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Abstract

Online hate speech and violent extremism knows no borders, no political

boundaries, no remorse. Researchers face an uphill battle to collect hate

speech data in volumes and topical diversity suitable for training state-of-the-

art content-moderation systems. Neural language models ushered in a new

era of synthetic data generation in use across various businesses, all despite

calls for research to protect against unintended toxic output. We present a

method for radicalising pre-trained neural language models to identify real

online hate speech, as well as present the risks of rouge radicalised AI bots

which could undermine our trust in social media. We present Prompt-GAN, a

prompt-tuning adversarial approach with three achievements. We demonstrate

prompt-tuning’s ability to generate realistic types of hate and non-hate speech

which mimics political extremist discourse. Prompt-GAN’s architecture offers

a twofold reduction in memory and runtime requirements compared to fine-

tuning. Finally, Prompt-GAN improves hate speech classification F1-scores by

up to 10.1% and sets a new record in neural language simulation compared to

the current state-of-the-art across three benchmark datasets.
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Chapter 1

Introduction

While the use of online social media to radicalise individuals is a core focus

for the War on Terror, the 2021 Capitol hill riot/insurrection and the 2019

Christchurch mosque shootings acted as a wake-up call for the bias towards

Islamic extremism by social media content-moderation and intelligence com-

munities [92, 39]. Our prior systematic literature review identified a dispro-

portionate bias towards counter-extremism research on Islamic extremism [39].

Whereby, 24% of United States originating Extremism, Radicalisation, and

Hate speech (ERH) studies targeted Islamic extremism compared to only 10%

for far-right extremism—despite 90% of terrorist attacks in the US being from

far-right extremists in 2020 [47]. Compounding these factors, international de-

velopments such as the COVID-19 pandemic, and the Russo-Ukrainian war of-

fer avenues for state and non-state actors to seed disinformation and polarising

rhetoric to undermine democratic institutions through deliberate polarisation.

All forms of social media will have some form of content-moderation policy—

ranging from normative consensus for issues such as countering child exploita-

tion or violent threats, to more disputed realms of non-violent but discrim-

inatory hate speech [31, 97, 15]. Platforms such as Facebook and Twitter

continue to counter hate speech and the use of their platforms by terrorist

organisations [31, 97]. However, mainstream platforms such as Twitter and

YouTube have algorithmic biases towards recommending polarising and ex-
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tremist content due to the notoriety and click-worthy nature [45, 56].

Surrounding social media are the challenges to online privacy and re-

searcher safety for collecting real-world hate speech datasets, as well as human

biases in labelling Extremist affiliation, Radicalisation processes, orHate speech

(ERH). In essence, these issues transcend disciplines. Hence, this study acts

as a praxis between sociolinguistics, artificial intelligence, and cyber-security.

For sociolinguistics, human annotation requires various interpretations of

content-moderation policies. Commonly, researchers utilise inter-rater agree-

ment between a panel of 3-5 participants to vote on whether a flagged post

violates community guidelines [39]. Understanding how hate perpetuates is as

much a social task as it is one of language and systematic processes.

Artificial intelligence can automate the content-moderation process to iden-

tify hate speech and extremism among large volumes of online data. Thus,

Prompt-GAN relies on the computer science field of Natural Language Pro-

cessing (NLP) via text generation and classification with deep learning models.

Cyber-security research often requires manipulating existing systems in

search for threats and vulnerabilities. Ethical ‘white hat’ hacking is not an-

tithetical to online safety, as researchers create deliberate attacks to identify

weaknesses and vulnerabilities within a controlled environment to create pre-

emptive solutions. If we understand how a malicious ‘hate or non-hate bot’

operates and its similarities to human speech, then ethical researchers can

also derive mitigations against malicious attackers who intend to cause harm

through automating hate through online bots.

Simulating online hate invokes evocative fears of rogue AI from the fictitious

Skynet to real-world fault lines—as seen by a mental health AI which told a

simulated patient to commit suicide [22]. There is a lot to learn from both

how AI ‘think’ and the patterns of human discourse that AI can mimic. What

models like the Generative Pre-trained Transformer (GPT) output can also

offer a reflection of the global biases, viewpoints, and memetic culture [1, 14].

Likewise, customised bots can intentionally destabilise online culture as a
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form of modern information warfare. The United States Intelligence Commu-

nity reported that the Russian private company, the Internet Research Agency,

acted as an organised group of “professional trolls located in Saint Petersburg...

[and acted as] a close ally of Putin with ties to Russian intelligence” [101][p.

4]. While including paid employers to act as online trolls to perpetuate hate,

Ukrainian intelligence outlined the increased use of Russian black-box bots to

provoke violence against the democratic Ukrainian government to destabilise

and instil a civil war [87]. The architecture for such state-actor bots is shrouded

in classification and secrecy, limiting our understanding to prevent such infor-

mation warfare. Thus, open cyber-security research into the use of AI for

malicious purposes is essential to identify patterns and construct benchmark

datasets to classify and identify synthetic radicalisation. In essence, synthetic

online text generating bots enables researchers to improve content-moderating

and anti-bot systems to counter the new era of online psychological operations

by state actors and identify radicalising linguistic patterns.

1.1 Motivation

Collecting hate speech datasets invokes three core challenges:

1. The data must be up to date, to reflect new events and online culture.

2. The process of human annotation of online data is both time-consuming

and costly—with researchers outsourcing annotation to paid services

such as Amazon Mechanical Turk or CrowdFlower [39].

3. Collecting online data for persistent datasets undermines online privacy

rights—particularly a user’s right to be forgotten. Even in publicly-

accessible posts, a user would likely object to having their data on record

indefinitely and be labelled as an ‘extremist’.

4. Data collection raises risks to a researcher’s safety like their mental health

when annotating real data, and retribution from collected users [19, 66].
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Hence, the motivation for our Prompt-GAN model is to reduce the time,

privacy risks, and enhance research safety through synthesising online dis-

course using deep neural language models. We also seek to conduct an exem-

plar of AI stress testing and social vulnerability discovery of public-facing text-

generation systems such as GPT-2/Neo—to analyse how an attacker could ex-

ploit a pre-trained model without manipulating the underlying model weights

or code. With GPT-3 in commercial use [75], it is essential to understand

whether such models are actually safe to use for customers—particularly given

the risks of a malicious cyber-attacker using radicalising prompts to incite

hatred to an unsuspecting customer base.

Furthermore, we seek to expand on the field of prompt-tuning of large (over

a billion parameter) language models to reduce the memory and runtime re-

quirements to generate synthetic text. As neural language model parameter

counts scale exponentially, the financial and environmental cost of training

may not justify plateauing realism improvements—with GPT-3 costing ~$12

million to train with ~85,000 kg of CO2-equivalent emissions [79]. While our

task focuses on hate speech generation and classification, Prompt-GAN’s ar-

chitecture is compatible with any open-ended real-vs-fake textual task, such

as question-answering, chatbots, journalism, fact-checking, among other open-

ended tasks. Prior prompt-tuning work explore similar tasks like question-

answering [55, 62, 112], but is not the focus of this hate speech study.

1.2 Contributions

Thus, our core contributions of our novel Prompt-GAN model are:

1. An effective string-builder approach for prompt-tuning through a Gener-

ative Adversarial Network (GAN) approach to text generation—decreasing

memory and runtime requirements for large text language models.

2. A new approach to dataset generation to reduce the cost and time to

collect and annotate social media data.
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3. An investigative framework for analysing textual realism through a digi-

tal Turing test—which demonstrates Prompt-GAN’s effectiveness in cre-

ating realistic text in topics both covered in the dataset, and out-of-

corpus topics through our domain expansion approach.

1.3 Thesis Structure

To contextualise Prompt-GAN, we present a summarised ‘algorithm handbook’

to machine learning and social media definitions in our Background Chapter 2.

Both the background and literature review chapters include summaries and

excerpts from our full under-review 35-page Systematic Literature Review on

online Extremism, Radicalisation, and politicised Hate speech (ERH) [39]. We

also include a literature review on text generation techniques in Section 3.2.

Thereafter, our Research Design Chapter 4 presents the three components

of Prompt-GAN, consisting of the automated prompt-builder model, the GPT-

2/Neo local text generator component, and text discriminator component.

We continue with the evaluation of Prompt-GAN’s data in Chapter 5. Our

results include metrics from our baseline hate classification models’, including

the use of our synthetic posts to supplement or replace the real training data.

Chapter 6 offers a discussion of the digital Turing tests on our synthetic

data, including its utility to create out-of-corpus topics and future hate speech

datasets via our domain expansion approach.

We conclude with our recommendations for future work in industry, gov-

ernment, and academia in our Conclusions and Future Work Chapter 7.

For a quick synopsis of this study, refer to our visualisation of Prompt-

GAN’s architecture in Figure 4.1 in our Architectural Design Section 4.2; along-

side the Results Section 5.2, which outlines Prompt-GAN’s improvements to

the classification performance on the real datasets. Thereafter, continue to the

summary of our three research questions and its implications and recommen-

dations for future work in the Conclusions and Future Work Chapter 7.



Chapter 2

Background

Analysing social media requires the socio-technical considerations of what con-

stitutes Hate speech, Extremism, and Radicalisation (ERH). Hence, this chap-

ter decouples and analyses ERH’s social background and definitions, which

are essential concepts to define for criteria-building for our synthetic datasets.

Section 2.2 outlines the technical definitions and algorithmic approaches for

online ERH detection, as well as the methods for generating synthetic text

to mimic human syntax, structure, topics, and speech. We conclude with a

framework for analysing online hate speech through our evidence-driven pro-

posed research area of ERH Context Mining—first outlined in our separate

interdisciplinary systematic literature review on ERH concepts [39].

2.1 Context to Social Network Analysis

To identify online hate speech and extremist organisation affiliation, com-

putational models can investigate text, audio-visual and network sources—

including textual meaning and intent through the field of Natural Language

Processing (NLP), computer vision for visual sources, and evaluating relation-

ships between users, themes, or beliefs through community detection. The

amalgamation of textual NLP, community detection, and content recognition

via multimedia computer vision thereby constitutes the three pillars to our

proposed research area of ERH Context Mining, which builds on the algo-
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rithmic analysis of language and society enshrined within the computational

sociolinguistics field. Hence, this section relies on the international academic

consensus to decouple the baggage of what constitutes hate speech, extremist

affiliation, and radicalisation towards extremist ideologies.

2.1.1 Extremism and Radicalisation Decoupled

Extremism’s definition appears in two main flavours: politically fringe be-

lief systems outside of the social contract, such as those represented by small

political parties within the political system; or violence supporting organisa-

tional affiliation which seeks to violently overthrow or reform government(s)

to implement policies through terror.

The Anti-Defamation League (ADL) frames extremism as a concept “used

to describe religious, social or political belief systems that exist substantially

outside of belief systems more broadly accepted in society” [4]. Under the

ADL’s definition, extremism can be a peaceful positive force for mainstreaming

subjugated beliefs, such as for civil rights movements. This construct of a

socially mainstream belief constitutes the Overton window [64]—the range

of socially acceptable political views, which varies by country, culture, and

time. Content-moderation is not a tool for targeting political affiliation, but

to target violent and/or hateful speech and actions—regardless of its position

on the Overton window and wider political spectrum.

Conceptually, extremism typically involves hostility towards an apparent

‘foreign’ group based on an opposing characteristic, circumstance or ideology.

Extremism often relies on defending and congregating people(s) around a cen-

tral ideology, whose followers and devotees are considered in-group [13, 10].

Extremists unify through hostility and a perceived injustice from an out-group

of people(s) that do not conform to the extremist narrative—typically in a “us

vs. them” manner. Hence, extremism detection algorithms can use non-textual

relationships as an identifying factor via clustering users into communities (i.e.,

community detection). Thus, extremism can simply reduce to any form of a
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fringe group whose identity represents the vocal antithesis of another group.

Thereby, extremism can indicate new groups and movements, and does not

have to be a focus for content-moderation.

Facebook, Twitter, YouTube, and the European Union frame extremism

as a form of indirect or direct support for civilian-oriented and politically mo-

tivated violence for coercive change [29]. Facebook expands this industry-wide

consensus to includeMilitarised Social Movements and “violence-inducing con-

spiracy networks such as QAnon” [31].

Radicalisation focuses on the process of ideological movement towards a

different belief space, which the EU frames as a “phased and complex process

in which an individual or a group embraces a radical ideology or belief that ac-

cepts, uses or condones violence” [30]. An instrument of violence-supporting

political action used by violent extremists are acts of terrorism. Whereby,

terrorism consists of politically motivated violence towards the civilian popu-

lation to coerce, intimidate, or force specific political objectives, which is an

end-point for violent radicalisation to project extremist ideology.

Nonetheless, ERH detection does not offer a panacea to combating global

terrorism, nor does surveillance offer a ‘catch-all’ solution. In the case of the

livestreamed Christchurch shooter (an extremist via his desire to use violence

to push political change), the New Zealand Security Intelligence Service con-

cluded that “the most likely (if not only) way NZSIS could have discovered [the

individual]’s plans to conduct what is now known of [the individual]’s plans

to conduct his terrorist attacks would have been via his manifesto.” [92, p.

105]. However, the individual did not disseminate this manifesto online until

immediately before the attack, and his 8Chan posts did not pass the criteria

to garner a search warrant [92, p. 105]. Hence, extremism detection is an

evolutionary arms race between effective and ethical defences vs. new tactics

to evade detection.
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2.1.2 Hate Speech Decoupled

The European Union defines hate speech as all conduct “publicly inciting to

violence or hatred directed against a group of persons or a member of such

a group defined by reference to race, colour, religion, descent or national or

ethnic origin.” [29, p. 1]

The U.S. Department of Justice has its own definition of a hate crime as “a

traditional offence like murder, arson, or vandalism with an added element of

bias... [consisting of a] criminal offence against a person or property motivated

in whole or in part by an offender’s bias against a race, religion, disability,

sexual orientation, ethnicity, gender, or gender identity.” [32]

The New Zealand Government frames hate speech in the context of persons

“who, with intent to excite hostility or ill-will against, or bring into contempt

or ridicule, any group of persons in New Zealand on the ground of the colour,

race, or ethnic or national origins of that group of persons” under Section 131

of the Human Rights Act 1993 [44]. Notably, governmental laws may differ

from industry content-moderation policies via the omission of sexual, gender,

religious or disability protections, and may protect non-violent but insulting

speech.

Online US-based platforms such as Facebook and Twitter are free to de-

termine the rules for their content-moderation policies on their platform—

including restricting access for discourse. The First Amendment enshrines

these platforms’ ability to determine what is and isn’t allowed on their plat-

form, as ruled in cases such as Zhang v. Baidu [100] and via law with Section

230 of Title 47 of the U.S. Code [99, 27].

The United Nations Office on Genocide Prevention and the Responsibility

to Protect outlines the international consensus on hate speech as “any kind of

communication in speech, writing or behaviour, that attacks or uses pejorative

or discriminatory language with reference to a person or a group on the basis

of who they are, in other words, based on their religion, ethnicity, nationality,

race, colour, descent, gender or other identity factor.” [98, p. 2]
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What these definitions have in common is that they all involve speech di-

rected at a portion of the population based on a protected class. A protected

class may include, but is not always limited to, race, sex, gender or sexual

orientation, origin, or disability status [4, 98, 29, 32, 44]. For example, “All

black people are criminals” would be hate speech as it attacks an entire group

of people based on their skin colour—with a negative intention due to a de-

meaning or dehumanising intent. Most U.S.-based hate speech laws involve

attacking individuals based on their membership in a protected class.

For the purposes of Prompt-GAN, we focus our experimental design on

generating types of hate speech due to its focus on textual natural language

processing. Furthermore, related text generation approaches of fine-tuning

and Long Short-Term Memory (LSTM) models rely on binary hate speech

datasets—which we identified as common “benchmark datasets” in Section 3.1.

We define hate speech for the purposes of Prompt-GAN as “Targeted,

harassing, or violence-inducing speech towards other members or groups based

on protected characteristics.”

2.2 Technical Definitions for Text Generation

and Classification via Deep Learning

Deep learning represents a family of machine learning algorithms based on neu-

ral networks with typically three or more nested layers. Neural networks rely

on training a network of interconnected nodes which receive signals from other

nodes in the network. Values across the network, known as weights, change

via non-linear functions to process and alter the value to send to surround-

ing neurons for further processing. Hence, these nodes ‘mimic’ the brain’s

biological neurons in this neural network. For instance, the first layer of a

neural network utilises a numeric representation of arbitrary data, such as nu-

meric values to represent parts of, or entire words. These numeric ‘tokens’ are

adjusted throughout the hidden lower layers towards a final output layer for
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classification or generation tasks. Adjusting the weights such that the input

values traverse down towards an output decision layer to a desired output (e.g.,

hateful text generation) constitutes training the neural network.

Furthermore, each downwards training step results in readjusting the weights

of the upper layers of neurons—through a process known as backpropaga-

tion [105]. Figure 2.1 displays this architecture for neural networks per our

example of hate speech detection via Natural Language Processing (NLP). The

benefit of deep learning in ERH detection is the preservation of word order

and meaning (e.g., “I ran a marathon” vs “I ran for president”), thus dis-

playing context-sensitivity. Given dual-use words such as “queer”, or racially

motivated slurs, understanding the surrounding contextual words is essential

to reduce classification bias [71].

2.2.1 Transformer Language Models

The state-of-the-art transformer architecture relies on self-attention—the mem-

ory retention of neural networks where each token in a sequence is differentially

weighted [25, 14]. Unlike Recurrent Neural Networks, where the neural net-

work’s nodes follow a temporal sequence, a transformer’s attention mechanism

utilises context for any position in the token sequence. Hence, transformers can

handle words out of order to increase textual performance in text generation

or classification tasks. Transformers offer greater classification performance

compared to non-neural network machine learning approaches, as identified

in our literature review chapter through Table 3.3. However, while non-deep

learning algorithms such as Näıve Bayes can require as little as one equation

to calculate a classification probability, neural networks can involve millions

to billions of operations per the number of neurons in the network, increasing

classification/model performance at the expense of memory and computational

overhead. A considerable ethical threat of transformer models is their ability

to predict future tokens (i.e., text generation). For instance, a malicious ac-

tor could create realistic automated trolls or radicalising synthetic agents as
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bots. Language models also risk data leakage of their trained data through

predicting tokens found in the original trained dataset, such as names or ad-

dresses [14]. Hence, while our model relies on public Open-Source Intelligence

datasets pulled from publicly accessible tweets and forum posts, we do not

open-source our hate speech generating code to prevent malicious use.

Figure 2.1: An abstracted example of a neural network for text classification.

The top text represents its raw syntactic form with its converted numeric em-

bedding representation. These embeddings are responsible for altering the

weights to increase token prediction or generation (for transformers) via back-

propagation. The final output layer for this example would offer the probability

that the given text is racist, sexist, or benign. N.B. Eldians are a fictitious

persecuted race as depicted in the fantasy series, Attack on Titan.

2.2.2 Learning Language Models—Defining Training, Fine-

tuning, and Prompt-tuning

There are three key strategies to generate a desired output from language

models. Firstly, learning patterns to generate a desired output from all zero

or randomly initialised weights constitutes full training. Training from scratch
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requires a significant corpus of data to ensure that the neural network under-

stands complex human topics, entity-event relationships, themes and facts; as

well as linguistic structure and syntax for the training dataset(s) language.

For the three language models we consider, the pre-trained corpus includes:

1. The training data used to train the Robustly Optimized Bidirectional

Encoder Representations from Transformers (RoBERTa) model—pre-

trained on entries from English Wikipedia (2.5 million words), the En-

glish BookCorpus (800 million words), 63 million news articles, forums,

and stories across the 125 million parameter roberta-base model [61].

2. GPT-2’s training data—pre-trained on 40GB of internet text varying

from Wikipedia to online forums and websites scrapped using a custom

in-house web scrapper [80].

3. GPT-Neo training data—pre-trained on 886.03GB of online text rang-

ing from one-third academic sources (PubMed Central, ArXiv, FreeLaw

among others), web text (CommonCrawl, OpenWebText2 on Reddit and

Twitter, Wikipedia, StackExchange), book corpora, code, subtitles and

comments from YouTube, and open-source public forums [38].

Secondly, we can reduce the amount of data to process by instead mod-

ifying the existing weights to bias a pre-trained model towards generating a

desired output for classification or text generation. Whereby, fine-tuning is

a form of transfer learning—utilising the original source model’s weight and

freezing a subset of layers. Typically, freezing the pre-trained weights are

done across whole layers in between the input and output layers. As the pre-

trained model already understands general linguistic and epistemological pat-

terns, fine-tuning a BERT-based model can require as little as adding a single

output layer for classification tasks [25]. Fine-tuning more layers will result

in higher classification performance than fine-tuning with more frozen/fixed

layers. For instance, BERT’s question-answering F1-score performance (i.e.,

a harmonised value balancing accuracy and precision) remains stable when
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freezing the first eight layers but deteriorates when freezing any of the last

four layers [34]. Unknowns in working with BERT includes determining the

ideal performance-runtime trade-off between the number of layers to freeze

for fine-tuning and how language models respond to new patterns. Collec-

tively, understanding the decisions made by BERT-based models underpin a

‘unknown unknown’ in machine learning in a field framed by Rogers et al. as

BERTology [85].

Another issue with fine-tuning is that it requires altering the weights within

the network to instead bias the input dataset. For instance, fine-tuning a

GPT-2 model on a hate speech dataset can generate hate speech which can

supplement a real-world dataset, as demonstrated by the MegaSpeech corpus

consisting of one million synthetic sentences from a fine-tuned GPT-2 model

on a corpus of hate speech data [107]. A pre-trained GPT-2/3 model will

have a generalised understanding of geopolitical events and entities due to

its pre-trained corpora consisting of Wikipedia, BookCorpus, and academic

sources [14, 12, 80]. However, the fine-tuned model sacrifices its knowledge of

its pre-trained data to instead mimic the fine-tuned dataset—causing the new

model to forget its previously learned latent information. Hence, a fine-tuned

model on a white supremacy US-centric hate speech corpus is unlikely to gen-

erate reliable hate speech for anti-White racism or non-hate speech instances

due to the catastrophic forgetting of its pre-trained knowledge base.

In the example below, we demonstrate the issue of catastrophic forgetting

of useful hate-specific information by comparing GPT-2 and a fine-tuned (on

the de Gibert et al. [23] hate speech dataset) GPT-2 model:

The corresponding outputs in Table 2.1 reflect this bias towards replicat-

ing the fine-tuned hate corpus, in turn losing its prior knowledge of events—

typically resorting to blaming any X event as being a good or bad thing for the

targeted racial class. This catastrophic forgetting of its original social knowl-

edge is detrimental if we want to generate diverse multi-topic and multi-ethnic

datasets. Specifically, querying entities of any form tend to generalise anti-
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Table 2.1: Output from prompt: “Question: What is the September 11 at-

tacks? Answer: ”

GPT-2 (1.5B) Baseline GPT-2 Fine-tuned on de Gibert et al.

hate corpus

“The September 11 attacks were at-

tacks on the United States by al-Qaida

and Osama bin Laden.”

“The attacks are an example of

Africans.”

Jewish or anti-black hate speech, often claiming that any event is to target

the perceived targeted “white race”. Thus, we cannot create opposing speech,

or hate speech from other ethnic, political, or social perspectives (e.g., Islamic

extremist speech which is more likely to target the white demographic of the de

Gibert et al. Stormfront data [23]). Hence, we postulate that language models’

diverse social and political knowledge, paired with its online posts within its

pre-trained corpus, will all suffice for hate speech generation without the need

for fine-tuning.

2.2.2.1 Prompt-tuning

Thus, a third way to create synthetic data without further training is through

prompt modification. Given the input layer for language models such as GPT,

we can modify the input prompt to provide an instruction with the intention

to only modify the input ‘prompt’ layer, and not manipulating any of the

model’s inner layers/weights (unlike fine-tuning or full training, which relies

on modifying the model). Prompt-tuning can rely on manual trial-and-error

to identify prompts that create consistent, repeatable, and realistic outputs [55,

112, 62]. As an alternate to manipulating textual prompts through manual

design, Lester et al. [55] considered perturbing numeric embeddings for the T5

model using a pre-existing crafted prompt to enhance model performance on a

multitude of text generation tasks. However, both approaches require manual

trial-and-error to create a starting prompt. The key benefit to prompt-tuning

is that it retains the model’s original knowledge from its pre-trained corpus, as
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the weights are not modified to generate a biased output (e.g., fine-tuning to

create hateful output posts)—which is the cause for catastrophic forgetting.

However, modifying prompt embeddings presents two challenges:

1. Modifying the input-layer embeddings requires modifying up to 1024

dimensions—leading to a feature explosion due to the embedding space’s

high dimensionality.

2. Given the highly specific task for prompt-tuning, most of the embedding

space will not be useful for the task or even linguistically relevant.

Embeddings which reflect seemingly random prompt strings will create

random output. Specifically, generating a prompt input must follow a linguistic

structure and understand GPT’s embedding space, as well as understand the

niche task to solve.

Thus, prompt design and soft prompt manipulation currently require a

static starting input prompt or embedding vector to generate text which guides

the model towards the topic/task required. Google’s trainable soft-prompts

are also limited to only 20 tokens, due to the high dimensionality exponentially

increasing performance (as each token is contextual, thus changing one token’s

embeddings would impact all) [55]. To our knowledge, no studies consider

automated means of reducing the prompt token selection space (i.e., avoiding

embeddings which are not relevant to the task or topic) or instruction-tuning.

Likewise, Lester et al. designed their 20-token soft prompt vector model around

the T5 language model’s encoder-decoder architecture, which is incompatible

with GPT’s faster decoder-only architecture [55, 67]).

Prompt-tuning can reduce memory requirements by at least 50%, as fine-

tuning requires a copy of the optimiser weights and activations for further

processing via backpropagation. As prompt-tuning does not alter any weights,

runtime for text generation is conceptually faster as only forward operations

(i.e., traversing the neural network, known as inference) are required to gen-

erate the desired output, with no need to store or process any intermediate
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weights. In our example of catastrophic forgetting in Table 2.1, inference on the

345 million parameter GPT-2-medium model required 3.56GB of Video Ran-

dom Access Memory (VRAM), while fine-tuning the model required 8.38GB

for the GPT-2-medium. Thus, prompt-tuning further enables us to test larger

language models with more realistic text generation capabilities before running

out of available memory. With our Prompt-GAN architecture, we can reduce

the training time to be ~3.5x faster than fine-tuning—26 minutes to train via

inference with Prompt-GAN, compared to 92 minutes to fine-tune the same

size GPT-2-XL model on the same Stormfront dataset.

2.2.2.2 Cross-encoders (e.g., BERT)

Bidirectional Encoder Representations from Transformers (BERT) is the most

common cross-encoder observed for ERH detection [25]. BERT upholds the

highest performance of all NLP models observed in our literature review as they

outperform non-deep approaches by 10% by F1-score [39]. Cross-encoders offer

higher performance for classification tasks, through retaining information over

a given sequence with a label (i.e., self-attention). BERT’s strength is its mem-

ory retention of all tokens in a sentence, thus upholding full context-sensitivity

of every word in the input text. However, cross-encoders are computation-

ally expensive due to their high parameter counts (110 million parameters for

BERT-base, 365 million for BERT-large). Hence, an area of ongoing research

includes model distillation, which consists of optimising and reducing a model’s

parameter count by training a lower parameter count model to predict the pat-

terns of a larger model’s weights to reduce memory requirements and training

time [42]. Other methods for optimising BERT classification performance in-

clude increasing dataset size, adding multi-class labels to provide BERT more

diversity for training, and alternate layer architectures [61, 84, 109].
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2.2.2.3 Generative Pre-trained Transformer (GPT)

Similarly, the state-of-the-art GPT transformer architecture expands on the

encoder blocks (shared with BERT) to include decoder blocks [14]. Hence,

GPT works on a token-by-token basis by estimating a sequence’s next token—

ideal for tasks such as text generation, summarising, question answering, and

information retrieval.

GPT models differ from BERT-based models via masked self-attention—an

alternate form of context-sensitivity where the model only knows the context

of the prior words in the sentence. GPT-2/3 [14], GPT-Neo [12], and Jurassic-

1 [57], are notable 2019-2022 era multi-billion parameter models—where their

larger pre-trained corpus and parameter count result in generating better per-

formance in information retrieval and text generation tasks [14].

2.2.2.4 Siamese and Triplet BERT (Sentence-level BERT)

Sentence-level BERT extends the BERT model through generating two par-

allel contextualised word embeddings—and pooling the output for the overall

sentence [84]. The core rationale for SBERT over BERT is its utility for find-

ing the most similar pair of sentences, known as Semantic Textual Similarity

(STS). Calculating the most similar sentence among a collection of 10,000 sen-

tences using the word-by-word BERT embeddings can require up to 50 million

inference operations. Hence, Reimers and Gurevych [84] proposed pooling the

embeddings from two sentences and utilising cosine similarity across the pooled

sentence embeddings to reduce the computational complexity of STS tasks.

We consider SBERT in our experimental design to identify if a pre-trained

SBERT model can detect the semantic differences between hate and non-hate

data—which we investigate and visualise in our Evaluation Chapter 5.

As the SBERT architecture is a wrapper consisting of a triplet network

of BERT models, we consider and substitute multiple types of BERT models

when identifying the semantic similarity between hate and non-hate data. Ta-

ble 2.2 presents the four models we select for the SBERT network as based on
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their state-of-the-art sentence embedding and semantic search performance [83].

To balance runtime, we also consider a distilled version of the SBERT model

for computational, memory and energy efficiency.

We hypothesise that contextual sentence-level embeddings could help gen-

erate new sentences with high semantic similarity to hate speech data. If this

hypothesis holds, then we could use the semantically similar hate sentences as

a starting prompt for the GPT-2/Neo synthetic post generator.

Model Performance

Sentence

Embeddings

Performance

Semantic

Search

Average

Perfor-

mance

Speed

All-mpnet-base-v2 69.57 57.02 63.3 2800

All-roberta-large-v1 70.23 53.05 61.64 800

All-distilroberta-v1 68.73 50.94 59.84 4000

Average word embed-

dings glove.6B.300d

49.79 22.71 36.25 34000

Table 2.2: Comparison of SBERT variants [83]. Performance for sentence

embeddings average across 14 STS datasets, while semantic search performance

is average across 6 datasets. Average performance aggregates all 20 datasets.

2.2.3 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) reflect a machine learning frame-

work consisting of two key components: a generator, and a discriminator

neural network. The principle of a GAN is to generate synthetic data and

discriminate the synthetic data from real data. The relationship between the

synthetic data generator (typically a separate neural network) and the dis-

criminator network reflects a zero-sum game, whereby the generator’s training

objective is to create synthetic data that maximises the loss function of the

discriminator—in effect, aiming to “trick” the discriminator network into clas-

sifying the synthetic data as real, and real data as fake. After the generator
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network’s training run (epoch), the discriminator network retrains using the

new synthetic data, along with the original data—aiming to learn the new

patterns between real and fake. The initial state of the generator is typically a

randomly generated latent space which is then trained towards the embedding

space of the desired output. To ensure consistency in training, the GAN relies

on training the generator and discriminator networks separately—either test-

ing the new weights/setup for the generator or freezing the generator’s weights

and training the discriminator. Figure 2.2 displays the full architectural pro-

cess of training the adversarial generator to training the discriminator and

offering feedback to the generator via backpropagation or a policy update.

Figure 2.2: Architecture for a generic Generative Adversarial Network (GAN).

For instance, the below results from the image generating StyleGAN2 face

generator would initially create static white noise images which would be easily

distinguishable from the real-life faces in the training dataset [50]. However,

the perturbed generator’s neural network weights will learn the training data’s

shapes, colours and patterns. Initially, this may be as simplistic as creating an

image with a circle, given that human heads are typically circular in shape. If

the generator tests a change in weights that results in less human like qualities

(e.g., testing a triangle shaped head), this will result in a lower discriminator

loss, and thus the generator would reject the policy changes. Training ceases
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after a predetermined amount of generator and discriminator epochs, or when

the discriminator’s loss stabilises. The final result demonstrates compelling

human-like synthetic faces, as displayed with three examples from StyleGAN2

in Figure 2.3.

Figure 2.3: Three synthetic faces generated via Nvidia’s StyleGAN2 model [50].

In the context of Prompt-GAN, our aim is to optimise the arbitrary textual

input to GPT-2/Neo to create synthetic text to trick a BERT-based discrimi-

nator. Our intention is that such arbitrary text reflects different forms of hate

and non-speech as stylised towards the target platform—specifically tweets of

up to 280 characters, and longer arbitrary-length posts stylised to mimic the

extremist white supremacist forum Stormfront.

2.2.4 Definitions for Prompt-GAN’s Feature Extraction

Techniques

This subsection outlines the four feature extraction techniques used for textual

ERH detection, consisting of numerical representations for word or entities via

word-vector embeddings via Word2Vec [70] and Wikipedia2Vec [108], topic

extraction and related topic search via BERTopic [40], and text frequency

analysis techniques via Term Frequency-Inverse Document Frequency.

2.2.4.1 Embedding Representations and Word2Vec

To represent textual words in manner conducive to search and identify ‘near-

est/most similar’ words, Word2Vec-based approaches represent words as an
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n-dimensional array. In a 2D array, one could imagine words with similar em-

beddings acting as coordinates on a map, whereby words like chocolate and

vanilla sharing similar ‘coordinate’ embedding values and thus being closer

together than non-food words like house or apartment. Calculating the spatial

similarity of words represented as multidimensional vectors (i.e., embeddings)

typically utilises cosine similarity, with the equation of:

cos(θ) =
x · y

∥x∥∥y∥
(2.1)

Cosine similarity equation

Cosine similarity measures the cosine of the angle between the two multi-

dimensional vectors. In equation 2.1, x and y reflect the numeric embedding

arrays for two words. A cosine similarity value of 0 reflects that the multidi-

mensional arrays share no similarity, as the output angle value are at an or-

thogonal 90-degree direction. Conversely, a cosine similarity of 1 demonstrates

a matching angle between the vectors—reflecting that the two embeddings are

identical. Where the overall embedding space reflects semantic similarity, a

cosine similarity value closer to 1 reflects words of similar meaning.

Word2Vec is a model to convert words into vector embeddings, which com-

pares synonymous words (e.g., hate and disgust) via numerical vectors [70].

On a word-level basis, the vector value for king minus the value for man and

adding the vector value for woman would equal a vector similar to queen [70].

In our case, the concept of an Islamist extremist and ISIS are semantically

similar akin to White supremacy and Nazism.

2.2.4.2 Wikipedia2Vec

Wikipedia2Vec extends the word-vector relationship of Word2Vec with a graph-

based entity-relationship model [108]. In addition to linking words based on

its use and context within the training corpus, Wikipedia2Vec’s graph-based

entity-relationship model works by linking the embeddings between the terms

and the articles within Wikipedia—to link term use and entities (i.e., events,
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individuals, groups, and any Wikipedia page’s title). The learned embeddings

of similar words and entities cluster together within a 100-dimension embed-

ding space and rely on three sub-models:

1. Wikipedia link graph model—an undirected graph where the nodes rep-

resent Wikipedia article titles (i.e., entities) and the edges represent links

between entities throughout Wikipedia.

2. Word-based skip-gram model—similar to Word2Vec, whereby neighbour-

ing words provide context to a target word’s vector in the sparse embed-

ding space.

3. Anchor context model—grouping words and entities together, where the

model learns these embeddings by predicting the neighbouring word-

s/terms for each entity.

The training process for these three sub-models rely on skip-gram training—

which uses the nearest embeddings to predict contextual words and entities

given a target term. Skip-gram training could include searching for related

words and terms needed to correctly predict the target word rugby, which may

include finding relevant rugby players and the overall topic entity of sports.

No studies consider Wikipedia2Vec for hate speech detection or genera-

tion. Our Prompt-GAN architecture explores Wikipedia2Vec to identify re-

lated concepts, entities, and terms to seed/prepend to our input prompt to

generate diverse hate and non-hate data. Our approach includes automati-

cally searching historical events and entities to create internationalised multi-

political datasets—in a method we hybridise with multiple feature extraction

techniques and henceforth frame as ‘domain expansion’.

To ensure the topical relevance of our synthetic data given the dynamic

and rapidly changing nature of online discourse, we do not use the original

April 2018 Wikipedia model. Instead, we retrain a 100-dimension model on

the April 2022 Wikipedia corpus—and integrate both the link-graph, mention

database of entities-referring-other-entities and textual embeddings to create a
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3.5GB output model. Thus, the updated model will include topics, events, and

notable individuals post-2018—enabling our Prompt-GAN model to explore

topical radicalising events such as the ongoing COVID-19 pandemic. We port

the updated model to PyTorch 1.11 and Python 3.10 for compatibility with

our PyTorch and Huggingface compatible Prompt-GAN architecture.

2.2.4.3 Topic extraction via BERTopic

BERTopic is an embedding-based topic clustering approach which relies on

encoding the datasets into a pre-trained BERT model–—which converts the

tokenised dataset into a 768-dimension topic-based embedding array [40]. As

finding the nearest topics from 768-dimension is computationally expensive due

to the embedding space’s high dimensionality, BERTopic’s architecture trans-

forms the high-dimensional sparse embeddings to a lower-dimension manifold

via Uniform Manifold Approximation and Projection (UMAP) for Dimension-

ality Reduction. Thereafter, BERTopic reduces the computational complex-

ity of calculating the proximity of related word embeddings via clustering

the lower-dimension approximations for the topic embeddings. Whereby, the

BERTopic architecture employs the Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) dimensionality reduction technique to identify

areas of high-density embedding clusters and related clusters to reduce an

otherwise sparse dimension space. From these clusters, we can identify class-

specific words by ranking the frequent and related topics via Maximal Marginal

Relevance (MMR) to rank relevant keywords by its topical similarity.

2.2.4.4 Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF determines the relevance of a word in a document by comparing its

frequency in the document to its inverse number for the frequency of that word

across all documents [105]. Thereby, assigning each word a weight to signify

its semantic importance compared to the wider corpus. For instance, radical

Islamist dog-whistle terms (i.e., coded or suggestive political messages intended
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to support a group) appeared disproportionately in extremist text compared

to a neutral religious corpus [82].

The base equation for TF-IDF consists of:

tfidf(t, d,D) = tf(t, d)× idf(t,D)

Where in our case, we use a variant of TF-IDF with smooth normalisa-

tion/regularisation where the IDF component is:

idf(t) = log
n

df(t)
+ 1

While not typically an issue for constrained length data, such as Twit-

ter tweets’ 280 character limit, longer text sequences tend to bias extracted

terms as they appear more frequently in a longer document. For instance,

we target the variable word length forum Stormfront, whereby the de Gibert

et al. [23] dataset includes sentence-long replies to rants and multi-paragraph

miniature-manifestos for longer topical posts. Hence, we apply L2 normalisa-

tion to constrain the dataset’s values to be between 0 and 1 (also referred to

as the least squares approach), resulting in the following equation:

v̂ =
−→v
∥−→v ∥

We also consider grouping related words by topic and hate class category,

which we group via cosine similarity using the TF-IDF vectors via the equation:

cos(θ) =
v · w

∥v∥∥w∥
=

∑n
i=1 viwi√∑n

i=1 v
2
i

√∑n
i=1w

2
i

(2.2)

TF-IDF clustering with cosine similarity equation

Whereby v and w represents two different document-to-document TF-

IDF vectors. If the vectors are identical, then the words and frequency are

identical—which is useful for plagiarism detection as a 1.0 cosine similarity

denotes identical text sequences. Conversely, a cosine similarity of 0 identifies

two different sequences of words without any shared terms.
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As common words such as the, what, to frequently appear in any text

regardless of topical content, they are marginalised in the TF-IDF calculation

as these ‘stop words’ have both a high term frequency (TF) and high frequency

in the overall collection (IDF), thus their TF-IDF score is low.

2.2.5 ERH Context Mining—an emerging academic area

We stratify the full ecosystem to developing ethical and representative hate

speech detection via unifying sociolinguistics, computer science, ethics and

law into the field we frame as ERH Context Mining. Context mining be-

gins with social science analysis of what defines radicalisation, extremism, and

hate speech as concepts. Drawing from our systematic literature review, we

identified an international non-partisan consensus for each ERH definition—-

without giving specific politically aligned examples [39]. We aggregate these

observed definitions with the following modernised definitions for Extremism,

Radicalisation, and Hate speech in the context of computational social media

analysis and understanding online context:

Def. 1: Morphological Mapping & Consensus-building (Extrem.)

The congregation of users into collective identities (“in-groups”) in sup-

port of manifestly unlawful actions or ideas.

Def. 2: Ideological Isomorphism (Radicalisation)

The temporal movement of one’s belief space and network of interac-

tions from a point of normalcy towards an extremist belief space. It is

an approach to detecting radicalisation with an emphasis on non-hateful

sentiment as ringleaders and/or influencers pull and absorb others to-

wards their hateful group’s identity, relationships, and beliefs.
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Def. 3: Outwards Dissemination (Hate Speech)

Targeted, harassing, or violence-inducing speech towards other members

or groups based on protected characteristics.

Upon generating ERH annotation criteria, researchers begin the data min-

ing element of context mining via the data selection, collection, and extraction

elements displayed in Figure 2.5. Whereafter, the process shifts from social-

science oriented criteria and dataset collection to ERH detection strategies

utilising artificial intelligence. Responsible and Explainable Artificial Intelli-

gence (XAI) requires harmonising social and computer science fields, as well

as human-driven review processes to ensure that ERH detection or generation

modules mitigate biases and do not infringe on user privacy. Elements such as

identifying controversial platforms, synthetic text generation, and topic map-

ping to informative sources are all key research gaps identified in our systematic

literature review and considered in this project’s architecture. We further vi-

sualise the pipeline of ERH Context Mining, and its current research gaps, in

Figure 2.5.

On an interdisciplinary level, Figure 2.4 displays the research recommen-

dations and life cycle for software engineering with ERH systems. ERH Con-

text Mining research and development should seek to balance the control

and interaction between researchers; industry, such as social media platforms

themselves; self-regulation, and law via government oversight—particularly

for ethics and data sovereignty. Open-source intelligence (OSINT), which is

information from publicly accessible data sources, is key to researching and

deploying ERH detection models that protect user privacy. Likewise, ensur-

ing self-regulation, such as restricting Prompt-GAN’s access to academics upon

their request and our review (i.e., semi-closed access), restricts our model from

misuse and abuse by malicious actors-—essential given our Prompt-GAN ar-

chitecture’s ability to generate realistic and politically extreme hate speech.
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Figure 2.4: ERH Context Mining (ERH-CM) eight core components for Re-

search, Industry, and Government.
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Figure 2.5: ERH Context Mining pipeline—with key identified research gaps.



Chapter 3

Literature Review

This literature review chapter focuses on the sections and findings pertinent to

Prompt-GAN’s architectural design. For a holistic understanding of existing

multi-media ERH detection, and more on ERH Context Mining, please refer

to our full interdisciplinary Systematic Literature Review (SLR) [39].

Our SLR investigated the state-of-the-art approaches, datasets, socio-legal,

and technical implementations used for Extremism, Radicalisation, and politi-

cised Hate speech (ERH) detection. Unlike prior work, a computational ap-

proach to extremism includes political affiliation studies if the discussions con-

tain hate speech. In context with the concept of Social Media Intelligence

(SOCMINT), being the investigation of social media to understand user habits

and beliefs, we frame social media data as any online medium where users can

interactively communicate, exchange or influence others. We accepted exter-

nal data sources, such as manifesto or news sites if they included interactive

online sections—such as via comment sections. To preserve user privacy, we

only consider information from publicly accessible forums and websites—in line

with OSINT principles. We identified 51 studies from 2015-2021—a period se-

lected to reflect an updated presentation of the state-of-the-art ERH detection

methods compared to older reviews. No prior SLRs simultaneously considered

Extremism (affiliation), Radicalisation (movement towards extremism ideol-

ogy), and Hate speech. Furthermore, we present the first cross-examination of
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multi-media, community detection (i.e., relationships and networks between

extremists), and Natural Language Processing (textual) detection of ERH in

social media. We visualise each of the variations between labelled “supervised”

individual hate speech and/or extremist posts, as well as the unlabelled auto-

matic clustering (i.e., ‘unsupervised’) of online hateful and/or extremist groups

in Figure 3.2. We targeted only peer-reviewed studies which investigated social

media data via binary, multi-class, clustering, or score-based algorithms. Our

iterative process for study selection included a title and abstract screen, which

evaluated each study’s title and abstract for its compatibility with our search

criteria and scoring regime [39]. Thereafter, we screened the full document

for the Full Text Screening, and randomly sampled new studies to evaluate

from the sampled studies bibliographies—through a process known as snow-

ball sampling. Overall, we identified 51 studies to discuss throughout our SLR,

with each study count outlined in Table 3.1, and the overall screening process

visualised in Figure 3.1.

We also conduct a secondary esoteric literature review targeting existing

prompt-engineering and synthetic text generation approaches, which we pro-

vide in the latter half of this chapter.

We conclude this Chapter in Subsection 3.2.2 with the key gaps in related

work, and how we incorporate our proposed solutions within Prompt-GAN.

Table 3.1: Studies found and filtered

Screen Type Study Count

Search Strings 251

Title and Abstract Screen 57

Full Text Screening 42

After Snowball Sampling 51
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Figure 3.1: The full protocol conducted for this Systematic Literature Review.

3.0.0.1 Threats to Validity

While we consider a concerted range of search strings, we recognise that ERH

concepts are a wide spectrum. To focus on manifestly hateful, politicised, and

violent datasets/studies, we excluded cyber-bullying or sentiment-detection

studies. The potential overlap and alternate terms for ERH (e.g., sexism as

“misogyny classification” [20]) could evade our search strings. Nonetheless, our

pilot study, subsequent tweaks to our search method, and snowball sampling

strategy minimises this lost paper dilemma.

This study does not involve external funding, and we declare no conflicts

of interest.

3.1 Hate Speech Datasets—the Existing Bench-

marks

We define a benchmark dataset as any dataset evaluated by three or more

studies. The majority of studies used custom web-scrapped datasets or Tweets

(51%) pulled via the Twitter API.

Hate speech datasets suffer significant researcher selection bias, with no
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Figure 3.2: Types of Extremism, Radicalisation, and Hate speech (ERH) re-

search avenues. Hate speech and topical affiliation (white supremacy) targeted

in this Prompt-GAN study.
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Table 3.2: Datasets used by more than one study.

Dataset Year Categories Platform of

origin

Collection strategy Used By

Waseem and

Hovy [104]

2016 16914 tweets: 3383 Sexist,

1972 Racist, 11559 Neutral

Twitter 11-point Hate Speech Crite-

ria

[49, 6, 104, 107,

77, 71, 72, 63,

48, 46]

FifthTribe

[33]

2016 17350 pro-ISIS tweets Twitter Annotated pro-ISIS accounts [73, 5, 82, 88]

de Gibert

[23]

2018 1196 Hate, 9507 Non-hate, 74

Skip (other) post segments

Stormfront 3 annotators considering

prior posts as context

[63, 48, 107, 23]

OffenseEval

(OLID) [110]

2019 14100 tweets. (30%) Offen-

sive or Not; Targeted or Un-

targeted insult; towards an

Individual, Group, or Other

Twitter Three-level hierarchical

schema, by 6 annotators

[110, 113, 48,

59]

HatEval [8] 2019 10000 tweets distributed

with Hateful or Not, Ag-

gressive or Not, Individual

targeted or Generic

Twitter Crowdsourced via Figure

Eight, with 3 judgements

per Tweet

[63, 103, 104,

107, 48, 8, 76]

Davidson et

al. [21]

2019 25000 tweets: Hate speech,

Offensive, Neither

Twitter 3 or more CrowdFlower an-

notators per tweet

[21, 63, 48, 107,

46, 72, 71]

TRAC [53] 2018 15000 English and Hindi

posts; Overtly, Covertly, or

Not Aggressive

Facebook Kumar et al. [54] subset, 3

annotators per post, com-

ment or unit of discourse

[49, 48, 63]

Figure 3.3: Distribution of classification target across the 51 studies.

studies utilising data or groups from Oceanic countries due to the global skewed

focus on the US and the Middle East in ERH research. Specifically, despite the

decline of the Islamic State as a conventional state actor post-2016, 31.6% of

US-originating studies targeted Islamic extremism, compared to 15.8% focus-

ing on violent far-right groups. Despite more Islamic extremist studies from

US-oriented research, over 90% of terrorist attacks and plots in the US were

from far-right extremists in 2020. Across all studies globally, far-right white
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supremacy only constitutes 10% of studies as displayed in Figure 3.3

Waseem and Hovy offer a quintessential benchmark due to its frequent use

by 10 studies, with its comprehensive 11-point hate speech criteria [104]—

unique given that only 20% of the 51 studies offered a legal or social def-

inition or criteria for annotating hate speech. Unfortunately, revised 2021

Twitter Academic API regulations removed the ability to pull from suspended

accounts—removing the ability for researchers to use datasets requiring the

API [9]. Nonetheless, alternate Twitter-based benchmark datasets such as the

Davidson et al. Hatebase-Twitter dataset includes archived Tweets stored on

Git, thus remaining accessible to researchers [91].

Thus, we select three datasets based on our literature review to test Prompt-

GAN’s ability to generate synthetic hate speech and conduct transfer learning

to prove its ‘generalisation’ capability. We define ‘generalisation’ as the abil-

ity to train Prompt-GAN on one dataset’s training data (‘dataset A’), then

generate synthetic hate speech but instead test this synthetic data on the real

data from the external unseen ‘datasets B and C’. The concept of testing an-

other dataset imbues the concept of transfer learning and will demonstrate

Prompt-GAN’s ability to create multi-class, multi-topic and multi-platform

hate speech.

The three datasets we train Prompt-GAN on are:

1. de Gibert et al. (DG) Stormfront dataset [23]—to highlight and

address the underrepresented field of far-right extremism and hate speech

research—and its impact on New Zealand’s security as evident in the

2019 Christchurch shootings. The Southern Poverty Law Center de-

scribes Stormfront as “the first major hate site on the Internet... [whereby]

the site has been a very popular online forum for white nationalists and

other racial extremists” [94]. The data is of variable length, ranging

from small replies to long diatribes such as political statements and calls

to action which constitute a form of ‘mini-manifesto’. This dataset will

help demonstrate Prompt-GAN’s ability to generate long human-like,
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contiguous, and class-relevant hate or non-hate posts. Non-hate data

are from Stormfront posts that are not explicitly hateful. The longest

post is 2153 characters, and the median post length is 153 characters.

2. Davidson et al. (Hatebase-Twitter) dataset [21]—a benchmark

dataset used by seven datasets observed in our SLR. We test Prompt-

GAN’s ability to generate restricted length Tweets—which are up to

280 characters long. The multi-class ‘Hate’, ‘Offensive’ and ‘Neither’

class labels will discern the difference between general offensive hatred,

compared to targeted discrimination of protected characteristics à la

hate speech. The median post length is 81 characters.

3. Implicit-Explicit hate speech [28]—contains Twitter tweets as la-

belled as either Explicit hate, Implicit hate, or Non-hate. Explicit hate

denotes verbal attacks which are “direct and leverages specific keywords”

and is the default hate definition for binary datasets. Implicit hate is a

novel category containing “coded or indirect language that disparages a

person or group on the basis of protected characteristics like race” [28,

p. 345] used to evade bans via plausible deniability. Implicit hate also

includes latent linguistic features such as sarcasm for a discriminatory

effect, coded language, references, dehumanising stereotypes and moti-

vated disinformation. Implied hate often relies on deliberate logical fal-

lacies to undermine another group, while explicit hate is direct, targeted

and threatening. The non-hate class acts as the control in this three-class

non-overlapping dataset. The median post length is 89 characters.

Furthermore, the variety in platforms (Stormfront posts and Twitter tweets)

and ideological affiliation will help identify biases in language models based on

the topics, individuals, and politics emanated from GPT-2/Neo in the syn-

thetic posts. The selection of datasets offers posts from a white supremacist

extremist affiliation, as well as generic racist, sexist and other discriminatory

posts via the Twitter datasets.
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3.2 Hate speech Discriminators and Generators—

Observing the State-of-the-Art

For textual NLP studies, researchers tended to classify hate speech by convert-

ing the input into word embeddings via Word2Vec, GloVe, or frequent words

via Term Frequency-Inverse Document Frequency (TF-IDF); then parsing it

into Support Vector Machines, decision trees, or logistic regression models [39].

As these embeddings do not account for word order, context and nuance are

often lost—leading to higher false positives on controversial political threads.

Conversely, another approach to hate speech classification is through deep

learning, which implements context-sensitivity through positional and contex-

tual word embeddings for higher classification performance. Deep learning

approaches such as Bidirectional Encoder Representations from Transformers

(BERT), Convolutional Neural Networks (CNN), and Bidirectional attention

Long Short-Term Memory (BiLSTM) deep learning approaches frequently out-

performed non-deep machine learning approaches, as evident in Table 3.3.

Overall, the high F1-score performance of state-of-the-art BERT, BiLSTM,

and CNN-GRU models represent a recent trend towards deep learning ap-

proaches for hate speech discrimination—with Figure 3.4 displaying the shift

of model choice over time due to these advances in deep learning models.

Figure 3.4: Patterns of adoption for ERH detection algorithms over time.

Colour change ordered by F1-score trend (low to high). Brown = 0.75 F1-

score on benchmark datasets, Red = 0.9 F1-score, Grey = No Data.
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Hence, for the discriminator component of our Generative Adversarial Net-

work approach, we consider variants and derivatives of BERT models due

to their top three F1-score performance on the Davidson et al. [21] Twitter,

and de Gibert et al. [23] Stormfront datasets. The specific approaches and

code for the SP-MTL LSTM (highest performing Stormfront hate classifica-

tion model) and the Davidson et al. BiLSTM model are not provided—thus we

utilise BERT models outlined in Section 4.2.3. While BERT, attention-layered

Bidirectional Long Short-Term Memory (BiLSTM), and other ensemble DLAs

attain the highest F1-scores, no studies consider their performance trade-offs

with their high computational complexity. Thus, we consider computational

performance in our design by analysing the RAM and Video-RAM require-

ments, and the model’s runtime complexity. Furthermore, we act on our full

SLR’s [39] recommendations for further research in prompt-engineering (via

our text generation module), and distilled classification models to reduce run-

time complexity—leading to our selection of DistilRoBERTa per our discrim-

inator tests outlined in Section 5.1.2.

We target text-based generation and neural network approaches for detect-

ing hate speech, as non-textual community detection (i.e., relationships such as

follower/following networks) and traditional non-deep machine learning stud-

ies resulted in lower classification F1-score by ~0.15 and ~0.2 respectively.

Table 3.3: Models ranked by F1-score for the benchmark datasets across stud-

ies (inter-study evaluation).

Dataset 1st Highest 2nd Highest 3rd Highest

Waseem and

Hovy [104]

0.966 (BERT with GPT-2 fine-

tuned dataset [107])

0.932 (Ensemble RNN [77]) 0.930 (LSTM + Random Em-

bedding + GBDT [6])

FifthTribe [33] 1.0 (RF [73]) 0.991-0.862 (SVM [5]) 0.87 (SVM [82])

de Gibert et al.

Stormfront [23]

0.859 (SP-MTL LSTM, CNN

and GRU Ensemble [48])

0.82 (BERT [63]) 0.73 (LSTM baseline met-

ric [23])

TRAC FB [53] 0.695 (CNN + GRU [48]) 0.64 (LSTM [53]) 0.548 (FEDA SVM [49])

Davidson et al.

Twitter [21]

0.923 (BiLSTM with Attention

modelling [72])

0.92 (BERTbase+CNN / BiL-

STM [71], 0.86 with debias

module)

0.912 (Neural Ensemble [63])

HatEval [8] 0.7481 (Neural Ensemble [63]) 0.738 (LSTM-

ELMo+BoW) [76]

0.695 (BERT with GPT-2 fine-

tuned dataset [107])

OffensEval [110] 0.924 (SP-MTL CNN [48]) 0.839 (BERT [113]) 0.829 (BERT 3-epochs [59])
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3.2.1 Existing synthetic data generation methods

We identified only two studies that considered synthetic dataset generation,

namely the LSTM-CNN HateGAN by Cao and Lee [16], and fine-tuning GPT-2

for the MegaSpeech corpus by Wullach et al. [107] However, no studies consider

prompt-engineering techniques on pre-trained language models, nor utilising

pre-trained models for inference-tasks without expensive and resource-heavy

fine-tuning. Both Cao and Lee [16], and Wullach et al. [107] also frame annota-

tion time, the financial cost of crowdfunded data annotation, and human biases

as the key motivations for their approaches. However, Wullach et al. only con-

sider financial cost, without accounting for memory or runtime cost—which we

consider in our lower memory inference-only prompt-tuning approach. Thus,

our approach enables Prompt-GAN to use larger models like GPT-2-XL and

GPT-Neo-2.7B on our commodity desktop setup outlined in Section 5.1.

The fine-tuned GPT-2 approach by Wullach et al. [107] utilised the bench-

mark datasets from Waseem and Hovy [104], Davidson et al. tweet-based

dataset [21]; de Gibert et al. Stormfront dataset [23]; and other datasets from

Founta et al. [35] and SemEval [8]. Specifically, Wullach et al. merged these

datasets to fine-tune GPT-2-large (764M parameters) to create synthetic hate

and non-hate sequences, later selecting the top 100k sequences with the high-

est respective hate or non-hate class probabilities from a pre-trained BERT

classifier trained on the original real corpora [107]. However, the capability for

generalisation in multi-task learning on a fine-tuned dataset presents a unique

challenge vis-à-vis the catastrophic forgetting dilemma. Tests training a BERT

classifier on one dataset and testing on another dataset altogether (i.e., transfer

and multi-task learning), resulted in a 6.95% reduction in test accuracy com-

pared to a model using additional fake MegaSpeech data. However, Wullach et

al. do not specify their memory usage or CPU/GPU setup, nor the train time

and complexity for fine-tuning GPT-2 on the 89,514 annotated posts [107].

The second approach observed for synthetic dataset generation was the

HateGAN LSTM-CNN approach by Cao and Lee [16]—utilising an LSTM-
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CNN text sequence generator, with a pre-trained toxicity scoring discrimina-

tor. The value of the pre-trained toxicity scorer determined the alterations

to the weights during the backpropagation pass on the LSTM-CNN model.

Like the GPT-2 fine-tuned model, Cao and Lee also utilised the benchmark

Davidson et al. and Waseem and Hovy Twitter datasets. For the Davidson

et al. dataset, their HateGAN CNN-LSTM model attained a 0.894 F1-score

using the synthetic text [16], while the GPT-2 augmented (synthetic and real

mixed data) data from Wullach et al. attained a 0.865 F1-score [107].

3.2.2 Key gaps addressed in Prompt-GAN’s design

Given the automatic or fast suspension of hate speech on conventional plat-

forms such as Twitter, collecting hate speech data can be a costly, timely, and

ethically risky endeavour. Collecting hate speech can be difficult for human

discrimination—often requiring group consensus through paid annotation plat-

forms such as Amazon Mechanical Turk or Figure Eight [6, 8, 21, 35, 37, 63,

71, 106, 107]. Extracted posts online may also lack a balance between classes—

particularly as moderated platforms enforce community guidelines and remove

illicit posts. Thus, paid annotation can result in annotated datasets that con-

tain an insufficient quantity of hate speech—whereby Waseem and Hovy ob-

served that deep learning classifier performance stabilises with at least 1000

instances per class [104]. For instance, Waseem and Hovy’s dataset required

processing 136,052 tweets and annotating 16,914 tweets. Twitter’s 2021 deci-

sion to restrict access to suspended account tweets via the Academic API also

invalidates future researchers using datasets where the tweets are not stored in

a repository. Furthermore, constantly identifying and extracting real data from

extremist forums also raises ethical risks and risks to a researcher’s safety, due

to an extremist’s persecution complex—the irrational belief that they’re being

targeted by a foreign researcher group who is ‘out to find or get them’. Hence,

synthetic data generation enables researchers to investigate and replicate the

patterns of hate, rather than specific quotes from real individuals*.
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We specifically address the bias towards Twitter and Middle Eastern data

observed in our SLR [39] by including the far-right white supremacist fo-

rum Stormfront—with posts annotated by de Gibert et al. [23]. Moreover,

we address the lack of multi-platform-oriented hate speech studies by cross-

examining GPT-2/Neo’s ability to create synthetic long-text Stormfront posts,

and up to 280-character Twitter tweets. Given that hate speech is often po-

litically diverse and nuanced, we also consider multi-class labels—specifically

explicit hate speech (direct and targeted with dehumanising intent) and implicit

hate speech (latent references and logical fallacies to undermine an individual

or group based on their protected characteristics). We also consider ideologi-

cal alignment through the white supremacy element of Stormfront, as well as

separating offensive speech from hate speech via the Davidson et al. Twitter

dataset [21]. Hence, the investigation on latent hate, explicit hate, offensive-

ness, and politically aligned hate across multiple platforms will demonstrate

Prompt-GAN’s adaptability to multiple topics and domains—and display the

radicalisation risks of pre-trained commercially-available GPT models.

Finally, we aim to computationally evaluate the risks and dangers to the

baseline GPT-2/Neo model—as we demonstrate that GPT can produce real-

istic and dangerous hate/extremist speech without any modifications to the

model itself (only by prompt-tuning). This risk analysis includes exploring the

out-of-corpus topics discussed in the synthetic datasets to identify the biases

and geopolitical knowledge of GPT-2/Neo.

* However, GPT is prone to replicating copyrighted work per its training

corpora [38, 7]. In our experiments, we identified GPT-2/Neo’s ability to

replicate Twitter handles and names. Based on a reverse search, handles do not

link to real tweets or posts. The only handles relating to real figures were those

for public figures or entities such as @realdonaldtrump, @hillaryclinton, and

organisations like @HuffingtonPost. However, names and potential handles

generated could link to real non-public figure accounts by circumstance.
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Research Design

This chapter outlines the core research questions and architectural design to

investigate whether we can create synthetic types of hate and non-hate speech

with minimal overlap. We define and quantify this objective by constructing a

series of metric-driven experiments to form a digital Turing test. This digital

Turing test concept includes blind black-box testing with a third-party hate

classifier, readability metrics, social topic analysis, comparing classification

performance to real data with our discriminator, and whether the synthetic

data can achieve or outperform the existing HateGAN (LSTM-CNN approach)

and MegaSpeech corpus (GPT-2 fine-tuning) data via classification F1-score.

In Section 4.1, we present the three research questions, with the first two cover-

ing the prototyping and validation of our prerequisite assumptions, validating

our synthetic data compared to another corpus. Our third research question

observes whether GPT-2/Neo produces generalisable posts which can discuss

new topics, domains, and types of hate speech/extremism where competing

architectures cannot due to a lack of pre-trained knowledge or from the catas-

trophic forgetting dilemma. Thereafter, we present the architectural pipeline

and design for Prompt-GAN in Section 4.2, as well as our prerequisite manual

prompt-tuning and embedding prototype to aid the final design for the full

Prompt-GAN pipeline per Section 4.3.

We consider GPT-2-XL (1.5 billion parameters), and GPT-Neo (2.7 billion



43

parameters), both via local inference on the machine specifications outlined in

our experimental setup in Section 5.1. For brevity, we refer to these language

models as the NLMs (Neural Language Models) in our experiments.

For Prompt-GAN to work, we hypothesise that we can alter the belief space

of NLMs via automated prepended tokens such that:

1. NLMs pre-trained corpus contains and understands hate speech to the

extent that it can replicate it.

2. That OpenAI and EleutherAI (GPT-Neo) have all failed to debias and

detoxify their NLMs. If this assumption holds, this raises significant

ethical concerns regarding NLMs viability for commercial use and the

risk of automated hate bots by state or non-state actors to destabilise

society and undermine mental health.

3. NLMs can understand instruction prompts and create on-topic/contiguous

text across multiple sentences, including for smaller local models.

4. That we can optimise prompts through an automated algorithm.

5. That an NLM can discern non-binary hate classes (i.e., implicit and ex-

plicit hate), offensiveness which is not hate speech, as well as ideological

affiliation to create politicised extremist hate speech.

4.1 Research Questions

Our three research questions target whether NLMs can be radicalised to pro-

duce specific desired tokens—with a focus on driving the NLM from abstract

sequences to hateful and ideologically affiliated sequences. Furthermore, we

consider whether the output from the state-of-the-art language models can

mimic online speech as defined by our evaluation strategy. Finally, we consider

whether the extensive pre-trained corpus, ~40GB for GPT-2 and ~886GB for

GPT-Neo, improves transfer learning tasks by using its pre-trained knowledge
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to create contextualised and on-topic synthetic posts when presented with an

out-of-corpus topic or social media platform to mimic.

Thus, our three research questions are:

RQ1 Can neural language models produce topic and platform-specific

hate speech with competitive F1-scores and toxicity metrics

compared to a real hate speech corpus?

RQ2 Can our model generalise to other datasets via transfer learn-

ing?

RQ3 Can our model create synthetic online posts which target top-

ics and other group affiliations outside of the training datasets?

For RQ1, we define a competitive synthetic dataset whereby training a

hate speech discriminator on mixed (50% real data, 50% fake) or all synthetic

data (100% fake data for each class) results in classification F1-scores on real

data which is within a 5% F1-score delta to an all-real training dataset. In our

experimental setup, we consider multiple scenarios consisting of using synthetic

data to supplement/“boost” a real-corpus dataset by using a fixed proportion

of real data and supplementing the training data with synthetic posts to make a

larger overall dataset. Furthermore, we test an augmented “mixed” experiment

setup using a fixed total amount of posts but with a proportion of the synthetic

data added to the real training data. Finally, we test the synthetic data as the

training dataset in our replacement tests. In all scenarios, we cross-examine

test macro F1-scores on a test dataset consisting of only real data.

RQ2 extends RQ1 by training with the synthetic data and evaluating clas-

sification performance on the test data from different datasets. Hence, we con-

sider Prompt-GAN’s flexibility to create out-of-corpus topics and domains—

such as testing real Stormfront posts for a model trained on our synthetic

Twitter hate speech corpus. We consider our model “generalisable” when the

test real data’s classification F1-scores matches or exceeds the baseline real

data only model. The degree of generalisability will vary depending on the
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performance of Prompt-GAN, as it may produce lower F1-scores in certain

scenarios or datasets. Hence, we consider this RQ successful if the supplemen-

tal or mixed real-synth training data scenarios outperforms an all-real training

data classifier. We also investigate an external hate score classifier to compare

the mean hate probability between the synthetic and real data—of which nei-

ther the real or fake data will be a part of the third-party model’s training

data. We consider the third-party pre-trained BERTweet hate speech detec-

tion classifier by Pérez et al. [78], trained on hateful tweets from the Basile

et al. HatEval dataset [8]. The Basile et al. dataset contains annotated

tweets “mainly collected in the time span from July to September 2018” [8, p.

55]; while the ElSherief et al. dataset collected tweets from January 1, 2015,

and December 31, 2017; and the Davidson et al. dataset collected tweets

from at least prior to its publication in 2017. Hence, the third-party ‘blind’

BERTweet hate classifier will not have overlapping tweets from our three tar-

geted datasets—thus not biasing our results. Furthermore, cross-examining

the ElSherief et al. and Davidson et al. datasets together did not indicate ev-

idence for duplicate tweets from the same authors. For comparisons between

NLM’s we cross-examine the mean hate probability on the blind third-party

BERTweet classifier, the macro F1 score on the real-world test data from our

trained discriminators, and a linguistic analysis of the topics and readability

of the synthetic text.

For RQ3, this involves cross-examining the topics discussed in the synthetic

text and ensuring it covers out-of-corpus entities and events. In essence, this

involves our concept of extracting related topics via BERTopic, GPT-2/Neo’s

latent understanding of history and geopolitics via its pre-trained corpus, and

Wikipedia articles. We investigate our domain expansion strategy through

linguistic analysis, as well as F1-score metrics for transfer learning. We also

provide examples of synthetic hate speech on out-of-corpus topics. Thus, we

demonstrate Prompt-GAN’s adaptability and capability to generate diverse

multi-topic and internationalised datasets.



46

4.2 Architectural Design

In this section, we outline the three modules that form the Prompt-GAN

architecture consisting of the prompt and vocabulary generator, the GPT-

2/Neo text generation module, and the discriminator network to feed back

to the prompt-generator as a form of a policy engine. Figure 4.1 displays a

visualised summary of all three components discussed in this section.

4.2.1 Architecture for the Prompt Generator

We do not consider using a traditional neural network for Prompt-GAN’s

prompt generator, as this would require considerable resources to train the

prompt generator to understand the semantics and grammar of natural lan-

guage in addition to searching and understanding how to optimally create

an instruction-based prompt. Another neural network approach would be to

attach a smaller language model where the input is a random latent space

which, through the layers of the generator language model, outputs a numeric

embedding-based prompt for the larger language model to generate the syn-

thetic speech. However, fine-tuning a smaller language model for prompt gen-

eration incurs significant training resources as each training iteration requires

fine-tuning and inference operations on the prompt-generating language model

and inference on the larger language model. The viable alternates would be to

either seed the prompt-generator language model with a starting instruction

prompt (e.g., “Write a tweet: ”) and perturb the embeddings of the prompt

to find new words, topics, and phrases to achieve the desired hate speech out-

put; or implement a textual non-neural network string-builder approach. We

employ the latter approach of building a text-based prompt string as we have

greater control to select and refine the text. Specifically, we can build a vocab-

ulary of class-specific words to prepend as keywords/topics to a static pool of

instruction prompts. Our model can then test variations of prepended words to

observe the resulting NLM synthetic text and its impact on the discriminator’s
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Figure 4.1: Architecture diagram for Prompt-GAN’s Prompt Generator - NLM

Text Generator - DistilRoBERTa Discriminator GAN pipeline.
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loss. This approach is semi-context sensitive, as the word order of the prompt

matters due to the trial-and-error approach of prepending words one-by-one

from right-to-left of the input prompt. Throughout this subsection, we con-

textualise this prompt-building process, as well as our methodology for com-

putationally searching for class-relevant words (singular) and entities/events

(possibly multi-word, such as the ‘Christchurch mosque shootings’) to add to

our vocabulary.

4.2.2 Building the prompt string—an issue of compu-

tational complexity and context-sensitivity

The first prerequisite component for the Prompt-GAN architecture is building

a size-constrained vocabulary of words to sample and test by prepending them

to the input prompt. The generator passes this input prompt with the sampled

token(s) into the NLM for text generation to create a batch of synthetic textual

posts, which we test in comparison to the real data via the discriminator model.

Figure 4.1 presents this pipeline starting from the selection of a new word to

prepend (or replace) to the prompt, generating a batch of fake online posts

using that prompt, and evaluating its impact on the discriminator to determine

whether the new word remains. Whereas Figure 4.2 displays the vocabulary-

building architecture discussed in the following section.

As an example of how this prompt-builder approach works, consider the

following simplified example for generating a synthetic tweet about cooking:

1. Firstly, we parse the real training corpus through TF-IDF, BERTopic,

and Wikipedia2Vec to identify in-domain and out-of-domain topics, en-

tities, and terms relevant to the task. Hence, the output from a tweet

corpus might return a vocabulary of [chocolate, cake, ice cream, house,

store]. Consider the static instruction as “Write a Tweet:”.

2. Secondly, the prompt-prepender approach randomly selects one of the

terms, entities, or topics from the vocabulary to prepend to the static
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instruction. If “cake” was the first sample, then the prompt would be

“cake. Write a Tweet:”.

3. If the discriminator loss increases as it creates more on-topic/realistic-

to-the-dataset output, then we update the current prompt.

4. For a second sample, we randomly get ‘house’, for the new prompt string

of “house cake. Write a Tweet:”. If this decreases discriminator loss as

it is not relevant, then we remove this word from the vocabulary and the

string—placing us back to the second step. This process continues from

2-4 iteratively until three consecutive failures to prepend or substitute a

word, entity, topic, or term.

If more than three failures to prepend a new token occurs, we shift into

substitution mode, whereby instead of prepending new words to the prompt,

we substitute and test existing words in the prompt string, including the fixed

static prompt and stop-words (i.e., words that form a sentence’s structure

but is not intrinsic to the topic, such as words like ‘the’, ‘what’, ‘a’, ‘and’).

For instance, if the prompt is “cake ice cream chocolate. Write a Tweet: ”,

we randomly select a word and replace it, such as “strawberry ice cream

chocolate. Write a Tweet:”. If the substitution increases discriminator loss,

then the word remains. However, if three consecutive substitutions fail to

generate more realistic text, then the overall training process ceases—thus

forming our ‘three-strikes rule’. We limit our training to three consecutive

failed attempts to prepend and three consecutive failed attempts to substitute

a word based on our optimisation tests to balance training time and realism.

Our training process can also cease after a fixed number of prepended

words, or when the vocabulary depletes. We also consider substituting words

from the instruction prompt to build an ideal instruction in the same process

as the above. We build a bag of instructions and a bag of prepended tokens,

which we then use to create a list of tuned prompts to create the multi-topic

dataset. For our full synthetic dataset, we create one unique class-and-dataset-
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specific prompt per 2500 synthetic posts.

As we produce multiple synthetic online posts per prepended word to train

the discriminator, the average-case training complexity of our model is:

O(
n ∗ l ∗ (s ∗ f)

2
)

• n being the number of words in the vocabulary.

• l being the max length of the prompt.

• s being the number of substitutions per failure.

• f being the max number of failures allowed.

N.B: based on the ‘3-strikes rule’ used based on hyper-parameter tuning, s =

f, therefore equivalent to s2. The average-case assumes an equal probability

for a prepended or substituted word to fail a training step. In practice, the

prompt will stabilise after ~7-10 terms where the probability that a new token

fails to change discriminator loss increases as discriminator loss plateaus.

4.2.2.1 Architecture for Building the Vocabulary

The fundamental design challenge is to efficiently reduce the 470,000 possible

English words [68], and ~6,450,000 historically significant events/entities (as

identified in our retrained Wikipedia2Vec model). Without reducing the size of

our vocabulary to concepts/terms relevant to hate/non-hate classes, we would

need to conduct at least 140 million inference operations which would take ~42

million seconds (~1.3 years) to train, given the ~0.3 seconds per synthetic post

generation for the sample of 20-40 posts per prepended token on our system.

Hence, we build our vocabulary by identifying frequently used terms, top-

ics (via BERTopic), entities and events (via Wikipedia) discussed within the

corpora of the three hate speech datasets. While we test contextual embed-

dings and approaches vis-à-vis manipulating the input numeric embeddings

for prompt-tuning, our preliminary analysis did not identify any patterns be-

tween classes (see Subsection 4.3.2 for visualisations). Hence, we only consider
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a token-based prompt-tuning approach. To target our belief space of hateful

topics, politics, views, and discussion points—we consider the following textual

approaches for building our vocabulary of relevant terms:

TF-IDF:

We split the data between classes and extract frequent words relating to dif-

ferent classes of hate speech using TF-IDF with L2 regularisation. L2 regular-

isation ensures that longer posts do not bias the selected terms due to their

more likely appearance [105].

BERTopic:

Architecturally, our use of BERTopic selects relevant topics (e.g., countries,

history, and related subtopics) both directly referenced in the corpus, as well

as related concepts imbued within the BERTopic model.

The advantage of BERTopic in our vocabulary architecture is for identi-

fying related topics and terms that may not appear within the Twitter and

Stormfront corpora. For instance, the white supremacist Stormfront dataset

revolves around white-on-black racism, while Twitter’s hate contains gener-

alised international discrimination including black-on-white racism. We can

identify these aggregate trends to identify specific ‘discussion points’ to ensure

that the NLM text generator remains on topic and creates realistic talking

points. We exclude a random sample of topics for future prompt-generation

sequences to enable diverse topical prompts. For instance, one prompt may

focus on generating hate speech surrounding racism and immigration, while

another will use shelved topics surrounding sexism and gaming.

Wikipedia2Vec:

While topics and subtopics are useful to identify the overall context of the dis-

cussion (e.g., “politics”, “liberals”, “Ireland”, “Education”, as observed from

the Stormfront data), we further seek to simulate discourse around signifi-

cant events and entities. While traditional hate speech datasets may target a

specific timeframe or a forum topic, we seek to enable the ability to create syn-

thetic text which discusses new out-of-corpus topics and events. For instance,
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fine-tuning the 2020-era GPT-Neo on a hate speech dataset collected from

2016 will not be able to generate synthetic hate speech supporting the 2019

Christchurch Shooter—as the knowledge of the attack will not be in the train-

ing dataset, and the original latent knowledge of the event in the pre-trained

model will be lost due to fine-tuning’s issue of catastrophic forgetting.

Hence, we sample the top topics identified from BERTopic to generate

different discussion points across multiple prompts. Using the different topic

terms, we utilise Wikipedia2Vec’s directed network link-graph model to extract

related entities and similar words using cosine similarity on Wikipedia2Vec

embeddings. These Wikipedia2Vec embeddings will reflect articles, entities,

and events available on Wikipedia up until the end of April 2022.

Figure 4.2 illustrates the relationship between parsing the pre-processed

corpus and building the vocabulary using the above three feature extraction

techniques.

Figure 4.2: Architecture diagram for Prompt-GAN’s vocabulary builder.
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4.2.2.2 GPT-based Post Generator

We target models capable of local inference on our commodity setup, with

24GB VRAM and 32GB RAM. Targeting local models enables us to prove

Prompt-GAN’s capability without requiring expensive or high-memory models

such as the 175 billion parameter GPT-3 model [14]. Furthermore, large online

models have high power and cost requirements—with GPT-3’s ~$0.12 per 1000

tokens for a fine-tuned model [74]. Hence, testing a local model for Prompt-

GAN enables the architecture to remain fully open-source (unlike GPT-3)

and resource/energy-constrained. We would expect more realistic text from

expensive online models, as is the case with larger language models. However,

Prompt-GAN seeks to prove the basis that even models capable of running on

a single commodity computer can generate synthetic data which can replicate

real hate patterns and thus help environmentally conscious and resource-aware

researchers.

We target GPT-2 and GPT-Neo specifically as they represent two bench-

marks in local language models. Prior fine-tuned models utilised GPT-2-large,

a 768 million parameter model [107]. For Prompt-GAN, we test the full open-

source GPT-2-XL and GPT-Neo-2.7B architecture which includes ~1.5 and

~2.7 billion parameters respectively [43, 80, 12].

To utilise the knowledge of recent tragic events such as the 2019 Christchurch

shooting and the ongoing 2019-present COVID-19 pandemic, we also test the

recent GPT-Neo models. GPT-Neo utilises architectural improvements from

GPT-3 and GPT-2 to provide an open-source implementation of a GPT-3-like

clone, trained on data up to late-2020 (exact cut-off date not specified) [38].

We test the GPT-Neo-2.7B model, containing 2.7 billion parameters and thus

we would expect more realistic text given its larger parameter count.

We do not consider other language models such as T5, due to their lower

runtime performance compared to a decoder-encoder architecture like GPT-

2/Neo [67]. Likewise, we do not consider masked language model architectures

such as BERT or BART for text generation—as GPT’s auto-encoder architec-
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ture outperforms BERT-based models for open-ended text generation by the

measure of accuracy and compute efficiency [14].

Table 4.1 outlines the considerable increases in parameter count (à la mem-

ory and computational requirements) for declining improvements in textual

performance on the benchmark text generation datasets. We select GPT-2-

XL and GPT-Neo-2.7B as parameter size considerably increases by over 10

billion parameters with diminishing returns—particularly given that GPT-3

would require ~116.67 times more memory for only ~10-20% higher accuracy

scores. Furthermore, we ensure that Prompt-GAN can run on a commodity

desktop environment to display that Prompt-GAN’s architecture is both vi-

able and capable of creating realistic synthetic online speech, and can remain

resource, cost, and energy efficient.

Model LAMBADA

(PPL)

LAMBADA

(ACC)

WikiText2

(PPL)

HellaSwag

(ACC)

Winogrande

(ACC)

PIQA

(ACC)

BERT (110M) - - 69.32 [102] 38.30% [111] 51.90% [86] 66.80% [11]

GPT-2-Small (117M) 35.13 [80] 45.99% [80] 29.41 [80] - - -

GPT-2-Med (345M) 15.6 [80] 55.48% [80] 22.76 [80] - - -

GPT-2-XL (1558M) 8.63 [80] 63.24% [80] 18.34 [80] 40.03% [12] 59.40% [12] 70.78% [12]

GPT-Neo (125M) 30.266 [12] 37.36% [12] 32.285 [12] 28.67% [12] 50.43% [12] 63.06% [12]

GPT-Neo (1.3B) 7.498 [12] 57.23% [12] 13.1 [12] 38.66% [12] 55.01% [12] 71.11% [12]

GPT-Neo (2.7B) 5.626 [12] 62.22% [12] 11.39 [12] 42.73% [12] 56.50% [12] 72.14% [12]

GPT-3 Ada 9.95 [14] 51.60% [14] - 43.40% [14] 52.90% [14] 70.50% [14]

GPT-3 (175B) 1.92 [14] 76.20% [14] - 78.90% [14] 70.20% [14] 81.00% [14]

Jurassic-1 (178B) - - - 79.30% [57] 68.90% [57] 81.40% [57]

PaLM (540B) - 77.90% [17] - 83.40% [17] 81.10% [17] 82.30% [17]

Human - - - 95.70% [111] 94.00% [86] 94.90% [11]

Table 4.1: Performance on the shared datasets across the language models.

Lower perplexity is better. Higher accuracy is better.

4.2.3 Discriminator

After the generator creates a prompt string to append to a static instruction

prompt, we then use this prompt to generate 40 sequences of up to 100 tokens,

or until the end-of-text token. We limit text generation to 100 tokens as this

reflects approximately 400 letters, more than Twitter’s 280-character limit to

reflect longer Stormfront posts.

To avoid bias towards a specific class, we split all train and test data via
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equal-distribution stratified sampling to ensure an equal number of instances

per class regardless of its distribution in the overall dataset.

We consider computational (RAM/CPU usage) performance, evaluation

loss, and F1-score performance when selecting which variant of BERT to use

as Prompt-GAN’s discriminator—as outlined in our Experimental Design in

Section 5.1.2.

After identifying the prompt string that generates the most realistic data

by maximising discriminator loss, we then generate a synthetic dataset us-

ing five prompts that include different topic spaces. For instance, if the first

generated prompt targets the topic “Ireland”, we then remove any related

terms to the “Ireland” topic cluster for the next iteration/prompt-generation.

Thus, we ensure that new prompts use other topic clusters. We then employ

Wikipedia2Vec on another unused topic cluster to find new entities and articles

to drive the NLM towards new discussions for the synthetic posts.

4.3 Prototyping and Assumption Proving

Our first research question asks, “Can neural language models produce topic

and platform-specific hate speech with competitive F1-scores and toxicity

metrics compared to a real hate speech corpus?”. Hence, the architecture of

our Prompt-GAN model assumes that crafted prompts can increase the next

token(s) probability towards a desired output. As a proof-of-concept, we con-

sider biasing GPT-2/Neo towards a desired answer using a fixed static instruc-

tion prompt. If it is not possible to bias a neural language model towards a

desired output, then we cannot construct synthetic hate and/or extremist-

affiliated datasets to train our discriminator—thereby invalidating Prompt-

GAN’s architecture. We can test this assumption by biasing a fixed question

with prepended tokens to aid a GPT-type model towards giving our desired

answer.

Hence, in Section 4.3.1, we prototype and test an experiment to radicalise
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GPT-2 by seeding its input prompt with relevant tokens to drive the model to

complete the instruction prompt “Complete the sentence: My name is” with

the objective to get the next token probability to be the answer of “Hitler”.

We integrate and test BERTopic and Wikipedia2Vec to reverse-engineer the

answer through a reverse query approach.

If we assume that seeded tokens can reliably create targeted output to-

kens, the next architectural challenge before constructing the full Prompt-GAN

pipeline is identifying the unique topics and terminologies used in the hate-

ful and non-hateful corpora. Our Prompt-GAN architecture assumes that the

choice of words, terms and topics differ between classes whether they are ex-

plicitly mentioned, related or implied—such as for ideologies or latent beliefs.

Subsection 4.3.2 explores the topic, term, and embedding-based clustering ap-

proaches to select the final methodologies used in our Prompt-GAN vocabu-

lary builder architecture. We considered working on an embedding-level by

prepending perturbed embedding vectors to the prompt layer. However, we

found no notable cluster deviation between the hate and non-hate data when

exploring numeric GPT and sentence-level embeddings. Conversely, TF-IDF

and BERTopic demonstrated more apparent clusters between the hate/non-

hate classes. Due to the lack of clusters between the hate and non-hate numeric

embedding spaces, we reject prompt-tuning via perturbing numeric embed-

dings and instead consider a textual string-builder approach based on unique-

to-the-class Wikipedia-derived entities, TF-IDF extracted terms, and related

topics. Moreover, a prompt-tuning approach based on building textual prompt

strings is also unique, given that the previous embedding-based approaches

involved appending vector embedding via soft prompts [55], and perturbing

numeric embeddings via p-tuning [60]. Subsection 4.3.2 includes the clus-

ter visualisations and analysis of the contextual sentence-embeddings, while

subsections 4.3.3 and 4.3.4 visualises and analyses the contrasts and topic-

clusters between classes using the textual string-based approaches of TF-IDF

and BERTopic.
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4.3.1 Assumption Proving via Manual Exploration

In our first assumption-proving experiment, we consider whether prepending

textual terms can increase and thus bias the next-token probability without

changing the static instruction prompt.

Our objective is to drive GPT-2’s next-token probability to be that of

“Adolf” or “Hitler”—due to his notoriety, prevalence in the data within the

pre-trained corpus, and ideological relevance vis-à-vis far-right extremism. We

test GPT-2-XL without token sampling and with the temperature parameter

set to 0 to create replicable and deterministic next-token probabilities.

In the baseline static prompt + sentence starter example, the next-token

probabilities reflect common Anglo-Saxon names—with Figure 4.4 demon-

strating the Anglo-centric bias of GPT-2’s pre-trained dataset. The next token

probability for Adolf or Hitler is 3.284253e-4 and 8.151462e-05. Using these

probabilities with top-k ranking (i.e., ordering the next token logits from the

most probable to the least probable, across the full GPT token vocabulary),

Adolf and Hitler would be the 546th and 1482nd ranked choice.

Figure 4.3: Baseline static prompt for GPT-2-XL (1.5B).

Figure 4.4: Next token probabilities—demonstrating the pre-trained corpora’s

Anglo-bias with western names.

Underpinning this issue is the core difference between semantic and topical

similarity. While Adolf is a name reduced in usage because of its historic name-
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sake exploitation, an Anglo-bias would be to tie it to Adolf Hitler rather than

benevolent Adolfs’ or simply its usage as a Germanic name. Despite west-

ern Anglo terrorists, it is unlikely that an English-dominant speaker would

associate “David” or “Dylan” to terrorists or far-right extremists of the same

name. As our Prompt-GAN relies on automated approaches to find related

terms, we cannot rely on word-by-word semantic similarity used by approaches

like Word2Vec. To reverse search related terms and entities, we must consider

a context-sensitive approach with “Adolf Hitler” being a singular entity-based

vector rather than two independent words which do not convey the full mean-

ing of the German leader.

In a similar manner to a search query, we utilise Wikipedia2Vec’s link-

graph model to identify related contextualised entities based on the extracted

hyperlink connections between the related pages onWikipedia to collect topical

and ideologically relevant terms and entities.

In our reverse query of “Adolf Hitler”, our updated Wikipedia2Vec model

outputs the following related entities: Nazi(sm), Nazi Party, Joseph Goebbels,

Führer, Henrich Himmler, Hermann Göring, Mein Kampf, and Benito Mus-

solini.

While BERTopic offers the topics of Nazi, Jewish, Holocaust, Germany.

While Word2Vec for Adolf offers German names such as Franz, Josef, Jo-

hannes. However, Hitler offers Nazi, fascism, Reich as three related words–

likely due to the reduced use of Hitler as a name after the second world war.

Thus, a single token can increase the next token probability from 546th

to 1st based on seeding the prompt with a topical context. Hence, we pos-

tulate that given the instruction to generate an online post, we can create

topical and hateful text by substituting and prepending terms, topics, and

names of entities to an instruction prompt. Having proved our assumption

that prepended tokens can increase the next token probability towards a de-

sired output, we proceed to consider experimenting with numeric-embeddings

and extracting terms across a full hate speech corpora using TF-IDF, out-of-
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Figure 4.5: Extracted entity prepended to the static prompt for GPT-2 (1.5B).

Figure 4.6: Next token probabilities—demonstrating the effectiveness of

prepending textual prompts to drive Adolf to the top token probability.

corpus topics via BERTopic, and expanding our hateful topics to new domains

via Wikipedia2Vec in the following subsection.

4.3.2 Embedding Clustering and Dataset Exploration

While skewing GPT-2 towards a singular token is largely non-trivial with as

little as one token, paragraph-level contextual hateful tweets and Stormfront

posts require more context within the prompt to create these synthetic posts.

Hence, we scale up our prototyping with a new assumption—that the raw

numeric embeddings from the GPT tokeniser and sentence-level embedding

models (i.e., SRoBERTa and SBERT-MPNet) will generate embedding-spaces

that delineate hate and non-hate classes.

For these visualisations, we parse the posts into the GPT-2 language model

using the Huggingface pipeline library for feature extraction via pairwise co-

sine similarity. We pad the variable-length posts to the maximum embedding

length across all posts for the dataset with zeros-based padding. Due to the

high dimensionality of the output padded arrays, we only conduct dimension-

ality reduction using embeddings from the smaller GPT-2-medium (352M)
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Figure 4.7: GPT-2 embeddings on

the ElSherief et al. Implicit-Explicit

Hate dataset. Red depicts explicit hate

speech, pink depicts implied hate, and

blue depicts non-hate speech tweets.

Figure 4.8: MPNet embeddings on

the ElSherief et al. Explicit-Implicit

Hate dataset. Red depicts explicit hate

speech, pink depicts implied hate, and

blue depicts non-hate speech tweets.

model. We do not consider truncating embeddings for longer posts, as it is

not clear where in the longer-posts that the text contains actual hate speech—

such as for long Stormfront posts. We conduct dimensionality reduction to

visualise class clusters using t-distributed Stochastic Neighbour Embedding

(t-SNE) and Uniform Manifold Approximation and Projection (UMAP) for

both the GPT and SBERT embeddings. While the latter preserves the global

structure of the dimensional manifold—UMAP’s increased memory usage re-

quires reducing the embedding size of the data. To avoid the aforementioned

loss of information, we conduct UMAP only on the ElSherief et al. Twitter

data—due to their 280-character limit compared to the variable-length Storm-

front posts which would require more memory than available (32GB).

The lack of overlap between classes in both GPT and SBERT (seman-

tic similarity) scenarios demonstrates that prompt-tuning with manipulated

numeric embeddings is infeasible with current vector embedding models. Fur-

thermore, a neural network approach for generating input numeric embeddings

would further increase computational complexity due to the high dimensional-

ity of GPT-2’s input layer. Conversely, prepending tokens one-by-one enables
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Figure 4.9: SRoBERTa embeddings on the ElSherief et al. Implicit-Explicit

Hate dataset. Red depicts explicit hate speech, pink depicts implied hate, and

blue depicts non-hate speech.

the retention of terms that increase evaluation loss for the discriminator (i.e.,

creating more realistic synthetic text), and the omission of terms that do not

create more realistic text. Thus, we do not consider numeric embedding ma-

nipulation via alterable ‘soft prompts’ for our prompt-generator module.

4.3.3 TF-IDF in the Corpora

Non-hate Terms Explicit Hate Terms Implicit Hate Terms

white, people, racist,

hate, black, like, right,

race, just, don, trump,

america, rt, think, anti,

antifa, know, alt, sure,

supremacist, house,

supremacists, want,

media

white, people, kill, jews,

jew, racist, black, hate,

trash, race, like, fag-

gots, muslims, islam,

america, stupid, just,

don, whites, man, mus-

lim, blacks, cuck, anti,

want

white, people, black,

race, racist, hate, amer-

ica, like, jews, don,

whites, anti, just, want,

jew, genocide, man,

need, non, right, mus-

lims, illegals, country,

islam

Table 4.2: Ranked TF-IDF terms on the ElSherief et al. dataset, displaying

violent terms in the explicit hate data. Key non-overlapping words in bold.
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Evidently, Table 4.2 demonstrates the linguistic styles between the classes,

with non-hate data discussing regular politics and debating white supremacy in

regard to the discussions on US politics with terms such as “Trump”, “antifa”,

“supremacists”, and “media”. Conversely, explicit hate includes dehumanis-

ing slurs such as “faggots”, “cuck”, “trash” and a prominent use of “jews”

as a demeaning category and stereotype, typically with violent connotations

like “kill” as the third most common term. Conversely, implied hate speech

tends to dehumanise “illegals” in their “country”, and tie discussions to imply

“genocide”.

4.3.4 BERTopic Visualisation

RQ3 postulates: “Can our model create synthetic online posts which target top-

ics and other group affiliations outside of the training datasets?”. To address

RQ3, we must establish a baseline for the top topics discussed across the real

corpora. Figures 4.10 and 4.11 depict the real hate and non-hate speech DG

data, indicating the hate speech category’s use of slurs, anti-LGBT and anti-

black sentiments; while the non-hate data discusses nationalism, geopolitics,

weapons, events, perceived educational indoctrination, and topics pertaining

to the in-group white supremacist identity (i.e., “whites”, and European peo-

ple). Evidently, the non-hate data tends to target tangible assets and theory,

while hate data tends to invoke aggressive personalised attacks towards those

that are adversarial out-groups (i.e., “liberals”, “school” institutions, “homo-

sexuals”, Jewish people, and people of colour via dehumanising slurs).
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Figure 4.10: Extracted topic clusters from the de Gibert et al. Stormfront

dataset’s hate class posts.

Figure 4.11: Extracted topic clusters from the de Gibert et al. Stormfront

dataset’s non-hate class posts.



Chapter 5

Evaluation

This chapter presents Prompt-GAN’s experimental setup and results. Sec-

tion 5.1 outlines our systematic approach to testing each component of the

GAN—the textual prompt-generator, the language model, and the discrimi-

nator. We consider the full ERH Context Mining pipeline from Figure 2.5,

including data selection and pre-processing pipelines, data filtering and fea-

ture extraction, and discrimination experiments on synthetic and real data.

We conclude by presenting the outcome of our experiments in the Results Sec-

tion 5.2. Further quantitative analysis and discussion of trends, implications,

and usefulness of Prompt-GAN continue in the next Discussions Chapter 6.

5.1 Experimental Setup

In our experimental setup, we systematically test each component of our

Prompt-GAN architecture as displayed in Figure 4.1. This section outlines

the methodology conducted to generate the results displayed in graph and

table form in the following Results section.

5.1.1 Experimental machine specifications

As outlined in our systematic literature review, there is a strong case for perfor-

mance engineering with neural language models due to their prohibitive cost-
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per-token for online generative models such as GPT-3 or Jurassic-1. Further-

more, models with higher multi-billion parameter counts tend to outperform

smaller models—although runtime, memory, and energy/green considerations

are not discussed in prior work. As opposed to testing on distributed cloud

systems (as required for large language models), we conduct the majority of

our experiments on a local desktop with commodity hardware consisting of:

• GPU: 24GB RTX 3090—of which Video Random Access Memory

(VRAM) is essential for testing larger language models for more realistic

hate/non-hate generation.

• CPU: 3.7Ghz (base) to 4.8Ghz (boost) AMD Ryzen 5900X—only TF-

IDF and Wikipedia2Vec methodologies run on CPU-based code rather

than CUDA-based GPU code.

• RAM: 32GB DDR4-3600mhz.

• OS/Drivers: Lubuntu 22.04 (LTS) on Nvidia Driver 470.129.06 with

CUDA 11.4.

• Libraries used: PyTorch v1.11.0, DeepSpeed v0.6.4, Ecco, scikit-learn

v1.1.1, imbalanced-learn v0.9.1, Huggingface Library, Transformers v4.19.2,

Tokenizers v0.12.1, NumPy v1.21.6, Pandas v1.4.2, Tensorboard v2.8.0,

BERTopic v0.10.0, Wikipedia2Vec v1.0.5, Sentence-transformers v2.2.0.

Our max power draw is 460w during discriminator training. To train Prompt-

GAN on two classes of data on one dataset would take ~44 minutes, thus using

~0.3373kWh. Once trained, text generation takes ~0.3-1.5 seconds per post,

thus keeping power usage to generate a synthetic dataset to a minimum.

5.1.2 Data discrimination experiments

For all input data, we filter erroneous whitespace, non-ASCII characters, du-

plicate punctuation (replacing with just one instance, as GPT-2/Neo does not
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replicate such patterns), raw HTML code and website links as most links are

from URL shorteners like bit.ly, which has no use of the data as we do not

reverse search the links. As the de Gibert et al. dataset censors slurs and

profanities, we reverse-engineer the slurs based on their structure (e.g., “bull

* * * *” and “* * * * hole”). Although, this decensorship approach cannot

guarantee a one-to-one matching for words of similar length or spelling. For

speed and consistency, we implement the above pre-processing techniques via

regular expressions when loading the dataset. We then tokenise the data us-

ing the respective BERT-derived transformer models, which we select based

on the state-of-the-art classification performance as outlined on Huggingface’s

transformer documentation and related studies [43, 61, 25, 89, 42]. We pad the

data using zeros-padding to the max token 512-token size for BERT-derived

models [25] and truncate tokens beyond this max size—which is not required

for all but one post with a character count of 2153 (~539 tokens), with only

six posts with more than 1600 characters (~400 tokens). All baseline tests use

the full dataset with class-proportionate stratified sampling for the train-test-

split. Tables A.3, present the baseline performance on the de Gibert et al.

(DG), Davidson et al. (DV) and ElSherief et al. (ES) datasets across the Dis-

tilRoBERTa [89], BERT [25], RoBERTa [61], DeBERTa [41], ELECTRA [18],

and DistilBERT [89] models. We present additional baseline metrics for the bi-

nary forms of the ES dataset (merged explicit and implicit hate vs. non-hate)

and DV dataset (hate and non-hate classes) in the Tables in Appendix A.5.

To optimise the fine-tuning process, we utilise incremental hyper-parameter

tuning for top-k sampling, temperature, minimum output post word count,

maximum output post word count, max token length, number of output prompts

(with three to six prompts per class to generate diverse multi-topic datasets),

and repetition penalties to avoid repetitious phrases and terms.
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5.2 Results

Figure 5.1: With each successful token addition or substitution to the static

“Write a tweet:” prompt, the discriminator’s uncertainty increases as the syn-

thetic data becomes more realistic and hateful.

Figure 5.2: Supplement tests on the ElSherief et al. (ES) dataset (implicit &

explicit hate speech merged as one binary class vs non-hate class), with F1-

scores from predicting the ES, DG, and DV (hate & non-hate only) test data.
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Figure 5.3: Supplement tests on the Davidson et al. (DV) dataset (hate & non-

hate class), with F1-scores from predicting the ES, DG, and DV test data.

Figure 5.4: Supplement tests on the de Gibert et al. (DG) dataset, with F1-

scores from predicting the ES, DG, and DV (hate & non-hate only) test data.

Figure 5.5: Mixed tests on the ElSherief et al. (ES) dataset, with F1-scores

from predicting the ES, DG, and DV (hate & non-hate only) test data.
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Figure 5.6: Mixed tests on the Davidson et al. (DV) binary dataset.

Figure 5.7: Mixed tests on the de Gibert et al. (DG) dataset.

Dataset Data Class All Synthetic Data’s

Mean Hate Probability

All Real Data’s Mean

Hate Probability

DG Hate 0.7231 0.6153

DG Non-hate 0.076 0.087

ES Explicit Hate 0.5777 0.5083

ES Implicit Hate 0.6423 0.6083

ES Non-hate 0.0785 0.1407

DV Hate 0.6544 0.5793

DV Non-hate 0.0797 0.0835

Table 5.1: Testing Prompt-GAN and real data on the third-party BERTweet

blind classifier [78], and calculating the mean hate probability from each post’s

classification. DV Offensive class excluded as it is not hate speech.
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Figure 5.8: Prompt-GAN trained on the de Gibert et al. dataset (Hate or

Non-hate) indicates that our synthetic data is ~93% correct to the class.

Figure 5.9: The discriminator’s performance decreases with mislabelled data,

useful for approximating Prompt-GAN’s textual realism. The left and right

graphs display the results from the ElSherief et al. dataset (Implicit hate,

Explicit hate, Non-hate), and the Davidson et al. tri-class dataset (Hate,

Offensive, Neither). Orange point displays the F1-score from the model trained

only on synthetic DG posts and tested on the real DG test data.
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Model Dataset

(Binary)

Recall

(Macro)

Precision

(Macro)

F1-score

(Macro)

Prompt-GAN DV 94.0% 92.7% 93.3%

Prompt-GAN (without K.D) DV 93.8% 94.0% 93.9%

Prompt-GAN (deberta-base) DV 95.2% 93.9% 94.6%

Our baseline (all-real DV data) DV 92.9% 91.0% 91.9%

Wullach et al. MegaSpeech [107] DV 81.4% 92.3% 86.5%

Prompt-GAN DG 81.0% 80.9% 81.0%

Prompt-GAN (without K.D) DG 81.8% 78.9% 80.2%

Our baseline (all-real DG data) DG 75.8% 75.3% 75.6%

Wullach et al. MegaSpeech [107] DG 58.2% 60.0% 59.1%

Baseline DG model [23] DG 73% - -

Table 5.2: Comparison of synthetic data supplement experiments on DG and

DV data. Only hate and non-hate class included for the DV results, as Wullach

et al. [107] drop the Offensive class tweets. We select the highest F1-scoring

real-synth mix from our experiments, and the highest F1-score result from the

related studies. K.D = Knowledge Distillation (distilled discriminator).

Model Dataset

(3-class)

Recall

(Micro)

Precision

(Micro)

F1-score

(Micro)

Prompt-GAN DV 91.6% 91.6% 91.6%

Prompt-GAN (without K.D) DV 92.0% 92.0% 92.0%

Our baseline (all-real DV data) DV 91.0% 91.0% 91.0%

HateGAN (Cao and Lee [16]) DV - - 89.6%

Baseline DV model [21] DV - - 90.0%

Table 5.3: Comparison of multi-class synthetic data supplement experiments

on the DV data. Micro F1-score used as macro F1 scores are not provided by

the other studies. K.D = Knowledge Distillation (distilled discriminator).
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5.2.1 Topic modelling on the synthetic text

Using BERTopic, we identify and visualise the topic clusters from the most

to least important for the top eight topics with their topic (y-axis) and topic

significance score based on cosine similarity (x-axis). Each visualisation repre-

sents a specific class for one of the three datasets used to train Prompt-GAN.

In our discussions, we cross-examine the in and out-of-domain topics in the

synthetic data compared the baseline real data.

Figure 5.10: Extracted topic clusters from the synthetic hate class data via

Prompt-GAN trained on the de Gibert et al. Stormfront dataset.

Figure 5.11: Extracted topic clusters from the synthetic non-hate class data

via Prompt-GAN trained on the de Gibert et al. Stormfront dataset.
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Figure 5.12: Extracted topic clusters from the synthetic implicit hate class

data via Prompt-GAN trained on the ElSherief et al. Twitter dataset.

Figure 5.13: Extracted topic clusters from the synthetic neutral non-hate class

data via Prompt-GAN trained on the ElSherief et al. Twitter dataset.



74

Synthetic Example Stormfront (DG) or Twitter

(ES/DV) hate posts

Label Source

“you did a statement every night fag*ot you got fag*ot [sic]” Hate HateGAN [16]

“is it a crime we know the true americans are isis just

fuc*ing id*ots [sic]”

Hate HateGAN [16]

“The number of refugees and immigration controls are clear,

now is it time to go to extremes in a desperate attempt to

stop them.”

Hate GPT-2 Fine-

tuned on DG

data [107]

“the left celebrates the death of freedom as it is the road to

the extermination of whites and the rebirth of the baboon”

Hate GPT-2 Fine-

tuned on DG

data [107]

“The Jews were behind the Bolshevik Revolution and the

Holocaust. They control Hollywood, the media, academia,

and virtually all government positions in the west”

Hate Prompt-GAN

(Stormfront)

“Cultural Marxism has no place in the White Nationalist

movement. It is the destruction of the European family.

They are just anti-white, plain and simple (or antiwhite.)”

Hate Prompt-GAN

(Stormfront)

“I heard that blacks are lazy and dumb as rocks. So I decided

to put a few black niggers into a bag and let them roam

around on my block because I guess nigga is a dirty word.”

Hate Prompt-GAN

(Stormfront)

“Hey @piersmorgan you’re a queer, a man, and your show

is about as relevant as a wet napkin in a bar. #pussyhat”

Imp.

Hate

Prompt-GAN

(Twitter, ES)

“Your country is full of rapists, bastards and drug dealers.

People like you should be killed by your own people and those

that would rather live with you in peace. I hope it is your

fucking time. #MakeAmericaRapeAgain”

Exp.

Hate

Prompt-GAN

(Twitter, ES)

“Did you know that if You don’t have any money, you are

still able to have sex? @realDonaldTrump, take that!”

Offen-

sive

Prompt-GAN

(Twitter, DV)

Table 5.4: Synthetic hate class data from HateGAN (trained on Twitter),

GPT-2 fine-tuned on DG dataset (MegaSpeech), and our Prompt-GAN model.
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Synthetic Example Stormfront (DG) or Twitter

(ES/DV) non-hate posts

Label Source

“thanks for your response this is what our school system is

becoming”

Non-

hate

GPT-2 Fine-

tuned on DG

data [107]

“A member of the Liberty Bell Choir sings the National An-

them before the game between the New York Yankees”

Non-

hate

GPT-2 Fine-

tuned on DV

data [107]

“We teach about free speech at school, but how about we be

a tad more liberal and take a stand against hate speech and

white supremacy?”

Non-

hate

Prompt-GAN

(Stormfront)

“@HuffingtonPost: You don’t need a Phd. to see that

@BarackObama doesn’t deserve a @POTUS title.”

Non-

hate

Prompt-GAN

(Twitter, ES)

“The people of Turkey stand united with our Kurds, with the

people in the West who stand with all people who are being

massacred for their beliefs. Terrorizing and killing innocent

people by the government only serves the terrorists.”

Non-

hate

Prompt-GAN

(Twitter, ES)

“Feminism and Communism is just one small example of

what the left is all about. The communists hate that I am

not a capitalist, and the feminists only hate male chauvinists

who don’t pay for child care. (Funny, if their beliefs and

behavior wasn’t so damn hypocritical).”

Non-

hate

Prompt-GAN

(Twitter, ES)

“Dear @realDonaldTrump, your proposed Muslim ban vio-

lates @POTUS’s commitments to defend #US principles:

Freedom of Religion, Freedom from Religion.”

Non-

hate

Prompt-GAN

(Twitter, DV)

Table 5.5: Synthetic non-hate class data from HateGAN (trained on Twitter),

GPT-2 fine-tuned on DG and DV dataset (MegaSpeech), and our Prompt-

GAN model.



Chapter 6

Discussion

Our results for Prompt-GAN consist of three fundamental analytical elements:

1. The investigation of synthetic data to help supplement (boost) or sub-

stitute (mixed) real posts in a dataset for hate speech classification, in

comparison to the baseline models trained on the original real data.

2. The classification values of our synthetic data in comparison to the real

data when applied to a third-party hate classifier which was not trained

on the real or synthetic data used in our study (i.e., a blind test).

3. The linguistic analysis of topics and group affiliations, alongside read-

ability and technicality metrics between the real and synthetic data.

Our socio-linguistic analysis addresses RQ3’s requirement to identify if

Prompt-GAN’s topics and group affiliations include those that are not

part of the original dataset per our domain expansion approach.

We further back our findings through our proposed suite of textual realism

metrics to form a digital Turing test. To address RQ1, we go beyond just

cross-examining classification performance on the original dataset by identi-

fying linguistic and topical trends, as well as its utility for transfer learning

based on the out-of-domain topics imbued within our domain expansion strat-

egy. For this digital Turing test, we stratify our experiments to cover the

synthetic data’s classification performance when supplementing or replacing
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text in the training data in Subsection 6.1.2, alongside hate scores from the in-

dependent third-party model trained on a non-overlapping Twitter corpus [78].

To address RQ3’s out-of-corpus/new discussion capability, we analyse linguis-

tic properties via topic modelling and technicality scores of the Automated

Readability Index and Flesch-reading ease score [90, 51, 24].

6.1 A Digital Turing test—Results and its Im-

plications for the Research Questions

Research question one asks: “Can neural language models produce topic and

platform-specific hate speech with competitive F1-scores and toxicity metrics

compared to a real hate speech corpus?”. Hence, this research question seeks

to prove if Prompt-GAN can create types of hate speech that can substitute

or aid (boost) real datasets. We do not expect a model trained on all or mixed

synthetic data to outperform the real data on the same test corpus for the sim-

ple reason that it is not possible to create synthetic data that is more realistic

than the real data. We hypothesise that supplementing a real dataset with

synthetic data should not taint F1-score performance—which we quantify as

a greater than 5% reduction in test F1-score. We expect any synthetic data

generation model to include false positives as none of the GPT-derived models

achieves 100% accuracy in any of the language model benchmarks aforemen-

tioned in Table 4.1) nor outperforms humans at this point in time. We predict

that our synthetic data will improve classification performance on the external

datasets (per RQ2) due to our approach of exploring terms, entities, events,

and individuals using our domain expansion approach. Our domain expansion

approach includes querying related concepts from the extracted topics from

the real data, and reverse searching related terms from BERTopic and entities

from Wikipedia2Vec.

We target the F1-score as the most important classification metric—as the

datasets are class-imbalanced and thus a high accuracy could simply reflect
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a bias towards a majority class, which would lead to low precision. F1-score

represents the harmonic mean between precision and recall to balance correct

classifications for a class overall (recall) and correct classifications across each

group (precision). For instance, the de Gibert et al. dataset includes 1010

hate-class full posts, and 3983 non-hate full posts, where we define a “full

post” as all labelled sentences of a post where if one sentence in the post has

a hate label, then the entire post is considered hateful. Hence, a classifier that

resorts to flagging all data as hate will attain a high 0.7977 recall for hate

class classification, but a low 0.2023 precision for the overall dataset. This

accuracy-precision imbalance occurs as the discriminator incorrectly classified

all of the non-hate class data. F1-score counteracts this by accounting for

recall and precision, with macro F1-score weighing each class equally—ideal

for our imbalanced training datasets. We only consider the real data for our

test datasets, as separated from the real training data via our stratified train-

test split on the ES, DV, and DG datasets.

We investigate the impact that mislabelled data can have on classification

performance, with Figures 5.8, 5.2 and 5.2 showing how classification per-

formance decreases as incorrectly labelled data increases, whereby a training

dataset with over 30% incorrect data results in F1-scores as low as ~0.35.

When we train Prompt-GAN and use its synthetic data to train the classifier

and test on the real DG test split, we attain an F1-score of 0.725. A 0.725

F1-score is approximately equal to, or the experiments where we trained the

distilroberta classifier using only the real training data but with the labels

flipped for 5% and 10% of instances in the dataset to simulate mislabelled

data expected by any synthetic GAN model. With 5% mislabelled DG data,

we attain a 0.757 F1-score, while 10% mislabelled real data attains a 0.668

F1-score, as visualised in Figure 5.8. Hence, we can reasonably conclude that

Prompt-GAN generates a correct to the class hate or non-hate Stormfront post

~93% of the time (macro F1-score). Using this approximation approach, we

also estimate that Prompt-GAN creates correct to the class data ~91% of the
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time for the tri-class Offensive, Hate speech, and Non-hate DV dataset, and

~74% for the nuanced tri-class Implied hate, Explicit hate, and Non-hate ES

dataset.

6.1.1 RQ1: Baseline results from the real-data only dis-

criminator

It is essential that the discriminator can detect and converge towards iden-

tifying the desired class—in our case hate categories to train Prompt-GAN.

Utilising neural language transformers presents the state-of-the-art for hate

speech classification. As Prompt-GAN must simultaneously and efficiently

load and run both a text-generating NLM and a discriminating model within

memory, we must balance classification performance with memory utilisation.

To establish a baseline to answer RQ1’s competitive F1-scores requirement,

we select distilroberta-base with a batch size of 40 as the discriminator for our

GAN for its high classification performance and low VRAM usage—with the

full results in the Appendix A.1. The additional ~1.5% F1-score of the roberta-

base model on the de Gibert et al. data does not justify the additional 4.5GB

of VRAM and the near double training time—resources which could otherwise

be allocated to a larger text-generation model. Likewise, larger models with

lower batch sizes underperform due to overfitting the smaller batches, while

too large of a batch size results in overfitting and high memory usage. We

also generate the prompt token vocabulary before loading in the generator

and discriminator models to reduce peak memory usage.

Across all models using only the real data, we experience reduced classi-

fication performance on the most challenging multi-class task—implicit hate,

explicit hate, and non-hate detection. This is expected as implied hate in-

cludes latent geopolitical and historic themes that imply hatred, such as neo-

colonialism, belittling based on protected characteristics, and straw-manned

arguments founded on discrimination [28].
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6.1.2 RQ1/2: Results from the Prompt-GAN synth text

In this subsection, we dissect RQ1’s requirement for competitive F1-scores by

analysing the supplemented dataset experiments using the full real training

dataset with 50% or 100% more posts from our synthetic corpus. We also con-

duct mixed data experiments, which substitutes real data with the synthetic

data in increments of 25% of the dataset; and all synthetic training experi-

ments. In all tests, we present the type of GPT model (i.e., Prompt-GAN

using GPT-2-XL or GPT-Neo-2.7B) based on whichever has the higher mean

F1-scores from each dataset.

For supplementing the training data with an equal proportion of binary

hate and non-hate instances, Figures 5.2, 5.3, and 5.4 demonstrate that addi-

tional synthetic data does not notably taint/reduce the performance by more

than 1.7% in the case of the ES dataset—below our 5% threshold. This result

corroborates with our early approximation that the prompts generated from

training Prompt-GAN on the ES dataset reflect their hate or non-hate class

74% of the time. Thus, the reduction from 0.777 (all-real training data) to

0.7599 (all-real + 100% of the synthetic ES binary hate data) reflects this

slight shift given the mislabelled Prompt-GAN data. In the DG dataset, we

experience an unexpected improvement in the DG test dataset performance,

with a 1.9% higher F1-score with the addition of 50% of the synthetic DG

data. This improvement is unexpected as we assumed that the synthetic data

cannot outperform the real data from the same overall dataset. This im-

provement is likely due to the unique out-of-corpus topics from our domain

expansion method, which expands the overall knowledge and talking points of

the synthetic data. For instance, Figures 4.10 and 5.10 depict the real and

fake DG dataset’s topics—with our Prompt-GAN model including new dis-

cussion topics including chauvinist/anti-feminist discussions, martyrdom, and

education. These additional topic clusters add additional examples of hate

besides racism, namely sexism and perceived cultural Marxist indoctrination

alongside race-mixing in the context of education. We present the raw output
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from the synthetic hate prompts in Table 5.4, with an example of the cultural

Marxism conspiracy theory with undertones of the Great Replacement theory

per its references to the “destruction of the European family” in context to an

“anti-white” force.

For the mixed DG real-synthetic experiments, we observe an impressive

case where the synthetic Stormfront posts met or exceeded the baseline dis-

criminator. Figure 5.7 displays how our mixed data outperforms the baseline

real data, including for the DG test data. Moreover, we observe a considerable

F1-score increase in our all-synthetic data experiment on the DV test dataset,

attaining a 0.8072 F1-score compared to the baseline all-real model’s 0.7063

F1-score—a significant 10.1% classification F1-score increase. Given that the

F1-scores for the DG data are approximately equal to or greater than the

baseline real data model, then we can conclude that Prompt-GAN can create

realistic Stormfront posts that match the real data’s patterns.

Likewise, the performance of the mixed and all synthetic data experiments

on the DV and ES datasets indicated approximately equal scores within a

1-5% F1-score variance, as visualised in Figure 5.6 for the Prompt-GAN DV

data, and Figure 5.5 for the Prompt-GAN ES data. Prompt-GAN’s largest

challenge emanates from its ~9% F1-score reduction when using the all syn-

thetic ES training data, likely due to the low F1-score of the baseline all-real

discriminator on the ES data. Moreover, the lower performance of both our

all-real baseline ES discriminator and the Prompt-GAN mixed and all syn-

thetic models demonstrate the ongoing challenge of identifying what draws

the line between subtle implicit hate and non-hate speech.

Our results exceed the existing state-of-the-art in all F1-score metrics in

comparison to the fine-tuning approach by Wullach et al. [107], and the LSTM

model by Cao and Lee [16]. Our results improve on the existing state-of-the-

art by up to 21.9%, as shown in Table 5.2 for the binary data, and Table 5.3

for the multi-class DV data. No prior text generation studies considered using

the ES dataset.
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Furthermore, we demonstrate that Prompt-GAN’s data is approximately

as hateful as the real data through a third-party blind classifier from Pérez et

al. [78]. For this third-party BERTweet hate scorer, Table 5.1 demonstrates

a clear ~0.5-0.65 mean class probability delta between the hate and non-hate

classes—proving that Prompt-GAN’s synthetic hate speech data is demonstra-

bly hateful. Likewise, both the real and synthetic Stormfront non-hate speech

posts are distinguishable with a 0.076 mean hate probability, similar to the

0.087 mean hate probability for the real non-hate speech Stormfront posts.

Overall, we can be confident in Prompt-GAN’s performance knowing that

the synthetic data’s risk of false positives is not significant to reduce classi-

fication performance dramatically vis-à-vis the 5% F1 score threshold. Fur-

thermore, we observe a negligible less than 5% F1-score deviance when we

substituted posts in our mixed real-synthetic experiments and tested on the

same dataset. In our supplement boosted dataset, our increased F1 score

on the DG test dataset demonstrated how additional data can increase dis-

criminator performance—likely due to GPT-2’s knowledge of online discussion

culture and political knowledge from its pre-trained online corpus.

6.1.3 RQ2: Can our model generalise to other datasets

via transfer learning?

With RQ1 demonstrating comparable and competitive performance on the

same dataset, another key strength of Prompt-GAN is its ability to create

generalisable multi-class posts vis-à-vis RQ2. The real-data models suffer a

significant drop in F1-score performance when classifying another dataset and

other platforms (Stormfront or Twitter). In all tests with Prompt-GAN data,

classification F1-scores were approximately equal to, or outperformed, the real-

data-only model. Adding the ES-data trained Prompt-GAN data to the real

ES dataset led to a considerable improvement in F1-score classification on the

blind (unseen by Prompt-GAN and not part of the ES dataset) Stormfront

DG dataset—leading to an 8.2% higher test classification F1-score.
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A considerable improvement also occurs when adding Prompt-GAN syn-

thetic posts to the DG binary dataset, leading to a 6.1% higher F1-score on

the unseen DV dataset as visualised in Figure 5.4. The F1-scores differences

between the baseline all-real and boosted real-synth datasets result in improve-

ments higher than those experienced when testing different discriminator mod-

els. For instance, the state-of-the-art larger roberta-base model outperforms

the older bert-base and smaller distilroberta-base model F1-scores by only 2-

3% per our baseline tests. Thus, our results demonstrate how advances in deep

learning need to focus more on improving the datasets themselves—including

via data synthesis via our Prompt-GAN model, rather than solely focusing

on larger and more computationally expensive discriminator models. Further-

more, we can confidently state that our model is generalisable and thus RQ2

holds based on the aforementioned mixed real-synth experiments, with Fig-

ure 5.7 demonstrating a 10.1% higher test F1-score on the test DV dataset,

using the discriminator trained on the real-synth DG data; and 8.3% higher

test F1-score on the test DG Stormfront dataset, but trained on the boosted

ES real-synth Twitter dataset—visualised in Figure 5.2.

Therefore, we can confidently conclude that we have set a new benchmark

for synthetic text generation across datasets in regard to RQ1 (i.e., competitive

F1-score performance on the same test dataset), and RQ2 (i.e., the synthetic

data’s knowledge, topics, and hateful content generalises to the other datasets

through higher classification performance compared to a model trained on only

real data).

6.1.4 RQ3: Analysis of Prompt-GAN’s Topical and Lin-

guistic Diversity

To identify if Prompt-GAN can adapt to future hate speech datasets, we ask

the question: “Can our model create synthetic online posts which target topics

and other group affiliations outside of the training datasets?” (RQ3).

We observe multiple out-of-corpus topics, entities, and events within our
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prompt vocabulary and final prepended tokens. Our domain expansion ap-

proach expands our vocabulary through sampling topics from the corpus, ex-

tracting related words and topics from BERTopic, and querying Wikipedia’s

entities via Wikipedia2Vec’s link-graph model and related words across the

word-embedding space (akin to Word2Vec). Prompt-GAN then automatically

prepends these words with contextual stop-words and TF-IDF terms to create

prepended keyword strings.

For instance, final non-hate speech prompts included references to radical

action groups such as the “Rose City Antifa”, which encompasses the Port-

land Oregon action group from the leftist Antifa (an abbreviated moniker for

Anti-fascist Action, based off the 1932-33 German anti-fascist ‘Antifaschistis-

che Aktion’ group) [69]. References to far-right groups appeared in both the

synthetic non-hate and synthetic hate speech posts, as seen in Prompt-GAN’s

selected vocabulary terms of ‘atomwaffen’, referencing the far-right neo-Nazi

Atomwaffen Division [93]; and ‘Groypers’, referencing a loose online network

of US alt-right white supremacists [2].

Prompt-GAN’s prepended tokens typically mimic the underlining political

and social themes of the original dataset—with Figure 5.10 and Figure 4.10

demonstrating the topics from the DG Stormfront synthetic hate and real

hate. Both synthetic and real data share key anti-black racism, LGBT+ dis-

crimination and dehumanisation of minorities. However, the synthetic data

includes a unique anti-feminist/chauvinistic cluster—which is relevant with

the rise of anti-woman “incels”. Incels reflect a recent rise in anti-woman

attacks propelled through online forums, with the Anti-Defamation League

framing incels as a “subset of the online misogynist “manosphere” that in-

cludes Pick Up Artists and Men’s Rights Activists, incels are known for their

deep-seated pessimism and profound sense of grievance against women” and

are “the most violent sector of the manosphere” [3]—also backed up by the

Isla Vista shooter’s incel motive [36]. Synthetic incel-aligned Stormfront posts

tend to espouse a perceived moral degradation of women and highlight white
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male supremacy. Likewise, the synthetic implied hate speech category from

the Prompt-GAN ES-data references rape and genocide towards female groups

and sexual minorities—merging anti-female and anti-LGBT sentiments as vi-

sualised in the synthetic topic clusters in Figure 5.10. Our quoted example

from Prompt-GAN via GPT-2-XL in Table 5.4 displays an educational indoc-

trination theme by claiming that a Jewish elite “control academia, the media,

and virtually all government positions in the west”—reflecting the anti-semitic

cultural Marxism conspiracy theory [95].

A final noteworthy group affiliation outside of the real datasets were Indian

political prompt tokens highlighting regional ethnic groups. Figure 5.12 depicts

the synthetic implicit hate speech Prompt-GAN data, with a topic cluster

targeting Bengali people. Furthermore, the vocabulary from Prompt-GAN

reflects this pivot towards international non-Western politics with references

to groups such as ‘Shiv Sena’, an ultranationalist Indian party; ‘BJP’—the

Bharatiya Janata Party, one of the two major Indian parties; and ‘Modi’,

the current (as of June 2022) Prime Minister of India from the BJP party.

All of these terms exist in the synthetic topic clusters, as well as within the

prepended tokens for the tuned prompt. Prompt-GAN also reflects Twitter-

specific features, such as pseudo-links, Twitter handles, and hashtag trends.

It is also possible to manually seed the vocabulary generator to create

specific topics and affiliations. In Table 6.1, we present an example of syn-

thetic political tweets surrounding the 2022 Russian invasion of Ukraine as a

starting topic, and expand Prompt-GAN’s prompt vocabulary via the updated

Wikipedia2Vec model to extract and query related entities, events, and terms

to prepend to the static prompt “Write a pro-[Russia, Ukraine] tweet:”. Since

GPT-Neo-2.7B has no knowledge beyond its 2020 corpus, it still includes in-

accuracies in relation to politicians and knowledge. The references to Donetsk

and Luhansk refer to the separatist conflict zones at war with the Ukrainian

armed forces since 2014 [52].
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Synthetic Text Class label

“The warplanes of the Ukrainian army will not lose in the

face of invaders. We will not let you seize this territory...

Fight bravely for the freedom of Ukraine... For Ukraine!”

Pro-

Ukraine

“We are working to identify and isolate the pro-Russian

forces, but our first priority is to protect the civilians of

Donetsk and Luhansk. We will not allow the blood of our

brave soldiers to be used to blackmail eastern Ukraine.”

Pro-

Ukraine

“@NATO: The US should re-think its aggressive poli-

cies toward Ukraine. RT @RT Ukraine: We must

stop the aggression and let the truth about Russia.

https://t.co/x0E9pj7hTd”

Pro-Russia

“Please remember #Ukraine is part of Russia.” Pro-Russia

Table 6.1: Using Prompt-GAN’s vocabulary builder, domain expansion, and

generator pipeline to generate synthetic affiliation-based text without training

data. The Synthetic tweet link does not link to any real tweet at this time.

In conclusion, the new topics generated by Prompt-GAN, and visualised across

our topic cluster figures, prove that Prompt-GAN can “create synthetic online

posts that target topics and other group affiliations outside of the training

dataset” (RQ3). Thereby proving that RQ3 is valid and possible via our novel

Prompt-GAN architecture.

6.1.4.1 Political biases in GPT-2/Neo and Prompt-GAN

Neither GPT nor its training corpus are politically neutral even with prompt

engineering [1, 38, 80]. We observe a tendency for references to the former

US president, Donald Trump, and Hillary Clinton to be considered as a part

of hate speech by our model even if the text does not include explicit hate.

The bias towards American political figures resulting in false positives is likely

due to the innate political polarisation of Twitter—and its tendency to invoke
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206.835− 2.025(
total words

total sentences
)− 84.6 ∗ (total syllables

total words
)

Figure 6.1: Flesch reading score equation—whereby each 10 points (0-to-100)

represents approximately an additional year of education from 11-years-old.

vitriol and controversy [65, 104]. Twitter’s bias towards far-right extremism,

and the negative psychological impact of condensing ideas into short-character

tweets are contributing factors to Twitter’s notoriety for polarisation and rad-

icalisation [96, 82, 15, 65, 45].

6.1.5 Prompt-GAN’s linguistic complexity and compre-

hension

In this section we measure the level of human realism in our suite of digital

Turing tests with two readability metrics—the Flesch reading ease score, to

determine the difficulty to read either real or synthetic data [51]; and the Auto-

mated Readability Index, a metric designed to identify technical writing [90].

The Flesch reading ease score ranges from 0 to 100, whereby 0 reflects

text which is the least legible and expected to be understood by individuals

with graduate-level literacy. A score of 100 identifies short sentences with few

syllables and words—and thus understandable to an ~11-year-old.

The second metric we consider is the Automated Readability Index (ARI),

which is similar to the Flesch reading ease score in its aim to measure textual

readability/semantic complexity by a score that reflects the expected age to

understand the text. ARI assumes that longer words and sequences highlight

technical concepts and complex processes, which is ideal for measuring the

linguistic complexity of technical materials and manuals [51, 90]. The ARI

score is often paired with the Flesch reading ease score to highlight the lit-

eracy level to read the text, alongside the technical complexity of the text’s

concepts—a pairing used by the United States Air Force and Navy to regulate

textual materials for legibility and technical clarity [90, 51].
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words
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words
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)− 21.43

Figure 6.2: The Automated Readability Index (ARI)—a readability score met-

ric suited for technical writing and considered by Kincaid et al. as better suited

for text focusing on technical concepts and complex interactions [51].

Mean reading time assumes 14.69ms per character—as identified for En-

glish data by Demberg and Keller [24].

Data Type Dataset Data Class Flesch

Reading

Ease

Mean Read-

ing Time

Linsear

Write

ARI

Real DG Hate 76.6194 2.4605 9.9339 8.0

Real DG Non-hate 78.6882 2.1592 9.4606 7.4

Synthetic DG Hate 83.0119 2.6496 7.3244 6.4

Synthetic DG Non-hate 81.9563 2.6288 8.0782 7.1

Real ES Hate (combined) 73.4082 1.1195 6.0439 7.5349

Real ES Exp. Hate 73.8277 1.0458 5.7404 7.6418

Real ES Imp. Hate 73.3438 1.1308 6.090 7.5185

Real ES Non-hate 72.6130 1.0171 5.7540 7.4509

Synthetic ES Hate (combined) 82.9775 1.0987 5.8319 5.7878

Synthetic ES Exp. Hate 86.6305 0.9924 5.1716 4.9551

Synthetic ES Imp. Hate 80.516 1.1703 6.2769 6.349

Synthetic ES Non-hate 79.0091 1.3306 6.5267 6.2988

Synthetic ES Hate (combined) 82.9775 1.0987 5.8319 5.7878

Real DV Hate 74.7362 1.0298 5.3477 9.3178

Real DV Offensive 82.1747 1.0089 5.5772 8.8124

Real DV Non-hate 72.595 1.1569 5.8612 10.5294

Synthetic DV Hate 88.6002 1.0268 5.0364 4.6409

Synthetic DV Offensive 92.542 0.905 5.0412 3.4349

Synthetic DV Non-hate 82.4559 1.2296 6.0806 5.8191

Table 6.2: Readability metrics across the real and synthetic data, demonstrat-

ing Prompt-GAN’s tendency to create longer and less technical posts.

Our results demonstrate that synthetic text is simpler to read by ~1-2 year

levels using the Flesch reading ease measure—with the synthetic data at an 11-

12-year-old reading level compared to a 12-13-year-old reading level for the real

data. We expect larger online models to generate more complicated writing

closer to a teenager or adult literacy level. Synthetic posts tend to be longer

by ~7.8% for the DG dataset, whose posts are not limited by character length.

The ARI values of the synthetic data reflect a larger reading age gap compared

to the real data, indicating that GPT-2/Neo presents concepts understandable

to an 8 to 11-year-old, compared to an 11 to 15-year-old for the real data.



Chapter 7

Conclusions and Future Work

In this chapter, we outline a summary of our findings in relation to the re-

search questions and present our recommendations for future work for prompt-

engineering, model design pipelines, and developments required to expand the

ERH Context Mining area. We consider elements of software standardisation

to recommend a standardised format for future researchers to conduct a dig-

ital Turing test, as well as recommendations for formal research guidelines to

protect researcher safety and data privacy. We conclude with a summary of

our work and advancements in our Conclusion’s Section 7.3.

7.1 Research Question Summaries

RQ1: Can neural language models produce topic and platform-

specific hate speech with competitive F1-scores and toxicity metrics

compared to a real hate speech corpus?

Prompt-GAN can produce topic and platform-specific hate speech, as the

underlying GPT-2/Neo models can utilise the hateful and non-hateful topics

from our vocabulary and mimic the style of Twitter tweets (via using hashtags,

handles and links), and longer Stormfront posts. Our experiments demonstrate

that Prompt-GAN generates Stormfront posts which are ~93% correct to its

binary hate or not class. Our Stormfront-trained model is particularly com-

petitive as the synthetic data can improve the F1-score on the test DG data.
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While synthetic data cannot be more realistic than the real data, we can still

enhance classifier performance by increasing its topical diversity and types of

hate to help train the discriminator—such as our observed sexism, ableism,

gender and sexual discrimination from our synthetic data.

For latent implicit and explicit hate, we observed that Prompt-GAN gen-

erated the correct Explicit hate, Implicit hate or Non-hate post ~74% of the

time. While Prompt-GAN trained on the Davidson et al. dataset generated

correct-to-the-class tweets 91% of the time for the Hate, Offensive, and Neither

categories. We defined a competitive F1-score as not reducing the F1-score

performance by more than 5% for our supplement boosted experiments—as

synthetic speech cannot be more realistic than real speech. All models were

within this threshold.

Our results are also backed up by our blind third-party classifier tests,

with synthetic hate categories attaining a mean hate probability varying from

0.58-0.72, and 0.51-0.62 for the real hate data. Conversely, the mean hate

probability range for the non-hate speech data is 0.076-0.08 for the synthetic

data, and 0.084-0.14 for the real data. Thereby demonstrating a clear divide

between the two classes.

Prompt-GAN presents a new record in synthetic social media speech sim-

ulation, as our synthetic boosted real-synth datasets outperformed all of the

prior text generation approaches for all of the datasets—outperforming the

fine-tuning approach by Wullach et al. by an up to 21.9% higher F1-score [107],

and up to 2.4% higher F1-score than from the additional synthetic data from

HateGAN [16]. Our larger real-synth boosted datasets also outperform all

of the existing synthetic hate speech generation models [107, 16], and those

from the original dataset’s authors [21, 28, 23]. Tables 5.3/ 5.2 highlights how

Prompt-GAN’s textual realism and utility as a training dataset exceeds all of

the existing synthetic data generation approaches at this point in time.

RQ2: Can our model generalise to other datasets via transfer

learning?
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Prompt-GAN’s most promising performance occurs in transfer learning

tasks—where the discriminator trains on one of the ES, DG or DV datasets

(real and/or synthetic data), but tests on an unseen different dataset. We

observed an up to 10.1% higher classification F1-score using the supplement

real and synthetic ES binary data to predict the DG Stormfront hate speech

data. When we added synthetic data to the original DV and ES training

datasets, we outperformed the real-data-only discriminator models.

Prompt-GAN’s string-builder approach enhances the types of hate speech

and its topical diversity, leading to a unique case where the classifier trained on

the all-synthetic Stormfront data outperformed the baseline classifier trained

only on the real data. When testing the all-synthetic model on the other DV

and ES test data, we attain a 10.09% and 0.84% higher respective F1-score

compared to the all-real DG data model. Hence, Prompt-GAN can create a

more general dataset than even the all-real Stormfront data in transfer learning

tasks. However, subtle latent and implied hate remains a challenge for both

Prompt-GAN and existing discriminator models.

RQ3: Can our model create synthetic online posts which target

topics and other group affiliations outside of the training datasets?

We observed and discussed the considerable overlap and unique differences

between the real and synthetic data, as prominent in the real vs synthetic DG

data in Figures 4.10/ 4.10 for the hate topic clusters, and Figures 4.11/ 5.11

for the real and synthetic non-hate topic clusters.

Our prepended prompts include international far-right political movements,

and an anti-woman ‘incel’ cluster not discussed in the original ES, DG or DV

datasets. We also observe in our examples in Table 5.4 that the synthetic

hate data can replicate prevalent conspiracy theories pertaining to Cultural

Marxism, and the Great Replacement. We also observe the use of real Twitter

handles in the context of Anglo-politics, with a prominent cluster on @real-

DonaldTrump, @hillaryclinton, and @piersmorgan.

We also demonstrate Prompt-GAN’s adaptability for future datasets by
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seeding our topic and entity vocabulary-building strategy (i.e., domain expan-

sion) with the example of the “2022 Russian invasion of Ukraine”. Using

the entities, topics, and events from the Wikipedia page as of April 2022, we

demonstrated that it is possible to radicalise neural language models to mimic

allegiance, in addition to extremism and hate speech.

The existing limitations in Prompt-GAN include its US-centric political

biases and a lack of an objective ‘truth’ given its online training corpus. More-

over, further work is necessary for future GPT-like models to understand latent

topics and concepts such as microaggressions, and mis/disinformation.

7.2 Future Work and Recommendations

This section outlines the proposed future areas of research in the ERH Context

Mining area, based on our identified limitations and areas for improvement.

7.2.1 Recommendations for Prompt-tuning in GPT

Prompt-GAN’s token-based approach to prompt-engineering is semi-context-

sensitive as we prepend ordered tokens and multi-word entities to enhance the

context available for the GPT model, as opposed to a näıve bag-of-words

approach. However, Prompt-GAN still requires baseline static instruction

prompt(s) to optimise GPT-2/Neo towards generating online dialogue, such as

“Write a tweet”, “Tweet:”, or “Write a [class label] tweet”. In essence, a static

prompt helps guide the generator model to the belief/discussion space required

to generate a textual post. However, this is a local optimum as we do not con-

sider exploring the indefinite variations of an instruction which could lead to

a more realistic output. Hence, a fully context-sensitive future model should

consider the performance of instructions with multi-sentence context to help

guide discussions towards agreeing or disagreeing with specific topics, policies,

and beliefs. Strategies could include adding an editable contextual “back-

story” prompt similar to the commercial story generator of AI Dungeon [26].
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Prepending a contextual background before providing the instruction to gen-

erate the prompt could enable the generation of hate speech with specific fixed

agendas. Prepending a contextual background before the instruction prompt

could require either another neural network or a token or sentence substitu-

tion approach similar to Prompt-GAN’s single token/entity approach. In a

conversational chatbot approach, such ‘talking’ synthetic agents could have

an overall belief, contextual background, and ‘chaotic neutral/good/evil’-like

alignment to simulate differing personalities found on online forums.

We also propose testing Prompt-GAN on larger online models such as GPT-

3 [14], GPT-NeoX [12], and the 540-billion PaLM model [17]. We did not

consider these models due to their availability, closed source codebase, inabil-

ity to run locally, or cost/energy requirements. Prompt-GAN’s backend code

offers a compatible compartmentalised approach, including HTTP API calls

for Jurassic-1 and GPT-3, and thus is compatible with any current or future

text-generating transformer which takes a textual prompt input. Parameter

counts are increasing at an exponential rate akin to Moore’s law [43]. Hence,

we expect that current and future expensive multi-billion/trillion parameter

models to produce more realistic posts—given the higher performance from

larger models by ~5-10% on the benchmark tasks (as earlier displayed in Ta-

ble 4.1). Nonetheless, the considerable cost and resources of these models may

not justify the few percent higher F1-score—depending on the use case.

We recommend expanding the Wikipedia2Vec link-graph model to include

relevant and informative sources—such as knowyourmeme for multimedia memetic

culture from (non)hateful or political memes [58]; and dark-web extremist in-

formation hubs. Likewise, irony and satire detection remain under-observed

fields within content-moderation. To seed out-of-corpus concepts, we recom-

mend extending our domain expansion concept to include online culture and

contextual prior posts to the generator component’s input prompt query.
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7.2.2 Proposed Extensions to the Prompt-GAN Pipeline

Furthermore, we recommend expanding the hate speech generation outcome

from Prompt-GAN to also include ideological isomorphism (i.e., radicalisation)

in line with our earlier proposed definition in Subsection 2.2.5. Hate speech

is not the means to extremism, rather it is the end of a process of ideological

interactions and beliefs whereby users move into an extremist ‘in-group’ which

targets an outside ‘out-group’. Online discourse typically involves an extremist

group that accepts its own but vehemently excludes a victimised opposition

group (typically minorities). Hence, we recommend expanding on the design

and ‘Digital Turing test’ framework to include back-and-forth synthetic tex-

tual discussions between synthetic users. Hence, a theoretical Prompt-GAN

2.0 should consider multiple synthetic agents (i.e., multiple trained Prompt-

GAN models) taking the input of each other as part of the prompt—with each

model using the prior post as a contextual launching point for the next post

to simulate multiple users engaging in a heated online discussion. By having

multiple interacting synthetic post generators, future synthetic datasets could

include nuanced conversational dynamics and context relevant to offer an in-

formed hate classification. For instance, a user may agree with another user’s

post/beliefs, whereby such support would be considered hate speech (e.g., “I

agree with X’s post, we must stop this moral degradation of Y”).

Hence, it may be possible to radicalise a neural language model without

needing a baseline real hate speech dataset. Instead, investigating the process

of self-radicalisation by two or more interacting neural language models could

demonstrate the tendency for language models to pivot towards hate, or to

counter hate. Simulating a user’s radicalisation towards a hateful ideology or

political belief space would be useful for safe and ethical radicalisation and

extremist affiliation studies to complete the Extremism, Radicalisation, and

Hate speech triad.

Likewise, simulating misinformation and counter-speech are two avenues

for prompt-engineering development. While we observed a tendency for our
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latent hate Prompt-GAN model to generate counter-speech in the non-hate

category, targeting counter-speech generation specifically would increase classi-

fication performance on context-sensitive hate speech examples—as traditional

non-deep classifiers cannot discern nuance and agreement when discussing con-

troversial politics or terms [39]. Counter-speech and alignment are essential

for helping plan and develop deradicalisation programs on a social and indus-

try level. In addition to Prompt-GAN, a dedicated fine-tuned relevant fact or

statistic search method could boost textual intelligence—such as using multi-

ple language models where one is fine-tuned on a question-answering dataset

like the Stanford Question Answering Dataset (SQuAD) [81].

7.2.3 Future Work in Simulated Agents and Dataset

Automation for the ERH Context Mining field

Prompt-GAN’s architecture is not solely designed for hate speech generation.

Instead, we recommend that researchers utilise our prompt-engineering for

other domains—such as for question-answering systems tuned for giving spe-

cific output while filtering irrelevant or harmful terms. Prompt-GAN’s ar-

chitecture could help debias and detoxify language models—as our non-hate

speech Twitter and Stormfront post model can avoid hateful content despite

the spectre of controversial topics for it to discuss (i.e., creating a Stormfront

post which is not manifestly hateful). Tuning neural language models to-

wards a specific domain, such as for industry AI tech support bots or medical

question-answering systems, could utilise Prompt-GAN’s training approach to

utilise the pre-trained corpus’s knowledge of technical concepts—while tuning

the prompts to ensure the output is inoffensive, realistic, correct, and relevant.

Finally, we recommend inter-disciplinary formalised standards on synthetic

text generation to mitigate the risks of misuse by malicious actors. Disinfor-

mation and hate bots are an area for exploitation and societal destabilisation

by state and non-state actors through undermining mental health and jeop-

ardising election integrity. We recommend socio-legal studies for regulating
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commercial and governmental use of neural language models for human-centric

tasks. Moreover, our results demonstrate that the off-the-shelf OpenAI and

EleutherAI models can produce realistic hate speech without modifying the

model’s weights or code. For the commercial company, OpenAI, their financial

viability and user safety are at risk if they do not adapt their model to classify

and avoid hate. Therefore, we do not recommend GPT models for commercial

use due to their risks of exploitation, until such models address the very issues

we identified via Prompt-GAN, and address via our hate classifiers.

7.3 Conclusion

Time is never linear as a day’s worth of politics can take years, or years of

politics can take a day. Social media offers a continual second voice for global

people to speak up and out on any topic their heart desires and can be a vital

voice for the oppressed.

Offering a social space that can protect online speech and avoid vitriolic

attacks against protected characteristics is entirely possible. After all, all so-

cial media platforms will have a form of content-moderation based on their

audience. Hence, ethical and reliable simulation of online speech offers a new

area for training the next generation of Extremism, Radicalisation, and Hate

speech (ERH) models in pursuit of a free, open, and democratic internet.

Prompt-GAN improves on the state-of-the-art by setting a new record in sim-

ulating synthetic hate and non-hate speech, all while reducing the transformer

model’s training time and resources through the developing area of prompt-

tuning. Our recommendations seek to expand the areas of machine learning,

social analysis, big data, and cyber-security in this interdisciplinary research

area of ERH Context Mining.
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Appendix A

Supplementary Data

The appendix includes tables and data useful for contextual analysis but is

not core to our final results or discussion.

Model Eval

Loss

F1-

Score

(Macro)

Accuracy Precision

(Macro)

Recall

(Macro)

Runtime VRAM

Usage

Batch

Size

distilroberta-base 0.3906 0.7556 0.8408 0.7533 0.7580 117.23 21.89 50

bert-base-uncased 0.5819 0.7605 0.8519 0.7731 0.7501 229.87 23.19 30

roberta-base 0.4041 0.7787 0.8629 0.7915 0.7681 218.39 23.45 30

electra-base 0.4493 0.7549 0.8418 0.7549 0.7549 219.63 23.17 30

deberta-base 0.5950 0.7600 0.8549 0.7807 0.7446 441.38 18.72 10

distilbert-base-uncased 0.4343 0.7649 0.8509 0.7696 0.7605 113.65 22.88 50

distilbert-base-cased 0.4345 0.7622 0.8468 0.7627 0.7617 113.65 21.77 50

DG’s CNN baseline [23] - - 0.73 - - - - -

Table A.1: Baseline binary classification performance on the all-real DG Hate

vs. Non-hate Stormfront post dataset.

Model Eval

Loss

F1-

Score

(Macro)

Accuracy Precision

(Macro)

Recall

(Macro)

Runtime VRAM

Usage

Batch

Size

distilroberta-base 0.1884 0.9186 0.9366 0.9097 0.9287 129.49 22.44 50

bert-base-uncased 0.2164 0.9254 0.9437 0.9290 0.9220 254.77 23.19 30

bert-base-cased 0.1845 0.9241 0.9428 0.9282 0.9203 252.25 23.20 30

bert-large-cased 0.5743 0.4267 0.7444 0.3722 0.5000 886.28 20.40 5

roberta-base 0.1651 0.9244 0.9419 0.9203 0.9288 244.67 23.39 30

roberta-large 0.5710 0.4267 0.7444 0.3722 0.5000 888.40 20.54 5

electra-base 0.1818 0.9291 0.9464 0.9321 0.9261 245.58 23.13 30

deberta-base 0.2029 0.9359 0.9508 0.9326 0.9394 509.86 18.71 10

distilbert-base-uncased 0.1817 0.9196 0.9383 0.9164 0.9230 131.96 23.00 50

distilbert-base-cased 0.1826 0.9256 0.9437 0.9281 0.9232 132.39 21.89 50

Table A.2: Baseline binary classification performance on the all real DV

dataset, using just the Hate and Non-hate classes.
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Model Eval

Loss

F1-

Score

(Macro)

Accuracy Precision

(Macro)

Recall

(Macro)

Runtime VRAM

Usage

Batch

Size

distilroberta-base 0.2513 0.7461 0.9104 0.7648 0.7311 564.49 21.85 50

bert-base-uncased 0.3007 0.7584 0.9084 0.7723 0.7458 1089.84 23.11 30

bert-base-cased 0.2687 0.7546 0.9122 0.7747 0.7394 1088.43 23.16 30

bert-large-cased 0.6688 0.2909 0.7743 0.2581 0.3333 3973.46 20.43 5

roberta-base 0.2539 0.7612 0.9161 0.7767 0.7488 1087.28 23.38 30

roberta-large 0.6751 0.2909 0.7743 0.2581 0.3333 3947.23 20.54 5

electra-base 0.2864 0.7421 0.9026 0.7539 0.7322 1091.34 23.15 30

deberta-base 0.3031 0.7235 0.9112 0.7698 0.6991 2191.14 18.67 10

distilbert-base-uncased 0.2649 0.7569 0.9124 0.7761 0.7413 567.87 22.89 50

distilbert-base-cased 0.2579 0.7378 0.9086 0.7656 0.7191 568.99 21.78 50

distilbert-base-cased 0.2579 0.7378 0.9086 0.7656 0.7191 568.99 21.78 50

DV Baseline Support

Vector Machine [21]*

- - 0.90 - - - - -

Table A.3: Baseline tri-class classification performance on the all real DV

Hate, Offensive, and Non-hate multi-class Twitter dataset. *The Davidson

et al. baseline SVM model does not utilise equal class importance macro F1

scores.

Model Eval

Loss

F1-

Score

(Macro)

Accuracy Precision

(Macro)

Recall

(Macro)

Runtime VRAM

Usage

Batch

Size

distilroberta-base 0.5742 0.6178 0.7563 0.6488 0.6009 484.52 22.03 50

bert-base-uncased 0.7191 0.6475 0.7568 0.6719 0.6311 945.44 23.12 30

bert-base-cased 0.7401 0.6247 0.7453 0.6603 0.6062 947.56 23.15 30

bert-large-cased 0.8176 0.2548 0.6187 0.2062 0.3333 3430.96 20.29 5

roberta-base 0.5705 0.6404 0.7621 0.6705 0.6209 968.97 23.45 30

electra-base 0.6022 0.6381 0.7595 0.6586 0.6233 974.64 23.26 30

deberta-base 0.7712 0.3410 0.6627 0.5285 0.3780 1976.29 18.76 10

distilbert-base-uncased 0.6161 0.6411 0.7623 0.6650 0.6249 510.19 23.25 50

bert-large-cased 0.8198 0.2548 0.6187 0.2062 0.3333 3443.08 17.41 5

roberta-base 0.5830 0.6329 0.7756 0.6968 0.6036 998.79 19.63 20

roberta-large 0.8244 0.2548 0.6187 0.2062 0.3333 3462.07 17.84 5

Table A.4: Baseline tri-class classification performance on the all real ES Ex-

plicit hate, Implicit hate, and Non-hate multi-class Twitter dataset.

Model Eval

Loss

F1-

Score

(Macro)

Accuracy Precision

(Macro)

Recall

(Macro)

Runtime VRAM

Usage

Batch

Size

distilroberta-base 0.4955 0.7767 0.7907 0.7788 0.7749 496.65 22.47 50

bert-base-uncased 0.6493 0.7684 0.7800 0.7669 0.7702 953.32 23.25 30

roberta-base 0.5037 0.7299 0.7535 0.7417 0.7242 959.06 23.52 30

electra-base 0.4673 0.7714 0.7879 0.7773 0.7672 987.00 23.23 30

deberta-base 0.6723 0.3822 0.6187 0.3094 0.5000 1937.84 18.75 10

distilbert-base-uncased 0.5365 0.7725 0.7884 0.7773 0.7690 513.69 23.03 50

distilbert-base-cased 0.5278 0.7714 0.7847 0.7719 0.7708 509.02 21.92 50

Table A.5: Baseline binary classification performance on the all real ES

dataset, with the Explicit and Implicit hate merged as a binary hate class,

compared to the Non-hate class.


