality subjectively 

differs from person to person, and reality emerges when consciousness engages with objects 

that have meaning (Creswell, 2007; Crotty, 1998; Guba & Lincoln, 1994). Moreover, as 

language intervenes to label objects and actively shape and mould reality, reality is 

constructed as interaction between language and an independent world (Frowe, 2001).  

Third, because interpretivism involves the subjective standpoints of the participants, the 

researcher also influences the study and hence is a participant in the study (Crotty, 1998). 

Therefore, with regard to truth, the standpoint is subjective because truth emerges from the 

life experiences of the study’s participants. The researcher needs to be sensitive to the setting, 

what happens and how people involved see things so that the participants’ multiple 

perceptions of their realities are reflected in particular contexts (see Section 1.2 and Section 

7.6.7). It behoves researchers to make their own values known in a study (Creswell, 2007; 

Punch, 2009).  

The above characteristics of the interpretivist paradigm support its selection for the present 

study. However, it is important to acknowledge that the freedom offered by the interpretivist 

paradigm may come at the expense of generalisability, which is not normally strongly 

characteristic of interpretivist studies (Crotty, 1998). Since there are multiple socially-

constructed realities that tend to diverge in an interpretivist study, an enquiry must be studied 

holistically because the realities may interrelate strongly, or clash as with dualisms (Sfard, 

1998). Therefore, ‘truth’ statements - in the positivist sense of enduring, context-free truth 

statements and grand theories - need to be abandoned since human behaviour is bound both 

by time, context, and other factors, such as age and culture. Instead, interpretivist studies 

produce ‘working hypotheses’ relating to a given and specific context. These studies may be 

applicable to other contexts, but they require a detailed examination of the given context of 

the original study with the context of a receiving study before accepting the “thick 

descriptions” provided by the original study into a receiving study (Lincoln & Guba, 1986, p. 

75).  

In conclusion, interpretivist research seeks to find meaning, relate experience, and provide 

rich data that carry the potential to identify new themes. It is ideally suited to this study’s 

mechanical engineering workplace contexts where human beings make decisions based on 

factors such as personal choice, cultural norms and what best suits the needs of the current 

context.  

3.1.1.2. Interpretivism and this study 

Interpretivism sits comfortably with my philosophical position (see Sections 1.2 and 1.3). 

The consciously or unconsciously held deep beliefs of the researcher are revealed even in 

choosing the original research questions and their wording, the foci of the study, and the way 

questionnaire items and interview questions are chosen and worded. Interpretivism also 

applies well to understanding engineers’ experiences because of the multiple social 
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interactions involved in their learning and workplace practice. Moreover, constructivism 

acknowledges that “reality is socially constructed and can be understood only in context” 

(Willis, 2007, p. 24). Therefore, one focus of the study was on achieving deep understandings 

of that reality: the context and the culture from which it sprang. This is reflected in how the 

data were gathered and how the findings were interpreted in relation to the mechanical 

engineering trades context. The paradigmatic stances of interpretive social science according 

to Neuman (2003) are summarized in Table 2 together with correspondences with this study.  

Table 2 Properties of interpretive social science and correspondences with this study 

  Interpretive Social 

Science properties 

Correspondences with this study 

1 Reason for 

research 

To understand and 

describe meaningful 

social action 

This research seeks to understand and describe mechanical 

engineering trades mathematics, its application and development 

in individuals and in the community 

2 Nature of 

social reality 

Fluid definitions of a 

situation created by 

human interaction 

The research acknowledges and seeks to investigate fluid 

definitions of multifarious technical and social situations created 

by human interaction 

3 Nature of 

human 

beings 

Social beings who 

create meaning and 

constantly make 

sense of their worlds 

Engineers are recognised as social beings who create meaning 

within the clearly defined context of their workplaces to make 

sense of their workplace world  

4 Role of 

common 

sense 

Powerful everyday 

theories used by 

ordinary people 

Powerful everyday mathematical theories, heuristics, and 

engineering judgment are used by ordinary - or sometimes 

extraordinary - people in conjunction with the sophisticated 

application of mathematics and numeracy 

5 Theory looks 

like 

A description of a 

group’s meaning 

system is generated 

and sustained 

A description of a group’s meaning system is generated and 

sustained in such things as its pragmatic approach of relating 

meaning to context, and group participation in problem solving 

6 An 

explanation 

looks like  

Resonates or feels 

right to those who are 

being studied 

See Section 7.6.4 

7 Good 

evidence 

Is embedded in the 

context of fluid social 

interactions 

The qualitative data for this study is embedded in the context of 

fluid social interactions and tasks in the workplace context.  

8 Place for 

values 

Are an integral part 

of social life; no 

group’s values are 

wrong, only different 

Values are accepted that are consistent with engineering practice.  

Note. Adapted from Neuman, W. (2003). Social research methods: Qualitative and quantitative 

approaches. Boston: Pearson Education, Inc., p. 91 
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To summarize, Table 2 demonstrates the suitability of using an interpretivist paradigm in the 

context of the research questions as applied to the mechanical engineering trades context. In 

particular, the subjects’ understandings of social reality, the emphasis on the interactions 

between human beings, and the use of common sense to produce sound decision making 

allow the researcher to pursue multiple aspects and investigate their interactions. An 

interpretivist approach has also been shown to work well in conjunction with the flexibility of 

a mixed methods methodology (McChesney & Aldridge, 2019) to which I now turn my 

attention.  

3.1.2. Mixed methods methodology  

In this section, I discuss mixed methods research, my reasons for using it in this study and 

how I use it, and how interpretivism provides a single paradigm suitable for analysing and 

integrating the quantitative and qualitative parts of the study.  

Mixed methods research has been defined broadly as research in which elements of 

qualitative and quantitative research approaches are combined in the one study for the broad 

purposes of adding breadth and depth of understanding, and/or corroboration (Johnson, 

Onwuegbuzie, & Turner, 2007; Schoonenboom & Johnson, 2017; Tashakkori & Creswell, 

2007). The rationale often stated behind using both qualitative and quantitative approaches is 

that each approach may reinforce their complementary strengths and mitigate the weaknesses 

in the other (Johnson & Onwuegbuzie, 2004). Therefore, one major purpose of using mixed 

methods designs is to enable expansion of understanding (Lopez-Fernandez & Molina-

Azorin, 2011), which seeks to analyse and explore different facets of a phenomenon to 

achieve richer and more detailed understanding.  

This study employed an explanatory sequential mixed methods design, which is one of 

several ways of performing mixed methods research. Explanatory sequential mixed methods 

designs typically involve two phases (Creswell, 2014). In the first phase, the researcher 

collects and then analyses quantitative data from a large number of participants. In the second 

phase, a much smaller group of participants is chosen to provide more detailed qualitative 

data. The first phase frequently involves conducting a survey, and the second phase semi-

structured interviews, as in this study. The intended purpose of the first phase is to obtain data 

on a wide variety of factors thought to be relevant to the study, whereas the purpose of the 

second phase may be to “explain quantitative results (significant, nonsignificant, outliers or 

surprising results)” (Creswell & Plano Clark, 2011, p. 32). This was the approach taken in the 

present study.  

In the sub-sections that follow, I provide further discussion of three key aspects related to the 

use of mixed methods methodology: the integration of methods, the choice of methods, and 

the strengths and weaknesses of mixed methods research.  
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3.1.2.1. Integration of methods 

Integration of the qualitative and quantitative aspects of mixed methods research is 

considered to be a defining strength of mixed methods research (Creswell & Plano Clark, 

2011; Greene, 2007; Guetterman, Molina-Azorin, & Fetters, 2020; Johnson et al., 2007). It 

can also be a source of controversy, such as in relation to the potential incompatibility of 

paradigms between qualitative and quantitative approaches . However, integration means 

more than collecting two separate sets of data as in two separate studies; it requires careful 

juxtaposition of related themes within the one study so that the insights gained by each 

approach are able to be examined and revealed together. Moreover, the effect on data 

integration should be considered at each stage of the inquiry, not only with methods, 

methodology and paradigm, but also when designing the research questions (Creswell, 2002; 

Creswell, Klassen, Plano Clark, & Smith, 2013; Schoonenboom & Johnson, 2017). The 

intention of integration is to exploit the value of mixed methods methodology to maximise 

the insights obtained from the data (Guetterman et al., 2020).  

I now discuss the nature and rationale for integrating findings from sets of qualitative and 

quantitative data sets. The intention of integration is to achieve a more nuanced picture that 

deepens and elaborates on understandings so that insights might be gained that would 

otherwise be missed (Bryman, 2007; Woolley, 2009). Johnson and Onwuegbuzie (2004) 

adopt a similar stance when they discuss the “fundamental principle of mixed research” (p. 

18) where multiple data sets are collected with different strategies, approaches, and methods 

so that the result brings out the complementary strengths and non-overlapping weaknesses. 

They believe this principle is a major source of justification for mixed methods research and 

one which will be superior to mono-method studies. Therefore, integration should be taken to 

mean relating the various components of the investigation to each other and to be more than 

just a short commentary as an addendum to various sections of a quantitative study, or a few 

tables and graphs as an addendum to text in a qualitative study. In this way, whether or not a 

study is integrated could be defined as the extent that the qualitative and quantitative 

“components are explicitly related to each other within a single study and in such a way as to 

be mutually illuminating, thereby producing findings that are greater than the sum of parts” 

(Woolley, 2009, p. 7). However, the need to integrate quantitative and qualitative findings is 

not universally acknowledged or followed. Even although integration of data is crucial to 

mixed methods research, it is seldom seen even though the potential of the mixed methods 

approach depends on this (Bryman, 2007; Woolley, 2009).  

In my study, the qualitative and the quantitative data had equal footing, even although the 

quantitative data collection began first. Each source of data was intended to “illuminate” or 

“complement” the other, that is, “seeking elaboration, enhancement, illustration, clarification 

of the results from one method with results from the other method” (Johnson et al., 2007, p. 

115). The intention of taking a mixed methods approach was to make use of both quantitative 

and qualitative methods to provide a more complete picture of the apprentices’ and 

engineers’ learning, and to tap into participants’ perspectives and meanings. Good qualitative 

data thus has the potential to bring out the meaning behind statistical data (van Teijlingen, 
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2014). Therefore, in this study, the goal of mixing the types of method was “not to search for 

corroboration but rather to expand one’s understanding” (Johnson & Onwuegbuzie, 2004, pp. 

18-19).   

The study was set up in the belief that both types of data would yield insights into the 

research question under investigation. Accordingly, the findings must be integrated at some 

point, and since the quantitative and qualitative phases were undertaken at least partly 

concurrently then the findings must, at a minimum, be integrated during the interpretation of 

the findings (Johnson & Onwuegbuzie, 2004). That was the approach taken here. Where both 

quantitative and qualitative data were available, the quantitative is presented first and then the 

qualitative. This allows the surrounding discussion and interpretation to integrate the findings 

from the two sources of data and demonstrate their separate yet complementary insights. 

However, mixed methods methodology has for many years been the subject of controversy 

within the academic community, especially the lack of philosophical rigour surrounding 

integration of qualitative and quantitative approaches. I address these in the next section.  

3.1.2.2. Mixed methods, interpretivism, and choice of methods 

In this section, I discuss how an interpretivist stance applied to mixed methods studies has 

been proposed as a response to criticism over lack of philosophical rigour. This criticism 

came from the school of thought that believed the strong associations between paradigms, 

methodologies and methods consequently rendered “different methodologies and methods to 

be philosophically incompatible, making their combination logically impossible” (Bazeley, 

2002, p. 3). Various approaches were made to resolve this incompatibility and achieve greater 

flexibility, such as pragmatism and dialectical pluralism. For example, Schoonenboom and 

Johnson (2017) believe that the “incompatibility thesis does not always apply to research 

practice” (p. 113). However, they do not apply this universally, but to the restricted area of 

equal-status studies.  

The alignment of methodologies with methods lies at the heart of the incompatibility issue, 

and hence with the type of data being collected. Therefore, there could never be a resolution 

without changing perspective. Willis (2007) changes the perspective by changing the focus 

on the type of data collected to the foundational assumptions and underlying beliefs of each 

of the qualitative and quantitative paradigms. He attributes this approach to Teddlie, who 

recommends multiple paradigm use, “criticizes the ‘paradigm purists’ who work only within 

one paradigm and proposes, instead, that we all become mixed-method researchers” (Willis, 

2007, p. 29).  

Crotty takes flexibility further when he says, “Certainly, if it suits their purposes, any of the 

theoretical perspectives could make use of any of the methodologies, and any of the 

methodologies could make use of any of the methods” (Crotty, 1998, p. 12). Therefore, since 

the interpretivist approach looks for culturally derived and historically situated interpretations 

of the social world, it has been freed from the idea of employing positivist research methods 

and paradigms and allows the relevance and reality of a diversity of research methods to be 

used (Crotty, 1998; Willis, 2007; Yin, 2006).  
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In more recent times, McChesney and Aldridge (2019) have proposed a single-paradigm 

interpretivist approach which they apply to both qualitative and quantitative aspects of mixed 

methods studies, thereby favouring “flexible (but intentional) integration of any research 

method with any research paradigm” (p. 225). In this way, interpretivism, which relates well 

with rich data sets obtained from disparate sources such as questionnaires and interviews, 

provided a single paradigm for the mixed methods research in my study.  

Moreover, a single interpretivist standpoint signifies that the data sources, the methods used 

and the results were regarded from the same standpoint because the data emerged from the 

participants’ various “conceptions of reality” (McChesney, 2017, p. 22), and the study was 

therefore freed from the quantitative-qualitative dichotomy.  

Hence, I conclude that there is a body of scholarly opinion that finds it unnecessary to 

maintain the traditional alignment of qualitative methods with interpretivist paradigms and 

quantitative methods with positivist paradigms. In the case of my study, just one paradigm, 

interpretivism, was used for both parts of the mixed methods study employing both 

quantitative and qualitative methods.  

3.1.2.3. Strengths and weaknesses of mixed methods research 

Mixed methods research has both strengths and weaknesses. Johnson and Onwuegbuzie 

(2004) list various advantages and disadvantages of mixed methods research. One advantage 

is that mixed methods research can “provide a broader and more complete range of research 

questions because the researcher is not confined to a single method or approach” so that 

additional insights and understandings can be added that “might be missed when only a single 

method is used” (p. 21). According to Punch (2009), mixed methods research employing 

quantitative methods is able to contribute the strengths of “conceptualizing variables, 

profiling dimensions, tracing trends and relationships, formalizing comparisons and using 

large and perhaps representative samples” (p. 290). In contrast, employing qualitative 

methods brings the strengths of “context, local groundedness, the in-depth study of smaller 

samples, and great methodological flexibility which enhances the ability to study process and 

change” (p. 290). Another advantage of the questionnaire lies in its brevity, which means that 

it can be given to a large number of participants and then analysed relatively quickly.  

Johnson and Onwuegbuzie (2004) provide a list of suggested weaknesses of mixed methods 

research which appears below:  

• Mixed methods research involving qualitative and quantitative methods can be 

difficult for a single researcher to carry out, especially if two or more approaches 

are expected to be used concurrently; it may require a research team. 

• The researcher has to learn about multiple methods and approaches and 

understand how to mix them appropriately. 

• Methodological purists contend that one should always work within either a 

qualitative or a quantitative paradigm. 

• Mixed methods research is more expensive.  
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• Mixed methods research is more time-consuming.  

• Some of the details of mixed research remain to be worked out fully by research 

methodologists (e.g., problems of paradigm mixing, how to qualitatively analyse 

quantitative data, how to interpret conflicting results). 

Note. Adapted from Johnson, R., & Onwuegbuzie, A. (2004). Mixed methods research: A research 

paradigm whose time has come. Educational Researcher, 33(7), p. 21.  

Despite the alleged weaknesses listed above, not all of which apply to this study, the 

advantages of using a mixed methods approach outweigh the disadvantages, especially by 

enriching the statistical data with interviews. Moreover, the objection of paradigm mixing is 

obviated by employing a single interpretivist paradigm (McChesney & Aldridge, 2019).  

To summarize Section 3.1, using an interpretivist paradigm together with a mixed methods 

methodology allows flexibility of approaches to the collection and presentation of data, their 

interpretation and meaning. Therefore, statistical data concerning various issues from 

questionnaires and associated interview data can be used to construct a rich data set that will 

provide a composite picture of the phenomenon under study. In the next section, I discuss the 

two theoretical frameworks selected for this study, which will further explain how this 

composite picture will be obtained.  

3.2. Theoretical framework considerations 

This study uses two theoretical frameworks - Cultural Historical Activity Theory (CHAT) as 

the main framework, and Situated Learning (SL) as a sub-framework. According to 

Zevenbergen and Begg (1999), the importance of a theoretical framework lies “in providing 

the overarching framework for the project, in its conceptualisation, analysis and writing …” 

(p. 170). First, I outline and discuss CHAT, define its terminology, introduce and define the 

terms of Engeström’s (1987) expansive learning model, and discuss studies that employ a 

CHAT theoretical framework. SL was introduced in Chapter 2 because of the need to review 

the literature surrounding the impact of social interaction in workplace environments (see 

Section 2.5). Therefore, in Section 3.2.4, I compare the CHAT and SL theoretical 

perspectives. I leave the discussions of how the CHAT and SL theoretical frameworks 

applied to this particular study to Section 3.3.  

3.2.1. Cultural Historical Activity Theory 

In this section, I discuss the CHAT theoretical framework used in this study. Together with 

the interpretivist paradigm, the CHAT and SL frameworks guided the research design, the 

collection of data, the presentation of data, and interpretation of results. CHAT is a 

theoretical frame of reference, or set of research perspectives, and has been defined as “a 

cross-disciplinary framework for studying how humans purposefully transform natural and 

social reality, including themselves, as an ongoing culturally and historically situated, 

materially and socially mediated process” (Roth, Radford, & LaCroix, 2012, p. 1). The 

CHAT framework has been successfully applied in a wide variety of vocational and other 

studies, such as teaching and education settings (Ahmed, 2014; Roth, 2004; Wilson, 2014), 
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information systems (Crawford & Hasan, 2006), public health systems (Engeström, 2001), 

workplaces (Engeström, 2000; Hoyles et al., 2013), differing school and workplace 

perspectives on mathematics (Williams, Wake, & Boreham, 2001), and the learning of 

specific workplace mathematics topics (Kent et al., 2011; LaCroix, 2011a; Roth & Lee, 

2004). The purpose of CHAT is to help understand and analyse the relationships between the 

human mind and activity, or between what people think or feel and what people do (Nardi, 

1996; Roth & Lee, 2007).  

CHAT derives from the ideas of Vygotsky (1930, 1978) and subsequent theorists such as 

Leont’ev (1978, 1981), Cole and Wertsch (1996), and Engeström (1987, 1999). Vygotsky's 

wider work relates to this study for several reasons. His work arose from his rejection of 

claims that maturation alone leads to adult intellectual functions. Vygotsky’s proposed 

solution was that learning was strongly influenced by social interaction, which could lead to 

change or expansive learning. The importance of social interaction in workplace learning and 

change, which are directly related to this study, would later become the focus of research by 

Engeström (1987, 1999). Vygotsky recognised the importance of tools developed and used by 

humans as mediators to achieve some purpose. Also, Vygotsky’s (1978) notion of the zone of 

proximal development (ZPD) connects learning to problem solving, which is important in the 

engineering context of this study. The ZPD is defined as "the distance between the actual 

developmental level as determined by independent problem-solving and the level of potential 

development as determined through problem-solving … in collaboration with more capable 

peers" (Vygotsky, 1978, p. 86). Vygotsky’s approach, therefore, emphasizes dynamic, social, 

and cultural factors in learning in answer to his dilemma about maturation alone being 

sufficient to explain adult development.  

I now outline the historical development of and rationale for CHAT. According to 

Engeström, three distinct generations of CHAT can be identified. The first concerns 

Vygotsky’s idea of mediation, which is expressed as a triangular model of subject, object and 

mediating artefact (Engeström, 1999; Vygotsky, 1978) (see Figure 4).  

 

Figure 4 (A) Vygotsky’s model of mediated act and (B) its common reformulation 

Note. Reprinted from Engeström, Y. (2001). Expansive learning at work: Toward an activity 

theoretical reconceptualization. Journal of Education and Work, 14(1), p. 134.  4 

 
4 Permission received 



Chapter 3 Methodology 

69 

 

The mediating artefact may be a physical tool, as is common in mechanical engineering, or it 

may be intellectual and socio-psychological, such as mathematics or language. Any devices 

such as graphs, diagrams, and written language may be regarded as tools. Learning is 

assumed to be influenced by such physical and psychological tools (Cole & Wertsch, 1996; 

Nygård, 2010). One difficulty of this simple model is that the unit of analysis is focused on 

the individual, so the portrayal of complex behaviour involving several key elements or 

several people is restricted and the generalisability is therefore limited. Therefore, 

Vygotsky’s model needed to be extended to display and investigate complex 

interrelationships and social interactions within a community, such as apprentices and the 

skilled tradespersons they work alongside and initially learn from, or even the globalised 

marketplace where skills are transferable and subject to competition.  

Therefore, the second generation of CHAT, attributed to Leont’ev, introduced the idea of 

collectivity. This resulted in the addition of a focus on the division of labour, or roles, to 

Vygotsky’s model shown in Figure 4. Conceptualisations of collectivity, division of labour 

and roles evolved and necessitated differentiating between an individual action and a 

collective activity (Engeström, 1999). These changes in the division of labour can create 

specialisations within a community of labour, which are one source of potential tensions, or 

contradictions. In a negative sense, contradictions may be unhelpful. Viewed positively they 

can be seen as important motivating forces in creating conditions for progress; therefore 

promoting the evolution of (mainly) gradual change in response to changing political and 

economic conditions, or the impact of new technology that renders some skills obsolete (A. 

Edwards, 2011; Engeström, 1987, 2000; Gedera, 2015; Williams & Wake, 2007). Such 

changes can also render those people who specialised in those skills redundant, as can be seen 

in New Zealand where the mechanical engineering branch of toolmaking has declined as a 

result of globalisation and companies moving industry offshore in search of cheaper labour.  

A third-generation in the development of CHAT is represented by Engeström’s learning 

model, and especially its notion of expansive learning which Engeström regards as “a 

historically new type of learning which emerges as practitioners struggle through 

developmental transformations in their activity systems, moving across collective zones of 

proximal development” (Engeström, 1987, p. 7). This iteration of CHAT involved the 

development of conceptual tools to understand dialogue, multiple perspectives and voices, 

and networks of interacting activity systems (Engeström, 1999, 2008; Nygård, 2010), 

including the replacement of static teams with “fluid knotworking around runaway objects 

that require and generate new forms of expansive learning and distributed agency” 

(Engeström, 2008, p. i). Therefore, each development in the evolution of CHAT can be 

viewed as an attempt to better describe and synthesise increasingly complex understandings 

of the nature of workplace activity.  

Engeström (2010) distinguished his theory of expansive learning from other models of 

learning because it focuses on the learning of communities. Therefore, expansive learning 

and practice in communities become central notions. Moreover, expansive learning is 

important to understanding the workplace because “learners learn something that is not yet 
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there. In other words, the learners construct a new object and concept for their collective 

activity, and implement this new object and concept in practice” (p. 74). This is relevant to 

the workplace because learners are frequently confronted with unfamiliar problems whose 

solutions are messy and undefined (Roth, 2010). In this way, Engeström considers traditional 

mentalist theories to be inadequate. Moreover, like Sfard’s (1998) two metaphors of 

acquisition and participation (see Sections 2.4 and 2.5), Engeström considers that traditional 

theories have little to say about the transformation and creation of culture (Engeström, 2010). 

In the next section, I define and explain further the terminology of the CHAT framework and 

its relationship to my study. 

3.2.2. Definitions of terms in Engeström’s CHAT framework  

This section discusses Engeström’s third-generation CHAT framework which comprises four 

questions, seven elements and five principles (Engeström, 2001) and how well they resonated 

with the mechanical engineering trades context of this study (Moffitt & Bligh, 2021). I first 

discuss Engeström’s questions, elements and principles in turn.  

Engeström’s four questions “Who are the subjects of learning?”, “Why do they learn?”, 

“What do they learn?”, and “How do they learn?” (Engeström, 2001, p. 133) were all relevant 

to the mechanical engineering context, and hence had some relevance to this study, although 

to varying extents. The first two questions, “Who are learning?” and “Why do they learn?” 

are not related directly to the research questions for this study (see Section 1.3) and can be 

answered briefly; viz., all the engineers in a positive workplace environment were learning 

mathematics, and the reason they learned mathematics was that they acknowledged its value 

in their daily work. In contrast, Engeström’s third and fourth questions corresponded directly 

to the aims of the research questions. They concern the nature of mathematical learning, what 

mathematics mechanical engineering tradespersons learn, and how they use and learn it.  

Regarding Engeström’s principles, an activity system is the central concept. An activity 

system typically consists of subject(s), object or objective, outcome, tools, rules, community 

and roles (see Figure 5). Engeström’s principles are the activity system, multi-voicedness, 

historicity, contradictions, and expansive cycles of learning. Engeström’s elements are tools, 

rules, roles and community. Tools may be regarded as physical or mental and are developed 

by human beings to achieve some purpose. The community is the group of people associated 

in some way with the activity (Wenger, 2011). The community of this study not only 

comprised other mechanical engineers with whom an individual may have had contact from 

time to time, but also bosses, designers, draughtspersons, and clients and company 

representatives who interact directly with them. Each of these groups is drawn together to 

cooperate in order to achieve a common object or objective. To be successful they must 

resolve their often conflicting multi-voices and even competing aims, which have historical 

roots leading to contradictions, or tensions. Contradictions, in turn, are seen as stimuli for 

expansive learning. Roles, or the division of labour, refer to the contributions members of the 

community make to the overall achievement of the objective of the activity system. The rules 

are a set of expectations that the community makes for the achievement of its objectives.  
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Figure 5 The structure of a human activity system 

Note. Reprinted from Engeström, Y. (2001). Expansive learning at work: Toward an activity 

theoretical reconceptualization. Retrieved from 

https://www.tandfonline.com/doi/pdf/10.1080/13639080020028747, p. 135.5 

It is important to understand that in the context of a particular study, these elements are fluid 

and are constantly changing depending on which aspect is currently the focus of attention. 

For example, communities may be large or small, and the rules and the roles played by 

individuals may change according to time and circumstances. A strength of Engeström’s 

triangle in Figure 5 for my study is that its simple geometric properties allow 

interconnections to be made between the elements and how they relate to the principles. The 

triangle also allows an easy transition of thinking to be made when the focus of attention 

changes. In this way, CHAT provides a dynamic rather than a static lens to examine the 

engineering workplace.  

There is variation and possible confusion in the definitions of elements and principles and 

possible confusion because much of the earlier literature about CHAT and its developments 

were written in Russian, and some words translated into English were not exact equivalents 

(Yamagata-Lynch, 2010). Therefore, in this thesis, “subjects” are always people of interest, 

as opposed to topics of discussion, and “object” is interpreted as a noun, meaning “objective” 

- that is, the goal or aim being pursued. The questions and fundamental concepts are 

discussed in greater detail later in this section and used extensively throughout the thesis. A 

major advantage of CHAT is that focus can be placed on each element and principle 

separately, or, even more importantly, on their multiple interconnectedness.  

I now discuss each of the principles of Engeström’s activity systems in turn - multi-

voicedness, historicity, contradictions and expansive cycles of learning. It is important to note 

that these are interconnected with each other and with the elements, and that building in 

division of labour (roles), rules and community transformed Vygotsky’s model (see Figure 4) 

into the CHAT framework diagram in Figure 5. Also, Engeström believed that activity 
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systems were subject to long-term, historic contradictions, or tensions, which were 

accompanied by many voices involving differing opinions and perspectives (Engeström, 

1987). Contradictions have the potential to eventually lead to change, which he calls 

expansive learning.  

The first principle within Engeström’s expansive learning model is a “collective, artifact-

mediated and object-oriented activity system, seen in its network relations to other activity 

systems” (Engeström, 2001, p. 136) (emphasis added). An activity system is taken as the 

prime unit of analysis. The actions of individuals and groups within this system as well as its 

automatic operations are interpreted as subordinate units of analysis within the background of 

the entire activity system. The activity system contains a community representing multiple 

standpoints that were sometimes created by historical influences and divisions of labour. 

These often conflicting factors within the activity system are frequent sources of trouble, yet 

are also potential sources of negotiation and change (Engeström, 2001). The discussion of the 

activity systems in this study is found in Section 3.3.2. 

The second principle within Engeström’s expansive learning model is multi-voicedness, 

which included the wide spectrum of views, perspectives and traditions of families, 

schooling, curriculum influences and teaching styles, and governmental education policies 

(FitzSimons, 2003). However, it is important to note that multi-voicedness can emphasize 

voices within the total system, as in Engeström’s study on Finnish hospitals (Engeström, 

2001), or voices within an individual in the system, as in FitzSimons’ (2003) paper on 

Marja’s learning. This allows Engeström’s learning model to be adapted to apply in situations 

where the activity system as a whole is the focus, or where the focus is on an individual 

within the system.  

The third principle within Engeström’s expansive learning model is historicity, which refers 

to the history of individuals or organisations with various procedures and tools. Therefore, 

historicity may apply to large organisations and the evolution of their particular procedures 

and tools (Engeström, 2001), or alternatively, it may refer to an activity system containing 

one individual subject with a “unique history of life experience, work experience and 

education experience” (FitzSimons, 2003, p. 53). Activity systems develop and transform 

over long periods of time, and to some extent, the problems they face need to be understood 

in the light of that history. This includes the history of its theoretical ideas and tools.  

The fourth principle within Engeström’s expansive learning model is contradictions, which 

were seen by Engeström as sources of change and development, but different from problems 

or conflicts. Contradictions are understood to be structural tensions that have built up 

historically within or between activity systems (Engeström, 1987). For example, when an 

activity system adopts some new technology or object, the result often is “an aggravated 

secondary contradiction where some old element (for example, the rules or the division of 

labour) collides with the new one. Such contradictions generate disturbances and conflicts, 

but also innovative attempts to change the activity” (Engeström, 2001, p. 137). As an 

illustration, FitzSimons (2003) lists several contradictions she sees in Australian education 

policy. These include:  
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• Discrepancies between policy and practice in adult education  

• The incompatible aims of lifelong learning versus neoliberal ideas of ‘user pays’  

• Politicians’ exhortations to raise numeracy standards versus a chronic lack of 

recognition by policymakers of the need for discipline-based professional 

development for tutors and literacy teachers teaching numeracy  

• The side-by-side existence of new and old curricula and pedagogical practices in 

mathematics education  

• The discipline of mathematics and its related pedagogical practices which do not 

necessarily encourage learners 

Note. Adapted from FitzSimons, G. (2003). Using Engeström's expansive learning 

framework to analyse a case study in adult mathematics education. Literacy and Numeracy 

Studies, 12(2), p. 54.  

This last contradiction sometimes comes to the fore when attempting to explain to educators 

in schools and elsewhere that mathematics in the workplace is much more than a mere 

extension of classroom exercises and practices, and that contextual approaches are required 

for learning to take place.  

A historically-based contradiction can also arise between generations as a new generation of 

workers gains experience and skill and attempts to change the system to suit their own 

innovations and ideas. Therefore, there is a link here with Lave and Wenger’s (1991) ideas 

embedded in their SL model (see Section 2.5). In this case, the contradiction emerges as 

younger members begin to move closer towards the centre of Lave and Wenger’s community 

of practice. CHAT does not analyse this phenomenon in detail, thereby providing one 

rationale for a second framework (see Section 3.2.4).  

Finally, the fifth and key principle within Engeström’s model is expansive learning (see 

Section 3.2.1) which is a key feature of CHAT’s five principles and involves developmental 

transformations in activity systems and moving across collective ZPD’s (Engeström, 1987). 

Expansive transformations are “accomplished when the object and motive of the activity are 

reconceptualised to embrace a radically wider horizon of possibilities than in the previous 

mode of the activity” (Engeström, 2001, p. 137). Therefore, an expansive cycle in individuals 

can be exemplified when they acquire and then put new learning into practice.  

Expansive transformations are performed in a stepwise manner and have relatively long-term 

cycles. They come about as a result of contradictions in the activity system becoming 

aggravated to the point where certain individuals within the system start questioning accepted 

practice. These people analyse the contradictions and model “a vision” (Engeström, 2000, p. 

960) for a zone of proximal development of the system which they then examine and 

incorporate in practice against the traditionally accepted norms of the activity system. 

Sometimes the result is a deliberate collective effort to promote change. Expansive learning 

processes are important to this thesis because they relate how new learning takes place in 

engineers and their activity systems to establish higher levels of development of 

understanding and skill.  
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3.2.3. Engeström’s expansive learning model matrix 

Engeström’s learning model of an activity system is associated with the four questions, seven 

key elements and the five principles (see Section 3.2). Engeström’s expansive learning model 

matrix is presented in Table 3.  

Table 3 Engeström’s expansive learning model  

 Activity 

system as a 

unit of 

analysis 

Multi-

voicedness 
Historicity Contradictions 

Expansive 

Cycles 

Who are learning?      

Why do they learn?      

What do they learn?      

How do they learn?      

Note. Adapted from Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical 

reconceptualization. Journal of Education and Work, 14(1), p. 138. 6 

The general function of this matrix is to present Engeström’s questions and principles 

together. This enables both brief descriptions to be made of how each question and each 

principle relate, and to gain an overall view of a study. In my study, this matrix also provided 

a structure for the analysis of the findings and allowed the systematic interrogation and 

analysis of the interactions of a range of factors that may have contributed to the learning of 

mechanical engineering apprentices along their pathway to becoming skilled tradespersons.  

There is a large number of workplace studies that employ CHAT frameworks (Ahmed, 2014; 

Batiibwe, 2019; Engeström, 1990, 1993, 2000, 2001, 2013; FitzSimons, 2005; FitzSimons & 

Mlcek, 2004; Meyers, 2007). Engeström (2001) applied his expansive learning model to 

analyse a health care treatment system in Finland for children with multiple illnesses (see 

Appendix D). The matrix was able to illustrate how various decisions were made and 

implemented involving transfer between and coordination of multiple patient care activity 

systems. It is important to note that some cells in the matrix for the Finland hospital study 

were left empty, which indicates that the researchers chose particular questions and principles 

as being relevant to their study and ignored the others. Therefore, while the expansive cycle 

involved only the “What do they learn?” and “How do they learn?” questions of the activity 

system, Engeström discussed each of the five principles in detail. A similar approach of 

leaving certain cells blank was adopted in a study on student-teacher perceptions of effective 

ways for promoting critical thinking through asynchronous discussion forums (Mwalongo, 

2016). Another study used CHAT frameworks to illustrate two different objectives regarding 

school and workplace transition of graphical skills; adapting from the ways graphs are used in 
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a school setting to an industrial context and interpreting the graphical output of an experiment 

(Williams et al., 2001).  

Similar patterns of focus and analysis were followed in this study. In particular, while 

Engeström’s “Who is learning?” and “Why do they learn?” questions were relevant to the 

mechanical engineering context, the research questions in this study focused particularly on 

Engeström’s “What do they learn?” and “How do they learn?” questions (see Section 3.2.1). 

Hence, no emphasis was placed on the “Who?” and “Why?” questions. The correspondences 

between Engeström’s elements and principles displayed in Engeström’s triangle and matrix 

and those in the studies cited above align well with similar correspondences in my study. A 

discussion and corresponding table of Engeström’s expansive learning model for my study 

are found in Section 3.3.2 and Section 3.3.3. Therefore, Engeström’s expansive learning 

model for CHAT is adaptable to many different situations. In the next section, I discuss 

Situated Learning and its relationship to CHAT as frameworks for this study.  

3.2.4. Situated Learning and Cultural Historical Activity Theory compared 

In this section, I outline SL as a second theoretical framework for this study (see Section 

2.5.1) and then compare the contributions SL and CHAT frameworks have made to this 

study.  

SL is defined by Lave and Wenger (1991) as a socio-cultural theory in their important 

theoretical treatise, Situated Learning: Legitimate Peripheral Participation. The notion of 

legitimate peripheral participation (LPP, see Section 2.5) is central to SL which is seen as a 

situated activity in which newcomers become part of a community of practice as members on 

its periphery. As newcomers increase in experience, knowledge, skill and learning, they 

gradually become full participants in a sociocultural practice (Lave & Wenger, 1991; 

Matusov et al., 1994). One strength of SL is that Lave and Wenger have applied their 

theoretical ideas of learning to a large number of rich, specific contexts, such as midwives in 

Mexico, tailors in Liberia, butchers in US supermarkets, quartermasters (i.e., assistants to 

navigators) in the US Navy, and non-drinking alcoholics in Alcoholics Anonymous. The 

tailors’ and quartermasters’ training bear particular relevance to this study: the tailors because 

of their apprentice-mentor relationships and the quartermasters for their mathematical 

training.   

SL provides an approach to learning that integrates agents, world and activities, and where 

experience is associated with meaningfully structured situations (Lave & Wenger, 1991). In 

order to reformulate thinking and learning away from mentalist approaches, Lave and 

Wenger make use of the notion of practice, which is regarded as an integral part of the lived-

in world and experienced through social practice. Knowledge is regarded as a way of acting 

within a community of practice, and this means that social perspectives play a primary role in 

shaping and constituting reality and social practice. Experience also applies to learning and is 

linked with relationships among people involved in activities associated with the socially and 

culturally structured world. Indeed, human relationships are a feature of SL. Therefore, 
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actions are situated in their local and immediate social contexts and are not something 

external to activity (Arnseth, 2008; Engeström, 2010; Lave & Wenger, 1991).  

CHAT and SL have similarities and differences. Both enable creative theorising about 

learning and thinking, which they regard as integral parts of practice in a world influenced by 

social and cultural norms. They both employ the notion of practice to overcome the 

limitations of educational theories which prioritise mind and mental processes. They also 

agree that learning and teaching are placed in historical and material contexts and involve the 

integration of practice in a socially and culturally influenced world. Most importantly for the 

purposes of this study, in their theoretical frameworks, they also acknowledge the factors of 

history, development, transitions and change, social interaction in the learning process, and 

human activity mediated by physical and especially non-physical tools that are situated in 

context (Arnseth, 2008).  

There are also differences between SL and CHAT. While CHAT regards practice in a broad 

sense, Lave and Wenger regard practice as predominantly social and relational (Arnseth, 

2008). Regarding learning, SL views learning as “an integral part of generative social 

practice in the lived-in world” (Lave & Wenger, 1991, p. 35), while Engeström regards 

expansive learning as being produced in societal practice by “mental and material extension 

and transformation in time, as an integral aspect of activity” (Arnseth, 2008, p. 291). For the 

purposes of this study, this contrast in approach to learning was demonstrated in the relational 

components of workplace social interaction provided by SL and the transformation of 

individuals and communities of practice as a result of expansive cycles of learning. Another 

contrast is that Lave and Wenger seem to grant a privileged position in their framework to 

how people make sense of, interpret and constitute their world through practical action. 

Therefore, for Lave and Wenger, “learning is an integral part of generative social practice in 

the lived-in world” (Arnseth, 2008, p. 291), so that SL tends to pay closer attention to what 

people do in concrete situations and the resources they employ in their activities, as with the 

tailors and the quartermasters. Also, Engeström seems to focus more on the instrumentality of 

activity, so that while CHAT regards practice in a broad sense, Lave and Wenger regard 

practice as predominantly social and relational (Arnseth, 2008). Therefore, while CHAT 

allows detailed focus to be placed on change and development, it “makes it more difficult to 

study how the things happening here and now is [sic] structurally related to wider patterns of 

human activity” (Arnseth, 2008, p. 301). CHAT offers a more external perspective than SL. 

CHAT demonstrates how activities change, develop and interconnect with social and material 

structures. It does not focus on the internal perspectives of how the participants themselves 

actually make sense of their surroundings, which is apparent in Lave and Wenger’s (1991) 

accounts of tailors and quartermasters.  

Another distinguishing characteristic of CHAT is that learners are learning something that is 

not there yet, which requires problem solving in contexts where much of the information and 

thinking has still to be developed (Engeström, 2010). However, this has not appeared 

explicitly in my earlier discussion of Engeström’s diagram because the discussion focuses on 

the key elements of the process of apprenticeship learning: its elements and its principles. As 
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Engeström explains, one advantage of CHAT over some other situated action or sociocultural 

theories is that CHAT asks what connected the activity to the historical transformations of 

people’s lives and societies (Ploettner & Tresseras, 2016). Therefore, CHAT enables us to 

investigate how activities evolve and “interconnect with social and material structures” 

(Arnseth, 2008, p. 301). That was important in this study because forces inside and outside 

the communities of practice keep the mechanical engineering workplaces in permanent states 

of flux.  

To summarize, in Section 3.2 I have described how the elements and principles of the CHAT 

framework relate to various aspects of learning and practice. However, while CHAT tends to 

be useful in providing a wider focus on groups, this research study also required an 

investigation that focused on individuals. Also, while CHAT remained the principal 

theoretical framework for this study, SL made important contributions, especially in 

specifying the details of the context. Therefore, employing both SL and CHAT in my study 

gave a more comprehensive and composite picture containing complementary perspectives of 

the breadth of skills needed to apply mathematics skills in the mechanical engineering 

workplace. In the next section, I discuss how the theoretical implications of this section relate 

to my own study on mechanical engineering trades mathematics.  

3.3. Research frameworks and this study 

In the previous sections, I discussed the CHAT and SL frameworks, and Engeström’s 

expansive learning model. In particular, I explained that employing CHAT and SL together 

would give a more comprehensive and composite picture of mathematics in the mechanical 

engineering workplace than with just a single framework. I now explain how the CHAT and 

SL frameworks were applied in this study. I begin with an overall view of the research design 

of this study, followed by a discussion of its activity systems, how Engeström’s matrix of 

expansive learning corresponded with the research questions, and how the CHAT and SL 

frameworks were applied.   

3.3.1. Research design of this study 

In this section, I discuss the research design, which comprises all the issues involved in 

planning and executing a research project, including its relationship with the research 

questions (Punch, 2009). I first consider the two broad questions of what I need to know, and 

whether I should use a qualitative, quantitative, or a mixed methods design (Creswell, 2009; 

Punch, 2009). I discuss each question in turn.  

What I wanted to know is defined by the research questions which concern the key features 

of mathematical learning that characterise the pathway from beginning apprentice to skilled 

tradesperson and then to expert engineer in mechanical engineering trades, the nature of the 

mathematics skills, how the mathematics skills are applied, and how they are developed (see 

Section 1.3). The study was also designed to investigate how the mathematical content is 

learned and used in both formal and informal settings involving social interaction.  
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A mixed methods approach (see Section 3.1.2) was chosen because it had the potential to 

combine both quantitative and qualitative approaches, and allowed one method to help and 

inform the other method (Creswell, 2009). Mixed methods research “attempts to consider 

multiple viewpoints, perspectives, positions, and standpoints” (Johnson et al., 2007, p. 113), 

and is appropriate in situations where it is assumed that collecting diverse types of data best 

provides an understanding of the research problems. It is particularly well-suited to 

investigating research problems that require “an examination of real-life contextual 

understandings, multi-level perspectives, and cultural influences”, and has “an objective of 

drawing on the strengths of quantitative and qualitative data gathering techniques to 

formulate a holistic interpretive framework for generating possible solutions or new 

understandings of the problem” (University of Southern California Library, 2018, n.p.).  

In the next section, I discuss the activity systems and the relationships between an 

individual’s activity system and their wider activity systems within a CHAT framework.  

3.3.2. Activity systems for this study 

This section defines and discusses the relationships between larger activity systems in this 

study and smaller activity systems, including individual activity systems, and how they relate 

to Engeström’s other principles (See Figure 5). In the largest activity system under 

consideration, the subjects were those who were learners of mechanical engineering, and 

therefore obviously apprentices, but also skilled tradespersons and educators, supervisors and 

any others engaged in formal or informal learning connected with mechanical engineering. It 

is important to note that these groups overlap where subjects could occupy multiple positions 

in the activity system, such as both educators and experts, or as both educators and learners 

(see Section 5.2.2.1).  

It is possible to define multiple objects and outcomes for any activity system depending on 

the focus of attention. A community comprises people who are, whether directly or indirectly, 

connected to the activity, and is “left largely as an intuitive notion” (Lave & Wenger, 1991, p. 

42). In this study, a community’s members were connected directly with the workplace and 

could comprise the apprentices, skilled mechanical engineering tradespersons, educators, 

mentors and polytechnic tutors, or indirectly, such as employers and clients. Tools and signs 

are broadly interpreted to mean any physical object, language, sign, or person who directly or 

indirectly promotes learning. Tools also included people who acted as role models involved 

in conversation or mentoring, communication and social interaction, and intellectual tools 

such as problem solving. The influences of these tools are discussed later where appropriate 

and within their contexts. With regard to the division of labour, or roles, it was possible for a 

person to have multiple roles, as with the discussion of tools above. It was also possible for 

the nature of the roles to change for both apprentice and educator as the apprentice grew in 

skill and experience.  

The participants in this study were each involved in many different and sometimes non-

overlapping activity systems. Each activity system had its own four key elements of tools and 

signs, rules, community, and roles or division of labour (see Figure 5). Therefore, a change in 
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an activity system could be made by changing any one of the four key elements, especially 

subjects and community.  

Moreover, activity systems are flexible and can be changed according to the focus of interest. 

In this case, a change of focus will require a change in subjects and possibly also in the 

community, tools, roles, and rules. There will also be qualitative changes when the focus is 

changed from larger to smaller activity systems, such as at the local workplace level. The 

community would be much smaller and probably less culturally diverse than if the 

community were a country taken as a whole. Similarly, expanding the community to include 

family or whānau would result in a different activity system with different rules and roles and 

possibly tools than if the community were restricted to workplace groups only.  

The inclusion of individual activity systems containing just one subject is important to this 

study. While Engeström accepts that an individual may be part of many activity systems, his 

own focus was often on large organisations where expansive cycles related to changes in the 

largest activity system being considered rather than individuals within that system. Also, 

Engeström’s applications in large organisations involved complex, interrelated issues which 

were often novel, and hence there was no competent and experienced ‘teacher’ available who 

knew what had to be learned. In these cases, knowledge needed to be constructed, an example 

of problem solving (Engeström, 2001). However, activity systems may be small as well as 

large. Therefore, referring to third-generation activity theory where the unit of analysis is 

expanded to at least two interacting activity systems, Engeström cites the example of 

schooling, which is “analysed as dynamics within and interplay between the activity systems 

of the student and the teacher, possibly also including other relevant activity systems” 

(Engeström & Glăveanu, 2012, p. 516). In my study, the interplay within and between 

activity systems existed at multiple levels, for example, a large company with multiple 

departments, a group of engineers coming together to work on a particular project, or student-

teacher and apprentice-mentor interactions.   

Therefore, it is important to note that considering two or more activity systems does not 

necessarily imply a large number of subjects. The references to the student and the teacher 

having their own “activity systems”, and attention being paid to the dynamics of the “subject” 

suggest that activity systems may have one subject, and where the focus of the learning is on 

that one individual subject. However, the community of that individual activity system may 

still contain many people. Therefore, Engeström’s emphasis that the individual cannot be 

understood apart from the activity system still applies. Other scholars have adapted 

Engeström’s learning model to apply to individual activity systems where the focus of 

interest may be just one subject rather than any of their much larger activity systems 

(FitzSimons, 2003; Williams et al., 2001). In such cases, individuals not only belonged to 

large activity systems, but also belonged to an individual activity system where they also 

experienced multi-voicedness, historicity, contradictions, and individual expansive cycles of 

learning.  

A further consideration is that expansive cycles in an individual’s activity system may (or 

may not) result in an expansive cycle in their larger activity systems. If the largest activity 
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system being considered is very large, as with mechanical engineers, an expansive cycle in an 

individual may not be identifiable in the total activity system, even if it was known to have 

taken place. The question of the interaction of individual activity systems with larger activity 

systems is therefore important. According to Lautenbach (2011) in a study of university 

lecturers’ engagement with educational technologies, individual expansive cycles of learning 

were unique to the individuals, but individual lecturers provided new insights to others in 

their larger activity systems derived from the emerging expansive cycles within their 

individual activity systems. Moreover, further development in expansive cycles in the larger 

activity system depended on “a strong and extended community in which lecturers can share, 

think and grow” (Lautenbach, 2011, p. 713). Therefore, in these cases, individual expansive 

cycles of learning and social interaction are necessary components of long-term expansive 

cycles of learning in the larger activity systems being considered.  

In summary, consideration of both individual and larger activity systems were relevant to my 

study, since the engineers worked at both individual and group levels, especially in problem-

solving situations.  

3.3.3. Engeström’s matrix of expansive learning and the research questions 

This section relates the research questions to Engeström’s matrix of expansive learning. Each 

section of the findings, discussion and interpretation is also related to the main research 

question and associated sub-questions of this thesis which concern the key features of 

mathematical learning, the nature of the mathematical skills used, how they are applied, and 

how they are learned and developed (see Section 1.3). There are two foci in these research 

questions - learning, which in this context refers to an emphasis on mathematical aspects of 

learning in a mechanical engineering context, and pathway, which suggests the process of 

development of the apprentice during the apprenticeship years into a fully qualified 

tradesperson.  

Table 4 shows brief outlines of how Engeström’s “What do they learn?” and “How do they 

learn?” questions, elements and principles relate to this study. The notes are intended to be 

illustrative only and are not intended to be exhaustive.  
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Table 4 Adaptation of Engeström’s matrix for this study, Chapter 4 and Chapter 5 

 

To summarize, Table 4 outlines the application of Engeström’s matrix to my study. In the 

next section, I discuss how the discussion above is applied to the methods used in the study. 

3.3.4. CHAT and Situated Learning theoretical frameworks in this study 

In this section, I outline the contribution CHAT made to this study and discuss 

correspondences between my study and the CHAT framework. I then discuss the reasons for 

adopting a CHAT framework. I follow this by explaining the advantages of using both the SL 

and CHAT frameworks and how they were used.  

With regard to the CHAT framework and this study, an important contribution CHAT made 

to the study was to allow the analysis, understanding and interpretation of the various 

mechanical engineering activity systems, some aspects of which are illustrated in Table 5.  

 

What do they learn? How is it applied? 

Chapter 4  

Main Research Question,  

Sub-question 1, Sub-question 2 

How do they learn?  

Chapter 5 

Main Research Question,  

Sub-question 3 

Activity System Defined according to Engeström’s 

diagram (see Figure 5) and where the 

subjects were either individuals or groups 

Defined according to Engeström’s 

diagram (see Figure 5) and where the 

subjects were either individuals or groups 

Multi-voicedness What voices representing different points 

of view were based on branch 

specialisation, or generation? 

How frequent were voices of different 

points of view dependent on branch 

specialisation, generation? 

Historicity What skills and attitudes to mathematics 

might have resulted from childhood, 

school and other experiences? 

To what extent were attitudes to learning 

instilled from the school approach to 

mathematics learning? 

Contradictions To what extent were contradictions due to 

school experiences of mathematics 

regarded as irrelevant to the real world, 

recognition of only minimal procedural 

knowledge concentrating on particular 

skills only versus the need to foster 

creativity etc., and wide education? 

Were contradictions caused between 

formal and traditional approaches to 

learning mathematics versus informal 

constructivist approaches? 

Expansive Cycle How difficult was the transition from the 

school approach to mathematics learning 

to a workplace approach and demands? 

How much more attention was given in 

the workplace approach to direct practical 

application of mathematics than at 

school? 
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Table 5 The seven key elements in Engeström’s learning model and my study 

Elements of 

Engeström’s 

model 

Identification of Engeström’s elements in this study 

Subjects Mechanical engineering trades apprentices and tradespersons 

 Object 

The object is related to identifying key features of mathematical learning, the 

nature of the mathematics skills, and how they are applied and developed (see 

Section 1.3)  

Tools 
Schooling and apprenticeship training which were intended to provide numeracy, 

physical tools, language, and mathematical competence 

Community 
Mechanical engineering apprentices, skilled tradespersons, experts, educators, 

and employers 

Rules 
Formal legal regulations and implicitly agreed-on understandings on what 

constituted proper mechanical engineering practice and training 

Roles 
Mutual responsibilities of apprentices, skilled tradespersons, experts, educators 

and employers 

Outcome The promotion of competent and confident mechanical engineers 

The activity systems are portrayed as interacting elements whose combined operations 

produce one or more outcomes. Moreover, CHAT shows how people’s roles can change 

depending on specialist skills younger members and other new arrivals had obtained from 

prior learning. Therefore, younger members of the community appeared as subjects, tools, 

and even having roles as mentors for enhancing the learning of more experienced engineers 

(see Section 5.2.2.1).  

While Engeström’s principles and elements can be examined singly, the arrows in 

Engeström’s triangle (see Figure 5) indicate that CHAT can identify, describe and analyse 

many complex relationships in an activity system. In this way, CHAT reveals the 

interconnectedness and complexity of learning, the ongoing, non-linear social nature of the 

learning process, and the roles of relationships within a community of practice. The 

interconnectedness of Engeström’s elements and principles is therefore particularly relevant 

to learning and practice in the mechanical engineering trades context. In addition, the CHAT 

framework adopted in this study allowed an efficient and clear description, analysis and 

integration of the data, which came from questionnaire items and semi-structured interviews.  

With regard to justifying a CHAT theoretical frame of reference for this study, I discuss four 

further reasons below, which related to the research questions as well as how the data from 

questions and surveys were analysed. First, there was the identification of appropriate tools to 

develop mathematical and numeracy competence among mechanical engineering apprentices. 

In this case, school and apprenticeship training, mentoring, block courses, discussions with 

already qualified tradespersons were all examples of tools. Second, a CHAT theoretical frame 
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of reference provided an appropriate and effective way to analyse and therefore gain 

understanding of (1) the key features of mathematical learning that characterised the pathway 

from beginning apprentice to skilled tradesperson and then to expert engineer in mechanical 

engineering trades (see Section 1.3), and (2) to analyse how the mechanical engineering 

tradespersons’ school and apprenticeship training served as means of developing 

mathematical and numeracy competence among mechanical engineering apprentices. Third, a 

CHAT theoretical frame of reference assisted in understanding the social structure of the 

mechanical engineering community; in particular, how individuals interacted with the 

community and with each other, and how these interactions may have assisted, or perhaps 

hindered, the development of mathematical and numeracy competence among mechanical 

engineering apprentices. Fourth, a CHAT theoretical frame of reference enabled the 

researcher to manage and make sense of the data obtained from the real world by creating 

themes that could be described, analysed and interpreted. This applied in particular to the 

complexities of the engineers’ work and social interactions.  

This study employed two theoretical frameworks. It is not unusual to choose a second 

framework as a sub-framework contained within a broader framework. For example, Galligan 

(2011) chose Valsiner’s theory to focus on adults’ development in mathematics, and 

FitzSimons et al.’s (2005) discussion of mathematics and numeracy in chemical-spraying-

situated workplace numeracy tasks within a broader framework of social-historical and 

cultural practice. Similarly, LaCroix’s study of pre-apprenticeship plumbers learning imperial 

units employed the sub-framework of Radford’s Theory of Knowledge Objectification (TKO) 

within a CHAT workplace (LaCroix, 2009, 2011a, 2011b, 2014). LaCroix’s studies on the 

development of awareness of imperial units of Canadian apprentices show links with similar 

development in the apprentices and engineers in this study.  

The frameworks in this study needed to incorporate such important factors as the engineers’ 

daily work which employs socially and historically evolving practices, the engineers’ 

cognitive understandings which are also influenced by key social elements, and the 

importance of the change in thinking processes involved along the pathway from school to 

workplace (Williams & Wake, 2007). However, while CHAT acknowledges the primacy of 

social and cultural key elements in learning, a satisfactory theoretical framework for my 

study needed explicit connection with those aspects of the research questions concerning who 

is learning, how the skills are applied, and how the skills are learned. It also needs to show 

how cognitive aspects of the mechanical engineering workplace are developed and applied, 

and how experienced people influence the formal and informal development of younger 

people. Therefore, especially for the formulation of how mathematics skills are applied and 

developed, issues that are crucial to this thesis, a second framework was employed, SL (Lave 

& Wenger, 1991).  

Since the engineers and apprentices often worked closely together to complete their projects, 

then social interaction and communication were important components in the development, 

learning and transmission of mathematical and other tools. SL was chosen as a second 

theoretical framework because it emphasizes social interaction in the learning process. 
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Particularly pertinent points of SL for this study were the concepts of community of practice 

and legitimate peripheral participation (LPP) where a newcomer joins a community on its 

periphery and then gradually moves towards its centre with experience, increasing 

knowledge, skill and expertise (Lave & Wenger, 1991).  

To summarize, I saw CHAT as a broader framework, one of whose strengths was 

generalisability of context, while the strength of SL was its ability to fill in contextual detail. 

For example, the concept of LPP enables focus to be placed on the community of practice 

with insights to be gained on the developmental changes in both individuals and their 

communities. Of course, these are also part of CHAT, but only implicitly so. Therefore, an 

important difference is that SL allows important trends to be investigated in detail. Similarly, 

while CHAT acknowledges contradictions produced by historical factors and rules in general 

terms, SL helps the researcher focus on issues such as breaking bad habits “acquired in 

school” (Lave & Wenger, 1991, p. 73) and the whole process of increasing maturity 

accompanied by growing independence from mentors. Another contrast is the role played and 

the development of higher-order thinking and problem solving overlaps in both CHAT and 

SL, with each contributing different insights and perspectives. In the next section, I discuss 

the details of the methods used in this study.  

3.4. Methods 

This section describes the data generation including the development of the questionnaire 

items and interview questions, the sampling procedures used for recruiting participants, 

quality considerations, and how the data were analysed. The data were in the form of 

questionnaires and semi-structured interviews. These methods were deemed to be efficient 

and unobtrusive ways of forming a rich data set in a mixed methods design. The participants 

were mechanical engineering apprentices, tradespersons and educators, and others (see 

Appendix E). A total of 199 people responded to the questionnaires and 17 were interviewed.  

3.4.1. Data collection tools 

The data were obtained from questionnaires and semi-structured interviews incorporating a 

mixed methods design and were understood in the context of the interpretivist paradigm 

(Crotty, 1998; McChesney & Aldridge, 2019). The data are described in more detail later in 

this section. Elements of qualitative and quantitative research approaches were combined to 

add breadth and depth of understanding (Johnson et al., 2007; Schoonenboom & Johnson, 

2017; Tashakkori & Creswell, 2007). In this way, using both qualitative and quantitative 

approaches was so that they may each reinforce the complementary strengths and mitigate the 

weaknesses in the other (Johnson & Onwuegbuzie, 2004). Therefore, the analyses explored 

different facets of a phenomenon to achieve richer and more detailed understanding (Lopez-

Fernandez & Molina-Azorin, 2011). In this study, the purpose of the quantitative part of a 

study was to gather statistical information about how mathematics was used and learned in 

the mechanical engineering workplaces, while the interviews sought to delve into the 

engineers’ views about its dynamic and process aspects. Also, the questionnaires were used 

to inform the direction of the flexible semi-structured interviews, both during and before the 
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interviews commenced. Interviews with participants, while they were away from their 

machines and not working, were chosen in preference to direct observation because of the 

potential to cause distraction, which could cause expensive mistakes, machine damage, or 

even personal injury. Interviews also enabled me to ask more sophisticated follow-up 

questions which would not have been possible during observations.  

3.4.1.1. Development of the questionnaire items 

Three separate questionnaires were written; the first for pre-apprentices in avionics, a second 

for apprentices, and a third for skilled tradespersons, educators and employers (see Appendix 

F, Appendix G and Appendix H). The avionics pre-apprentices follow a 36-week course 

involving mechanical engineering and electronics components related to flying aircraft. 

Those who successfully complete the course may then consider further specialisation in either 

area. They have been included in this study because the avionics pre-apprentices tend to be 

better mathematically qualified than apprentices in other mechanical engineering 

specialisations.   

The questionnaire items produced data on the participants’ demographic details, attitudes to 

mathematics at school and in the workplace, their school qualifications in several subjects, 

how confident they felt about mathematics, and their views on the best ways of learning 

mathematics. The different questionnaires for each group contained similar questions with 

appropriately modified wording, depending on the experience of the participants. For 

example, in the series of questions with the wording “How often do you think most 

mechanical engineering tradespersons use the following mathematics topics?”, the wording 

for the pre-apprentices was changed to “How often do you think your school experiences 

have prepared you in the following mathematics topics?” The alteration of wording, in this 

case, was because the pre-apprentices tended to have little or no direct mechanical 

engineering workplace experience. The responses to the items were either constructed on a 

Likert scale with a range of one to four (to avoid non-committal midpoint responses), or 

contained open-ended responses (Garland, 1991; Nadler, Weston, & Voyles, 2015). 

A thorough examination of the mathematics, physics and mechanics skills contained in 

Appendix C was made to decide on the topics and possible wording for the questionnaire 

items. This process gave me an overall idea of the mathematics, physics and mechanics 

applications involved. I also prepared some questionnaire items about social interaction and 

learning. The initial draft of the questionnaire items was then discussed with industry 

representatives. This resulted in some repeated and irrelevant items being omitted, and other 

items being added.  

Since it was not at all apparent how detailed investigation of social interaction in the 

mechanical engineering trades workplaces could be comprehensively covered in the 

questionnaire items, this was left as a major focus of the semi-structured interviews. 

However, the questionnaire items did contain sections on the engineers’ preferred methods of 

learning, including aspects of communication and socio-cultural learning. The questions and 

the wording were then rechecked by several experienced engineers in the training 
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organisations and my supervisors. Several changes were made to the wording in some items 

to remove ambiguity. The engineers also strongly supported my suggestion to include 

questions relating to how easy people had found mathematics at school and how they had 

liked it, how well they coped with mathematics in their workplace situation, and how 

concerned the tradespersons were about numeracy capabilities among both apprentices and 

tradespersons. Their advice was incorporated into the final version of the questionnaires (see 

Appendix F, Appendix G, and Appendix H).  

3.4.1.2. Development of the interview questions 

Interviews are one means of understanding meaning in the subjects' lived worlds. Since the 

interviewer registers and interprets the meanings of what the subject says, then interviews are 

consistent with an interpretivist paradigm (Kvale, 2008). In particular, semi-structured 

interviews were chosen for this study because they allowed flexibility to explore new facets 

of the participants’ experiences and views that arose, sometimes unexpectedly as passing 

comments, during the interviews. Such flexibility enriched understandings already known by 

the researcher but also had the potential to identify previously unknown issues.  

Regarding developing the questions for the semi-structured interviews, a series of proposed 

questions and appropriate probes were prepared for ethics approval (see Appendix K). These 

questions centred around “What mathematics skills and knowledge are used in mechanical 

engineering?”, “How are skills in mechanical engineering mathematics developed and 

used?”, “What comparisons do you identify between school and mechanical engineering 

mathematics?”, “How are problem-solving skills and extended reasoning in mathematics 

used in mechanical engineering?” and “What is the role of electronic aids in calculations, and 

the design and control of machines?”  

As with the questionnaire items, these questions were submitted to the engineering educators 

for comment. The statement in the ethics proposal regarding participants bringing a model or 

a drawing of a chosen project to the interview was not followed, mainly because of time and 

physical size considerations (see Appendix K). Instead, I asked them to tell me about their 

experiences of various projects on which they had been involved, complete with sketches 

drawn on paper. This added to my understanding of their means of communication.  

Flexibility in both the style and wording of the questions proved to be essential when 

conducting the interviews. With the skilled tradespersons and especially the educators, an 

open-ended question would likely lead to a lengthy response, often coupled with 

reminiscence and reflection on the meaning of their response. I attribute this to the 

confidence that often came with maturity (Knowles et al., 2011; Merriam, 2018; Mezirow, 

1994, 2018). With the apprentices, especially beginning apprentices, interview responses 

were often quite brief and contained little elaboration. Mentors tended to give apprentices 

tasks commensurate with their engineering and mathematical skills, and therefore the 

apprentices may not have had the necessary experience and knowledge to provide detailed, 

ongoing responses. However, where the apprentices did have the knowledge and my question 

was sufficiently specific, they were able to provide good information and commentary. Even 
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beginning apprentices were particularly forthcoming on their latest projects, the way they 

were being trained on-the-job, and their relationships and communication with the other 

apprentices and tradespersons who frequently went out of their way to help them. Semi-

structured interviews enabled me to quickly focus my questions on areas the participant was 

likely to be qualified to answer.  

3.4.2. Procedure for recruiting participants 

This section describes the procedures followed for recruiting participants for the 

questionnaires and the semi-structured interviews.   

3.4.2.1. The questionnaire participants 

My initial contacts with mechanical engineers and the organisations where they worked were 

through Competenz, the official organisation that develops national trades qualifications 

throughout New Zealand. Competenz offered to make my study known to all their affiliated 

organisations. I also contacted the mechanical engineering educators of every polytechnic in 

New Zealand, and using the internet, some companies within travelling distance in the 

substantial light industrial areas near where I live in south-east Auckland. The result was that 

I was able to gain 199 responses from a wide range of different types of engineering branches 

and companies. 

My contacts felt it would be easier for them to photocopy the questionnaires themselves, scan 

their responses and then send them back to me electronically. As far as the timing of the 

interviews was concerned I fitted in with whatever was most convenient to the participants 

and employers. Negotiation with the relevant authorities proved easy to conduct as most 

people were as keen to interview me as I was to interview them. I entered the questionnaire 

responses as soon as they were returned, and once patterns in the data had begun to emerge in 

the questionnaire data collection, I made a decision to begin interviewing a few carefully 

chosen educators and company training officers (Creswell et al., 2013). These interviews 

closely followed the questions in Appendix K. These early interviews confirmed that it was 

appropriate to include social aspects of the engineers’ work in the interviews because the 

engineers frequently emphasized its importance in their interview responses. From time to 

time while I was updating the quantitative data I would reflect on and review the interview 

process in line with emerging statistical trends.  

Flexibility in the interview situation that is characteristic of semi-structured interviews 

allowed quick changes of direction during the interview to suit the knowledge strengths or 

weaknesses of the participant. Most importantly, I was able to concentrate attention on 

previously unsuspected fruitful lines of inquiry. Creative engineers and problem solvers were 

two groups that were of particular interest to me because these engineers occasionally 

suggested ideas for discussion that interested them. This had the advantage of uncovering 

unusual and unexpected insights into how they felt about their work and their understanding 

of it. Therefore, the study followed an Explanatory Sequential Mixed Methods Design, but 

with two important modifications (S. Othman, Steen, & Fleet, 2021). First, it was impossible 
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to achieve Creswell’s ideal of a random sample that might guarantee representativeness. 

Second, while the study contained the two phases described above by Creswell, the collection 

of the qualitative data from the semi-structured interviews began at a suitable stage before the 

quantitative data collection and analysis from the questionnaires were completed.  

To summarize, the participants were recruited using a snowball approach to seek out 

informed participants. The interviews were begun before the questionnaire data were all 

received, and the flexibility of the semi-structured interviews approach enabled me to use the 

questionnaire data and interview participants’ responses to redirect the interviews to explore 

issues raised by participants. In the next section, I discuss how the sample of participants for 

the interviews was selected. 

3.4.2.2. The interview sample 

For the semi-structured interviews, a “purposive sample” (Punch, 2009, p. 162; Suri, 2011) of 

17 people were selected initially of so-called “key informants” (Sarantakos, 1993, p. 183) 

from people in the industry assumed to represent the various points of view and perspectives. 

They came mainly from the Canterbury and Auckland regions. Some of the people 

interviewed had multiple roles and skillsets - 5 were apprentices, 13 were skilled 

tradespersons, 6 were educators, and 3 had roles in entrepreneurship or apprentice training. 

Therefore, it is highly probable that educators, being a very small minority of mechanical 

engineering tradespersons, were overrepresented in the interview sample. However, with a 

purposive sample, this was intentional, due to educators’ special experience and perspectives, 

communication and teaching skills, perceptiveness, and knowledge of the overall mechanical 

engineering process, current issues and course development. Brief biographical details are 

given of each of the participants interviewed in Appendix E.  

Another reason for using a purposive sample was that I wanted to focus part of the interviews 

on educators’ views regarding apprentice learners and on the knowledge and perspectives of 

engineers with known reputations for innovation and creativity. This was consistent with 

using an interpretivist paradigm and I sought these individuals by asking throughout the 

community, especially through Competenz; hence the sample was both purposive and 

snowball.  

Boyce and Neale (2006) provide a general heuristic for determining the number of people to 

interview in qualitative studies; “that when the same stories, themes, issues, and topics are 

emerging from the interviewees, then a sufficient sample size has been reached” (p. 4). 

However, this criterion for terminating the interview process was subjective and was likely to 

be achieved very early on when the questions were highly structured. Moreover, an additional 

complication about the subjectivity of criteria for choosing a suitable sample size has been 

made by Braun and Clarke (2021c) who emphasise that meaning is generated through 

interpretation of the data, and that determining how many data items should be collected 

cannot be completely determined before the analysis is begun.  
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On the other hand, in the semi-structured framework of this study, new topics were able to 

keep emerging from contextual examples given by the engineers from their wide range of 

experiences in multifarious branches of engineering. Attempts have been made to find a 

heuristic for selecting a suitable sample size by studying how long it took for the same stories 

and so on to emerge from a series of interviews. In one such project involving two different 

sets of interviews, it was found that 14 and 17 interviewees gave suitable data saturation 

criteria for “normative” beliefs without new ideas emerging (Francis et al., 2010, p. 1229).  

My study involved interviews with a purposive sample of 17 people chosen partly by 

snowball principle and partly for their likelihood of representing various points of view and 

experiences. Therefore, the way the sample size was selected, the design and wording of the 

interview questions and the way the interview was conducted influenced the course of the 

interviews and, in turn, the analysis of the results. In the next section, I discuss the quality 

criteria employed in the procedures undertaken to design the questionnaires and interviews. 

3.4.3. Quality considerations 

This section discusses quality considerations surrounding the interpretivist paradigm used in 

this study. However, an important consideration was the assessment made by various scholars 

that while the choice of a research paradigm may not determine the choice of methods 

employed, the question of quality should be determined by the criteria within those methods. 

First, criteria for quality considered appropriate when employing positivist paradigms, such 

as objectivity, reliability, and internal and external validity were thus not suitable for the 

interpretivist stance of this study (Creswell & Miller, 2000; Crotty, 1998; Lincoln & Guba, 

1986; Willis, 2007).  

In this regard, various sets of quality criteria for qualitative studies have been proposed. One 

such example is discussed by Shannon and Hambacher (2014) who outline five dimensions 

of authenticity to consider when evaluating a constructivist inquiry. They are fairness 

(balanced approach to all sides), ontological authenticity (for example, participants’ rights to 

know), educative authenticity (leading to greater knowledge and understanding for 

participants), catalytic authenticity (involving change), and tactical authenticity (power 

relationships) (citing Lincoln & Guba, 1985). 

Methodological rigour in constructivist inquiry is therefore established through an assessment 

of trustworthiness and authenticity. Trustworthiness parallels the positivistic concepts of 

internal and external validity, focusing on an assessment of the inquiry process, while 

authenticity involves an assessment of the meaningfulness and usefulness of interactive 

inquiry processes and social change that results from the above processes. Authenticity is 

unique to constructivist inquiry and has no parallel in the positivistic paradigm (Shannon & 

Hambacher, 2014).  

A further set of criteria proposes eight key markers of quality in qualitative research; a 

worthy topic, sincerity, credibility, resonance, a significant contribution, ethics, and 

meaningful coherence (Tracy, 2010). Another proposal for quality in qualitative studies has 
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been proposed by Lincoln and Guba (1986). They give the following advice for credibility - 

prolonged engagement, persistent observation, triangulation, peer debriefing, negative case 

analysis, and member checks, by which they include soliciting participants’ views concerning 

the researcher’s current understanding and interpretations of the data. For transferability, they 

recommend thick descriptive data so that others can judge the degree of fit or similarity 

between the study and their own contexts where they may wish to apply all or part of the 

findings. For dependability and confirmability, Lincoln and Guba recommend establishing 

audit trails that can be carried through by others.  

The overall purpose of adopting any such criteria is to ensure that the research data and 

methods followed are transparent to the reader, and the results are embedded in the data. 

Thus, following these criteria will lessen some errors and misinterpretations and allow 

readers to more fully and quickly understand an author’s standpoint. However, the question 

of differences between individuals, philosophical schools of thought, interpretations of 

methods, data and interpretation will not be obviated by adopting these criteria.  

With regard to quality criteria appropriate to this study, I have followed the approach 

developed by McChesney (2017), who, given the lack of a clear, pre-existing set of quality 

criteria suitable for interpretivist mixed methods research, combined considerations 

previously put forward by Willis (2007) and Creswell and Miller (2000). As in McChesney’s 

(2017) study, I have documented the ways in which my study aligned with Willis’ six 

techniques through which interpretivist researchers “conduct research in such a way that the 

consumer has some confidence in what you say” (Willis, 2007, p. 220). These six techniques 

are: member checks, participatory research methods, extended experience in the environment, 

peer review, researcher journaling, and audit trails (Willis, 2007). My study reflected five of 

these six techniques, with the exception of member checks (see Section 7.6.4). I have also 

documented the extent to which my study aligned with the nine common “validity 

procedures” adopted by Creswell and Miller (2000, p. 126) according to the paradigm they 

represent. My study incorporated disconfirming evidence, prolonged engagement in the field, 

and thick, rich qualitative description, which are the three of Creswell and Miller’s nine 

procedures that are relevant for constructivist research. Table 6 details how each of Willis’s 

(2007) and Creswell and Miller’s (2000) points were enacted in my study.  

Table 6 Alignment of my study with the quality considerations for interpretivist and 

constructivist research identified by Willis (2007) and Creswell and Miller (2000)  

Research 

consideration 

Recommended 

by Willis 

(2007) for 

interpretivist 

research 

Paradigm 

classification 

by Creswell 

and Miller 

(2000) 

Incorporation in my study 

 

Extended 

experience in 

the research 

environment 

Yes 

 

Constructivist 

 

I taught mathematics and physics in New Zealand 

secondary schools from 1972 to 2004. This gave me an 

extended, in-depth experience of young people about to 

enter the trades and other workplaces as apprentices. My 
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experience of mechanical engineering came from 

interactions with my father and lengthy contact and 

discussions with engineering teachers in the secondary 

school environment over many years. I made frequent 

checks throughout the study, especially during the 

interviews, to ensure I was reflecting current 

engineering practice.  

Member 

checks 

Yes 

 

Post-positivist 

 

See 7.6.4 for the discussion of member checks. 

Participatory 

research 

Yes Critical My frequent involvement in interviews as a participant 

was designed to increase my own understandings of the 

engineering context and to elicit further thinking by the 

engineers.  

Peer review 

 

Yes 

 

Critical 

 

Questionnaire items and interview questions were 

extensively reviewed for comprehensiveness, suitability 

and clarity of language by my research supervisors, 

current practicing engineers, and one member of 

Competenz. Also, I frequently asked participants for 

their interpretations and general views of the 

questionnaire items and interview questions. Conference 

presentations and published papers relating to my 

master’s dissertation on mathematics in the mechanical 

engineering trades context provided feedback from 

academic researchers.  

Researcher 

journaling 

 

Yes 

 

Critical 

 

Extensive notes were kept of important factors such as 

theoretical frameworks, paradigms, literature references, 

debates on philosophy and approach, research methods, 

decisions, and thoughts regarding emerging trends from 

the questionnaire data analysis. This journaling 

influenced the way the interviews were approached.  

Audit trails 

 

Yes 

 

Post-positivist 

 

Extensive documentation of participants’ audio 

recordings, emails, analysis spreadsheets and SPSS files 

containing coded questionnaire data were retained for 

subsequent consultation. Thesis drafts were saved 

regularly and stored daily under the date for that day so 

that past versions remained available for review. Raw 

data, including hard copy questionnaires, data 

spreadsheets, interview notes, interview audio 

recordings, interview transcripts, and signed consent 

forms were retained and stored following the University 

of Waikato data management policies. Anonymised 

individual participant codes were used in presenting 

results (see Chapters 4 and 5) to demonstrate the way 

that the conclusions were grounded in the qualitative 

data obtained from the interviews, and then integrated 

with the questionnaire data.  
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Disconfirming 

evidence 

 

 Constructivist 

 

Disconfirming evidence was frequently sought during 

the interviews, often with a view to teasing out deeper 

knowledge or exceptions, and then reported in the 

presentation of results (see Chapters 4 and 5). 

Thick, rich 

description 

 Constructivist 

 

Extended descriptions of engineering contexts in the 

findings extended and clarified the engineers’ views to 

enrich readers’ understanding of their worldviews. 

Direct quotations from the engineers’ dialogues further 

enriched the findings and my understanding of them. 

This was to facilitate interpreting the results and how 

they might be transferred to other contexts.  

To summarize, this section identified issues surrounding quality considerations and how they 

were addressed. Quality considerations associated with the interpretivist paradigm included 

such factors as fairness, authenticity, trustworthiness, credibility, and resonance. Therefore, 

while my prolonged engagement in teaching mathematics to teenagers and contact with 

mechanical engineers helped achieve these goals, it was also necessary for me to continually 

engage closely with the participants to ensure that my background knowledge was up-to-date. 

I also had the questionnaire items and interview questions peer-reviewed by current engineers 

and I frequently asked the interview participants for their views on the interview questions. In 

addition, the supplementary questions I asked were designed to improve my knowledge of the 

engineering environment and check for accuracy and comprehensiveness. I attempted to 

create a rich and thick description of the data that would allow others to judge how well my 

study might be transferred to their own contexts. The next section discusses how the data 

were analysed.  

3.4.4. Data analysis  

This section discusses the analysis of both the quantitative and qualitative data. The data 

consisted of two types: responses to questionnaire items and the transcripts of the semi-

structured interviews.  

3.4.4.1. Quantitative data from the questionnaires 

As mentioned above, the quantitative data collection began first. As the data arrived, the 

participants’ questionnaire responses were entered into an EXCEL spreadsheet. Some item 

numbers needed to be realigned from the original questionnaires since the three different 

questionnaires had variations in the numbering of the items. These data then formed one large 

table with numeric codes in the first column denoting the participant identification number. 

Each row in the table contained the data for each of the rating responses for each participant. 

At a convenient point, the data were transferred from EXCEL to SPSS to take advantage of 

its formatting and graphical procedures. Simple one-factor tables were drawn up, initially to 

get a feel for the data. Splits of some of the data sets were then performed to identify 

differences between groups of engineers, such as apprentices and skilled tradespersons, and 

two-factor tables were constructed of relevant pairs of factors, such as how easy the 
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apprentices found mathematics at school and in their work. The overall intention was to 

identify and describe broad trends from the quantitative data.  

3.4.4.2. Qualitative data from the semi-structured interviews 

Both thematic analysis and CHAT were used to analyse the qualitative interview data. 

Thematic analysis (TA) has been described as “ a method for identifying, analysing, and 

interpreting patterns of meaning (‘themes’) within qualitative data” (Braun & Clarke, 2006, 

p. 297). More accurately, TA is not just a single method, but rather a collection of methods. 

TA employs a series of steps: preparing the data for analysis, transcribing the data, becoming 

familiar with the data, memoing the data, generating initial codes, searching the initial codes 

for categories and then themes, reviewing the themes, redefining the themes, and then writing 

up (Braun & Clarke, 2006; Lester, Cho, & Lochmiller, 2020; M. Maguire & Delahunt, 2017).  

Reflexive TA was chosen for this study because it  

captures approaches that fully embrace qualitative research values and the subjective 

skills the researcher brings to the process … Analysis, which can be more inductive or 

more theoretical/deductive, is a situated interpretative reflexive process. Coding is 

open and organic, with no use of any coding framework. Themes should be the final 

‘outcome’ of data coding and iterative theme development (Braun & Clarke, 2021a, p. 

333).  

Reflexive TA can be approached in various ways, for example, inductive, deductive, 

semantic, latent, essentialist, and constructionist. It is important to understand that these 

orientations are neither fixed nor mutually exclusive, but are continua with many variations 

being possible. Moreover, the “separation between orientations isn’t always rigid. What is 

vitally important is that the analysis is theoretically coherent and consistent” (Braun & 

Clarke, 2021b, n.p.).  

The advantages of TA are its flexibility which allows new insights to be obtained and 

different ways of interpreting meaning to be performed. TA also facilitates investigations of 

phenomena across and within interview transcripts to be performed, and the interrogation of 

data. One disadvantage is that some data may be overlooked. Another disadvantage is that 

TA requires the researchers to be aware of their own subjective interpretations of the data. A 

summary of the process I followed in analysing the data from the semi-structured interviews 

is shown in Table 7.  

I transcribed the recorded interviews and compiled them into a single compendium, in both 

paper and electronic form, with one chapter for each interview participant. I read through the 

transcripts from the interviews and identified patterns in meaning within and across the data. 

Successively reading through all of the transcripts and using a system of coloured 

highlighters allowed certain themes to be identified, marked and annotated in the margins of 

the transcripts. Some of the themes had been decided in advance, for example, the 

mathematical topics they needed to learn such as decimals and measurement, and what the 
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apprentices needed to learn about other necessary skills, such as communication and problem 

solving. Other themes emerged either throughout the interview process or as I was reading 

the transcripts. Each transcript was then examined in more detail “for themes within 

individual issues, or between them, or running through the entire set of interviews” 

(Davidson & Tolich, 1999, p. 239) and immersing myself in the data reading “to make sense 

of the whole set of data and to understand what [was] going on” (Azungah, 2018, p. 383).  

Table 7: Phases of research showing cycles of iteration for emerging themes 

Phase 1: Preparation and identification of initial themes 

Research meeting 1 Discussion with supervisors of the aims of the project and 

potential semi-structured interview questions.  

 Preparation of potential questions for semi-structured interviews.   

Research meeting 2 Submission of potential questions to supervisors.  

 Revisions made according to supervisors’ comments; submission 

of questions to engineers; revisions made according to engineers’ 

comments. 

Research meeting 3 Meeting with supervisors; decision made to approve questions. 

Data collection  Interviews conducted. 

Data analysis Interviews transcribed and read many times; NVivo codes created. 

Transcripts examined for emerging themes; memos and 

widespread annotations made to the compendium of transcripts.  

Phase 2: Reflection and identification of further themes 
 

Review of data to refine themes and identify further emerging 

themes, especially interconnectedness of themes. Themes 

redefined according to newly understood interconnections. 

Research meeting 4 Themes discussed with supervisors 

 Themes further refined and results written up, paying particular 

attention to interconnections 

Identifying and inserting CHAT elements and principles also formed part of the reading and 

annotation process. This allowed me to investigate the effects of individual elements, such as 

physical or intellectual tools, and how they interacted with principles such as multi-

voicedness, historicity, contradictions, and especially, expansive cycles of learning. This 

exercise was done iteratively by hand and eventually gave me a feel for the data, particularly 
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who said what, and sometimes, why they said it. Engeström’s elements and principles 

differed from theme to theme, for example, tools featured prominently when analysing 

knowledge and skills while roles and community became much more important when 

discussing learning and mentoring.  

The transcripts were also given initial NVivo codes regarding general issues which were then 

used to investigate the themes that had arisen, with a view of identifying and understanding 

their interconnections (Lester et al., 2020). The main advantages of using NVivo in my study 

were to identify and highlight masses of detail, which created a hierarchal and cross-sectional 

picture of how the data had been developed, to read individual stories easily, or to look at the 

data via theme and then subtheme. Therefore, once the codes had been assigned, I was able in 

a short time to review all the comments made by the interview participants on any particular 

theme, and then compare different groups, such as younger and older engineers’ views.  

Some sections of the tagged passages overlapped several different themes. For example, an 

engineer’s use of decimals in the context of his work might easily become part of an old-

timer’s yarns about the various stages of his own pathway, but now within the context of 

reminiscence and reflection (see Section 6.3.5). In this way, I could compare a series of 

snapshots reflecting the differences in outlook of engineers over several decades and age 

groups. This was particularly effective in comparing the old-timers with the young 

apprentices. However, one problem of using this approach was deciding what was 

unchanging and what could be ascribed to generational difference, including the impact of 

new people with innovative ideas and the desire to make change happen (Lave, 1977, 1985, 

1989; Lave & Wenger, 1991).  

3.4.4.3. Integrating the quantitative and qualitative findings 

This section discusses the integration of the quantitative and qualitative findings. In order to 

make mixed methods research superior to mono-method studies, it is necessary that the 

integration process relates the various components of the investigation to each other. Without 

proper integration, the study can degenerate into two separate and unrelated studies (Yin, 

2006). In my study, the qualitative and the quantitative data have equal footing and are 

intended to complement one other or to enhance or enrich the results from the other method. 

Accordingly, in order to allow the reader to follow more readily the integration, I decided to 

present both the quantitative and qualitative data pertaining to each topic investigated, their 

analysis and interpretation side-by-side in one section, rather than in separate sections as is 

sometimes the approach. Therefore, the quantitative data of mainly Likert Scale values 

simply provides a distribution of numbers of ticks for each box. This is undoubtedly useful 

for ascertaining the views of the group as a whole but tells us nothing about why an 

individual person ticked a particular box. Similarly, having the interview transcripts without 

the quantitative data would provide no information on the group taken as a whole, and while 

the individual information may be powerful, we would have no idea of its generality. 

However, having the interviewed participant’s questionnaire responses available before and 

during the interview allowed me to draw out the detail of the individual’s choices. Moreover, 

these quantitative data could influence the way I approached the interviews (see Table 6).  
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The study was set up in the belief that both types of data would yield insights into the 

research question under investigation. Accordingly, integration of the findings took place 

when placed side by side for interpretation and to benefit the reader’s understanding (Johnson 

& Onwuegbuzie, 2004). Where both quantitative and qualitative data were available, the 

quantitative is presented first and then the qualitative. This allows the surrounding discussion 

and interpretation to highlight the aspects of the findings from the two sources of data and 

demonstrate their separate yet complementary insights.  

In summary, this section focused on the development of the two data sources of this mixed 

methods, interpretivist study. Questionnaire items and structured-interview questions were 

prepared in line with the research questions and in consultation with supervisors and 

representatives from the mechanical engineering trades. Participants for the questionnaires 

were selected from apprentices, skilled tradespersons and educators by approaching contacts 

through Competenz and polytechnics in New Zealand. Interview participants were selected 

according to purposive sampling to include a preponderance of views of experts with detailed 

knowledge and experience of the mechanical engineering trades as well as tradespeople and 

apprentices. The main quality considerations surrounding the research were that it should be 

carried out in such a way that confidence could be placed in its conclusions and according to 

the quality considerations for interpretivist and constructivist research identified by Willis 

(2007) and Creswell and Miller (2000). Finally, regarding the integration of the quantitative 

and qualitative phases of the data, these were undertaken at least partly concurrently and 

during the interpretation of the findings.  

3.5. Ethics 

Ethics is an important issue in all areas of research and alludes to questions surrounding 

moral issues and decisions confronting participants and their organisations. Ethics concerns 

moral ideals, character, policies and relationships between people, and their related issues 

(Barry & Herkert, 2017; Miles & Huberman, 1994; Punch, 2009; Starrett, Lara, & Bertha, 

2017). The following discussion is about ethics issues relevant to the context of my study. 

These are based on the New Zealand Association for Research in Education Ethical 

Guidelines 2008 (Smith, 2010), and the University of Waikato’s Ethical Conduct in Human 

Research and Related Activities Regulations (University of Waikato, 2008) (see Appendix 

L).  

The emphasis given to particular ethical issues varies according to context. Therefore, while 

confidentiality is important in child studies to protect vulnerable children, in my study 

confidentiality is an important issue to guard participants’ personal relationships within the 

workplace, their knowledge of others’ relationships in the workplace, and knowledge of 

company secrets. Therefore, it was emphasized that while every effort would be made to 

ensure both individual and organisation confidentiality, this could not be guaranteed. To 

achieve this, pseudonyms were used for individuals and care was taken to remove any 

identifying information in the final thesis and any reporting of findings. Similarly, while the 

findings could be reported in conference and written presentations, organisations were not 

identified as such, but were referred to as “the organisation”.  
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Regarding the ethics of power relationships in interview situations, Corbin and Morse (2003) 

state that in semi-structured interviews, the “researcher determines the structure of the 

interview and agenda through the questions asked, [while the] participant controls the amount 

of information provided in responses” (p. 340). In the case of my study, an important ethical 

issue regarding power relationships was participants feeling compelled to give information 

that could breach their own privacy and anonymity, with potential social, financial, legal and 

political consequences for the participant, the participant’s workplace relationships, the 

participant’s family, and for the company. Accordingly, at the beginning of each interview, I 

reminded the participants of the ethical requirements surrounding their rights and my study 

(see Appendix I and Appendix J).  

With regard to why this study is worthwhile and to whom, the study focuses on mechanical 

engineering mathematics, how it is applied in practice and how it is learned. Issues identified 

in the study are the importance of basic mathematics and numeracy skills, higher-order 

thinking such as problem solving, and social interaction. At the present time, only anecdotal 

evidence is available on how sophisticated engineering skills are developed and applied, the 

specific mathematics difficulties mechanical engineers face, and how many engineers 

continue to have difficulties even after they become qualified. Therefore, this study is likely 

to shed light on an underdeveloped area of workplace mathematics and to contribute to the 

overall understanding of how mathematics is applied and learned in one workplace context. 

The findings here may possibly provide pointers for understanding the application of 

mathematics in other workplace contexts.  

With regard to who benefits from this research, this research is very relevant to the current 

situations in New Zealand and worldwide where there are shortages of skilled tradespersons 

and mathematics skills need to be enhanced. Moreover, the research has shown the 

importance of social interaction and communication in determining how learning takes place 

in the workplace situation. Therefore, this research may be of immediate benefit to the 

mechanical engineering trades community and in other vocations that are high users of 

mathematics.  

The time commitment of participants to complete the questionnaires was about 15 minutes. 

The semi-structured interviews typically lasted 30 minutes and were scheduled at times and 

places convenient to the participants and, if relevant, their employers, who were also given 

appropriate information sheets and consent forms (see Appendix M and Appendix N). A 

small amount of time was also needed on the part of educators and company administrators to 

photocopy the questionnaires, which they agreed to do without any suggestion on my part, 

and to return them to me either by post or electronically.  

Informed consent was required for all participants. However, since they were all 16 years of 

age or older parental or caregiver consent was not necessary. Information sheets were given 

to individual participants and their companies, where appropriate, to advise them about the 

research and to gain permission for participation, including site access. It was stressed at the 

beginning of the interview that there was no coercion being placed on participants to take part 
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in the study and that the researcher was not involved in either a teaching or commercial 

relationship with the participants.  

Concerning the protection and storage of data, it was explained that the information and data 

obtained from participants could be used in the thesis and other scholarly publications and/or 

publications. Further consent from the participants would be sought if dissemination of the 

information was to go beyond this. In all cases, pseudonyms were used to protect the identity 

of participants and the organisations they represented. However, it may be that certain of the 

participants and the organisations they represented may be known to each other, especially in 

the case of those who have been contacted as a result of being recommended by another 

participant.  

Power differentials between the researcher and the participants were important. It was 

emphasized to the participants that they had the right to refuse to answer any question, or 

withdraw from the interview at any time, or withdraw information they had provided up until 

the data analysis began in June, 2017. In addition, the participants were treated with respect 

during the interviews. Actions on my part, such as listening carefully, not treating as inferior 

any lack of academic success, and speaking in a manner that was confidence-building and 

non-threatening, were all likely to help safeguard participants’ rights and put them at ease.  

There was also a wide range of ethnic and cultural backgrounds among the participants, 

including some recent immigrants. If social and cultural considerations were to become 

apparent during the research, then appropriate advice would be sought from Ngarewa 

Hawera, Associate Director Māori Education - Te Hononga School of Curriculum and 

Pedagogy who agreed to act as a cultural adviser. Accordingly, ethics approval for the study 

was submitted to the University of Waikato Ethics Committee and approved on 10 August, 

2016.  

3.6. Chapter summary 

This chapter has detailed the methodology of the study and the methods employed to 

investigate the main research question and the three research sub-questions defined in Section 

1.3. An interpretivist paradigm was chosen for this study to reflect an emphasis on the 

standpoints and personal choices of the participants. A mixed methods design was used with 

data being collected from questionnaires and semi-structured interviews. The hazardous 

nature of the mechanical engineering workplace ruled out interviewing engineers when they 

were working (see Section 3.4.1). CHAT and SL were chosen as theoretical frameworks for 

the study. CHAT tended to provide a wider focus on groups, while SL was useful for filling 

in the detail of the dynamics in the mechanical engineering workplaces (see Section 3.3.4).  

The methods used to design the questionnaire items and interview questions in conjunction 

with practicing engineering educators were reported in Section 3.4.1. In total, 199 

questionnaire responses were received and 17 people were interviewed. The manner in which 

the samples were chosen were described in Section 3.4.2. Contacts within the mechanical 

engineering trades were initially made through Competenz. A purposive sample was chosen 
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to include the views of apprentices, skilled tradespersons, and educators, as well as people 

likely to be experts with detailed knowledge and experience. The sample was then extended 

using the snowball principle on the recommendations of these new participants.  

The quality considerations and methods of data analysis were reported in Section 3.4.3 and 

Section 3.4.4. Questionnaire and interview data were integrated to form a rich data set that 

offered complementary viewpoints. The qualitative data from the interviews and the 

quantitative data from the questionnaires needed to be integrated to avoid the study becoming 

two separate studies (Bazeley, 2002; Johnson & Onwuegbuzie, 2004; Yin, 2006). Therefore, 

it was decided to present the two sets of data side by side for each section and sub-section of 

the findings. In this way, they together formed a rich data set to make their mutual 

contributions to understanding.  

Ethics considerations were described in Section 3.5 and were based on the NZARE Ethical 

Guidelines 2008 (Smith, 2010), and the University of Waikato’s Ethical Conduct in Human 

Research and Related Activities Regulations (University of Waikato, 2008) (see Appendix 

L).  

In chapters 4 and 5 of this thesis I discuss and interpret the findings according to the 

methodology outlined in this chapter. Chapter 6 then discusses and analyses the findings in 

the light of the literature review, and Chapter 7 draws conclusions about the study.  
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Chapter 4. Findings - The nature and application of mathematics knowledge and skills 

Introduction  

The previous chapter explained the methodology and methods used to seek answers to the 

main, overarching research question: What key features of mathematical learning characterise 

the pathway from beginning apprentice to skilled tradesperson and then to expert engineer in 

mechanical engineering? In the next two chapters, I present the findings that emerged from 

the data collection and analysis. The findings are organised according to significant themes 

that relate to the overarching research question and the three sub-questions about the nature 

of the mathematical skills, how they were applied, and how the skills were learned and 

developed.  

I report the findings in two chapters because the nature and application of mathematical 

knowledge and skills fit naturally together in one part (Chapter 4), while the learning and 

development of mathematical knowledge and skills fit naturally into a separate second part 

(Chapter 5). Chapter 4 is divided into two sections. Section 4.1 focuses on analysing the 

mathematics skills and knowledge, their importance, and the calculations performed in 

engineering contexts. Section 4.2 focuses on how the skills and knowledge are applied in 

mechanical engineering trades contexts, often requiring higher-order skills such as problem 

solving, creativity and extended reasoning. Section 4.3 summarizes the chapter.  

The findings are seen through the lens of the CHAT theory as introduced in Chapter 3. In this 

chapter, an intersection with Engeström’s third question “What do they learn?” is evident, 

while in the next chapter, the presented findings align with Engeström’s fourth question 

“How do they learn?” Engeström’s elements (tools, rules, community, and roles) and 

principles (activity system, multi-voicedness, historicity, contradictions and expansive 

cycles) feature in both chapters (Engeström, 2001; FitzSimons, 2003).  

Since this study used mixed methods that involved multiple data sets obtained from 

questionnaires and interviews, I present the data in sections and subsections around common 

themes. The questionnaire and interview data and my interpretations of them are analysed 

side by side, thus linking and integrating the questionnaire and interview data together and 

with the themes in an ongoing way. I use vignettes from the interview data to illustrate the 

complex and rich detail of the engineers’ thinking as they apply mathematics in practical 

contexts.    

It was important to explore the nature of the mathematics knowledge and skills used by the 

participants because of their application in engineering workplaces. This includes not only 

basic mathematics and numeracy skills, but also ancillary, non-mathematical skills such as 

higher-order thinking, problem solving, creativity and extended reasoning. Ancillary skills 

are inherently woven into the nature of workplace mathematics; these findings are included 

because they were expected to form an integral part of applying mathematics in mechanical 

engineering trades contexts (see Section 1.3).  
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4.1. Mathematics knowledge and skills 

The key factors that emerged from the data about mathematical knowledge and skills were 

the engineers’ awareness of their importance, and the skills they needed with numbers, 

calculation in context, and mental calculation (see Figure 6). I begin by considering the 

engineers’ views of how frequently they use mathematics skills in their work. This 

established a connection with the mathematical skills the engineers consider important and 

one possible answer to Engeström’s second question, ‘Why do they learn?’. Regarding 

Engeström’s elements, this section is concerned mainly with intellectual or physical tools or 

how intellectual and physical tools interconnect. However, the community of engineers also 

played an important role, especially in deciding the rules governing how, and in what 

circumstances, the tools should be applied.  

4.1.1. The importance of mathematics knowledge and skills 

It is necessary to establish the importance of mathematics knowledge and skills to the 

mechanical engineering trades. One indication of this is given by analysing the ten 

questionnaire items relating to ‘How often do you think most mechanical engineering 

tradespersons use the following mathematics topics?’ (see Figure 6).  

 

Figure 6 Percentages of educator/tradespersons and apprentices indicating how often 

mathematics topics were used, n = 172-175 participants per item 
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The data for these items were collected from approximately7 175 educator/tradespersons and 

apprentices (excluding the avionics pre-apprentices). Figure 6 shows that converting length 

and mass units, substituting in a formula, reading graphs and tables, and rounding and 

calculating with decimals were all used by at least one-third of the educator/tradespersons 

and apprentices at least once every day. Therefore, these are high-frequency skills that need 

to be highly developed in all engineers.  

In contrast, changing the subject of a formula, drawing graphs and using scientific notation 

were seldom or never used by more than one-third of participants. While these skills may be 

low frequency and dependent on branch specialisation, they nevertheless are necessary and 

require high development in engineers in those branches. From the interviews, apart from the 

specialised welding branch, all engineers stressed the importance of mathematics and 

numeracy skills. For example, Murray8 (engineer) specifically identified mathematical skills, 

such as reading graphs and scales, reading and interpreting numbers, measurement and 

reading scales as being important considerations of workplace efficiency.  

The mathematical and higher-order skills can be regarded as tools in an Engeström activity 

system that are used to solve mechanical engineering problems. The data here briefly answer 

Engeström’s (2001) second question, “Why do they learn?” and establish the importance of 

all ten topics for mechanical engineering trades because they were used extensively by at 

least some engineers on a regular basis. Reference to the importance of these skills and the 

complexities of their application will be made regularly throughout this thesis. Important 

skills were understanding and applying numbers and performing calculations, which I now 

discuss.  

4.1.2. Skill with numbers  

Appreciating the importance of number and its role in influencing the judgments and 

decisions that mechanical engineering tradespersons continually make is a key feature of 

mathematical learning. I examine here the need for calculation and measurement accuracy, 

and relate this to precision and tolerances.  

4.1.2.1. The need for calculation and measurement accuracy 

The views of three experienced engineers are analysed here on calculation errors. Calculation 

errors sometimes have serious consequences and are therefore a major contradiction in 

engineering communities. Robert (expert engineer, educator and entrepreneur) believed that a 

thorough grounding in number as he was taught in primary school, the “basics” as he put it, 

was “ABSOLUTELY essential” because they were used daily. Paul (training officer) 

expressed a similar view. He felt that apprentices correctly converting units for areas and 

volumes would be “about 50 : 50”. When I asked if getting the decimal point wrong on the 

machine, or making something ten times too big or too small was important, Paul initially 

spoke quietly, but then became emphatic; “getting the decimal point in the correct place on 

 
7 The number of responses for each item differed because not all participants answered every item.  
8 Pseudonyms were used throughout this thesis for participants.  
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the machine is CRUCIAL … you can crash a machine and do some serious damage”. 

However, he added that some machines allow simulations to check “if it’s gonna shoot off 

one metre instead of ten centimetres”. Paul revealed a contradiction when he said, “having 

that basic understanding allows you to be a better machinist, [but] technology means that 

knowing all the basics isn’t a requirement and that some amazing stuff could be made 

without necessarily knowing the basics”. 

Incorrect decimal point placement usually has serious consequences, which the 

engineering communities wish to obviate. Stephen (avionics educator) acknowledged 

that “the problem of getting the wrong decimal place is probably one of the commonest 

problems we would have”. One way to minimise errors is to build machines that 

simulate the action to be taken before actually performing it. This is a fail/safe 

mechanism. Another way is to employ checks and balances, such as tradespersons 

checking each other’s work before machining begins. Calculation errors had important 

consequences, such as financial loss, either by destroyed material, or time loss. In some 

situations, inaccurate calculations could become safety issues, especially in the aircraft 

and other transport industries. However, Stephen also felt that where there were 

important situations involving safety, such as refuelling, where the checks and balances 

put in place were sufficiently rigorous that errors “couldn’t really happen”.  

The engineers I interviewed regarded getting the right answer as very important. The need to 

calculate accurately is therefore a key feature of mathematical learning that needs to take 

place along the apprentice’s pathway. Community involvement and influence were shown in 

the unity among the engineers about the need for calculation accuracy and about the serious 

consequences of errors such as financial loss, time loss, and safety.  

4.1.2.2. Precision and tolerances 

This section reviews the data on tolerances which refer to the permissible variation in the 

lengths in a finished product (see Section 2.4.5). They are related to mathematical conceptual 

and calculation issues, decimal place value, and hence to number sense and a feeling for size.   

Paul (training officer) and many others regarded tolerances as crucial to their work. Paul’s 

company made very large magnets for medical application and these required very fine 

tolerances expressed in microns (thousandths of a millimetre). However, tolerances in 

fabrication, for example, may be two or three millimetres, so it is important to note that the 

wide divergence of tolerances may be partly due to branch specialisation.  

Fine tolerances are an important aspect of decimal use and involve number conceptualization 

as well as the appropriate degree of accuracy required for any given situation. Thus, Murray 

(engineer) spoke about specifications on limits on tightening bolts to avoid stripping threads 

and how to find the specifications to avoid this. Paul (training officer) emphasized the need 

for beginning apprentices to understand “immediately from day one … that tolerances are 

very important” in precision machining where Computer Numeric Control was used to make 

medical-grade equipment. Thus, tolerances are important to engineers because insufficient 
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precision produces a faulty and perhaps dangerous product. Conversely, unnecessary 

precision leads to a waste of time and money.  

As mentioned above, the use of decimals and other mathematical topics in engineering 

appears to be strongly context-based and influenced by the rules of the community and 

practical considerations. This was illustrated by Robert (expert engineer, educator and 

entrepreneur) who described how he used several different mathematical principles to find 

the volume of metal to make a small bolt with a hexagon-shaped head. Robert’s problem was 

complicated by the metal needing to be strongly heated so that it expanded, and then 

(hopefully) would contract down to the correct size once it had cooled. This illustrated the 

interplay between theory and practice: how the engineers sought mathematics that they could 

use exactly, but then relied on engineering judgment to make the final decision about what 

fitted best in the real situation (see Section 2.3.1).  

Sometimes very small measurements were crucial. Arthur related how the length of a 

piece of steel could alter by around 50 microns (fifty thousandths, or one-twentieth of a 

millimetre) due to a 10-degree Celsius temperature rise, and how ball bearings had 

tolerances down to 1 micron (.001 mm). Henry said that similar tolerances applied to 

the production of aircraft parts and Paul (training officer) said that four microns 

tolerance was required for cancer treatment magnets used in brain scanning. Thus, 

apprentices needed to learn to use a micrometer gauge and be able to machine9 to those 

requirements (Courtney, mature engineer). On the other hand, Howard felt that 

maintenance engineering tolerances were often less precise than in other branches. 

Courtney said the same applied to fabrication, perhaps ± 3 mm, and then added that 

different branches required different skills. In fabrication, he needed “Speed!” to gain 

an edge over his competitors.  

Based on the interviews with the mechanical engineers, it was clear that fluency, 

confidence, understanding and having a feel for numbers and number operations were 

important to them. This was especially true when fine precision was required. I now 

discuss how these issues worked out in context.  

4.1.3. Calculation skills in context 

The data showed that calculation was a frequently used skill in the engineering workplace. 

Converting within and between systems of units, substituting in and transposing formulas, 

finding data from tables and graphs, and using Pythagoras and trigonometry were all 

important mathematical tools that engineers used frequently. They were also used in 

conjunction with physics, which played an important role by providing contextual settings to 

apply mathematics in mechanical engineering workplaces.  

 
9 To machine to those requirements = to use a machine to produce those requirements 
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4.1.3.1. Conversion of units 

Several engineers related how successfully converting units of quantities such as length, mass 

and volume posed challenges. This applied to converting between systems of units, such as 

metric and imperial, where 1 inch is equivalent to 25.4 mm. It also applied to converting 

within a system of units; for example, 36 mm is equivalent to 3.6 cm, and 1073 mm is 

equivalent to 1.073 m.  

The challenge became even greater when area units were involved. For example, 1 m is 

equivalent to 100 cm but 1 m2 is equivalent to 10000 cm2. Thus, the challenges were both 

procedural (knowing how to move a decimal point a given number of spaces, and in which 

direction), and conceptual (understanding why a decimal point should be moved that number 

of spaces and in that direction). I first consider how the data illustrated converting length and 

mass units within the metric system, such as metres and millimetres, grams and kilograms. I 

then consider converting between the metric and the imperial systems, such as metres and 

feet, kilograms and pounds.  

Metric conversions were performed frequently by the mechanical engineers. Thus, as shown 

in Figure 6, over half (56%) reported converting length and mass units at least once or twice a 

day, while one in eight reported seldom or never converting length and mass units. Therefore 

there was a wide variation in how often engineers converted units. Warren (educator) said 

that apprentices struggled with changing between metric units, such as mega-, kilo- and 

micro-. Owen (educator) concurred that those involved in electrical engineering were 

continually converting from milli- to centi- to micro- to deci- to kilo- and mega-. However, 

Nikau (apprentice) said that he always used millimetres in his fabrication work, so he did not 

have to change units. 

With regard to imperial units, many engineering applications still use feet and inches for 

length, and pounds for mass or weight. Thus, Howard (engineer) confirmed that there were 

times when converting metric and imperial units were required for locomotives because the 

newer German engines were metric, “but on the old American engines we’re still using 

imperial”. Similarly, Paul (training officer) confirmed that metric-imperial conversions were 

still relevant because of their race shop that built American cars from American parts; Charlie 

said that Boeing aircraft were in imperial; and Arthur talked about marine pistons of, “say 2 

foot in diameter and piston rings that are … ¾ inch-thick … big equipment”.  

However, in contrast to some other engineers, Paul thought that people quickly adapted to 

using both systems of units by hands-on experience; “they just do it”. His view was backed 

up by Courtney (mature engineer), who frequently converted inches, eighths and sixteenths in 

his head. However, lack of exposure to imperial units in New Zealand schools has led to 

conceptualization and conversion problems for apprentices. Thus, Donald (mature engineer), 

who specialised in heavy-duty transport, felt that “it’s more the inches to millimetres … 

yeah! …” that caused difficulties for young apprentices these days. This was in contrast to his 

own school experiences involving familiarity with imperial. He was then introduced early to 

metric during his apprenticeship years, so “I sort of learned inches [at school] and then I 
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started my apprenticeship and I learnt metric, so I sorta got the best of both worlds”. Analysis 

of how apprentices adapted to imperial conversions is made in Section 5.2.3.  

In summary, this section has shown that metric to imperial conversions were among the most 

frequently used mathematical skills among engineers (see Figure 6). Modern-day apprentices 

have been exposed to conversions between metric units for many years at school, but getting 

the decimal point in the right place could still be a problem for some of them. Conversions 

between units are examples of using formulas, which I now discuss.  

4.1.3.2. Formulas and transposition 

The findings showed that substituting in formulas and transposing formulas were among the 

most powerful calculation tools possessed by engineers. They were also the cause of a great 

deal of angst, and hence contradictions, in the engineering community. Murray (engineer) felt 

this angst led to a “fair bit” of mathematics avoidance. From Figure 6, over one-third of the 

participants were substituting in a formula at least once or twice a day, and just over one-fifth 

were changing the subject of a formula at least once a day. These statistics alone would 

suggest the importance of substituting in and transposing formulas in the mechanical 

engineering trades. In contrast, almost one-fifth of the educator/tradespersons and apprentices 

seldom or never substituted in a formula, and one third never changed the subject of a 

formula. Therefore, there was a wide range of usage, which may have been due to 

mathematical qualifications obtained at school, or possibly to branch specialisation.  

Robert (expert engineer, educator and entrepreneur) explained how he would “short circuit” 

things by writing out formulas that he intended to use many times rather than going back to 

first principles for each calculation. He thought that this saved time and money, and probably 

led to fewer errors being made too. Once the formula had been developed, and then checked 

on one or two examples, the numbers only needed to be “locked in” to solve further 

examples. The difficulty here was that developing the formula from scratch was easier said 

than done. Robert used formulas for calculating heat treatment, lifting loads and finding the 

weights of bars.  

There was widespread agreement among the educator/tradespersons and apprentices that they 

found algebra difficult. I had expected them to express difficulties transposing formulas, but 

their difficulties with substitution, which is arguably easier than transposition, surprised me. 

Ben said that he had passed US 21905 (see Appendix C) in his first year, but had not found it 

easy, especially transposing formulas. Ben seemed to be so strongly influenced by his 

negative experiences with transposition of formulas that it coloured his attitude to 

mathematics learning in general.  

Henry (avionics educator) let out a long, drawn-out sigh when asked about apprentices’ 

transposition of formulas involving just three variables. He replied, “some of them are really 

good at it … depends on how much exposure they’ve had to it”. The difficulty existed despite 

avionics apprentices needing a higher level of mathematics knowledge than other engineering 

specialisations, suggesting they had had insufficient exposure in the school context. Arthur 
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and Courtney (educators) agreed and illustrated Henry’s point by describing how they 

calculated a suitable revolutions per minute speed for a rotating drill. This also involved 

extended reasoning, incorporating a series of engineering and mathematical steps.  

On the other hand, modern calculating technology had made certain complicated tasks much 

simpler. Arthur gave the example of making machinery involving splines10. This involved 

extended reasoning using mathematical processes and substituting in complicated formulas. 

Modern calculating technology had removed the necessity to do this by hand, and Arthur now 

did the whole process very quickly, easily and accurately on the internet. He explained that 

using the internet was a definite advantage of modern technology because, before the 

internet, many engineers would have avoided doing spline calculations.  

In summary, substituting in formulas and transposing their subjects both appeared to be major 

sources of difficulty for many apprentices and skilled tradespersons. The reasons for this are 

unclear.  

4.1.3.3. Finding data from tables and graphs 

Making decisions in the mechanical engineering context often depends on finding and using 

appropriate data. This can be done from technical books, but today is frequently done on the 

internet. Either way, the information is often in the form of tables and graphs, which the 

engineer has to find and then interpret. Finding the density of steel is an example where there 

may be a range of values depending on other metals alloyed with the iron. Among the 

educator/tradespersons and apprentices, reading and drawing tables and graphs had varied 

responses with over one in four (27%) reading or drawing graphs at least once each day, and 

about one in six (17%) less than once per month (see Figure 6).  

Ben (apprentice) said he was reading tables of “itemized lists of material and stuff like that” 

fairly frequently to determine the materials he needed for each job. Arthur (educator) 

identified the gap between reading basic tables and graphs at school and the workplace as 

problematic. Thus, apprentices had a lot of difficulty with tables, although the practical 

context meant that they could actually work things out since it was relevant to what they were 

doing.  

Owen (educator) held similar views to Arthur because graphs and tables were important for 

electronic circuits. For example, graphs showing diode characteristics with forward bias and 

reverse bias characteristics were drawn together on the same graph with two vertical axes and 

with strikingly different scales. This was new to apprentices and required adaptation from 

school graphs. With locomotives, Howard (engineer) frequently used a combination of table 

reading and graphical skills to determine “what’s the pressure against the actual torque11 you 

wanted to torque that particular bolt to”.  

 
10 There are many different types of splines. On example of splines are long ridges on a drive shaft that mesh 

with grooves in a mating piece to transfer torque and power. 
11 Torque is the turning effect of a force. Thus, a large torque would mean that the nut was tight on the bolt.  
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Graph drawing was used weekly by 39% of the educator/tradespersons and apprentices (see 

Figure 6). Regarding reading or interpreting a graph, there seemed to be a diverse range of 

views, with educator/tradespersons and apprentices who felt elementary skills were sufficient 

through to those who needed to read graphs with two axes. Arthur and Owen (educators) both 

confirmed the challenge apprentices had in making the transition from school graph reading 

skills to those in the workplace.   

4.1.3.4. Pythagoras and trigonometry calculations 

These two skills were used frequently in the workplace, and many of the 

educator/tradespersons and apprentices agreed that solving Pythagoras and trigonometry 

problems in two dimensions were strengths of young apprentices. Thus, Warren (educator) 

felt that his students were “not too bad on that sort of two-dimensional (2-D) geometry”, but 

they found using extended reasoning in three dimensions to be more challenging. He 

preferred to establish their abilities with “the lower level stuff, and build their confidence” 

before giving them more challenging geometry. In this way, Warren was consolidating and 

then extending the knowledge gained at school and applying it to more complicated three-

dimensional (3-D) situations.  

Henry (educator) talked about Pythagoras and trigonometry applied to analysing “phase 

angles and … loadings” in electronics. This differs from 2-D and 3-D geometry because the 

angles have no physical existence as in geometry. The resulting abstractness caused 

conceptual as well as the usual computational challenges.  

Ben (apprentice) gesticulated with his hand as he described how he used Pythagoras on a 

fabrication job: 

when you know you’ve got to go so far up, and you have to go so far out, but they 

don’t give you a measurement on the angle … and you know you’ve got to get a 

bit of steel to go from there to there … but they don’t give you that. 

Ben meant that the task was to find the length of a hypotenuse. Ben continued his 

explanation, complete with gesticulations, to include elements of angle calculation from 

trigonometry that were part of the same scenario:  

So, they give you straight up, that measurement, and straight across, that 

measurement, but they don’t give you that one … so I can work that out, like I 

can work angles out for bending stuff, and work the angles out down. 

I asked Ben how the “angles” were worked out. He replied, “Ah, just the drawing … 

whatever the drawing tells you … yeah”. Another engineer had prepared the drawing 

for Ben, as was the case with other workers in the same company.  

Fred, Arthur and Howard (engineers) acknowledged that some apprentices may have come 

from school with strong exposure to trigonometry and Pythagoras’ Theorem. However, they 

also said it did not necessarily follow that they could quickly adapt this knowledge to 



Chapter 4 Findings - The nature and application of mathematics knowledge and skills 

109 

 

workplace applications. This may have been the result of failing to recognise situations where 

trigonometry and Pythagoras principles might be applied, and hence involved the question of 

transfer of knowledge. Consequently, one group of apprentices was unable to make a correct 

judgment call to use mathematics in building a conveyor system ramp (see Section 5.2.2.2).  

The references to electronics in this section form part of a wider application of physics in 

mechanical engineering contexts. I consider the important role of physics concepts in the next 

section.   

4.1.3.5. The intersection with physics 

Many of the mechanical engineering mathematics topics require physics knowledge, 

especially mechanics. It is important for apprentices to understand that physics formulas are 

based on the Système International (SI); therefore, it is essential to convert all lengths to 

metres, and masses to kilograms before beginning a calculation. I analyse three examples 

from the interview data that reveal the interconnectedness of mathematics, physics and 

higher-order skills with engineering contexts.  

First, Henry (educator) related how avionics engineers applied mathematics to pressures for 

“running an engine”. If the air pressure changed, or the day was very hot and humid, Henry 

and his colleagues had to alter the pressure ratio through the engine, otherwise, they “couldn’t 

get enough grunt out of the engine … couldn’t get enough pressure to get the aircraft off the 

ground”. His explanation of running an engine demonstrated that integrating his physics 

understanding of pressures with mathematics, higher-order skills and a willingness to step 

beyond surface-level understanding were important in flying aircraft.  

A second avionics example of the interconnectedness of physics and mathematics 

understanding was given by Stephen (avionics educator), who spoke about refuelling a plane 

on a hot day. While the tanker supplying the fuel indicated how many litres had been taken 

off, knowing the number of kilograms taken off was also necessary because the weight 

determined how much “energy you get out of the fuel”. The amount of expansion of the fuel 

was usually a calculation done by an engineer and involved considering several different 

factors simultaneously; a skill that Stephen and Henry both felt was a major part of 

apprentice learning.  

A third example of how physics and mathematics knowledge combined with flexible thinking 

and problem solving applied in engineering trades contexts was described by Robert (expert 

engineer, educator and entrepreneur). He related how he installed new bronze bushes into a 

big 8-tonne flywheel on an old press. The task was complicated because the new bushes had 

to be shrunk on. This involved warming up the outer metal object, or cooling down the inner 

metal object, or perhaps doing both. However, since bronze bushes expanded more with heat 

than the steel, there was a problem with “upsetting”, or distortion. Robert was afraid that 

when things got back to their normal temperature, the new bush would “just fall out”. Robert 

considered cooling down the inner rather than heating up the outer rim, and eventually 

decided on using dry ice mixed with methylated spirits, which lowered the temperature 
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sufficiently for the needs of his job. Robert’s task involved integrating a long series of 

physics facts and reasoning with problem solving. There also needed to be a logical 

progression of ideas, inputs, and thoughts. Robert explained that it was important not to get 

hung up on one particular solution, but rather to say, “‘No, let’s park that, anything else?’ 

because often we find that the solution turns out to be something that you never… thought”.  

To summarize, mathematical formulas from physics were often applied directly in 

mechanical engineering trades contexts, as with Henry’s and Stephen’s examples. On 

the other hand, Robert’s example was quite different because the task was done very 

seldom and required conceptual understanding of the context and extended thinking 

from first principles. Therefore, these three examples are important because they all link 

to conceptual understanding and learning (see Chapter 5). They also signpost links with 

the technical aspects of deciding to use mathematics or engineering judgment, problem 

solving, and knowledge creation.  

4.1.3.6. Calculating volumes  

Calculations of volumes involved both practical and conceptual issues. They were important, 

partly for their own direct application, and partly for calculating the mass of an object when 

its volume and density are known. Many objects have formulas for their volumes. 

Approximately one-third of participants reported substituting in formulas at least once per 

day (see Figure 6). However, practical and conceptual difficulties arose when substituting in 

formulas because of the inconsistency of the units. Murray (engineer) recounted calculating 

the rate of airflow in a building, measured either in m3 per hour, or litres per hour. This 

involved extended reasoning, beginning with doing a rough calculation of the volume of the 

building. Murray had heard of one engineer who could not “calculate the volume of the 

factory” using length multiplied by width multiplied by height. Moreover, confusion also 

surrounded converting m3 and litres, an important and widely used numeracy skill.  

As an example of block course training, Simon (apprentice) related how his polytechnic tutor 

asked students to calculate the volume of a silo, being a cylinder with a conical cap on top. 

Simon used the familiar formulas, 𝑉 = 𝜋𝑟2ℎ, to find the volume of a cylinder, and 𝑉 =
1

3
𝜋𝑟2ℎ for the volume of a cone, and then “you just added the two answers together and that 

gave you the volume”. Simon said, “Once I learn stuff, it’s all good, but then it only stays in 

there for [a short while]”, so when he had to use those formulas again, he would go to his 

phone. Simon often used his phone in preference to his memory. However, he well 

understood the need for consistency of units, “Ah… oh, you have to convert them to metres 

… yeah, that was something we had to do in night class actually … yeah”. Therefore, Simon 

had learned the need to maintain consistency of units when calculating volumes.  

Sometimes only estimates of volumes were required, so heuristics12 were used. Heuristics can 

be regarded as an Engeström tool. Thus, when finding the total weight of a steel drum and the 

 
12 Heuristics = a mental shortcut or rule-of-thumb that allows people to quickly solve problems and make 

judgments quickly and efficiently without the need for long calculations. 
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steel inside it, Arthur multiplied the volume of the drum containing the steel scrap by the 

density of steel, and then divided by three, and Chris multiplied the diameter of a circle by 3 

(instead of π) to find its circumference.  

To summarize, learning to calculate areas and volumes, and relate them to a physical context 

were key features of the apprentices’ learning. Measuring requires accurate reading of a 

scale, but sometimes an estimate will provide a sufficiently accurate answer. However, if it is 

decided to use a mathematical formula, then the question of consistency of units arises. 

Simon’s reference to something he “had to do in night class” shows that the educators were 

mindful that apprentices needed to keep units consistent, and to do a sensible estimate of the 

conversion before using the calculator. Investigating this crucial skill was included in 

calculating the volume of the box problem (see Section 5.2.3).  

4.1.3.7. Modern calculation technology and mental calculation skills  

Calculation technology like calculators, smartphones, and the internet were controversial 

issues among mechanical engineers. On the one hand, they were regarded as useful, and 

perhaps even essential, tools in the modern-day engineering workplace. On the other hand, 

some engineers regretted the decline of appreciation of magnitude, and estimation and mental 

calculation skills. In this section, I analyse the questionnaire data on how often engineers 

reported using calculators in their work and their perceptions of the advantages and 

disadvantages of modern technological aids. In the next section, I analyse the importance 

they attached to mental calculation skills. These sections reveal important generational 

differences between the educators/skilled tradespersons and the apprentices.  

Regarding the frequency of calculator use, the data in this section are based on 

educator/tradespersons’ and apprentices’ responses to the question: ‘How often do you think 

most mechanical engineers use scientific calculators in their work? Figure 7 shows the 

percentage of participants reporting each frequency category.  

 

Figure 7 Percentages of educator/tradespersons and apprentices reporting how often they used 

scientific calculators in their work (n=175) 
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One quarter of the educator/tradespersons and apprentices reported using scientific 

calculators in their work seldom or never, while almost half said that calculators were used at 

least daily. It follows then that calculator use was widespread in mechanical engineering 

workplaces. However, there appeared to be debates in the mechanical engineering trades 

community regarding calculator use, the importance of mental calculation skills, and 

concerns about numeracy and mathematical skills in beginning apprentices and skilled 

mechanical engineering tradespersons. These issues are discussed now and in the next 

section.  

Regarding the advantages of using modern calculating technology, there were some 

situations where modern calculating technology was superior to reliance on mental 

calculation skills and the traditional ways of doing things. Thus, in contrast with some 

other engineers, Robert (expert engineer, educator and entrepreneur) had positive views 

on the roles of calculators, smartphones and the internet. He even had an intranet 

system installed in his factory which he encouraged his colleagues to consult regularly 

for technical information and standard procedures. Information was also written on the 

forklifts, so that when “you go to lift a hunk of steel, well you can just straight away … 

look and can go oh, yeah and whip out your phone with the calculator on it, whack it in, 

yep, I can lift that”.  

Robert fostered a culture of integrating technology and mental skills. Thus, modern 

computer technology was a “magnificent toolbox, it’s a magnificent toolbox” where all 

sorts of information could be instantly found. Robert often used Google, and even had 

engineering apps, like the Heat Treater’s Guide13, which had “all the alloys and their 

temperatures and all that in there, so ... yeah, how did we ever manage without them?” 

Later in the interview, Robert admitted, “I hate looking up books”.  

Arthur (educator) agreed that there were both advantages and disadvantages in using 

modern calculating technology, saying, “all you have to know is basically understand 

where to put the numbers in … and push [the button to get] the answer”. In reply to 

those who criticised the reliance on electric power, Arthur admitted that a power cut 

would leave them all “stuck”, but he then added that, while the computer wouldn’t work 

during a power cut, it was also true that the power machinery wouldn’t work either.  

Arthur also commented on the difficulty inherent in understanding much of what 

happens behind most modern technology. He likened it to a car where “people don’t 

understand … the connection between the key and the electrics, the motor, the fuel, 

everything that goes behind it”. Thus, there was a contradiction between the desirability 

of having a conceptual understanding, and the ease and accuracy with which modern 

technology could perform tasks. In addition, another advantage of using software like 

Computer Aided Design is that the mathematics used is formidable and therefore allows 

tasks to be done that previously would not have been attempted.  

 
13 https://www.asminternational.org/home/-/journal_content/56/10192/06400G/PUBLICATION  

https://www.asminternational.org/home/-/journal_content/56/10192/06400G/PUBLICATION
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To summarize, it appears that modern calculating technology was a widely used and 

essential tool in mechanical engineering trades communities. However, attitudes to the 

role and appropriate use of calculators and computers tended to be ambivalent. On the 

one hand, modern calculating technology could reduce errors in calculation, enable 

engineers to find information and perform calculational tasks previously thought 

impossible, and save time. On the other hand, there was still a need for a fundamental 

understanding of number and feeling for size in the engineering context. Also, there 

were situations where calculation technology was slower and less effective than mental 

calculation skills, which I now consider.  

4.1.3.8. The importance of mental calculation skills  

Several educators spoke passionately about the importance of mental calculation and 

estimation skills in the workplace. They associated this with being able to assess situations 

and make decisions quickly without recourse to using calculators, which they saw as time-

consuming. They also believed that over-reliance on calculators and cell phones had 

produced a long-term decline in numeracy skills. In this section, the questionnaire items 

around concerns about numeracy and other mathematical skills were answered by educators 

and tradespersons only; the item about the importance of mental calculation skills was 

answered by educators/tradespersons and apprentices. The findings are presented in Figure 8.  

 

Figure 8 Percentages of educators/tradespersons and apprentices expressing the level of 

importance of mental calculation skills (n=199) and the percentage of 

educators/tradespersons expressing their level of concern about numeracy and other 

mathematical skills (n=101) 
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‘agreed’ or ‘strongly agreed' that mental calculation skills were important to their work. 

Nobody ‘strongly disagreed’.  

More than 60% of the skilled tradespersons and educators ‘agreed’ or ‘strongly agreed’ that 

they were concerned about numeracy and other mathematical skills in beginning apprentices. 

Almost one half (45%) ‘agreed’ or ‘strongly agreed’ that they had concerns about the 

numeracy and other mathematics skills of skilled mechanical engineering tradespersons. 

Therefore, while it is possible that some growth in mathematics and numeracy skills may take 

place during the apprenticeship years, there still appeared to be concern about the standard of 

mathematics and numeracy skills of skilled tradespersons.  

Regarding the views of the educators of the avionics pre-apprentices, who required a higher 

standard of mathematics entry qualification than some other mechanical engineering 

branches, Henry (educator) said that finding ¼ as a decimal would be a challenge for 

probably half his pre-apprentices. Henry felt that it was really important for apprentices and 

tradespersons to do certain calculations quickly in their heads because it was:   

an efficiency thing, ’cause if I can sit down, oh look, I’ve got ¾ of a tank of fuel left, … 

I can see it straight away … a lot of our meters and stuff are all gauges, so you don’t get 

a digital readout … if you see a number, you’ve got to go, hey hang on, what’s that? 

Henry demonstrated how issues surrounding decimals, fractions, and estimating were 

connected with what constituted a reasonable answer and getting the answer quickly. Henry 

would sometimes say to his pre-apprentices, “Don’t use your calculators, do it in your 

heads”. This was important in avionics, because calculators were not allowed by certain 

licencing authorities in Europe and the USA. Warren agreed with Henry, and emphasized 

estimation skills, especially when apprentices believed absurd answers from their calculators. 

He also believed that there had been a long-term decline in the ability of school leavers to 

remember essential facts because the next day, “it’s like, we’re teaching them the 

development of the subject again”. It would appear then, that the avionics educators were 

concerned about mental calculation skills because they used them frequently in their 

everyday work.  

Estimations were also important to Chris (engineer) in fabrication engineering contexts. He 

used estimations frequently, particularly when making good decisions about quantities of 

materials. Thus, in working out the circumference of a circle, Chris “would multiply [the 

diameter] by 3”. The apprentices would say it’s 3.14, but Chris would reply that “you 

estimate how much steel, how much steel you’ll want… general knowledge helps, you 

know”. 

Stephen agreed with Henry and Warren (educators) that “you do need to be able to quickly 

figure out whether what you’ve figured out is anywhere near right or not” and investigate 

why it’s wrong. Stephen compared this with an expert mechanical engineer who appreciated 

“how all the systems interact and also [had] an understanding … being able to estimate and 

figure out what should be happening versus what is happening”. He agreed that integration of 
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all the skills was required, as well as intuition. However, even some well-trained and skilled 

people might “find out some information and they’ll use that … take that at face value 

without realizing that a mistake’s been made and it can’t be true”. Thus, “the guys that really 

are good are the ones that actually understand when information is bad”. 

Stephen (engineer) regarded an expert as someone who understood how systems 

interact, thus demonstrating the importance of multi-step thinking, conceptual 

understanding and integration of ideas and inductive thinking to quickly detect errors. 

The ability to recall basic factual information and estimation skills was therefore 

regarded as being important to ascertain if an answer was reasonable.  

To summarize, it appears that modern calculating technology has not removed the need 

for mental calculation and estimation skills, which were important in relating numbers 

to contexts and identifying errors. There was a widely held view that mental calculation 

skills needed improvement for apprentices and skilled tradespersons.  

4.1.4. Section summary 

In this section, I have presented and interpreted the findings relating to the nature and use of 

the mathematics and numeracy skills employed in the mechanical engineering trades 

contained in the main research question and sub-question 1. Mathematics knowledge and 

skills can be regarded as tools or artefacts of an Engeström activity system. The knowledge 

and skills included formal mathematics topics and numeracy. Rules emerged from the data 

about the way mathematics should be used; in particular, there was widespread agreement of 

the need for high numeracy skills that were related to the need for accuracy of calculation as 

well as quickly performing mental calculations to establish suitable estimates. This led to an 

important contradiction that was expressed as an ambivalence to the perceived overuse of 

calculators, as well as support for using the new technology to perform tasks like spline 

calculations that might previously have been avoided. The knowledge of the nature of the 

mathematical tools and how to apply them in context was a key feature of mathematical 

learning and hence an expansive cycle of learning that formed part of the apprentices’ 

pathway to becoming skilled tradespersons. In these cases, expansive cycles of learning 

corresponded with Lave and Wenger’s (1991) legitimate peripheral participation (LPP) 

principle and enabled individuals to move closer to the centre of community of practice.  

Conceptual understanding and procedural knowledge emerged as being important to 

developing knowledge and skills, such as the ability to understand and apply different 

systems of units. There were found to be conceptual and procedural challenges, 

especially difficulties surrounding area and volume units. Conceptual understanding 

underlines the need for ancillary, higher-order skills because knowledge about a 

mathematical tool is only a starting point; knowledge needs to be related to the 

engineering context and the physical tools being considered. Therefore, obtaining 

higher-order skills is an expansive cycle of learning that is crucial to applying 

mathematics in the mechanical engineering workplace. Higher-order skills are now 

considered in the next section.  
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4.2. Application in context and higher-order skills 

In this section, I analyse the data about the second research sub-question which concerns how 

the mathematics skills presented in Section 4.1 are applied. The application of mathematical 

tools frequently involves conceptual understanding. Therefore, to understand how 

mathematics and numeracy are applied in the mechanical engineering trades context, it is 

important to consider the roles of higher-order skills - intellectual and non-mathematical tools 

such as problem solving, creativity, extended reasoning, and the integration of skills. The 

connections between these ancillary skills and applying mathematics and numeracy skills are 

the focus of this section. While tools are a focus in this section, Engeström’s (1987) other 

elements of rules, and especially roles and community, also become important. Moreover, 

although problem solving is frequently used in response to contradictions, resolving those 

contradictions may not be straightforward and may create further contradictions, also with 

long historical roots. Hence, the progress to expansive cycles of learning may involve 

complex interactions in the whole activity system and its associated communities.   

4.2.1. Problem solving in mechanical engineering contexts 

Problem solving is important in all branches of mechanical engineering trades, especially in 

fault-finding and maintenance engineering. The questionnaire data showed that engineers 

regarded problem solving as a very important skill for their trade and therefore essential to 

becoming a skilled tradesperson. Moreover, problem solving is frequently performed in 

unfamiliar contexts beyond the experience of most engineers. While the application of 

problem solving frequently involves mathematics, sometimes the mathematics may be 

hidden.  

4.2.1.1. The nature and importance of problem solving 

The engineers had different understandings of and perspectives on problem solving, but 

almost all of them ‘agreed’ or ‘strongly agreed’ that problem solving was important (see 

Figure 9). 

Of the 199 questionnaire participants, almost all (98%) ‘agreed’ or ‘strongly agreed’ that 

problem-solving skills were useful in mechanical engineering work, and more than half 

‘strongly agreed’. However, this almost unanimous result does not inform us as to why they 

agreed, what they understood by problem solving, or how they applied problem solving to 

practical contexts. Thus, I questioned several engineers about how useful they thought 

problem solving was. Robert’s response was typical of many when he said, “Oh … YES! It’s 

so much!”  
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Figure 9 Percentages of all participants reporting levels of agreement that problem solving 

skills are useful in engineering (n = 199) 

From the interviews, regarding various understandings of and perspectives on problem 

solving, Owen (educator) outlined the limitations of computer technology, which had 

not replaced the need to develop highly trained, independent and free-thinking 

engineers. He felt that computers were not “able to solve the problem, ’cause it’s 

outside what they were programmed to do”, and that apprentices needed to be 

encouraged to think outside the square; “I compare it with a horse with blinkers. If you 

want the horse [to do something], the horse starts looking around and is curious to know 

what the hell’s going on here”.  

Henry developed Owen’s viewpoint by stressing the benefits of experience in “manual 

training” as opposed to mathematical training in developing problem-solving skills. He felt 

that this led to “problem-solving efficiency, if you like”. He described problem solving this 

way: 

Ah, I’d just see an issue, and then I’d go, ‘Righto, how am I going to fix that 

issue? How do I come up with solutions to it? How do I come up with multiple 

solutions? And what’s the most cost-efficient way of doing it?’ 

In contrast, Irene (apprentice) mentioned different aspects of problem solving she used 

almost every day in her work with refrigeration and cooling systems. Problem solving tended 

to arise in potentially hazardous situations. Safety and financial considerations required 

proper maintenance schedules and repair procedures to be carried out. The result was that 

fault-finding came into play often whether the engineers were “conscious of it or not”.  

To summarize, when educators exposed the apprentices to fault-finding, many 

hypothetical and practical problem-solving scenarios could eventuate, and many 

strategies for dealing with them. However, many situations were not standard, and in 
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addition, extended reasoning was required to deal with them (see Section 4.2.2). 

Therefore, in many cases, a decision was made not to use mathematics, and an 

acceptable solution was found on pragmatic grounds. I now differentiate between tricks 

of the trade and genuine problem-solving scenarios.  

4.2.1.2. Tricks of the trade and problem solving 

Tricks of the trade are skills that are learned over time and become part of the standard 

skillsets of the engineering community. Tricks of the trade may originally have been 

developed in situations demanding genuine problem solving, but repeated usage has removed 

the need to go back to first principles.  

I now discuss a well-known trick of the trade that shows how using a different measuring 

strategy obviates making incremental measuring errors and improves the accuracy of the final 

result. Chris and Courtney (experienced engineers) worked in separate workplaces, but both 

used the following trick of the trade to illustrate good measuring technique. Courtney 

described how nine lugs at equal spacing could be placed on a 3300 mm beam with 50 mm 

“in from each end”. First, Courtney subtracted 100 mm from the 3300 mm and divided by 8, 

to give 400 mm spacing between the lugs. He then took all his measurements from one end of 

the beam, and positioned the lugs at 50 mm, 450 mm, 850 mm, and so on. Following this 

procedure, he stated that he:   

would be very, very accurate because I don’t get an incremental error …. A lot of the 

guys here will go 50, then they’ll get their measure and go 400 and 400 and 400, and 

they’ll get to the end and they’ll wonder why they’ve got only … got 20 mil left …  

Courtney’s views were shared by Chris, who thought that judgment skills would take time for 

apprentices and even tradespersons to develop and that some engineers were not “wired up” 

to understand the effects of incremental measuring errors. Courtney also connected 

incremental errors with tolerances which were:  

quite often an issue with things. You know in engineering, you’ll make this one this 

size and this and this and this one, but everyone’s a little bit different, and when they 

become too much, then the thing doesn’t fit together, and that’s why we have fits and 

tolerances on things. 

However, he added that while “a lot of things have changed in time, especially the 

introduction of calculators and stuff like that, you know”, using calculators “simplifies things, 

not solves it”, so thinking was still required.  

Mature engineers had learned to weigh up the relative effects of many conflicting factors. 

This formed a contradiction that required resolving to create an expansive cycle of learning. 

Moreover, in these cases, expansive cycles of learning followed Lave and Wenger’s (1991) 

LPP and mature engineers moved closer to becoming experts at the centre of the community 

of practice. When making a decision, it was important to understand that mathematics was 

just one factor. Tricks of the trade may eventually become recognised as standard procedures. 
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Problem solving originally developed those procedures, which led in turn to further 

procedures not previously invented to suit the needs of new situations. Thus, problem solving 

in the engineering trades context often involves recollection of standard procedures, tricks of 

the trade, and seeking new, innovative adaptations. I now discuss problem solving with real 

and artificial scenarios.  

4.2.1.3. Problem solving with real and artificial scenarios 

Real problem solving involving engineering-specific contexts and hypothetical non-

engineering contexts requiring thinking outside the square are both important in 

mechanical engineering trades. I now analyse two conversations with avionics 

educators, Stephen and Owen, about their views on problem solving and how they 

apply it (see Table 8 and Appendix O).  

Table 8 Summary of avionics educators’ comments on problem solving 

Comments on problem solving and fault-finding 

Purpose To develop trouble-shooting skills and come to a conclusion 

 Stephen Owen 

Aims and 

actions of 

educators 

• Current courses presented mathematical 

problem solving as scenarios, to find 

mathematical methods and solutions 

• Troubleshooting is looking at the 

evidence & coming to a conclusion  

• Strategies given for fault-finding; halving 

the system and testing each half to reach 

a conclusion 

• Problem solving featured later in 

apprenticeship training  

• Checks and balances to mitigate mistakes 

• Non-engineering scenario 

problems given as in school  

• To foster aptitude for fault-

finding, analysis, extended 

reasoning skills, to examine 

different points of view 

• Adaptation of apprentices to 

everyday scenarios 

• Extended reasoning with 8–10 

steps, so write things out and set 

out properly 

Pre-apprentices 

were required to 

… 

• Appreciate the importance of getting all 

the right information 

• Be mentored into harder tasks, sit and 

observe initially, help out with 

calculations  

• Add and subtract and multiply … 

especially with decimals and things like 

that … pretty early on for fuel loads 

• Apply principles learned in class 

and relate to the context 

• Not accept the calculator result 

without thinking as they often did, 

often couldn’t apply principles 

taught in class 

• Understand that the world was not 

mathematically ideal  

• Not be content to just press the 

buttons on the calculator 

• Understand the physics behind a 

calculation, and not just have 

procedural knowledge 

While problem solving was regarded by both educators from a pragmatic perspective, 

they nevertheless employed hypothetical, and therefore artificial contexts when giving 

examples to their pre-apprentices. In doing this, their intention was to foster attitudes of 

flexible thinking so that apprentices would look at things from different viewpoints. 
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Practical problem-solving scenarios, such as fault-finding and maintenance work often 

required extended reasoning. This required many steps being lined up in a logical order 

and then systematically examined to reach a conclusion. Therefore, for pre-apprentices, 

extended reasoning marked a major development of thinking from that learned in the 

school environment. A further development in thinking was the need for pre-

apprentices to appreciate that the world was not mathematically ideal and that the 

results from a calculator needed to be critically examined to place the numerical value 

in context and to decide if the mathematical model or formula used was appropriate to 

the physical context 

To summarize, the pre-apprentices were given tasks that reflected their current state of 

engineering preparedness. Some of their tasks directly involved mathematics, but others 

involved strategies for solving problems. In these situations, developing and following 

logical chains of reasoning were important tools that the pre-apprentices needed to 

learn. Moreover, they were introduced progressively to more complex problem-solving 

scenarios as they grew in experience. Problem-solving development was also linked to 

extended reasoning development (see Section 4.2.2). While using formal strategies to 

solve workplace problems in unfamiliar situations was a new episode in many pre-

apprentices’ experiences, the mathematics involved was often hidden and did not 

necessarily feature as prominently as the integrated employment of problem-solving 

skills.  

4.2.2. Creativity and flexibility of thinking in context 

Creativity and flexibility of thinking are important aspects of mechanical engineering 

practice. I discuss three issues of creativity and flexible thinking in turn: essential 

ingredients in problem solving, extended reasoning, and risk-taking.  

4.2.2.1. The link to problem solving 

The data showed that many of the educators thought that creativity and flexibility of 

thinking were important for problem solving. For example, Henry said, “Yeah, we want 

creativity, because that’s gonna give you the different paradigms to come up with for 

your solutions”. Proposing multiple solutions was encouraged, even when they were 

radical. This may have been because the exchange of ideas between engineers promoted 

the development of the critical faculty that led to creating new solutions. Exchanging 

ideas is linked directly to social interaction, communication, and learning (see Chapter 

5). Moreover, since problem solving is concerned with finding solutions to problems 

that are often unfamiliar to engineers, then the answers are usually not found in 

standard procedures or tricks of the trade. Thus, successful problem solving often calls 

for imaginative, creative and innovative approaches, which engineers may also refer to 

as thinking outside the square.  

Being aware that there might be different understandings about what constituted 

creativity and innovation, I asked Paul (training officer) about engineers he considered 
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to be creative. He replied that all their good machinists were very creative and could 

find multiple ways to make products more efficiently, such as jigs that would reduce six 

operations to three. While creativity and innovation did not necessarily require 

mathematics, Paul felt that for their specific creative requirements, a better 

understanding of the mathematics that went into their work would “absolutely” help in 

producing creative products. Murray (engineer) made a similar point when he spoke 

about the need for deep conceptual understanding, and talked about how a senior 

mechanical maintenance person who had started off on machinery repairs became a 

supervisor, but then experienced difficulty trying to “physically design something, and 

calculate it”. Murray concluded that there were situations where intuition alone was 

insufficient.  

Referring to creativity, imagination and problem solving, Robert (expert engineer, educator 

and entrepreneur) related how he was frequently asked to do jobs that customers knew were 

too big for their gear, especially furnaces. Robert focused on finding creative solutions, so he 

would evade customers’ doubts about the gear and ask them, “How big is your job? 

(laughter)”, knowing that the size of the press was irrelevant. Similarly, when steel had to be 

heated “red hot, but only inches away [from something] that can’t exceed 50 degrees, we’ll 

come up with a creative solution”.  

Robert went on to describe installing a very large press that put heads on bolts and flanges on 

ships’ propeller shafts 20 metres long. He explained that he decided to go ahead and install 

the press vertically, regardless of what others thought. He would then deal with any problems 

as they arose. “So, we’ve had lubrication problems, we’ve got some gravity problems, we’ve 

got a few other bits and pieces, but actually, it’s worked extremely successfully”. This 

example illustrates how new ideas are frequently viewed with scepticism because engineers 

frequently do not know in advance what will transpire. In such cases, they sometimes rely on 

fixing problems one at a time as they arise.  

Creativity and flexibility of thinking were linked and performed in conjunction with problem 

solving; they are the result of contradictions that demand an expansive cycle of learning. 

Moreover, the engineers’ creative impulses and their long experience created solutions that 

contributed to the ever-increasing body of standard procedures available to be passed on to 

the wider engineering community. The mathematics involved here may have been hidden or 

replaced by engineering judgment.  

4.2.2.2. Extended reasoning and fault-finding 

Before beginning the analysis of the data in this section, I first explain the inclusion of fault-

finding and maintenance engineering in this study, and their links with mathematical learning 

along the pathway to becoming a skilled mechanical engineering tradesperson. In these two 

branches, mathematics may sometimes be used directly, as with Howard who consulted 

tables and measured thicknesses of pieces of lead sheet to test engine wear (see later in this 

section). At other times, measurements and calculations may not be necessary, the 

mathematics may be hidden, or engineering judgment is used to reach decisions. However, 
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fault-finding and maintenance engineering almost always involve diagnostic skills, and 

logical thinking to identify problems. They also require problem-solving skills for finding 

solutions to those problems. Therefore, the link between fault-finding and maintenance 

engineering and mathematics may be direct through specific skills, such as measurement and 

attention to tolerances, or indirect through ancillary skills, such as logic and problem solving.  

Extended reasoning is also a higher-order skill and is combined with creativity and flexibility 

of thinking. It plays an important role in all branches of the mechanical engineering trades, 

especially in maintenance engineering and fault-finding, where it is often used in conjunction 

with creative approaches to problem solving. The main focus of mathematics here is logical 

reasoning. Mathematics and numeracy considerations may not be relevant or may be partly 

hidden. This section forms three parts: the importance of fault-finding and maintenance 

engineering, introductions to maintenance engineering early in apprenticeship training, and 

the importance of quick and correct problem diagnosis.  

First, fault-finding and maintenance are important because breakdowns and potential 

breakdowns pose large financial and safety issues in mechanical engineering. The 

engineers regarded fault-finding as extended reasoning because multiple-step thought 

processes and problem solving are needed to identify what has gone wrong and to 

devise solutions to fix it. Since problem solving is involved, then a contradiction exists 

and an expansive cycle of learning is involved in both the current issue as well as in the 

long-term creation of knowledge in the community. Hence, Chris (engineer) said, “Yep 

… that’s where problem solving is a major area, especially in engineering, especially 

where we get breakdowns …. You gotta use the old grey matter”. Chris commented on 

the process he followed when problem solving:  

Well, it’s usually my experience [that] you fall back on your knowledge. If I don’t 

know the answer, I have the ability maybe through books either today or the 

internet … that’s what I was brought up with, go back to the library again, it’s just 

knowing how to access the information. Again, if a guy is out there and he can’t 

find … and he’s got a problem, they can get on the internet. If there’s no internet, 

what does he do? (laughter) 

Another important engineering consideration is to lengthen the life of machines and to 

prevent serious damage when they break down. Companies often schedule regular 

inspection programmes to examine, and if necessary, replace worn components. 

Howard (engineer) described how there was a checklist to go through when a 

locomotive was brought in for maintenance. Checking for wear on pistons involved 

removing the engine side covers, taking measurements and doing bump clearances. 

“You put three bits of lead on the top of the piston, wind the engine over and take the 

lead out … show if the piston’s not gone off to one side”. When the lead was taken out, 

its thickness was measured using a micrometer gauge to “make sure the con rod’s14 not 

 
14 A con rod is a piston engine component which connects the piston and the crankshaft.  
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put off to one side”. The mathematics involved here was reading and interpreting a 

measurement on a Vernier scale15 with high precision.  

Second, fault-finding and fixing faults are key skills in the mechanical engineering trades 

workplace and both appear to be among apprentices’ earliest tasks. It is allied with both 

diagnosis and problem solving. I asked Ari (a young apprentice), what he understood by 

problem solving. He replied, “diagnosing”. You have to be able to look at something, 

recognise the symptoms from what has happened and “tell what’s wrong with it”. However, 

the diagnosis was not always straightforward, as with a dump truck whose bucket would not 

tip. Ari said, “you assume it’s something to do with the hydraulics”, but this was complicated 

by how far the blockage was along the line. If “it’s right back at the controls … so pretty 

much your problem solving will come in … test the pressure at the main pumps, and then 

yeah, pretty much work your way back”. Ari acknowledged that there could be more than one 

solution and that there might be more than one fault, “cause sometimes you wouldn’t know 

until [you] actually take it out and have a look at it and … multiple”. He also understood that 

the final solution decided upon was dependent on “which one’s better for the client”. Ari’s 

experiences of fault-finding were thus exposing him to fault-finding and working in team-

building environments.  

Fault-finding in avionics is an area where logical and systematic thinking skills were applied 

often. Owen (educator) believed that inculcating habits of logical and sequential thinking into 

his students was more important than mathematics in his course. Therefore, the emphasis was 

on determining,  

what is happening here? Is this engine running properly? And if it’s got a fault, what 

kind of fault is that? Where? How is [it] showing up in the way the engine is 

performing? … the physics and the maths of that … bit of experience… and then you 

have a fault-finder. 

Henry (avionics educator) gave a detailed response about assessing fault-finding skills. 

The avionics educators built a large board with the electronic map of an aircraft on it. 

The apprentices then had to learn their board, wire it all up, make it all go, so that the 

little lights flashed. They also had logic operating so that “you have to turn the 

nav[igation] light on, and then you can turn the taxi light … on”. The intention was to 

learn the whole system. Then, the night before the assessment, the educators would cut 

all the wires, pull fuses, chop capacitors in half, and generally destroy the board so that 

it was “totally dead”. They might also pull the mains fuse. The pre-apprentices’ task for 

the assessment was to work out what had gone wrong, and then “… methodically work 

their way through” and fix it. Since they worked in groups, communication skills were 

also particularly important. This task closely paralleled authentic mathematics 

assessment methods (see Section 2.4.3).  

 
15 A Vernier scale is a visual aid designed to enable a more accurate measurement reading between two 

graduation markings. 
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Extended reasoning and its application to fault-finding and maintenance engineering are 

essential skills to be learned along the apprentice’s pathway. Watching and emulating skilled 

tradespersons seemed to be major factors in the apprentices’ experience and in knowledge 

transfer in informal settings. Moreover, fault-finding was intertwined with common sense and 

higher-order thinking skills.  

The third important part of apprentice development is learning how to diagnose problems. 

This requires a logical progression of ideas, inputs, and thoughts, and to not get hung up on 

one particular solution, but to suspend judgment. Robert explained this was because “the 

solution turns out to be something that you never… thought” (see Section 4.1.3). Murray 

(engineer), on the other hand, while acknowledging that the aim was to try “to find different 

ways, or trying to look at causes”, emphasized that “you need other people. You can’t do it 

on your own”, and that some people tended to “follow a straight line” and did not involve 

others. Thus, both Murray and Robert wanted to use eclectic approaches and to avoid the 

rigid thinking that formal approaches might impose.  

Howard (engineer) illustrated the importance of a correct diagnosis. A locomotive 

compressor “wasn’t building up the air [pressure] correctly”. The maintenance engineers’ 

initial reaction was to look for a mechanical fault but this did not lead to a solution. Having 

changed all the mechanical parts, Howard and his colleagues “had to go a step further, and 

say, why is it still doing it?” After much time and effort, it transpired that the fault was 

electrical. A component had not been installed correctly and was the wrong component 

anyway. Finally, the cause of the problem was “just a loose connection”; a wrong diagnosis 

and wasted time.  

To summarize, fault-finding found major application in maintenance engineering where 

diagnosing faults and fault-finding required flexibility of thinking. Apprentices appeared to 

be put into this area fairly early in their engineering workplace experience. Sometimes, as in 

Howard’s example, the wrong assumption could be made initially and much time and money 

could be wasted as a result. Murray spoke about the usefulness of formal methods to identify 

faults. However, these were effective only when used in conjunction with a team approach 

with many people working together, and exercising flexibility of thought and thinking outside 

the square. Thus, the cumulative experience of the engineers with malfunctioning equipment 

systematically built up expansive learning in maintenance engineering and fault-finding 

skills. It also moved the group and its individual members closer to the centre of Lave and 

Wenger’s (1991) community of practice. 

4.2.2.3. Creativity and risk-taking 

Adopting creative and flexible approaches to problem solving involves going beyond the 

limits of known and widely accepted engineering practices. This carries a certain amount of 

risk because the exact outcomes are not known beforehand. This was illustrated in Robert’s 

description of replacing the bronze bushes and the versatility he showed in attacking various 

unfamiliar projects with their multiple possible lines of approach (see Section 4.1.3.5). 
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Therefore, engineering contradictions had personal consequences. He related his thinking on 

risk-taking in a conversation:  

Robert: I like to think, yes, I take risks, and before I hit the trigger that first time, I 

always need to go and have a nervous pee, and I always say ‘I’m too old for this 

s***’, but [I think] the risks … I take are manageable, and I’ve always got a back-

out.  

Kelvin: Yes, OK. So, it’s calculated beforehand? 

Robert: Ah-hah 

Kelvin: And essentially all you lose is some time? 

Robert: That’s it, which is not lost if you’re learning 

Kelvin: No, not if it’s successful 

Robert: No, no ... even if it wasn’t successful, the LEARNING from that … 

Kelvin: Oh, the LEARNING from it? 

Robert: So, the training course that I do, it’s packed full of all of my cock-ups … 

because those are learning moments ... they’re only wasted if you don’t learn 

Robert’s story about replacing the bronze bushes on a press illustrates how engineers 

combine mathematics and physics knowledge with engineering skill, imagination and 

creative problem solving. Engineering judgment was important here too, because the 

expansion or shrinkage of the bronze and steel were time-dependent and temperature-

dependent. Therefore, any calculations Robert could have made would not have told the full 

story of how the steel and the bronze would behave while they were changing in size. Thus, 

while the mathematics was hidden, Robert’s actions were governed by his intuition of what 

would work in practice.  

4.2.3. Section summary 

In this section, I analysed the skills needed to apply mathematics successfully in the 

mechanical engineering trades workplace. Higher-order skills emerged as important 

motivations for applying mathematics in practical contexts. This view was held by 98% of 

the educators and tradespersons, who ‘agreed’ or ‘strongly agreed’ that problem solving skills 

were useful in mechanical engineering work. Problem solving was extensively used even by 

young apprentices who were involved in fault-finding and maintenance engineering. 

Therefore, ancillary or higher-order skills are important tools in engineering activity systems 

and key features of mechanical engineering practice and learning (see Chapter 5).  

The skills of creativity, flexibility of thought and extended reasoning were associated with 

problem solving and were regarded highly by the engineers. Thus, successful engineering 
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practice involved integrating well-developed mathematics and numeracy skills with 

engineering skills and problem-solving capabilities. However, problem solving had to be 

carried out according to the rules set down by the wider community of practice. Unusual 

solutions and multiple potential solutions to problems could lead to multi-voiced, and long-

term historical contradictions. If the confrontations between tradition and innovation were 

resolved over time, then a new level of accepted practice would be attained: an expansive 

cycle of learning, which also allowed individuals and the community to move closer to the 

centre of Lave and Wenger’s (1991) community of practice. 

4.3. Chapter summary 

This chapter focused on Engeström’s (2001) third question, What do they learn? It reported 

on the analysis of the data pertaining to the first two research sub-questions on (1) the nature 

of mathematics knowledge and skills used by the engineers, and (2) the application of that 

knowledge and those skills in the workplace context (see Section 1.3). The analysis revealed 

how higher-order skills, such as problem solving, and its associated skills of creativity, 

flexibility of thinking, extended reasoning, and logical thinking were used extensively in 

conjunction with mathematics and numeracy in mechanical engineering workplaces.  

The main research question was “What key features of mathematical learning characterise the 

pathway from beginning apprentice to skilled tradesperson and then to expert engineer in 

mechanical engineering?” The results reported in this chapter indicated that the learning 

involved both new mathematical content and consolidating mathematical content previously 

learned at school (see Section 4.1), and developing accompanying ancillary skills such as 

problem solving that were considered necessary for the successful application of mathematics 

in the workplace (see Section 4.2).   

Regarding the first research sub-question, “What is the nature of the mathematics skills 

employed in the mechanical engineering trades?”, the mathematical knowledge and content 

closely aligned with mathematics skills already introduced at school, such as Pythagoras, 

trigonometry, and graph reading (see Sections 4.1.2 and 4.1.3, and Appendix C). However, 

applying mathematics in the mechanical engineering trades context was a complex process. 

Thus, converting between systems of units, mental calculations, substitution in formulas, and 

transposing formulas were considered to be challenges for apprentices and skilled 

tradespersons alike, possibly because of their more abstract nature and conceptual issues 

surrounding understanding (see Section 4.1.3).  

Among the skills that were necessary to apply mathematics in the mechanical engineering 

context were accuracy in calculation and measurement, a feeling for size, making sensible 

estimations, deciding whether or not to use mathematics or rely on heuristics or engineering 

judgment, understanding and using tolerances, understanding how mathematical models 

relate to the mechanical engineering context, and interpreting numerical results in context. 

Ancillary skills, such as problem solving and its associated skills of creativity, flexibility of 

thinking, and extended reasoning were also found to be important and these also required 

development beyond school requirements (see Section 4.2).  
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The second research sub-question was “How do apprentices and skilled tradespersons in 

mechanical engineering trades apply mathematical skills in their work?”. The study found 

that mathematical skills were used in real contexts involving both routine and non-routine 

tasks. The study also identified higher-order thinking, problem solving, creativity, extended 

reasoning, and conceptual understanding as being important for the successful application of 

mathematics in the workplace (see Sections 4.2.1 and 4.2.2). Decisions regarding when to use 

mathematics, how mathematics should be used, and the acceptability of new ideas and 

innovation, were strongly influenced by accepted practice and community rules.  

To summarize, this chapter has focused on the findings relating to the main research question 

and the first two research sub-questions. It has analysed the nature of the mathematics and 

ancillary skills employed in the mechanical engineering trades and how those skills are used. 

In the next chapter, I analyse the data to answer the third sub-question, which concerns how 

the mathematics knowledge and skills are learned and developed.  
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Chapter 5. Findings - Learning and developing mathematical knowledge and skills  

Introduction 

This chapter is the second of two chapters that present and interpret the data from the present 

research using CHAT and SL lenses and with reference to the research questions. Chapter 4 

focused on Engeström’s third question and the first two research sub-questions, what 

apprentices and other engineers learn, including specific and ancillary mathematics skills, and 

how they were applied in engineering contexts. In contrast, this chapter focuses on the third 

research sub-question: how do engineers learn and develop mathematical skills? It relates 

directly to the main research question and Engeström’s fourth question “How do they learn?” 

(see Section 1.3 and Section 3.2).  

Engeström’s elements of physical and intellectual tools featured strongly in Chapter 4. In this 

chapter, Engeström’s other elements of rules, roles and community feature more prominently 

as I analyse how the mathematical and associated tools are developed and learned. 

Apprentice engineers are in the process of learning the technical and social rules that are 

strongly determined by the community of engineers. Their roles change according to their 

developing skill levels and experience. The changing roles resonate well with Lave and 

Wenger’s (1991) theory of legitimate peripheral participation where beginning apprentices 

are initially set relatively simple tasks but which steadily become more difficult as they gain 

in skill, understanding and confidence. This chapter demonstrates how apprentices in the 

mechanical engineering trades progress from the periphery of a community of practice 

towards the centre, along with the associated complexities and contradictions.   

The chapter is in two parts. A smaller part, Section 5.1, focuses on childhood and school 

formative experiences and a larger part, Section 5.2, focuses on workplace-related learning 

and mentoring. Section 5.2 is broken into five sections – the qualities sought in prospective 

mechanical engineering apprentices, views on apprentice training and mentoring, conceptual 

issues surrounding calculation skills and their contexts, learning higher-order skills, and 

social interaction and communication. Section 5.2.6 summarizes the chapter.  

I begin the analysis of the processes of new knowledge and skill development with the 

influences of childhood and school experiences.  

5.1. Childhood and school formative experiences  

An examination of childhood and school experiences is important to this study. The data 

showed that many of the participants could trace their historical exposure to engineering and 

other practical experiences to their childhood; their development was similar to my own (see 

Section 1.1). The data also showed that their learning was linked strongly to the Cultural 

Historical Activity Theory (CHAT) frame of reference (see Section 3.2). As children, they 

would have become members of an Engeström community where older family members were 

role models for them, they became familiar with physical tools, the rules the community 

accepted for their appropriate use, and the limitations of those tools. Later, they would learn 
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to maintain and make their own machines. They were, therefore, introduced to problem 

solving and other intellectual tools, such as the language, culture, and communication styles 

of the community. The childhood links to mathematics may have been less obvious, but as 

children, they may have been exposed to the discourse surrounding measurements and 

weights where they gained a feeling for size that was related to practical application and 

context.  

I begin with childhood experiences of engineering and other practical activities involving 

family and whānau before relating the influences of school experiences in engineering and 

mathematics.  

5.1.1. Childhood experiences 

Seventeen engineering tradespersons or apprentices were interviewed. They had a wide range 

of childhood experiences in engineering and other practical activities, and some had studied 

engineering at school. From their biographical data in Appendix E, three of the engineers 

reported strong engineering and other practical experiences during their childhood and 

teenage years. Among the influences drawing them towards a practical world were the voices 

of older members of their family or whānau; particularly, their fathers, and in some cases, 

their grandfathers. These influences, combined perhaps with a natural curiosity about 

mechanical and other practical things, provided them with an already long exposure to 

engineering practice and culture by the time they reached their teenage years. Thus, the 

engineering experience of an emerging skilled tradesperson could already go back many 

years. This indicated the influence of their background experiences on their learning, and 

how these formative experiences might have mediated and hastened the transition from the 

periphery to the centre of the engineering community of practice.  

5.1.2. School and workplace mathematics 

I now analyse the questionnaire data provided by the apprentices concerning their 

experiences of school mathematics. I first compare how easy the apprentices found 

mathematics at school and in their work, and then how easy they found mathematics at school 

with how helpful they found mathematics in their work. The data is from the responses to the 

questionnaire items: Item 6 I found mathematics easy at school, Item 8 The mathematics I 

learnt at school helps me with the mathematics in my apprenticeship, and Item 9 Overall, I 

find that mathematics for mechanical engineering work is easy.  

First, examining the row totals in Table 9, 41% of the apprentices disagreed or strongly 

disagreed that they found mathematics easy at school. Examining the column totals, 44% 

disagreed or strongly disagreed that the mathematics in their work was easy. This suggests 

that mathematics in the workplace is a challenge for a significant proportion of apprentices.  

Almost 60% (42/71) of the apprentices gave the same response to both items, suggesting that 

they found a similar level of mathematical challenge at work as they had done at school. 

However, 12 apprentices found mathematics at school easy and disagreed that they found 
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mathematics easy in the workplace. Similarly, 10 apprentices found mathematics easy in the 

workplace but disagreed that they found mathematics easy at school. One could speculate that 

the difference between school and workplace mathematics may be partly due to general 

difficulties in mathematics learning at school and/or in the workplace.   

Table 9 How easy the apprentices found mathematics at school and in their work 

 
Overall, I find that mathematics for mechanical engineering work is easy  

Item 9 

 

I found 

mathematics 

easy at 

school 

Item 6 

 
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 
Totals 

Composite 

totals 

Strongly 

Disagree 
 1   3   1  0 

 5 

(7%) 

29 (41%) 

Disagree  0 15   9  0 
 24 

(34%) 

Agree  1 11 22  2 
 36 

(51%) 

42 (59%) 

Strongly 

Agree 
 0   0   2  4 

 6 

(8%) 

 Totals 2 (3%) 29 (41%) 34(48%)  6 (8%) 

71(100%) 

 
Composite 

totals 
31 (44%) 40 (56%) 

Second, turning to Table 10, the column totals show that 74%, about three-quarters of 

apprentices in this study, agreed or strongly agreed that school mathematics helped them in 

their apprenticeship. However, 26%, about one quarter, disagreed or strongly disagreed that 

the mathematics they learnt at school helped them with the mathematics in their 

apprenticeship. The statistical data alone is unable to reveal why they made these responses.  

In the main body of the table, 32/71 (45%) of the apprentices gave the same response to both 

items. Also, 33/71 (46%) agreed or strongly agreed that they found mathematics easy at 

school and that their school mathematics helped with their apprenticeship.  
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Table 10 How easy the apprentices found mathematics at school and how helpful in their 

apprenticeship 

 

The mathematics I learnt at school helps me with the mathematics in my 

apprenticeship  

Item 8 

 

I found 

mathematics 

easy at 

school 

Item 6 

 
Strongly 

Disagree 
Disagree Agree 

Strongly 

Agree 
Totals 

Composite 

totals 

Strongly 

Disagree 
  3   2   0  0 

5 

(7%) 

29 (41%) 

Disagree  0    4 20  0 
 24 

(34%) 

Agree  1   6 23  6 
36 

(52%) 

42 (60%) 

Strongly 

Agree 
 0   2   2  2 

 6 

(8%) 

 Totals 4 (6%) 14 (20%) 45 (63%) 8 (11%) 

71 (100%) 

 
Composite 

totals 
18 (26%) 53 (74%) 

The most important differences between the apprentices’ responses were the 20 apprentices 

who disagreed that they found mathematics easy at school, yet agreed that they found that the 

mathematics they learnt at school helped them with the mathematics in their apprenticeship.  

To summarize, there was considerable variation in the questionnaire data concerning how 

easy the apprentices found mathematics at school and in the workplace, and how well their 

school mathematics helped in their engineering work. I now turn to the interview data to 

investigate these statistical results in more depth.  

5.1.3. The school and workplace mathematics tension 

In the last section, I analysed the questionnaire data from apprentices on their views 

concerning how easy they found mathematics at school and in their workplaces, and how 

helpful they found their school mathematics in the workplace. I now supplement this 

statistical data with comments from three of the five apprentices and seven of the 12 skilled 

tradespersons and educators who took part in the interviews. The views of these ten 

participants were chosen because they broadly represented the range of views in the group of 

17 participants interviewed.  

There were two main opinions expressed. First, all participants spoke approvingly of the 

mathematics skills they had learned at primary school. Second, while most of the participants 

expressed criticism of senior secondary school mathematics programmes, usually because 
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they were considered too abstract, some of the experienced educators and tradespersons had 

come to appreciate the applicability of senior school mathematics much later in life.   

While the participants did not object to mathematics per se, they held strong views that 

mathematics should be relevant to, and applicable in, practical situations. For example, Ben 

(apprentice) enjoyed practical mathematics and figuring things out for himself or with others. 

However, he could not see the use of statistics, or even “the computer research stuff” of 

graphics and design, and English was “just a waste of time”. Ben was unable to see the 

important connection between the broader skills he had learned at school and the skills he 

could now use in engineering. Therefore, Ben’s approach to learning was pragmatic and was 

restricted within the immediate boundaries of his current worldview. Ben’s views were 

reiterated by Ari (apprentice), who said that his college experiences in mathematics “just felt 

a little bit useless. You know what I mean?” Ari could not see the relevance of calculus 

because the “really complicated, um, equations. I don’t think they would ever come up 

personally in my future”. These comments reflected Ben’s and Ari’s current views of their 

present and future practical applications of mathematics in real-life contexts.  

In contrast, Irene (apprentice) had a wider perspective. She believed her physics knowledge 

helped very much, but “up to a point”, which helped her with airflow restrictions in 

refrigeration. Irene thought that mathematics in the workplace had a “purpose behind what 

we do now”, and that “there’s a specific outcome” they were seeking, which was unlike 

going through the motions at school to pass exams. Therefore, there was a consistent and 

very firmly held view among these apprentices about the inadequacy of much of their senior 

school mathematics experiences in preparing them for the engineering workplace. They were 

still to experience expansive cycles of learning to adapt to workplace mathematics 

requirements. However, these views might change in the future as they mature and gain more 

exposure to engineering, as with Courtney (engineer), Robert (expert engineer, educator and 

entrepreneur) and Murray (engineer) (see later in this section).  

The skilled tradespersons and educators’ comments during the interviews showed that they 

wanted more than just competence in calculation. For example, Owen (educator) believed 

that one of the differences between mathematics in the workplace and at school was that 

“mathematics in school tends to be a lot of rules, whereas in the workforce you try to get 

them to apply their maths”. Some of his apprentices were good at mathematics and could “do 

the handstands as required” and could “storm through [to] use the calculator”. However, they 

needed to know that “it’s not just a calculation”. Consequently, Owen gave his avionics pre-

apprentices mathematics challenges to help them “understand the physics and the science of 

the aeroplane technology to maintain the aeroplane”. In other words, Owen wanted people 

who could think through a problem in context and use appropriate mathematics to find a 

solution, which they could then link back to the original engineering problem. That is, Owen 

wanted creative thinkers and problem solvers. However, some apprentices had a more limited 

perspective, thinking that the task was finished once they had obtained a numerical answer.  

Commenting on the applicability of his school experiences to his work, Stephen (educator) 

said he never used certain school mathematics topics in the workplace, such as simultaneous 
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equations. However, trigonometry could be useful for structures, and transposition of 

formulas was used frequently. Thus, Stephen considered that only some school mathematics 

topics were relevant to his job. Paul (training officer) had pursued a different school pathway 

and had studied business mathematics instead of the academically-advanced senior secondary 

school mathematics. He thought his school mathematics courses helped him in his 

apprenticeship because they were oriented towards “day-to-day use”, and therefore were 

more applicable to engineering. A similar view was taken by Howard (maintenance 

engineer), who emphasized the generality of school mathematics and the specificity of 

workplace mathematics “to the job on that particular day”. While his schooling had prepared 

him well for on-the-job mathematics, “it wasn’t really targeted to my trade, [but it] gave me a 

good foundation to build on. Yeah, it was more so when I went to tech. Mathematics was 

more related to the particular trade I was doing”.  

However, the difference between school and workplace mathematics, between the abstract 

and the real, also extended into workplace mathematics education where theoretical and 

practical considerations met. Hence, in contrast to the approach of some other engineers, 

Chris (educator) acknowledged the importance of theory in his workplace training. Therefore, 

towards the end of his apprenticeship, Chris started “to realize that both [theory and practical] 

gelled. They have to”. In Chris’ experience, an appreciation of the role of mathematics 

developed with growing experience and maturity. Hence, Owen, Stephen, Paul and Chris 

acknowledged that some aspects of school mathematics helped them in their work. However, 

the more abstract topics were either not applicable, or only marginally applicable to their 

work situations.  

The lack of application and real-world contexts in school mathematics courses were 

frequently mentioned, even by those who had studied senior secondary school mathematics. 

For example, Henry (avionics educator) said that schools were “not really worried about real-

world situations”, nor did they have any perception of what the results meant in practice. 

Henry was more interested in informal processes, such as problem solving and thinking 

outside the square than in formal mathematics. He described how he got his students to 

design a project, build it and then fault-find it. He justified this teaching approach because his 

students would “get the experience. They’ve used their brains to design it, they used their 

hand skills to build it, and then they fault-find it”. Mathematics was thus subsumed within the 

practical context.  

I now consider the views of mature engineers on school and workplace mathematics and who 

modified some of their views later in life. For example, Courtney (engineer), Robert (expert 

engineer, educator and entrepreneur) and Murray (engineer) said they found no application 

for their school calculus studies. Robert said that calculus “used to drive [him] nuts” because 

he “wasn’t applying it”. He claimed that things immediately improved when he could find an 

immediate practical application for the mathematics he was studying at his polytechnic. 

Murray (engineer) also emphasized the importance of practical, real-world contexts. He 

thought the equation for a straight line as algebraic and “very abstract … you know”. Murray 

summed up his objections by saying that nobody at school  



Chapter 5 Findings - Learning and developing mathematical knowledge and skills 

134 

 

tells you WHY it’s needed. You learn that, but the WHY [is] needed. WHAT is that? 

And WHY do I have to know that? And I find this is where I got totally flummoxed, at 

school. 

However, Murray’s attitude to powers of numbers changed when he was first introduced to 

spreadsheets in the workplace. Without outside help, he quickly transferred his knowledge of 

powers, exponents and the compound interest formula to calculate future values of annual 

increases.  

Courtney, Robert and Murray all had senior secondary school mathematics skills and had 

studied mathematics successfully at tertiary level as well. They all criticised the abstract 

nature of school mathematics, because its application was hidden. Nevertheless, they 

subsequently made connections between the abstract and practical engineering contexts, and 

expansive cycles in their mathematical learning took place in the workplace long after they 

had completed their tertiary training. It is unlikely that they would have made those 

connections without the theoretical knowledge they had learnt in school.    

5.1.4. Section summary  

The formative influences of childhood and school experiences were the focus of this section. 

Several of the engineers described how, even as small children, they had become members of 

communities of practice, which gave them early experiences of engineering and other 

practical activities. They may also have been exposed to some theoretical aspects of 

mathematics in practical contexts, albeit at an elementary level. Family members adopted the 

role of mentors as the children informally learned the importance of both physical and 

intellectual tools. Informal learning processes also continued at school, although more 

emphasis was placed there on formal mathematics development. The result was that a person 

beginning an engineering apprenticeship possibly already had many years of historical 

exposure, not only to engineering and other practical contexts, but also to school 

mathematics, all of which may have contributed to their development. However, there were 

differences between the requirements of the various communities of family, school and 

workplace. These posed challenges and contradictions for young people as they sought to 

find expansive cycles of learning as they adapted to the differing approaches to, and 

perspectives and requirements of, mathematics at each stage.  

An important contradiction from the viewpoint of this study were the differences between 

school and workplace mathematics. This was evidenced in the questionnaire data which 

revealed that 41% of the apprentices ‘disagreed’ or ‘strongly disagreed’ that they had found 

school mathematics easy, and 26% ‘disagreed’ or ‘strongly disagreed’ that school 

mathematics helped them in their apprenticeship. These views were investigated further in 

the interviews. Here, some participants spoke approvingly of their primary school 

mathematics experiences but were critical of the mathematics courses in their later years in 

secondary school which they regarded as abstract and removed from real-world contexts. The 

world of formal school and classroom learning contrasted with how mathematics is learned 
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and practised in workplace settings, which I now investigate. Expansive cycles of learning 

took time to take place, as I discuss in the next section.  

5.2. Workplace-related learning and mentoring 

The engineers I interviewed all emphasized the importance of workplace-related learning and 

mentoring. These were seen as essential to adapting to workplace requirements, and to 

establishing the apprentice’s pathway from beginning apprentice to skilled tradesperson. 

Learning relates to the third research sub-question about the development of mathematics and 

its associated ancillary skills of problem solving and metacognition, which were necessary 

for engineering work (see Section 1.3 and 1.4). Engeström’s (1987) elements of community 

and its accompanying rules and roles are important in this section because of the influence of 

others in the development and application of mathematics skills. Similarly, Engeström’s 

principles of historicity and multi-voicedness reflect long-term influences and differences of 

opinion and approach in the succession of communities, such as family, school and 

workplace, which affect an apprentice’s development.  

Because the mathematical aspects of engineering are not the whole of becoming an engineer, 

this section begins with a section on the general qualities looked for when selecting 

apprentices for training. This is followed by an analysis of apprentices’ and educators’ views 

about the nature of apprentice training. I then analyse and consider conceptual and higher-

order skills before considering the roles of social interaction and communication in learning.   

5.2.1. Qualities sought in prospective mechanical engineering apprentices  

All the educators I interviewed believed that certain qualities were influential in how well 

people might adjust to the requirements of the mechanical engineering trades. I discuss these 

in four categories: the right attitude, a broad range of interests, an inquiring mind which 

indicated a willingness to learn, and mathematical knowledge. While some of these qualities 

were non-mathematical, they do impinge on mathematical aspects of learning and practice in 

the mechanical engineering workplace.  

Regarding attitude, Paul (training officer) explained that his company’s policy was to give 

someone an opportunity to join a pre-apprentice programme if they show “all of the right 

credentials and [have] a good attitude. They’ve approached me, gone to the effort to maybe 

door knock”. The emphasis here was on a person’s “attitude”, which was valued highly by 

Paul and several other educators whom I cite below because they believed attitude was 

important to the apprentices’ future engineering development.  

Displaying a broad range of interests was taken as a sign of a willingness to learn. For 

example, avionics educators, like Warren and his colleagues, wanted to know applicants’ 

hobbies and interests, and why they wanted to do the course. Broad interests included 

experience in practical things because Warren also wanted “kids who have got hands skills 

where they are physically doing stuff, and using tools, [and] interested in aviation”. A good 

attitude was also displayed in having “a bit of drive and a bit of passion”. A similar view was 
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expressed by Owen (educator) and Howard (engineer). Howard emphasized the need to have 

“a passion to become a mechanical engineer … a passion for mathematics and understanding 

how things work … Yeah” as well as “hands-on” experience and a “feel” for engineering. 

Therefore, Warren, Owen and Howard wanted well-rounded apprentices with wide 

intellectual and social interests, and a passion to learn about engineering. 

Other engineers specifically emphasized having an inquiring mind which also demonstrated a 

willingness to learn. Owen said that being able to discuss how the theory of flight works, how 

radio waves are propagated and whether the navigation of a plane was affected by the 

curvature of the earth were significant in building up a general knowledge useful to avionics 

engineers later in their careers. It was not necessarily the factual knowledge that was 

important, but the attitude of inquiry that was being fostered in the process. On the other 

hand, Paul felt that young apprentices displayed a variety of strengths and weaknesses; some 

were very good at general engineering principles, but lacked creativity and problem-solving 

skills, while the reverse was the case for others. He believed that these skills could be 

developed by engineering experience, especially informally through interactions with 

mentors during the apprenticeship years and having conversations with mature engineers. 

Hence, Paul acknowledged the importance of communication in the learning process.  

The avionics educators placed greater emphasis on specific mathematical knowledge than 

educators in other branches of mechanical engineering. For example, Henry (avionics 

educator) said he needed students with calculus knowledge of differentiation and integration 

“’cause we use that a lot with AC and DC theory”16. Stephen (avionics educator) concurred 

but added that they would make exceptions in certain cases based on the results of a pre-

selection mathematics test paper which was interpreted holistically. They took into account 

the applicant’s age, maturity, and length of time away from study. Thus, even in avionics, 

social and personal factors could overrule the lack of a suitable mathematics qualification in 

accepting a prospective apprentice.  

To summarize, mechanical engineering trades educators looked for a variety of personal 

qualities and abilities in prospective apprentices. These included having an inquiring mind, 

practical skills, prior experiences with machines, as well as a passion and intuitive feeling for 

engineering. The multi-voicedness concerning what constituted proper engineering practice, 

acceptable practical skills level, and hobbies and interests were evidenced in the philosophies 

described by educators like Warren and Owen, who would be impressed by previous 

historical efforts made by prospective apprentices to gain engineering and other practical 

experience. Skill in mathematics was just one element. The educators’ judgment on how well 

the young apprentice might fit in with the community was often decisive, and good personal 

skills could override even inferior mathematics skills.    

 
16 Alternating current and direct current. 
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5.2.2. Views on apprentice training and mentoring 

Having investigated the desired qualities and abilities of prospective mechanical engineering 

trades apprentices in the last section, I now analyse the views of educator/tradespersons and 

apprentices on apprentice training and mentoring. I first describe the educators’ views of 

apprentice training and their maturation. A significant feature of this was a cultural attitude 

where apprentices’ mistakes were looked upon in a positive light, and even as learning 

experiences. I then examine apprentices’ views of their training and the value they attached to 

being mentored.   

5.2.2.1. Educators’ views on apprenticeship training and mentoring 

This section analyses the views of educators on mentoring programmes. I first discuss the 

philosophy behind the programmes, and then the contributions made to technical and 

mathematical learning in conjunction with the roles played by mentors in the communities of 

practice.  

Regarding philosophy, several educators were keen to emphasize the quality of their 

apprenticeship training and mentoring programmes. From a technical perspective, these 

programmes were designed to expose apprentices to a wide range of engineering experiences 

with mentors who were good communicators. Paul’s company was typical in this regard and 

appointed team leaders and apprentice mentors who were not only experts in their trade, but 

were also “approachable people” who could give apprentices a wider appreciation of the 

work. The apprentices responded with “… just question after question”. In addition, the 

philosophy of mentoring programmes also included paying attention to apprentices’ personal 

welfare.  

Regarding technical and mathematical learning, the avionics educators, Warren, Stephen, 

Henry and Fred said that their mentoring systems focused on both technical training and 

apprentices’ social development. Warren said that while “90% of what [apprentices] gain is 

on-job experience”, the apprentices also attended special block courses in the first three years 

of their traineeship to receive “those extra skills”. Paul (training officer) said his company 

had a policy of focusing on the “best of the best”, and then offering them exposure to a wide 

range of quality engineering experiences. The company put the young apprentices through a 

six-month programme where “they’re exposed to everything … in the machine shop with 

machinists pushing buttons … in the coil shop and … in assembly”. Every part of their 

training was “hands-on”. Calculation skills were developed with “time on the job” and 

practical contexts were used to teach the importance of tolerances and problem solving. Paul 

strongly preferred to keep problem-solving learning as an informal activity. In this way, 

watching and talking were important communication features of this company’s training 

policy. A comprehensive system of ongoing development for apprentices and skilled 

tradespersons combined with an ongoing strategy to foster individual initiative and 

innovation were backed up with an annual award of “a big sum of money”.  
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Like Paul’s company, Warren’s avionics pre-apprentices were also exposed to a wide variety 

of experiences; they “don’t just sit in one area like for two or three years”. This meant that 

the training programmes had to be “very well-coordinated”, both from a logistical viewpoint 

and integrated with the teaching programmes taught by colleagues throughout the respective 

communities of practice.  

In contrast, Stephen (educator) talked about how avionics educators mentored apprentices on 

the technical aspects of their training on the job. This helped recent school leavers to adapt to 

workplace demands. They adapted “relatively slowly, so they’re sort of mentored into it. So 

these guys helping out, they’ll sit in the right-hand seat”, observe the gauges and the tools and 

the torquing and “help out with the calculations, and get a bit of a handle on it that way”. In 

this way they were learning the interaction between tools and context, “because it’s quite 

physical. It’s nice to know why the temperature of the day is important and what the 

temperature of the day does to affect the calculations”. Stephen’s example demonstrates the 

integration of physics skills, mathematics and numeracy skills, and the understanding of what 

they mean in an avionics context. Also, while the apprentice was involved in certain tasks 

with which they might be familiar, at the same time they were having the opportunity to 

observe how experienced practitioners were performing more advanced tasks.  

Regarding the counselling role of mentors, Warren (avionics educator) emphasized a 

supportive environment where someone would talk to apprentices who slide “off the rails a 

little bit” and say, “right, we’re one-on-one, let’s sit down and see how you’re going”. He 

also explained that “people are constantly monitoring to see how these guys are going” with 

their Unit Standard tasks, which needed to be checked and signed off by on-job assessors. 

Apprentices who completed their Unit Standards in good time were given a “pay rise”. 

Reflecting on his own time as an apprentice, Chris (authority on fabrication engineering) 

attributed his own success to the tradesmen who trained him. They took an interest in his 

welfare, as well as being willing to share “their skills … they were willing to part with their 

knowledge, and that is one major factor in becoming a good tradesman”. Therefore, the 

influences of personal aspects in people’s lives were recognized as influential in their 

learning and performance in the workplace.  

Regarding the involvement of the communities of practice in apprentice learning, Paul 

described an ongoing, company-wide professional development programme. Paul said that 

the company’s owner “always bought the latest and greatest … so the next machine will 

come in and it will be the latest technology so they’ll [the engineers] get a chance to work on 

it.” These professional development programmes had two aims; first, to foster a broad and 

detailed understanding of the company’s products, and second, to make people aware of the 

importance of the mechanical engineering tradespersons’ contribution to high-level research 

and the parts that are “being assembled here in the assembly plant”. The programmes were 

reinforced by creating a shared community culture of encouraging people to ask questions 

and seek answers from colleagues, and using a buddy system to answer physics questions. 

Warren (avionics educator) brought yet another perspective when he described how school 

leavers and mature pre-apprentices in their 20s and 30s, who had recently joined the 
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community of practice, helped each other. Mature people brought life experience and tended 

to admit their lack of knowledge, and say,  

Hey, I don’t understand this. ‘You young fellas, bright whippersnappers, you picked it 

up really quick. Can you show me? Can you put it in your own words?’ And what they 

demonstrate to the younger ones is [that] you don’t know it all, and there’s a way of 

where they can, you know, discuss things. 

In such environments, educators, mature and young apprentices engaged in mutual learning 

of technical skills where they invited the help of each other, thereby reinforcing the building 

of relationships, as well as mutually constructing learnings and understandings of the 

mathematics and physics course material.  

5.2.2.2. Educators’ views on apprentices’ maturation 

The interview data also revealed the educators’ awareness of delayed maturity and its 

implications for apprentice training. It was an important factor in educators’ attitudes to 

mentoring young apprentices and their acceptance of apprentices’ mistakes. Thus, Donald 

(skilled tradesperson) commented on apprentices adjusting to fine measurements when they 

came from school: “Ahhhh … well, they get taught that I suppose … yeah, they make a lot of 

errors but that’s all part of training”. Stephen (educator) had a similar attitude when he said, 

“they’re expected to make some mistakes ... there’s plenty of checks and balances in place” 

Similarly, Paul (training officer) believed that doing things until they can be done correctly 

was important because it “gives the apprentice the opportunity to make a mistake and then 

learn from it”.  

By way of contrast, a retired engineer with whom I discussed the future course of this study 

in 2017 related to me an incident where a group of unsupervised apprentices were asked to 

build a ramp for an elevator in a kiwifruit packing shed. This could have been done 

accurately and easily using Pythagoras and trigonometry, yet the apprentices decided to use 

trial and error. Their lack of maturity and guidance resulted in wasted time and materials. 

Becoming mature in joining theory and practical application may be a long process for some 

apprentices.  

Delayed social and intellectual maturation was also linked to the development of social and 

higher-order thinking skills. Fred (a leader in an Industry Training Organisation), observed 

that apprentices often had  

all the pieces [of the jigsaw puzzle], but they haven’t necessarily formed the full 

picture, and once they start to make those connections, then what we find is that they all 

of a sudden, after two to five years, they all of a sudden are way better.  

The fitting together of the jigsaw pieces was also alluded to by Robert (expert engineer, 

educator and entrepreneur) who commented on teaching an apprentice to operate one of his 

huge presses - “Oh, I can teach them in a matter of minutes how to use a press… but it takes 

years to learn what you can do and how to do it”. Thus, in a short time, the apprentice would 



Chapter 5 Findings - Learning and developing mathematical knowledge and skills 

140 

 

be able to do the basic aspects of his job, but would still lack the higher-level skills to go 

beyond the strictly supervised tasks given to him by his boss. Therefore, Robert and the other 

educators were emphasizing that the apprenticeship years were an initial training phase only. 

The newly-qualified skilled tradesperson would still need to learn many skills, especially 

higher-order skills, over many years by practicing and social interaction.  

5.2.2.3. Apprentices’ views on effective learning 

In Section 4.1, I identified a number of significant issues apprentices faced when adjusting to 

the mathematical requirements of the workplace. These included skills with numbers, 

performing calculations in context, the use of calculators, and making mental calculations and 

estimates. I begin this section by investigating how frequently the apprentices used the 

mathematics, physics and mechanics skills taught in block courses (see Figure 10). This 

provides one indication of the relevance of these topics to the mechanical engineering context 

and the apprentices’ current readiness to use mathematics in the workplace.  

 

Figure 10 Percentages of apprentices reporting how often they used the topics of block course 

(n=61/62) 

From Figure 10, almost one-half of the apprentices (48%) ‘agreed’ or ‘strongly agreed’ that 

they used all the engineering mathematics at work that they had learned in their block 

courses, and 55% ‘agreed’ or ‘strongly agreed’ that they used all the trade physics and 

mechanics at work that they had learned in their block courses. Thus, apprentices were 

relatively evenly split in their views about how often they used mathematics, physics and 

mechanics skills at work. This may be attributable to some skills not being directly relevant 

to some branch specialisations, or to some apprentices having not yet been given the 

opportunity to use the skills they had learned during block courses in the workplace.  

I now turn to how effective apprentices found eight methods of learning relating to: personal 

learning; such as doing exercises and examples, working online or consulting textbooks, 

thinking things through for themselves, and interactive learning; such as watching and 

8

44
41

7
10

36

52

3

0

10

20

30

40

50

60

Strongly Disagree Disagree Agree Strongly Agree

P
er

ce
n
ta

g
es

 o
f 

p
ar

ti
ci

p
an

ts

Item responses

I use all the engineering mathematics at work that I learnt at my block courses

I use all the trade physics and mechanics at work that I learnt in my block courses.



Chapter 5 Findings - Learning and developing mathematical knowledge and skills 

141 

 

discussing with others either on the job or in the classroom. They were asked to rate the 

effectiveness of eight statements about learning, such as, ‘ [Method] helps modern day 

apprentices to learn to solve mechanical engineering problems using mathematics.’ Figure 

11 presents their responses. 

 

Figure 11 Percentages of apprentices reporting the level of effectiveness of different learning 

methods to solve mathematical mechanical engineering problems 
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All of the learning methods were thought to be effective by at least some of the apprentices. 

However, some methods of learning had particularly high ratings (‘effective’ or ‘highly 

effective’), such as discussions with tutors and other engineers (100%), and being on the job 

(96%). These supported comments from Ben, Ari and Nikau about the influence of 

discussion in the workplace of mathematics and its relationship to engineering, and Warren 

(educator) organising a lot of group interaction in the classroom. Therefore, a substantial 

majority of apprentices regarded social learning methods as effective or very effective.  

Other highly-regarded learning methods may reflect an emphasis on more individual study, 

such as thinking things out for themselves (95%), doing exercises and examples until they got 

things right (94%), and going online (75%) which could be done by individuals at home. 

These learning methods perhaps reflect a focus on problem solving in modern mathematics 

learning.  

The importance of doing many examples was emphasized by Murray (engineer) when he 

said:  

Ah, you don’t do it by saying to somebody, ‘Well, just do it once.’ … You’ve got to 

actually do a lot of exercises … to actually get it ingrained, and it becomes a habit, and 

I think that maybe therein lies the problem that ah … you don’t move on until that is 

embedded and ingrained.  

A very high percentage of apprentices (88%) also thought watching others do problems 

helped them to solve mathematics problems. This finding contrasts with Murray’s (engineer) 

previous comment that “you’ve got to actually do a lot of exercises … to actually get it 

ingrained” (my italics), and that observing someone else does not necessarily lead to 

understanding the fine nuances of what is taking place at each step of the problem.  

The three methods of learning that the apprentices gave the fewest effective or very effective 

ratings were: reading a textbook (31%), going online (25%), and being in the classroom 

(24%). However, these methods were also considered to be ‘effective’ or ‘very effective’ by 

substantial majorities of apprentices (69%, 75% and 76%, respectively).  

To summarize, the apprentices very strongly endorsed the approaches to learning where 

communication and collaboration between teachers and students, and between students, 

created a learning environment where questioning and experimenting had the potential to 

raise levels of conceptual understanding. The apprentices also appreciated the nature of 

contextualised knowledge that enabled them to see what was happening, ask questions and 

thus make the transition to deeper understanding. The social interactions that characterised 

these learning methods featured strongly in workplace mentoring, which I consider in Section 

5.2.5.   

5.2.2.4. Apprentices’ views on workplace training and mentoring 

This section analyses vignettes of the interviews with four apprentices, Ben, Ari, Simon and 

Nikau (see Appendix P) about their early experiences of life and engineering learning, the 
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tasks given to them later in their apprenticeship training, including indications of their 

development of higher-order skills and the extent to which they were supervised and 

mentored. These are presented in Table 11.  

I then analyse their comments for workplace social interaction, such as mentoring. These 

apprentices were all currently involved in sheet metal (or fabrication) engineering tasks 

where the mathematical tools frequently involved calculation and measuring skills. From the 

comments made about their workplace social interaction with mentors and skilled 

tradespersons, their views on workplace mentoring are likely to reflect apprentice sheet metal 

engineering experience in a positive workplace culture.  

Table 11 Summary of conversations with apprentices Ben, Ari, Simon and Nikau 

 Ben Ari Simon Nikau 

Early 

experiences 

of life and 

engineering 

learning 

• Family tradition in 

engineering 

• Engineering at 

school, built a 

windmill and a 

steam train 

• Focus on practical 

mathematics 

• Measuring and 

cutting steel, “plus 

or minus a mil” 

under the guidance 

of a supervisor 

• Worked on his 

own cars 

• Repairing and 

maintenance on 

heavy-duty diesel 

trucks 

• Familiar with 

reading torque 

wrench 

• Gaining 

familiarity with 

replacement parts 

• Learning 

“materials and 

stuff …” 

• Knowledge of 

hydro testing for 

pressures 

• Worked on own cars 

• Realigning forks on a 

forklift  

• Learning to check 

measurements often 

• Awareness that heat 

causes bending on 

welding jobs 

• Replacing brackets for 

wheels 

Later tasks • More complicated 

tasks, harder and 

bigger 

• Pythagoras used 

often 

• Found transposing 

formulas difficult 

• Good at mental 

calculations 

• Made a venturi in 

his third year17 

• Logical thinking 

and finding 

information  

• Simple 

mathematical 

conversions  

• Accuracy 

required for 

fabrication 

• Checked 

calculations 

often 

• Drawings and 

calculations - 

units, volumes, 

welding times  

• Familiarity with 

materials such as 

which welding 

wire was needed 

• Awareness of problem-

solving skills 

• Possibility of multiple 

solutions 

• Making large 6-metre 

steel moulds, used 

problem solving to fix 

mistakes 

Workplace 

Interaction 

• Supervision less as 

time went on  

• Asked for help 

with problems 

• Supervised by 

tradesperson  

• Enjoyed 

interaction with 

tutors and other 

engineers 

• Consulted 

tradesmen or 

night school 

tutor 

• Tasks signed off 

at each step 

• Boss checked all his 

work 

• Confident to ask for 

help 

 

 

17 A venturi is a device that causes an incompressible fluid’s velocity to increase as it passes 

through a constriction. It’s static pressure therefore decreases. By measuring the difference in 

pressures, the flow of the fluid can be calculated. 
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First, regarding the projects in which they were engaged during their apprenticeship training, 

the tasks they were required to perform were aligned with their current level of mathematical 

application. Hence, taking measurements and measuring lengths to within specified 

tolerances were important. However, Ben may have had to multiply the measurements on a 

scale diagram by a scale factor when constructing larger items. On the other hand, Ari 

demonstrated a developing appreciation of what constituted acceptable margins, tolerances, 

required measurement accuracy for the task, and calculation rounding. These are significant 

features of apprentice development. Ari also demonstrated that he appreciated the fluctuating 

errors in his measuring devices and the acceptable limits of those measurements in practical 

situations. He appreciated how the mathematics tools and the physical tools interacted in the 

workplace. Simon spoke about more advanced mathematics when he said he had to “figure 

out [the rest] by yourself”. This involved extended reasoning, which would have been an 

important step up from Simon’s historicity experiences from school. He was training himself 

in how mathematics was employed in a variety of situations, including the challenging task of 

calculating the time jobs might be expected to take to complete. Like the other apprentices, 

Nikau had also learned measuring skills and an appreciation of the need to work within 

tolerances. His mentors had shown him how tricks of the trade could help him do this. 

Therefore, apart from Simon, the mathematics involved was basic but graduated in difficulty 

to suit the apprentices’ current level of knowledge.  

Second, regarding the development of higher-order skills, apprentices undertook problem-

solving activities in accordance with their levels of skill and understanding. Like the tailors 

and quartermasters in Lave and Wenger’s (1991) study, Ben was assigned tasks of graduated 

difficulty according to his experience and capabilities. He eventually constructed a venturi 

meter, which was able to accurately measure the flow rate of a fluid by reducing the cross-

sectional flow area in the flow path which generated a pressure difference. Simon realised 

that the success of his work depended on high quality mathematical and physical data, and he 

used his phone as a sure source for finding out what he needed to know. Nikau also had to 

use problem solving in his work when the steel moulds did not “come out right”, and while 

he was using elementary-level mathematics, he acknowledged and reflected on the possibility 

of multiple acceptable solutions to problems and the impact of using other engineers to help 

find them. In each case, the apprentices’ problem-solving capabilities were nascent and 

probably in a continuous process of development through listening, observing, discussing, 

and individual reflection, as with other skills. 

Third, the apprentices had a good understanding and appreciation of the value of social 

interactions in the workplace. Ben enjoyed his apprenticeship experience and the 

relationships he was forming with others, and was happy with his progress in becoming an 

engineer. Like the other apprentices, Ben had the confidence to ask for help, which suggests 

that mentors understood the role of communication/discussion as a learning tool. However, 

Ben still needed the mathematical skills of others to guide him in the construction of the 

venturi. In addition, all four apprentices spoke about the detailed guidance that 
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supervisors/mentors gave them in the early stages of their learning. For example, Nikau’s 

work was regularly supervised by his mentors and the tradespersons around him. The 

guidance was gradually withdrawn as the apprentices progressed.  

Most tasks in the welding specialization did not use formal mathematics. Courtney (engineer) 

described how one welder’s work could achieve high precision without relying on measuring 

with precise instruments or performing calculations. Courtney said that, “visually, [his work] 

looks like a robot’s welding”, and that the welder had a very good understanding of accuracy, 

and how things bent under heat. Thus, big frames on gangways for wharves required two 

beams to be pre-stressed, and placed back to back so that, when they were welded, they 

would “stay pretty much straight”. The welder’s skill had been very carefully developed over 

many years and appeared to be the result of practice and experience; similar to the tailors and 

quartermasters in Lave and Wenger’s (1991) study. He either did not need to use formal 

mathematics at all, or it was subsumed within the practical context. Indeed, the whole 

scenario appeared to be completely reliant on engineering judgment, hand-eye coordination, 

and highly developed intuition. The requirement for precision was there; it was just hidden.  

To summarize, the focus of this section was on mentoring and training programmes that 

fostered apprentices’ engineering and other skills to allow them to adapt to the requirements 

of the mechanical engineering trades workplace. The ideal candidate for entry into the 

training programmes had broad intellectual and social interests, an inquiring mind and a 

passion to become an engineer. While sound mathematics skills were desirable, educators 

were prepared to relax this requirement in the case of a candidate who was strong in other 

areas and was well motivated to succeed. Several engineers had no childhood or school 

background in engineering at all but met the other criteria. Educators and apprentices also 

spoke about the efforts made to ensure apprentices’ wellbeing, which suggests that they 

recognised the importance of a positive workplace culture. Hence, there was widespread 

recognition of the importance of teamwork, social skills and communication skills. I discuss 

these in Section 5.2.5.  

The ways mathematical and ancillary skills were developed related to the third research sub-

question. The apprentices placed high value on several of the methods of learning and 

applying mathematics, especially informal methods where social interaction was a feature. 

However, other attributes were equally significant, such as attitudes to learning, a passion for 

engineering, problem solving, curiosity, and practical skills. Much of the apprentices’ early 

work involved observing and emulating experienced educators, tradespersons and engineers 

in making measurements, for example, and then cutting to within certain limits. They were 

given more challenging tasks as their practical and mathematical skills developed. In this 

way, the culture of the workplace was important to the comprehensive development of 

apprentices. Their interactions with mature, skilled tradespersons willing to pass on their 

knowledge were also important and are discussed in Section 5.2.5.  
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5.2.3. Conceptual issues surrounding calculation skills and their contexts 

In Section 4.1, I presented the study’s findings about the nature of the mathematics 

knowledge and skills required in the mechanical engineering trades context and how they 

were used. However, using mathematics knowledge and skills is a complex process requiring 

conceptual understandings of numeracy, mathematics, and the physical context. In this 

section, I focus on conceptual issues around tolerances, the metric and imperial measuring 

systems, and rates.  

Conceptual development is an important fundamental learning component of successful 

engineering practice (see Section 2.3). In the mechanical engineering trades environment, 

conceptual development appeared to develop as a result of many processes. These included 

listening to the explanations of others, observing others working, discussions, formal 

classroom teaching, practice, exposure to workplace contexts, individual experiences and 

reflection, and the creation of individual understandings and heuristics that work. In this 

section, I illustrate the conceptual aspects of these learning processes by examining mainly 

the interview data relating to tolerances and finer measurements, the metric and imperial 

systems of units, and rates and densities (see Sections 4.1.2 and 4.1.3). In Section 5.2.4, I 

then focus on the development of higher-order skills, such as problem solving which requires 

paradigm shifts in thinking and solving multi-step problems. Difficulties with acquiring either 

of these skills impeded the development of practical skills for some people.  

5.2.3.1. Working within tolerances 

Different engineering specialisations worked with different tolerances. In performing 

fabrication tasks, Nikau (apprentice) was required to work within tolerance 

requirements of perhaps ± 2 mm. He received all the specifications for his jobs from the 

company office, including the required tolerances. Initially, “a lot of the stuff wasn’t 

coming out when I cut something, measured it, [and] cut it”. In other words, he could 

not keep within the tolerances. This was because his ruler was not properly lined up, or 

the end was worn. He decided the solution was “to not go … right off the end … [but] 

to go off, say, the 100 mm mark … it’s more accurate, and stuff like that”. Nikau’s 

learning was linked to developing his conceptual feel for size and his measuring 

techniques, which he was learning from experience and his interactions with others.  

Paul (training officer) explained how apprentices were introduced to the need for fine 

tolerances early in their experience. He linked learning this with mentoring, where team 

leaders or apprentice mentors talked to the apprentices about the product and “the 

reason we have to have 0.01 [mm] tolerance on this part”. A tolerance of 0.01 mm is 

just 10 microns, and apprentices initially found it very challenging to deal with such 

small measurements. I asked Paul how they adjusted to this. He replied, “again, it all 

depends on previous exposure”. When the apprentices heard the fine tolerances 

expected of them, their reaction was “Wow, that’s d***** near impossible to achieve! 

But our equipment makes it possible”. The fact that this group of apprentices was 

amazed suggests they may have already acquired an appreciation of the rudiments of 
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measurement sizes, which helped them transfer their knowledge and skills to fine 

measurements. Mentoring and discussions were also part of the learning process. The 

progressively increasing involvement of Paul’s apprentices with tolerances was 

therefore similar to the way the tailors and quartermasters in Lave and Wenger’s (1991) 

study were introduced to increasingly complex tasks.  

The conversation moved on to how well apprentices understood the notion of microns. 

Paul said, “Well they probably don’t understand what one micron is”. However, they 

appeared to learn that on the job: 

the more time they spend throughout their apprenticeship, the more conversations 

they have … or when something goes wrong … they say, ‘that’s four microns 

out’ … So, how much is that? How much did we get it wrong by? Then they have 

a conversation, or something … explains that … or they figure it out; they go on 

Google or something.  

In this example, Paul acknowledged that apprentices initially had difficulties with 

conceptualising very fine sizes and linked their learning about tolerances with social 

interactions on the shop floor. However, the apprentices used their initiative and formed 

their own community where they interrogated their understandings and 

misunderstandings, and sought out information relevant to their work. Therefore, 

important means for apprentices to learn how to adapt to fine measurements were 

discussion, exposure to the context, and repeated practice.  

Learning about tolerances was also done in formal block courses. Henry (educator) 

described how apprentices learned to cope with very fine measurements during a three- 

or four-week block course, by just making measurements. When they had to measure 

using “micrometers, verniers, all different tools, … we do go down to 1 thou of an 

inch” (approximately 25 microns). Stephen (educator) gave the example of apprentices 

having to measure a pair of mating parts to make sure each was within limits, and then 

to make sure that the limits fitted each other. He felt that the pre-apprentices got 

“through that fine”. In Henry’s and Stephen’s examples, the formal block course 

learning was integrated with informal discussions and repeated practice.  

To summarize, different branches of engineering had different requirements for tolerances 

and different techniques for achieving them. Appreciation of small measurements and 

learning the limits of how closely things needed to be machined was an essential feature of an 

apprentice’s development. Paul’s comment that the machinery made achieving much smaller 

tolerances possible than the apprentices had previously imagined, suggested that apprentice 

learning integrated both conceptual understanding with the engineering techniques needed to 

achieve the precision required (see above). Moreover, ideas of tolerance were linked to an 

increasing awareness of decimal place values and accuracy, as well as a feeling for size.  
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5.2.3.2. Working with metric and imperial systems 

The imperial system of units is no longer part of the school curriculum of many countries, 

including New Zealand. Consequently, apprentices come into the workplace with little or no 

conceptual appreciation or practical experience of measuring and calculating in lengths given 

in inches and feet, or weights given in pounds. Here, I compare the experiences of old-timers 

learning imperial and metric units with those of this younger generation.  

Courtney (engineer) had grown up in his father’s factory, and unlike most apprentices today, 

had probably received a good grounding in measuring with imperial units from his father. He 

also remembered using imperial units at school and was still converting halves, quarters, 

eighths and sixteenths of inches in his head to metric “all the time”. He claimed to have 

learned to do this by practice and experience, because drills and bolts could be in imperial or 

metric sizes, “and you need to know the difference between them”. Courtney appeared to 

have learned by exposure, practicing, discussions with his father, and experience.  

Imperial units are still used widely in mechanical engineering. Paul (training officer) related 

how metric–imperial conversion was still relevant because his company had “a race shop that 

builds American cars from American parts – all in inches, quarter inches, feet”. In common 

with Courtney, Paul believed people quickly adapted to using both systems of units by 

practical experience.  

However, Donald (engineer) who specialised in heavy-duty transport, believed difficulties lay 

in the mathematics of converting “inches to millimetres … Yeah!” It took time for 

apprentices to adjust to fine measurements, like hundredths of a millimetre or thousandths of 

an inch. He admitted that “they make a lot of errors but that’s all part of training”. This did 

not seem to bother Donald, because he believed apprentices learned through interactions with 

others, practice, and making errors (see Section 5.2.2.2).  

Ari (apprentice), who worked with Donald (engineer), understood the connection between 

imperial units and fractions. He quite liked the fractional approach of the imperial half inch, 

three quarters (¾) of an inch, nine sixteenths (9/16) of an inch, which different sized bolts on 

the Caterpillar equipment from the USA had, but felt it was “obviously not as straightforward 

as 10 mil, 20 mil, 30 mil”. Ari was also skilled in comparing imperial lengths, such as 5/8 inch 

and 9/16 inch. He knew that 5/8 inch was bigger than 9/16 inch, “’Cause you double it … it’ll 

give 10/16”. I was interested to find out if Ari had developed the skill of converting to an 

equivalent fraction by himself, or if he had learned it at school, or from talking with 

tradespersons. He replied, “Yeah, probably really back in primary, you learn that kind of 

stuff”. He explained that he also figured it out for himself, “because obviously, you want to 

make the same so you can compare them”. In addition, Ari felt that the size of the spanner 

gap was a visual aid that helped apprentices learn over time. Ari’s learning also involved 

social interactions, formal schooling and making the transference from physical tools, like 

spanners.    
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However, Ari’s view was not shared by some educators. Arthur said that today’s students had 

difficulties understanding imperial units because some machines mixed both imperial and 

metric sizes. Stephen (educator) agreed, and added that while Air Bus is French and all the 

dimensions of the aircraft are in millimetres, “all of their fasteners are in inches ’cause they 

use American hardware … everybody uses American hardware or a derivation of it”. This 

makes conceptual understanding very important.  

Stephen also linked making conversions between the two unit systems to developing a feeling 

for size, numeracy, estimation, and mental calculation skills:  

They struggle to estimate as well as somebody who grew up with them … sometimes, 

if they write down a ridiculous answer, they don’t realise they’ve written down a 

ridiculous answer because they haven’t got a good bearing on what an inch is, or what a 

thousandth of an inch is.  

Therefore, both Arthur and Ari emphasized that mixing imperial and metric units was a 

conceptual issue with significant practical consequences.  

Murray (engineer) had a different perspective. He had developed his own method of 

converting metric units to imperial units by always converting everything to a decimal. He 

could do this in his head; a skill probably built up with practicing over several decades. He 

was also able to consult a chart of conversions on the wall, or even use trial and error. 

However, converting diameters of nuts and bolts was not always straightforward, as it 

involved conceptual and engineering understandings of rounding decimals. The bolt size 

must be rounded downwards, and the nut diameter must be rounded upwards to obtain a 

satisfactory fit. I recall my father’s discussions of metric charts on toolroom walls in the 

1960s, which caused plenty of confusion for some engineers then too.  

To summarize, conversions between metric and imperial units required conceptual and 

numeracy understandings of relative sizes, conversion formulas, and relationship to a 

workplace context. Apprentices needed to learn how to use formal mathematics approaches, 

using conversion formulas or consulting a chart, and simultaneously be flexible enough to 

understand that even an experienced engineer like Murray sometimes resorted to trial and 

error. In each case, final decisions were made using engineering judgment, and the learning 

was done by many different means, especially exposure and practicing.   

5.2.3.3. Working with rates, volumes and densities 

Rates have both conceptual and practical consequences for the mechanical engineering 

trades. Examples include pressure measured in pounds per square inch (lb/in2) or Pascals, 

speeds measured in ms-1 (metres per second) or km/h, cutting rates for drills, dilution rates, 

and rotational speeds measured in revolutions per minute (rpm). I illustrate the difficulties in 

understanding and learning rates with the example of density. Density is important to 

engineers because it is used to calculate the mass (or weight) of objects after the volume has 

been calculated in appropriate units (see Section 4.1.3). Robert (engineer) illustrated this with 
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an example where density was used to ascertain if a sling was strong enough to lift a hunk of 

steel (see Section 4.1.3.7).  

According to Arthur (educator), some apprentices found density challenging, partly because 

of the conceptual notion of density and partly because of conceptual difficulties with its units; 

g/cm3 or kg/m3. Arthur explained: 

One thing they do have a problem with that comes up pretty quickly is a cubic metre of 

water, like 1m by 1m by 1m is one tonne … They pick that up very well, and 

something that actually they don’t sort of know very well from school. They’ve heard 

about volume, but they don’t actually use it in practical terms … that a metre by a 

metre by a metre weighs one tonne. They go, ‘how did you know that? Did you weigh 

it?’ No, I just worked it out. I tell them that if you’ve got 10 cm by 10 cm by 10 cm, 

that’s a kilogram.  

Hence, Arthur used a formal teaching method to teach the basic concept of density. However, 

he first needed to establish that they understood how two variables interacted; how weight 

was related to volume. This was complicated though because the apprentices had heard about 

volume, but they had not used volume in practical situations. Moreover, difficulties with 

conceptualising volume and calculating weights using density were exacerbated by the 

concept of density and its awkward units (g/cm3, g/cc, or kg/m3). To illustrate the conceptual 

issues of two variables in connection with density, Arthur continued his formal approach and 

appealed to practical contexts. He explained:  

If this, say, pound of butter is actually steel, how much would it weigh? They’d go, ‘I 

don’t know.’ So, you tell them about density [and] volume a bit, and they can quite 

[easily] work it out. It’s like a light bulb situation, and next minute, Ding! The light 

goes on. They go, ‘Oh, I’ve got this now. I can actually understand it’. 

The formal approach used by Arthur, probably accompanied by class questioning and 

discussion, was designed to encourage conceptual understanding. However, how well the 

understanding was developed by these formal means was open to question because 

apprentices often found dealing with more fundamental issues, such as multiples of ten to be 

challenging. When using density to calculate weight, Arthur used the formula: 𝑀𝑎𝑠𝑠 =

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑉𝑜𝑙𝑢𝑚𝑒, so the mass (or weight) was the product of density and volume. Arthur 

went on to create his own heuristic; “to find the weight of a block of steel in tonnes, first find 

the volume in m3, and then multiply by 8. This is because the density of steel is between 

7,750 and 8,050 kg/m3”. The advantage of this heuristic was that an engineer could simply 

follow a simple procedure to calculate an answer in a practical situation.  

This heuristic can be learned as a procedure and no conceptual understanding need be 

involved. However, the challenge of calculating the volume still remains. To investigate the 

ability of apprentices and pre-apprentices to calculate simple volumes and maintain 

consistent units, I gave them a multi-choice problem as part of the questionnaire. They were 
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asked to calculate the volume of a box 200 mm by 200 mm by 200 mm in m3. Their 

responses are presented in Figure 12.  

 

Figure 12 Percentages of apprentices who reached each answer in calculating the volume of a 

box (n=93) 

From Figure 12, just over half of the apprentices (54%) obtained the correct answer of 0.008 

m3. Therefore, it was a relatively difficult calculation for the apprentices. One difficulty in 

doing this calculation was that the answer was required in different units (m3) from those 

given in the original wording (200 mm). It was necessary to make the units consistent. If 

everything was converted to metres at the beginning, the calculation becomes easier to 

perform; volume is .2 × .2 × .2 = .008 m3. Owen (educator) emphasized to apprentices that 

they have to understand the units they “are working with pretty well, [otherwise] the maths 

that follows can be quite a challenge”. Irene (apprentice) correctly calculated the volume, and 

said that she converted units very often in her work and had been trained to think carefully 

about the units “early on in school”. Therefore, both Owen and Irene found calculating the 

volume of the box was straightforward because they understood the necessary concepts and 

the need to maintain consistency of units. Moreover, their initial learning had been reinforced 

over time by practical exposure and practicing.  

To summarize, conceptual understandings and their application to engineering problems, 

such as allowing for tolerances, making conversions between metric and imperial unit 

systems, rates, and volumes, were found to be important issues for apprentices when they 

adapted to the mathematical requirements of mechanical engineering trades workplaces. 

Conceptual issues were also found in gaining a feeling for size and what constituted a 

reasonable answer, especially when fine measurements were required. There were many 

methods of learning used: interactions with others by discussion and observation, formal 

classroom teaching, practice, exposure to context, experience, individual reflection, and 

creating heuristics. Conversions between the metric and imperial systems had the added 

difficulty of young people not having been exposed to imperial units at school. Maintaining 

consistency of units when calculating volumes was an issue for nearly half of the apprentices, 
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and perhaps some skilled tradespersons. Conceptual difficulties in calculating volume will 

almost certainly prevent the accurate calculation of mass, because calculating volume is the 

first step in calculating mass. Moreover, it follows that these conceptual difficulties are also 

likely to manifest themselves when applying the concept of rates in other contexts. 

Conceptual difficulties with rates are linked to higher-order skills, such as problem solving 

and problems involving several steps, which I now consider.  

5.2.4. Learning higher-order skills 

As mentioned earlier, engineers need mathematics and accompanying ancillary higher-order 

skills to successfully apply mathematics in workplace situations (see Section 1.4 and Chapter 

4). These higher-order skills frequently require paradigm shifts in thinking and multi-step 

problem solving. Developing problem-solving skills is an essential part of the pathway from 

beginning apprentice to skilled tradesperson and then to expert engineer.  

The engineers in this study had strong beliefs about the importance of problem-solving skills 

in mechanical engineering trades. However, creating the necessary expansive cycles of 

learning problem solving was a complex process, and was sometimes entered into reluctantly. 

For example, while Robert was a noted innovator, there were times when he and his 

colleagues felt that they should focus on what they did best and get other people to install a 

machine, but whenever they did this, “every single time we’ve been incredibly disappointed”. 

The reason to subcontract work was that problem solving in an area where they lacked 

expertise involved a long, mentally and physically exhausting, expensive, and potentially 

fruitless learning process.  

Some engineers did not feel comfortable with facing the unknown. Henry (educator) 

commented that some apprentices simply stopped, rather than try to work things out for 

themselves. I asked Henry if apprentices who were better at problem solving were better 

prepared academically. He replied, “No, I would say they are better prepared manually 

because they’ve done other things mechanically, and had to work them out, and that 

translates into problem-solving efficiency, if you like”. This suggests that the culture of a 

workplace can create experience in and exposure to unknown environments, which can then 

build confidence and expansive learning cycles. Over time, interactions with others and 

growing confidence to step outside boundaries can aid the development of a problem-solving 

attitude. Henry’s views were supported by Murray (engineer), who cited an example of an 

engineer who ran meetings where everybody was encouraged to express their ideas. This led 

to finding creative solutions and individual workers developing confidence to express their 

views and contribute to company profitability. In contrast, Arthur (educator) felt that the 

formal education offered by schools was inimical to promoting creativity.  

Confidence to go beyond the boundaries meant that apprentices needed to develop and 

consider multiple potential solutions to problems. This was a significant aspect of Henry’s 

teaching philosophy and reflected his view that apprentices would considerably improve their 

ability to cope with unusual avionics situations during their apprenticeship years. This also 

involved developing the ability to consider multiple perspectives which Henry believed was 
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“gonna give you the different paradigms to come up with for your solutions”. When I asked if 

there might sometimes be more than one solution, Henry replied, “Could be, yeah. If I get 

three engineers in a room, [and] say, ‘right, this is what I want to build. I need one of these to 

happen.’ I guarantee there’ll be three different solutions”. I asked if those solutions could 

differ widely.  

They could do! ’Cause you might have someone who’s got a real radical way of 

doing something, but yes, it still works. You know, when I crack an egg, I can 

throw it on the ground, I can crack it gently… (laughter) 

Henry’s comments indicated that fostering problem-solving capabilities was influenced by 

both private reflection and exchange of ideas accompanied by critique and social interaction.  

Many problem-solving situations required the ability to solve multi-step mathematics 

problems. Apprentices were asked how easy they thought it was to solve multi-step 

mathematical problems. Educator/tradespersons were asked this about the apprentices at the 

beginning of their training and at the end of their training. Their responses are presented in 

Figure 13. Most educator/tradespersons (79%) ‘agreed’ or ‘strongly agreed’ that apprentices 

coped well with solving multi-step mathematical problems at the end of their apprenticeships, 

compared with 38% at the beginning. Seventy-seven percent of apprentices ‘agreed’ or 

‘strongly agreed’ that they found multi-step mathematics problems were easy.    

 

Figure 13 Percentages of educator/tradespersons’ views of how easy apprentices found multi-

step mathematical problems (n=93)  

This increase may have been due to several factors, such as block courses, interactions with 

tradespersons and educators, on-the-job experience of using mathematics in real-world 

contexts, and growth in individual and community maturity. Therefore, the data appeared to 

support the conclusion that educators/tradespersons thought apprentices had improved their 

capability to cope with multi-step mathematics problems during their apprenticeship.  
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While it is not possible to definitively conclude how learning higher-order skills took place, 

learning appeared to follow the formal and informal patterns outlined earlier in this section. 

Therefore, learning higher-order skills included a process of osmosis involving interactions 

and discussions with others, and informal observations.  

5.2.5. Social interaction and communication 

In this section, I analyse the views of educator/tradespersons who emphasized the importance 

of good social interactions and communication as key factors in the workplace. They related 

these to such areas as learning, leadership, safety, outlining a problem, and persuading others 

of the soundness of their ideas. I begin by discussing the importance of good social 

interactions and communication. I then relate how the engineers’ informal stories played an 

important role as a learning tool.  

5.2.5.1. The importance of social interaction and communication 

The interview data showed that social interactions and communication made important 

contributions in mechanical engineering workplaces as one of Engeström (1987) tools for 

teaching and learning, and as an element of teamwork.  

First, Paul (training officer) identified communication skills as being important for mentors 

and hence for apprentice learning. He said, “we’ve identified [our mentors] because they 

listen, and then they hear what the problem that people are having [is], and then they’ll 

hopefully have an answer. If it’s a technical question, then there [are] reasoning 

conversations” that take place. Paul was thus emphasizing the role empathetic mentors played 

in apprentice learning. His views were reiterated in Warren’s (avionics educator) description 

of how mature pre-apprentices demonstrated to the younger pre-apprentices that “you don’t 

know it all, and there’s a way of where they can, you know, discuss things” (see Section 

5.2.2). All the apprentices rated discussions with tutors and other engineers as an ‘effective’ 

or ‘very effective’ means of learning (see Figure 11). Moreover, from the interviews, Ben, 

Ari, Simon, and Nikau all expressed their appreciation of being able to discuss problems with 

older tradespersons, tutors and mentors (see Appendix P). Thus, communication was seen to 

be an effective component of learning and some companies actively promoted this.  

Second, Henry (avionics educator) and Murray (engineer) identified communication as an 

essential element of teamwork, which they regarded as being crucial for effective workplace 

functioning. For example, Henry considered communication was “absolutely” important in 

the group assessment where the students had to work in teams to fix the boards the educators 

had made “totally dead” (see Section 4.2.2). He then elaborated, “if we’ve got no 

communication, then you end up with nobody knows what to do, everybody walks around … 

What do I do now?” This meant that there would be no discipline and that if, “you’re asking 

the guy to do a job, he must do that job in accordance with the manuals, and in accordance 

with the system”.  
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Henry incorporated teamwork training as part of his apprentice training programme. For 

example, he set apprentices the task of building a set of shelves for themselves:  

 Henry: Normally what we do is, we say, ‘right, here’s your box, here’s your tools.’ 

 Then we walk away. We don’t tell them anything.  

Kelvin: And what happens in that group? Do you find that one person takes control, 

and everybody else follows?  

Henry: Yep, one person goes, ‘all right, bom, bom, bom. Yeah, I’ve done some of this 

before. What do you know? Oh, OK, Right, you organize this. You organize that.’ 

Others just sort of just stand there and all do their own thing in different directions. 

Henry described the teams that had no leadership or cooperation as “the ones that end up with 

screws missing and brackets on the wrong side”. Thus, Henry emphasized the need for good 

communication, leadership, and teamwork; skills he believed were essential in the workplace.  

Murray (engineer) also had strong views about the importance of social interactions and 

communication in the workplace. “Do you really want to get me started on that one? (both 

laugh) It’s non-existent very often”. Murray linked communication with teamwork because 

“if you’ve got teamwork, you get communication and regular meetings. I think people tend to 

avoid that, and to get at cross purposes. I think communication is probably nine-tenths of our 

problems”.  

Murray also believed that planning with the help of others was important. He recalled one 

engineer who led meetings and got “input from everybody, and I find that engineers don’t get 

input from everybody”. Therefore, encouraging communication was aimed at helping 

problem-solving situations which, in turn, helped maximise the efficiency and smooth 

running of projects; essential components in promoting workplace learning and change. 

Conversely, when there was a non-communicative workplace culture, Murray said that the 

apprentices “will just learn to not communicate”. Therefore, Murray emphasized the role of 

communication as a tool for getting good ideas from everybody in the workplace, and ideas 

that would have implications for workplace efficiency and financial profit.  

Many of the examples of communication I found were initiated and led by skilled 

tradespersons in the community instructing the younger ones. However, apart from 

apprentices asking questions, there were other times when apprentices led the dialogue, for 

example, Henry’s attempts to get apprentices to work as a team, either by building a box or 

repairing an electronic board. In these cases planning and problem solving both required 

communication initiated by apprentices. Demonstrating appropriate communication skills 

was included in their group assessment. Another example of apprentices initiating dialogue 

was provided by Warren where older apprentices asked younger apprentices about things the 

younger ones had learned at school or elsewhere - “… Hey, I don’t understand this. ‘You 

young fellas, bright whippersnappers, you picked it up really quick. Can you show me? Can 
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you put it in your own words?’” Hence, dialogue could be initiated and led either by the more 

experienced members of the community or by the apprentices.  

To summarize, Paul, Henry, and Murray all emphasized the need for effective 

communication. Communication was a key feature of the apprentices’ and tradespersons’ 

development and workplace effectiveness. Most importantly, communication was central to 

confronting workplace contradictions. Therefore, communication was an essential tool in 

promoting expansive cycles of learning in individuals and in their larger workplace activity 

systems.    

5.2.5.2. The stories the engineers tell 

Similar to the situations in some other workplaces where collaborative learning is important, 

the stories that engineers tell are important Engeström tools for communication in the 

mechanical engineering trades workplaces (see Section 2.5.2). They enhance social 

relationships within the community and play a transformational role in the developmental 

pathways of apprentices and tradespersons. The stories do not usually involve complicated 

mathematics, but only quick mental estimates made as the storyteller speaks.  

The data showed the importance of the stories engineers tell as one of Engeström (1987) tools 

for learning. When I asked Courtney (engineer) about how engineers discussed their work 

and alternative ways of doing things, he replied “drawings on the back of tobacco packets 

were good ways to get a point across, …[of] trying to get what’s in your head into someone 

else’s head”. Then, to emphasize the financial implications of making mistakes, Courtney 

spoke of hiring $6,000,000-cranes at $30,000 a day, so you do not want to “muck it up”. The 

amounts of money involved in the stories frequently impress listeners.  

Arthur’s (educator) reminiscences about racing around his local cemetery to test the latest 

modifications to his go-kart may not seem serious but they nevertheless provided insights 

into his early engineering learning experiences. Apprentices may pick up the art of telling 

stories when young. For example, Ari (apprentice) could coherently describe the logical 

processes in fault-finding blockages in dump truck hydraulic systems using the colloquial 

slang of his generation. Hence, Ari’s process of learning storytelling began early in his 

career, and this was typical of other apprentices I interviewed. In each case, the stories 

revealed the experiences and levels of technical knowledge of the storyteller and what they 

considered to be important (see Section 4.2.2.2).  

Robert (expert engineer, educator and entrepreneur) spoke about two 400-tonne presses 

designed to produce CNG cylinder systems in New Zealand motor vehicles during the early 

1980s.  

Their manufacture was heavily protected from foreign competition, partly by import 

tariffs. A massive and very expensive plant was built. It had been running about three 

weeks when “the government removed the import tariffs (roars of laughter) and the 

business died”. Robert’s father was offered two huge presses for $200,000 each 
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(perhaps over $700,000 each in today’s currency), but could not afford them. A little 

while later, he was offered them for $50,000 each. Robert’s father really wanted those 

presses, so when he heard they were going to be scrapped, he rang up and said, “What 

the hell are you doing? One day, New Zealand’s gonna need those presses, and you 

will have cut them up for scrap. It’s not that I don’t want them, it’s just that I don’t 

want to pay for them (laughter)”.  

Robert continued: “And they did the deal for a bottle of gin.”  

Kelvin (with amazement): “Oh, really?”  

Robert: “A bottle of gin!”  

Kelvin (still incredulously): “Literally?” 

Robert: Literally, but the flip side was [that] we had to take all of the gear that no   

  one else wanted.  

And so, Robert’s father got the two presses for a bottle of gin, and Robert would spend 

several months helping clear up the mess. 

Robert’s story of the presses can be interpreted on different levels. At a surface level, the 

story might simply be regarded as entertainment. However, like the earlier stories, Robert’s 

story also had important functions of conveying factual information, observations and 

understandings. Moreover, by arousing the listener’s interest through entertainment, learning 

opportunities were created where the technical aspects of the message were conveyed and so 

increased the understanding of the mechanical engineering context. Through storytelling, 

bonding occurs within the context of an activity system, social relationships develop, and 

teams are able to operate more effectively. Storytelling can be regarded as one means of 

promoting expansive cycles of learning.  

There were many Engeström tools involved in my conversations with the engineers, such as 

communication, the stories themselves, and knowledge. Sometimes, an engineer acted as a 

mentor, especially when describing creativity. I would then change my role from listener to 

interlocutor; asking for clarification or suggesting my own perspective. This frequently 

stimulated other avenues of discussion. Engeström’s contradictions and their historical nature 

pervaded our discussions, particularly mental calculation skills and problem solving. From 

time to time, the contradictions drifted on to controversies; an example of multi-voicedness. 

Importantly for me, the discussions were expansive cycles of learning that refined my earlier 

understandings, brought my knowledge more up to date, and enhanced my feel for the way 

mathematics was used in the workplace.  

5.2.6. Section summary 

In summary, training apprentices to adapt to the mathematical and other demands of the 

mechanical engineering trades workplace was a long and complex learning process involving 
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maturation. It comprised the development of technical competence as well as social and 

personal qualities, all of which were influenced by the community and its rules. Therefore, 

the educators looked for potential apprentices with sound mathematical skills, intellectual 

curiosity, certain personal qualities, and flexibility of approach that would enable them to 

confront new challenges.  

Apprentices experienced many different types of formal and informal learning that could 

potentially lead to individual expansive cycles of learning. The learning methods 

incorporated listening to the explanations of others, observing others, discussions, formal 

classroom teaching, practice, exposure to workplace contexts, individual experiences, and 

reflecting on and creating individual understandings and heuristics. Apprentices were often 

strongly influenced by experienced and empathetic mentors and skilled tradespersons. 

Apprentices established sound personal relationships with mentors from whom they wanted 

to learn knowledge and skills.  

Two areas of conceptual difficulty emerged that hindered apprentices’ learning progress and 

being able to achieve expansive cycles of learning as an engineer. The first difficulty related 

specifically to mathematics and the small numbers surrounding precision and fine 

measurements, tolerances, converting between systems of units, and conceptualising volume, 

mass, and rates. The second difficulty was related to higher-order skills, such as problem 

solving, which required apprentices to make paradigm shifts in the ways they thought about 

and solved multi-step mathematics problems.  

Mechanical engineering apprentices and skilled tradespersons learned mathematical skills by 

several different methods. These methods included observing, emulating, listening, and 

questioning. Both formal and informal learning methods were used, such as family influence, 

schooling, block courses, interacting with others, language, communication and mentoring. 

These processes can be regarded as Engeström tools for learning and were used in accordance 

with rules accepted by the community.  

Social interactions and communication served important functions in mechanical engineering 

trades communities where collaboration, conveying information, planning, and organizing 

teams led to successful problem solving and hence to expansive cycles of learning. Moreover, 

telling good stories also served as teaching and learning opportunities. This applied not only 

for developing mathematical and engineering skills, but also for establishing workplace 

cultures where questioning, reflection, and discussion of problem solving could take place.  

Communities also played a crucial role in the learning and development of mathematical 

skills by encouraging opportunities for learning through dialogue and social interaction. The 

multi-voices of mentors, including family members and educators, were important in 

apprentices’ development, especially by sharing their historical knowledge and experience. 

Therefore, situated learning was important to the learning and development of mathematical 

skills. Apprentices valued social interactions, including the sometimes divergent approaches 

that resulted in contradictions. Contradictions were found in school and workplace 

perspectives on mathematics, gaining conceptual understanding, and intergenerational 
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differences of values and approaches. Resolving these contradictions enabled apprentices to 

adjust to the requirements of the workplace and participate in important expansive cycles of 

learning.  

In short, social interactions and communication are important means of informally 

developing higher-order skills in communities of practice, and can potentially resolve 

contradictions and usher in new cycles of expansive learning. In the case of individuals, 

expansive cycles of learning correspond with Lave and Wenger’s (1987) LPP and allowed 

the individual to move closer to the centre of community of practice.  

5.3. Chapter summary 

This chapter focused on Engeström’s (1987) fourth question, How do they learn? It reported 

the findings pertaining to the third research sub-question on how apprentices and skilled 

tradespersons in mechanical engineering trades developed the mathematics skills necessary 

for their work (see Section 1.3).  

The findings in this chapter demonstrated that engineers learned using both formal and 

informal means. Informal learning took place during childhood, while school and engineering 

workplace experiences incorporated both formal and informal learning (see Section 5.1). 

Mentoring, experience, social interactions and communication were also important means of 

developing higher-order skills, such as problem solving and its associated skills of creativity, 

flexibility of thinking, extended reasoning, and logical thinking (see Section 5.2). In some 

workplaces, conscious efforts were made to create environments that encouraged the 

development of higher-order skills. The results reported in this chapter indicated that social 

interaction and communication were key to promoting learning and workplace effectiveness 

(see Section 5.2.5). 

Moreover, workplace learning was done eclectically using both acquisitionist and 

participationist models. Thus, individual reflection and practicing, as well as social 

interactions, communication and storytelling emerged as important learning tools. The need 

for a focus on conceptual understanding, as opposed to procedural knowledge, was 

demonstrated in practical examples involving conversions of units and rates (see Section 5.2).  

Regarding the development of higher-order skills, learning was regarded as lifelong, and 

expert engineering skills involving higher-order elements of numeracy took many years to 

develop. Adjusting to sophisticated engineering settings added to the conceptual difficulties 

with mathematics experienced by many apprentices. These adjustments included making 

judgments on whether to use mathematics, what mathematics should be used, how the 

calculation should be performed, the degree of accuracy required in relation to the required 

tolerance, and what the numerical answer meant regarding the original context (see Section 

1.4), problem solving, and team participation.  

Problem solving also strongly interacted with physics and some old-timers considered more 

physics background from school would help learning. In addition, formal teaching 
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accompanied by practicing was widely used. Informal situated learning occurred when 

apprentices and engineers worked in small teams with good communication. Learning 

experiences from childhood, family and whānau, school, apprenticeship, mentoring, figuring 

things out for themselves, and informal storytelling also featured strongly in apprentice and 

tradesperson development (see Section 5.2.5). In all, this chapter found that apprentices and 

skilled tradespersons in mechanical engineering trades developed the mathematics skills 

necessary for their work through a combination of formal and informal learning. The findings 

are discussed in Chapter 6.  
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Chapter 6. Discussion 

Introduction  

This chapter discusses the findings of the study reported in chapters 4 and 5 regarding the 

main research question and three research sub-questions.  

The main research question was:  

What key features of mathematical learning characterise the pathway from beginning 

apprentice to skilled tradesperson and then to expert engineer in mechanical 

engineering?  

The three sub-questions were: 

1. What is the nature of the mathematics skills employed in the mechanical 

engineering trades?  

2. How do apprentices and skilled tradespersons in mechanical engineering trades 

apply mathematics skills in their work?  

3. How do apprentices and skilled tradespersons in mechanical engineering trades 

develop the mathematics skills necessary for their work?  

I first provide a short answer to the research questions, which I then expand in more detail in 

the discussion of the three research sub-questions (see Sections 6.1, 6.2, and 6.3 respectively. 

The findings reported in chapters 4 and 5 revealed three key features of mathematical 

learning that characterise the pathway from beginning apprentice to skilled tradesperson and 

then to expert engineer in mechanical engineering.  

First, simply stated, the mechanical engineering tradespersons need to learn mathematics 

skills and apply them in complex, interrelated, real-life contexts (see Chapter 4). Second, 

these mathematical skills can be regarded as intellectual tools which are integrated with other 

intellectual tools such as higher-order thinking, problem solving, extended reasoning, 

conceptual understanding, and procedural knowledge (as discussed in Section 4.2). Together, 

these intellectual tools govern both the creation of physical tools and how those physical tools 

are used. Third, mechanical engineers learn, use, and develop their mathematical skills 

formally and informally, using acquisitionist and participationist means, and employing 

practicing and communication (see Chapter 5).  

However, before discussing each of the three research sub-questions, I discuss the 

relationship between each research sub-question and its relationship to the CHAT and SL 

frameworks. Near the beginning of the discussion of each research sub-question, I include a 

summary of the major contributions of the CHAT elements and principles to the analysis and 

interpretation of that section. These are intended to be illustrative of the main points only.  
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6.1. Nature of the mathematics skills 

This section focuses on answering and discussing research sub-question 1 regarding the 

nature of the mathematics skills employed in the mechanical engineering trades, their 

meaning and importance. From the findings, those skills include purely mathematical skills 

(see Appendix C), as well as various ancillary skills needed for their successful application. 

After linking this section to the CHAT framework, I then answer research sub-question 1 by 

summarising the mathematical and ancillary skills that have emerged from the findings. I do 

this with reference to Engeström’s elements and principles. I then consider the importance 

and interconnectedness of Engeström’s elements and principles in the subsequent discussion 

of the research sub-questions.  

6.1.1. Links to CHAT 

This section provides a summary of the findings about the nature of the mathematical 

knowledge and skills used in the mechanical engineering trades (see Section 4.1). The bullet 

points below summarize the links between the CHAT framework and Section 6.1.  

Engeström’s Elements 

• Tools: Physical and intellectual tools are constantly changing due to new thinking and 

technology. Tools include formal mathematics and numeracy skills pertinent to 

application in the mechanical engineering trades context as well as higher-order 

thinking skills such as problem solving, creativity, extended reasoning, reflexivity, 

and metacognitive skills.  

• Rules: Rules include the decision to use mathematics and how it is to be used, and 

how ancillary skills such as engineering judgment and heuristics are related to the 

needs of the engineering context. Verticalisation and abstraction of thinking are used 

when problem solving demands them.  

• Community: There are differing views on many issues, including the role of 

mathematics and its use.  

• Roles: Educators, skilled tradespersons, and newcomers all bring knowledge to the 

community. They have different views on many issues, especially the mathematics 

required. These views can depend on age and branch specialisation. Roles strongly 

influence views on what mathematical knowledge is required and how it is to be used. 

The roles of educators and learners can be interchanged. There are gradual changes in 

individuals’ roles due to movement from the periphery to centre of the community of 

practice.  

Engeström’s Principles 

• Multi-voicedness: multi-voicedness is reflected in the debates within the community 

of practice over what mathematics is needed and how it is to be used. Multi-

voicedness is often dependent on branch specialisation and generational perspectives. 
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• Historicity: Prior experiences from childhood and school are often formative but 

usually require adaption to engineering practice. 

• Contradictions: For example, school knowledge and ways of doing things needing to 

be adapted to the workplace, new knowledge challenging traditional practice, 

individuals adapting to workplace mathematics requirements, school experiences of 

mathematics being regarded as irrelevant in the real world, debating minimal 

procedural knowledge that concentrates on particular skills only versus the need to 

foster creativity etc., gaining a wide experience and education. 

• Expansive Cycles: These are closely linked to increasing conceptual understanding 

and procedural knowledge in individuals and the wider communities of practice. 

Various stages of mathematical development and maturity can be successfully 

achieved.  

Regarding Engeström’s tools, the findings showed that mathematics was regarded by the 

engineers as an important tool for engineering purposes because they used it often and widely 

to calculate accurately and accordingly to produce effective products. The engineers also 

recognised many other tools: physical and intellectual, and even human, because interaction 

with other engineers also serves as a tool for involvement in problem solving, and even for 

learning. Moreover, Engeström’s matrix is significant in understanding the mathematical 

tools in this section because it illustrates the complexity of tool usage and its 

interconnectedness with Engeström’s other elements and principles in the engineering 

workplace. Thus, contradictions regarding innovation in engineering technology could 

interconnect with contradictions involving community rules for engineering practice, multi-

voicedness and historicity factors inherited from tradition and school education, and the 

struggle of some individuals to promote their ideas of what constitutes an acceptable 

expansive cycle of learning.  

The findings, therefore, indicated that formal mathematics knowledge and skills were one 

significant main feature pertaining to the nature of the skills (see Appendix C) (see Section 

4.1). Moreover, other non-mathematical ancillary tools were identified that were essential to 

successfully applying mathematics in the workplace. These included adaption to workplace 

requirements, higher-order cognitive and metacognitive skills, all of which I now discuss in 

turn.  

6.1.2. Mathematics knowledge and skills  

This section discusses the mathematics and numeracy skills pertinent to the mechanical 

engineering trades, ongoing concerns about mathematical skill levels, and the division of 

opinion over broad versus minimalist attitudes to mathematics (see Section 2.1.1 and Section 

3.3.3 and Section 4.1).  

Several significant findings emerged from the data. The study revealed that the mechanical 

engineers used the mathematics and numeracy skills outlined in Appendix C frequently in 

their work. Fluency with numbers was regarded as being crucial, especially having a feel for 

number size and being able to perform mental calculations quickly and accurately. However, 



Chapter 6 - Discussion 

164 

 

despite US 21905 being the official New Zealand formal mathematics qualification for 

mechanical engineering trades (see Appendix C), there were long-running community 

concerns, and hence contradictions, regarding mathematics skill and knowledge levels among 

both apprentices and skilled engineering tradespersons (see Section 5.2). Therefore, the 

engineers regarded a one-off performance in a formal qualification as not being sufficient to 

ensure mathematical competence long-term. Moreover, with the requirement to demonstrate 

competence only in a certain proportion of the assessment, then the objective of attaining 

profound understanding of fundamental mathematics is missing (Roble et al., 2017; Tandog 

et al., 2019).  

The data also revealed widespread concern about mathematical skills and knowledge among 

even skilled tradespersons throughout their careers and was reflected strongly in the 

discussions on the need for accuracy in calculation and measurement (see Section 4.1). 

Insufficient mathematical skills and knowledge no doubt hampers further progress in 

integrating physical and intellectual tools after the apprenticeship has been completed.  

Viewed in this light, it is important to note that the inclusion of more mathematics content in 

the major revisions to the mathematics requirements for mechanical engineering trades 

requirements planned for December 2022 should help address these concerns (NZQA, 2019e, 

2019f, 2019g). Nevertheless, the important questions of the extent of future learning and 

ascertaining how well an engineer or apprentice can apply mathematics skills in context 

remain unresolved.  

In another response to the inadequacies above, some companies run professional 

development programmes for their engineers (see Section 5.2.2.1). However, the high 

percentage of engineers expressing concerns about numeracy would suggest that ongoing 

programmes of mathematics education and assessment tasks directly integrated with 

engineering scenarios might benefit the engineering trades, such as is found in authentic 

mathematics assessment (Drake, Wake, & Noyes, 2009; Gulikers et al., 2004; Gulikers, 

Bastiaens, Kirschner, & Kester, 2006, 2008; Gulikers, Bastiaens, & Martens, 2005; Gulikers, 

Kester, Kirschner, & Bastiaens, 2008; McCoy, 2007) (see Section 2.4.3). In this way, the 

community might allow debates to develop, and historical as well as recent contradictions to 

emerge into the open. Most importantly, new expansive cycles of expansive learning could be 

established that would extend the capabilities of individuals and the community as a whole.  

An important debate in the mechanical engineering community concerned broad versus 

minimal mathematics skills that were only applicable to the basic tasks of an engineer’s 

current engineering specialisation (see Section 4.2.1). Owen was one of several engineers 

who understood the short-sightedness of the minimalist position because it inhibited essential 

problem-solving development, understanding of aeronautical principles and fault-finding. 

The debate has long-term historical roots, and conflicts with the need for a broader 

mathematical appreciation to help prepare apprentices for future technological and 

specialisation change. The tension between broad and minimalist views was reflected in the 

multi-voiced debates over mathematics topics reform. Several engineers felt that while 
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apprentices could calculate using a formula, they still lacked the important skills of applying 

the principles and relating the answer back to its engineering context.  

The tension between broad and minimalist views was also reflected in the emphasis engineers 

placed on mathematics in context, which means that they were not usually interested in the 

more generalised and more abstract verticalisation processes that feature in school 

programmes (Gravemeijer & Doorman, 1999; Treffers, 1993; van den Heuvel-Panhuizen, 

2001) (see Section 2.4.3). Instead, they prefer to focus on the practical application of numbers 

(FitzSimons, 2005). The debates on mathematics content are a major source of contradiction 

within the community. Minimalists reflect a purely pragmatic worldview that indicates a 

widespread inability to accept the less tangible aspects of education as being useful, or to see 

beyond the immediate and current needs of their area of specialisation.  

Another feature of mathematics skills and knowledge was a unanimous concern and 

community contradiction regarding calculation and measurement accuracy (see Section 4.1). 

The reasons cited for accuracy concerned finance and safety, similar to nursing (Coben et al., 

2010; FitzSimons et al., 2005; Gillham & Chu, 1995; Wright, 2007). Linked with the need for 

accuracy was the community-wide emphasis on making a step-up from school mental 

calculation and estimation skills and fluency when using numbers. The engineers considered 

fluency with numeracy to be important in gaining a feeling for size and what constituted a 

reasonable answer in context, and which they then frequently used for both thinking and 

communication.  

The participants’ unanimously agreed requirements for accuracy in measurement and 

computation are, therefore, an important part of the rules of the community and a key feature 

of mathematical learning. Moreover, the agreement about the need for accuracy suggests 

unanimity of voicedness, although what constituted an acceptable answer may depend on the 

context of the immediate problem, the particular engineering specialisation, and local 

community rules. In addition, there appeared to be historicity issues with some apprentices 

coming from school where the consequences of obtaining a wrong answer did not have the 

high-stakes consequences as they do in the workplace. For this reason, an important issue for 

young apprentices was to break some bad habits “acquired in school” (Lave & Wenger, 1991, 

p. 73).  

Regarding the contribution of this study to new knowledge, the literature identifies numeracy 

and mathematics as important workplace issues as well as the modern importance attached to 

higher-order thinking skills, as in the PISA and PIAAC studies. This study enriches that 

knowledge by describing real-life scenarios in the New Zealand mechanical engineering 

trades context where these skills are widespread and used frequently. The study also 

demonstrates that the mathematical topic knowledge required for mechanical engineering 

trades mathematics corresponds closely with the New Zealand NCEA Level 1 mathematics 

requirements. This appears to be new knowledge. 

To summarize, regarding the first research sub-question about the nature of the mathematics 

skills employed in the mechanical engineering trades, fluency in numeracy skills and 
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calculation accuracy were significant contradictions for the mechanical engineering trades 

community. They do not seem to be solved by learning minimal skills only. Gaining suitable 

workplace numeracy skills is discussed in Section 6.3. In the next section, I move beyond 

strictly mathematical considerations to discuss ancillary skills that are necessary when 

applying mathematics in the mechanical engineering workplace.  

6.1.3. Ancillary skills - adaptation to workplace requirements  

In the previous section, I discussed various aspects surrounding mathematics knowledge and 

skills. I focus the discussion in this section on various ancillary, non-mathematical skills that 

are essential to applying mathematical knowledge and skills in mechanical engineering trades 

contexts. The discussion of the ancillary skills is linked to deciding whether or not to use 

mathematics, higher-order skills, and the tension between school and workplace. 

Incorporating ancillary skills results in numerous contradictions, among which is the tension 

between school and workplace mathematics.  

6.1.3.1. Deciding to use mathematics 

In this section, I discuss a widespread contradiction that emerged from the findings 

concerning when to use mathematics, what mathematics to use and how to use it (Coben, 

2000). This was illustrated by the apprentices making a ramp in a fruit packing shed where an 

inappropriate decision was made to use trial and error rather than the accurate methods of 

formal mathematics (see Section 5.2.2.2). Applying mathematics in this workplace situation 

would have avoided time and financial wastage because the mathematics involved was 

simply substitution in trigonometry formulas studied at school. This is consistent with the 

multifarious factors involved in applying mathematics to workplace contexts, as outlined by 

FitzSimons et al. (2005). However, since issues of time and finance were significant in 

engineering decision-making, situations could also arise where obtaining unnecessary 

accuracy would have wasted time and money. This is important when assigning tolerances to 

a job where a satisfactorily accurate job needs to be produced in the minimum time and as 

cheaply as possible. In other situations, heuristics and engineering judgment were important 

skills that could override mathematical considerations in the decision-making process. In 

such cases, satisfactory approximations could simplify and speed up decision-making and the 

time it took to do the job. Community rules that governed acceptable practice were also 

multi-voiced, because what constituted acceptable practice depended on engineering 

specialisation, individual preference, and longstanding historical tradition. The decision to 

use mathematics, what mathematics was appropriate, and how to use mathematics was a 

complex process, and consistent with Coben’s (2000) definition of numeracy (see Section 

1.4).  

A further factor in the decision-making process was that workplace mathematics involved 

constructing mathematical models which are approximations of the underlying contextual 

reality. These models are based on assumptions which are also often simplifications of 

reality, and which, therefore, remain acceptably accurate over only a limited range of values 

before breaking down. Apprentices presumably learn to make these important judgment calls 
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over time, with growing maturity, and with experience. A key feature of mathematical 

learning is appreciating the limitations of mathematical models (see Section 4.2.1.3). This is a 

crucial element in moving closer to the centre of Lave and Wenger’s community of practice. 

It is also linked to community rules concerning what, when and how mathematics is to be 

used, and to community discussions about employing engineering judgment and heuristics. 

These discussions become potential contradictions between theory and practice, between 

individual engineers, within engineering communities, and especially between engineering 

branches.  

Regarding the contribution of this study to new knowledge, the literature records the 

importance of ancillary skills in the workplace. This study provides practical application from 

New Zealand mechanical engineering trades workplaces of the importance of contextual and 

ancillary considerations such as higher-order thinking when deciding if and how mathematics 

should be used in workplace situations. 

To summarize, learning the skill of deciding whether or not to use mathematics takes place 

over time. It involves social exchange of ideas and interaction, multi-voicedness and the rules 

of the community of practice. The decision-making involves weighing up the effects of 

various mutually-conflicting factors which may overlap with higher-order thinking. In the 

next section, I discuss certain other aspects of higher-order thinking, and how they affect 

workplace processes.  

6.1.3.2. Higher-order skills 

The importance of higher-order skills such as problem solving, creativity and flexible 

thinking were acknowledged as important by about 98% of the participants (see Section 

4.2.1). In this connection, several engineers said that creativity and flexibility of thinking 

provided the paradigm changes in perspective that lead to successful problem solving. This 

resonates well with NZC objectives which call for broad mathematical understandings and 

social skills, as well as the basic skills of estimating with reasonableness, and calculating with 

precision (Ministry of Education, 2007). A significant result was, that for the engineers, basic 

knowledge, creativity and social skills were not mutually exclusive choices because they 

wanted people who could integrate basic skills with deeper mathematical understandings, and 

in social contexts.  

The engineers also linked creativity to the logical thinking required for diagnosis in fault-

finding and maintenance engineering (see Section 4.2.2). Even young apprentices were 

involved in small teams doing maintenance and were learning to make decisions based on 

several criteria, including what was better for the client. Consequently, early in their careers, 

apprentices were developing higher understandings and strategies, and gaining experience at 

applying problem solving in real contexts. Growing conceptual understanding and procedural 

knowledge of how machinery functioned, such as Ari working on hydraulic systems in a 

small team was, therefore, one important way of fostering progress towards the centre of 

Lave and Wenger’s community of practice (Lave & Wenger, 1991).  
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Higher-order skills were also specifically mentioned by those engineers whose specialisations 

required an aptitude for fault-finding and analysis (see Section 4.2.1 and Section 4.2.2). Thus, 

it was important for apprentices to develop an attitude of applying reasoning to problem-

solving situations in everyday working life. This included extended reasoning skills and 

examining different points of view. Significantly, getting the right answer and moving on 

without reflection, and passing examinations, did not necessarily develop people who could 

fix faulty pieces of equipment. Moreover, educators like Owen presented apprentices with 

mathematics problems to help them understand the physics and the science behind 

aeronautics technology. In this way, the important skill of taking a broad perspective was 

being fostered with calculations being related to context. This is consistent with the findings 

of other studies, including verticalisation associated with abstraction (Treffers, 1993; van den 

Heuvel-Panhuizen, 2001) (see Section 2.4.3). Accordingly, minimal skills would not be 

sufficient for aeronautical engineering needs, and so apprentices were challenged with non-

aeronautical contexts to help develop higher-order thinking by practising a broad range of 

skills in a range of contexts (Ridgway, 2002).  

However, the emphasis on higher-order skills may mean further abstraction, a contradiction 

which is reminiscent of school mathematics, such as Real Mathematics Education, which 

consciously generalises more basic understanding to create deeper levels of conceptual 

understanding (Treffers, 1993; van den Heuvel-Panhuizen, 2001). Verticalisation of thinking 

and its accompanying abstraction lie at the heart of the school and workplace mathematics 

tension which I discuss in the next section.  

Regarding the contribution of this study to new knowledge, the literature identifies higher-

order thinking skills as essential to the modern workplace. This study extends that knowledge 

by demonstrating how higher-order thinking skills are essential in modern New Zealand 

mechanical engineering trades workplaces and how they are integrated with practical 

applications.  

6.1.3.3. The tension between school and workplace 

This section discusses the tension between school and workplace mathematics (see Section 

5.1.3). The findings from this study clearly revealed that there are different perspectives 

formed by contextual requirements that govern community rules for accepted practice. This 

results in a tension between school and workplace attitudes to mathematics, the skills needed, 

and the way they are used. There are important ramifications for workplace practice, attitudes 

and efficacy, as well as the adaption from school to workplace requirements.  

First, since many of the mathematics skills and higher-order thinking objectives required for 

mechanical engineering trades are part of both the school curriculum and engineering 

requirements, it might be thought there would be a seamless and relatively straightforward 

transition from school to workplace mathematics. Thus, while this appears to be true for 

around 81% of the questionnaire participants, there was a significant minority of 19% of 

participants who disagreed or strongly disagreed that they found their school mathematics 

useful in their engineering work. This view was particularly pertinent to the upper secondary 
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school where the interviews demonstrated that even engineers with senior secondary school 

mathematics qualifications could be “flummoxed” by anything they could not relate to 

practice and the real world (see Section 5.1.3). This important contradiction was expressed in 

their perceived generality and abstractness of school mathematics compared with workplace 

mathematics. This criticism was made even by those engineers who had later constructed 

their own applications for their senior secondary school knowledge.  

A significant disjunction reported frequently in the literature was the failure of students and 

adults to see the relevance of their mathematics studies at school to life (Lave & Wenger, 

1991; Marr & Hagston, 2007; K. Mills & Lomas, 2013; Ridgway, 2002). Many people tend 

to regard mathematics as a formalised process, unreal, “useless, abstract, and taught without 

relevance”, and with rules made up by the teacher that do not apply in the real world (Marr & 

Hagston, 2007, p. 9). This view runs counter to the notion implicit in the main research 

question that mathematical learning is relevant to the workplace, and is consequently a 

contradiction for individuals and throughout many communities of practice. Murray’s 

comment (see Section 5.1.3) summed up the attitudes of many participants when he said that 

nobody told you “why it’s needed”, and suggests that while the mathematics may be useful, 

the lack of contextualization in its presentation may be allied to the lack of student 

appreciation of its practical application. This contradiction is consistent with the view that 

schooling is “predicated on claims that knowledge can be decontextualized” (Lave & 

Wenger, 1991, p. 40). Moreover, since the New Zealand Curriculum emphasizes both 

mathematical content and higher-order thinking objectives, then there is a disjunction 

between curriculum requirements and classroom practice.  

However, while motivating students to step beyond their current conceptual understanding 

can be uncomfortable and mystifying, those mature engineers who did so eventually found 

their school mathematics useful and empowering. For example, Courtney, Robert, and 

Murray (engineers), each of whom had progressed along the path from contradiction to 

expansive cycle of learning and had come back to examine the concepts many years later, 

made connections between the abstract and the real, had found a use for the mathematics, and 

then gone out of their way to personally develop themselves (see Section 5.1.3). As a result, 

they could now use those mathematics techniques and understandings in practical situations 

(Knowles et al., 2011). However, while they were still pragmatists at heart, they would 

nevertheless accept abstraction only if it was motivated contextually beforehand.  

Regarding the contribution of this study to new knowledge, there is an extensive literature on 

the tension between school and workplace attitudes to mathematics and the way mathematics 

is used. This study has strongly confirmed that tension in the New Zealand mechanical 

engineering trades workplaces. Moreover, the study also demonstrated that some engineers 

eventually found their senior secondary school mathematics to be useful. This appears to be 

new knowledge.  

To summarize, long-term benefits to engineers could be achieved by wider mathematics 

learning and relation to context. Their current attitudes to mathematics were partly due to 

negative historical experiences from school mathematics, and partly related to a growing 
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awareness of how their understanding of engineering mathematics could have been enhanced 

much earlier. Wider mathematics learning and relation to context might help resolve the long-

term ambivalence to mathematics exhibited by even skilled tradespersons and experts. This 

was consistent with the efforts of several educators, as well as with Ridgway’s (2002) 

recommendation to encourage the deployment of a broad range of skills in a range of 

contexts. Moreover, some educators had incorporated these strategies into their teaching 

programmes, and also seen the importance to learning of both social interaction and personal 

reflection working in tandem (see Section 6.3).  

6.1.4. Section summary 

To summarize Section 6.1, the first research sub-question referred to the nature of the 

mathematics knowledge and skills. These skills included development of understanding and 

proficiency in specific mathematics topics and important ancillary skills that enabled 

mathematics to be applied in the workplace context. Development of some of these skills had 

already begun at school and needed to be further enhanced and then adapted to meet 

workplace requirements. The ancillary skills included the higher-order skills and the complex 

decision-making involved in whether or not to use mathematics, or what mathematics to use, 

and how it should be used. Heuristics and engineering judgment frequently overrode purely 

mathematical decisions.  

The discussion of the nature of the skills is now complete. However, how those skills are 

used in mechanical engineering contexts is also a complex matter that requires close 

examination. In the next section, I focus on what the findings of this research revealed about 

how participants applied their mathematical learning in mechanical engineering trades 

contexts.  

6.2. Applying the mathematics skills in context 

This section continues discussing key features of mathematical learning, but from a 

mechanical engineering application rather than a mathematical content perspective. The data 

revealed that engineers frequently saw problem solving in engineering contexts as 

fundamental to the successful application of mathematics in their work. However, problem 

solving is linked to the logical sequences of the procedures they adopt to solve those 

problems, which are linked in turn to how the engineers understand the context of the 

problem and how it might be approached. Thus, understanding successful application of 

mathematics in the mechanical engineering trades workplace depends on three fundamental 

areas - first, the primacy of context, second, conceptual understanding, and procedural 

knowledge, and third, problem solving, and creativity. In this section, I illustrate these areas 

with applications drawn from routine and non-routine mechanical engineering contexts. I 

then address the application of mathematics in contexts requiring extended reasoning.  
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6.2.1. Links to CHAT 

This section provides a summary of the findings about how the mathematical knowledge and 

skills are applied in the mechanical engineering trades (see Section 4.2). The bullet points 

below summarize the links between the CHAT framework and Section 6.2.  

Engeström’s Elements 

• Tools: Tools are often applied with interaction between acceptable engineering 

practice, conceptual understanding and procedural knowledge, higher-order thinking 

mathematical skills, extended reasoning, problem solving, creativity, reflexivity, and 

transfer of knowledge between contexts.  

• Rules: Rules are frequently governed by currently accepted standard engineering 

practice, the need for sensible tolerances, and time and financial restraints.  

• Community: The many communities are influential in defining acceptable practice, 

experimenting with, and evaluating new ideas.  

• Roles: Mentors, educators and other skilled tradespersons are active in developing 

apprentices and sharing knowledge and skills.  

Engeström’s Principles 

• Multi-voicedness: There are varieties of practice between individual engineers and 

communities of practice, and many different ways of solving problems depending on 

accepted practice in local and wider communities of practice.   

• Historicity: Traditional ways of doing things develop over time due to new 

challenges, new thinking and new technology. Attitudes to mathematics learning are 

instilled from family culture, school approaches to mathematics learning, and 

workplace culture.  

• Contradictions: Contradictions exist over adapting to workplace demands for deciding 

on and performing mathematics, acceptance of or resistance to new ideas, and 

between formal and traditional approaches to learning mathematics versus informal 

approaches. 

• Expansive Cycles: Expansive cycles of learning are often dependent on increased 

knowledge and skills. Much more attention is given in the workplace to direct 

practical application of mathematics than at school.  

This section summarizes the links of Section 6.2 with Engeström’s elements and principles in 

the CHAT framework (see Section 3.2 and Section 3.3) with the data and some fundamental 

issues identified in the data: the primacy of context, problem solving, conceptual 

understanding, and procedural knowledge, and problem solving and creativity. Problem 

solving, conceptual understanding, procedural knowledge, and creativity can be regarded as 

tools from Engeström’s elements (1987) because they help in understanding and guiding 

engineering practice, including what intellectual and physical tools will be used and how they 

will be used. Therefore, there is a symbiotic relationship between intellectual and physical 

tools. While intellectual tools govern both the creation of physical tools and how those 
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physical tools are used (see Chapter 6 Introduction), physical tools are also needed to create 

new physical tools. Moreover, while physical and intellectual tools both have their separate 

rules for usage, the way they interact is also governed by rules set by local and wider 

engineering and other communities in accordance with currently accepted practice. The 

interactions between Engeström’s principles and applications derived from engineering 

contexts provide pointers to expansive cycles based on developing problem-solving skills.  

The progress from contradiction to expansive cycle is a complex process for several reasons. 

First, problems often have a variety of novel solutions which may, or may not, receive 

immediate community endorsement. This can provoke further contradictions. Second, the 

process may stimulate the evolution of both physical and intellectual tools and these may be 

assisted in the meantime by the development of new, outside technologies. Third, the process 

can then be prolonged by multi-voicedness and historicity which can then operate as 

constraints to achieving further expansive cycles of learning within the community of 

practice. Indeed, in many engineering contexts, intellectual tools such as thinking are used to 

create new physical tools, as in jig making and toolmaking. In many cases, resulting new 

expansive cycles are then quickly challenged by new contradictions within the engineering 

community as the engineers evaluate the efficacy of a new and innovative engineering 

practice and how it might apply in different situations.  

6.2.2. The primacy of context 

Context governed the attitudes of the engineers to mathematics itself, what mathematics the 

engineers regarded as ‘useful’, and how it should be taught and learned. Analysis of the data 

determined that context governed multiple aspects of daily decision-making such as whether 

mathematics should be used and how it should be used (Coben, 2000). Therefore, the data 

confirmed the principle reported by FitzSimons et al. (2005) that context guides mathematical 

application in workplaces. Moreover, because mathematics constructs models that are only 

approximations of reality, and are hence incomplete, then a major question and contradiction 

for all engineers is the extent to which mathematical models reflect reality.  

Apprentices face two other contradictions regarding context: extended reasoning, and social 

and metacognitive skills. Each involves adaption from a school perspective to a workplace 

perspective. I discuss the issues surrounding extended reasoning here, and leave the 

development of extended reasoning skills, and social and metacognitive skills to Section 6.3 

where it forms part of a larger discussion on learning. From the interview data, apprentices 

appeared to have little or no involvement with planning tasks that involved extended 

reasoning. Either the task was considered too difficult for their current capabilities, or other 

more experienced engineers did the thinking for them and the apprentices simply followed 

their detailed instructions. Developing extended reasoning skills, especially integrating 

mathematics and engineering considerations, appeared to take time to develop. Thus, while 

contexts of school mathematics involving just one or two steps were almost always neat, but 

artificial, workplace contexts were frequently messy and ill-defined, but real (Roth, 2010). 

This may partly explain why beginning apprentices and even newly qualified tradespersons 

lacked these higher-order skills.  
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Regarding the contribution of this study to new knowledge, the role played by context in 

mathematics applications in the workplace has received comparatively little emphasis in the 

literature. This study reveals that context is a major factor in applying mathematics in New 

Zealand mechanical engineering trades workplaces. Moreover, this study extends workplace 

knowledge of the integration of thinking between intellectual and physical tools . 

To summarize, contextual considerations determined every stage of applying mathematics to 

the mechanical engineering trades workplace. This was particularly important to the way the 

engineers saw and responded to problem-solving situations in their daily work. In the next 

section, I discuss how conceptual understanding and procedural knowledge impact on these 

situations.  

6.2.3. Problem solving, conceptual understanding and procedural knowledge  

The previous section discussed how the primacy of context governed engineers’ attitudes to 

mathematics itself, but that alone does not sufficiently explain how engineers apply 

mathematics in their workplace contexts. We also need to consider problem solving and its 

links with conceptual understanding and procedural knowledge, which are important when 

something unexpected or unfamiliar has happened. This section focuses on problem solving, 

conceptual understanding and procedural knowledge to identify how apprentices and skilled 

tradespersons in mechanical engineering trades apply mathematics skills in their work. These 

areas arose naturally from practical examples in conversations with the engineers, such as 

fault-finding and maintenance, and the logical thinking required to identify what, and why, 

something had happened (see Section 4.2.1 and Section 4.2.2).  

6.2.3.1. Problem solving 

Problem solving can be regarded as an intellectual tool used by engineers. The purpose of the 

tool is to solve problems, which may be short-term or long-term, and which contain 

contradictions. The engineers’ daily work frequently requires problem solving because the 

non-routine tasks they encounter are unfamiliar to them and they do not know “what’s 

coming in the door next” (see Section 2.3.2) (FitzSimons et al., 2005; K. Mills, 2011). From 

the engineers’ perspective, when a previously unencountered problem appears, they first 

consider if their current knowledge and understandings might provide an answer (see Section 

4.2.2.2). If that fails, then deeper conceptual understanding is required. If problem solving in 

non-routine situations is to be successful, then it is important that the engineer is able to find 

or construct a satisfactory engineering technique, or procedure. This in turn depends on the 

engineer’s conceptual understanding of the task and hence may lead to an expansive cycle of 

learning.  

Regarding straightforward, routine tasks where the overall solution may be obvious, the 

application of mathematics in the mechanical engineering trades context may be 

straightforward, because the engineer has seen the task before, knows the concepts involved, 

or, that it involves applying tricks of the trade as procedures. Nevertheless, even with routine 

tasks, unexpected complications may arise that call for sophisticated problem solving, 
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creativity and extended reasoning, as was seen in Robert’s (engineer) replacement of a bronze 

bush (see Section 4.1.3). This example is also consistent with the literature where 

mathematics is used both descriptively and precisely as one of several key elements 

considered in the decision-making process (Alpers, 2010; Bakker, 2014; Gainsburg, 2007; D. 

Harris et al., 2015; Hoyles et al., 2010; Kent & Noss, 2002).  

In other situations, mathematical applications may become complicated by deficient 

mathematical knowledge, or under-developed higher-order skills such as conceptual 

understanding, problem solving and extended reasoning (Brookhart, 2010; King, Goodson, & 

Rohani, n.y.). It would appear that many communities of practice acknowledge the challenges 

created by these deficiencies. They are major causes of contradictions and limitations on 

performance in the workplace. These deficiencies affect both the effectiveness of individual 

engineers and the community as a whole, thus motivating a quest for expansive cycles of 

learning and practice. Nonetheless, problem solving requires both conceptual understanding 

and procedural knowledge. I discuss these in the next section, together with their 

relationships and interactions, to further explain how the engineers and apprentices in this 

study applied their mathematical skills in various workplace contexts and situations. 

Regarding the contribution of this study to new knowledge, there is an extensive literature on 

problem-solving from both theoretical and practical perspectives. This study provides new 

knowledge from the New Zealand mechanical engineering trades workplaces context where 

problem solving is used extensively in everyday situations. Problem solving is an important 

tool in fault-finding, maintenance engineering, planning, and design.  

6.2.3.2. Conceptual understanding and procedural knowledge  

In the last section, I outlined the importance of conceptual understanding in mechanical 

engineering trades workplaces (see also Section 2.3.4). However, conceptual understanding is 

not always complete or even necessary, as is shown in the case of interpreting a calculator 

screen output of 2.314-07, where one engineer told me conceptual understanding was not 

necessary because the -07 simply indicated moving a decimal point seven places to the left, to 

give .0000002314. This was consistent with Skemp’s instrumental procedures because the 

right answer was obtained quickly and reliably, and the rule was easy to remember (Skemp, 

2006) (see Section 2.4.4). Moreover, using procedural knowledge in this case also had the 

advantage of quickly releasing the engineer to concentrate on problem solving in the actual 

engineering situation.  

The widespread use of computer technology in the mechanical engineering trades provided 

another significant example of the use of procedural knowledge. For example, Computer 

Aided Design (CAD) is essentially a black box that allows 3-D models to be built up which 

can be examined and then modified if necessary (Williams & Wake, 2007). Such software 

programmes were highly attractive to some engineers (see Section 2.3.2), partly because the 

engineer is released from having to understand the sophisticated mathematics behind the 

calculations the machine performs. Hence, there were many situations where practical 

considerations favoured using technology.  
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The findings also revealed that CAD provided major help in product design, in reducing 

production time, was easily modifiable, and reduced mistakes. The introduction of black 

boxes like CAD allows engineering tasks to be performed that would not normally be 

attempted. Hence, one person using CAD can influence the multiple individual activity 

systems of each member of a community of practice and, consequently, foster the creation of 

expansive cycles of learning in the community of practice as a whole. But although 

conceptual understanding of the mathematics involved is no longer necessary, conceptual 

understanding is still necessary if the engineer is to use CAD effectively. This is because they 

still need to have enough knowledge to ‘drive’ the CAD equipment to produce what is 

needed, to know whether the CAD model that has been produced is accurate and not 

nonsensical, to relate the ideas behind the project to the machine and then interpret and 

implement the results. In such situations, being released from the need to justify conceptual 

understandings in the mathematics context has a positive effect on implementing conceptual 

understanding in the engineering context.  

Although computer technology has brought real power to the engineering workplace in recent 

decades, a generational contradiction had ensued with some engineers’ expressing 

reservations that computer calculation technology might lead apprentices to never 

conceptually understand the mathematics hidden in the black box (Black & Wiliam, 1998; 

Williams & Wake, 2007). Consequently, there were significant contradictions involving 

multi-voicedness between the generations.  

Performing the calculations by hand was also seen by some old-timers as reinforcing 

conceptual understanding, and perhaps an indication that conceptual understanding was 

complete. In the case of being able to accurately perform the complicated minutiae of spline 

calculations by hand, for example, the mathematics was advanced well beyond the 

knowledge of most mechanical engineering tradespersons. Successful spline calculation was 

grounded on following an algorithm and hence on procedural knowledge (see Section 4.1). 

On the other hand, the old-timers in my study who acknowledged the need to get things done 

cheaply, accurately and efficiently, were leaning towards adopting procedural approaches. 

Thus, there was a paradox, with some old-timers tending to continue their historical ways of 

doing things, while others welcomed the contributions being made to change by the younger 

generation of engineers and apprentices, especially the latest innovations in computer 

technology.  

Conceptual understanding and procedural knowledge also appeared to distinguish expert 

engineers from others. One engineer, Stephen, characterised an expert mechanical engineer as 

someone who combined technical engineering skills with an understanding of how the 

systems interacted, could figure out what was happening, had intuition and could identify bad 

information. For example, an expert engineer had procedural knowledge but could go beyond 

procedural knowledge of rules, algorithms and formulas of how to perform something to 

display metacognitive thinking and increasing levels of sophistication of numeracy 

conceptualization in contextual settings (Engelbrecht et al., 2017) (see Section 2.3.1). This 

was consistent with the qualities of higher-order thinking frequently needed in the workplace 
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as outlined by FitzSimons et al. (2005), FitzSimons and Wedege (2007), Lave and Wenger 

(1991), T. Maguire and O’Donoghue (2003) and Zevenbergen (2002). Expert engineers 

tended to have well-developed higher-order thinking skills, but not necessarily more senior 

secondary school mathematics skills. Possessing higher-order thinking skills may, therefore, 

be a defining characteristic that moved them close to the centre of the community of practice 

(see Section 2.5). The result was that there was widespread agreement that conceptual 

understanding should be preeminent in many practical situations because it had practical 

consequences (Engelbrecht et al., 2009, 2017; Lamberg, 2013; Rittle-Johnson & Schneider, 

2014; Schoenfeld, 1992; Vosniadou, 2006).  

Regarding the contribution of this study to new knowledge, this study establishes the 

importance of both conceptual understanding and procedural knowledge in New Zealand 

mechanical engineering trades workplaces. It enriches the literature by providing examples of 

where conceptual understanding and procedural knowledge work in tandem in practical 

situations. The study also demonstrates that expert engineers appear to be comfortable in both 

conceptual and procedural scenarios.  

In this section, I have discussed various contradictions regarding the roles of conceptual 

understanding and procedural knowledge in the quest for problem solving. There was a 

paradox here because while many engineers regarded understanding concepts as the ideal, at 

least in a general sense, time and other constraints meant that finding a suitable procedure 

often took precedence. However, there were limits to the successful application of procedural 

knowledge without further conceptual development leading to expansive cycles of learning. 

One reason for this conundrum is the importance of creativity to problem solving, which I 

discuss in the next section.  

6.2.4. Creativity 

The discussion focuses here on how the frequent unfamiliar situations in mechanical 

engineering contexts that give rise to problem solving and conceptual understanding, lead 

logically to creativity in finding a solution. This was graphically illustrated by Robert 

(engineer) installing a press vertically, replacing bushes on a press, and modifying his 

furnaces to accommodate larger jobs (see Section 4.2.2). In these cases, unusually creative 

solutions may go beyond the rules developed historically by the community regarding 

departures from the norm. Creativity also involves transfer of knowledge which Brookhart 

(2010) identifies as a higher-order skill and is consistent with other understandings of 

numeracy that incorporate higher-order skills (FitzSimons et al., 2005; FitzSimons & 

Wedege, 2007; Hattie & Donoghue, 2018; T. Maguire & O’Donoghue, 2003). Each of 

Robert’s tasks required employing conceptual understanding of the problem to find a 

genuinely creative solution. In this way, the connection between problem solving and 

creativity has emerged as a key feature of mechanical engineering practice.  

In time, a consensus about the efficacy of a departure from the norm may be reached and a 

new problem-solving technique become accepted practice (OECD, 2009a); in which case an 

expansive cycle in both individual and community learning has been completed. This can be 
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accompanied by a corresponding development in the community’s procedural knowledge, 

even if not all members achieve the same level of conceptual understanding. Developing 

one’s own new techniques, and critiquing and adapting other engineers’ proposed new 

techniques are both key features of mathematical learning, and are integral to the expansive 

learning process.  

It would also appear that conceptual understanding and procedural knowledge are not 

mutually exclusive. On the contrary, they have a symbiotic relationship where conceptual 

understanding exists on multiple levels related to context and appears to be developed 

iteratively in conjunction with procedural knowledge. This relationship is recorded in the 

literature (Devlin, 2007; Hattie & Donoghue, 2018; Rittle-Johnson & Schneider, 2014; Rittle-

Johnson et al., 2001) (see Section 2.5.3). However, while procedural knowledge may be used 

at length successfully, it nevertheless has limits as a substitute for conceptual understanding. 

Once these limits have been reached, engineers must address the question of conceptual 

understanding. This applies, in particular, to the problem-solving process where intellectual 

perception and creativity require the engineer to go beyond the limits of procedural 

knowledge. Hence, creativity is linked to problem solving, which is linked in turn to 

conceptual understanding. Establishing conceptual understanding, in turn, may lead to the 

construction of procedures. Hence, creativity can be regarded as an intellectual tool that 

motivates and guides the application of mathematics and conceptual understanding in many 

engineering contexts. This suggests that there is a synergy between problem-solving skills 

employing conceptual understanding and creativity, and well-developed numeracy, 

communication and organisation skills. One potential consequence of this synergy is that 

problem solving accompanied by the multi-voices of individuals within the community of 

practice, including those on the periphery, can work together to resolve contradictions and 

take the community to new expansive cycles of learning.  

Regarding the contribution of this study to new knowledge, there is an extensive literature on 

creativity. This study enriches that knowledge. The study also demonstrates the 

interconnectedness between creativity and problem solving in New Zealand mechanical 

engineering trades workplaces. Creativity is linked with finding new perspectives to solving 

problems.  

6.2.5. Extended reasoning, integrating multiple skills 

In the last section, I discussed the role creativity plays in problem-solving contexts. Since 

creativity involved the interaction of conceptual understanding and procedural knowledge, 

the solutions found became increasingly complex, which led naturally to extended reasoning. 

In this section, I discuss creativity and extended reasoning in both routine and non-routine 

engineering contexts. First, routine tasks require recalling and then applying skills already 

learned. As illustrated in the findings, when the apprentices made mistakes with the concrete 

moulds that did not “come out right”, problem solving was needed to fix things up (see 

Section 5.2.2.4). Fixing mistakes was regarded by mentors as good learning opportunities for 

apprentices, because the costs of the mistakes were small, the mistakes were easily 

rectifiable, and exposed the apprentices to fault-finding and problem solving. They also 
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involved extended reasoning, because apprentices had to figure out several steps in logical 

thinking for themselves in an unfamiliar context. With increasing skill and experience, the 

apprentices would be shown how to do more complicated tasks and then be left to work 

independently. This is consistent with Lave and Wenger’s apprentice tailors who were given 

the easier parts of garments to make before attempting more complicated tasks. Increasing 

independence marks progression towards the centre of the community of practice (Lave & 

Wenger, 1991).  

It is important to understand that non-routine, problem-solving tasks involve more than an 

extended series of operations. An example is found in Keith Rucker’s (2013) video on 

replacing a small bush. Keith’s task was similar to Robert’s (see Section 4.1.3.5) as he also 

was replacing a bush. Robert’s task would normally be described as non-routine as it was 

done very seldom, the operations were not standard and, therefore, involved genuine problem 

solving. In contrast, Keith’s task was regularly performed by engineers and posed its own 

challenges - no replacement bushes were available commercially so Keith had to machine 

them up himself, and he had to make multiple careful measurements, calculations, and 

complex decisions. However, despite the complexity of Keith’s operations, the operations 

were routine. Therefore, his task did not involve significant problem solving.  

Because of their ability to integrate skills, both engineers were very close to the centre of 

Lave and Wenger’s communities (see Section 2.5). The tasks had both similarities and 

dissimilarities. They were required to deal with many factors simultaneously, among which 

were: 

• understand the nature of the problem  

• perform diagnosis to find a cause  

• recognize what action needed to be taken as well as the engineering techniques 

required  

• know how to integrate the use of the physical and mental tools available to them  

• consider several potential methods of solution and their sequencing  

• relate the operations to the complex contexts of the problems  

• know how the materials involved might react when operated on 

This was consistent with the outline of how tasks were dealt with in the workplace cited by 

FitzSimons et al. (2005). Both examples of replacing bushes demonstrate workplace practices 

that incorporate elementary mathematics in sophisticated settings, engineering judgment, and 

metacognitive skills, such as critical thinking, and planning (FitzSimons et al., 2005; Steen, 

2001). Moreover, Keith and Robert brought many years of personal expansive learning 

cycles, and interaction with other activity systems and communities of practice to bear in 

performing the tasks. Robert also brought creativity, which was consistent with the literature 

where mathematics is used both descriptively and precisely as one of several key elements 

considered in the decision-making process (Alpers, 2010; Bakker, 2014; Gainsburg, 2007; D. 

Harris et al., 2015; Hoyles et al., 2010; Kent & Noss, 2002). However, only Robert’s task 

required genuine authentic problem solving.  
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Regarding the contribution of this study to new knowledge, this study aligns extended 

reasoning and the integration of multiple skills with creativity and problem solving. 

Moreover, developing the ability to integrate multiple skills appears to be a long-term 

process. In New Zealand mechanical engineering trades workplaces, the ability to combine 

extended reasoning and creativity with problem solving skills appears to be indicative of 

people who are close to the centre of one of Lave and Wenger’s communities.  

To summarize, mathematics, engineering judgment and heuristics (see Section 6.1) were used 

in tandem in engineering situations with problem solving, creativity and extended reasoning. 

The sign of an expert was to be able to extract ideas and information from the multi-

voicedness of their historical experiences, and to combine this with creativity and conceptual 

understanding of the disparate connections to create solutions and expansive cycles of 

learning.  

6.2.6. Section summary 

To summarize, Section 6.2 regarding the second research sub-question about how the 

mathematical skills are applied in mechanical engineering trades, mathematics was used by 

mechanical engineers in real situations where context was of primary importance. The 

situations were both routine and non-routine. While routine situations could often be solved 

using procedural knowledge, non-routine situations that were unfamiliar to the engineer 

necessitated problem solving, creativity and higher-order skills. Problem solving by its very 

nature produced intellectual contradictions because engineers had differing views on how 

solutions might be constructed, and produced community contradictions because of historical 

rules set by the community as accepted standard practice.  

Problem solving also involved integrating conceptual understanding and creativity with 

physical tools to find successful outcomes. This was often characterised by an intricate 

interplay between the mathematics, heuristics and engineering judgment in situations when 

approximate estimations only were possible, or needed. Hence, problem solving being a tool 

in its own right, stimulated contradictions regarding the historical practices of engineering 

communities, by challenging its rules and the roles its members played in the outcomes.  

Having established the significance of problem solving as a tool in its own right to resolve 

contradictions in the engineering community, the findings of this study made it evident that 

on some level, problem solving also entails a degree of learning and communication skills. 

The next section discusses this last, important finding, of how engineers develop the 

necessary mathematics skills. In particular, communication is not only an essential ingredient 

of engineering workplace effectiveness but also serves as a tool for individual learning and 

hence the development of expansive cycles of learning in mechanical engineering trades 

communities.  
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6.3. Developing the mathematics skills, learning and communication 

The discussion so far has focused on the first two research sub-questions relating to two key 

features of mathematics in the mechanical engineering workplace - the nature of the 

mathematical tools, and applying mathematics as an intellectual tool in complex real-world 

contexts. In this section, I focus attention on the third research sub-question of how 

apprentices and skilled tradespersons in mechanical engineering trades learn and develop the 

mathematics skills necessary for their work. A major finding is the complementary roles that 

communication and individual reflection play in this process (see Section 5.2.2, Section 5.2.3, 

and Section 5.2.5). I discuss here four interrelated issues pertaining to learning – the 

movement of apprentices and skilled tradespersons from the periphery towards the centre of 

Lave and Wenger’s community of practice, formal and informal learning, higher-order 

thinking skills, and the role of communication in the workplace and in learning (FitzSimons 

et al., 2005; Lave & Wenger, 1991; T. Maguire & O’Donoghue, 2003). But first, I discuss the 

links of this section with the CHAT and Situated Learning frameworks.  

6.3.1. Links to CHAT and Situated Learning 

This section provides a summary of the findings about how mathematical knowledge and 

skills are developed and learned in the mechanical engineering trades (see Section 5.2). The 

bullet points below summarize the links between the CHAT framework and Section 6.3.  

Engeström’s Elements 

• Tools: Informal learning was done by observing, emulating, listening and questioning, 

language and communication. Formal experiences such as schooling, block courses, 

reading and doing formal exercises were prevalent, as were visual aids, informal 

social interaction with others, mentoring programmes and personal reflection.  

• Rules: Various technical expressions and jargon were used that were relevant to the 

needs of the engineering context.  

• Community: Communities had the potential to provide extensive communication 

opportunities for the exchange of ideas and hence to encourage innovation and 

learning. Informal experiences gained during childhood, dialogue and debate through 

interaction with family, teachers, and mentors were also important means of learning.  

• Roles: Educators and skilled tradespersons shared knowledge, experiences and skills, 

often through their stories. Roles could be fluid depending on the skills of newcomers 

to the community. Mentors, educators and others could sometimes exchange their 

roles depending on the recognised expertise of others.  

Engeström’s Principles 

• Multi-voicedness: Various philosophies existed about teaching and learning, and 

different ways and techniques of performing engineering tasks.  
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• Historicity: Divergent ideas of mentoring and company environments influenced 

attitudes to mathematics learning. Values instilled from family culture, school and 

workplace approaches to mathematics learning were also influential.  

• Contradictions: There was recognition of multiple methods of learning, both social 

and individual. Contradictions existed between conceptual understanding and 

procedural knowledge, and between formal, traditional approaches to learning 

mathematics versus informal, constructivist approaches. 

• Expansive Cycles: Learning success was dependent on appropriately blending formal 

and informal pedagogies. The culture of the workplace could contribute to increased 

learning, especially where apprentices and old-timers interacted socially. 

Communication was seen as an essential component of learning. Much more attention 

was given in workplace practice to direct practical application of mathematics than at 

school. Transfer of expansive cycles in individuals’ learning could take place in the 

wider communities of practice.  

In this study, Situated Learning (SL) was also used as a theoretical frame of reference (Lave 

& Wenger, 1991). CHAT and SL have both similarities and differences. Both theories focus 

on practice which they regard as socially and historically influenced. Nevertheless, a 

significant difference between CHAT and SL is that CHAT can focus on situations where 

answers are not known. This makes CHAT useful in this study when describing problem-

solving situations where finding answers has the potential to change the activity system, 

whether in individuals or communities. On the other hand, the focus of SL on social 

interactions between people makes SL an appropriate frame of reference in analysing 

learning in the apprenticeship situation and the movement from the periphery of a community 

of practice towards its centre (Arnseth, 2008). Therefore, while CHAT and SL may appear to 

be different, their differences in focus are helpful to analysing the data and interpreting the 

results in this study (see Section 3.2.4). I now discuss the movement of members of a 

community from the periphery to the centre that takes place with growing skill, knowledge 

levels and experience.  

6.3.2. Moving from periphery to centre 

The movement from the periphery to the centre of a community of practice incorporates 

aspects of both Lave and Wenger’s theory of legitimate peripheral participation (LPP) and 

Engeström’s expansive learning model. LPP views new-coming apprentices as joining the 

periphery of a community of practice, and then moving progressively towards the centre of 

the community of practice as they gain experience, knowledge and skills (see Section 2.5) 

(Lave, 2012; Lave & Wenger, 1991). Moreover, their developing experience, knowledge and 

skills may be regarded as Engeström tools to achieve the outcome of competently using 

mathematics in engineering contexts. Learning implies transition from a lower to a higher 

level of understanding and competence, and hence to changes in individuals and in the 

community of practice which marks expansive cycles of learning (Engeström, 1990, 2001, 

2010). Significant contradictions leading to expansive cycles were seen in apprentices 
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adapting from a school to a workplace environment, in the school and workplace 

mathematics tension, and in the responses of various multi-voices to potential change.  

I focus the discussion here on the development of beginning apprentices in mechanical 

engineering trades from the perspective of movement from the periphery of Lave and 

Wenger’s community of practice towards its centre. The data indicated the significant 

influence of mentoring programmes to assist apprentices transition to the new demands of the 

workplace. This was reflected in an important result involving social interaction, where, in 

some workplaces in my study, newcomers and old-timers shared the benefit of their skills 

with each other (see Section 5.2.2.1). Consequently, old-timers contributed maturity and 

experience while the younger people sometimes brought attitudes and skills from their prior 

learning experiences at school with calculators and technology.  

In such a manner, the data confirmed the existence of communities of practice comprising 

newcomers and old-timers engaged in situated learning. Here, newcomers, or apprentices, 

joined the periphery as legitimate participants. With mentoring and developing skill they 

began to migrate towards the centre. This is consistent with Lave and Wenger’s model where 

there is a continual interchange of personnel occupying the centre of the community of 

practice (Lave & Wenger, 1991). This migration was mainly due to older members of the 

community retiring and being replaced by younger people contributing new ideas. On the 

other hand, some apprentices quickly become recognised as experts in certain areas, such as 

computer technology. In this way, these apprentices occupied the centre of the community 

regarding their highly-developed computer technology skills but remained on the periphery 

for the rest of their learning, which still needed development. From a community perspective, 

several engineers and apprentices spoke warmly of this intergenerational, interactional 

learning, because they had yet to catch up and exploit the new skills. The result was that what 

constituted accepted practice changed in this process, an indication that expansive cycles of 

learning were taking place throughout the wider community.  

Expansive cycles of learning in both individuals and the community may come about by 

innovative apprentices and mature skilled tradespersons introducing new ideas, techniques, or 

by gaining competence using new technology. An individual’s migration to the centre can 

therefore be influenced by several factors, such as learner motivation, exposure to an 

environment where innovation is sponsored, the quality of training programmes, and 

encouragement given by mentors (Bandura, 1994; Knowles et al., 2011).  

Having completed their apprenticeship, apprentices joined a large group called skilled 

tradespersons. This group ranges from recently qualified tradespersons who have yet to 

understand the “full picture” of engineering contexts to those whom the engineers call experts 

(see Section 5.2.2.2). It would appear that recently qualified skilled tradespersons have 

mathematics skills beyond Maguire’s and O’Donoghue’s (2003) formative phase, and display 

elements of the mathematical phase. This is in contrast to the important group of experts who 

exhibit special engineering skills that gain them enormous respect in the community. Experts 

are likely to exhibit elements of Maguire’s and O’Donoghue’s integrative phase which is a 

complex, multifaceted sophisticated construct, incorporating mathematics, communication, 
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cultural, social, emotional and personal aspects of each individual in context (T. Maguire & 

O’Donoghue, 2003) (see Section 1.4).  

The findings demonstrated that there were intergenerational contradictions between the 

natural conservatism of most people as they get older and the energy of apprentices and 

younger tradespersons to introduce their ideas. The contradiction may also be due to different 

school experiences where apprentices had been exposed to school curricula promoting 

creative and critical thinking to make sense of information, rather than the experience of the 

old-timers to learn facts (Ministry of Education, 2007). However, over time each group 

influenced the other, resulting in creating an expansive learning cycle from what the 

community was prepared to accept, or considered best.  

The data also demonstrated that many engineers continued to have difficulties with 

mathematics even though they had become skilled tradespersons. Despite their mathematics 

deficiency, they may still have been regarded as expert engineers, such as Tim’s expert with 

specialised skills in welding. Thus, expertise could be specialised, or global, as with 

Stephen’s broad criteria of knowing how systems interacted. An expert could figure out what 

was happening because he had intuition and could identify bad information (see Section 

4.1.3.8).  

It would appear that progress in adapting to the mathematical requirements of the mechanical 

engineering context was also an important feature of migration to the centre of the 

community in the sense of global expertise. Conversely, lack of progress in mathematics 

skills hindered or even stifled a tradesperson’s progress to the centre, and hence to become an 

expert at the centre of the community. In these cases, and no doubt for many possible 

reasons, their individual expansive learning cycles had not taken place, and the contradictions 

they experienced in learning remained unresolved.  

Regarding the contribution of this study to new knowledge, this study enriches the extensive 

literature on Lave and Wenger’s theory of legitimate peripheral participation. Apprentices 

and skilled tradespersons in New Zealand mechanical engineering trades workplaces 

migrated from the peripheries of communities of practice to their centres as they developed 

knowledge and skills. Moreover, experts were near the centre of communities of practice and 

tended to have multiple mathematical and ancillary skills developed over many years.  

In summary, contradictions involving individuals and their wider activity systems in 

mechanical engineering trades contexts do not necessarily lead to expansive cycles of 

learning. Instead, deliberate intervention is often necessary, which is dependent on both 

formal and informal learning, and the crucial roles played by communication (see Section 

6.3.4 and Section 6.3.6).  

6.3.3. An eclecticism of learning methods 

This section discusses the formal and informal methods of mathematics learning for 

apprentices and skilled tradespersons (see Section 2.4.5). The data indicated the significant 
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finding that both formal and informal learning methods were part of apprentices’ childhood 

and youth experiences. Their family or other influential mentors provided informal exposure 

to engineering contexts and perhaps a limited feel for measurement sizes, while schooling 

and apprenticeship training combined both formal and informal learning. During their 

training, apprentices experienced formal and informal features of apprenticeship learning, 

consistent with New Zealand legal apprenticeship requirements (Tertiary Education 

Commission, 2015, 2020). Hence, as illustrated in the findings, off-the-job block courses 

sometimes involving workbooks and exercises, and on-the-job training involving situated 

learning with mentors and social interaction, were similar to the combination of formal and 

informal learning experienced by US Navy quartermasters (Lave & Wenger, 1991).  

Traditional block courses recalled by old-timers who were exposed to the strictly formal 

approaches of night classes and learned from them, had been partially replaced by a much 

more socially-interactive approach (see Section 5.2.2.1). This suggests there is a deep, 

ongoing discussion within the community about the relative effectiveness of formal and 

informal methods of learning. The resulting eclecticism of teaching methods attempted to 

combine the best of both approaches. For this reason, engineering educators believed social 

interaction promoted learning the theoretical and practical applications of mathematics in 

engineering contexts, and the successful completion of problem-solving tasks in small groups 

(FitzSimons et al., 2005; FitzSimons & Wedege, 2007).  

Since context is significant in workplace mathematics, then an important transition for 

learners was appreciating how broader contextual workplace factors might affect the way 

they used their school mathematics knowledge. In the case of fine measurements that were 

temperature-dependent, one engineer had to wait 24 hours for temperatures to stabilise the 

lengths of metal components before making fine measurements (see Sections 4.1.2 and 

4.1.3). The community had strict rules for taking these measurements, as it also did with 

safety requirements. This practice was also consistent with measures required to be taken 

when temperature and humidity critically altered the dilution rates in chemical spraying 

(FitzSimons et al., 2005).  

Some educators thought apprentices took time to appreciate the implications of not having all 

the relevant information supplied in advance, and of making quick estimations to identify 

unreasonably wrong answers. Young apprentices may have met this type of thinking at 

school, but they needed to adapt from school requirements to quite different and important 

workplace requirements. This involved understanding many complicated interrelations and 

community rules that not only shaped mathematical applications but also involved adapting 

to different attitudes of what constituted a reasonable answer and how that answer might be 

obtained and interpreted. This demonstrated the importance of being confident and 

comfortable in judging whether to use mathematics in a particular situation, what 

mathematics to use, how to do it, what degree of accuracy was appropriate, and what the 

answer meant in relation to the context (Coben, 2000).  
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I next discuss two means of learning that apprentices considered helpful to their movement 

towards the centre of the community of practice - block courses, and thinking things out for 

themselves.   

6.3.3.1. Formal and informal learning  

Formal learning is usually associated with block courses, attending lectures and practicing 

doing exercises (Eshach, 2007). Somewhat surprisingly, the data showed that more than 

ninety per cent of apprentice participants thought that doing exercises and examples until 

they got things right was the best formal method to develop the expertise characteristic of 

those near the centre of Lave and Wenger’s community of practice (see Section 2.5.1.1). 

Also, avionics educators used exercises and examples outside of engineering contexts to 

extend knowledge and foster flexible thinking. Murray (engineer) said that it was important 

for apprentices to do a lot of formal exercises until the skills were ingrained (see Section 

2.2.1).  

Regarding thinking things out for themselves, apprentices and educators very strongly 

endorsed the approach to learning found in Realistic Mathematics Education (Treffers, 1993; 

Yuanita et al., 2018). In such a learning environment, where communication, collaboration, 

questioning and experimenting between teachers and students had the potential to raise levels 

of conceptual understanding, mistakes could be made and ideas that did not work could still 

be respected (see Section 2.4.3). Hence, any resulting contradictions would then be proven as 

useful learning devices when discussed in a non-threatening manner. In this way, the 

progression to expansive cycles of learning could be made naturally. The apprentices 

appreciated the nature of contextualised knowledge that enabled them to see what was 

happening, to ask questions and thus develop deeper understanding (see Section 5.2.2.1).  

The engineers strongly supported practicing as an essential means of mathematical learning. 

In practical engineering contexts, knowledge and techniques must often be recalled and 

applied without continual, time-consuming recourse to basic principles. Hence the need to 

ingrain certain procedures. This resonates well with Skemp’s (2006) differentiation of 

relational and instrumental understanding which, while recognizing the importance of both, 

acknowledges that in certain scenarios instrumental understanding has advantages, such as 

more quickly and reliably obtaining the correct answer (see Section 2.4.4).  

In this regard, it is important to note that the engineers strongly distinguished practicing of 

skills from rote learning. This was demonstrated in the way they designed exercises and 

examples that were different from each other in significant details and which forced learners 

to consider carefully what they needed to do, how they should do it, and what the answer 

meant in the context (Bernstein, 2000; Coben, 2000; FitzSimons et al., 2005; K. Mills, 2011). 

However, while doing exercises may be regarded as formal learning, some educators 

combined this with a socially-oriented approach (see Section 5.2.2). A significant 

consequence was that class discussion could identify and rectify gaps in understanding, and 

procedural knowledge and conceptual understanding could be mutually reinforced by 
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iterative processes involving practicing and social interaction (Devlin, 2007; Hattie & 

Donoghue, 2018; Rittle-Johnson & Schneider, 2014; Rittle-Johnson et al., 2001).  

Iterative processes often involved practicing, which the educators wanted to distinguish from 

mere rote learning. For this reason, some educators used mathematics problems that were not 

directly linked to engineering contexts to encourage the development of thinking skills (see 

Appendix O). Moreover, exercises and examples could also be used to foster the integration 

of mathematical, technical and social skills consistent with T. Maguire and O’Donoghue 

(2003), and Hattie and Donoghue (2018).  

In summary, the engineering educators tended to favour an amalgam of approaches, rather 

than employing just one teaching method. Therefore, educators fostered classes where mutual 

learning took place, with the educator sometimes acting formally as a teacher, and sometimes 

informally as a facilitator of learning.  

6.3.3.2. Informally thinking things out for themselves 

Informal learning is closely linked with thinking things out for themselves. As illustrated in 

the findings, it was evident that engineers practiced this regularly in the course of their daily 

work, and was regarded as effective or very effective by 95% of participants (see Section 

5.2.2). Thinking things through could reflect individual self-reflection or community 

interchange of views, not just with solving an immediate problem, but also with the long-term 

development of habits of higher-order skills (Eshach, 2007). With both individual and 

community involvement, it is possible that Sfard’s acquisitionist and participationist 

metaphors were operating, with individual thought and social interaction mutually 

influencing internalization of understanding (see Section 2.4) (Sfard, 1998, 2009).  

The findings also indicated that informally thinking things out was often associated with 

developing higher-order thinking skills such as conceptual understanding, transfer of 

concepts between contexts, critical thinking, learning to learn, planning, creativity, flexible 

thinking, and especially, problem solving (see Section 4.2). These resonated with the 

interconnectedness of skills outlined by Brookhart (2010), the self-directed learning 

principles of Knowles et al. (2011), and contrast well with the numeracy levels of T. Maguire 

and O’Donoghue (2003).  

Regarding the contribution of this study to new knowledge, this study demonstrates that 

while apprentices and skilled tradespersons in New Zealand mechanical engineering trades 

were perhaps temperamentally oriented more to informal learning, they also acknowledged 

the role of formal learning. Socially-oriented learning was also strongly endorsed by the 

participants.  

In summary, the learning of both apprentices and skilled tradespersons encompassed both 

formal and informal means. Educators and mentors used formal teaching methods designed 

to develop skills and understanding which they integrated with social interaction to encourage 

team building and cooperative problem solving. Apprentices appeared to enjoy both 
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approaches. The formal and informal means of learning also operated in developing higher-

order skills, which I discuss in the next section.  

6.3.4. Higher-order skills 

Higher-order thinking and problem solving emerged from the findings as another significant 

key feature of mechanical engineering practice, and were frequently important stimuli to 

apply mathematics in engineering contexts. From the perspective of CHAT, contradictions in 

activity systems may originate when some individuals start questioning and then deviate from 

the traditionally accepted norms of the activity system (Engeström, 2001). Nevertheless, 

within this study, contradictions may also be produced when engineers are forced to come to 

terms with their current understanding of a situation being insufficient to provide a solution. 

This required engineers, both individually and collectively, to seek solutions that were 

mainly, but not necessarily exclusively, within the informally agreed community rules 

regarding engineering practice. I now consider how extended reasoning skills may be 

developed, the roles of mentoring and practicing in developing higher-order skills, and some 

qualities possessed by engineers regarded as experts.   

6.3.4.1. The development of extended reasoning skills 

One contradiction concerned the difficulties in developing extended reasoning skills among 

apprentices and even tradespersons. Extended reasoning is understood in this study to be 

combining several steps of thinking and operating in an appropriate sequence to produce a 

satisfactory outcome. The difficulties are linked to developing mathematics concept 

understanding in individuals and may have long roots in historical difficulties, for example, 

from school. One strategy to deal with this was private reflection and informally thinking 

things out for themselves, which apprentices thought was far more effective than skilled 

tradespersons (see Section 5.2.2.3). The reasons for this discrepancy are unclear. It may be 

due to apprentices overestimating their own cognitive abilities, or a feature of the school 

environment that fosters imagination and creativity in problem solving (Anthony, 2016; 

Kohen & Orenstein, 2021; Mason, 2003).  

Another approach that had widespread support in some communities was fostering an 

environment of social interaction where ideas could be discussed and an opportunity given to 

allow contradictions to emerge into the open. In this way, the total skills and understandings 

of the community could be brought to bear on the problem at hand. This was consistent with 

the literature where extended reasoning became part of heightened levels of social interaction 

and metacognitive skills such as critical thinking, learning to learn and problem solving 

(FitzSimons et al., 2005; Ministry of Education, 2005, 2007; Roth, 2010; Zevenbergen, 2011; 

Zevenbergen & Zevenbergen, 2009). Among the skills that apprentices needed to develop 

are: considering what best suits the context, to what extent a proposed model works, whether 

a suitable model can be found or created quickly, what degree of accuracy is needed, time 

and money constraints, the acceptable tolerance, the tools available, and the skill of the 

tradespersons. These considerations are consistent with the reports of Marr and Hagston 

(2007). Extended reasoning, and social and metacognitive skills are interconnected. Lack of 
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any one of them creates significant contradictions for individuals and the engineering 

community which are exacerbated by slow maturation processes that affect apprentices’ 

learning and adaption to workplace perspectives (see Section 6.3). The result is that engineers 

continually need to assess the level of social, metacognitive criteria that should underly their 

approach to mathematical decision-making.  

The data revealed that resolving contradictions to achieve expansive cycles in learning often 

involved developing more sophisticated mathematical models. This applied particularly to 

apprentices who were given tasks commensurate with their mathematical ability. More 

sophisticated tasks led naturally to extended reasoning, which is needed to combine several 

steps of thinking and operating in an appropriate sequence. This in turn may require 

verticalising conceptual understanding and hence greater abstraction (Confrey & Kazak, 

2006; Treffers, 1993; Zulkardi, 1999) (see Section 2.4.3). As illustrated in the findings, many 

engineers were reluctant to move towards greater abstraction, consistent with the long 

historical roots throughout the engineering trades community (see Section 6.1.3.3). Thus, 

ironically, when one expansive cycle was attained, it could do so at the possible expense of 

enhancing yet another contradiction.  

Successfully applying extended mathematical reasoning in the real world was interpreted 

through the CHAT lens as an expansive cycle formerly characterised by a series of 

contradictions. For example, some engineers found applications of school mathematics many 

years after leaving school (see Section 5.1.3). They also acknowledged the influence of 

growing maturity accompanied by light bulb moments. This suggests that expansive cycles 

involved in developing extended reasoning skills culminate after a long period of personal 

reflection and interaction with others, exposure to engineering contexts and growing 

maturity, consistent with Sfard’s acquisitionist and participationist models (Sfard, 1998, 

2009). Well-developed extended reasoning skills also indicate increasing proximity to the 

centre of Lave and Wenger’s community of practice.  

Learning was also reflected in adults being able to engage in personal reflection and mutual 

discourse to identify and assess their own and others’ assumptions (Knowles et al., 2011). 

Moreover, in each case, while the mathematics may have been unsophisticated, its 

application was consistent with Steen’s view of using quantitative skills in subtle and 

sophisticated contexts (Steen, 2001). Being able to see the connections that transfer abstract 

mathematical knowledge to real contexts with real-life complicating factors is a major feature 

of mathematical learning and an important step towards working independently and moving 

closer to the centre of Lave and Wenger’s community of practice.  

Social interaction and hence good communication were also emphasized by some engineers 

as essential to successful problem solving. In this respect, Murray (engineer) spoke of the 

need to plan with others, and was highly critical of non-existent communication in the 

workplace which frustrated planning, and therefore efficiency (see Section 5.2.5.1). 

Nevertheless, the end result of good communication over time could be that learning and 

practice might enable some activities originally experienced as problem solving to “become 
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routine activities” (OECD, 2009a, p. 7), and lead to an expanded cycle of learning throughout 

the community.  

In summary, the development of extended reasoning skills was based on the primacy of 

context and involved a complex series of developments and interactions involving individuals 

and the community. Extended reasoning skills can be viewed as an intellectual tool in 

Engeström’s elements that operate in concert with Engeström’s other elements, especially the 

rules and the community. The accomplishment of cycles of expansive learning leading to 

mature and sophisticated extended reasoning skills is based on both individual and 

community growth and may take many years to fully complete. However, cycles of 

expansive learning do not necessarily develop automatically but require intervention. In the 

next section, I discuss the roles of mentors and practicing of tasks in fostering higher-order 

skills.  

6.3.4.2. Mentoring, practicing and higher-order skills  

As illustrated in the findings, methods of teaching apprentices used strong social interaction, 

which mentors combined with more traditional means such as the practicing of tasks until 

they got things right. Apprentices had to demonstrate competence at one level before 

advancing to the next, which was consistent with Lave and Wenger’s (1991) model for 

training apprentice tailors and quartermasters.  

As discussed in Section 2.3 and Section 2.4, there are many studies of problem solving in 

school and adult learning settings (Anthony, 2016; de Bono, 1972; OECD, 2012b; Stylianides 

& Stylianides, 2014; Tertiary Education Commission, 2008; Yuanita et al., 2018). However, 

there appears to be some doubt over how well problem solving skills demonstrated in the 

classroom transfer to the professional engineering context (Engelbrecht et al., 2009; Harlim, 

2014; J. Mills & Treagust, 2003; Sobek & Jain, 2004). Some mechanical engineering trades 

educators attempted to incorporate higher-order thinking into their teaching programmes to 

develop fault-finding skills, an example of problem solving (see Section 5.2.4). They also 

combined mathematics exercises and class discussion with mentoring programmes that 

concentrated on the whole person. The fact that educators continued to do these things over 

many years suggests they were convinced they were all effective.  

While this research study found that practicing and mentoring were believed by educators to 

be effective means of fostering higher-order skills, it is not possible for this study to 

definitively state all the factors involved in higher-order skills development. Higher-order 

skills, especially problem solving, appear to be qualities of those whose development has 

successfully completed successive expansive learning cycles and who now stand at, or near, 

the centre of the community of practice. This is probably strongly associated with 

interpersonal skills, especially with educators and mentors who discussed with me the 

cognitive aspects of mathematics as well as the social aspects of apprentices’ experiences.  

Concerning the third research sub-question, the four ingredients of mentoring, practicing, 

social interaction, and personal reflection, were all involved in developing higher-order skills. 
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Workplace learning was consistent with Sfard’s acquisitionist and participationist models 

(Sfard, 1998, 2009). These four ingredients are important because they appear to be highly 

influential in engineers moving towards the centre of the community of practice. They also 

appear to be especially important in the development of experts and their roles in problem 

solving, which I discuss in the next section.  

6.3.4.3. Experts and problem solving  

The findings demonstrated that the mechanical engineering trades communities have long 

recognised and respected a small group of expert skilled tradespersons for their ability to 

perform both basic and higher-order technical skills as well as understand how systems 

interact (see Section 4.1.3.8). Understanding the interactions is an indication of well-

developed higher-order skills such as problem solving, metacognitive thinking, and in some 

cases, increased levels of sophistication of numeracy conceptualization in contextual settings. 

Hence, it is possible that experts have progressed beyond Maguire’s and O’Donoghue’s 

‘mathematical phase’, similar to Freudenthal’s Realistic Mathematics Education (see Section 

2.4.3), to integrate their mathematical knowledge with other higher-order thinking skills, 

social interaction and communication (FitzSimons et al., 2005; T. Maguire & O’Donoghue, 

2003; Treffers, 1993). However, in the context of this research, it is possible to give only an 

indication of the qualities the participants thought applied to expert engineers. As illustrated 

in the findings, they had superior skills in creativity which they brought to problem-solving 

situations. They were often good communicators and interested in people. Consequently, 

these experts played an innovative role in project development, and their ideas might over 

time become widely accepted and complete an expansive learning cycle of new techniques 

throughout the community. Most significantly, they were noted for their creativity and 

problem-solving contributions to community practice (see Section 6.2.3).  

An important possible exception to these comments was an expert welder who required 

different skills from other branches, especially an intuitive sense of what would work, and 

how things would distort under extreme heat (see Section 5.2.2). Therefore, although the 

design of big welding projects like wharf gangways is highly mathematical, their actual 

construction also depends heavily on utilizing subjective factors, such as engineering 

judgment, heuristics and a feeling for size, which was this welder’s strength. These skills are 

learned by practicing and experience and are respected among peers even although formal 

mathematics skills are not apparent.  

However, in branches other than welding, it was less clear how experts gained their expertise. 

Robert was certainly strongly influenced by his father who shared his knowledge and 

expertise as well as habits of questioning, taking calculated risks and experimenting (see 

Section 4.2.2.3). Robert and his father formed their own Engeström activity system, with 

Robert as the only subject and his father assuming the role of mentor. Robert was introduced 

to physical and intellectual tools, and consequently experienced and understood certain 

workplace contradictions at a young age. It is probable that these contradictions were 

sometimes beyond his current level of maturity, which may have stimulated his own personal 

reflections and communication with others. The outcome was that when Robert later joined 
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other engineering communities, he already had many historical experiences and expansive 

cycles completed. Moreover, he was used to linking contradictions to problem solving, and 

no doubt added his own theories to his father’s attempts to problem solve. The mature Robert 

still learns from “cock ups”, eagerly embraces new technology, and is passionate about health 

and safety. Similar strong paternal influences were reported by most of the other engineers, 

but not by all. It is therefore possible that expertise is a latent trait that can be fostered in 

some individuals, or it may be that it arises from historical childhood or school experiences.  

There is a large literature on higher-order thinking skills, including its application to 

workplaces. This study provides contextual examples from New Zealand mechanical 

engineering trades workplaces where apprentices initially found extended thinking difficult 

and were gradually introduced to more complex tasks of increasing length and complexity as 

they gained skill and experience. Effective communication and mentoring, as well as 

practicing appeared to be important factors in developing higher-order skills. Experts stood at 

the centre of the communities of practice. Thus, regarding new knowledge, this study 

provides added contextual examples to the literature from a New Zealand mechanical 

engineering trades perspective.  

In summary, the development of higher-order skills is dependent on socially situated learning 

as outlined by Lave and Wenger (1991). Initially, parents and other family members and 

friends assume the role of models whom children emulate. They provide communication and 

dialogue which act as artefacts that promote skill and conceptual development as in 

Engeström’s model. Later mentors continue these processes. However, it is not clear what all 

the factors are, or how they interrelate, especially regarding expert engineers and extended 

reasoning skills. Nevertheless, communication plays a crucial role in the learning process of 

all engineers, including the development of higher-order skills. I discuss the role of 

communication in the next section.  

6.3.5. The crucial role of communication 

I focus the discussion in this section on the importance of communication in the workplace, 

in apprentice development, and the role of the stories that engineers tell. The role of good 

communication emerged from the interviews in this research as a key feature of workplace 

practice and was consistent with many studies in the literature, as was discussed in the 

literature review (see Chapter 2) (FitzSimons, 2005; FitzSimons & Wedege, 2007; Gulikers 

et al., 2004; Lave & Wenger, 1991; Ministry of Education, 2007; OECD, 2012b, 2016a, 

2016b; Rule, 2006).  

The data showed that engineers understood communication as a multi-faceted and global 

issue that involved fostering a workplace-wide culture of discussion. This was important in 

choosing mentors who were among those closest to the centre of Lave and Wenger’s (1991) 

community of practice. Therefore, good communication can also be regarded as an essential 

tool for teaching and learning (see Section 5.2.5).  
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Some engineers encouraged multi-voicedness and communication as tools to promote 

problem solving. The multi-voices also exhibited strong historicity, often being the latest 

stage of development of old problems in possibly new guises, and emerging at the end of a 

long period of ferment during which issues were discussed and debated. In this sense, many 

good ideas emerged in artefact form, as diagrams sketched on the back of tobacco packets 

(see Section 5.2.5). These developments began, either with a problem to solve, or with 

somebody questioning the efficacy of the status quo. Communication was crucial here. If a 

problem can be solved quickly, then perhaps some individuals may experience an expansive 

cycle of learning. If the problem is not solved quickly but requires community discussion, 

research, and perhaps a paradigm shift in thinking, then the possibility exists of an expansive 

learning transformation in the activity system of the whole community, with the new 

knowledge and techniques establishing new norms of accepted practice, consistent with 

Engeström’s learning model (1999, 2001).  

The findings showed that in this environment, even the young apprentice participants enjoyed 

hearing the wisdom and experience of the old-timers, and then contributing their ideas too 

(see Section 5.2.2.1). It was at such times that youth and old-timers might both modify their 

positions. Youth might admit that some of their ideas were not practicable, and the old-timers 

would come to accept that the new was necessary to keep up with progress, and would let go 

of things that had in the meantime become obsolete.  

Social interaction, discussion and communication were essential components in this process 

of change. This could become complicated, especially since companies could not call a halt 

to production for any length of time while changes were made because most days they must 

make a profit. Nevertheless, some employers made encouraging change a deliberate policy, 

like Paul’s (training officer) boss who had always bought the latest and greatest technology to 

allow the engineers to work with it. In this case, it was not just the technology acquisition 

policy that was important to the firm’s success and the engineers’ satisfaction, it was the 

whole system of professional development, including ongoing communication that 

contributed to the well-being of individuals and the company (see Section 5.2.2.1). For this 

reason, effective discussion and communication are significant as part of transition 

experiences, because they allow both apprentices and tradespersons to receive suitable 

mentoring support and to gain a sense of belonging within the engineering community. In the 

next section, I discuss the roles of bosses and mentors in apprentice learning and promoting 

social interaction.  

6.3.5.1. The community, apprenticeship, mentoring  

Concerning apprenticeships and informal mentoring, many members of the community had a 

role to play in the development of apprentices’ mathematics skills. Here, inculcating 

understanding and proficient use of physical and intellectual tools and signs became the 

object of their endeavours, but always according to the rules accepted by the community. 

This informal learning was similar to situated learning in everyday life situations like grocery 

shopping, midwifery, tailoring, butchering, and Alcoholics Anonymous where the 
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apprentices acquired the specifics of practice through observation and imitation (Lave & 

Wenger, 1991).  

From the findings, bosses and mentors consciously assigned tasks to apprentices that were 

commensurate with their current skills and understanding, such as measuring and cutting 

metal. As they progressed, apprentices were moved on to more complicated projects (see 

Section 5.2.2). This strategy resonates well with Lave and Wenger’s (1991) description of 

apprentice tailors. A significant result is that apprentices were progressively exposed to 

increasingly sophisticated tasks as they developed in skill and knowledge during their five-

year apprenticeships. Consequently, they moved from near the periphery towards the centre 

of the community of practice.  

When apprentices lacked appropriate mathematical skills or the ability to integrate them 

within the context, their bosses acting in their roles of mentors, usually made a decision for 

them about how to use mathematics (see Section 2.5). This applied well to constructing the 

concrete moulds. However, the apprentices building a ramp in the fruit packing shed were 

given too much freedom, and produced a job that broke fundamentally important rules of the 

community to use time, resources, and money efficiently (see Section 2.4.5 and Section 4.2). 

The apprentices either lacked the necessary mathematical expertise or failed to recognise that 

using mathematics was appropriate in this situation (FitzSimons et al., 2005). On the other 

hand, Robert (experienced engineer) used sophisticated mathematical strategies for 

calculating small volumes for bolts (see Section 4.1.2.2). These tasks illustrate an important 

and continual interplay between mathematical theory and engineering practice, which are part 

of the learning development process. The interplay of multiple factors in New Zealand 

mechanical engineering trades workplace practice is part of the new knowledge provided by 

this study.  

To summarize, the apprentices learned on the job by many methods, such as observing and 

imitating, discussing, questioning and listening to the stories of the community. In each case, 

communication was confirmed as a crucial part of their learning process. One significant 

informal form of communication was the stories they tell which have intrinsic entertainment 

value that perhaps disguised their important role in learning. I discuss these in the next 

section.  

6.3.5.2. The stories the engineers tell 

Important aspects of language and communication mentioned in the previous section were the 

stories, or ‘good yarns’ the engineers tell. The data provided stories that combined both 

entertaining narrative and explanation. Stories served several significant functions, both 

technical and social. The importance of dialogue, in general, was confirmed by 100% of 

apprentices who felt discussing with tutors and other engineers was either effective or very 

effective, and multiple times in the interviews (see Figure 11). This is consistent with Lave 

and Wenger’s important observation that language is part of practice because “it is in practice 

that people learn” (1991, p. 85).  
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People need to gain access to the community’s collective knowledge, skills and wisdom, 

including learning the more important and difficult skills of the trade. One function of stories 

is to convey technical information about engineering issues and acceptable ways of doing 

things. Another function is to illustrate how problem-solving skills are employed in a context. 

This is best done when the listeners are relaxed. Another significant feature is that stories are 

developed in such a way as to have human interest and consequently be entertaining, yet 

lacking giveaway clues that restrict the listeners’ ability to guess what could happen next, or 

why. Moreover, stories are great informal teaching devices for apprentices because 

apprentices quickly pick up the community’s lore and use it themselves. Finally, being let in 

on a community’s stories is a bonding measure, and conveys to the newcomer that they too 

have become accepted within the outer periphery of Lave and Wenger’s community (1991).  

Robert’s story about the redundant presses his father procured (see Section 5.2.5.2) is typical 

of many stories the engineers have told me over the years. A significant finding is that stories 

provide strong confirmatory evidence of the importance of language in the engineering 

workplace, including situations involving routine instructions, finance, time and safety (Gal 

& Tout, 2014; T. Maguire & O’Donoghue, 2003; OECD, 2003, 2009a, 2012b; PIAAC expert 

group in problem solving in technology-rich environments, 2009). Communication is also 

important when creating and exchanging ideas during the design process where it is linked 

with creativity and problem solving. Hence, story-telling is established in the literature as an 

important communication and learning tool (see Section 2.5.2). While other studies 

emphasize the learning functions of story-telling and may touch on its teaching functions, as 

opposed to learning (Archer, 2008; Lloyd, 2000; Maslen & Hayes, 2020; Swap et al., 2001), 

this study has explicitly identified story-telling as a significant informal teaching tool (see 

Section 5.2.5). Therefore, the role of stories as a teaching method appears to be a new 

contribution to knowledge as opposed to communication of information or as an aid to social 

interaction in the context of workplace learning.  

The stories and the art of storytelling contain Engeström’s principles of multi-voicedness and 

contradictions, both of which exist at several levels. In Robert’s story (see Section 5.2.5.2), 

governmental economic policies of the day were strongly interventionist and fluctuations in 

import tariff policy created contradictions that fundamentally affected all company financial 

decisions. This raised multiple voices, either agreeing or protesting. Then there was the voice 

of Robert’s father, who experienced the contradiction between a love for machines and trying 

to expand a business with insufficient capital. Another voice belonged to the press owners 

who undoubtedly were torn between the need to recoup at least some of their huge financial 

loss and an emotional desire to keep the presses in economically viable activity. This one 

story encapsulates the qualities of those near the centre of Lave and Wenger’s community of 

practice, where broader societal and political issues interact with and influence engineering 

considerations. Thus, Robert’s story is memorable and instructive because it combines 

financial and engineering perspectives with the human touch of the owners’ generosity in 

exchanging the presses for a bottle of gin and disposing of the remaining scrap steel.    
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Regarding the contribution of this study to new knowledge, this study enriches the extensive 

literature on the roles of communication in workplaces. Moreover, the stories that engineers 

tell have emerged as an important device when constructing new knowledge, and as a 

teaching device to transmit engineering culture to others.  

In summary, apprentices imbibe stories easily. Telling stories is therefore a powerful tool for 

communication and learning. Even their entertainment value contributes to the development 

of social relationships and hence to expansive cycles in engineers’ continuing development, 

both individually and collectively. The findings revealed that the engineers’ tools were both 

physical and intellectual, including communication. The engineering community had various 

rules governing what constituted acceptable practice and innovation. The roles of engineers 

were complex and changing, depending on prior historical experience, so that even some 

beginners were able to contribute from their prior learning. On that account, storytelling is a 

powerful means of constructing knowledge and skills in the community of practice, of 

transmitting its culture to the next generation, and providing a mechanism for expansive 

cycles of learning.  

6.3.6. Section summary 

In conclusion, concerning the third research sub-question on how apprentices and mechanical 

engineering tradespersons develop their mathematics skills, both formal and informal means 

were used in an eclectic manner. This included classroom settings and formal written 

assessments as well as social learning, on-the-job learning employing observation, interaction 

between tutors and apprentices, and especially stories about the folklore of the community. 

Social interaction is thus important both as a means of communication and as a tool for 

learning. An individual’s movement towards the centre of the community is partly dependent 

on how well these social interactions develop mathematics and numeracy skills. However, 

expert engineers are those closest to the centre of the community of practice, and they often 

have superior higher-order thinking skills, such as conceptual understanding and problem 

solving. These are probably developed iteratively over many years as a result of experience 

and exposure, personal reflection, and social interaction. In addition, metacognitive skills are 

also important to learning, because they help in organising thinking, performance and 

teamwork.  

6.4. Chapter summary 

In this section, I summarize the discussion of this study with reference to my research 

questions, and the CHAT and Situated Learning frameworks. I also discuss the 

interconnectedness and integration of mathematics skills in the mechanical engineering 

context. Finally, I indicate ways the study may be applicable to wider contexts beyond the 

mechanical engineering trades.  
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6.4.1. Nature of the mathematics skills 

There were four significant issues in the engineering community regarding mathematics 

knowledge and skills. The first related to fluency with number, accuracy in making mental 

calculations and measurements, and quickly finding rough but useful estimates within the 

rules of the community. The second related to the importance of context, which was 

emphasised by many participants, especially in conjunction with the complex decision-

making to use mathematics, what mathematics should be used, how it should be used and 

how an answer related to the engineering context. Financial and time considerations were 

important in the engineering context and engineers needed to consider if heuristics and 

engineering judgment should prevail over formal mathematical methods. The third 

contradiction concerned the role of higher-order thinking skills, which can be regarded as an 

Engeström intellectual tool. Higher-order skills arose because engineering contexts frequently 

involved problem solving and its interconnected issues of creativity, innovation, and 

extended reasoning. These in turn were linked to the intellectual issues of conceptual 

understanding and procedural knowledge, which were found to be mutually reinforcing. 

Higher-order skills were used frequently by the engineers, especially in fault-finding and 

maintenance situations, but also in other problem-solving scenarios. The fourth issue was the 

school and workplace tension where many of the participants regarded school mathematics as 

abstract and removed from reality. However, this was ameliorated in some cases where 

mature engineers later found real-world contexts for their school mathematics. In this light, 

increases in procedural knowledge could sometimes be promoted by expansive cycles of 

learning in conceptual knowledge.  

Contradictions were frequently found and could be the result of proposed change or 

innovation. These could clash with rules for the use of skills determined by long-term 

community historical tradition of what constituted acceptable practice. The emergence of 

expansive cycles of learning in these situations could create further contradictions, especially 

over new technology where the apprentices frequently had a considerable advantage over old-

timers.  

6.4.2. Applying the skills in context 

Mathematics skills involved in the mechanical engineering trades were regarded as tools in 

Engeström’s activity systems. The way the mathematical tools were conceived and used 

differed from school settings and were governed according to community rules for accepted 

practice. This was in contrast to school mathematics and required a change in apprentice 

thinking to adapt to the requirements of the engineering workplace. Intellectual contradictions 

arose here because solutions have to be constructed and clashed with historical rules set by 

the community as accepted standard practice.  

Problem solving also involved integrating conceptual understanding and creativity with 

physical tools to find successful outcomes. This was often characterised by an intricate 

interplay between the mathematics, heuristics and engineering judgment in situations when 

approximate estimations only were possible or needed. Thus, problem solving, being a tool in 
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its own right, stimulated contradictions regarding the historical practices of engineering 

communities, by challenging its rules and the roles its members played in the outcomes.  

6.4.3. Developing the skills, learning and communication 

This required an adaption of attitude and application for apprentices who were used to school 

contexts, and was consistent in significant aspects with Lave and Wenger’s model of joining 

a community of practice with mentors guiding the apprentices’ development. Some firms 

recognised the importance of this model and had well-developed mentoring systems that 

sought to develop apprentices’ and tradespersons’ whole engineering and mathematics 

perspectives, as well as metacognitive capabilities. In this way, the engineering community 

tacitly recognised that successful application of mathematical skills required a holistic 

approach, that mathematics skills were complex and interrelated, applied in real-life contexts, 

and required personal and social skills. The purpose of mentoring systems was to resolve 

contradictions, whether engineering, mathematical or otherwise, in apprentice development.  

The mechanical engineers learned, used, and developed their mathematical skills by formal 

and informal means, and by employing practicing and social interaction. Communication thus 

emerged as a crucial tool for learning because problem solving requires learning and group 

communication skills. Successful problem solving enhances individual learning and hence 

potentially the development of expansive cycles of learning in mechanical engineering 

communities. Expert engineers are those possessing superior higher-order thinking skills and 

as a result were closest to the centre of the community of practice. Such skills are probably 

the result of many years’ experience, personal reflection and social interaction.  

In conclusion, engineers learned by both formal and informal means. However, formal 

classroom activities such as doing mathematics exercises and written assessments were 

combined with social learning, where there was much interaction between tutors and 

apprentices. Apprentices valued the interaction they had with the old-timers, and the stories 

engineers told about the folklore of their community were especially significant. In this way, 

social interaction emerged as an important means of communication and as a tool for 

learning.  

The mechanical engineering trades are high users of mathematics. This study has shown that 

they also use a very wide range of mathematical skills in conjunction with higher-order 

thinking in social settings. A study of the content, use and learning of mathematics in the 

mechanical engineering trades, therefore, has significant lessons for understanding 

mathematics in other workplace settings. In the next chapter, I draw conclusions about the 

study, including its contributions to new knowledge, its limitations and directions for future 

research.   
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Chapter 7. Conclusions  

Introduction  

The main, overarching research question of my study was to identify the key features of 

mathematical learning that characterise the pathway from beginning apprentice to skilled 

tradesperson and then possibly to expert engineer in the mechanical engineering trades.  

The associated sub-questions were:  

1. What is the nature of the mathematics skills employed in the mechanical engineering 

trades?  

2. How do apprentices and skilled tradespersons in mechanical engineering trades apply 

mathematics skills in their work?  

3. How do apprentices and skilled tradespersons in mechanical engineering trades 

develop the mathematics skills necessary for their work? 

These were discussed in turn using CHAT and SL frameworks and an interpretivist paradigm 

in Chapter 6 (see also Chapter 3).  

In this chapter, I first discuss conclusions regarding the research questions. These include the 

nature of the mathematical and ancillary skills (Section 7.1), applying the skills in mechanical 

engineering contexts (Section 7.2), and how the skills are developed (Section 7.3), including 

the movement of engineers to the centre of their community as they develop communication 

and higher-order thinking skills. Then, I discuss the contribution this study makes to the field 

in terms of new knowledge and insights (Section 7.4). This includes contributions to new 

knowledge specific to the mechanical engineering trades context, numeracy in other 

workplaces and some nuanced contributions to CHAT theory and methodology.  

Next, I discuss the implications of the study for the mechanical engineering trades, the 

continuing development of engineers once their apprenticeships have been completed, the 

teaching of mathematics and adult numeracy, and implications for policy (Section 7.5). 

Following this, I discuss the limitations of the study (Section 7.6), some reflections on the 

study (Section 7.7) and then suggestions for future research (Section 7.8). These include 

further possible research into learning within workplaces, the differences in learning 

mathematics and how it is applied between mechanical engineering specialisations, the 

continuing development of higher-order skills in trades workplaces, and the changes in 

attitude to mathematics during the apprenticeship years. Section 7.9 provides a summary of 

the chapter and concluding remarks for the thesis.  

7.1. Nature of the mathematics skills 

This section summarizes the conclusions regarding the mathematical knowledge and skills 

required in mechanical engineering trades. Regarding mathematical content, the 
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mathematical tools required frequently paralleled the mathematics topics outlined in 

Appendix C Mathematics and physics topics US 21905, such as arithmetic, algebra, 

trigonometry, tables and graphs, and units of measure. However, my research has found that 

the key features of mathematical learning included not only the mathematical content, but 

also various ancillary understandings and skills such as the decision to use mathematics, 

employ heuristic approaches (Gigerenzer & Gaissmaier, 2011), or use engineering judgment 

(Gainsburg, 2007), which could override purely mathematical considerations. What 

distinguishes my study from the above studies is the comprehensive treatment of these 

features in the particular mechanical engineering trades context, as well as their 

interconnections with social aspects of engineering practice and learning.  

The mathematical content and ancillary tools mentioned above can be regarded as tools in an 

Engeström framework. The interaction between the use of the content tools and other 

ancillary skills with physical tools was dependent on various “rules” determined by both the 

local and larger communities. This in turn depended on the skill level of the engineer, what 

physical and other tools were available, and the particular requirements of the current task. 

The rules were also determined by engineering and other considerations, such as contextual 

influences, time and finance.  

There were two significant consequences of these constraints. First, a decision to use 

mathematics, heuristics or engineering judgment was dependent on many considerations, 

which had the potential to cause contradictions long-term and conflicts of interest in daily 

practice. Second, the engineers’ attitudes to mathematics were pragmatic and frequently 

ambivalent, an indication of long-term contradictions within individuals and between 

members of the whole community. This was revealed in their rejection of mathematical 

abstraction in favour of what they considered to be real, and their desire to move their 

knowledge horizontally rather than vertically. Many mechanical engineering tradespersons 

viewed senior secondary school mathematics as useless, although a few found a use for their 

senior secondary school mathematics later in their careers. Consequently, discussions about 

the trades mathematics topics were oriented to practical problems in context, not to 

hypothetical, verticalised abstractions found in Freudenthal’s philosophy of Realistic 

Mathematics Education (see Section 2.4.2) (Treffers, 1993; van den Heuvel-Panhuizen, 2001; 

Zulkardi, 1999).  

The engineers’ pragmatism was also reflected in their multi-voiced debates on mathematics 

topics where a contradiction existed between studying a broad range of mathematics skills 

versus minimal skills required just for the needs of one branch specialisation. It is important 

to understand that these contradictions are genuinely long-term, and even although the 

mathematics requirements for mechanical engineering trades in New Zealand are about to be 

broadened (NZQA, 2019e, 2019f, 2019g), in essence, the tensions between school and 

workplace approaches and broad versus minimal approaches remain unresolved. Moreover, 

in my opinion, the lack of resolution is likely to remain, at least for the foreseeable future.  

Contradictions in the knowledge and skills required were also historical, such as the strong 

intergenerational contradictions between old-timers and younger members of the community 
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of practice, including apprentices, about using modern calculation technology, and the need 

to measure and calculate accurately. Old-timers also felt that young apprentices lacked 

estimation and mental calculation skills, and particularly a feeling for what constituted a 

sensible answer. This may have been due to contemporary apprentices not having hands-on 

experience with tools and machinery from a young age, or equally likely, a lack of emphasis 

on mental calculation skills in schools. Learning a feeling for size and to work within 

tolerances were also important for apprentices, and while most seemed to adapt well to this, it 

would appear that in the perceptions of the participants, a profound understanding of 

fundamental mathematics would help many beginning apprentices. Other research on primary 

school teachers’ understanding of mathematics indicated similar perspectives e.g., (Ma, 2010; 

Roble et al., 2017; Tandog et al., 2019).  

From a mathematical perspective, the focus of this section has rested mainly on the nature of 

basic skills, such as fractional and decimal numbers, Pythagoras and trigonometry, and 

measurement. Problem solving and its associated ancillary skills are higher-order skills. I 

discuss them in the next section in conjunction with the ways that mathematical skills are 

applied in mechanical engineering trades contexts.  

7.2. Applying the mathematics skills in context 

When applying mathematical skills in mechanical engineering trades situations, the role of 

context emerged as a central feature of workplace practice. The centrality of context, in turn, 

carried a second key feature of engineering mathematics practice - the integration and 

interaction of the multiple skills of problem solving and creativity with both procedural 

knowledge and conceptual understanding. This applied to both old-timers and apprentices.  

The role of context is central to all applications of mathematics in the mechanical engineering 

trades workplace. It affects the processes of forward planning and the multiple decisions 

made by engineers throughout their daily work, including the important decisions of whether 

to use mathematics or not, and what a mathematical answer might mean in terms of the 

engineering application being considered. The mathematics required in the workplace is 

always situated in the specific context of the task. Moreover, pragmatic and contextual 

considerations strongly influenced what engineers regarded as useful and the mathematics 

problems they felt were important, as well as problem solving and creativity.  

Concerning procedural knowledge and conceptual understanding, most routine tasks involved 

procedural knowledge, such as straightforward machine maintenance or performing an 

engineering task according to previously accepted community rules. In these situations, 

knowledge and fluency using basic number facts were viewed as important, especially by the 

old-timers. This allowed apprentices to be involved under supervision, making repeated use 

of the same mathematics calculations, such as Pythagoras, until proficiency was attained. 

Routine tasks were usually physically visible and, consequently, viewed as being real. 

However, being routine did not mean that the task was found to be easy, as with converting 

between imperial and metric units, or substitution in formulas (see Section 4.1.3 and Section 

5.2.3). In contrast, non-routine tasks almost always involved problem solving which required 
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conceptual understanding. Sometimes, if the task was not physically visible, then it could be 

regarded as more abstract. Even apparently routine tasks could involve interactions and 

contradictions between the real and the abstract, and the lines between routine and non-

routine, conceptual understanding and procedural knowledge, could become blurred.  

A significant conclusion was that most non-routine tasks involved higher-order skills, which 

called for problem solving, creativity and extended reasoning. They could also involve 

understanding the links between the various necessary routine engineering tasks and their 

mathematical treatment. Thus, non-routine contexts could still be unsophisticated, such as 

calculating the volume of the block, a necessary first step in calculating the mass of the block 

when its density is known. However, volume calculations revealed widespread difficulties in 

dealing with consistency of units, such as converting millimetres to metres. This was 

compounded by conceptual difficulties with volume units, such as cubic metres (m3), cubic 

centimetres (cc or cm3), and litres. In contrast, some engineers were able to combine both 

conceptual understanding and procedural knowledge to perform calculations correctly and to 

identify contexts where such knowledge should be applied.  

While basic mathematical knowledge and skills were important to mechanical engineers, 

much of their work indirectly involved higher-order thinking. The result was that without 

basic mathematics knowledge and skills, and higher-order thinking, individuals and the wider 

engineering community were limited in their ability to produce effective results, from both 

engineering and cost-effectiveness perspectives. In the next section, I draw conclusions 

regarding the way the mathematics and ancillary skills are learned, and the role played by 

communication.   

7.3. Developing the mathematics skills, learning and communication 

I focus the discussion in this section on drawing conclusions about how the engineers learn 

the mathematical skills that they apply in context. Central to learning were the participants’ 

developmental experiences, which reflected the progress from tensions and contradictions to 

expansive learning cycles in both individual and community effectiveness. In this study, 

participants found various tools to achieve these developments more effectively; formal and 

informal learning, communication, and especially the stories that engineers tell. Finally, I 

draw conclusions about the paradox of the school and workplace mathematics tension.  

Successful solutions to engineering problems had important social aspects, not only through 

communication and interaction to deal with the immediate issue at hand, but also in the long-

term development of problem-solving skills at both individual and community of practice 

activity system levels. Moreover, the inability to solve problems created contradictions, often 

long-term. Behind the search for expansive cycles of learning, many voices may have 

contributed ideas that had varying degrees of success or failure. Thus, unresolved problems 

had strong elements of historicity, and the eventual individual and group expansive cycles of 

learning may have come from social interaction, new technology or heightened levels of 

extended reasoning or conceptual understanding. Being able to integrate these various factors 

and make connections between them was a sign of resolving tensions and contradictions 
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which indicated expansive cycles of learning taking place in both individuals and 

communities.  

7.3.1. From periphery to centre 

Apprentices needed to make various adaptions and step-ups from school mathematics to meet 

the increased mathematical demands of the workplace. Especially significant was developing 

fluency with using number in an engineering context. Fluency with number was closely 

integrated with specific skills such as higher standards of accuracy in measurement and 

calculation, especially placing the decimal point correctly, working within tolerances, 

estimating, and having a feel for what represented an acceptable answer in an engineering 

context (see Section 6.1).  

Another development in apprentices’ earlier performance levels involved strengthening 

higher-order skills like critical thinking, learning to learn, planning and problem solving, and 

extended reasoning (FitzSimons et al., 2005). These were done in practical contexts which 

became a major motivation for the engineers to use mathematics and took many years to 

develop. This research study has found another important feature of mathematics learning - 

that while mechanical engineering mathematics employed mainly mathematics skills (see 

Appendix C), these skills needed to be understood and used fluently in sophisticated 

workplace settings. This resonates well with the need for basic skills in the literature (Roble 

et al., 2017), and the sophisticated nature of their use (Steen, 1990, 2001). There was 

consequently a contradiction with school mathematics that frequently uses sophisticated 

mathematics in simple settings.   

A third development involved cultural, social, emotional and personal maturational aspects of 

individual engineers as was seen in the influences of mentors and mature engineers on each 

other and on the apprentices, which was consistent with T. Maguire and O’Donoghue (2003). 

Similarly, this study also identified metacognitive maturity such as learning to learn, critical 

thinking, planning, problem solving and integrating understandings as indications of 

increasing maturity (FitzSimons et al., 2005). These skills are not mathematical as such but 

were emphasized repeatedly by the participants as crucial elements of effective mathematics 

application to engineering practice. They present an opportunity for future research.  

In this way, the passage from periphery to centre is overlaid with mathematical as well as 

ancillary considerations, which also have strong social components. In the next section, I 

consider an aspect with social components, the influence of formal and informal learning on 

this passage.  

7.3.2. Formal and informal learning 

This study revealed that learning for apprentices and skilled tradespersons was achieved 

eclectically through both formal and informal means. Methods of learning included both of 

Sfard’s (1998, 2009) acquisitionist and participationist metaphors (see Sections 6.3.3 and 

6.3.4). Moreover, the study revealed learning was regarded as a lifelong process by old-
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timers who had significant influence on apprentices’ development, thinking and 

understanding. There was an important contradiction here because even although newly-

qualified tradespersons had completed the formal learning requirements of US 21905, they 

were regarded by experienced mechanical engineers as still having many connections to 

make between conceptual understanding and practical expertise before potentially reaching 

expert status. This may explain some of the concerns within the mechanical engineering 

community about lack of mathematical skills in experienced skilled tradespersons. This 

research showed that informal on-the-job experience does not automatically remedy certain 

gaps in mathematical understanding. It is possible that this situation is partly attributable to 

US 21905 assessments having no connection with using physical tools in real-life situations. 

Research into other trades and professions indicated a similar issue (Gulikers, Kester, et al., 

2008; Hutton et al., 2010; Weeks, Clochesy, et al., 2013). Pertinent examples were both 

Robert (engineer) and Paul (training officer) who regarded ongoing informal professional 

development as being helpful. Thus, it is likely that developing opportunities in both school 

and workplace settings for dialogue that is contextually related to engineering, including 

higher-order skills, would be beneficial. This contains implications for how numeracy is 

taught formally and informally as part of workplace practice (see Section 7.5).  

7.3.3. Communication, higher-order thinking 

Apart from practical situations where conveying technical information and safety warnings 

were essential, informal communication also featured strongly as an essential tool for 

teaching and learning. Hence, storytelling, or the “yarns” engineers informally exchanged, 

complete with diagrams drawn on the back of tobacco packets, emerged as powerful means 

of communicating ideas and creating informal learning opportunities. In this way, the stories 

engineers tell provided an environment where the completion of expansive cycles of learning 

in individuals and their small activity systems in a specific workplace could lead to expansive 

cycles of learning in wider mechanical engineering activity systems. Relating the entertaining 

and humorous nature of this style of communication to context probably had the strength of 

fixing the important engineering aspects in the listeners’ minds, and perhaps contributed to a 

new level of expansive learning. Such communication was also indicated in Lautenbach’s 

(2011) study of university lecturers adopting new technology (see Section 3.3.2), where both 

individuals and the community were caught up in mutual expansive cycles of learning. 

Individual lecturers were able to provide new insights to others in their larger activity systems 

which had been derived from the emerging expansive cycles within their individual activity 

systems. The crucial aspect of this informal but effective communication was the relational 

aspect of social interaction within a strong and extended community (Lautenbach, 2011).  

This research suggested a similar phenomenon operates in some mechanical engineering 

communities too. In this case, communication acts as a tool not just to solve particular 

problems, but also to stimulate the development of higher-order skills such as problem 

solving, conceptual understanding, procedural knowledge, creativity and extended reasoning. 

The findings demonstrated that learning is not a linear process; a culture of social interaction 

was needed to promote step-ups in higher-order thinking, as with Freudenthal’s (1973) 
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verticalisation process. The findings were relatively cohesive in that innovation and creativity 

involved individuals and communities being willing to confront the contradiction of stepping 

outside their comfort zones. In such situations, communication became an essential tool to 

encourage thinking to accidentally “drift laterally across channels” (Horowitz, 1999, p. 15) 

and allow surprising ideas to emerge (see Section 2.3.2). In this manner, there may be an 

increase in conceptual understanding, a deepened appreciation of previously acquired 

procedural knowledge, and an increase in the fields where knowledge can be applied. If this 

occurs then an expansive cycle of learning will have taken place, whether in individuals or 

the wider community. However, drifting across channels, even if producing viable solutions, 

also carries the possibility of greater verticalisation and therefore mathematical abstractness, 

a source of contradiction for many people. If there is no corresponding increase in conceptual 

understanding of the mathematics, then the mathematics may still be regarded as abstract and 

useless. On the other hand, if conceptual understanding does increase, then the new 

verticalised understanding will now be regarded as real and useful, and hence less abstract. 

Thus, confronting contradictions is at the heart of producing adventurous, innovative and 

creative thinking which, in turn, completes new expansive cycles of learning. Communication 

is a vital ingredient in this process because successful problem solving frequently depends on 

group interaction. The co-construction of solutions was identified as a feature of learning 

mathematics in the mechanical engineering trades in this study.  

7.3.4. The school and workplace mathematics tension 

The study demonstrated an important tension and contradiction between school and 

workplace mathematics that had long historical roots. On the one hand, mathematics was 

regarded by all the participants as an essential tool in the mechanical engineering trades. On 

the other hand, there was a perception held by many of the participants that senior secondary 

school mathematics was abstract because the connections between the mathematics and its 

potential contextual applications were not explained. Some participants went as far as saying 

that school mathematics was useless. They used the words “abstract” and “useless” to 

contrast what they regarded as real and therefore useful. This contradiction therefore lay at 

the heart of the school and workplace mathematics tension.  

Mechanical engineers were sometimes forced to construct their own mathematical solutions 

to problems, and indeed, much mathematics has traditionally owed its origins to problems in 

engineering and physics. Nevertheless, while professional engineers have more highly 

developed mathematics skills than tradespersons, even they acknowledge that mathematical 

solutions may sometimes be difficult to find, or not be constructible by known methods. 

Engineers are forced to rely on engineering judgment and heuristics, but like procedural 

knowledge, these too have their limitations. Consequently, it is unavoidable that successful 

problem solving in engineering requires a basis of conceptual understanding, and this, in turn, 

involves a certain measure of verticalisation, and hence greater abstraction. Paradoxically, the 

pragmatic approach many engineers crave will always be dependent on concepts, and 

therefore on a certain level of abstractness. This is true no matter how well or how poorly the 

concepts approximate reality. In this light, non-routine problems create contradictions that 
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challenge current conceptual understanding, call for problem solving, and may perhaps be 

solved by verticalised thinking, research and communication.  

In conclusion, although the literature frequently records sceptical views on the usefulness of 

mathematics (Lave & Wenger, 1991; Marr & Hagston, 2007; Ridgway, 2002), in this study 

the findings revealed that even seemingly unvalued mathematics topics could eventually 

enhance mathematical thinking (see Section 2.1 and Section 6.1). In the next section, I review 

the contribution the study makes to the field and new knowledge.  

7.4. Contributions to new knowledge 

In this section, I discuss three areas where this study contributes to the field by generating 

new knowledge: the mechanical engineering workplace context, numeracy in other 

workplaces, and a contribution to methodology.  

7.4.1. Contribution to the mechanical engineering trades workplace context 

This thesis is almost certainly the first in New Zealand, and possibly also internationally, to 

investigate the application of mathematics and numeracy in mechanical engineering trades 

workplaces. While there is a range of literature on specific issues related to mathematics and 

professional engineering, the literature on mathematics and the engineering trades area is 

sparse and confined mainly to relatively short studies (Alpers et al., 2015; Kent & Noss, 

2002). Significant examples of the very few mathematics studies related to non-professional 

vocations are doctoral theses by LaCroix (2010) and Sundtjønn (2021). On the other hand, 

there is a wide literature related to some aspects of professional engineering, for example, 

problem solving and higher-order thinking skills (Adams et al., 2008; Fan & Yu, 2017; 

Horowitz, 1999; Jonassen et al., 2013; J. Mills & Treagust, 2003).  

This study appears to be unique in that it focuses not only on the technical aspects of 

mechanical engineering trades mathematics required in the workplace, but also on their 

application in context, the ancillary skills, such as problem solving, needed for those 

applications, the social and communication aspects involved in how mathematics is applied 

and developed, and how those multifarious aspects interact. This study includes contributions 

to interpreting and understanding learning in the mechanical engineering trades field and 

other workplaces; new knowledge specific to the mechanical engineering context, which also 

enhances the broader field of learning in trades and professions through contributing insights 

from the particular context that was examined; and some nuanced contributions to CHAT 

theory and methodology.  

While the scope and the nature of this study constrains the ability to generalise the findings to 

international contexts, this research gives insights and understanding of the particular New 

Zealand context that have not been researched before. It therefore enhances overall 

understanding of mathematics in mechanical engineering trades by enriching our 

understanding within the New Zealand context as well as the overall international context.  
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7.4.1.1. Knowledge and skills in the mechanical engineering trades 

This study contributes to the literature in the areas of the knowledge and application of 

mathematics skills in New Zealand mechanical engineering trades workplaces. First, the 

study revealed that mechanical engineers used mathematics and numeracy skills frequently in 

their work. Many of those mathematical skills were similar in content and level of 

understanding to those in the New Zealand Curriculum (NZC) for Level 1 NCEA. In 

addition, strong numeracy skills and calculation accuracy were required and a feeling for 

number size was also revealed as being significant. These skills are also part of the NZC. 

Second, the study revealed that the ways engineers used mathematics and numeracy 

depended strongly on engineering contextual considerations. Hence, engineering decisions 

were often made using mathematics in conjunction with engineering judgment. In addition, 

while some engineering mathematical applications involved making routine calculations, 

other applications required applying mathematics in genuine problem-solving situations that 

involved higher-order thinking and creativity. Third, the study revealed that problem solving 

in the mechanical engineering trades, whether using mathematics or not, often involved 

communication and cooperative learning in small groups of engineers working on projects 

together. Fourth, this study contributes to knowledge of how basic skills are used in the 

workplace. The literature acknowledges using problem-solving skills in conjunction with 

ingenuity, extended reasoning and creativity, and hence the need for higher-order thinking 

skills (FitzSimons et al., 2005). However, this study on mechanical engineering trades adds to 

the literature on workplace mathematics by giving rich insights into the ways engineers 

employ mathematics both in standard and creative ways. Hence, a major contribution of this 

study to the literature is not only the focus on particular mathematical skills, but also on the 

sophisticated ways they are used in conjunction with higher-order and metacognitive skills, 

and social interaction.  

7.4.1.2. Mathematics learning in the mechanical engineering trades 

This study contributes two major features of knowledge about how learning and developing 

mathematics skills takes place in New Zealand mechanical engineering trades workplaces.  

First, the study found that engineers learned and created knowledge eclectically using both 

formal and informal learning models, such as individual reflection, social interaction and 

communication. Innovative and creative engineers (see Section 6.2 and Section 6.3) used 

unsophisticated mathematics in sophisticated settings (Steen, 2001). Hence, this study 

contributes to the literature on workplace learning by adding detail to the mechanical 

engineering context of social interaction and individual reflection. It also confirms the 

continuing cycles of learning as described by Sfard’s acquisitional and participational 

metaphors.  

This study also contributes to the literature on storytelling in mechanical engineering trades 

contexts. The vocational literature on storytelling records pragmatic contexts such as 

communicating information (Lloyd, 2000; Swap et al., 2001), or is dominated by professional 

engineering examples (Moffitt & Bligh, 2021; Nerona, 2019) where the mathematical topics 
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and perspectives are often quite different from the trades. In my thesis, storytelling has 

emerged distinctively as playing a significant role in promoting learning (see Section 5.2.5.2 

and Section 6.3.5.2). Learning takes place when the listener becomes attentive to the 

entertainment value of the story, and is therefore open to absorbing the technical explanations 

given by the storyteller. The listener also begins to establish links between the various ideas 

expressed and becomes closer to the other members of the community of practice. The 

mechanical engineering tradespersons in my study therefore used stories as a device to teach 

others the technical and cultural aspects of mechanical engineering.  

Second, this study contributes to our knowledge of the interrelation between physical and 

intellectual tools. This is acknowledged in nursing mathematics where steps have been taken 

to integrate conceptual, calculational, and technical measurement skills to achieve total 

medicinal competence. This study adds to the literature and theorising (for example, Coben & 

Weeks, 2016) about the need to integrate multiple mathematical tools with their appropriate 

ancillary processes in the mechanical engineering trades workplace to achieve satisfactory 

outcomes (see Figure 14). 

 

Figure 14 Mechanical engineering trades calculation competencies  

(Adapted from Coben et al., 2010)  
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Ancillary 
Processes

Demonstration of 
social interaction 
awareness and the 

relevant ancillary and 
metacognitive 

processes in workplace 
contexts, e.g., problem 

solving 
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Figure 14 shows a new contribution to the literature where calculation competency 

components in the mechanical engineering trades could be integrated in conjunction with 

their practical application using physical tools and ancillary processes (see Section 2.2.3). In 

this way, the study carries a significant contribution to knowledge that achieving workplace 

numeracy and mathematical competency requires more than attention to just one factor – the 

integration of conceptual, calculational, technical and social interaction factors are all 

required.  

Finally, this study is able to confirm the importance and mutually iterative nature of both 

conceptual understanding and procedural knowledge reported elsewhere in the literature 

(Engelbrecht et al., 2017; Rittle-Johnson & Schneider, 2014; Rittle-Johnson et al., 2001). The 

study increases our knowledge by providing several rich practical examples from the 

mechanical engineering trades contexts, such as fault-finding and calculating volumes.  

7.4.2. Numeracy in other workplaces 

This study also enhances our understanding of numeracy in other vocational areas. Since 

mechanical engineers are high users of mathematics, this study adds to the body of research 

on levels of numeracy among adults in New Zealand and other countries about effective 

performance in the workplace. Other studies have been undertaken on adult numeracy, such 

as the ALL and PIAAC studies (Jones & Satherley, 2017, 2018), but this study is different as 

it focuses on workplace scenarios involving integrated use of physical and intellectual tools. 

Moreover, the use of physical and intellectual tools in this study is being directly and 

continually influenced by social interaction and complex extraneous factors. Since it is 

known that difficulties with numeracy are widespread in the workplace, then lessons learned 

here may have application to understanding numeracy issues in a wide range of different 

vocations and workplaces.  

This study also contributes to the role of informal communication in using and learning 

numeracy. The research identified that this is significant both for the immediate concerns of 

the day as well as a long-term consideration as a learning device. Workplaces where little 

social interaction takes place consequently suffer inefficiencies in day-to-day operation, as 

well as having difficulties creating and adapting to new ideas, both mathematical and more 

generally. Deficiencies in social interaction prolong the lifespan of contradictions because the 

total potential creative power of the community is lessened. Hence, contradictions become 

more difficult to resolve, and successful expansive cycles of learning in individuals and the 

community are inhibited. Newcomers to the community of practice might therefore remain 

below their natural potential to contribute to the workplace, negatively impacting the 

development of both themselves as individuals, as well as the company and workplace 

community.  

7.4.3. Contribution to methodology 

From a theoretical perspective, the CHAT framework with Engeström’s five principles has 

been employed by some scholars to take into consideration activity systems where individual 
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participant subjects mature over time as part of their own personal expansive learning cycles, 

such as the single case study involving Mara’s learning (FitzSimons, 2003). This study has 

demonstrated a similar conclusion because some tradespersons may require many years of 

exposure to all the pieces of the jigsaw puzzle, but without forming the “full picture” (see 

Section 5.2.2.2). Such individual cases do not necessarily appear to specifically indicate long-

term processes where changes may steadily manifest themselves as they occur, as in some 

learning situations, but rather, the relatively short-term culmination and drawing together of 

many experiences, lessons and understandings emerging from multiple learning opportunities 

in a long-term process.  

While the long-term process is an example of Engeström’s historicity principle, this does not 

apply to the sudden maturation of individuals for three reasons. First, historicity refers 

specifically here to individual development rather than a change in any of a subject’s larger 

activity systems. Second, historicity refers to activity systems taking shape and being 

transformed by contradictions over long periods. However, in this case, an individual’s 

bringing together of the “full picture” is a relatively rapid process at the end of a much longer 

period of little apparent development. Moreover, the changes in both understanding and 

personal responsibility appear to take place without formal intervention. This is in contrast to 

CHAT historicity, where learning occurs through dynamic and continuous interactions 

among individual, societal, and cultural mediations with sociocultural contexts (Engeström, 

1987, 2001; Leont'ev, 1978; Vygotsky, 1978). Third, the relatively rapid change may be due 

to factors independent of the workplace activity system, such as personal circumstances, 

variability in the maturation process, cultural and ethnic factors, and personal decisions 

(Amundsen, 2019). Hence, the sudden change may be independent of the CHAT historicity 

factors. This gives rise to a possible fifth question that could be added to Engeström’s 

learning model - When does learning take place?   

In summary, the findings of my study contribute to new knowledge because they provide 

further unique evidence to similar findings in other existing studies and because they relate to 

the unique mechanical engineering trades contexts.  

7.5. Implications and recommendations 

This section discusses four implications drawn from the study concerning mathematics and 

numeracy in New Zealand and for mechanical engineering trades workplaces: social 

interaction in mechanical engineering workplaces, continuing development of numeracy 

skills, the teaching of mathematics and adult numeracy, and implications for policy.   

7.5.1. Social interaction and the mechanical engineering trades 

This study has identified the significant role of social interaction in mechanical engineering 

trades workplaces. This applied to both mathematical and non-mathematical aspects of 

workplace culture. However, such interaction is not universal. Workplaces should therefore 

develop and extend workplace cultures where problems can be openly discussed, the 

corporate knowledge of the community shared, and creativity and resourcefulness 
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encouraged and facilitated to benefit both individuals and the community. Some firms 

already organise formal professional development for their tradespersons, especially when 

new technology arrives, such as the company where Paul was a training officer (see Section 

6.3.5). However, other companies need to extend their vision of mentoring so that discussions 

on mathematics and problem solving become a natural part of daily dialogue rather than an 

adjunct, or simply avoided. It is also possible that informal online digital social networks 

might provide a forum to share mathematical problems in engineering contexts.  

7.5.2. Continuing development of numeracy skills 

There is a need to institute professional development programmes to develop numeracy 

among qualified mechanical engineering tradespersons whom the participants reported as 

having challenges with mathematics (see Section 4.1.3 and Section 5.2). While the learning 

processes for tradespersons are usually informal, instilling confidence may have ramifications 

for leadership development within the workplace, and allow workers to contribute to the 

economic efficiency of the business (see Section 2.1). Such programmes need to focus on 

correcting gaps in conceptual understanding of number, and the integration of technical 

numeracy skills and communication within the engineering context. Thus, it is likely that 

developing opportunities in both school and workplace settings for dialogue about 

mathematics that is contextually-related to engineering, including higher-order skills, would 

be beneficial in mathematical and other aspects of workplace effectiveness.   

7.5.3. Teaching of mathematics and adult numeracy 

The study revealed the overall consistency between the contextual nature of workplace 

numeracy and the New Zealand Curriculum aim that mathematics should have practical 

applications in everyday life. Therefore, one important implication for practitioners in 

schools, workplaces and polytechnics is to teach understanding of mathematics concepts 

within authentic real-life contexts. This should be combined with an appreciation of the 

relevance and power of mathematics, and together with the limitations of mathematical 

models.  

The development of new technology is tending to make certain mathematical skills 

redundant. For example, drawing graphs and solving equations can now be done online very 

easily, even for equations with multiple roots. Therefore, creating a mathematical model or 

set of equations of the context is a very important skill, not only in mechanical engineering 

workplaces, but also many places elsewhere. In this regard the current emphasis placed in the 

New Zealand mathematics curriculum on creating mathematical models will serve workplace 

realities well (see Section 2.4.2). More time should therefore be spent in the classroom 

learning to create mathematical models and equations than actually learning to apply the 

lengthy traditional methods for solving them (Schukajlow et al., 2018).  

Another implication is the need to accentuate mathematics elements in student-centred 

inquiries and projects to develop individual thinking skills and the ability to communicate 

results in written form. Student-centred projects could also enhance verbal communication 



Chapter 7 - Conclusions 

211 

 

skills, promote social interaction and teamwork skills, and especially develop a culture of 

discussing mathematics as part of everyday conversation.  

Yet another significant implication is the need for skills of mental calculation, estimation and 

feeling for number size. Courses need to be created, or parts of each lesson set aside, that 

feature mental calculation skills without the use of calculators. These courses should require 

students to relate their numerical answers to the context of the problem. Such a change would 

reverse the order of traditional mathematics teaching, with abstract and verticalised 

mathematics given first, and horizontalized examples given later. Instead, abstract and 

verticalised thinking should emerge naturally from concrete real-life scenarios, as in Realistic 

Mathematics Education (Treffers, 1993) (see Section 2.4.3).  

The result would be that mathematical aspects would not be diminished, but would increase 

students’ appreciation of how mathematics applies to life. Hence, charges that mathematics is 

useless might diminish, the development of a critical attitude to the limits of mathematical 

models would be fostered, and the social and intellectual aspects of mathematics and 

numeracy mutually reinforced. These would all be beneficial to engineering and other 

vocations, as well as to everyday life.  

7.5.4. Implications for policy  

Given that numeracy skills do not necessarily increase as a result of exposure to more senior 

secondary school mathematics programmes, there is a need for mathematics courses focusing 

on applying quantitative skills in subtle and sophisticated ways. This requires a recognition 

among teachers and curriculum designers that more mathematics does not necessarily lead to 

increased numeracy, that students need to gain parallel experience in applying quantitative 

skills in subtle and sophisticated ways, and that mathematics and numeracy should be 

complementary aspects of the school curriculum. Therefore, these courses should link 

numeracy directly with a broad range of contexts in secondary school and tertiary curricula, 

such as science, wood technology, food technology, and finance (Lovric, 2017; Steen, 2001). 

Some assessments could involve mental calculation without electronic aids. Other 

assessments should have greater emphasis placed on student-centred integrated learning.  

As a result, the importance of numeracy in the workplace would be given more widespread 

recognition and extended into senior secondary school programmes along with features of 

Realistic Mathematics Education. Together with part-time jobs, doing the shopping, working 

on projects at home, this would help bridge the gap between the world of the classroom and 

the real world the students are likely to meet once they leave school. Incorporating social 

interaction and diverse mathematical skills in problem-solving contexts together with a 

system of authentic assessment may also assist in helping apprentices to see the relevance of 

mathematics to their lives and equip them to more adequately cope with the numeracy 

demands of daily life.  
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7.6. Limitations 

This section discusses some limitations of the study: related to the changing New Zealand 

bicultural context, the interpretivist paradigm, the sampling method, member checking, 

ethics, interviewing, and researcher positioning.  

7.6.1. The changing New Zealand bicultural context 

Since this doctoral thesis began, there have been substantial developments in biculturalism 

and partnership in Aotearoa New Zealand. In particular, te Tiriti o Waitangi and the use of te 

reo have become progressively more integrated and prominent in our political, social, and 

everyday lives. Several participants in the interviews identified with both Māori and Pākehā 

cultures and while there is no emphasis on a Māori perspective in this thesis on mathematics 

in mechanical engineering trades, it is possible and desirable that Māori perspectives on 

workplace mathematics should emerge in the future.  

7.6.2. The interpretivist paradigm and generalisations 

The interpretivist paradigm employed in this study provides several limitations. 

Interpretivism’s social-constructivist ontology and epistemology mean that its insights are 

contextually situated, relativistic, local, social, and experimental. This means that reality 

differs from person to person in a subjective way. The insights are therefore also subjective, 

personal, based on previously constructed knowledge, and influenced to some extent by my 

own perspectives and values. Subjectivity pervades all aspects of the study including the 

choice and formation of questions, how the responses are interpreted and chosen for focus, 

and then discussed as findings.  

Since the interpretivist paradigm produces results that are “local” then the question arises to 

what extent the results and conclusions can be generalised. This study collected and analysed 

data from a range of educational institutions and firms throughout New Zealand. Its results 

are likely to be generalizable to the New Zealand context as a whole. Moreover, this study’s 

results concerning the mathematics used in engineering, metacognitive and higher-order 

thinking are also likely to resonate well with other countries with education systems and 

engineering trades’ contexts similar to New Zealand. However, differences in workplace 

culture are likely to vary widely and interpreting the conclusions of this study beyond the 

current field should be done with caution.  

7.6.3. Sampling method 

Purposive samples for both questionnaires and interviews were selected first, and then 

supplemented using the snowball principle. Also, a larger number of the small minority group 

of mature educators were sought because of their more community-wide perspective and in-

depth technical knowledge of their specialist engineering branch. Moreover, while the sample 

of participants included some representatives of important subgroups, for example, 

engineering specialisation subgroups, the overall sample size of 199 questionnaire 
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respondents and 17 interviewees meant that the numbers of participants in these subgroups 

quickly became small. Among these subgroups were sizeable minorities of recent arrivals 

from non-English speaking backgrounds, and atypical cases, such as those who experienced 

difficulties learning mathematics, or outliers who had developed higher-order skills such as 

problem solving. Hence, the sample was not representative of the New Zealand context. 

7.6.4. Member checking 

The questionnaire data were carefully entered into Excel. The transcripts were not returned to 

the participants for checking as mentioned in Appendix D. Explanations were therefore 

dependent on the author’s interpretations of the interview comments. The interview data were 

carefully checked for transcription accuracy. They were also checked for internal consistency 

of the themes for each participant, and externally for consistency between participants. 

Unclear verbal comments on the recorded conversations were either not accepted as data for 

the study, or enclosed in brackets [ ] if words were missing. Some reasons for not returning 

transcripts for member-checking were: (1) nobody contacted the researcher before 1 June, 

2017 to withdraw their data from the study, (2) the length of time between the interviews and 

the completion of the transcribing, and (3) the difficulties contacting some members who had 

changed jobs or completed apprenticeships and moved on.  

Problems recorded in the literature regarding the efficacy of member-checking of transcripts 

as a means of ensuring trustworthiness are: (1) a long time delay between the interview 

means some participants may have changed their stance in the meantime and want to alter the 

data, (2) some participants may want to change their data because they are ashamed of their 

ignorance of the subject or their lack of polished language, and (3) the way the researcher has 

expressed their interpretations may seem to carry a different meaning than in the participant’s 

original everyday language (Birt, Scott, Cavers, Campbell, & Walter, 2016; Carlson, 2010; 

Harvey, 2015).  

7.6.5. Ethics 

Regarding ethics, an important consideration was to avoid creating conflicts within 

workplaces I visited, and asking questions that may have led to the disclosure of confidential 

company secrets. Similarly, ethical considerations prevented me from gathering data from 

observations. Interrupting engineers while they are working can be a major safety issue, and 

lead to very costly mistakes involving tens of thousands of dollars. Hence, I used interviews 

that took place while the engineers were not working.  

7.6.6. Interviewing participants 

The interviews also had limitations. The reticence of apprentices and the limited amount of 

time available prevented establishing a rapport that could have led to greater expansiveness in 

their replies. Also, the apprentices were assigned relatively low-level mathematical tasks by 

their employers that inhibited gaining information on how they were progressing with the 

more challenging aspects of mathematics application, including extended reasoning.  
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With experienced engineers, there was a limitation in knowing when to interrupt with 

supplementary questions or let the participant continue speaking. Not interrupting could 

easily lead to a lack of clarification, while interrupting too early could end the line of 

investigation with consequent loss of many fruitful ideas, richness and variety of mechanical 

engineering practice previously unknown to me.   

7.6.7. Researcher positioning 

Every researcher has some sort of positioning. In my case, those cultural values have been 

shaped by my life experiences, especially my time as a secondary school teacher of 

mathematics and physics, but also through my personal experiences and relationship with my 

father who was a mechanical engineer. The role and importance of conceptual understanding 

was one area that has influenced my thinking for many years. Another area was mental 

calculations, rough estimations, and relating answers to context, especially in physics where 

physical contexts were of immediate importance. These experiences and the values behind 

them are reflected both consciously and unconsciously in the choice and the design of the 

research questions, the methodology, and the interpretation of results. Another researcher, 

perhaps from another culture, could make different value judgments on what should be 

studied, how the study should be designed and carried out, and how the participants’ 

responses should be interpreted.  

Mitigating inappropriate influences of my teaching background on the study necessitated 

consulting with engineers and adopting a reflexive attitude to my interpretations and 

understandings. I discuss these issues in the next section.  

7.7. Reflexivity 

Through examining the data, and especially in the conversations with the engineers, I was 

continually challenged about my understanding of how mathematics related to the 

engineering context and about new applications I had not previously considered. Therefore, I 

regularly took a reflexive approach and checked and then often modified my own 

understandings and interpretations of the participants’ responses within the engineering 

context. I now comment on three specific issues regarding reflexivity.  

First, reflexivity meant examining the knowledge I was gaining about the engineering context 

and testing it against modern developments in mechanical engineering practice and 

knowledge. I did this through lengthy discussions with engineers. I also submitted the 

questionnaire items and interview questions to engineers for their comments about relevance, 

comprehensiveness of coverage, and topics that might be missing. In other words, I adopted 

the position of a learner refining his knowledge. Moreover, the fact that certain questions 

were included, or excluded, from the research design, as well as their wording, were also 

indications of subjective judgments being made on their relevance to the mechanical 

engineering trades context.  
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Second, I needed to make changes in my own perspective of workplace mathematics as a 

result of my involvement in secondary school teaching. This included the ways mathematics 

topics were learned and especially how they were applied in real contexts. This was in 

contrast to the frequently artificial contexts of the classroom. The artificiality also applied to 

school assessments being oriented towards general mathematics rather than numeracy skills 

applicable to workplace environments. While my mathematics and physics teaching 

experience allowed me to appreciate the importance of skills such as mental calculation and a 

feeling for number size, I was not experienced in how these worked out in workplace 

practice.  

Third, reflexivity implied identifying and then questioning the unconscious assumptions 

made from my experiences as a mathematics teacher about how learning took place. In 

particular, the workplace process of embedding knowledge in ongoing practices and repeated, 

if necessary, until the particular competence was fully acquired implied a synergy between 

theory and practical application in real contexts. This was often a long process that was quite 

different from my own experiences (FitzSimons et al., 2005).  

In summary, I learned that the full process of apprentices adapting mathematics and other 

skills to the workplace environment could not be rushed and that research was still needed on 

how engineers developed the intellectual components of their skills.  

7.8. Future research 

As indicated in the literature review, there appear to be relatively few international studies on 

mathematics and numeracy in mechanical engineering trades, and none in the New Zealand 

context. Consequently, the field for future research is very wide. Consequently, I shall 

confine my remarks here to future research in five areas that have emerged from the current 

study: (1) the means of learning within workplaces, (2) the differences in mathematics 

approach and application between mechanical engineering trades specialisations, (3) the 

development of higher-order thinking skills, which could be related specifically to 

engineering contexts and generically to the wider workplace contexts, (4) the continuing 

development of numeracy skills once formal qualifications and training have been completed, 

and (5) changes in attitudes to mathematics during the apprenticeship years.  

7.8.1. Learning within workplaces 

This study has shown the importance of communication in learning. Employers and others, 

therefore, need to recognise that dialogue in the workplace can be a significant tool in 

fostering learning, both in apprentices and experienced tradespersons. It is possible that the 

solutions to many problem-solving situations may already be hidden in the workplace, and 

that encouragement of dialogue would bring out that knowledge and expertise to foster 

expansive learning cycles in both individuals and the community as a whole.  

Similarly, those workplaces that already operate professional development programmes 

should recognise the importance of encouraging all members of the community to participate 
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in the discourse, both for their own benefit and the benefit of others. An ethnographic study 

could be set up to examine informal communication in specific workshops and how it 

influences on-the-job learning.   

7.8.2. Differences between engineering specialisations regarding mathematics 

There is a need to perform larger-scale studies of the branch specialisations. Future 

researchers could focus on the very “different skills and abilities” between branch 

specialisations (see Section 4.1 and Section 4.2). This would apply in particular to the 

aviation area, in maintenance engineering, and in engineering design, where educators 

strongly supported problem solving and thinking beyond the square. While the low tolerance 

demands in sheet metal engineering and high tolerances required in machining and avionics 

may partly explain differences in skill and ability, there must also be differences in approach 

to mathematics and its application. This in turn may help explain the broad versus minimalist 

debate on mathematics topics, with branches requiring higher precision supporting greater 

formal mathematics training (see Section 4.2 and Section 6.1). The result is that while 

problem solving is important to all branches, research needs to be done to ascertain how it 

differs between branches.  

7.8.3. Development of higher-order thinking skills 

There is a need to investigate the attributes of experts to ascertain how higher-order thinking 

develops in mechanical engineering tradespersons. In particular, there is a need to understand 

how trades engineers develop and apply problem solving. While the considerable literature 

for professional engineering suggests that this is a complex and poorly understood process 

with only limited success in being developed by formal means (Horowitz, 1999; Jonassen et 

al., 2013; Sharp, 1991), the literature for tradespersons is probably non-existent.  

Nevertheless, this study has provided many examples of stages of developing problem-

solving sophistication, beginning with childhood experiences before graduating to formal 

engineering practice (see Section 5.1). Since mathematics and numeracy are important in this 

process, future research could investigate how understanding deepens when the mathematics 

and problem-solving skills are used and developed in situ.  

7.8.4. Continuing development of numeracy skills during adulthood 

More research is required on the numeracy needs of both apprentices and skilled 

tradespersons whom the participants reported as having challenges with mathematics. It is not 

known to what extent these concerns are correlated with negative experiences with school 

mathematics or learning difficulties that may have manifested themselves early in primary 

schooling. Such research may have ramifications for developing numeracy skills (see Section 

4.1, Section 4.2 and Section 5.2).  
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7.8.5. Changes in attitudes to mathematics during the apprenticeship years 

There is a need to investigate the changes in attitude to mathematics that take place during the 

apprenticeship years. This is associated with maturation processes. A longitudinal study 

could therefore comprise several different strands, such as growth in mathematical capability, 

changing attitudes to using mathematics, confidence and capability in using technology, and 

problem solving. A study of successful problem solvers and how they developed their 

problem-solving skills may assist in understanding how others can be helped. It is also 

possible that apprentices are selected to become machinists partly based on their mature 

attitudes to mathematics.  

7.9. Chapter summary and concluding remarks 

This chapter has presented conclusions about the findings of the nature of skills, applying the 

skills in context, and developing the skills, learning and communication. As part of this 

concluding chapter, I also pointed out the contribution to new knowledge this study has made 

and outlined the implications and recommendations arising from my findings. I made readers 

aware of the limitations of this study and used my researcher reflexivity to explore how this 

study has continually challenged my own understanding and considerations of how 

mathematics related to the engineering context. Lastly, I indicated areas for future researchers 

to consider. I now offer my concluding remarks for the study taken as a whole.  

My study has focused on the mathematics knowledge and skills that are used, applied and 

learned in mechanical engineering trades workplaces. Unsurprisingly, one major finding was 

that engineers need a thorough working knowledge and understanding of mathematical 

content such as graph reading skills, units of measurement, Pythagoras and trigonometry, and 

algebra. Most significantly, they need well-developed numeracy skills to respond to the 

uncertainties and challenges they encounter within their workplace contexts.  

A second major finding was that the engineers use mathematical and numeracy skills in 

multifarious ways. This is because the application of mathematics in the engineering 

workplace is frequently motivated by practical problems. Such problems demand higher-

order thinking, such as problem solving, and detailed attention to the engineering context, 

which may necessitate increased verticalised mathematical thinking and therefore greater 

abstractness. The learning is hinged on the specificity of the context. Thus, an important skill 

is recognizing when current mathematical knowledge and procedures have reached their 

limits, what mathematics should be used, how it should be used, and what the answer means 

in the context. Applying mathematical skills in engineering has emerged as a rich amalgam of 

cognitive and metacognitive ingredients, among which proficiency in basic mathematics is 

just one.  

A third major finding of my study was that learning mathematical skills is not a matter of 

simply emphasizing the basics, or even becoming proficient in using mathematical 

procedures. A major feature of this learning was integrating the mathematical components 

with higher-order thinking. Moreover, basic and higher-order skills were learned by both 
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acquisitionist and participationist means which necessitated social interaction. In this way, 

not only was cooperation in solving particular current issues fostered, but formal and 

informal learning opportunities were created for engineers to develop higher-order skills. 

These included flexible thinking, drifting across channels, creativity and extended reasoning. 

The conceptual understanding engineers developed extended beyond making links between 

mathematical considerations to linking mathematics to particular engineering contexts. 

Mathematics considerations were interconnected and integrated to embrace the whole of the 

engineering context.  

The key to making interconnectedness and integration effective was communication. This 

was because communication promotes the exchange of ideas which increases the skill levels 

and understanding of individuals, and hence potentially of the wider engineering community. 

Among the means of communication, my study found that the stories the engineers told were 

a major source of mathematical learning. As a result, my study strongly supported the role of 

both higher-order thinking skills and social interaction as means of mathematical application 

and learning.  

Finally, the writing of this thesis coincides with the publication of a report from New 

Zealand’s Royal Society Te Apārangi expressing concerns about declining mathematics 

standards among New Zealand school students (see Section 2.1.2.2). The report calls for 

radical change in the way mathematics is taught in schools. This study is relevant to the 

debate because its conclusions about mathematics and numeracy skills in mechanical 

engineering trades workplaces are similar to the aims of the New Zealand mathematics 

curriculum. Both this study and the NZC identify the importance of using mathematics skills 

in real contexts involving problem solving, planning, critical thinking, creativity, conceptual 

understanding, employing judgment in decision-making processes, the development of 

metacognitive skills, and the roles of communication and social interaction in the learning 

and design processes. There are many vocations where the mathematical skills are similar to 

the mechanical engineering trades workplaces in this study and employ unsophisticated 

mathematics in sophisticated settings (Steen, 2001). It is my very strong conviction that 

improving mathematics standards of young people about to enter the workplace or tertiary 

study needs urgent attention. Hence, while the focus of this study may appear to be on a 

narrow field of mathematics specialisation, nevertheless, its focus on the broader aspects of 

mathematics usage might well have ramifications for society as a whole.   
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Appendix A: Glossary of terms and acronyms 

Achievement Standard, AS. 

Bush – the metal lining of an axle-hole or other circular orifice. 

Collaborative Learning, CL, (see Section  2.4.4). 

Competenz – the Industry Training Organisation (ITO) responsible for mechanical 

engineering trades in New Zealand. 

Computer Aided Design, CAD –  a software programme. 

Computer Numeric Control, CNC – a software programme. 

Cultural Historic Activity Theory, CHAT, (see Chapter 3). 

Engineering judgment – a process in decision making where an engineer’s experience 

overrides mathematical considerations about what fits best in a practical situation, (see 

Section 2.3.1).  

Fabrication engineering – similar to sheet metal engineering. 

Heuristics – a mental shortcut or rule–of-thumb that allows people to quickly solve problems 

and make judgments quickly and efficiently without the need for long calculations. 

Industry Training Organization, ITO, (see Section 1.5).  

Machining – a branch of mechanical engineering requiring fine tolerances. 

Maintenance engineering – an engineering branch specialisation dealing with fixing 

malfunctioning machines, or taking proactive steps to avoid malfunction.  

Mechanical engineering – defined in this thesis as the design, construction and use of 

physical tools and machines. 

National Certificate for Educational Attainment, NCEA – the official New Zealand 

Government constituted assessment system for Years 11, 12 and 13 secondary school 

students. 

On-the-job training, OJT, (see Section 2.3.1). 

Organisation for Economic Co-operation and Development, OECD, (see Chapter 2). 

Realistic Mathematics Education, RME, (see Section 2.4.3). 
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Sheet metal engineering – a mechanical engineering branch specialisation often involving 

relatively thin sheets of metal.  

Situated Learning, SL, (see Section 2.5).  

Spline – There are many different types of splines. Some splines are long ridges on a drive 

shaft that mesh with grooves in a mating piece to transfer torque and power, (see Section 

4.1.3.2). 

Science, Technology, Engineering, and Mathematics, STEM, (see Chapter 2). 

Structure of Observed Learning Outcomes, SOLO – a taxonomy of learning outcomes, (see 

Section 2.5.3). 

Statistical Package for the Social Sciences, SPSS – a computer software programme, (see 

Section 3.4). 

Tertiary Education Commission, TEC, (see Chapter 1).  

The Adult Literacy and Life Skills (ALL) Survey, (see Section 2.1.2.3). 

The New Zealand Curriculum, NZC.  

The New Zealand Qualifications Authority, NZQA.  

The Programme for International Assessment of Adult Competencies, PIAAC.  

The Programme for International Student Assessment, PISA.  

The Système International, SI – the of units widely used in engineering and science 

disciplines. SI uses metres for length, kilograms for mass, and seconds for time, (see Section 

4.1.3.5).  

The Trends in International Mathematics and Science Study, TIMSS, (see Section 2.1).  

Thematic Analysis, TA, (see Section 3.4). 

Tolerances – defined in this thesis as the maximum allowable differences between the 

product specifications and the finished product. 

Toolmaking – a branch of mechanical engineering requiring fine measurements, but which 

has declined in New Zealand in recent times. 

Torque – Torque is the turning effect of a force. Thus, a large torque would mean that the nut 

was tight on the bolt. 

Unit Standard 21905: Demonstrate knowledge of trade calculations and units for mechanical 

engineering trades, US 21905, (see Section 1.5).   
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Zone of Proximal Development, ZPD, (see Section 3.2).    
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Appendix B: Achievement Standard 91026 Apply numeric reasoning in 

solving problems 

The following is a list of achievement objectives taken from the Number Strategies and 

Knowledge thread of the Mathematics and Statistics learning area, and which are included in 

this achievement standard: 

• reason with linear proportions 

• use prime numbers, common key elements and multiples, and powers (including 

square roots) 

• understand operations on fractions, decimals, percentages, and integers 

• use rates and ratios 

• know commonly used fraction, decimal, and percentage conversions 

• know and apply standard form, significant figures, rounding, and decimal place 

value 

• apply direct and inverse relationships with linear proportion 

• extend powers to include integers and fractions 

• apply everyday compounding rates. 

 

1 Apply numeric reasoning involves: 

• selecting and using a range of methods in solving problems 

• demonstrating knowledge of number concepts and terms  

• communicating solutions which would usually require only one or two steps. 

 

Relational thinking involves one or more of: 

• selecting and carrying out a logical sequence of steps 

• connecting different concepts and representations 

• demonstrating understanding of concepts 
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• forming and using a model, and also relating findings to a context, or 

communicating thinking using appropriate mathematical statements. 

 

Extended abstract thinking involves one or more of: 

• devising a strategy to investigate or solve a problem 

• identifying relevant concepts in context 

• developing a chain of logical reasoning, or proof 

• forming a generalisation, and also using correct mathematical statements, or 

communicating mathematical insight 

2 Problems are situations that provide opportunities to apply knowledge or understanding 

of mathematical concepts and methods. The situation will be set in a real-life or 

mathematical context. 

 

3 The phrase ‘a range of methods’ indicates that evidence of the application of at least 

three different methods is required.  

 

4 Students need to be familiar with methods related to: 

• ratio and proportion 

• key elements, multiples, powers and roots 

• integer and fractional powers applied to numbers 

• fractions, decimals and percentages 

• rates 

• rounding with decimal places and significant figures 

• standard form. 

5 Conditions of Assessment related to this achievement standard can be found at 

http://ncea.tki.org.nz/Resources-for-Internally-Assessed-Achievement-Standards. 

 

(NZQA, 2019c)   

http://ncea.tki.org.nz/Resources-for-Internally-Assessed-Achievement-Standards
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Appendix C: Mathematics and physics topics US 21905 

Different countries and jurisdictions have different mathematics requirements. The list of 

mathematics topics below is based on the New Zealand Qualification Authority’s Unit 

Standard 21905: Demonstrate knowledge of trade calculations and units for mechanical 

engineering trades.  

Arithmetic and algebraic operations for mechanical engineering: Perform basic 

arithmetic operations (such as addition, subtraction, multiplication, and division of 

whole and decimal numbers), fractions are converted to decimals and percentages (and 

vice-versa), multiples are expressed to the power of 10 (and vice-versa using the 

prefixes mega; kilo; unit; deci; centi; milli and micro); engineering calculations using 

calculators (involving addition, subtraction, multiplication, division, square, square 

root, cube, sine, cosine, tangent); area and volume calculations are carried out for two 

and three dimensional shapes (using given data involving areas of squares; rectangles; 

triangles and circles, and volumes of boxes; cylinders and cones). 

Trigonometry: Carry out Pythagoras and trigonometric operations for mechanical 

engineering to find lengths and angles in right-angled triangles.  

Tables and graphs in mechanical engineering: Graphs are sketched from tabular data 

on graph paper, and tables are constructed by reading values from given graphs. 

Define and apply quantities and units of measure in a mechanical engineering 

environment: Unit names and symbols are matched to the corresponding quantities 

such as SI base quantities (including length; mass; temperature and time) and derived 

quantities (such as area; volume; speed; velocity; acceleration; angular velocity; force; 

torque; energy; work; power; efficiency and pressure where other quantities may 

include rotational speed; torque and efficiency); elementary quantities are defined and 

applied (such as speed; velocity; area; volume; force; pressure; work; power; rotational 

speed; torque and efficiency); the difference between mass and weight is demonstrated 

(demonstration includes calculations and an explanation); quantity values are re-stated 

using different SI prefixes; typical conversions performed (such as 2049 mm = 2.049 

m; 0.055 mm = 55 μm, and 234 Pa = 0.234 kPa), and quantity values expressed in 

imperial units are converted to metric and vice versa (such as conversions between feet 

and millimetres; inches and millimetres; inches and μm; lb and kg, lb/in2 and Pa, and °F 

and °C).   

(Adapted from NZQA, 2010, pp. 2,3) 
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Table 12 Proposed changes to US 21905 for 2022 

US 29397 Demonstrate knowledge of basic trade calculations 

and units of measure for mechanical engineering 

trades 

2 4 New 

US 29398 Apply knowledge of basic trade calculations for 

mechanical engineering trades 

2 4 New 

US 29399 Demonstrate and apply knowledge of trade 

calculations to solve problems for mechanical 

engineering trades 

3 4 New 

https://search.nzqa.govt.nz/apps/search/?q=mechanical+engineering&btnG=Search 

 

https://search.nzqa.govt.nz/apps/search/?q=mechanical+engineering&btnG=Search
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Appendix D: Engeström’s expansive learning model for hospital treatment 

Table 13 Engeström’s expansive learning model for a hospital study of treatment of children 

with multiple illnesses in Finland 

 Activity system 

as a unit of 

analysis 

Multi-

voicedness 
Historicity Contradictions 

Expansive 

Cycles 

Who are 

learning? 

Interconnected 

activity 

systems: 

hospital, health 

centre, patient’s 

family 

Voices of 

specialised 

health care, 

general 

primary care 

and lay home 

care 

   

Why do they 

learn? 

  Historically 

emerging 

pressures: 

patients move 

between 

primary care 

and hospitals  

Contradictions 

between new 

object and 

available tools 

and rules in the 

three activity 

systems 

 

What do 

they learn? 

A new pattern 

of activity: 

knotworking 

based on the 

instrumentality 

of care 

agreement 

 Historical 

layering and 

co-existence 

of old and 

new concepts: 

pathways and 

care 

agreement 

Struggle 

between old 

and new 

concepts: 

critical pathway 

vs care 

agreement 

Expansion of 

the object from 

visit to 

trajectory: from 

doctor-patient 

dyad to 

network of care 

How do they 

learn? 

 Dialogue and 

debate 

between 

positions and 

voices, 

focused on a 

vital object 

 Contradictions 

converted from 

need state to 

double bind to 

resistance to 

realignment 

Learning 

actions from 

questioning to 

analysis, 

modelling, 

examining, 

implementing, 

reflecting 

(Engeström, 2001, p. 153) 
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Appendix E: Biographical notes on interview participants 

This section gives brief biographical summaries of the backgrounds of the 17 people who 

took part in the semi-structured interviews, which ranged in length between 40 and 80 

minutes. They came from a range of ethnicities; experience; specialisation involvement, and 

role or capacity as skilled tradespersons, educators and tutors. Many of the more experienced 

participants were capable specialists in more than one branch of engineering. Pseudonyms 

were used for each of the interview participants in accord with the undertaking given to them 

in the Participant Information Sheet (see Appendix I). In most cases, a pseudonym was 

chosen with first letter the same as the participant’s surname. There were two exceptions to 

this rule; in the cases of those who had indicated on their questionnaire form that they 

identified with Māori ethnicity. One of these participants had a Pākehā first name and a 

Māori surname, while the other’s names were both Pākehā. It was decided to give Māori 

pseudonyms to both of these participants, chosen from a New Zealand Government online 

source for the most popular first names given to Māori boys born in 2013. It was not 

considered necessary to choose pseudonyms suited to the cultural, family and linguistic ties 

of those participants interviewed who had been born outside of New Zealand.  

Ari (21 years) had also begun his apprenticeship recently, and had spent much time sweeping 

floors and so on. However, even at this early stage, he had been involved in real work, “Um, 

… on the 773 dump truck my first week of the apprenticeship, the engine, completely pull out 

the engine coolers, oh the oil coolers sorry, and clean and then replacing which is a bit of a 

big job, took us couple of days, and …”. He also related how the other men helped in his 

training.  

Arthur (42 years) was an educator. He seems to have had early experiences of practical things 

where he used the local rubbish dump as a source of treasured bit and pieces, and the 

cemetery as a test strip for trialling his latest go-karts. He had wide experience in mechanical 

engineering, “…worked on fishing boats, pleasure boats, forestry work, horticulture, … [the 

local laundry company] … right down to sewing machines … like fixing bits and pieces of 

sewing machines they used to repair for the laundry equipment … I used to repair anything 

and everything mechanical … I’d give it a go and I suppose that’s why I’m where I’m at 

today”. 

Ben (21 years) was beginning his apprenticeship, and enjoyed fabrication and welding. He 

could not see the use of Graphics and design at school, nor English, except to be able to read 

plans and drawings. Nor could he see the carry-over value of doing research in graphics and 

design at school to the research skills needed in his present work. However, Ben (apprentice) 

could see the importance of Pythagoras, trigonometry and finding volumes because they had 

practical application, and were especially related to the work he was currently doing. He felt 

confident in mathematics for his engineering work. 

Chris (65 years) was also born in the United Kingdom and had widespread influence in the 

direction and the development of curricula in several branches of mechanical engineering 
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throughout New Zealand. Like some other engineers, Chris did not pursue mathematics 

studies into Year 11, so had no formal school qualification in mathematics. He was currently 

involved mainly in fabrication engineering, where he is an acknowledged authority. Chris’ 

knowledge of current engineering trends and the political developments of engineering 

apprenticeships provided important background to the wider context of engineers and 

engineering in New Zealand and United Kingdom society. 

Courtney (43 years) could trace his engineering pedigree back at least five generations to his 

forebears building massive ships’ engines in late 19th or early 20th century England. He 

described the work that the company he inherited from his father does as general engineering. 

This modest assessment of his own work tended to mask his specialist expertise in several 

engineering branches, from the fine work of the machinist to repairing and maintaining 

massive cranes “worth $6 million so you know, you kind of … yeah, you don’t want to muck 

it up … and they’re charged out at a ridiculous amount of money too, so they’re big 450, I 

think it charges out at about $30,000 a day … Mmmm … so you only have to delay them for 

a day, and yeah, it’s big money that’s sort of involved …”. Courtney gave several examples 

of how he had used his knowledge of school and polytechnic mathematics in engineering 

design and to solve engineering problems. He was an innovator.  

Donald (57 years) had grown up in a practical environment where his father was an 

electrician. As a boy he pulled bikes to bits, as well as lawnmowers. Donald almost drifted 

into mechanical engineering by accident, because when he left school, “we all went to a 

polytech or trade school and we all sat a[n] aptitude test … and this was the trade they 

recommended for me … yeah, that’s how it started, yeah”. Donald’s current role was mainly 

in maintenance engineering of heavy trucks, but he also had a role in apprentice training.  

Henry (58 years) grew up in a practical world where his father’s influence in teaching him 

measuring and calculation skills from a young age would hold him in good stead for his 

engineering work, especially avionics. Henry had a great interest in heat, which he described 

in detail as being very important in aircraft flying. He also knew a great deal of the physics 

involved in his work.  

Howard (55 years) was born in the United Kingdom and was currently involved mainly in 

maintenance engineering in the heavy transport sector; in this case locomotives. He once 

owned his own business maintaining and repairing fork hoists. Howard’s comments on the 

role of mathematics in his work revealed that the decisions the engineers make are both 

mathematical and non-mathematical, and that maintaining locomotives had many physics and 

mechanics aspects. The mathematics was often hidden. Howard’s comments were frequently 

related to practical contexts involving measurement; in particular, use of specialised tools, 

fluid volumes, and engine wear.  

Irene (23 years) was in her fourth year as an apprentice. She had attended an all girls’ 

secondary school where engineering and wood technology were phased out after her first 

year. Thus, Irene had little or no school experience of engineering, but did enjoy graphics and 

design which she studied together with mathematics to NCEA Level 3. Irene felt that 
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workplace mathematics “had more purpose” than school mathematics, that graphics and 

design was very useful not only for functionality and aesthetics but also for instilling generic 

skills and attitudinal perspectives which she now showed in the way she approached her 

work. Irene (apprentice) said that physics knowledge came in useful in both electricity and 

airflow in her present field of specialisation. She said that she had always wanted to do a 

trade but that apart from her science teachers, her teachers at school had “definitely not” 

encouraged her to do this, although they had not actively discouraged her either. Irene said 

there were no other women engineers in the company where she worked, and she knew of 

probably only five or six qualified women engineers in her field of specialisation throughout 

New Zealand. Given that Irene felt that there would be at least 1000 people in her field, then 

this would call into question the 3% figure quoted from Competenz (see Section 1.3). Irene’s 

grandfather, father and brother had all been engineers, but she claimed not to be following a 

family tradition and was “not influenced by others”. Irene’s great enjoyment was the variety 

of tasks and environments she experienced in her work.  

Murray (63 years) came from South Africa and had wide industrial engineering experience, 

but not directly in mechanical engineering. Murray also had the equivalent of NCEA Level 3 

Mathematics, and like several other engineers, he commented that he found formulas and 

algebra “totally abstract”. In spite of this, he was quite happy to share with others the way he 

developed his school mathematics when he found a real context for it. Murray was very much 

aware of the need for highly-developed and interconnected mathematics skills related to 

context. Thus, referring to his early experiences in textiles, he said that “you’ve got to 

measure up textile dyes, and of course, you’ve got to … once it has been dyed, once the dyes 

have been measured, heating patterns for the dye baths, heating times’ durations, and things 

like that”. The information for this came from tables which the engineer had to consult. 

Murray also commented at length on the importance of effective communication in the 

workplace situation. 

Nikau (23 years), an apprentice, belonged to a whānau that also had an engineering heritage, 

“Yeah, yeah, my old man, he’s a diesel mechanic”. Like the other apprentices, Nikau’s actual 

engineering experience was still limited, but he did give me a detailed account of altering the 

distance between the forks on a forklift. Already he has integrated the skills of measuring and 

squaring something up with the engineering skills required for welding. 

Owen (66 years) was an avionics educator. He commented on his questionnaire, 

“mathematics in school tends to be a lot of rules, whereas in the workforce you try to get 

them to apply their maths”. We kept coming back to this theme throughout the interview. 

Owen’s approach to teaching mathematics was to present students with “maths challenges, 

they have to try and figure how maths [works] that we’re asking them to do … helps them 

understand the physics and the science of the aeroplane technology we are trying to get them 

to do … to maintain the aeroplane … they can misunderstand why are they doing this 

calculation, it’s not just a calculation …”. Problem-solving and thinking beyond the square 

were important to Owen, because “we want people who actually have an aptitude for fault-

finding and analysis”. 
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Paul was the training officer of a large company, one of whose specialities is manufacturing 

high-tech equipment for the medical sector. Paul pursued business style mathematics courses 

in years 12 and 13 at school, rather than the more academic courses. He said his school 

mathematics courses “did [help] in my apprenticeship absolutely, yep”. Paul has a broad, yet 

detailed, knowledge of several different branches of engineering, and how they relate. 

However, perhaps his greatest contribution to this study was his knowledge and experience of 

how apprentices were mentored from the moment they began their training.  

Robert (50 years) has inherited both his father’s engineering business and innovative spirit 

which he applied to problem-solving, creativity and entrepreneurship. He said that he never 

understood things like calculus at school which “drove [him] nuts”, and never really 

appreciated mathematics until he was able to apply it at polytechnic. Then it became real for 

him. He was also an influential person in the development of engineering policies in New 

Zealand, and was a major contributor of the application of physics to engineering in this 

study.  

Simon (23 years) was a young apprentice and thus had limited actual engineering experience. 

Nevertheless, he was able to talk about the mentoring process and the projects on which he 

had been involved. Thus, insight was gained into the tasks apprentices are given, and the 

increasing level of independence and responsibility given to apprentices as they grew in 

experience and confidence. At an early stage of his apprenticeship, Simon had been involved 

in working on a “job [outside of New Zealand] … it was like the ramps which were made out 

of the like 40 millimetre thick plate ... there were like 10 or so that all added up into a circle 

… like big bowls or ladles that sat … sat inside those ramps”. Simon also spoke about his 

night class and the problems the apprentices would be set - “And they gave you the formulas 

but you had to work them through with your um ... with your tutor at night class, and that … 

yeah … help you out, yeah … you’d work out like how much weld you’d need and how 

much welding time it would take to weld it all up, the seam ends and stuff and what kind of 

materials made out of and what kind of welding wire you’d need”. Simon’s father and at least 

one grandfather had been engineers.  

Stephen (43 years) had completed an apprenticeship in mechanical engineering, and had 

worked in aviation, in airframes systems and as an engine mechanic. He spoke at length 

about “running an engine” where various pieces of information would be supplied, like 

temperature, air pressure, and a torque output. Coming to terms with dealing with several 

variables simultaneously was a major part of the apprentice’s learning, and “you sort of get 

all those, and put them together, and you can either use a graph or a calculator and you come 

out with a percentage …”. Thus, the mathematics was embedded in the practical demands of 

the task in hand. Stephen also spoke about mentoring apprentices and communication issues 

on the job.  

Warren (62 years) was also involved in avionics, with an emphasis on the electronics side of 

things. He too regretted the lack of numeracy skills in some school leavers. Peer learning was 

important for Warren, because “we actually get a lot more interaction, and it’s worked a 

TREAT!” This was especially useful for bringing out learning problems into the open that 
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students might otherwise have said nothing about. Warren expressed very strong views on the 

need for mental calculation and estimation skills and felt that the brain had to be used to 

estimate before using a calculator, “… well, they don’t trust their brain, their skill, or they 

haven’t got the skills”. Warren also spoke about the mentoring support given to apprentices.  
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Appendix F: Mechanical engineering pre-apprenticeship questionnaire 

Please place a tick in the appropriate box (or boxes), and write comments in the spaces where 

appropriate. 

 

1. Date of birth _______________________ 

 

2. Gender:  Male Female   

 

3. Ethnicity:       European/ Pākehā          Māori        Pasifika            

           Other (Please specify) 

________________________________________ 

 

4. I might specialise in the following branch(es) of mechanical engineering: 

 

___________________________________________________________________ 

For the following statements, please tick the box which you most agree with:  

 Strongly          Disagree          Agree      Strongly  

 Disagree                Agree  

5) I found mathematics easy at school.          

 

6) I enjoyed mathematics at school.     

 

7) Most of the time I cope well with doing maths  

problems that involve several steps to find the answer.     

 

8) Problem-solving skills are useful in  

mechanical engineering work.     

                                                                                                                 

9) Mental calculation skills are important  

in mechanical engineering work.      
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10. What mathematics, science, physics and Graphics and Design qualifications did you 

obtain while still at school? (You may tick more than one box in each row) 

 

  

Subject  

Level 1 NCEA 

(previously 

School 

Certificate) 

Level 2 NCEA 

(previously 

Sixth Form 

Certificate) 

Level 3 NCEA 

(previously 

Bursary) 

None of 

these 

1 Mathematics     

2 Science     

3 Physics     

4 Graphics and Design     
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11. How well do you think your school experiences have prepared you in the following 

mathematics topics? (Please tick one box in each row) 

 

Topic Poor Satisfactory Good Very 

Good 

Excellent 

a Decimal calculations      

b Rounding decimals       

c Scientific notation 

e.g. 0.0002 = 2 × 10-4 

or 2.56 × 104 = 25600 

     

d Reading tables      

e Reading graphs      

f Drawing graphs      

g Finding fractions of quantities 

e.g. Find  
2 

5
𝑜𝑓 440 𝑚𝑚 

     

h Substituting in a formula, e.g., 

Find the area of a triangle 

using Area = 0.5 × base × 

height 

     

i Changing the subject of a 

formula e.g., make “d” the 

subject of the circumference of 

a circle formula dC =   

     

j Converting length and mass 

units, e.g. 2.37 m = 2370 mm 

and 0.04 kg = 40 g 
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12. How well do the following methods help you to solve mathematics problems? (Please 

tick one box in each row) 

Method Very 

Ineffective 

Ineffective Effective Very 

Effective 

a By thinking things out 

for myself  

    

b In the classroom     

c On the job     

d By reading a textbook     

e Online     

f Discussing with tutors 

and other engineers 

    

g By doing exercises and 

examples until I get 

things right 

    

h By watching others do 

the problems 

    

i 

 

Others (please specify) 

 

    

13. Please read and answer the following problem:  

 

 

 

 

 

 

 

 

 

 

 

Thank you for completing this questionnaire. 

Stephen has a block of steel on his workbench which he feels is too heavy for him to lift 

alone or to carry safely.  

• He wants to calculate its mass so that he can choose a strong enough sling to 

support the block properly.  

• To do this he first needs to calculate the volume in m3 (cubic metres), and then 

multiply by the density of the steel, which is in kg/m3.  

• Stephen correctly measures the block as 200 mm by 200 mm by 200 mm.  

Please circle the option below that correctly shows the volume in m3 (cubic metres). 

(a) 0.008 m3       (b) 0.08m3       (c) 0.8 m3      (d) 8 m3    (e) 8000 m3      (f) Don’t know 
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Appendix G: Mechanical engineering apprentices questionnaire 

Please place a tick in the appropriate box (or boxes), and write comments in the spaces where 

appropriate. 

1. Which best describes you? I am a mechanical engineering apprentice in my: 

 

       1st year      2nd year    3rd year     4th or later year   

 

2. Date of birth _______________________ 

 

3. Gender:  Male Female   

 

4. Ethnicity:       European/ Pākehā          Māori        Pasifika            

           Other (Please specify) 

________________________________________ 

5. I might specialise in the following branch(es) of mechanical engineering: 

 

___________________________________________________________________ 

For the following statements, please tick the box which you most agree with:  

 Strongly          Disagree          Agree      Strongly  

 Disagree                Agree  

6) I found mathematics easy at school.          

 

7) I enjoyed mathematics at school.     

 

8) The mathematics I learnt at school helps me 

with the mathematics in my apprenticeship.      

 

9) Overall, I find that mathematics for mechanical  

engineering work is easy.     

 

10) I use all the engineering mathematics at work  

that I learnt at my block courses.     

 

11) I use all the trade physics and mechanics at work 

that I learnt in my block courses.     
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Questions 12 and 13 refer to how easy you have found passing the mathematics, physics and 

mechanics requirements for mechanical engineering trades (for example, Unit Standards 

21905, 15847, 21908, 16955, or 16956).  

12) I have personally found engineering trade  

mathematics and calculations easy.     

  

13) I have personally found engineering trade  

physics and mechanics ideas easy to understand.     

 Strongly          Disagree          Agree      Strongly  

 Disagree                Agree  

14) Most of the time I cope well with doing maths  

problems that involve several steps to find the answer.     

 

15) Problem-solving skills are useful in  

mechanical engineering work.     

                                                                                                                 

16) Mental calculation skills are important  

in mechanical engineering work.      

  Seldom        Once or         Daily        Several 

  or Never    twice a week       times a day  

17. How often do you think mechanical engineers 

use scientific calculators in their work?                                               

 

18. How often do you think most mechanical engineering tradespersons use the following 

mathematics topics? (Please tick one box in each row) 

Topic Seldom 

or Never 

About 

once a 

month 

About 

once a 

week 

Once or 

twice a 

day 

Many times 

each day 

a Decimal calculations      

b Rounding decimals       

c Scientific notation  

e.g. 0.0002 = 2 × 10-4 

or 2.56 × 104 = 25600 
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d Reading tables      

e Reading graphs      

f Drawing graphs      

g Finding fractions of quantities, 

e.g. Find  
2 

5
𝑜𝑓 440 𝑚𝑚 

     

h Substituting in a formula, e.g., 

Find the area of a triangle 

using Area = 0.5 × base × 

height 

     

i Changing the subject of a 

formula e.g., make “d” the 

subject of the circumference of 

a circle formula dC =   

     

j Converting length and mass 

units, e.g. 2.37 m = 2370 mm 

and 0.04 kg = 40 g 

     

19. What mathematics, science, physics and Graphics and Design qualifications did you 

obtain while still at school? (You may tick more than one box in each row) 

 

Subject  

Level 1 

NCEA 

(previously 

School 

Certificate) 

Level 2 

NCEA 

(previously 

Sixth Form 

Certificate) 

Level 3 

NCEA 

(previously 

Bursary) 

None 

of 

these 

1 Mathematics     

2 Science     

3 Physics     

4 Graphics and 

Design 
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20. How well do the following methods help you to solve mechanical engineering 

problems involving mathematics? (Please tick one box in each row) 

Method Very 

Ineffective 

Ineffective Effective Very 

Effective 

a By thinking things out 

for myself  

    

b In the classroom     

c On the job     

d By reading a textbook     

e Online     

f Discussing with tutors 

and other engineers 

    

g By doing exercises and 

examples until I get 

things right 

    

h By watching others do 

the problems 

    

i 

 

Others (please specify) 
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21. Please read and answer the following problem:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thank you for completing this questionnaire. 

Your answers will form an important contribution to the research. 

 

OPTIONAL: If you would be agreeable to a conversation about your experiences and views 

of mechanical engineering, then could you please write your contact details below: 

 

Name: _______________________________________________________ 

Telephone: ___________________________________________________ 

Email: _______________________________________________________  

 

 

  

Stephen has a block of steel on his workbench which he feels is too heavy for him to lift 

alone or to carry safely.  

• He wants to calculate its mass so that he can choose a strong enough sling to 

support the block properly.  

• To do this he first needs to calculate the volume in m3 (cubic metres), and then 

multiply by the density of the steel, which is in kg/m3.  

• Stephen correctly measures the block as 200 mm by 200 mm by 200 mm.  

Please circle the option below that correctly shows the volume in m3 (cubic metres). 

(a) 0.008 m3       (b) 0.08m3       (c) 0.8 m3      (d) 8 m3    (e) 8000 m3      (f) Don’t know 
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Appendix H: Mechanical engineering educators, tradespersons and 

employers questionnaire 

Please place a tick in the appropriate box (or boxes), and write comments in the spaces where 

appropriate. 

1. Which best describes you? (Please tick more than one box if appropriate) 

 

  Tradesperson           Mechanical engineering educator          

Technician/Designer 

 BE graduate             Apprentice Supervisor 

 Other (please specify) ________________________________ 

2. What is your date of birth? _______________ 

 

3. In which branch(es) of mechanical engineering have you had significant direct 

experience? _________________________________________________________ 

 

4. Gender:  Male Female   

 

5. Ethnicity:   European/ Pākehā          Māori        Pasifika            

      Other (Please specify) 

________________________________________ 

For the following statements, please tick the box which you most agree with.  

 Strongly          Disagree          Agree      Strongly 

  Disagree                              Agree  

6) I found mathematics easy at school.     

 

7) I enjoyed mathematics at school.     

 

8) The mathematics I learnt at school helps me in my 

mechanical engineering work.     

 

9) Overall, modern apprentices adapt well to the  

mathematics for mechanical engineering work.     

 

10) I am concerned about the numeracy and other  

mathematics skills in beginning apprentices.     

 

11) Overall, I am concerned about numeracy and  

other mathematics skills in  

skilled mechanical engineering tradespersons.      
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Questions 12 and 13 refer to how easy you think modern day apprentices find passing the 

mathematics, physics and mechanics requirements for mechanical engineering trades.   

 

12) Overall, I think modern day apprentices find 

engineering trade mathematics and calculations easy.     
 

 

                                                                                                                           Strongly          Disagree          Agree      Strongly  

 Disagree                Agree  

13) Modern day apprentices find engineering trade 

physics and mechanics ideas are easy to understand.     

 

14) Modern day apprentices at the beginning of their  

apprenticeship cope well with doing maths problems  

that involve several steps to find the answer.     
 

15) Modern day apprentices near the end of their  

apprenticeship cope well with doing maths problems  

that involve several steps to find the answer.      

 

16) Problem-solving skills are useful in  

mechanical engineering work.     
 

17) Mental calculation skills are important  

in mechanical engineering work.      

  Seldom         Once or           Daily        Several 

  or Never      twice a week       times a day 

 18) How often do you think most mechanical engineers  

use scientific calculators in their work?                                      
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19. How well do you think the following methods help modern day apprentices to learn to 

solve mechanical engineering problems involving mathematics? (Please tick one box 

in each row) 

Method Very 

Ineffective 

Ineffective Effective Very 

Effective 

a By thinking things out for 

themselves  

    

b In the classroom     

c On the job     

d By reading a textbook     

e Online     

f Discussing with tutors and other 

engineers 

    

g By doing exercises and 

examples until they get things 

right 

    

h By watching others do the 

problems 

    

i 

 

Others (please specify)     
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20. How often do you think most mechanical engineering tradespersons use the following 

mathematics topics? (Please tick one box in each row) 

Topic Seldom 

or 

Never 

About 

once a 

month 

About 

once a 

week 

Once or 

twice a 

day 

Many 

times each 

day 

a Decimal calculations      

b Rounding decimals       

c Scientific notation 

e.g. 0.0002 = 2 × 10-4 

or 2.56 × 104 = 25600 

     

d Reading tables      

e Reading graphs      

f Drawing graphs      

g Finding fractions of quantities 

e.g. Find  
2 

5
𝑜𝑓 440 𝑚𝑚 

     

h Substituting in a formula 

e.g. Find the area of a triangle 

using 

Area = 0.5 × base × height 

     

i Changing the subject of a 

formula e.g., make “d” the 

subject of the circumference 

of a circle formula  

dC =   

     

j Converting length and mass 

units,  

e.g. 2.37 m = 2370 mm 

and 0.04 kg = 40 g 
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21. What mathematics, science, physics and Graphics and Design qualifications did you 

obtain while still at school? (You may tick more than one box in each row) 

22. The apprentices’ version of this survey contained the problem in the box below.   

 

 

 

 

 

 

 

 

 

 

 

 

Thank you for completing this questionnaire. 

Your answers will form an important contribution to the research. 

Subject Level 1 NCEA 

(previously 

School 

Certificate) 

Level 2 NCEA 

(previously 

Sixth Form 

Certificate) 

Level 3 NCEA 

(previously 

Bursary) 

None 

of 

these 

1 Mathematics     

2 Science     

3 Physics     

4 Graphics and Design     

Stephen has a block of steel on his workbench which he feels is too heavy for him to lift alone or 

to carry safely.  

• He wants to calculate its mass so that he can choose a strong enough sling to support the 

block properly.  

• To do this he first needs to calculate the volume in m3 (cubic metres), and then multiply by 

the density of the steel, which is in kg/m3.  

• Stephen correctly measures the block as 200 mm by 200 mm by 200 mm.  

The apprentices were then asked to: 

Circle the option below that correctly shows the volume in m3 (cubic metres) 

(a) 0.008 m3      (b) 0.08m3        (c) 0.8 m3      (d) 8 m3     (e) 8000 m3         (f) Don’t know 

Please state roughly what you think are the percentages of apprentices at various levels 

of their training who appreciate that the correct volume is 0.008 m3.  

_______ %     At or near the beginning of their apprenticeship?   

_______ %     During their apprenticeship?   

_______ %     Do not develop this skill during their apprenticeship?  



Appendix I: Participant information sheet 

291 

  

Appendix I: Participant information sheet 

PARTICIPANT INFORMATION SHEET                  

Interviews (this sheet likely to be given to apprentices, skilled tradespersons, educators, 

employees and employers) 

Title: Mathematics in workplace settings: Numeracy in the mechanical engineering trades.  

My name is Kelvin Mills and I am currently undertaking a PhD in Education at the 

University of Waikato. The research is designed to give us further understanding of 

workplace mathematics. I am writing to you to invite you to participate in an interview as 

part of the research project for my thesis. The interview will be audio recorded and will last 

approximately 60 minutes.  

The interview questions will focus on mechanical engineering mathematics and school 

mathematics, and problem-solving in mechanical engineering. You will be asked to bring and 

discuss a drawing of a project you have been involved in, preferably with a physical model, if 

possible. If you agree to participate, I will contact you again to arrange a time and place 

convenient to you for the interview.  

You have the right to refuse to answer any question, or withdraw from the interview at any 

time, or withdraw information you have provided up until the data analysis is begun, 

approximately 1 June, 2016. You will also be given opportunity to review and, if necessary, 

have the transcript of your interview amended before the data analysis is begun.  

While every effort will be made to ensure confidentiality, this cannot be guaranteed. 

However, as a participant you can expect every reasonable effort to be made by the 

researcher and his supervisors to have your privacy protected and personal details kept 

confidential. To achieve this, pseudonyms will be used and care will be taken to remove any 

identifying information in the final thesis and any reporting of findings. Similarly, your 

organisation will not be identified, but will be referred to as ‘the organisation’. The findings 

may be reported in conference and written presentations.  

Consent forms and audio data will be stored separately and securely for 5 years at the 

University of Waikato and then destroyed. The consent form for the interview is shown on a 

separate sheet of paper. A brief summary of the thesis findings will be made available to you, 

and the complete thesis will be published on the University of Waikato website.  

If you wish to receive further information about this project then please email me:  

mills.kr@xtra.co.nz or telephone 09 535 0241.  

mailto:mills.kr@xtra.co.nz
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If you have any queries regarding ethics considerations, then in the first instance please 

contact: Professor Diana Coben, 07 838 4466 ext. 8748, dccoben@waikato.ac.nz, or, if the 

matter is not resolved to your satisfaction, then Professor John Williams, 07 838 4466 ext. 

4769, jwilliam@waikato.ac.nz  

Thank you for your time and help in assisting with this project. 

mailto:dccoben@waikato.ac.nz
mailto:jwilliam@waikato.ac.nz
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Appendix J: Participant consent form 

PARTICIPANT CONSENT FORM                              

Interviews (this sheet likely to be given to apprentices, skilled tradespersons, educators, 

employees and employers) 

• I have been given and have understood an explanation of this research project. 

• I have had an opportunity to ask questions and have them answered.  

• I understand that the interview questions will centre on mechanical engineering and 

mathematics.  

• I understand that the interview will be audio recorded and will last approximately 60 

minutes. 

• I understand that the audio data, consent forms and any transcripts and summaries will 

be stored securely for 5 years at the University of Waikato and then destroyed. 

• I understand that my name will not be used in any written or oral presentation. 

• I understand that the findings may be used for publication and conference 

presentations.  

• I understand that every reasonable effort will be made to ensure my privacy is 

protected.  

• I consent to participating in the study with the understanding that my participation is 

entirely voluntary and I can withdraw personally at any stage and have information I 

have contributed during the interview withdrawn up until the point of data analysis - 

approximately 1 June 2016. 

I agree to participate in the interview. 

 

Signed: ____________________________________________________ 

Name: _____________________________________________________ 

Date: __________________________ 
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Appendix K: Proposed questions for semi-structured interviews  

1. What mathematics skills and knowledge are used in mechanical engineering?  

Participants will be shown a copy of the mechanical engineering mathematics 

curriculum topics, Unit Standard 21905: Demonstrate knowledge of trade 

calculations and units for mechanical engineering trades (see next attached 

document). The various topics can then be followed through in order.  

Possible probes for each section are the following: 

• What mathematics do you use as a mechanical engineer?  

• In what contexts, or situations, would you use mathematics? 

• How do you use those skills? Could you relate to me an example of how you 

would use ………? 

• How often do you use these skills? Could you relate some examples?  

• Which topics from US 21905 do you find the most difficult? Which topics do 

other engineers and apprentices find the most difficult?  

• How often do engineers discuss the mathematics aspects of their work? How do 

they reach a decision on when to use mathematics or how to do it? Which 

mathematics topics do they discuss the most often? Ask the participant to relate 

some examples. 

• What other branches of mechanical engineering might use the mathematics skills 

from US 21905 that you do not use? Ask the participant to relate some examples. 

2. How are skills in mechanical engineering mathematics developed and used?  

Possible probes are the following: 

• Can you relate examples from your experience and projects you have worked on 

where you have used mathematics in your work?  

• How do you learn your mathematics? Do you expect to continue learning 

mathematics for mechanical engineering once you have completed your 

apprenticeship? Are you continuing to learn mathematics for mechanical 

engineering now that you have completed your apprenticeship? Ask the 

participant to relate some examples. 

• How much engineering mathematics do apprentices learn on the job? Ask the 

participant to relate some examples. 

3. What comparisons do you identify between school and mechanical engineering 

mathematics?  

Possible probes are the following: 
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• What differences do you see between school mathematics and mechanical 

engineering mathematics?  - focus on both content and approach 

• What similarities do you see between school mathematics and mechanical 

engineering mathematics? - focus on both content and approach 

• What adjustments do you think have to be made to move from school 

mathematics to mechanical engineering mathematics? Ask the participant to relate 

some examples. 

• What challenges did you experience coming to grips with engineering 

mathematics?  

• Were some of the challenges you experienced to do with the physics applications 

of mathematics? Ask the participant to relate some examples. 

4. How are problem-solving skills and extended reasoning in mathematics used in 

mechanical engineering?  

Possible probes are the following: 

 

• What do you understand by problem-solving in mechanical engineering? How did 

you learn (are you learning) to do this? Ask the participant to relate some 

examples, perhaps from work currently being done. 

• How often do you have to use extended reasoning skills and problem-solving 

techniques in mechanical engineering? What connection do you see between 

them and mathematics?  

• How do apprentices and skilled tradespersons develop and then use extended 

reasoning and problem-solving techniques? Ask the participant to relate some 

examples. 

• How important are maturity and experience in developing and learning problem-

solving skills? 

• What do you think distinguishes a skilled mechanical engineer from an expert? 

How do they become experts? 

5. What is the role of electronic aids in calculations, and the design and control of 

machines? 

Possible probes are the following: 

 

• How often do you use electronic calculators in your work? Do you use them for 

long or involved calculations, or almost constantly? Ask the participant to relate 

some examples. 

• To what extent do you think proficiency in mental calculation skills is still 

important? Ask the participant to relate some examples of contexts where this 

might apply. 
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• How often do you use Computer Aided Design (CAD) in your work? Do you use 

CAD to create and design, or is your involvement just to interpret and construct 

what others have designed? What challenges do you see in learning CAD? 

• How often do you use Computer Numeric Control (CNC) in your work? What 

sorts of tasks do you use CNC for? What challenges do you see in learning CNC? 

What engineering considerations influence the choice of procedures and tools 

when using CNC? What mathematics skills do you think are necessary to be 

successful in learning CNC?  

 

6. Participant chosen project - participants are asked to bring a drawing of a project they 

have been involved in, preferably with a physical model, if possible. Discuss these in 

the light of the above points and from a mechanical engineering mathematics 

perspective.  

 

Possible probes are the following: 

 

• Tell me about your experience of the project you have chosen. What was the 

motivation for this project? Was the project complete in itself, or part of some 

larger project? 

• What engineering considerations were involved in designing and planning the 

project? Were these done for you already, or did you have to use extended 

reasoning and problem-solving?  

• What features of this project gave engineering challenges for you to face? How did 

you overcome them? Did you have to problem solve to find the engineering 

answers? Did you work with others in seeking solutions? Ask the participant to 

relate some examples.  

• What mathematics do you see in this project? Was mathematics involved in finding 

solutions to your engineering problems? Did you have to problem solve or consult 

with colleagues to find the mathematics answers to them? Ask the participant to 

relate some examples.  
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Appendix L: Ethical conduct in human research and related activities 

regulations 

University of Waikato 

https://www.waikato.ac.nz/research-enterprise/ethics/human-ethics  

During the engagement  

• Act professionally at all times: be polite, courteous, prompt and dependable.  

• Adopt appropriate standards of dress, behaviour and language that signal your commitment 

to the successful conduct of the meeting.  

• Arrive on time for appointments. If lateness or late cancellation is unavoidable, ring and 

apologise (preferably before you are due to arrive).  

• If negotiating entry into a setting without prior arrangement, seek permission appropriately 

from those with the right to grant it and express your gratitude to all those who facilitate the 

visit.  

• If activities are related to coursework requirements, adhere to agreed arrangements and do 

not change plans without the formal approval of a staff member with responsibility for the 

assignment.  

• Use appropriate language for introducing yourself, based on your own position and the 

position(s) of those with whom you are meeting. Normally introduce yourself by your own 

full name (first name and surname, and title if appropriate) and address others using their full 

name and titles as appropriate (e.g., Dr, Professor, Your Worship) until they instruct you 

otherwise.  

• Follow appropriate etiquette (e.g., do not sit until invited) and become familiar with cultural 

variations (e.g., regarding the exchange of business cards).  

• Do not take things for granted: attention (or lack of it) to even apparently trivial 

conventions or protocols can significantly influence the outcome of encounters. 

 • Regardless of information sent in advance, restate or further explain your purpose, 

intention, what you want or expect from the meeting, how you wish to use any information 

obtained, and what you can do for the individual(s) or institution(s) participating (e.g., share 

reports, offer a presentation).  

• Ensure there is mutual agreement regarding the way any information discussed may be used 

and disseminated. Formalise this agreement in writing when there are conditions.  

https://www.waikato.ac.nz/research-enterprise/ethics/human-ethics
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• Ensure any financial reimbursement arrangements are professionally and ethically 

appropriate and that payments have been properly organised.  

• Follow practices consistent with the University’s commitment to the Treaty of Waitangi. Be 

aware of Māori protocol, where appropriate, and behave accordingly. If you are in doubt, ask 

an appropriate person.  

• In all contexts, be aware of and respect the cultural practices of others.  

Following and ongoing relationships  

• Always explicitly thank the contact person/placement supervisor/ organisation before and 

after the interaction. Be sincere in expressing your appreciation for their time and effort, even 

if the meeting failed to achieve everything you hoped for.  

• As appropriate, sustain healthy and collaborative working relationships with individuals 

and/or organisations.  

• Adhere to agreed arrangements for confidentiality or anonymity. Check any issues that 

were not explicitly clarified during discussions.  

• Do not take advantage of people’s willingness to divulge sensitive or proprietary or trivial 

information. You are in a position of trust: do not share information around, even informally.  

• Implement the principle of reciprocity in relationships. As far as possible follow through on 

anything you promised to undertake or provide.  

• More generally, try to ensure through your conduct that individuals and organisations will 

be likely to assist other University staff or students in similar ways in the future.  
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Appendix M: Employer information sheet 

EMPLOYER INFORMATION SHEET                              

Employee Interviews (this sheet likely to be given to employers only) 

Title: Mathematics in workplace settings: Numeracy in the mechanical engineering trades 

To the CEO, 

CCC, 

Dear ________, 

I am writing to you for your consent to interview _______________ on site about how 

mathematics is used in the workplace. The data obtained will be used as part of a PhD in 

Education at the University of Waikato. The research is designed to give us further 

understanding of workplace mathematics.  

The interview will be audio recorded and will last approximately 60 minutes. The interview 

questions will focus on mechanical engineering mathematics and school mathematics, and 

problem-solving in mechanical engineering. _______________ will be asked to bring and 

discuss a drawing of a project s(he) has been involved in, preferably with a physical model, if 

possible.  

While every reasonable effort will be made to ensure confidentiality, this cannot be 

guaranteed. However, no reference to CCC will be made in the final thesis, and every 

reasonable effort will be made to preserve the confidentiality of CCC and the participants. 

The name of CCC will not be made in any written or oral presentation, but the findings may 

be used for publication and conference presentations. A brief summary of the thesis findings 

will be made available to you, and the complete thesis will be published on the University of 

Waikato website.  

If you wish to receive further information about this project, then please email me:  

mills.kr@xtra.co.nz or telephone 09 535 0241.  

If you have any queries regarding ethics considerations, then in the first instance please 

contact: Professor Diana Coben, 07 838 4466 ext. 8748, dccoben@waikato.ac.nz, or, if the 

matter is not resolved to your satisfaction, then Professor John Williams, 07 838 4466 ext. 

4769, jwilliam@waikato.ac.nz 

I look forward to your reply and working with you in the near future. 

Yours faithfully, 

mailto:mills.kr@xtra.co.nz
mailto:dccoben@waikato.ac.nz
mailto:jwilliam@waikato.ac.nz
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Kelvin Mills  
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Appendix N: Employer access consent form 

EMPLOYER ACCESS CONSENT FORM                              

Employee Interviews (this sheet likely to be given to employers only) 

 

• I have been given and have understood an explanation of this research project. 

• I have had an opportunity to ask questions and have them answered. 

• I understand that the interview questions will centre on mechanical engineering and 

mathematics.  

• I understand that while it is not possible to guarantee confidentiality, every reasonable 

effort will be made to ensure the privacy of CCC and the interview participants is 

protected.  

• I understand that the findings may be used for publication and conference 

presentations.  

• I understand that the name of CCC will not be used in any written or oral 

presentations.  

• I understand that the interview will be audio recorded and will last approximately 60 

minutes. 

• I understand that audio data, consent forms and any transcripts and summaries will be 

stored securely for 5 years at the University of Waikato and then destroyed. 

 

I agree for Kelvin Mills to have site access and grant consent for him to conduct the 

interview with  

 __________________________________________ 

Signed: ____________________________________________________ 

Name: _____________________________________________________ 

Date: __________________________ 
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Appendix O: Stephen and Owen on problem solving  

Stephen (educator) 

I asked Stephen what he understood by problem-solving. He mentioned first of all their 

current mathematics courses had mathematical problems that were presented in live 

situations or in words, or as a problem that you might come across as a scenario. The 

pre-apprentices had to find a mathematical solution. Second, he mentioned trouble-

shooting, “… which is looking at the evidence and either using a book or using prior 

knowledge to come to a conclusion based on that”. The pre-apprentices were presented 

with some strategies to perform trouble-shooting, such as “… halve the system and test 

each half and then use the results of that and then come to a further conclusion … and 

dividing it in half until you find the area that’s at fault”. I asked how quickly the 

apprentices adapted to the strategies. Stephen replied, “Well, I’d probably say it’s new 

to them but … they don’t struggle too much with the course in general”. Stephen later 

mentioned that while problem-solving did not feature highly at the beginning of 

apprenticeship training, “it’s very common to have to do that sort of thing later on … to 

have a problem that involves solving a few other problems to get all the right 

information …”  

To summarize, apprentices were given tasks that reflected their current state of 

engineering preparedness. Some of their tasks directly involved mathematics, but others 

involved strategies for solving problems. In these situations, developing and following 

logical chains of reasoning were important tools the pre-apprentices needed to learn. 

Moreover, they were introduced progressively to more complex problem-solving 

scenarios as they grew in experience.   

Owen (educator)  

A non-engineering scenario was described by Owen who set apprentices mathematical 

problems that were similar to many asked in secondary school. In one such problem, 

someone shouts at a wall some distance away, and after a few seconds they hear their 

echo coming back. Given the distance to the wall, and the time for the echo to return, 

what is the speed of sound? This is a straightforward problem involving the formula 

Speed = Distance ÷ Time. However, none of the apprentices appreciated that the 

distance to the wall is half the distance the sound they have just heard must have 

travelled. Owen explained that “… so many of them just put a very simple formula into 

their calculator, out comes an answer, and they write that down”. He gives the pre-

apprentices many examples like the one above, because  

… we’re looking for people who can stop and think before they fire off answers 

like that because we will happily note that they can press the buttons, or the keys 

on the calculator, they can do the formula, but they can’t apply the principles 

we’ve raised with them when we’ve discussed it with them … 
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This type of difficulty was linked to what I shall call minimal skills, by which I mean the 

minimal skill level to perform a job, but without necessarily having the ability to perform the 

same task competently when its terms or context have been altered and extra thinking is 

required. This was consistent with Owen’s statement that avionics required people “who 

actually have an aptitude for fault-finding and analysis”. This required extended reasoning 

skills, including examining different points of view, which involved more than getting the 

right answer and moving on. He explained that was why they aimed at “developing not only 

able people from the exam point of view but we are also developing people who fix faulty 

pieces of equipment … that’s what we are here about …” Sometimes he needed to explain to 

the apprentices that they had left the school phase of their life behind, and were now starting 

to figure how to “apply this to the problem-solving of the type we’re gonna confront you with 

in your working day and this is … this is the next step in that particular development journey 

you’re on”.  

To summarize, problem-solving development was linked to extended reasoning development 

in apprentices (see Section 4.2.2). While formal strategies for solving workplace problems in 

unfamiliar situations were a new episode in many apprentices’ experiences, the mathematics 

involved was not necessarily as important as the integrated employment of problem-solving 

skills.  
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Appendix P: Ben, Ari, Simon, and Nikau on apprentice learning 

These vignettes are more detailed descriptions with the workplace learning experiences 

narrated by apprentices Ben, Ari, Simon, and Nikau in Section 5.2.2.4. 

Ben (apprentice) 

  

Ben, like many other engineers, expressed a preference for practical mathematics, 

such as calculating “volumes, yeah stuff like that”, and “working stuff out, like find 

the shaded area of such and such, I dunno, something like that …” In the workplace, 

Ben used Pythagoras often. I asked Ben, who would complete his apprenticeship in 

about six months, about what sorts of things he did during his first year under the 

guidance of a supervisor. He replied, “Cutting steel and easy welding jobs…” This 

involved using a metre rule and measuring and cutting to within “one mil … plus or 

minus a mil”. During the second year, Ben would have just been “given a drawing and 

see you later …” The project would have been planned beforehand in the office 

together with a list of all the materials he needed, and Ben would generally be 

unsupervised. A project during his second year was to “… make guarding”, which 

consisted of “big angle iron frames, and then mesh in the inside of it, to cover 

[conveyor belts at] the steel mill …”. I asked Ben what he had done last year, and he 

said, “… it just gets harder really, you just get bigger jobs”. A major project during 

Ben’s third year was making a venturi, about three or four meters high. It was “just a 

big cylinder thing, with heaps of ports coming off it, sort of thing…” and which 

involved welding. This now posed few if any problems for Ben, including cutting the 

holes for the pipes which served as ports. As was company policy for all the engineers, 

Ben received all the instructions, plans and materials from the office, but supervision 

became less as time went on until finally “you just get the drawing and then they say 

‘Here’s the material’, and you just go do it”. If Ben had problems, then “Yeah, I would 

ask for help and stuff if I need it”. Even with his mathematics learning, Ben felt 

confident enough to approach others for help, “Yeah, I always ask if I need help”. He 

added that he was encouraged to do this.  



Appendix P: Ben, Ari, Simon and Nikau on apprentice learning 

305 

Ari (apprentice) 

  

Ari, claimed to be doing “a lot of sweeping … tidying the yard, forklift work …”. 

However, he had also been involved in repairing things such as completely pulling out 

and replacing oil coolers. These were big jobs during which time Ali was supervised by 

another tradesperson. Ari was developing a sense of how replacement parts for 

Caterpillar (CAT, American heavy machinery vehicles) equipment were identified, 

although he was not yet entrusted with the responsibility for doing this. He described 

how the tradesmen had manuals to identify which spare part they needed. Therefore, 

Ari demonstrated developing skills in logical thinking and finding information that 

would stand him in good stead for fault-finding and maintenance engineering.  

From a mathematics perspective, Ari did not need to know about units for torques or 

whether they were in imperial or metric because the units on the tool were the same as 

the units in his reference book. However, some big bolts needed a torque converter, “I 

guess you have to have a bit of maths… it’s just times everything by 20”. Doing such 

conversions was just part of Ari’s work culture.  

Ari also spoke at length about the need for accuracy as a beginning apprentice 

specialising mainly in fabrication. He understood that we were “just talking just about 

basic maths …” He also understood the importance of numeracy and being “quite 

accurate, for something, … um, so obviously, like say, if you don’t torque up bolts to 

within certain ranges, they could come out”. This could be a safety issue, and “cause a 

bigger problem there than what you started with …”  

Ari did not keep a calculator on him while he was working, which led me to ask him 

about how accurate something had to be in a given context. He replied, “Ah, yeah, 

you’ve got to be pretty accurate …”, often to within one decimal place. When I asked 

him how he learned what would be a good enough figure, he said, “Um, I guess just 

experience, and ... seeing it fail, or …”  

Ari also spoke positively about the discussions he had with tutors and other engineers 

who “... who generally know what they’re doing, cause [there are] a lot of guys around 

here with a lot of knowledge … and yep, you’ve just got to ask them, they’ll generally 

help you out …” He added that sometimes “there’s the odd thing that some people 

don’t know ... if it’s a quite obscure topic, … but generally these guys here are quite 

clued up”.  
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Simon (apprentice)  

  

Simon gave a detailed description of the procedures in the company where he worked. I 

asked him how he checked to see that he had got the right answer. He said he would go 

to a tradesman, or at “night school I’ll go to my tutor … and he’ll help me out with it”. 

He explained that every job came with a check sheet with perhaps five different steps. 

The first one was checking for the right materials. The second one was getting someone 

to check all the materials had been cut to the right length. Each step was signed off when 

completed. Even the tradesmen went through this process because “yeah, you assume 

that everyone stuffs up (laughter) …” 

Simon also talked about his courses at the polytechnic. He said that for his first year, “it 

was more like learning about the materials and stuff … like the different kinds of steel 

and all that … this year’s more drawings and that calculation that I had to do … yeah”. 

In the Unit Standard he had recently done there had therefore been more mathematics 

than previously.  

Simon: Ah, in my last one, yeah, before I did the drawings, it was a maths … 

maths thing, and they gave you a drawing and there was only like two random 

measurements and the rest you had to figure out by yourself ... And they gave you 

the formulas but you had to work them through with your um ... with your tutor at 

night class, and that … yeah … help you out, yeah … you’d work out like how 

much weld you’d need and how much welding time it would take to weld it all up, 

the seam ends and stuff and what kind of materials made out of and what kind of 

welding wire you’d need.  

Kelvin: There’s a lot of mathematics in that, isn’t there?  

Simon: Yeah, for sure, man, there was heaps of formulas, aye, like … in my head 

… um …I could probably find it on my phone …  
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Nikau (apprentice) 

 

 

 

Nikau described a job about some forklifts where the forks were too close together for 

the pallets. They need to cut them off, take them out 75 mm each side, and then weld 

them back on again. I was interested in the accuracy that would be required for this job, 

and the supervision that Nikau was under. Nikau had to place his rule “on the exact… 

[because] that’s what the customer wants…” Nikau had to then tack things together and 

then ask someone to come and check the measurements were correct. Nikau described 

how squaring up the job was done with a square ruler. Nikau checked his work regularly, 

“…every time you tack it, you measure it again to make sure there’s nothing’s moved”.  

Nikau was developing welding skills he had learned from his father with mentoring 

within the company where they gave him “… little jobs … sort of jobs to… um to 

practice on and stuff”. One such job involved making upfront brackets for a forklift that 

had wheels on them. Nikau appreciated how much things moved during the welding 

process and that this might cause the wheels to jam. Nikau had been taught tricks of the 

trade such as making extra brackets to hold things in place while he welded the main part 

of his job. Making sure that the wheels could still spin once he had welded it all up was 

done by using brackets across the back so that it wouldn’t bend when it got quite hot.  

Nikau’s work may still have been at an elementary apprentice level, especially using 

mathematics, but already he was involved in, acknowledging and reflecting on 

developing tricks of the trade and problem-solving skills in his work. He also 

acknowledged the possibility of multiple acceptable solutions and the influence of others 

in finding them.  

Another of Nikau’s projects involved making steel moulds for concrete motorway 

barriers. The moulds were six meters long. There had been a large number of people 

involved in this project, including skilled tradespersons. Nikau described how he and 

some other apprentices “made a few of them up, and stuff, made sure they come out 

right, but a couple of them didn’t (laughter) …” so they had to be cut up and then welded 

“back up and stuff … bit of problem-solving”. He could laugh about his mistakes, and he 

and his fellow apprentices used them as learning opportunities to develop problem-

solving and other engineering skills.  

 


