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Abstract. Nowadays, numerous video compression quality assessment
metrics are available. Some of these metrics are “objective” and only
tangentially represent how a human observer rates video quality. On the
other hand, models of the human visual system have been shown to be
effective at describing spatial coding. In this work we propose a new qual-
ity metric which extends the peak signal to noise ratio metric with fea-
tures of the human visual system measured using modern LCD screens.
We also analyse the current visibility models of the early visual system
and compare the commonly used quality metrics with metrics contain-
ing data modelling human perception. We examine the Pearson’s linear
correlation coefficient of the various video compression quality metrics
with human subjective scores on videos from the publicly available Net-
flix data set. Of the metrics tested, our new proposed metric is found
to have the most stable high performance in predicting subjective video
compression quality.

Keywords: Video quality metric - the model of visibility - acceptable
visual quality - artefact perception.

1 Introduction

Video quality metrics are a critical component in modern streaming video pro-
cessing algorithms. Alongside compression and data transmission, accurate qual-
ity estimation is key to maximising use of bandwidth while also maximising
the user experience. Video quality methods can be divided into two categories:
subjective and objective quality assessment criteria [1]. The human user is typ-
ically the final recipient in typical video processing applications, so subjective
quality criteria that reflects human visual perception is arguably the more im-
portant method of assessing video quality [2]. Objective quality criteria are the
most common and popular method of evaluating video quality since the assess-
ment is performed algorithmically. Objective metrics avoid expensive research
with user participation. At the present stage of the development of media con-
tent transmission technologies, objective algorithms for evaluating video quality
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have achieved high optimization and simplicity. Unfortunately, popular objec-
tive prediction models correlate poorly with subjective perceptions of quality
by the human visual system (HVS) and depend on the systems or processes in-
volved [2]. On the other hand, there are algorithmically complex video quality
metrics (VQM) based on models of the human visual system [1], [3] , and an
open question is whether complex video quality metrics based on models of the
human visual system provide significantly better predictions than objective met-
rics. Another problem when used of visual models, is in developing video quality
metrics we must represent the HVS in software, a task impeded by the lim-
ited new fundamental knowledge of the HVS perception of video content using
modern equipment.

In visual perception studies, the primary focus is most often on studying
the physical aspects of HSV, of which video quality is a secondary question
and often not discussed [4]. In addition, in most psychophysical experiments,
participants enter a controlled laboratory environment in order to stabilise tests
and control any confounding factors. In other words, a reduction in the number
of experiments, consequently, errors, is made [5]. The laboratory approach limits
many of the problems that arise in the “real world”. Therefore, developers of
video quality assessments and video compression algorithms need to determine
how psychophysical results relate to quality in today’s video content presentation
environment, without a full understanding of the processes of HVS. Modern
knowledge and tests about the relationship between HVS and quality metrics
are needed.

Human visual sensitivity can be characterised by a distinct region of spatio-
temporal frequencies. Region boundaries determine the visibility of artefacts
in the displayed information [6]. More than five years ago, a linear model of
spatio-temporal contrast sensitivity [7], which determines the visibility of visual
information artefacts by the human eye, was presented. However, the viewing
conditions in the research differed from modern computer monitors and television
screens. In particular, cathode ray tube (CRT) screens were used, which are
not in common use today, and the viewing angle was controlled to be small or
normal to the screen, which is not necessarily true in everyday use. Consequently,
the results do not guarantee a proper description of the conditions in which
media content is presently consumed. At present, the problem of imitation in
the evaluations of the quality of the video of the HVS has led to the creation
in 2022, of a model HVS [8] that considers stimulus parameters: spatial and
temporal frequency, eccentricity, luminance, and viewing area. However, to create
the model, there were data from 11 publications, where the viewing conditions
were also different from modern computer monitors and television screens. At
the current stage of technological development, there are no theoretical obstacles
to creating a sufficiently comprehensive video quality assessment correlated with
HVS. However, there exists a practical obstacle, that large-scale experiments may
be extremely time-consuming and expensive. In the previous work, we presented
a methodology [9] for conducting large-scale experiments and presented initial
measurements of the characteristics of the HVS [1].
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While many video scoring metrics are available, this paper represents the
first practical consideration of a comprehensive solution to adapting a simple
objective video quality metric to a typical video user experience. The objective
of this paper is to demonstrate the need to research and collect new HVS data
under modern circumstances of providing information. We present a comparison
of commonly used video quality metrics with HVS based metrics. Our hypothesis
is that video quality metrics containing HVS data perform better than other
currently used metrics. Consequently, we aim to show that there is a significant
opportunity to develop and extend existing video quality metrics using new HVS
based data.

2 Related work

Considering all video quality assessment methods, the most popular ones are
peak signal-to-noise ratio (PSNR) and structural similarity image metric (SSIM) [10].
PSNR is used more often than other methods to assess similarities between
original and reconstructed images and videos. PSNR is calculated on a loga-
rithmic scale by amplitude (in decibels). The benefit being that the HVS also
perceives brightness on a logarithmic scale. In PSNR, the signal-to-noise ratio
based on standard deviation never gives overestimated results [10], which is why
the method is the most widely used. However, PSNR is poorly correlated with
visual quality estimation and does not consider spatial and temporal psychovi-
sual models. PSNR gives significantly underestimated results, even a slight shift
of the reference and estimation frame in space or desynchronisation of video se-
quence in time can degrade the performance of PSNR estimation [11]. Another
common metric is structural similarity of the image (SSIM) [10]. However, it has
been shown analytically and experimentally that, for images with fragments of
large or small mean luminance values, the local estimates of the metric are unsta-
ble [4]. SSIM does not consider different levels of absolute luminance, temporal
aspects or viewing distances, and poorly correlates with human perception.

A more fundamental approach to creating video quality metrics includes
low-level visual modelling based on psychophysical models, such as the contrast
sensitivity function (CSF) [3]: the threshold at which a human observer can de-
tect change in a given brightness pattern as a function of spatial and temporal
frequency. The artefacts visible to the human visual system in early vision are
regulated by the function of visual sensitivity. Early vision involves three pro-
cesses: filtering, encoding, and interpretation [12]. Human visual sensitivity can
be characterised as a reference filter in terms of spatial and temporal frequencies
and there is no need for rendering beyond the limitations of the region [6].

The existing HVS models do not consider all the necessary spatio-temporal
variations of the stimuli. Popular CSF models, such as Barten [13] or Daly [14],
do not include the temporal frequency. Kelly’s spatio-temporal CSF [15] con-
sider spatial and temporal frequencies without luminance. In 2016, Watson and
Ahumada presented a linear model of spatio-temporal contrast sensitivity, called
the “visibility pyramid” [7]. The authors constructed an exhaustive description
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of spatial and temporal contrast sensitivity, and its dependence on retinal illu-
mination, and also derived a number of strong relations, all from the modest
results of much older studies [16-18]. StelaCSF, unlike previous studies, tries
not to get a perfect fit for individual datasets but creates a single model that
can explain all datasets without overfitting [8]. To model the 5-dimensional con-
trast sensitivity space, the authors combined data from 11 publications on CSF.
The main interest of modelling is datasets. However, the equipment and, there-
fore, viewing conditions in older studies differed from the conventional computer
monitors and television screens used today.

In previous work, we presented a new video quality metric (PSNR-M) [1]
that considered data for the first part of early vision, namely the filtering stage
that determines which spatial and temporal fluctuations in stimuli the HVS
responds to. PSNR-M was created using HVS data from modern screens, but
peripheral vision effects were not considered. The participants controlled the
spatial aspects, flicker amplitude, and the brightness of the round sinusoidal
lattice pattern [9]. Contrast thresholds were measured at 8 different spatial and
15 temporal frequencies at 3 different brightness levels (L). The resultant HVS
model is reproduced in Fig. 1 [1].
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Fig. 1. The temporal- frequency response of the HVS with respect to brightness [1].
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3 Video quality assessment considering the features of
the human visual system: adaptation aspects, spatial
and temporal frequency, eccentricity, luminance

We propose a PSNR based video quality assessment method that also incor-
porates measurements of the HVS, which we call PSNR-M+. The HVS factors
included are spatial and temporal frequency, eccentricity (distance from the cen-
tre of fovea in visual degrees), luminance, adaptation aspects of the HVS, and
stimulus size. This new metric is an extention of our earlier PSNR-M [1] which
considered a small dataset on the dependence of separate spatial and temporal
HVS characteristics on luminance, which was proven effective in comparison to
PSNR [1].

3.1 Video Quality Assessment Metric

The proposed method centres around a weighted PSNR calculation which we
proceed to elucidate,

PSNR/(I(t), In(t),t) = PSNRUI(t) K (t), In(t) K (t), 1), (1)

where [ is a compressed frame, Ii is the reference uncompressed frame, and
K(t) is a weight coefficients matrix for ¢ frames. The quality of the distorted
video is measured incorporating both the spatio-temporal-luminance component
and a peripheral component. A flow diagram framework of the methodology for
calculating K(z,y,t) is shown in Fig. 2.

In the spatio-temporal block of Fig. 2, we use the weight function Hy, ¢, (fz, fy)
measured in earlier work [1], f,, and f, are spatial frequencies, f; is temporal
frequency, and L is luminance. This weight function models the ability of the
human visual system to respond to spatio-temporal change, as measured via the
CSF on a modern in-plane-switching LCD screen. The impulse response may be
found via the following Fourier transform pair

hig,(x,y) <= (Hyg,(fo ), (2)

where <% is the (invertible) Fourier transform. Filtering is performed in the
spatial domain via.

Il/’%(xay) :IR(I>y)*hL»ft($7y)’ (3>

where * is convolution. The spatio-temporal-luminance weighting factor, Ky,
is then computed as

Ip(z,y)
Ky (z,y) = 222 4
tL(‘T y) IR(JU, y) ( )
The task of the region of interest (ROI) sampling is to identify objects that
are more significant for the HVS. In this work, the ROI distinguishes individual

objects using a variant of the watershed algorithm [20]. No more than five objects
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Fig. 2. The framework of the methodology for weight estimate.

are selected close to the centre, with fewer objects selected if the total area of
the selected clustered object is greater than a user determined threshold [1].

The motion estimation utilises an adaptation of the MPEG block matching
technique [19], which uses a 16 x 16 pixel block size, method with 32x 32 pixel
search area. The motion vectors, v(x,y,t), are “compensated” by subtracting the
average within the ROI, vgror, viz.

Vcomp. (1‘7 Y, t) = U(Jj, Y, t) — UROI, (5)

The peripheral coefficient is an approximate foveation function, which models
the decrease of focus from the centre of the ROI outwards. (Foveation being
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the blurring which increases from the centre of vision, which in our metric is
accounted for by decreasing weight from the centre of the ROIL) The exact
viewing angle, and hence the foveation function, depends on the screen size and
resolution of the display device. Since the user can look at different places on
the screen depending on the ROI, in order to find the viewing angle, we first
find the centre of the ROI. Then, assuming that the user is at such a distance
that there is 1 pixel in the center of the screen that corresponds to 1 minute of
arc of vision [21], we find the viewing angle for the pixel as

where, z., and y. are the centre of the ROI, and 1080 is the number of pixels
width of the screen.

For the foveation function, we take the characteristic of the spatial distribu-
tion of receptors as described by Gonzalez and Woods [20] and fit an approximate
function to that distribution, viz.

Aa) = (1.26 x 10°) e "™ + (1.5 x 10") — 512 + 11a® — 0.080%,  (7)

where we temporarily exclude the spatial dependency for brevity. (Note that
the large numbers are normalised by the PSNR’ calculation below.) The visual
resolution decreases from the region of interest to the periphery according to the
above expression [22]. Then the peripheral coefficient in the weight function in
the metrics is determined by

Kpr (2, y) = Ala(z,y)). (®)

In Fig. 3 we show an example of the Ky, (z,y) pattern.

The methodology for weight estimation developed and presented above, is
introduced into the PSNR metric by weighting the function and the original
video sequences via

\/Zti:f% Zm,y K.gtL (.’II, Y, to + t’ﬂ) K;%r (.17, Y, tU + t’ﬂ)
O+ DS, (0 - IRPE2 L (o, t0) K2, (2,4, t0)

PSNR' = 201log;,

where tg is the current frame, and ¢,, is the number of frames from the current
frame, n = Atf,, At is the reaction time of the eye to frames (without consider-
ing the cognitive factors) [1], and f, is the number of frames per second. In this
work we took At = 0.8 seconds [23].

4 Methods

We compare the proposed metric to a range of metrics found in the literature and
in current use. These metrics include: the most popular metrics at the current
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0.8.

Fig. 3. An example of K, where the frame size is 1920x1080 and the centre of the
ROIL is set to (760, 640).

moment (PSNR, SSIM); video multimethod assessment fusion (VMAF) [25], a
method based on machine learning on databases of real users’ evaluations of
the quality of training videos [26]; spatio-temporal reduced reference entropy
difference (STRRED) [27] and HDR-VQM |[28], which are metrics that address
temporal aspects; and metrics which considered the HVS visibility models such
as PSNR-M and FovVideoVDP.

The LIVE-NFLX [29,30] was used to test and compare the video quality
metrics. The LIVE-NFLX data set consists of 112 compressed (hence distorted)
videos. In this work we use 12 of these videos. The LIVE-NFLX database is
selected because it represented highly realistic content with quality of experience
responses to various design dimensions, including varying compression rates in
the form of simulated varying transmission video bit rates over the course of
each video.

5 Results and Discussion

The mean opinion scores (MOS), or subjective score, provided by the LIVE-
NFLX database were used to compare the performance of PSNR-M+ with the
presented above VQM. The scatter plots of the VQM algorithms under com-
parison are shown in Fig. 4. In Fig. 5, the metrics and their Pearson’s linear
correlation coefficient (PLCC) with the subjective quality scores are compared.
As can be seen Fig. 5, the proposed metric gives the most consistent positive
correlation. The gain in performance is mostly due to PSNR-M+’s ability to
generalize predictions across video sequences. The strong compression distortion
represented in this dataset and the difficulty of replicating subjective scores are
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Table 1. Comparison of the video quality metrics correlating and not correlating with
HVS, Pearson correlation coefficient (PLCC).

VQA NFLX C4S1|NFLX C4S2|NFLX C6S1|NFLX C6S2|[FCVR C1|FCVR C2
PSNR 0.577 0.117 0.648 -0.284 0.999958 10.999990
SSIM 0.623 0.075 0.715 -0.314 0.999961 ]0.999997
FVVDP  |0.567 0.112 0.654 -0.284 0.999993 ]0.999999
STRRED |-0.248 -0.029 -0.451 -0.232 0.644864 ]0.836653
HDR-VQM]|0.562 0.093 0.537 -0.178 0.999936 |0.999936
PSNR-M (0.55 0.134 0.642 -0.191 0.999858 10.999891
PSNR-M+ [0.613 0.803 0.607 0.572 0.999933 ]0.999945

apparent in the correlations herein. For example, in the scatter plots in Fig. 4,
HDR-VQM predicts a comparable correlation between the prediction and real
subjective score estimates for only half of the studied video sequences. HDR-
VQM does a good job predicting spatial processing but does not model temporal
processing.

It is appropriate to compare PSNR-M+, in which the model of HVS is de-
rived from data based on modern LCD screens, to FovVideoVDP [3] which was
based on much older data derived from experiments using cathode ray tube
(CRT) screens. Both metrics consist of CSF models. In 2022, a visibility model
StelaCSF (an improved FovVideoVDP model, the exact model we test herein)
was presented based on 11 data sets that also use the older CRT screen data [8].
Their results show that stelaCSF can explain current data sets better than other
previously existing models. FovVideoVDP, as well as PSNR-M, show variable re-
sults in low contrast objects and low bitrate. When comparing FovVideoVDP
with PSNR-M+, the metrics show approximately similar results for video se-
quences with a normal bitrate. However, for videos containing sufficient motion,
PSNR-M+ gives an average of 15% higher correlation.

The primary purpose of the analysis is to observe the behaviour of current
VQM measures when deployed for predicting the perceptual quality of video con-
tent. From Fig. 5, the new HVS data based model, taken on modern equipment,
gives an increase in the stability of the correlation of the obtained metric value
with the real subjective score when evaluating video quality. Fig. 5 compares
the correlation intervals of video quality metrics with the real subjective score
on video sequences. PSNR-M+ has a better correlation interval than the VQM
algorithms under comparison. Or in other words, the metric more effectively
predicts the perception of videos, with different content and distortions, by the
human visual system.

Despite the objectively better stability of the developed method, there is
still potential room for improvement. For example, the motion compensation is
coarse and could be refined to better reflect the motion of individual moving
objects. The size of objects selected by the ROI stage could also be refined.
The use of more videos from more disparate data sets will also enhance our
confidence in our correlation scores. Moreover, our HVS model is limited and



10

A. Mozhaeva et al.

X

— Regression

FVVDP
(PLCC=0.26)

W

(e

1
W

Subjective score

2 4 6
Metric prediction

PSNR-M
(PLCC=0.28)

N

()

Subjective score

1
()]

0 20
Metric prediction

SSIM
(PLCC=0.27)

(9]

()

1
()}

Subjective score

0.4 0.6 0.8

Metric prediction
STRRED
(PLCC=-0.24)

N

)

Subjective score

1
W

0 10000
Metric prediction

PSNR-M+
(PLCC=0.65)

9]

o

Subjective score

500
Metric prediction

PSNR
(PLCC=0.26)

(9]

g

o

Subjective score

10 20 30

Metric prediction
VMAF
(PLCC=0.37)

5

o)
=
o
Q
|70]
()
>

=
)

=

Na)
=

9]

0 50
Metric prediction
HDR-VQM
(PLCC=0.25)

s
i

Subjective score

2 4 6 8
Metric prediction

Fig. 4. Visualisation of LIVE-NFLX database results.
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Fig. 5. Correlation interval of video quality metrics on video sequences LIVE-NFLX.
The new proposed metric, PSNR-M+-, has the most consistent high correlation of the
metrics tested herein.

does not simulate certain aspects of vision such as inter-channel masking, eye
movement, and a model of peripheral vision.

6 Conclusion

Our work demonstrates that metrics based on psychophysical HVS models ex-
plain human perception of video quality, outperforming statistically based met-
rics. In this test the proposed metric, which extends PSNR by incoporating
recent data of the HVS taken using modern equipment, is comparable to the
best complex algorithmic metrics. However, our HVS model is still somewhat
limited and we plan to increase the volume of data that informs our CSF model,
and to incorporate other aspects such as inter-channel masking, eye movement
and peripheral vision. Also, testing the proposed metric against, at least, four
independent databases with a minimum of 15 videos each and related statistics
will be carried out in future work.
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