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Abstract
Hierarchical, Informed and Robust Machine Learning for Surgical Tool

Management

by MARK WILLIAM RODRIGUES

This thesis focuses on the development of a computer vision and deep learning based
system for the intelligent management of surgical tools. The work accomplished
included the development of a new dataset, creation of state of the art techniques to
cope with volume, variety and vision problems, and designing or adapting algorithms
to address specific surgical tool recognition issues. The system was trained to cope
with a wide variety of tools, with very subtle differences in shapes, and was designed
to work with high volumes, as well as varying illuminations and backgrounds.
Methodology that was adopted in this thesis included the creation of a surgical tool
image dataset and development of a surgical tool attribute matrix or knowledge-base.
This was significant because there are no large scale publicly available surgical tool
datasets, nor are there established annotations or datasets of textual descriptions
of surgical tools that can be used for machine learning. The work resulted in the
development of a new hierarchical architecture for multi-level predictions at surgical
speciality, pack, set and tool level. Additional work evaluated the use of synthetic
data to improve robustness of the CNN, and the infusion of knowledge to improve
predictive performance.
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Chapter 1

Introduction

This thesis is focused on developing a computer vision and machine learning system
for intelligent management of surgical tools. This introduction explains why this
is a problem, reviews current methods to tackle the problem, evaluates possible
solutions, identifies issues with current solutions, states the research hypothesis of
this thesis, and lists the research questions. This section also itemizes contributions of
the research, details of publications produced from the work, and outlines the overall
organisation of the thesis.

1.1 The Problem

The management of surgical tools is a significant problem in hospitals worldwide.
For example, one hospital in New Zealand had 23 Operating Theaters working with
multiple surgeries being conducted every day. There are many different surgical
procedures, encompassing many different surgical specialities, and each procedure
has its own set of tools — on average, there are 38 surgical tools per set, with around
6 sets or trays used for a surgery (Mhlaba et al., 2015). Given that every individual
surgeon has his/her own preferences and requirements, manual management of such
a vast and complex task is extremely difficult. There are streams of used tools coming
out of every theatre, and these tools have to be collected, cleaned, sorted, sterilised
and packed. Currently this is done manually, and one hospital in New Zealand had
61 trained technicians working 24/7 to accomplish this task (Unit Manager, personal
communication, Nov. 2019), while a US hospital employed 89 staff and processed over
23,000 surgical tools trays per month (Alfred et al., 2021). Challenges included high
inventory levels, set assembly errors, inconsistent availability of surgical tools, and
non-functional instruments. Large volumes and varieties of surgical tools also pose a
formidable challenge for management (Unit Manager, personal communication, Nov.
2019).

Surgical sets -— with up to two hundred objects — are currently assembled
manually against checklists but errors are found in many assembled sets in terms
of sizes and types of tools included (Guedon et al., 2016; Stockert and Langerman,
2014; Zhou, Rueckert, and Fichtinger, 2019). A U.S. study found 3900 defects in
41,799 surgical sets evaluated. 17.6% of the sets had missing tools, 10.9% had broken,
damaged or malfunctioning tools, 8.5 % sets had the wrong tools, and 7.1 % (281)
of the sets were assembled incorrectly (Alfred et al., 2021). A system that provides
immediate information with pictorial guides for identifying tools and locations in
sets would be invaluable. On completion, image scans will provide confirmation of
accurate assembly within seconds instead of requiring manual checking. Instrument
technicians cannot physically inspect each surgical instrument since they are working
under time pressure, but a system that captures tool images and indicates possible
damage — or which permits images to be examined at a later time for damage —
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can provide a solution. Tracking tools at various key points can lower incidents
of lost and missing tools — these include scan stations before and after the tools
enter the surgery, at decontamination rooms, in packing areas, and just before sealing
and sterilisation. Images of completed sets will reduce current reliance on error-
prone labels on sterile, sealed sets. Data on available tools across multiple locations
can result in better inventory management. Savings of millions of dollars in direct,
indirect and inventory costs can be made across the twenty District Health Boards
(DHBs) and over two hundred hospitals in New Zealand by adopting this computer
vision and machine learning based surgical tool management system.

Convolutional neural networks (CNNs) have been used in medical imaging to
identify fibroids, polyps and tumours, and for classification of cancer cells. Modelling
of disease progression –– Alzheimer’s, multiple sclerosis, and stroke –– has been
achieved through deep learning based analysis of brain scans (Cao et al., 2019; Pang
et al., 2019; Yip et al., 2021; Ali Qadir et al., 2019; Almubarak, Bazi, and Alajlan, 2020).
CNNs have also been used to recognise and track surgical instruments (Ahmadi et al.,
2018; Sarikaya, Corso, and Guru, 2017; Leppanen et al., 2018; Zhao et al., 2017). These
CNNs work well but are specialised systems designed for a specific task, they are
governed by rules, and are only able to operate within a particular framework. For
example, a CNN trained to detect skin cancer lesions from images is not useful for any
other task without retraining or domain adaption. Further, while they can be trained
to recognise surgical instruments, they can only provide limited information about
the particular instrument based on associated labels and annotations. A solution
that can provide detailed and useful information using medical data is needed, and
this thesis sets out the work required to develop such a system for surgical tool
management.

1.2 The Solution

Convolutional neural networks (CNNs) are used to classify images into specific
classes. To accomplish this, CNNs extract a hierarchy of features from input images
and use these features to classify or categorize the image into a class. CNNs use a
cascade of computing layers, where each layer uses the output from the previous
layers to extract relevant features from the image data (He, Zhang, Ren, et al., 2016;
Krizhevsky, Sutskever, and Hinton, 2012; Simonyan and Zisserman, 2014). Deep
learning is about deeper neural networks that provide hierarchical representation
of the data through various convolutions. It adds depth and complexity into the
machine learning models, and transforms data with various functions. Feature
learning, or the automatic extraction of features from the data, is an important aspect
of deep learning, where higher level features are formed or composed from lower
level features. Each layer of the deep CNN learns a different level of abstraction in
terms of what the features capture, e.g., low-level edges and patterns are captured in
the lowest layers and abstract object shapes are captured in the highest layers. It has
been demonstrated in prior work that the first layers of a deep CNN learn similar
features — early layer features capture more general features, and later layers capture
more specific features. This is important, since general features that are common for
different classification tasks can be transferred to a new task to provide a head-start
for the target learning process (LeCun, Bengio, and Hinton, 2015; Pan and Yang, 2010;
Weiss, Khoshgoftaar, and Wang, 2016; Zhou et al., 2014; Zhuang et al., 2019).

Deep neural networks are ideal for the processing of image data, which are arrays
of pixel intensities in three colour channels, and have proven to be very successful in
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the segmentation, detection and recognition of objects in images (LeCun, Bengio, and
Hinton, 2015). Image segmentation divides a visual input or image into sets of pixels,
and then these segments are used either to classify images into classes or to detect
specific objects in the image. In the case of this research proposal, specific surgical tool
objects have to be detected and CNNs have been successfully used for surgical tool
segmentation, recognition and detection tasks. Research in surgical instrument iden-
tification has addressed robotic and computer-assisted surgery (Sarikaya, Corso, and
Guru, 2017), instrument position recognition in minimal invasive surgery (Zhao et al.,
2017), pose recognition in surgical training (Leppanen et al., 2018) and instrument
tracking in hospital inventory management (Ahmadi et al., 2018). Object-specific
learning and classification, with or without CNNs, relies on identifying features of
input images that can be aggregated into representations. Representation learning
allows a computer to automatically discover the representations needed for detection
or classification, without the need for time and expertise intensive hand-engineering
of features. Deep-learning methods consist of multiple levels of representation, with
non-linear modules that transform representations at each level into a representation
at a higher, more abstract level. The key aspect of deep learning is that these features
are not hand crafted but are learned from the data by relying on learning procedures
(LeCun, Bengio, and Hinton, 2015).

1.2.1 Surgical Tool Recognition

CNNs have been successfully used for surgical instrument detection, segmentation
and recognition. The performance of object detection CNNs in recent years has
been stated to be extraordinary, even human level on specific tasks (LeCun, Bengio,
and Hinton, 2015). Image-based surgical tool detection and tracking methods have
been the subject of many applied research efforts, and have progressed alongside
advances in general object detection. Transfer learning techniques, where a CNN
model pre-trained on general images can be fine-tuned on a surgical instrument
database, have been used to achieve good accuracy and predictive performance for
surgical instrument recognition tasks (LeCun, Bengio, and Hinton, 2015). While
significant amount of work has been conducted in this area, Bouget et al. (2017)
stated that much more data needs to be made available for algorithm development,
and the lack of quality data is a significant handicap for research. Other researchers
have also raised concerns about the lack of quality data for research and algorithm
development, and have called for the release of more surgical tool datasets into the
research community so that better models can be generated (Twinanda et al., 2016).
These concerns are addressed in this thesis.

CNNs are now the predominant approach for computer vision based object recog-
nition and detection, and have been successfully used for the detection, segmentation
and recognition of objects and regions in images over the last two decades, including
surgical tools detection. However, there are significant problems with this approach
for surgical tool management that need to be addressed, and these problems are
discussed below:

Volume — Real-world image recognition needs to detect from many thousands of
classes, but most CNNs are trained to recognise only a few classes. In many cases,
CNNs have been trained on ImageNet which has 1000 classes, and this is not sufficient
for real world tasks where tens of thousands of classes have to be recognised. This is
particularly true in surgical tool management — the CNNs discussed in surgical tool
applications have dealt with very small instrument sets with a maximum of 21 tools
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available for research. The Cholec80, EndoVis 2017 and m2cai16-tool datasets have 7
instruments, the CATARACTS dataset has 21 instruments, the NeuroID dataset has
8 instruments and the LapGyn4 Tool Dataset has 3 instruments (Al Hajj et al., 2018;
Al Hajj, Lamard, Conze, et al., 2019; Twinanda et al., 2016). There are many thousands
of surgical tools in circulation within a hospital but no work has been conducted to
train CNNs to recognise these thousands of tools. Stockert and Langerman (2014)
reported that one institution processed over 100,000 trays and 2.6 million instruments
annually. NYC’s Hospital for Special Surgery processed 900 surgical trays per day,
and Wythenshawe Hospital in the UK reported 85,000 surgical trays used in 69,000
surgeries every year. The UK Govt reported that there were at least nine million
individual surgical trays in circulation in the NHS at any one time. There were approx.
38 instruments per tray (range, 1–188), with about 5.4 trays used for each surgery
(Mhlaba et al., 2015). Handling this volume manually in real time and under difficult,
mission-critical conditions is a challenging task.

Variety and Fine Grained Classification — There are tens of thousands of different
surgical tools, and each tool varies in shape, size and functionality. In many cases,
the basic shape of two or more different tools is similar with very subtle differences
in key attributes differentiating them. CNNs are generally trained on high-level
image features and cannot capture fine-grained details of the classes. Fine-grained
recognition is required to classify categories that are visually similar, but the current
approach of capturing and relying on holistic image features is insufficient for distin-
guishing fine-grained classes. In these classes, discriminative information is available
in only few regions in the image, in small sections of the object, and correspond
to a limited number of attributes (Huynh and Elhamifar, 2020). How to recognise
these fine-grained discriminative features is a critical aspect that is addressed in this
research. It is possible to train multiple CNNs for recognising particular types of tools,
but deployment of multiple models for prediction of tools in real world conditions,
on systems which may not have adequate memory or computing power, may not be
possible. A solution that relies on a single CNN to make predictions across multiple
levels would be ideal, and this thesis evaluates how this can be achieved.

Complexity in Management — The organisation or assembly of surgical tools
for specific surgical procedures is governed by multiple factors. While the volume
and variety of tools presents a significant problem, another important issue is the
surgeon preference card, which enumerates each item that a particular surgeon
requires when performing a given surgical procedure. Since a single surgery requires
many different instrument and tray types, tool management requires evaluation of
the specific surgical trays needed for a given surgeon and procedure, the types and
numbers of instruments required in each tray type, additional tools needed, and
the actual availability of such tools and trays in inventory (Ahmadi et al., 2018).
Manual management of these complexities inevitably leads to errors. Global research
studies discovered multiple errors in surgical tray assembly, which put surgical
procedures and patients at risk (Guedon et al., 2016; Stockert and Langerman, 2014;
Zhou, Rueckert, and Fichtinger, 2019). Shifting from the manual handling of surgical
tools to a deep learning based system could address these errors.

The costs involved are high — a US institutional cost center reported spending
over eight million dollars annually on processing 2.5 million instruments over the
course of a year, and total annual institutional cost associated with instrument pro-
cessing was estimated at over three dollars per instrument. A US Medical Center used
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data from 2 neurosurgical procedures to estimate potential institutional savings up to
2.8 million a year through a reduction in instrument processing through sterile supply,
demonstrating the scale of savings that are possible (Mhlaba et al., 2015; Stockert
and Langerman, 2014; Meter and Adam, 2016; Zhou, Rueckert, and Fichtinger, 2019).
Alfred et al. (2021) highlighted how defects in assembled sets could cause increased
risks, delays and costs – urgent replacement tool handling could cause surgical site
infections, using alternate tools could result in greater risks, delays or deviations in
surgery processes, and surgery delays could be expensive. Further, broken and/or
defective instruments could lead to in-patient retained objects, as well as skin or
tissue tearing and damage, and greater risk of infection (Alfred et al., 2021).

Illumination, Reflection and Occlusions — Illumination variations cause signif-
icant problems, particularly in real world conditions where light sources can vary
from direct sunlight, filtered natural light, LED lighting, incandescent or fluorescent
light or different combinations at different times. These variations, along with the
reflective nature of most surgical tools, cause significant problems for effective and
accurate tool identification. Added to this is the fact that tools are often occluded
or stacked, and also may have foreign matter such as blood, bone or tissue material.
Ensuring that a CNN is robust to changes in illumination and background is an
important issue that is addressed in this thesis.

Quality Assured ML-Driven Deep Learning — Given the mission-critical nature
of surgical tool management, there needs to be validation of deep learning systems in
real-world conditions. This was to addressed in this thesis but was not possible due
to issues with the global pandemic which restricted access to hospitals and clinics.

1.3 Research Questions

Research on surgical tools has focused on a small number of tools and in limited
contexts and scenarios. There is a lack of quality datasets for surgical tool detection
tasks, and calls have been made by researchers for the development of high quality
surgical tool datasets to facilitate research in this area. A robust and reliable surgical
tool detection and identification system that can address the issues and problems
enumerated in previous sections would be invaluable. This thesis therefore has its
focus on developing a computer vision and machine learning based surgical tool
management system.

The research hypothesis is framed as follows:

A hierarchical, informed, robust machine learning based system can be developed for
effective management of surgical tools.

1.3.1 Research Questions

The specific research questions are enumerated below:

• RQ1 — How can a convolutional neural network be designed for recognition
of surgical tools, effectively utilising the hierarchical nature of surgical tool
classes?
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• RQ2 — How can the design of a CNN be improved for interpretable deep learn-
ing for intelligent surgical tool management, by incorporating prior information
and knowledge of relationships in the ground truth class label arrangements?

• RQ3 — How can the robustness of a CNN be improved for recognition of surgi-
cal tools under challenging conditions, addressing volume, variety, complexity
and illumination/reflection/occlusion issues?

• RQ4 — How can nominal attribute information be included in a machine learn-
ing model to improve the predictions of a CNN for surgical tool management?

1.4 Thesis Contribution, Scope and Limitations

The contributions that this thesis makes are listed as follows:

• The research proposal focuses on designing a computer vision and deep learn-
ing based system that could operate effectively in the surgical domain.

• Domain Knowledge is developed in the form of a Surgical Tool Dataset and a
Surgery Knowledge Base which will support further research in this area.

• A prototype for computer vision based intelligent management of surgical tools
is developed to demonstrate the effectiveness, efficiency and accuracy of the
system.

• A key contribution is a deeper insight into how to design and train a CNN
for practical deployment while addressing real world problems. The practical
results of this research may be useful for hospitals, DHBs and the govern-
ment, and can contribute to greater efficiencies and cost savings across these
organisations.

• A significant limitation was that extensive testing was not possible in actual
use conditions due to unforeseen problems with the COVID pandemic, which
limited access to hospitals and test areas.

1.4.1 Publications

The work accomplished as part of this thesis has resulted in the following publica-
tions:

• Rodrigues M, Mayo M, Patros P (2021a), Evaluation of deep learning tech-
niques on a novel hierarchical surgical tool dataset. In: 2021 Australasian Joint
Conference on Artificial Intelligence — 2nd Place — Best Applied Paper Award.

• Rodrigues M, Mayo M, Patros P (2021b), Interpretable deep learning for surgical
tool management. In: Reyes M. et al. (ed) 4th International Workshop on
Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC
2021), Springer, Cham., Lecture Notes in Computer Science, vol 12929, DOI —
10.1007/978-3-030-87444-51

• Rodrigues M, Mayo M, Patros P (2022a), OctopusNet: Machine learning for
intelligent management of surgical tools. Smart Health Volume 23,
DOI — 10.1016/j.smhl.2021.100244
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• Rodrigues M, Mayo M, Patros P (2022b) Surgical Tool Datasets for Machine
Learning Research: a Survey, International Journal of Computer Vision, Volume
130, Pages 2222–2248 (2022). DOI — 10.1007/s11263-022-01640-6

1.5 Thesis Organisation

• Chapter 1 — Introduction to the thesis, where the problem is introduced, pos-
sible solutions are identified and work conducted are discussed. The research
hypothesis is defined and the research questions are listed. This section itemizes
contributions of the thesis, details of publications produced from the work, and
it outlines the overall organisation of the thesis.

• Chapter 2 — This chapter sets up the context of the research, and is a detailed
literature review of surgical tool management with CNNs. The work presents a
comprehensive survey of datasets for surgical tool detection and related sur-
gical data science and machine learning techniques and algorithms. It offers a
high level perspective of current research in this area, analyses the taxonomy of
approaches adopted by researchers using surgical tool datasets, and addresses
key areas of research, such as the datasets used, evaluation metrics applied
and deep learning techniques utilised. The presentation and taxonomy pro-
vides a framework that facilitates greater understanding of current work, and
highlights the challenges and opportunities for further innovative and useful
research.

• Chapter 3 — This chapter explores and implements state of the art methods
and frameworks for surgical tool detection. It reports the results of experiments
on two important frameworks — Mask R-CNN and YOLOv3 / YOLOv5. This
work implements the frameworks, and explores ways in which results can be
improved. It then conducts experiments with hierarchical predictions, and
evaluates the use of infra-red images. Work accomplished also evaluated
real time performance, and the use of differential annotations. In particular,
approaches to tackle the problems posed by illumination changes, reflections,
background variations and cluttered trays are discussed and evaluated.

• Chapter 4 — This chapter presents a novel convolutional neural network frame-
work for multi-level classification of surgical tools. The classifications are
obtained from multiple levels of the model, and high accuracy is obtained by
adjusting the depth of layers selected for predictions. The framework enhances
the interpretability of the overall predictions by providing a comprehensive
set of classifications for each tool. This allows users to make rational decisions
about whether to trust the model based on multiple pieces of information, and
the predictions can be evaluated against each other for consistency and error-
checking. The multi-level prediction framework achieves promising results on
a novel surgery tool dataset and surgery knowledge base, which are impor-
tant contributions of this work. This framework provides a viable solution for
intelligent management of surgical tools in a hospital, potentially leading to
significant cost savings and increased efficiencies.

• Chapter 5 — This chapter presents a novel densely-connected convolutional
neural network architecture, termed OctopusNet, for hierarchical classification
of surgical tools. The network shares information across prediction hierarchies
to improve classification accuracy, and provides a degree of interpretability by
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predicting a set of features for each tool based on multiple classification targets.
Important contributions of this chapter work are the OctopusNet architecture,
a novel surgical tool dataset and a surgery knowledge base. The architecture
provides a viable solution for intelligent management of surgical tools in a
hospital, potentially leading to greater patient safety, significant cost savings
and increased efficiency.

• Chapter 6 — A new hierarchically organised dataset for artificial intelligence
and machine learning research is presented, focusing on intelligent management
of surgical tools. In addition to 360 surgical tool classes, a four level hierarchical
structure for the dataset was created, defined by 2 specialities, 12 packs and
35 sets. The work employed different convolutional neural network training
strategies to evaluate image classification and retrieval performance on this
dataset, including the utilisation of prior information in the form of a taxonomic
hierarchy tree structure. In this work, the effects of image size and the number of
images per class on model predictive performance was evaluated. Experiments
with the mapping of image features and class embeddings in semantic space
using measures of semantic similarity between classes show that providing prior
information results in a significant improvement in image retrieval performance
on the dataset.

• Chapter 7 — This chapter evaluates ways of making the OctopusNet robust, so
that it can cope with real world conditions. Experimental work to test the CNN
performance with challenging images was conducted, and performance was
evaluated. Further work developed and used synthetic data and filter based
purposeful augmentation, and good results were obtained by training with the
synthetic augmented dataset.

• Chapter 8 — This chapter addresses the utility of multi-modal representations
in the intelligent management of surgical tools, and the provision of additional
information in the training process to improve predictive performance of the
CNN. Experiment were conducted on the use of attributes as external sources
of knowledge, and the attribute matrix was used to provide prior information
in the training regime of the CNN. The work focuses on text and knowledge
graphs to formally represent prior knowledge and on a learning algorithm
approach for knowledge integration, implemented as a loss function and regu-
larizer in the training process. The approach uses both images and text in the
CNN training process in an effective manner.

• Chapter 9 — This chapter presents the thesis conclusions, demonstrates how the
research questions have been addressed, reports problems and shortcomings,
and the response to the research hypothesis. It also provides directions for
future work.
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Chapter 2

Surgical Tool Datasets for Machine
Learning Research: a Survey

This chapter was published in the International Journal of Computer Vision, Volume
130, Pages 2222–2248 (2022). DOI — 10.1007/s11263-022-01640-6.

It presents a comprehensive survey of datasets for surgical tool detection and
related surgical data science and machine learning techniques and algorithms. The
survey offers a high level perspective of current research in this area, analyses the
taxonomy of approaches adopted by researchers using surgical tool datasets, and
addresses key areas of research, such as the datasets used, evaluation metrics applied
and deep learning techniques utilised. This presentation and taxonomy provides a
framework that facilitates greater understanding of current work, and highlights the
challenges and opportunities for further innovative and useful research.

2.1 Introduction

There are fourteen surgical specialities recognised by the American College of Sur-
geons, ranging from orthopaedic surgery through to vascular surgery (ACS, 2021).
Each speciality has its own procedures and its own sets of surgical tools, including
instruments, implants and screws designed for specific parts of the body, and for
specific procedures. Rapid advances in minimally invasive surgery have led to new
classifications of robotic or laparoscopic surgery and open surgery (Bhatt et al., 2018),
and also to new types of instruments being introduced at a constant rate (Figure 2.1).

Consequently, there are many thousands of different types of surgical tool in
circulation within a hospital. Stockert and Langerman (2014) reported that just
one institution processed over 100,000 surgical trays and 2.6 million surgical tools
annually. There were on average 38 surgical instruments per tray, with around 6 trays
used for each surgery (Mhlaba et al., 2015). Handling this volume manually in real
time and under difficult, mission-critical conditions is a challenging task requiring
highly trained surgical technicians.

Automating surgical tool detection and recognition through computer vision and
machine learning has numerous practical applications therefore, and these applica-
tions can lead to improved efficiencies and/or reduced costs. Applications include
robotic and computer-assisted surgery (Sarikaya, Corso, and Guru, 2017; Zhao et al.,
2019a), instrument position recognition in minimal invasive surgery (Zhao et al.,
2017), pose recognition in surgical training (Leppanen et al., 2018; Jo et al., 2019), and
instrument tracking in hospital inventory management (Ahmadi et al., 2018).

Ward et al. (2021b) discussed the application of computer vision and deep learning
to surgery, specifically for the identification of surgical phases and instruments in
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FIGURE 2.1: Open Surgery Instruments

multiple surgery procedures. Amsterdam, Clarkson, and Stoyanov (2021) reviewed
methods for automatic recognition of fine-grained gestures in robotic surgery, and
highlighted the promising results obtained by deep learning based models. Garrow
et al. (2021) provided an overview of deep learning models utilized for automated
surgical phase recognition using data inputs such as videos or surgical instrument
use, and found that laparoscopic cholecystectomy was the most common operation
evaluated. Yang, Zhao, and Hu (2020) presented a review of the literature regarding
image-based laparoscopic tool detection and tracking using convolutional neural
networks (CNNs), including a discussion of available datasets and CNN-based
detection and tracking methods. They also presented a quantitative estimation of
several performance measures. Our survey maintains a focus on surgical tools,
reviews image based surgical tool detection, and provides an overview of instrument
related surgical data science and machine learning techniques and algorithms. It is
comprehensive in nature, covering the range of relevant research conducted in our
specified time period — which was from 2015 till 2022. In particular, we maintain
a focus on surgical tool datasets and on gaps in the research or on open research
questions.

In this survey, we address three research questions:

1. What surgical tool datasets are used in machine learning research?

2. What machine learning methods are used in the research?

3. What are the gaps in surgical tool datasets and associated machine learning
research?

Our objective, therefore, is to build a comprehensive knowledge hierarchy of
applied research in surgical tool detection, classification and segmentation to guide
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future work. A concrete outcome is an integrated taxonomy of the methods used
across the tasks undertaken in the research. We evaluate the pros and cons of each
method or set of methods used in each paper, and address what is missing in the
research to date. Gaps not just in the research but also in the publicly available
datasets are discussed. We provide a comprehensive survey of the various datasets
associated with surgical tool detection (Tables 2.1, 2.5, 2.6, 2.7, 2.8 and 2.9). We
address the specific challenges faced in this task and evaluate how they have been
addressed. Finally, we make recommendations based on the results of the survey to
encourage further work in this area.

2.2 Survey Methodology

As a logical starting point and following the approach used in similar survey work
(Egger et al., 2020; Litjens et al., 2017), we rely on both PubMed and Google Scholar to
conduct an initial search for literature. We chose PubMed because of its medical focus
and Google Scholar because it indexes a range of peer reviewed international journals
and conferences across disciplines. We expected that this strategy would provide a
broader range of articles than reliance on academic databases. We used keywords to
search the databases – an example search could include the keyword {“Surgical” OR
“Surgery”} together with the keywords {“tool” OR “instrument”} AND {“detection”
OR “classification”} AND {“deep learning OR machine learning”}. Comprehensive
combinations of key words were used to ensure diligence in our search. Our reliance
on Google Scholar proved to be a good strategy to develop an acceptable starting set
of literature which avoided bias or preference towards any specific publisher. We also
conducted other complimentary searches, such as reviewing reference lists, searching
through conference proceedings, and obtaining leads from prominent researchers
and authors in this area (Wohlin, 2014). Once we completed the literature search, we
comprehensively summarised the literature set in a spreadsheet, with sample entries
shown in Tables 2.2 and 2.3. We then read the papers to ascertain if they all actually
included surgical tool detection in some form or the other. For example, some of
the studies on surgical workflow also included a surgical tool detection component
since it has been reported that combining instrument signals with visual features
leads to better segmentation, and faster and more accurate detection (Dergachyova
et al., 2016). We discarded papers that did not discuss surgical tools or which used
external markers for tool detection or tracking. The resultant collection of 161 papers
are surveyed in this review.

2.3 Dataset Review

Medical image analysis challenges have resulted in many new and innovative ap-
proaches to surgical instrument recognition. These challenges are designed to provide
a platform for the development of cutting edge machine learning solutions in medical
imaging, and research in these challenges has addressed instrument segmentation,
detection and localisation, tracking and pose estimation, velocity and instrument
state. Al Hajj, Lamard, Conze, et al. (2019) highlight the fact that more than twenty
annual challenges were hosted, and the CATARACTS, EndoVis and M2CAI chal-
lenges specifically addressed the issue of instrument detection. In the medical image
challenges, generally a specific task is defined, a dataset is provided, evaluation pro-
cedures are defined, algorithms are developed and applied, and solutions are tested
on a held-out test set. A critical component is the dataset provided, and every attempt
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Initial Possibilities
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265

FIGURE 2.2: Paper Selection Flow

is made by the challenge organisers to ensure that this data is representative of the
type of data generally encountered in clinical practice. We describe the important
Challenge Datasets in the next section.

2.3.1 Challenge Datasets

ROBUST-MIS 2019, a part of the EndoVis Challenge series, was based on surgical
procedures from three types of surgery. The videos were from 30 minimally invasive
surgical procedures: ten rectal resection procedures, ten proctocolectomy procedures
and ten sigmoid resection procedures. A labelling mask and instrument labels were
manually created for the 10,040 extracted endoscopic video frames (Ross, Reinke,
and Full, 2019). This dataset was based on the Heidelberg colorectal data set (Maier-
Hein et al., 2021). The Endoscopic Vision 2018 Robotic Scene Segmentation Dataset
provided images that were based on actual surgical procedures and included consid-
erable variability in backgrounds, instrument movements, angles, and scales. The
entire challenge dataset was made up of 19 sequences of porcine endoscope images
and the objective was to perform semantic segmentation of surgical images into a
set of medical device classes and a set of anatomical classes (Allan et al., 2020). The
EndoVis 2017 Robotic Instrument Dataset was made up of 10 sequences of abdominal
porcine procedures, which presented seven different robotic surgical instruments
(Table 2.4). The relatively small size of the dataset was an issue, since it was only
made up of 3000 frames in total, out of which 1800 frames were selected as training
data. The dataset supported three different segmentation tasks: binary segmentation,
parts of instruments (e.g., shaft, wrist, claspers and ultrasound probes) and type
segmentation (e.g., needle driver, forceps, scissors, sealer and others). The EndoVis
2015 instrument segmentation and tracking dataset provided data for rigid and artic-
ulated robotic instruments in laparoscopic surgery. For rigid instruments, 2D in-vivo
images from four laparoscopic colorectal surgeries were provided for segmentation
and in-vivo video sequences of four laparoscopic colorectal surgeries were provided
for tracking. For articulated instruments, four 45-second 2D images sequences of at
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TABLE 2.4: Tools in Cataract Dataset

Dataset Instrument

CATARACTS Biomarker, Charleux cannula, hydrodissection cannula, Rycroft
cannula, viscoelastic cannula, cotton, capsulorhexis cystotome,
Bonn forceps, capsulorhexis forceps, Troutman forceps, needle
holder, irrigation/ aspiration HP, phacoemulsifier HP, Cvitrec-
tomy HP, implant injector, primary incision knife, secondary inci-
sion knife, micromanipulator, suture needle, Mendez ring, Vannas
scissors, grasper, bipolar, hook, scissors, clipper, irrigator, speci-
men bag

Cholec80 Dataset Grasper, hook, bipolar, scissors, clipper, specimen bag and irriga-
tor

EndoVis 2017 Large Needle Driver, Prograsp Forceps, Monopolar Curved Scis-
sors, Cadiere Forceps, Bipolar Forceps, Vessel Sealer and a drop-in
ultrasound probe, typically in the jaws of the Prograsp

FIGURE 2.3: Cataracts Dataset

least one large Needle Driver instrument in an ex-vivo setup were provided. Relevant
annotations and additional test data were also provided.

The Challenge on Automatic Tool Annotation for Cataract Surgery (CATARACTS)
Dataset consisted of 50 videos of phacoemulsification cataract surgeries. Cataract
surgery is the most common of the surgical procedures, and ophthalmologists use
a wider range of tools than surgeons doing robotic or laparoscopic surgeries; con-
sequently this dataset provided a large set of tools. There are more than nine hours
of videos with an average duration of almost eleven minutes per surgery. A total
of twenty one surgical tools are present in the videos (Table 2.4); a tool was only
considered to be in use when in contact with the eyeball. In any particular frame,
up to three tools can be visible at a time. However, this occurs in only 4% of the
frames; 45% of the frames show no tools at all, 38% show one tool and 17% show two
tools (Al Hajj, Lamard, Conze, et al., 2019).

The Cholec80 dataset contains 80 videos of cholecystectomy surgeries, and seven
tools or instruments are present in the dataset (Table 2.4). Some tools – such as the
grasper and hook – feature in many frames while other tools – such as the scissors
and irrigators – are less used and appear with much lower frequency in the videos /
frames (Twinanda, Shehata, Mutter, et al., 2017). The m2cai16-tool dataset is a subset
of the Cholec80 Dataset and it consists of fifteen cholecystectomy videos with binary
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FIGURE 2.4: Cholec80 Dataset

annotations of the seven tools present.
Details of the surgical tool datasets used in the challenges is presented in Table 2.5.

In addition to the metadata provided about each dataset, additional metadata char-
acteristics that are common for all the datasets listed in this table are: Image Type –
Videos; Image Modality – RGB; Data Types – Images; Attribute Types – Categorical;
Dataset Structure – Flat; Collection Methods – Controlled; Annotation Levels – Expert;
Data Variety – Specific and Dataset Licence – Register/Public. It is significant that
many of the cells in the table are empty, and this highlights the lack of metadata,
details and information about the collection and curation of these datasets.

2.3.2 Other Surgical Tool Datasets

In addition to the challenge datasets described above, many other surgical tool
datasets have been developed and we present these datasets in Tables 2.6 and 2.7.
Again, the blank cells in these tables serves to highlight the shortfall in metadata and
details about these datasets. The ATLAS Dione dataset provided video data of ten
subjects performing six different surgical tasks. The dataset was described as being
challenging as it had camera movement and zoom, free movement of surgeons, a wide
range of expertise levels, background objects with high deformation, and annotations
that included tools with occlusions, change in pose and articulation or with partially
visibility (Sarikaya, Corso, and Guru, 2017). The Retinal Microsurgery (RMIT) dataset
consisted of 18 in-vivo sequences of retinal procedures; for each sequence, four joints
(Tip1, Tip2, Shaft and End Joint) of the retinal instrument were annotated. The RMIT
was a single-instrument dataset – specified only as a Retinal Instrument. The dataset
was further classified into four instrument-dependent subsets. There were three
annotated tool joints and two semantic classes (tool and background).

Lapgyn4 Dataset is a four-part gynaecological laparoscopy dataset comprising
collections of images depicting general surgical actions, anatomical structures, con-
ducted actions on specific anatomy as well as examples of differing amounts of
visible instruments. It is actually four datasets (Surgical Actions, Anatomical Struc-
tures, Actions on Anatomy, Instrument Count) of over 500 surgical interventions.
The Instrument Count dataset consists of images from gynaecology and cholecys-
tectomy (including samples from Cholec80 dataset) with zero to three instruments
(Leibetseder et al., 2018).
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FIGURE 2.5: Lapgyn Dataset

FIGURE 2.6: CaDIS Dataset

There were other datasets that we evaluated but did not include since they did not
provide sufficient focus or coverage of surgical tools. These included DAISI: Database
for AI Surgical Instruction (Rojas, Couperus, and Wachs, 2020), the MISAW dataset
used for the MIcro-Surgical Anastomose Workflow recognition on training sessions
challenge (Huaulme, Sarikaya, and al., 2021), the Bypass40 dataset of laparoscopic
gastric bypass procedures (Ramesh et al., 2021b), and the EAD2020 dataset (Ali,
Dmitrieva, and al., 2021).

2.4 Algorithm Review

Liu et al. (2020a) highlighted the inconsistency in the terminology used in the research,
and stated that terms are often differently defined and applied. Some of the terms
which were used include detection, presence, localization, recognition, classification,
identification, labelling and annotation. The taxonomy of terms used in the literature
reviewed is presented in Figure 2.7, it is clear that definitions and terminology varies
considerably and there is no uniformity in the application or understanding of these
terms. When computer vision tasks are considered, multiple problems have been
addressed in the literature. Guo et al. (2016) discussed image classification, object
detection, image retrieval, semantic segmentation, and human pose estimation as the
key computer vision tasks. Chai et al. (2021) similarly listed the main applications as
object detection or recognition, visual tracking, semantic segmentation, and image
restoration, with image classification providing the basic backbone of each application.
Voulodimos et al. (2018) evaluated object detection, face recognition, action and
activity recognition, and human pose estimation in their survey of key tasks in
computer vision. Al Hajj, Lamard, Conze, et al. (2019) state that these tasks can be
categorized according the precision of the desired outputs, with the finest or more
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FIGURE 2.7: Taxonomy of Approaches

precise level of surgical tool-based tasks at the tool segmentation level. The next level
of precision in tasks is tool localisation, and this often leads to either tool tracking or
pose estimation. The coarsest task is tool presence detection or determining which
tools are present in each frame of a surgical video. While we considered all these
approaches, in actual practice a pipeline using all these types of algorithms would
follow a logical flow of tool presence detection, tool localisation, tool tracking, tool
segmentation and tool pose estimation. We therefore used this logical flow approach
to structure our analysis of the research.

2.5 Tool Presence Detection Research

In work using the CATARACTS dataset, Roychowdhury et al. (2017) fine-tuned
Inception-v4, ResNet-50 and two NASNet-A instances. In their solution, they relied
on Markov Random Field (MRF) for modelling long sequences of approximately
20,000 frames. Sahu et al. (2017b) trained ResNet-50 initialised with ImageNet weights
on this dataset. Prellberg and Kramer (2018) used the CATARACTS dataset to explore
different ways to use ResNet-50, and reported that fine-tuning ResNet achieved
consistently better results than using ResNet as a fixed feature extractor in combi-
nation with a custom classifier. Al Hajj, Lamard, Conze, et al. (2019) reported on
the results of surgical instrument presence detection with the CATARACTS Dataset.
This included work using VGG-16 (Simonyan and Zisserman, 2014), Inception-v3
(Szegedy et al., 2016b), SqueezeNet (Iandola et al., 2016), DenseNet-161 (Huang et al.,
2017), ResNet-34, ResNet-50, DenseNet-169, Inception-v4, ResNet-152, ResNet-101,
DenseNet-169, NASNet-A (Zoph et al., 2018) and Inception-ResNet-v2 (Szegedy et al.,
2016a).

Twinanda, Shehata, Mutter, et al. (2017) developed and used the Cholec80 dataset
to test EndoNet, an architecture based on AlexNet, for tool detection. Sahu et al.
(2017a) fine-tuned AlexNet on the m2cai16-tool dataset; using an approach similar to
EndoNet. The Cholec80 dataset was used by Alshirbaji, Jalal, and Moller (2018) to fine
tune AlexNet for surgical tool classification. Mondal, Sathish, and Sheet (2019) used
Cholec80 to train a multi-task learning framework based on ResNet50 trained on the
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ImageNet Dataset. The features extracted from the fully connected layer of ResNet50
were used to train a multitask Bi-LSTM. The final classification result was generated
through combining the score results produced by both the LSTM hidden layers.
Alshirbaji et al. (2021b) tested VGG-16, ResNet-50, DenseNet-121 and EfficientNet-
B0 for surgical tool presence classification. This was tested on the Cholec80 and
Cholec20 datasets. Alshirbaji et al. (2020b) generated synthetic data and used it to
augment the Cholec80 dataset. AlexNet was fine-tuned using cross-dataset validation
to improve tool presence detection. Vardazaryan et al. (2018) used ResNet18 pre-
trained on ImageNet data and further trained the network on a Cholec80 sub-set
of five videos annotated with image-level instrument bounding boxes for binary
tool presence classification. Nwoye et al. (2019) adopted a similar approach but
modified it with long short-term memories for better performance. Bodenstedt
et al. (2018) used surgical tool presence in endoscopic video as a cue for surgery
duration predictions, used ResNet152 for tool presence detection and evaluated
their architectures on the Cholec80 dataset. Jin, Li, Dou, et al. (2020) presented a
multi-task recurrent convolutional network with correlation loss (MTRCNet-CL) to
exploit the relatedness of surgical tool presence and surgical phase to simultaneously
boost the performance of the tasks of tool detection and phase recognition. The
model was tested on the Cholec80 dataset. Al Hajj, Lamard, Conze, et al. (2019) used
both the CATARACTS and the Cholec80 datasets for monitoring tool usage during
a surgery. Their system jointly boosted an ensemble of CNNs and an ensemble of
RNNs. Seven CNN architectures were used as weak classifiers – VGG-16, VGG-19,
ResNet-101, ResNet-152, Inception-v4, Inception-ResNet-v2, NASNet-A. For RNN
boosting, LSTM and GRU was used. Alshirbaji et al. (2020a) developed three balanced
datasets by applying image transformations and substituting image backgrounds on
instrument images extracted from the Cholec80 dataset. Wang et al. (2019) developed
a deep neural network model, based on DenseNet121 pre-trained from ImageNet,
utilizing both spatial and temporal information from surgical videos for surgical tool
presence detection. They evaluated their model on two datasets: m2cai-tool and
Cholec80.

Using the m2cai16-tool dataset, Raju, Wang, and Huang (2016) fine-tuned GoogleNet
and VGG16 and used ten trained models (with 5-fold cross validation for both VG-
GNet and GoogleNet) in an ensembling process to obtain their final results. Zia,
Castro, and Essa (2016) fine-tuned AlexNet, VGG-16 and Inception-v3 and presented
a comparison of these different deep network architectures for surgical tool detection.
Namazi, Sankaranarayanan, and Devarajan (2019) developed LapTool-Net, which
was a contextual detector for surgical tools based on recurrent convolutional neural
networks. The method exploited correlations among usage of tools in the m2cai16-
tool dataset, as well as the context of the tools’ usage for different tasks. Choi et al.
(2017) proposed a real-time detection model for surgical instruments during laparo-
scopic surgery by using a CNN based on YOLO pre-trained on ImageNet. This was
trained on the m2cai16-tool dataset. Hu et al. (2017) developed an attention-guided
network (AGNet) and successfully tested it on the m2cai16-tool dataset. The method
first extracted regions in images with high probability of containing surgical tools by a
deep neural network (the global prediction network) and then analysed these regions
via another deep neural network (the local prediction network) which provided a pre-
diction for each tool. Lin et al. (2019) addressed surgical tool presence detection with
the m2cai16-tool dataset as a multi-label classification problem. The authors relied
on a pre-trained DenseNet201 with a classification layer whose output corresponds
to the confidences of the presence of the seven tools in the image. Mishra, Sathish,
and Sheet (2017) proposed a framework to detect tool presence in laparoscopy videos
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which consisted of a CNN based on ResNet50 for extracting visual features, and a
Long Short-Term Memory network to encode temporal information. This was tested
on the m2cai16-tool dataset.

Leibetseder et al. (2018) used GoogLeNet (Szegedy et al., 2015) to classify images
in the LapGyn4 dataset. Kletz, Schoeffmann, and Husslein (2019) used the Lapgyn4
Dataset for the task of binary classification to recognise video frames as either instru-
ment or non-instrument image, and trained GoogLeNet for instrument classification.
Murillo, Arenas, and Moreno (2018) developed a tree-structured convolutional neural
network for the classification of ten open surgery instruments. Eight separate CNNs
were trained on ten surgical instruments, and four CNNs on five instruments. Murillo,
Moreno, and Arenas (2017) used five open surgery tools for testing the performance
of CNNs and Haar Classifiers (Viola and Jones, 2001) for surgical instrumentation
classification. A tree based tool classifier was designed using four CNNs for presence
detection of the five surgical instruments.

Kurmann et al. (2017) presented a U-Net based surgical instrument detector which
estimated instrument joint positions and instrument presence using a cross-entropy
loss function. This was evaluated on a retinal and EndoVis 2015 datasets. Qiu, Li,
and Ren (2019) used the m2cai16-tool dataset and built a new dataset called the STT
dataset with sequential frame annotations using bounding boxes. The authors then
developed RT-MDNet, a real-time multi-domain convolutional neural network with
three convolutional layers, a Region of Interest Alignment (RoIAlign) layer and three
fully connected layers, and tested it on the STT Dataset. Hou et al. (2022) introduced
an attention-based deep neural network – SKA-ResNet – composed of a feature
extractor with a selective kernel attention module and a multi-scale regularizer to
exploit the relationships between feature maps. Their SKA-ResNet was tested on a
new surgical instrument dataset called SID19 for the classification of surgical tools.

2.6 Tool Localisation Research

Banerjee, Sathish, and Sheet (2019) used the CATARACTS dataset for a multi-label
multi-class classification task, and developed a framework for localization and de-
tection of tools. A tool counter was implemented using ResNet-18. Using activation
maps, three smaller regions of interest were used to train a new CNN which predicted
the tool type among the given 22 classes. Three baseline models were trained for the
task - AlexNet, VGGNet and ResNet-18/50/152.

Xue et al. (2022) proposed a pseudo supervised surgical tool detection (PSTD)
framework, which used pseudo bounding box generation, box regressor, weighted
mean boxes fusion and a classifier with bi-directional channel adaption for surgical
tool detection. This weakly supervised surgical tool detection (WSTD) approach
was successfully tested on the Cholec80 dataset using image-level tool category
labels. Alshirbaji et al. (2021a) evaluated the generalisation ability of a VGG-16 model
on images from different datasets for surgical tool detection. The datasets used
were Cholec80 and a Gyna05 dataset which consisted of 5 videos of gynaecologic
procedures, and target tools were the four surgical tools which were present in both
datasets.

Nwoye et al. (2021a) developed the CholecTriplet2021: the endoscopic vision chal-
lenge for the recognition of surgical action triplets in laparoscopic videos. The focus
was on fine-grained surgical activity recognition, modelled as a triplet – instrument,
verb, target. This was defined in terms of surgical activities as triplets of the actual
instrument that was used, the actions performed, and the target anatomy for each
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surgery, and was provided as part of the EndoVis 2021 grand-challenge. Nwoye et al.
(2021b) developed a model which recognized triplets from these surgical videos by
leveraging attention at two different levels – a Class Activation Guided Attention
Mechanism (CAGAM) and a Multi-Head of Mixed Attention(MHMA). This method
used cross and self attentions to capture relationships between the triplets. Nwoye
et al. (2020) used class activation modules which used the instrument activation maps
to guide the verb and target recognition. They used a dataset based on Cholec80
annoted with 135K action triplets – termed the CholecT40 dataset – and developed a
multitask learning (MTL) network with three branches for the instrument, verb and
target recognition.

Liu et al. (2020c) proposed an anchor-free convolutional neural network (CNN)
architecture using a compact stacked hourglass (Newell, Yang, and Deng, 2016)
network for surgical tool detection, and tested it on the ATLAS Dione and EndoVis
2015 datasets. The authors also tested five backbones – ResNet-18, ResNet101, Deep
Layer Aggregation or DLA-34 (Yu et al., 2018), Hourglass-104 (Law and Deng, 2020),
and lightweight Hourglass – and achieved good accuracy and speed for real-time
surgical tool detection. Liu et al. (2020d) used anchor-free convolutional neural
network, based on a compact stacked hourglass network, for surgical tool detection.
This was tested on the ATLAS Dione and Endovis Challenge datasets, and compared
to results using Faster RCNN, Yolov3 (Darknet-53) and CenterNet (Hourglass-104).
In surgical tool detection work associated with the ATLAS Dione dataset, Sarikaya,
Corso, and Guru (2017) developed a framework with a Region Proposal Network
(RPN) and a multimodal two stream convolutional network for object detection and
localization, based on image and temporal motion cues. Fast R-CNN (Girshick, 2015)
was used for the object detection task, and the region proposal boxes of RPN with
the convolutional features were used as input for the detection network streams
on both modalities. Using the EndoVis Challenge dataset and the ATLAS Dione
dataset, Zhao et al. (2019a) adopted a frame-by-frame detection method using a
cascading convolutional neural network (CNN) which consisted of two different
CNNs for real-time multi-tool detection. The method was tested – along with Faster R-
CNN (Ren, He, Girshick, et al., 2017), Yolov3 (Redmon et al., 2016), and RetinaNet (Lin
et al., 2017) – on the two datasets.

Ciaparrone et al. (2020) tested 12 different combinations of CNN backbones and
training hyper-parameters for surgical tool detection on a dataset derived from 13
high-quality endoscopic/laparoscopic videos. Mask R-CNN was used with ResNet-
50, ResNet-101 and ResNet-152 as backbone networks. Their best results were ob-
tained using a ResNet101 and training the network for 25 epochs. Shimizu et al. (2021)
employed three modules for localization, selection, and classification for detection
and classification task of surgical tools from egocentric images for open surgery anal-
ysis. Two tools – scissors and needle holders – were detected using Faster R-CNN and
were classified using a convolutional neural network and long short-term memory
(LSTM) module.

Ramesh et al. (2021a) developed a Yolov5-based system to detect micro-surgical
tools from neurosurgical videos. Tool characterization was also reported based on
tool on-off time, tool usage time and tool trajectory. Garcia-Peraza-Herrera et al.
(2017) introduced two novel lightweight architectures, ToolNetMS and ToolNetH,
defined in terms of multi-scale and holistically-nested CNN architectures, for the
real-time segmentation of robotic surgical tools. These architectures were evaluated
on the EndoVis 2015 dataset. Pakhomov et al. (2019) converted a residual image
classification Convolutional Neural Network (ResNet-101) into a Fully Convolutional
Network (FCN), performed simple bilinear interpolation of the feature maps for
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semantic image segmentation, and tested it for binary-segmentation performance on
the EndoVis 2015 dataset.

Bouget et al. (2015) used the NeuroSurgicalTools dataset and developed a two
step approach for surgical tool detection, where the first stage of the approach per-
formed pixel-wise semantic labelling while the second stage matched global shapes.
Leppanen et al. (2018) pioneered work for surgical instrument detection under high
microscope magnification using CNNs in micro-neurosurgical videos. Two CNNs
were trained – one for instrument detection and instrument tip location detection by
classifying small parts of the frame at a time, and the second to detect whether the
instrument is present in the frame using the full frame image. Law, Ghani, and Deng
(2017) trained a stacked hourglass network to detect the key-points of the robotic
instruments in vesico-urethral anastomosis surgery videos using crowd-sourced an-
notations. They also trained a support vector machine (SVM) to classify the skill of a
surgeon using the tracking results.

Nakawala et al. (2019) used their Nephrec9 dataset to test a “Deep-Onto” network
for surgical workflow and context recognition, including instruments. The network
was an ensemble of deep learning models (Inception-V3 pre-trained on ImageNet)
with knowledge management tools, ontology and production rules, including usage
of instruments. This combined use of deep learning, knowledge representation and
reasoning techniques was found to be effective for automatic surgical workflow
analysis on robot-assisted urological surgery.

Hossain et al. (2018) relied on CNNs for real-time surgical tools recognition in
Total Knee Arthroplasty (TKA), and exploited region based convolutional neural
networks to perform real time tool detection. The method was based on Faster R-
CNN with VGG-16 as base network, and RGB image convolutional features were
used to train a Region Proposal Network (RPN) that generated object proposals, the
output was the coordinates of bounding boxes around the deployed surgical tools.
Yamazaki et al. (2020) created a dataset from 52 laparoscopic gastrectomy videos, and
used this to test Yolov3 for surgical instrument detection. Bar, Neimark, and al. (2020)
used an approach based on inflating ResNet-50 into a 3D ConvNet model (I3D) for
surgical phase classification. This was termed the short-term model, and the long-
term model was a Long Short-Term Memory (LSTM) network. The approach used
surgical tool presence as cues for each phase, and was tested on their laparoscopic
cholecystectomy dataset.

Yang et al. (2019a) relied on a Pyramid-UNet to localize a cardiac intervention
instrument (RF-ablation catheter or guidewire) in a 3D ultrasound image for cardiac
electrophysiology (EP) and transcatheter aortic valve implantation (TAVI) procedures.
This was tested on their dataset of cardiac ultrasound images from porcine hearts.
Colleoni et al. (2019) proposed a 3D FCNN architecture for surgical-instrument
joint and joint-connection detection, using spatio-temporal features for robotic tool
detection and articulation estimation. This was trained and tested on the EndoVis
2015 and the UCL dVRK datasets. Jin et al. (2018) extended the m2cai16-tool dataset
by providing labels for 2,532 of the frames with the coordinates of spatial bounding
boxes around the tools, and made a new m2cai16-tool-locations dataset available.
Their approach for instrument localization was based on Faster R-CNN. In work that
utilised the m2cai16-tool-locations and m2cai16-tool-datasets, Jo et al. (2019) applied
two algorithms –YOLO9000 (Redmon and Farhadi, 2017) and missing tool detection –
to perform detection of surgical instruments in real time.
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2.7 Tool Tracking Research

Tang et al. (2022) leveraged multimodal imaging and deep-learning to dynamically
detect surgical instrument positions in ophthalmic surgical maneuvers. In their
system, they combined spectrally encoded reflectometry (SER) and cross-sectional
OCT imaging for automated instrument-tracking, and tested it on 4730 manually-
labelled SER images of a 25-gauge internal limiting membrane (25G ILM) forceps.

Al Hajj, Lamard, Conze, et al. (2019) defined tool tracking work in terms of
monitoring tool location over time. Gruijthuijsen, Garcia-Peraza-Herrera, and al.
(2021) trained a U-Net CNN to segment instruments, training it on their gynaecology
dataset. They converted the segmentation prediction into a graph and used this for
tool tip prediction in their autonomous instrument tracking framework. Meeuwsen
et al. (2019) developed a dataset of 40 laparoscopic hysterectomy (LH) surgeries
and built a Random Forest surgical phase recognition model. Lee et al. (2019b)
collected three phantom frame-sequence datasets using tracked surgical tools over an
anatomical phantom. These datasets were used to test U-Net, TernausNet-11 with a
pre-trained VGG-11 network, LinkNet-34 and LinkNet-152 for the semantic labelling,
binary segmentation and real-time tracking of surgical tools without any human
intervention.

Using a subset of the m2cai-2016 dataset, Zhang and Gao (2020) developed a
surgical instrument tracking framework based on object extraction via deep learning,
where a segmentation model extracted the end-effector and shaft of the surgical
instrument in real time. The model was based on LinkNet with ResNet-18, pre-
trained on ImageNet.

Chen, Zhao, and Cheng (2017) proposed a visual tracking method for surgical
tool tracking based on a CNN with line segment detector (LSD) for the detection part
and a spatio-temporal context (STC) learning algorithm for the tracking part. They
successfully tested this system on three laparoscopic surgical datasets – a simulation
dataset, a real in-vivo dataset and a standard dataset. Zhao et al. (2017) considered
a surgical instrument as consisting of two parts: an end-effector and a shaft. Edge-
points and line features were used for the shaft detection and a CNN based on
AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) was used to track and detect the
end-effector.

Hiasa et al. (2016) proposed and evaluated a method for segmentation of surgical
instruments from RGB-D Endoscopic Images using CNNs. The method used RGB
and depth images from stereo endoscope images, and the output was a likelihood
image, where white pixels indicated a high probability of instruments and black
pixels indicated high probability of background. Segmentation was seen as a critical
task for 3D surgical tool tracking and reconstruction.

Zhao et al. (2019c) used two CNNs and six datasets to develop a coarse to fine
method for surgical tool tracking. The first CNN, based on AlexNet, classified 10
surgical tool classes, and the second or fine CNN was a regression network for
tracking of the tool tip area. This was tested on six different datasets – the first
five were in-house surgical videos and the sixth was the Endo-Vis 2015 challenge
dataset. Their method was compared with four other methods – Fast R-CNN with
filter tracking in convolutional features using VGGNet, data-driven visual tracking,
tracking with an active testing filter, and tracking with online multiple instance
learning.

Zhao et al. (2019b) developed an automatic real-time method for two-dimensional
tool detection and tracking based on a spatial transformer network (STN) and spatio-
temporal context (STC), and tested this on eight video datasets from in-house surgical
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videos. The authors tested their method and four other solutions – correlation filter
tracking with convolutional features using VGGNet, data-driven visual tracking,
tracking with an active testing filter and tracking with online multiple instance
learning – on these datasets. Lu et al. (2020) tested a two deep neural networks
framework for surgical tool tracking on the Surgical Perception (SuPer) and Hamlyn
Centre Video Datasets. Using these datasets and a two CNN pipeline, a Pyramid
Stereo Matching Network (Chang and Chen, 2018) was used to find and match
features for stereo reconstruction, and DeepLabCut (Mathis et al., 2018) was used to
detect point features for surgical tool tracking.

2.8 Tool Segmentation Research

For tool segmentation work, Luengo et al. (2021) added pixel-wise semantic anno-
tations for anatomy and also surgical tools for 4670 images from 25 videos of the
CATARACTS training set. This CATARACTS Semantic Segmentation dataset was
used for the EndoVis 2020 challenge. Chen et al. (2021a) developed a method that
was based on exploiting cross-consistency in microscopic image segmentation, and
used the consistency between the main decoder and auxiliary decoder to leverage
unlabeled images. This was used to improve the Deeplabv3 plus network and was
tested on the CATARACTS-Semantic-Segmentation 2020 data set. Zisimopoulos et al.
(2017) used a FCN-VGG network that was trained to perform supervised seman-
tic segmentation in 14 classes that represented the different tools present in their
simulated cataract dataset. This dataset was used to train CNN models and then
transfer learning techniques were used for training on the CATARACTS Dataset. Fox,
Taschwer, and Schoeffmann (2020) used the CaDIS and the Cataract-101 dataset with
Mask R-CNN to localize and segment surgical tools in ophthalmic cataract surgery.
They compared four backbone networks (Inceptionv2, Inception-ResNetv2, ResNet50,
and ResNet101 – all with pre-trained COCO (Lin et al., 2014) weights – and differ-
ent data augmentation strategies for multi-class instance segmentation of surgical
tools. Grammatikopoulou et al. (2019) developed the CaDIS dataset for semantic
segmentation in cataract surgery, based on the CATARACTS dataset. Pissas et al.
(2021) highlighted that the main issue in using the CaDIS dataset was the extreme
class imbalance in the granular semantic segmentation labels, and they addressed
this challenge with two data oversampling strategies. They demonstrated that the
choice of the loss function and data sampling strategy were paramount in training
their ResNet based encoder-decoder networks.

Ross, Reinke, and Full (2019) discussed segmentation solutions based on the
ROBUST-MIS challenge, including Mask R-CNN (He et al., 2017), a Dense Pyramid
Attention Network (Li et al., 2018), a Refined Attention Segmentation Network
(RASNet), a residual 2D U-Net (Ronneberger, Fischer, and Brox, 2015), DeepLabV3+
(Chen et al., 2017), TernausNet (Iglovikov and Shvets, 2018), and Mask R-CNN
with FlowNet2 (Ilg et al., 2017). Best results were reported by the U-Net based
solutions. Jha et al. (2021a) tested a dual decoder attention network (DDANet) and
nine different methods on the ROBUST-MIS dataset. They reported that the DDANet
architecture provided the highest metric and best real-time performance over the
other methods. Ceron et al. (2021) introduced a YOLACT architecture for real-time
instance segmentation of surgical instruments, and tested its accuracy on the ROBUST-
MIS dataset. They used criss-cross attention modules (CCAMs) with a ResNet-101
backbone to develop three models - CCAM-Backbone, CCAM-FPN and CCAM-Full -



30 Chapter 2. Datasets Survey

plus a baseline YOLACT++ model. Isensee and Maier-Hein (2020) relied on a 2D U-
Net architecture that used residual blocks in the encoder and generated segmentation
maps at several resolutions in the convolutional based decoder architecture. This
method achieved a mean Dice score of 87.41 (94.35) on the ROBUST-MIS dataset. Sahu,
Mukhopadhyay, and Zachow (2021) used a teacher-student learning approach that
learned from annotated simulation data and unlabeled real data. They redesigned
their Endo-Sim2Real framework based on a teacher-student approach, and used a
TerNaus11 as the backbone segmentation model. They tested this on a simulated
dataset as well as on the Robust-MIS, EndoVis 2015 and Cholec80 datasets.

Allan et al. (2020) reported segmentation results using the EndoVis18 dataset.
The solutions included the ResNeXt-101 architecture with Squeeze-Excitation blocks;
U-Net architecture with a VGG 19 encoder; a global convolutional network (GCN)
with ResNet 152 backbone; DeepLab V3+ using multi-scale feature extraction with
Xception and atrous convolutions; WideResnet38 encoder and activated batch norm
(ABN) with DeepLab V3 as decoder; two ResNet encoder blocks and a stacked con-
volutional decoder network with a sum-skip connection; 3 U-Net models with final
prediction as an ensemble; a 77 layer fully convolutional dense network architecture;
DeepLab V3+ and ResNet-50 pre-trained on ImageNet; a U-Net with a ResNet-101
backbone; and a Pix2Pix model for the segmentation with a U-Net as the generator.
Most of the architectures were pre-trained on ImageNet. Gonzalez, Bravo-Sanchez,
and Arbelaez (2020) extended the EndoVis 2018 dataset for fine-grained instrument
segmentation by manually annotating each instrument in the dataset, and used this
dataset to successfully test their ISINet model which was based on Mask R-CNN.

Shvets et al. (2018) experimented with U-Net, TernausNet and LinkNet encoder–
decoder architectures on the EndoVis 2017 dataset. TernausNet was shown to outper-
form the other architectures in all three tasks of binary, part-based and type-based
segmentation. Hasan and Linte (2019) used U-Net but modified it to U-NetPlus
model by introducing both VGG11 and VGG16 as an encoder with batch-normalized
pre-trained weights and nearest-neighbour interpolation as the replacement of the
transposed convolution in the decoder layer. This was tested on the EndoVis 2017
dataset. Mohammed et al. (2019) proposed a multi encoder and single decoder
convolutional neural network, which they termed StreoScenNet. The architecture
consisted of two ResNet50 encoder blocks, pre-trained on ImageNet, and a stacked
convolutional decoder network connected with a sum-skip connection. The input
to the encoder was a set of left and right frames, and the output of the decoder was
a mask for the instrument, part and binary segmentation tasks. This was tested on
the EndoVis 2017 dataset. Zhang, Rosa, and Nageotte (2021) proposed a GAN-based
method for unpaired image-to-image translation (I2I), and used it for surgical tool
image segmentation and repair. They tested this on three endoscopic surgery datasets
and on the EndoVis17 dataset. Kong et al. (2021) optimised Mask R-CNN model with
anchor optimization and improved Region Proposal Network for surgical instrument
segmentation. They evaluated their architecture on the EndoVis17 and an in-house
hysterectomy dataset.

Kurmann et al. (2021) proposed a encoder–decoder network for segmentation
and classification of surgical instruments in endoscopic images. Their “segment first,
classify last” approach used a shared encoder, two decoders for instance segmenta-
tion, and a classifier for instance classification, and it provided good results on the
EndoVis 2017 dataset. Ni et al. (2019) introduced a Refined Attention Segmentation
Network (RASNet) – based on ResNet-50 pre-trained on ImageNet – to simultane-
ously segment and classify surgical instruments. An Attention Fusion Module (AFM)
was used to fuse multi-level features by utilizing the global context of high-level
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features as guidance information, and this was tested on EndoVis 2017. Islam, Li,
and Ren (2019) developed a light-weight cascaded convolutional neural network to
segment surgical instruments from the EndoVis 2017 data. The authors developed a
Multi-resolution Feature Fusion (MFF) block to fuse feature maps from their auxiliary
and main branches, and combined auxiliary loss and adversarial loss to regularize
the segmentation model. A spatial pyramid pooling unit was used to aggregate rich
contextual information in their intermediate stage. Islam et al. (2021) proposed a
Spatio-Temporal Multi-Task Learning (ST-MTL) model with a shared encoder and
spatio-temporal decoders for real-time surgical instrument segmentation and tested
it on EndoVis 2017. Comparative tests were also conducted on other models using
identical pre-processing and augmentation techniques. Lee et al. (2019a) presented a
“Two-phase Deep learning Segmentation for Laparoscopic Images” (TDSLI) model
and tested it on the EndoVis 2017 dataset and an additional dataset of four retro-
spectively collected laparoscopic image sequences in different animal surgeries. The
LinkNet-34 network was used in a convolutional encoder-decoder architecture, with
a pre-trained ResNet-34 network used for the encoder.

Jha et al. (2021b) released the “Kvasir-Instrument” dataset with annotated bound-
ing box and segmentation masks of GI diagnostic and surgical tools, and tested
it using the U-Net and DoubleUNet architectures for semantic segmentation. An-
dersen, Schwaner, and Savarimuthu (2021) reported the success of Mobile-U-Net
for the segmentation of surgical tools and suture needles, and tested it on a labo-
ratory dataset and JIGSAWS (Gao et al., 2014) dataset. Choi et al. (2021) used the
YOLOv4 and YOLACT-based models for real-time object detection and semantic
segmentation of six surgical tools in a mastoidectomy surgery dataset. Zadeh et al.
(2020) used a gynaecological dataset to train Mask R-CNN, which was then tested
on laparoscopic images from 2 additional surgeries not included in the training set.
Qin et al. (2020) used the EndoVis 2017 dataset and the Sinus-Surgery-C Dataset for
evaluation of DeepLabv3+ with ResNet-50 and MobileNet, TernausNet with VGG-
16, and LWANet with MobileNet with a Multi-Angle Feature Aggregation (MAFA)
method. Qin et al. (2019) used a similar setup to the Sinus-Surgery-C Dataset, and
a ToolNet-C segmentation model—designed by cascading a feature extractor and a
pixel-wise segmentor—was trained to learn features from the unlabelled images and
segmentation from the small number of labelled images. Rocha, Padoy, and Rosa
(2019) deployed a two-step algorithm for surgical tool segmentation using kinematic
information and tested it on several phantom and in vivo robotic endoscopy datasets.
Kalavakonda et al. (2019) evaluated three different deep architectures for binary
segmentation – using U-Net, UNet-VGG16 and UNet-MobileNetV2 (Sandler et al.,
2018) – on the NeuroID dataset and the EndoVis 2017 dataset.

Jin et al. (2019) leveraged instrument motion information for accurate surgical tool
segmentation. The model worked by integrating prior knowledge from motion flow
into a temporal attention pyramid network (MF-TAPNet) for surgical instrument
segmentation in minimally invasive surgery video. Kletz, J, and Husslein (2019)
used a ResNet50 architecture as a backbone network with a feature pyramid network
(FPN) for instance segmentation task using images of gynaecological surgeries. They
also fine-tuned a Mask R-CNN (He et al., 2017) model for seven instrument classes
(including “BG” or Background) using a pre-trained model on the COCO dataset.
VGG, PSP (Zhao et al., 2016), UPerNet (Xiao et al., 2018) and DeepLab (Chen et al.,
2016) were trained and evaluated for anatomical understanding, instrument identifi-
cation and tracking, and understanding of interactions between surgical instruments
and anatomical landmarks.

Sahu et al. (2020) used two datasets – Cholec80 and EndoVis 2015 – to test their



32 Chapter 2. Datasets Survey

Endo-Sim2Real method for instrument segmentation. TerNaus11 was used as the
DNN model for the instrument segmentation task. Kanakatte et al. (2020) proposed a
pixel-wise instance segmentation algorithm for the segmentation and localisation of
surgical tool using a spatio-temporal deep network, and tested it on Cholec80. Their
model used ResNet pre-trained on ImageNet database and Inflated Inception 3D
(I3D) pre-trained on the ImageNet and Kinetics datasets (Kay et al., 2017) to capture
spatio-temporal features. They also implemented and tested U-Net and Mask R-CNN
on their annotated Cholec80 dataset.

2.9 Tool Pose Estimation Research

Laina et al. (2017) modelled the tool segmentation and pose estimation problem as a
heatmap regression where every pixel represented a confidence proportional to its
proximity to the correct landmark location. For encoding, ResNet-50 pre-trained on
ImageNet was used and three different CNN variants were defined for the decoding
task. The model was tested on the RMIT and EndoVis 2015 datasets. Du et al. (2018)
added detailed annotations to existing labels for the RMIT and EndoVis 2015 datasets,
and tested a framework with a fully convolutional detection-regression network for
articulated multi-instrument 2-D pose estimation. Kayhan et al. (2019) proposed
a lightweight deep attention based network architecture and evaluated three SSL
algorithms for a deep attention based semi-supervised 2D-pose estimation method for
surgical instruments: mean teacher, virtual adversarial training and pseudo-labelling.
Analysis was conducted n the RMIT and EndoVis 2015 datasets. A modified U-Net
architecture (DAU-Net) that made use of attention echanisms was used to find each
tool joint location via a heatmap output channel.

Kugler et al. (2020a) introduced three datasets: two synthetic Digitally Rendered
Radiograph (DRR) Datasets (the first with a screw and the second with two surgical
instruments), and a real X-ray Dataset (with manually labelled screws). They used
this for a three step approach for surgical pose estimation including the application
of a convolutional neural network based on a VGG architecture for information
extraction, and then pose reconstruction from pseudo-landmarks. Kugler et al. (2020b)
used two of these datasets to test an automatic framework (AutoSNAP) for the
discovery of neural network architectures for instrument pose estimation, leading to
the development of an improved architecture (SNAPNet).

Hasan et al. (2021) developed a CNN they called ART-Net, for Augmented Reality
Tool Network, and combined it with an algebraic geometry approach for generic
tool detection, segmentation, and 3D pose estimation. While the CNN ART-Net
was used for surgical tool detection and segmentation, geometric primitives were
also extracted to compute the 3D pose with algebraic geometry. Gessert, Schlüter,
and Schlaefer (2018) addressed surgical tool pose estimation from optical coherence
tomography (OCT) volume data with a deep learning-based tracking framework
called Inception3D. The 3D CNN architecture was used to learn accurate regression
between volumetric images and object poses, and was then used to estimate object
pose from new volumetric images.

2.10 Open Research Questions

We address our research questions by presenting a comprehensive review of surgical
tool datasets. A knowledge hierarchy of machine learning research was then devel-
oped using these datasets. However, while robustness or the reliable performance of
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methods on challenging images has been addressed in the work, there are important
questions and research gaps that need to be addressed. These issues are discussed in
this section.

2.10.1 Data Modalities

As we have found in our survey, RGB images or video are the predominant data
modalities in the datasets. This is a well understood modality, and it is easy to deploy
cameras to capture entire room images, high level views of the procedures, specific
images of body parts, or even for internal imaging through endoscopes (Maier-Hein
et al., 2020). However, there are many more medical modalities that can be explored
for creation of rich and representative datasets. A limited amount of work using
other images modalities is reported, and this includes radiograph and X-Ray (Kugler
et al., 2020a), optical coherence tomography (OCT) (Gessert, Schlüter, and Schlaefer,
2018), RGB-D depth (Hiasa et al., 2016), and 3D ultrasound images (Yang et al., 2019a).
Multi-modal datasets could potentially be valuable – for example, in their review of
surgical activity recognition research, Amsterdam, Clarkson, and Stoyanov (2021)
reported that multi-modal data integration demonstrated promising results on small
surgical datasets. While image modalities tend to be specific to surgical areas, there
are some modalities that could foster innovative work in the surgery domain – for
example, the use of IR images to supplement standard RGB images could address
issues with illumination and reflection, and could lead to more accurate models being
developed. Similarly, depth images could assist in addressing surgical tool counting
problems and for segmenting tools from complex and crowded backgrounds.

2.10.2 Dataset Volume, Variety and Quality

In a white paper on the first annual Conference on Machine Intelligence in Medical
Imaging (C-MIMI), Kohli, Summers, and Geis (2017) discussed the impact on machine
learning performance due to the unavailability of large and high-quality training
data. The lack of data for medical image evaluation with machine learning is a key
concern, to the extent that the term “data starved” was used to describe the state of
current research in this area. Similarly, Amsterdam, Clarkson, and Stoyanov (2021)
stated that the availability of large and diverse open-source datasets of annotated data
was essential for the development and validation of robust solutions in the surgery
domain. A further challenge in medical surgery domains is the great variety of
surgeries and the rapid rate of change (i.e. new techniques and tools) which increases
the chance that a medical dataset will become obsolete, a problem that is generally
not present in traditional object detection domains.

In a workshop on Surgical Data Science (SDS), Maier-Hein et al. (2020) discussed
the lack of success stories in surgery, and contrasted it to success with machine learn-
ing research in other medical areas, such as radiology, dermatology, gastroenterology
and mental health. This lack of success was directly attributed to the lack of quality
annotated data, representative of the surgery domain. Participants in the workshop
cited the EndoVis, Cholec80 and JIGSAWS datasets as being useful for research but
the small size and limited representation provided by the datasets – even in these
major initiatives – was reported to be a core issue. It was stated that creating and
providing access to larger, more-representative and fully annotated datasets would
lead to improved outcomes and success stories in the application of machine learning
to surgery.
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Bouget et al. (2017) reviewed the surgical tools used in different setups and for
different procedures and found that two categories of surgical tools emerged: articu-
lated instruments and rigid instruments. This survey also found two such categories
into which most works fell – we categorise them as either laparoscopic instruments
or open surgery tools. Table 2.10 indicates that the overwhelming majority of work
in this area has focused on laparoscopic surgery, and open surgery has received
considerably less attention. Even the work that has been accomplished in open
surgery focuses on very few instruments; the majority of work detects less than 10
instruments and even the Cataracts dataset provides only 21 instruments (Table 2.1).
There are tens of thousands of instruments in circulation in a hospital at any one time
and we would also expect tools to change over time or new tools to be introduced due
to new technology or innovations in surgical techniques. Clearly, therefore, larger
datasets are required and it would be useful for the research community if more open
surgical tool datasets are made available.

Ideally, a surgical tool dataset should have large data volume, expert annotations,
reliable ground-truth, and reusability. An issue is the size of available datasets, the
benchmark dataset – ImageNet – has 14 million categorized images in a hierarchical
arrangement. By contrast, most medical image datasets are limited to hundreds of
cases, and datasets with thousands of annotated images are very limited (Maier-Hein
et al., 2020). A valuable initiative would be to create and curate a large surgical tool
dataset of tens of thousands of tool images across surgical specialities with different
modalities of image capture. Further, all the datasets surveyed in our paper have a
flat structure. Given that fact that surgery is organised along specialities (Table 2.10),
and each speciality has separate underlying categories, a hierarchical classification of
surgical tools in the datasets provided for machine learning research has been shown
to be extremely valuable (Rodrigues, Mayo, and Patros, 2022; Rodrigues, Mayo, and
Patros, 2021a; Rodrigues, Mayo, and Patros, 2021b).

2.10.3 Dataset Bias and Generalisation

A major problem highlighted by Barbu et al. (2019) is that most datasets are highly
biased. The objects of interest were generally highly correlated with the image
backgrounds and objects were presented in stereotypical orientations with limited
occlusions and under standardised illumination conditions. These biases were prob-
lematic because training on these datasets did not transfer well to real world data
where there were variable views, orientations, backgrounds and illumination (Barbu
et al., 2019), and there is limited research that tests or addresses this problem. In our
survey, we found that benchmark datasets capture very specific image types with
similar backgrounds, modalities, controlled collection methods, identical contexts
and annotations. A key concern expressed in the literature is about algorithms which
are trained on a specific dataset, procedure, intervention or in specific institution
being able to generalise to other datasets and procedures (Ross, Reinke, and Full,
2019).

To ensure viewpoint invariant object detection, different angles, scales, back-
ground clutter, illumination, orientation, pose, occlusion and intra-class variations
should be captured in the images. Generalisation can be estimated by conducting re-
search across different datasets using the same model. For example, Sahu et al. (2020)
tested the Endo-Sim2Real model for instrument segmentation across two datasets –
Cholec80 and EndoVis 2015, Zhao et al. (2019a) tested their method on the EndoVis
Challenge dataset and the ATLAS Dione dataset, and Kalavakonda et al. (2019)
evaluated three different deep architectures – U-Net, VGG16 and MobileNetV2 – on
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their NeuroID dataset and on the EndoVis 2017 dataset. Du et al. (2018) and Kayhan
et al. (2019) developed machine learning solutions and tested them on the RMIT and
EndoVis 2015 datasets. More research initiatives across datasets to evaluate issues
such as how accuracy or performance changes from one dataset to another, or the
dependence of performance on camera or image quality, is essential.

More research is also required across the fourteen surgical specialities as listed in
Table 2.10, since the current research is limited in scope and scale and only addresses
a few specialities, but to accomplish this, better surgical tool datasets need to be made
available.

2.10.4 Issues with Annotations

Maier-Hein et al. (2014) highlighted the fact that the performance of deep learning
classifiers are heavily dependent on the availability of relevant annotations, and point
out that such annotations are difficult and expensive to obtain because they need
medical expertise and experience. Since medical resources for this task are limited,
available datasets for deep learning are typically small and unable to cover the
required range of variance for training deep learning systems for medical applications.

Orting et al. (2020) hypothesised that the high costs associated with annotations
is a factor in the limited availability of large-scale, well-annotated datasets. They
reviewed 57 papers that used crowd-sourcing for the analysis of medical images
and for labelling large quantities of data. They reported that 42% of the papers they
surveyed focused on classification, 39% on localisation or segmentation, 12% on
both classification and segmentation, and a further 7% on other tasks – each task
required specific annotations to be performed, with varying degrees of complexity
and difficulty. Hein et al. (2018) state that deep learning based techniques for medical
applications require huge amounts of accurate reference segmentation annotations,
and completing manual annotations is extremely time consuming. The authors
state that crowd-sourcing could result in accurate and cost-effective annotations for
radiology images, and showed that even non-experts were able to complete high
quality image segmentation in the medical domain.

Nogueira-Rodriguez et al. (2020) reported that all the publicly available datasets
that could be used for object detection annotated the object locations as binary masks.
These masks were directly used for deep learning solutions but could also be con-
verted to bounding boxes if required for specific training strategies. Annotation costs
also vary across types of surgery – for example, annotation of surgical tools in cataract
surgery needs to specify if the tool is actually in use or in contact with the eyeball,
and this requires expert annotators to define (Al Hajj, Lamard, Conze, et al., 2019).
This is expensive and tedious, but other surgery types only define the presence of
the object in the frame, therefore needing simpler, cheaper annotations. In general
terms and as Garcia-Peraza-Herrera et al. (2021a) point out, manual annotation of
pixel-level segmentation labels is difficult, expensive, tedious and time-consuming,
this has led to a shortfall in the availability of quality datasets for deep learning.
Since there are no large datasets available for tasks such as deep learning based
surgical instrument-background segmentation, advancement in this area has been
significantly curtailed.

Ward et al. (2021a) discussed the challenges in annotating spatial, temporal, and
clinical elements of surgical videos, and in achieving consistency and reliability of
annotations across the data. They also highlighted the requirement for achieving
consensus in the development and use of surgical annotations. Meireles et al. (2021)
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studied current practices in surgical video annotation, and proposed recommen-
dations for the annotation process. This is an on-going effort to create a general
framework of recommendations to facilitate uniform annotations and to improve
cross-institutional research efforts. Initial recommendations appear to call for in-
creased detail in annotation – for example, to include hierarchical information of
surgical tools, anatomy, and tissue types, as well as for patient-specific factors and
intra-operative influencing factors in the annotations.

Kohli, Summers, and Geis (2017) pointed out that there are no generally ac-
cepted standards for the creation and cataloguing of medical image datasets. As we
demonstrate in Table 2.6, surgical tool dataset collection, curation and use is typically
provided as a one-off solution, directly linked to a specific research project. The
metadata provided with these datasets, if at all available, is all too often limited in
description, incomplete and inconsistent. Specific domain and speciality expertise as
well as knowledge of the context and institution is required to make sense of the data
provided. In our Table 2.5, we provide metadata for the important publicly available
machine learning datasets that address surgical tool tasks, more information would
be useful and this is perhaps a starting point for future work to make datasets more
understandable and useful (Kohli, Summers, and Geis, 2017).

2.10.5 Metrics

There are an extremely wide range of metrics that have been used in the research.
Reinke et al. (2018) reported 14 different metric used by the MICCAI in 75 grand
challenges held between 2007 and 2016. The range of metrics, variety of approaches
and different reporting criteria made it difficult to directly compare results. For
example, Zhang and Gao (2020) reported sensitivity, specificity, dice similarity
coefficient (DSC) and model inference time (MIT) for their work on the m2cai2016
dataset, while other researchers reported the Mean Average Precision. Zia, Castro,
and Essa (2016) tested AlexNet, VGG and Inception of the m2cai2016 dataset but
pointed out that comparisons were not fair since the first two architecture were tested
by removing one of the 10 videos, while the third architecture was tested by randomly
selecting a percentage of the input data for testing and validation. A standard set of
metrics, consistent and fixed splits of datasets into, for example, training, validation
and testing, and standard metrics for evaluation would be useful for future research
but it is difficult to make a hard recommendation since this is very task and context
specific.

2.10.6 MLOps and Federated Learning

Given the mission critical nature of surgical tool management in a hospital, the
deployment of deep learning systems in real time – or MLOps – needs to be ad-
dressed (Makinen et al., 2021). We have highlighted the tremendous progress that has
been made in the application of deep learning models to surgical tool management in
this survey, but the deployment, integration, adoption and testing of such systems in
actual hospital conditions remains a significantly under-explored area due to the lack
of data, the general messiness or poor usability of data, and the inaccessibility of data
(Makinen et al., 2021). Making sure that consistently high-quality data is available for
MLOps, while ensuring coverage of all data cases and creating data annotations that
are consistent, is therefore a critical task (Ng, 2021).

Given the fact that the surgical tool datasets used for deep learning are generally
small in size, private in nature and distributed across many institutions, federated
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FIGURE 2.8: Range of Metrics Used

learning may offer a way to overcome the size and accessibility barrier. With federated
learning, local data can be used for local training, and this can then be aggregated with
other locally trained models for deep learning (Zhang et al., 2021). Rieke et al. (2020)
highlighted the fact that health related data is difficult to obtain, sensitive in nature,
strongly controlled by privacy and other regulations, is expensive to collect, curate
and maintain, and therefore generally not available on the scale needed for training
deep learning models. Whatever medical data is available tends to be very task- or
disease-specific, and of limited utility given license restrictions. Demonstrating the
practicality of this approach for biomedical research, Silva et al. (2019) developed
a federated learning framework for the analysis of multi-centric, multi-database
sub-cortical brain data.

Table 2.11 summarises the open research questions and opportunities which we
identified and detailed in previous sections of this paper.

2.11 HOSPI-Tools Dataset

The currently available datasets used for surgical tool recognition offer a limited
range of instruments to work with, with a maximum of 21 instruments, but – as we
have identified in our review – better datasets are required for research. To help in ad-
dressing these challenges, we created a new surgical tool dataset named HOSPITools
– “Hierarchically Organised Surgical Procedure Instruments and Tools” (Rodrigues,
Mayo, and Patros, 2022; Rodrigues, Mayo, and Patros, 2021a; Rodrigues, Mayo, and
Patros, 2021b). We created an initial dataset of surgical instrument images: over forty
thousand images of surgical tools were captured using under different lighting condi-
tions and with different backgrounds. Meireles et al. (2021) point out that surgical
instruments can present significant differences due to their function, and intended
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TABLE 2.11: Open Research Questions (ORQs)

No. Research Gaps and Questions

ORQ 1 Generalisation of Algorithms across Contexts and
Dataset

ORQ 2 Open Source Datasets for Surgical Tool Research -
High Volume, Bias-Free, Multi-Modal with Compre-
hensive Coverage of all Surgical Specialities

ORQ 3 High Quality Annotations and Metadata for Datasets
ORQ 4 Standardised Taxonomy, Metrics, Collection, Cata-

loguing and Curation of Datasets
ORQ 5 Hierarchical Machine Learning
ORQ 6 MLOps and Federated Learning

TABLE 2.12: HOSPI-Tools Dataset Details

Characteristic Specification

Specialities Orthopaedic and General Surgery
Data Type 40,000 Images
Data Quality 6000 × 4000 pixels
Modality RGB - DSLR Camera
Location Hospital Lab (Sterile Services Unit)
Background Flat Colours
Illumination Sunlight, LED, halogen and fluorescent lighting
Distance 60 to 150 cms
Instruments 360
Images/Class 74 images
Organisation Hierarchical
Annotations Various - Image labels, Bounding Boxes and Masks

possible uses, as well as due to manufacturing variations. They therefore recom-
mended hierarchical annotation at two levels—the general and the specific instrument
type—so that research can address device-related complications or surgical issues
stemming from any particular device, the outcome from specific instrument choices,
and the use of instruments in different surgical procedures. Since instruments could
be used for multiple purposes, the authors recommended that additional labels be
added to instrument annotations. We instead built the hierarchical structure directly
into our dataset and created a four level hierarchy which consisted of speciality (2
classes), pack (12 classes), set (35 classes) and tool (360 classes) levels. We believe
that this approach can be valuable for deep learning research and this dataset was
therefore designed to offer a large variety of tools, arranged hierarchically to reflect
how surgical tools are organised in real-world conditions. We provide details of
the HOSPI-Tools Dataset in Table 2.12, and examples of actual instrument sets and
annotations of instruments in Figure 2.9 and Figure 2.10.

Images captured included individual object images as well as cluttered, clustered
and occluded objects. More images need to be taken by adjusting the DSLR camera
position and pose – this would increase the realism and utility of the dataset. In-
strument images were captured before and after use in surgery, it was not possible
to take images of the tools in use during actual surgery. Our survey findings have
highlighted the need to include more images with occlusions, illumination changes,
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FIGURE 2.9: HOSPI-Tools Sets

FIGURE 2.10: HOSPI-Tools Annotations
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and the presence of blood, tissue and smoke, to accurately capture complex surgery
conditions.

This is one step in the direction of addressing the issues that we have identified
in this survey, but much more work needs to be accomplished. We will add other
specialities as we develop this dataset, to reflect the complexities inherent in each of
the surgical specialities and to address the open research issues and challenges.

2.12 Conclusions

We presented a comprehensive survey of datasets for surgical tool detection and
related surgical data science and machine learning techniques and algorithms. We
offered a high level perspective of current research in this area, analysed the taxonomy
of approaches adopted by researchers using surgical tool datasets, and addressed
key areas of research, such as the datasets used, evaluation metrics applied and deep
learning techniques utilised. To ensure that we were rigorous and structured in our
approach, we defined an a priori protocol for discovering and selecting the research
that we reviewed. Adherence to this protocol prevented any mid-stream shifting of
goals and inclusion criteria, and ensured that we presented a comprehensive and
robust knowledge hierarchy.

Our survey shows that the application of machine learning to surgical tool de-
tection, localisation, tracking, segmenting and pose estimation is a well explored
research subject and many innovative techniques have been applied. However,
we also identified and discussed the open research issues and challenges. To help
address some of the gaps and shortfalls that we have identified, we make a contri-
bution by creating a new Surgical Tool Dataset and we make this dataset publicly
available to encourage more work in this direction. The dataset is available at:
https://doi.org/10.5281/zenodo.5895068.

https://doi.org/10.5281/zenodo.5895068
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Chapter 3

Surgical Tool Detection

This chapter evaluates the performance of state of the art methods and frameworks
for surgical tool detection. It accomplishes the following tasks:

1. The work reports the performance of two important frameworks — Mask R-
CNN (He et al., 2017) and YOLOv3 (Redmon et al., 2016) — for surgical tool
detection;

2. It evaluates how the frameworks perform in real world conditions, and discuss
problems posed by illumination changes, reflections, background variations
and cluttered trays since these had been identified as important considerations
in real world conditions.

3. The research identifies problems and explores ways in which results could
be improved. In particular, experiments were conducted with hierarchical
predictions, the use of differential annotations, the use of grey scale or binary
images, and infra-red images for improved performance.

The results and issues reported in this chapter provide direction and focus for the
work that is reported in subsequent chapters.

3.1 Introduction

CNNs are now the predominant approach for computer vision based object recogni-
tion and detection, and have been successfully used for the detection, segmentation
and recognition of objects and regions in images over the last two decades, including
surgical tools detection. This section evaluates current frameworks and approaches
for surgical tool detection, and addresses the following two issues:

Volume, Variety and Fine Grained Classification — A major problem in surgical
tool management is the sheer volume and variety of tools in use, with new tools
continually being added to the asset inventory. Each tool varies in shape, size and
functionality, often with very subtle differences in key attributes of tools. This requires
fine grained classification, which is a difficult task.

Complex and Cluttered Trays — There are fourteen surgical specialities, ranging
from cardiac surgery to neurosurgery (ACS, 2021), and each speciality and procedure
uses very specific and purposefully designed surgical tools. On average, a surgical
procedure uses 5.4 surgical tool trays or sets, with approx. 38 instruments per
tray (range, 1–188) (Mhlaba et al., 2015). Tools are collected after each surgery and
presented for cleaning, sorting and sterilisation in a crowded and cluttered manner,
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FIGURE 3.1: Cluttered Surgical Tool Tray Example

with minimal separation and isolation after each surgery. This, again, presents a
significant problem for surgical tool management.

Object detection is about successfully locating different objects in an image, draw-
ing a rectangle or bounding box around them, and classifying them. Region based
CNNs such as R-CNN set new standards and benchmarks in the application of CNNs
and deep learning to object detection. This technique used bounding boxes or region
proposals to identify the objects in an image; it first proposed a set of boxes within
the image, defined as “region of interest” or RoI, and then verified if the RoI actually
corresponded to an object. R-CNN used an object proposal algorithm — Selective
Search or Edge boxes — which evaluated the image via windows of different sizes,
and tried to group adjacent pixels by texture, colour, or intensity to identify objects —
2000 region proposals or bounding boxes were fed to the classifier. R-CNN warped
the region to a standard square size and then a CNN based classifier and Support
Vector Machine (SVM) classified the object. Finally the system used a linear regression
model to define tighter coordinates for the box around the classified object (Girshick,
Donahue, Darrell, et al., 2014).

Fast R-CNN improved on R-CNN by training the CNN, classifier, and bounding
box regressor in a single model. A final SoftMax layer was used for classification,
and a linear regression layer parallel to the SoftMax layer was used for bounding
box coordinates. Faster R-CNN added a Fully Convolutional Network on top of the
features of the CNN to create a Region Proposal Network, and used anchor boxes to
predict the probability of background or foreground. This technique implemented
two networks: a region proposal network (RPN) for generating region proposals, and
a network which used these proposals to detect objects. Outputs of a region proposal
network (RPN) were boxes/proposals that a classifier and regressor checked to verify
occurrence of objects (Girshick, 2015; Ren, He, Girshick, et al., 2017).

In SSD, or Single Shot MultiBox Detector, a CNN operated on the input image
only once and extracted a feature map. A 3x3 sized convolutional kernel operated
on the feature map to predict bounding boxes and classification probabilities. SSD
used anchor boxes at various aspect ratios, similar to Faster-RCNN, and learned
the offset rather than the actual box. SSD predicted bounding boxes after multiple
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convolutional layers, and because each layer used a different scale, it efficiently
detected objects of various scales (Liu et al., 2016).

Mask R-CNN extended Faster R-CNN for pixel-level segmentation. In Mask R-
CNN, a Fully Convolutional Network (FCN) was added on top of the CNN features
of Faster R-CNN to generate a pixel level mask or segmentation output. It added a
branch to Faster R-CNN that yielded a binary mask which determined if a pixel was
part of an object or not (He et al., 2017). Mask R-CNN has been used in many medical
applications, including for detecting cell nuclei in microscopy images (Johnson, 2018),
for colon cancer polyp detection and segmentation (Ali Qadir et al., 2019), and in
a two stage method for localizing the optic nerve head and segmenting the optic
disc/cup in retinal fundus images (Almubarak, Bazi, and Alajlan, 2020). Ciaparrone
et al. (2020) tested MASK R-CNN with 12 combinations of CNN backbones and
training hyper-parameters for surgical tool detection, and identified best performing
configurations in terms of average precision. The Mask R-CNN model used in their
work was found to be robust to image artefacts and low-resolution images. Since
this is a well established approach, the research conducted in this thesis tested Mask
R-CNN for surgical tool detection on a surgical tool dataset, and evaluated the YOLO
— or “You Only Look Once” — framework for the tool detection task.

In YOLO, detection was defined as a regression problem which learned the class
probabilities and bounding box coordinates. YOLO divided the input image into
a grid or regions, and predicted bounding boxes and probabilities in each region.
The probabilities or confidence reflected the accuracy of the bounding box and if the
bounding box actually contains an object. YOLO also predicted the classification score
for each box for every class in training. YOLO used the entire image during training
and provided better performance since it used the full context of the object/image,
and it was rated to be 1000x faster than R-CNN and 100x faster than Fast R-CNN
(Redmon et al., 2016).

Nguyen et al. (2020) evaluated multiple state-of-the-art deep learning models
for small object detection and reported that YOLOv3, which performed detection
at three different scales, provided impressive real time performance. YOLOv3 has
been used for the difficult task of identifying cholelithiasis and classifying gallstones
on CT images; a modified architecture achieved 92.7% accuracy in identification of
granular gallstones and 80.3% accuracy in muddy gallstones (Pang et al., 2019). Cao
et al. (2019) systematically evaluated multiple state-of-the-art object detection and
classification frameworks for breast lesions in ultrasound images and reported that
YOLOv3 and SSD provided the best performance; YOLOv3 had fewer background
errors. In another real time application, Yip et al. (2021) demonstrated that YOLOv3
required minimal training resources and provided fast, accurate neuronal detection
on images of live, acute brain slices.

Loncomilla and Solar (2019) proposed a method for object detection based on
YOLOv3, and found it to be robust against occlusions, illumination changes, cluttered
backgrounds, presence of multiple objects, presence of textured and non-textured
objects, and object classes not available in the training set. This is similar to what was
needed to be achieved in this thesis, and the work reported in this chapter therefore
evaluates the YOLOv3 model for real time and accurate surgical tool identification in
complex and cluttered trays.
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TABLE 3.1: Results of Mask R-CNN Training Strategies

Exp. No. Details Accuracy – Test
Set

Accuracy – Real
Time

1 Single Mask R-CNN – Single Stage
Approach

70.88

2 Mask R-CNN and ResNet50 Hierar-
chical classifier

89.00

3 Mask R-CNN - Hierarchical predic-
tion

90.00 30.00

4 Mask R-CNN trained on binary im-
ages with Edges for Pack and Instru-
ment prediction

90.00 70-80

3.2 Methods

A cross section of surgical tools across orthopaedics and general surgery were selected,
images were annotated, and MASK R-CNN was trained using the data. However,
given the complexity inherent in the dataset, as the number of classes was increased,
the accuracy dropped significantly. Experiments were conducted to try to improve
Mask R-CNN performance using a limited set of data. A set of 18 instruments
were selected from the general surgery tool which reflected complexities, including
size variations, fine feature differences (such as toothed or non-toothed forceps),
and occlusions. A set of 1400 training images were used for training. This was a
small set of images for training a complex model, and strategies to improve training
and prevent over-fitting were experimented with in the training methods. In a
second approach, YOLOv3 was trained to successfully recognise tools from 18 general
surgery classes, even on highly cluttered trays. While performance was tested with
YOLOv5, most of the experiments were conducted with the YOLOv3 model.

3.3 Results

Mask R-CNN training on this dataset resulted in a classification accuracy of 31%.
Clearly, this is sub-optimal and the incorrect predictions arise from subtle and minor
differences in the tool shapes. However, training a different model for each sub-
category — for example, for the scissors group — resulted in an accuracy of 72% .
The model’s performance was improved to 81% by performed 8 rotations of each
test image (with each rotation at 45 degrees) and averaging the predictions over the
images. Either Mask R-CNN or ResNet50 could be used for this classification. Mask
R-CNN was trained for prediction at a higher level, for each category — Scissors,
Ring Forceps, Thumb Forceps and Scalpel BP Handle. Four different Mask R-CNN
inference models were then trained for sub-category instrument prediction. A hi-
erarchical training approach, in this case a two step approach with Mask R-CNN
identifying the first level of the hierarchy and Mask R-CNN or ResNet50 Classifier
used for the second stage of identification, averaged for rotated images, then resulted
in 96 percent accuracy even with this small training set (Table 3.1 and Figure 3.2).

A further experiment was conducted on using differential annotations – in this
case, only the tips of the instruments were annotated, since this was the differentiating
factor across the instrument classes that were tested (Figure 3.3). This work resulted
in annotation of just the tips of the Ring Forceps category, and subsequent training of
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FIGURE 3.2: Mask R-CNN Confusion Matrix
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FIGURE 3.3: Examples of Differential Annotations of Surgical Tool
Tips
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FIGURE 3.4: YOLOv3 Real Time Detection – Results

the model using Mask R-CNN for predictions. This method achieved an accuracy of
65% on independent test data.

Results for YOLOv3 and YOLOv5 were encouraging and the system delivered
rapid real time results under challenging conditions. Results were obtained in, on
average, 0.0245 seconds – Figure 3.4 and 3.5. Performance was, however, sensitive to
light conditions with illumination changes and angles of illumination sources playing
a major role in prediction results – Figure 3.6. This is addressed in the next section.

3.4 Illumination and Background Variation Issues

Illumination variations cause significant problems, particularly in real world condi-
tions where light sources can vary from direct sunlight, filtered natural light, LED
lighting, incandescent or fluorescent light or different combinations at different times.
These variations, along with the reflective nature of most surgical tools, cause signif-
icant problems for effective and accurate tool identification within actual hospital
conditions. Added to this is the fact that tools are often occluded or stacked, and
also may have foreign matter such as blood, bone or tissue material. The framework
clearly does not cope well with dedicated, close in lighting and performs best with
sunlight, natural and diffused lighting conditions — Figures 3.7 and 3.8.

The YOLOv3 based framework struggled to detect surgical tools in situations
where there are coloured, textured or reflective backgrounds, and is effective only
with dark-coloured – black and grey, non-textured and non-reflective – backgrounds
— Figures 3.9 and 3.10.

Since these frameworks were struggling to cope with changes in illumination
and backgrounds, alternative solutions were evaluated and one promising approach
was the use of infra-red imaging. Preliminary experiments were conducted to train
Mask R-CNN and YOLOv3 on a very small dataset of infrared images, and this
used annotations for three general surgery instruments — 6 Mayo Needle Holders,
Allis Tissue Forceps and Lahey Forceps — Figures 3.12 and 3.11. Performance was
encouraging even acknowledging that this was a very small set of tools and classes
(Figure 3.13), but there are practical limitations around deploying an infra-red based
system across a hospital.
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FIGURE 3.5: YOLOv3 Confusion Matrix – Test Set Results

  

Class Targets Precision Recall mAP@0.5 F1
all 1350 30.10% 100.00% 0.995 0.448
6_Babcock_Tissue_Forceps 55 8.36% 100.00% 0.995 0.154
6_Mayo_Needle_Holder 68 30.00% 100.00% 0.995 0.461
7_Metzenbaum_Scissors 114 39.00% 100.00% 0.995 0.562
8_Babcock_Tissue_Forceps 57 15.70% 100.00% 0.995 0.272
8_Mayo_Needle_Holder 70 58.80% 100.00% 0.995 0.741
9_DeBakey_Dissector 61 30.70% 100.00% 0.995 0.469
9_Metzenbaum_Scissors 113 23.00% 100.00% 0.995 0.374
Allis_Tissue_Forceps 57 37.00% 100.00% 0.995 0.54
Bonneys_Non_Toothed_Dissector 60 31.60% 100.00% 0.995 0.48
Bonneys_Toothed_Dissector 61 43.60% 100.00% 0.995 0.607
Curved_Mayo_Scissors 94 34.40% 100.00% 0.995 0.512
Dressing_Scissors 108 49.80% 100.00% 0.995 0.665
Gillies_Toothed_Dissector 125 26.40% 100.00% 0.995 0.418
Lahey_Forceps 42 25.50% 100.00% 0.995 0.406
No3_BP_Handle 76 9.09% 100.00% 0.995 0.167
No4_BP_Handle 95 32.60% 100.00% 0.995 0.492
Sponge_Forceps 61 18.00% 100.00% 0.995 0.306
Crile_Artery_Forceps 56 28.60% 100.00% 0.995 0.444

FIGURE 3.6: YOLOv3 Accuracy and Results by Tool Class
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FIGURE 3.7: Results Highlighting Problems with Illumination
Changes

  

FIGURE 3.8: Incorrect Predictions – Illumination Failures with
YOLOv3
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FIGURE 3.9: Confusion Matrix Highlighting Problems with Back-
ground Change Results

  

FIGURE 3.10: Prediction Errors with Changes in Background
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FIGURE 3.11: Infra-Red Results with Difficult Illumination

FIGURE 3.12: Infra-Red Image Results with Multiple Tools
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FIGURE 3.13: Infra-Red Confusion Matrix for Small Set of Tools

The results demonstrated the usefulness of using infra red imaging for addressing
illumination and reflection problems. This is important in real world condition where
illumination sources vary greatly across different regions of a hospital, however
much more work has to be conducted in this area and the feasibility of using infrared
images in real world conditions needs to be evaluated.

3.5 Discussion

This chapter addressed the following research question:
RQ1 – How can CNNs be trained for recognition of surgical tools while addressing

volume, variety, complexity, adaptive self-learning and illumination / reflection /
occlusion issues?

The work demonstrated that state of the art frameworks can provide good perfor-
mance on a range of tools that offer volume and variety, but that there are significant
issues with light conditions and backgrounds that need to be addressed. Further,
while the system correctly identifies tools and provides basic information to the
end-user, a solution that can provide much more information to the end user was
needed. The research therefore focused on developing new methods to address this
issue, and the work is reported in the next chapters of this thesis.
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Chapter 4

Interpretable Deep Learning for
Surgical Tool Management

The work in this chapter was presented at the 4th International Workshop on In-
terpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2021),
Springer, Cham., and published in Lecture Notes in Computer Science, vol 12929,
DOI — 10.1007/978-3-030-87444-51.

The work that was reported earlier in this thesis (Chapters 2 and 3) highlighted
significant challenges in surgical tool management but also provided possible so-
lutions. A particular task was to develop a hierarchical classification strategy that
could provide useful and relevant information to an end user, and the work in this
section therefore developed a novel convolutional neural network framework for
multi-level classification of surgical tools. The framework was designed to enhance
the interpretability of the overall predictions by providing a more informative set
of classifications for each tool. This allows users to make rational decisions about
whether to trust the model based on multiple pieces of information, and the predic-
tions can be evaluated against each other for consistency and error-checking. This is
particularly important in hospitals, and could potentially reduce errors and increase
efficiencies.

4.1 Introduction

Surgical tool and tray management is recognized as a difficult issue in hospitals
worldwide. Stockert and Langerman (2014) observed 49 surgical procedures involv-
ing over two-hundred surgery instrument trays, and discovered missing, incorrect
or broken instruments in 40 trays, or in 20% of the sets. Guedon et al. (2016) found
equipment issues in 16% of surgical procedures; 40% was due to unavailability of a
specific surgical tool when needed. Zhu et al. (2019) estimated that 44% of packaging
errors in surgical trays at a Chinese hospital were caused by packing the wrong
instrument, even by experienced operators. This is significant given the volumes;
for example, just one US medical institution processed over one-hundred-thousand
surgical trays and 2.5 million instruments annually (Stockert and Langerman, 2014).

There are tens of thousands of different surgical tools, with new tools constantly
being introduced. Each tool differs in shape, size and complexity — often in very
minor, subtle, and difficult to discern ways, as shown in Fig.4.1. Surgical sets, which
can contain 200 surgical tools, are currently assembled manually (Mhlaba et al., 2015)
but this is a difficult task even for experienced packing technicians. Given that
surgical tool availability is a mission-critical task, vital to the smooth functioning
of a surgery, ensuring that the tool is identified accurately is extremely important.
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FIGURE 4.1: Surgical tools - Hoffman Compact instruments and im-
plants

Al Hajj, Lamard, Conze, et al. (2019) reviewed convolutional neural network (CNN)
architectures and a range of imaging modalities, applications, tasks, algorithms and
detection pipelines used for surgical segmentation. They pointed out that hand
crafted and hand engineered features had also been used for this task, and Bouget
et al. (2017) reviewed predominant features used for object-specific learning with
surgical tools, and listed colour, texture, gradient and shape as being important
for detection and classification. Yang, Zhao, and Hu (2020) presented a review of
the literature regarding image-based laparoscopic tool detection and tracking using
CNNs, including a discussion of available datasets and CNN-based detection and
tracking methods. While CNNs can therefore provide viable solutions for surgical
tool management, understanding how the CNN makes a prediction is important for
building trust and confidence in the system.

Interpretibility of predictions is then a critical issue — Rudin et al. (2021) stated
that interpretable machine learning is about models that are understood by humans,
and interpretability can be achieved via separation of information as it traverses
through the CNN models. Zhang et al. (2020) developed an interpretable model that
provided explicit knowledge representations in the convolutional layers (conv-layers)
to explain the patterns that the model used for predictions. Linking middle-layer
CNN features with semantic concepts for predictions provided interpretation for
the CNN output (Zhou et al., 2015; Simon and Rodner, 2015; Zhang et al., 2019).
How mid-level features of a CNN represent specific features of surgical tools and
how they can provide hierarchical predictions is the focus of our work. CNNs learn
different features of images at different layers, with higher layers extracting more
discriminative features (Zeiler and Fergus, 2014). By associating feature maps at
different CNN levels to levels in a hierarchical tree, a CNN model could incorporate
knowledge of hierarchical categories for better classification accuracy. The model
developed by Ferreira et al. (2018) addressed predictions across five categorisation
levels: gender, family, category, sub-category and attribute. The levels constituted a
hierarchical structure, which was incorporated in the model for better predictions. The
benefit of this hierarchical and interpretable approach for surgical tool management
is that end users can then make rational, well reasoned decision on whether they can
trust the information presented to them (Rudin et al., 2021).

Wang, Ramanan, and Hebert (2017) discussed an approach to fine tuning that
used wider or deeper layers of a network, and demonstrated that this significantly
outperformed the traditional approaches which used pre-trained weights for fine-
tuning. Going deeper was accomplished by constructing new top or adaptation
layers, thereby permitting novel compositions without needing modifications to
the pre-trained layers for a new task. Shermin et al. (2019) showed that increasing



4.2. Surgical Tool Dataset Overview 55

TABLE 4.1: Surgical Datasets

Characteristic CATARACTS Cholec80 Surgical Tools

Size or Instances 50 videos 80 Videos 18300 images
Database Focus Cataract Surgeries Cholecystectomy

Surgeries
Orthopaedics and
General Surgery

Type of Surgery Open Surgery Laparoscopic Open Surgery
Default Task Detection Detection Classification
Type of Item Videos Videos RGB Images
Number of Classes 21 7 361
Images Back-
ground

Tissue Tissue Flat colours

Image Acquisition
Platform / Device

Toshiba 180I cam-
era and MediCap
USB200 recorder

Not Specified Canon D-80 Cam-
era and Logitech
922 Pro Stream We-
bcam

Image Illumination Microscope Illumi-
nation

Fibre-optic
in-cavity

Natural Light, LED,
Fluorescent

Distance to Object V.Close - Micro-
scope

Close - in-cavity 30-cms to 60-cms

Annotations Binary Bounding Boxes Multiple level
Dataset Organisa-
tion

500,000 frames each
in Training and Test
Sets

86,304 & 98,194
frames in Train-
ing and Test Set

14,640 images in
Training and 3,660
in Validation set

Structure Flat Flat Hierarchical
Image Resolution 1920x1080 pixels Not Specified 600 x 400 pixels

network depth beyond pre-trained layers improved results for fine-grained and
coarse classification tasks. We build on these approaches in our multi-level predictor.

4.2 Surgical Tool Dataset Overview

Kohli, Summers, and Geis (2017) and Maier-Hein et al. (2020) discussed the problems
faced by the machine learning community stemming from a lack of data for medical
image evaluation, which significantly impairs research in this area. There is just not
enough high quality, well annotated data, representative of the particular surgery —
a shortfall that needs to be addressed. Most medical datasets are one-off solutions for
specific research projects, with limited coverage and restricted in numbers of images
or data points (Maier-Hein et al., 2020). To address this, we plan to create and curate
a surgical tool dataset with tens of thousands of tool images across all surgical spe-
cialities with high quality annotations and reliable ground-truth information. Since
surgery is organised along specialities, each with its own categories, a hierarchical
classification of surgical tools would be extremely valuable. We therefore developed
our initial surgical dataset with a hierarchical structure based on the surgical spe-
ciality, pack, set and tool. We captured RGB images of surgical tools using a DSLR
camera and a webcam and tried to provide consideration to achieving viewpoint
invariant object detection with different backgrounds, illumination, pose, occlusion
and intra-class variations captured in the images. We focused on two specialities –
Orthopaedics and General Surgery — of the 14 specialities reported by the American
College of Surgeons (ACS, 2021). The former offers a wide range of instruments and
implants, while the latter covers the most common surgical tools. We propose to
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TABLE 4.2: Surgery Knowledge Base (Excerpt)

Speciality Pack Set Tool
Orthopaedics VA Clavicle Plating

Set
LCP Clavicle Plates Clavicle Plate

3.5 8 Hole Right
Orthopaedics Trimed Wrist

Fixation System
Fixation Fragment
Specific

Dorsal Buttress
Pin 26mm

General Surgery Cutting & Dissect-
ing

Scissors 9 Metzenbaum
Scissors

General Surgery Clamping &
Occluding

Forceps 6 Babcock Tis-
sue Forceps

add the other specialities in a phased manner, and will make the dataset publicly
available to facilitate research in this area.

CNNs have been successfully used for the detection, segmentation and recog-
nition of surgical tools (LeCun, Bengio, and Hinton, 2015). However, the datasets
currently available for surgical tool detection present very small instrument sets;
to illustrate this, the Cholec80, EndoVis 2017 and m2cai16-tool datasets have seven
instruments, the CATARACTS dataset has 21 instruments, the NeuroID dataset has
eight instruments and the LapGyn4 Tool Dataset has three instruments (Al Hajj,
Lamard, Conze, et al., 2019; Twinanda, Shehata, Mutter, et al., 2017). While designing
CNNs to recognise seven or eight instruments for research purposes may be justifi-
able, this is nowhere nearly adequate enough for real work conditions. Any model
trained using this data is unlikely to be usable anywhere else, not even in the same
hospital six months later. We needed to develop a new dataset for our work as these
surgical tool datasets did not offer a sufficiently large variety or number of tools for
analysis, nor were they arranged hierarchically. A comparison of our dataset with
CATARACTS (Al Hajj, Lamard, Conze, et al., 2019) and Cholec80 (Twinanda, Shehata,
Mutter, et al., 2017), two important publicly available datasets, is presented in Table
4.1.

4.2.1 Surgery Knowledge Base

Setti (2018) points out that most public benchmark datasets only provide images and
label annotations, but providing additional prior knowledge can boost performance
of CNNs. To complement the dataset, we developed a more comprehensive surgery
knowledge-base (Table 4.2) as an attribute-matrix which makes rich information avail-
able to the training regime. This proved to be a convenient and useful data structure
that captures rich information of class attributes — or the nameable properties of
classes — and makes it readily available for computational reasoning (Lampert, Nick-
isch, and Harmeling, 2014). We developed the knowledge representation structure for
18,300 images to provide rich, multi-level and comprehensive information about each
image. The attribute matrix data structure proved to be easy to work with, simple to
change and update, and it also provided computational efficiencies.

4.3 Experimental Method

We implemented our project in Tensorflow v-2.4.1 and Keras v-2.4.3. Our architecture
consists of a ResNet50V2 network (He, Zhang, Ren, et al., 2016) which we trained on
the Surgical Tool training dataset, by replacing the top layer with a dropout and dense
layer with 361 outputs. We initially did not use the knowledge base annotations, only
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FIGURE 4.2: Resnet50V2 Architecture with Multiple Outputs

TABLE 4.3: Results - Val accuracy with output at different layers

All Outputs at: Total Pa-
rameters

Parameters
Trained

Speciality Pack Set Tool

Conv2_block1_1_relu 700,570 686,490 0.956 0.356 0.258 0.091
Conv3_block1_1_relu 1,210,266 948,634 0.989 0.621 0.507 0.231
Conv4_block1_1_relu 3,060,634 1,472,922 0.997 0.927 0.851 0.663
Conv5_block1_1_relu 11,625,370 2,521,498 0.999 0.975 0.945 0.890

the tool labels and trained with the configuration in Table 4.4 with early stopping
on validation categorical accuracy. We were able to obtain good predictions from
this model with accuracy score at 93.51%, but only at the tool level. We then used
this pre-trained architecture with surgical tool weights as our base model, froze the
base model, and added separate classification pipelines, one for each prediction of
interest - speciality, set, pack and tool (See Fig. 4.2). We relied on the knowledge
base annotations which provided data for two specialities, twelve packs, thirty-five
sets and 361 possible tools, and used it to create data-frames for the training and
validation data. Each image was associated with the relevant annotations for each
output, in the form of columns of text values or categorical variables representing
the multiple classes for each output. This multi-task framework effectively shared
knowledge of the different attribute categories for each image or visual representation.
We developed a custom data handler for the training data (x_set) and for the labels
for each of the four outputs (y_cat, y_pack, y_set, y_tool), and used one hot encoding
to represent the categorical variables in our model. We then implemented training
and validation data generators based on our custom data handler to provide batches
of data to the model. Our model was compiled with one input (image) and four
outputs.

We tested outputs at different layers to evaluate the impact of changing the depth
of the network, with the results in Table 4.3. In each experiment, parameters available
and actually trained were controlled by adjusting the numbers of layers. An operation
within a block in ResNet50V2 consisted of applying convolution, batch normalisation
and activation to an input; we obtained our outputs after the first operation in each
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TABLE 4.4: Training Configuration

Parameter Optimiser Learning
Rate

Batch
Size

Activation Loss Metric

Value Adam 0.001 64 Softmax Categorical
Crossen-
tropy

Categorical
Accuracy

Orthopaedics

Trimed Wrist Fixation SystemHoffman Compact

Fragment Specific Pegs and Screws

Dorsal Ulnar Plate 7 
Hole

Radial Column Plate 7 
Hole

Volar Shear Plate Left

Speciality

Pack

Set

Tool

92.6%

77.4%

81.8%

90.2%

FIGURE 4.3: Interpretable multi-level predictions

block. These outputs were fed to external global max pooling and dense layers.
A dropout layer regulated training – we replaced this with a batch normalisation
layer but results did not improve. Since this was a multi-class problem, a dense
layer with softmax activation was used for the final classification of each prediction,
customised to the relevant number of classes. As we expected, better results were
obtained by including more layers and by training more parameters – best results
were obtained by including all layers up to Block 5. However, it is noteworthy that
high accuracy was obtained for specific predictions even early in the model – for
example, predictions for speciality were at 95.6% by block 2, for pack and set were at
92.7% and 85.10% at block 4 and for tool at 89% at block 5. Clearly it was possible to
obtain accurate predictions for higher level categories using early layers of the model.
This is explored further with the objective of improving interpretability for the end
user, while reducing the total number of parameters that needed to be trained in the
model.

The training set images from the surgery dataset and annotations from the knowl-
edge base were used for training, with real time training data augmentation – in-
cluding horizontal flip, random contrast and random brightness operations. We
used the configuration in Table 4.4, the initial learning rate of 0.001 was decreased
to 0.0001 at epoch 45 and to 0.00005 at epoch 75. A dropout rate of 0.2 was imposed.
We implemented early stopping on val loss with a patience of 20 epochs. The total
parameters in the model were 10,511,258, and parameters trained were 1,407,386 in
each of the experiments.

1. ImageNet Training: For an initial baseline experiment, we used a ResNet50V2
model with ImageNet weights and four separate classification outputs were
trained, one for each hierarchy – speciality, set, pack and tool.
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TABLE 4.5: Architecture Results - Macro score or average for all classes

Level Metric ImageNet Surgical-
Tools

Surgical-
Tools Depth
Adjusted

Speciality Accuracy score 0.90 0.94 0.94
Hamming Loss 0.10 0.06 0.06
f1 Score 0.73 0.84 0.83
Precision score 0.93 0.95 0.95
Recall score 0.96 0.99 0.99

Pack Accuracy score 0.41 0.63 0.77
Hamming Loss 0.59 0.37 0.23
f1 Score 0.25 0.53 0.73
Precision score 0.43 0.67 0.76
Recall score 0.30 0.55 0.73

Set Accuracy score 0.31 0.84 0.89
Hamming Loss 0.69 0.16 0.11
f1 Score 0.24 0.79 0.84
Precision score 0.36 0.82 0.85
Recall score 0.25 0.80 0.87

Tool Accuracy score 0.20 0.90 0.90
Hamming Loss 0.80 0.10 0.10
f1 Score 0.16 0.86 0.86
Precision score 0.78 0.91 0.91
Recall score 0.27 0.91 0.90

2. Surgical Tool Training: We used the pre-trained base model with surgical tool
weights, and trained the model with its four classification pipelines using the
configuration as in Table 4.4 and architecture as in Fig. 4.2.

3. Depth Adjusted Surgical Tool Training: We used the pre-trained model with
surgical tool weights as before, but changed the levels within the blocks of
the ResNet-50V2 model from which we obtained outputs, thereby adjusting
the depth of training. The outputs from Block 5 and 2 were obtained from
conv"x"_block1_1, and from Block 3 and 4 were from conv"x"_block4_2. We
did this to evaluate the effects of changing depths on the prediction accuracy;
this was a minor change within the block but the total number of parameters
trained were maintained the same.

4.4 Results and Conclusions

Our results, on a separate test subset of data, are shown in Table 4.5. The test data was
images that the model had not seen before, as a sample of 400 random images across
all classes had been reserved for testing. Training with ImageNet weights did not
provide good results, but the use of surgical tool weights demonstrated that the model
had captured relevant information about the dataset and was able to provide good
predictions at multiple levels. In this architecture, by extracting multiple predictions
along layers from coarse to fine as data traverses the CNN, early layers provided
predictions corresponding to specialities while later layers provide finer predictions,
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such as tool classifications (Fig. 4.3). It was easy for the CNN to distinguish between
our two speciality classes, since General Surgery tools are visually different from
orthopaedic tools – as we add more specialities where the visual distinction is not so
clear, we may need to train at deeper levels. As the classes increased to 12, 35 and
361 for pack, set and tool respectively, predictions from deeper layers were needed.
These hierarchical predictions are expected to provide better interpretability since
multiple predictions can be tested and evaluated against each other for consistency or
error by the end user. Adjusting the depths of layers used as outputs for predictions
improved the results, even within the same block, demonstrating that more features
are learned as the data travels through the CNN layers.

We developed a CNN framework that successfully utilised the hierarchical nature
of surgical tool classes to provide a comprehensive set of classifications for each
tool. This framework was deployed and tested on a new surgical tool dataset and
knowledge base. The multi-level prediction system provides a good solution for
classification of other types of medical images, if they are hierarchically organised
with a large number of classes.
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Chapter 5

OctopusNet: Machine Learning for
Intelligent Management of Surgical
Tools

The work presented in this chapter was published in the journal — Smart Health,
Volume 23, DOI 10.1016/j.smhl.2021.100244.

The work conducted and presented on the development of a hierarchical network
for hierarchical classification of surgical tools (Chapter 4) was well received at the
4th International Workshop on Interpretability of Machine Intelligence in Medical
Image Computing (iMIMIC 2021). Feedback from the conference participants led to
a new architecture — which was termed OctopusNet. This network is designed to
purposefully share information across prediction hierarchies to improve classification
accuracy. The network, as before, provides a degree of interpretability by predicting
a set of features for each tool based on multiple classification targets. Important
contributions of this work are not just the OctopusNet architecture, but also a novel
surgical tool dataset and surgery knowledge base.

5.1 Introduction

A major New Zealand Hospital estimated that lost or misplaced surgical tools resulted
in costs of US$350,000 annually. Surgical tools, which include instruments, implants
and screws, are organised in sets of related tools and packs of related sets grouped by
surgical speciality. Counting these tools pre- and post-surgery resulted in savings of
over US$17,000 per month but this practice was too difficult to sustain manually due
to the additional staffing requirements and the tedious nature of the work involved
in counting each contaminated tool. Surgical set assembly accuracy was around
thirty percent, and low packing accuracy required multiple expensive sets to be held
in inventory. Sixty packing staff were rostered to work twenty-four hours a day,
seven days a week on manual packing of tools and sets. Challenges included high
inventory levels, high set assembly errors, lost or misplaced instruments, inconsistent
availability of surgical instruments, and non-functional instruments in a tray. Large
volumes and varieties of surgical instruments, implants and screws (Figs. 5.1 and
5.2) also posed a formidable challenge (Unit Manager, personal communication, Nov.
2019).

Current technology for surgical instrument recognition and tracking used in
commercial settings include bar codes, RFID, colour markers, etching, acoustic track-
ing, electro-magnetic, ultrasound and nano technology initiatives (Al Hajj, Lamard,
Conze, et al., 2019). These solutions offer some advantages but generally only track
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instruments and not implants; they also require modification or additions to the tool
to be tracked. Computer vision technology does not need any modifications to be
made to the instruments or implants, and this is critical both for the sterile status of
the instrument and given the fact that these implants are placed inside the human
body. This is also a significantly cheaper solution, and is simpler to implement.
A marker-less and non-contact solution as provided by computer vision and deep
learning would be ideal for accurate and real-time recognition of surgical tools in a
hospital.

Surgical tool detection and recognition through computer vision and machine
learning has numerous practical applications, and can be invaluable in reducing
incidents of lost tools, improving packing accuracy, reducing errors, lowering costs,
and providing overall efficiencies. Other applications for surgical tool recognition
include not just instrument tracking in hospital inventory management (Ahmadi et
al., 2018), but also robotic and computer-assisted surgery (Sarikaya, Corso, and Guru,
2017), instrument position recognition in minimal invasive surgery (Zhao et al., 2017),
and pose recognition in surgical training (Leppanen et al., 2018). Current research
focuses on the development of algorithms based on, and tested with, small medical
datasets involving the actual detection of around 21 types of tools (Al Hajj, Lamard,
Conze, et al., 2019). However, there are many thousands of surgical instrument
types in circulation and these datasets are not representative of the problem nor
realistic for real world conditions. For example, one manufacturer reported that
their product line consists of 19,000 surgical instruments, with new types and classes
continually being introduced (Sklar, 2016). A new approach is required to handle this
volume and variety of surgical tools, as well as to cope with new surgical tools as
they are introduced. There are 14 specialities (Table 5.1) – reported by the American
College of Surgeons (ACS, 2021). Each speciality has multiple procedures, and the
variety and complexity of the tools in each procedure offers a significant challenge.
However, the hierarchical nature of surgical tool organisation – grouped by speciality
and procedure type, for example – also presents an opportunity to improve tool
recognition by the incorporation of prior information about hierarchies and structures
of tool classes in the model.

The research question that we address is: Can we design a convolutional neural
network that improves recognition of surgical tools by effectively utilising the
hierarchical nature of surgical tool classes? This is a departure from standard image
classification tasks where classes are assumed to be flat and independent of each
other; here we use problem-specific knowledge to devise a richer organisation of the
classes, and use this rich information to improve the architecture and performance
of our CNN. We create a new surgical tool dataset and surgery knowledge base to
train the CNN, making it potentially useful for intelligent management of surgical
tools in a hospital. Our functional requirement for the CNN is that it provides rich
predictions at multiple levels; in the case of surgical tools, predictions for the specific
speciality, pack, set and tool levels are required.

5.2 Intelligent Surgical Tool Management

Medical image challenges provide a platform for the development of cutting edge
deep learning solutions in medical imaging, and Al Hajj, Lamard, Conze, et al.
(2019) highlight the fact that more than 20 challenges were hosted in 2018. Many of
the challenges specifically address surgical instrument detection, segmentation and
recognition. In these image-based challenges, a specific task is defined, a dataset is
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TABLE 5.1: Surgical Specialities

Cardiothoracic
surgery

Colon and rectal
surgery

General surgery Gynaecology and ob-
stetrics

Gynaecological
oncology

Neurological
surgery

Ophthalmic
surgery

Oral and maxillofa-
cial surgery

Orthopaedic
surgery

Otorhinolaryngology Paediatric
surgery

Plastic & maxillofa-
cial surgery

Urology Vascular surgery

FIGURE 5.1: Surgical Tools - Instruments

FIGURE 5.2: Surgical Tools - Implants
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FIGURE 5.3: Identification of Surgical Tools

provided, evaluation procedures are defined, algorithms are developed and applied,
and deep learning solutions are tested on a specifically held-out test dataset. One
such dataset that is focused on surgical tools is the Cholec80 dataset (Twinanda,
Shehata, Mutter, et al., 2017), which has been used to fine tune AlexNet, ResNet-50
and ResNet18 models, pre-trained on ImageNet data (Twinanda, Shehata, Mutter,
et al., 2017; Alshirbaji, Jalal, and Moller, 2018; Mondal, Sathish, and Sheet, 2019;
Nwoye et al., 2019; Vardazaryan et al., 2018). Wang et al. (2019) developed a deep
neural network model, based on DenseNet-121 pre-trained from ImageNet, utilizing
both spatial and temporal information from surgical videos for surgical tool presence
detection. They used Graph Convolutional Networks (GCNs) and evaluated the
model on two datasets: m2cai-tool and Cholec80. Sahu et al. (2020) also used two
datasets – Cholec80 and EndoVis15 – to successfully test their Endo-Sim2Real method
for instrument segmentation. Using the m2cai16-tool dataset, a subset of Cholec80,
researchers have fine-tuned GoogleNet, VGG-16, AlexNet, Inception-v3, YOLO9000
and DenseNet201 models for surgical tool identification (Jo et al., 2019; Lin et al., 2019;
Raju, Wang, and Huang, 2016; Sahu et al., 2016; Zia, Castro, and Essa, 2016). Jin et al.
(2018) extended the m2cai16-tool dataset by providing labels for 2,532 frames with
bounding boxes around the tools, and made a new m2cai16-tool-locations dataset
available. They used this dataset to successfully train a Faster R-CNN and VGG-16
model.

Other surgical tool datasets have also been relied upon for research into surgical
tool recognition. The CATARACT dataset (Al Hajj, Lamard, Conze, et al., 2019) was
used in the EndoVis 2017 Challenge, and a specific aspect of the challenge addressed
surgical tools. There were 27 submissions from 14 teams that provided solutions to the
challenge; networks relied upon in the solutions included VGG-16, Inception-v3 and
v4, SqueezeNet, DenseNets, ResNets, NASNet-A and Inception-ResNet-v2. Almost
all the networks were trained on ImageNet (Al Hajj, Lamard, Conze, et al., 2019).
Transfer learning techniques, where a CNN model pretrained on general images can
be fine-tuned on a surgical instrument database, have therefore been used to achieve
state-of-the-art performance for surgical instrument recognition tasks (LeCun, Bengio,
and Hinton, 2015).
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While most of the recent work on surgical tool analysis has relied on CNNs and
deep learning, Al Hajj, Lamard, Conze, et al. (2019) showed that other machine
learning approaches using hand crafted and hand engineered features had also been
used for this task. However, CNNs are now the predominant approach for computer
vision based object recognition and detection, and have been successfully used for the
detection, segmentation and recognition of objects and regions in images over the last
two decades. CNNs have been deployed for surgical tools detection (LeCun, Bengio,
and Hinton, 2015); for example, Yang, Zhao, and Hu (2020) reviewed the use of
CNNs for laparoscopic surgery tool detection and tracking. Al Hajj, Lamard, Conze,
et al. (2019) also reviewed the CNN architectures used for surgical tool segmentation.
However, there are significant problems with the CNN-based approach given the
sheer volume and complexity of surgical tools that require to be managed. In many
cases, CNNs have been trained on datasets with a relatively small number of classes,
such as ImageNet which has 1000 classes, and this is not sufficient for real world
tasks where tens of thousands of classes have to be recognised (Liu et al., 2020b). This
is particularly true in surgical tool management where the CNNs used in surgical
tool classification applications have dealt with very small instrument sets and the
currently available benchmark tool datasets offer only 7 to 21 instruments for research
(Al Hajj, Lamard, Conze, et al., 2019; Twinanda, Shehata, Mutter, et al., 2017). This
highlights the fact that there are significant problems with surgical tool management
that have not been addressed in the literature. These problems are detailed and
discussed below:

1. Volume and Variety of Tools – Each hospital deploys many thousands of surgical
tools, and new tools are constantly being developed and introduced. These
tools represent a wide range in terms of shape and size (Figs. 5.1 and 5.2),
making accurate surgical tool recognition a complicated and complex task. The
fact that these tools are clustered into specific packs and sets with a wide variety
of tool types makes the task even harder. Managing this volume and variety
is a significant challenge, and limited research has been conducted for large
scale, comprehensive and intelligent CNN-based surgical tool management in
a hospital.

2. Complexity in Tool Management – Surgical sets, which can contain 200 surgical
tools, are currently assembled manually (Mhlaba et al., 2015). This requires
technicians to have in-depth knowledge and experience, but packed sets are
often found to be incomplete and this can put surgical procedures and patients
at risk. Since new tools are continually being introduced, technicians need
to constantly train and up-skill to ensure high accuracy in tool management.
Managing this complexity with CNNs is a task that has not yet been addressed.

3. Broken surgical instruments – Even if surgical tools can be accurately recog-
nised, it is imperative that broken or damaged tools are immediately flagged.
Damaged instruments – for example, needle holders with cracked hinges or
jaws – are a potentially serious threat in the operating theatre. They can spread
infections but can also fall into open surgical cavities, leading to complications
and extended anaesthesia times. Surgeons and nurses cannot physically inspect
each surgical instrument since they are working under time pressure, but a
CNN based system that captures instrument images and which can indicate
possible damage can provide an important functionality.

4. Mission-Critical System – This is a mission-critical system, vital to the function-
ing of a hospital since management of surgical tools is critical to the surgical
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procedure. This issue has been handled by over-stocking inventory and main-
taining redundant stocks, but a CNN based system can be a core component of
a more efficient solution.

To address the issues enumerated above, accurate and robust identification and
classification of a wide range of surgical tools is a critical task. To ensure this, more
work needs to be done on surgical tool recognition. In particular, the hierarchical
nature of surgical tools have not been adequately explored or utilised in CNNs
used for surgical instrument detection, segmentation and recognition. This is a
particular focus of our work since it has been demonstrated in prior research that
incorporating knowledge of structure and hierarchy in a CNN can lead to improved
object recognition and classification accuracy. This is discussed in the next section.

5.3 CNNs and Hierarchical Classification

While training a CNN to recognise surgical tools is relatively straightforward if
enough training data is available (Fig. 5.3), it has been shown that classification
performance of CNNs could be improved if structural knowledge of the set of classes
was incorporated in the model (Srivastava and Salakhutdinov, 2013). In the case of
surgical tool recognition, this would be about providing details of which surgical
speciality a specific tool belonged to, and additional information of its parent pack and
instrument set. Leveraging class structure and hierarchies for improved classification
performance was accomplished by Srivastava and Salakhutdinov (2013) via the
sharing of knowledge from relevant classes and by focusing on learning only the
distinctive class-specific features for each class. Koo, Klabjan, and Utken (2018)
exploited the hierarchical structure of classes by embedding deep CNNs into a
category hierarchy, but multiple CNNs needed to be trained to classify each class
accurately and this was costly and time consuming. Yan, Zhang, Piramuthu, et al.
(2015) relied on a CNN for hierarchical representations of images, and recurrent
neural network (RNN) or sequence-to-sequence models to evaluate a hierarchical
tree of relevant classes.

Why does the provision of hierarchical information lead to better CNN perfor-
mance? Zeiler and Fergus (2014) pointed out that CNNs learn different features of
images at different layers, with higher layers extracting more discriminative features.
It was then possible to associate feature maps to different levels in the hierarchical
tree. CNN models could then be integrated with knowledge of hierarchical categories
and relationships for better classification accuracy. Motamedi et al. (2020) developed
a CNN architecture, which they termed “Octopus”, in which classification of objects
was based on the features extracted from the deepest layer. Since deep layers extract
the highest distinctiveness or class-specificity, their Octopus configuration placed
kernels of deep layers in class-specific, discriminative, distinctive components, while
shallow layer kernels were used to jointly understand all classes. The parameters
for each class were kept in distinct, class-specific, dense and loosely-connected com-
ponents. They then developed an Octopus-based neural network that relied on the
Inception architecture as the baseline model, coupled with 100 class-specific branches
to classify 100 image classes.

Branch Convolutional Neural Networks (B-CNN) have been developed and used
by Hu et al. (2016) and Zhu and Bain (2017); these models relied on branch networks
for hierarchical fine-grained visual classifications. The number of prediction branches
in the model matched the number of hierarchies in the label tree. A branch-based
CNN architecture design would provide multiple coarse to fine predictions along
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FIGURE 5.4: Sample fragment of the hierarchy in our dataset

layers which correspond to the hierarchical structure of the classes. The classification
was achieved in a hierarchical way instead of using the normal flat structure adopted
by most datasets and CNNs. This strategy was based on the insight that lower layers
capture low level, basic shape features and higher layers extract higher level and
more detailed features (Hu et al., 2016; Zhu and Bain, 2017).

The model of Wang et al. (2018) incorporated semantic label relationships to gener-
ate better classification results – label activations were propagated bidirectionally and
asynchronously to achieve final classification results. This bidirectional structured
inference model relied on top-down and bottom-up propagation of activations via a
message passing network, and aggregated these messages into final activations for
label prediction. A similar approach was used by Inoue, Forster, and Santos (2020)
in a unified deep model that provided predictions at different levels in a hierarchy
tree, thereby incorporating the label hierarchical structure in the model. This architec-
ture consisted of a Bidirectional Inference Neural Network (BINN), combined with
an RNN algorithm that integrated structured information for prediction within the
model. The architecture captured intra- and inter-level label relations through two
parameters, one addressed two-way label relations between levels, and the other
addressed relations within each level. The model developed by Ferreira et al. (2018)
addressed predictions across five categorisation levels. In this model, the family, cate-
gory, and sub-category levels were defined to be mutually exclusive, while attributes
could be common across levels. The levels constituted a hierarchical structure, which
was incorporated in the model for better classification and predictions.

Semantic hierarchies were used by Inoue, Forster, and Santos (2020) to improve
fine-level classification, while also capturing hierarchical information from coarser
level outputs. Three variations of hierarchical CNNs were explored – built using
regular convolutional and dense layers – with multiple outputs for each hierarchical
level. In addition to the B-CNN model, a variant called “Concat-net” was developed.
In this model, the last dense layer of each hierarchical level was concatenated with
the last dense layer of the previous branch. The concatenations were designed to
directly share relevant features and to improve overall hierarchical classification. A
third model, “Add-net”, was a variation of the “Concat-net” model, but the values of
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Surgical 
Speciality
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Stryker, USA XXX Hospital XXX Dept RGB tungsten Canon D-80 
DSLR

FIGURE 5.5: Sample fragment of annotations in our knowledge base

the last dense layers were added instead of concatenating to share information across
hierarchical levels. The hierarchical model resulted in an improvement on image
classification tasks, with “Add-net” obtaining the best results (Inoue, Forster, and
Santos, 2020).

While these approaches are promising, there are some issues that need to be
addressed. For example, some of the strategies require different models to be trained
for classification at different branches, which is computationally expensive and
memory intensive. For example, to predict surgical tools using this approach, one
model would have to be trained to recognise specialities, another to recognise packs, a
third to recognise sets and a fourth to recognise tools; each model has to be loaded into
memory and deployed. Other approaches result in very large models and a significant
increase in features, for example by the concatenation of layer outputs. However,
there are some approaches that address our functional requirements (Ferreira et al.,
2018; Hu et al., 2016; Zhu and Bain, 2017), and we rely on this hierarchical CNN
research work as we develop our own solution for the classification of surgical tools.

5.4 Methodology

While significant amount of work has been conducted in this area, Bouget et al. (2017)
stated that much more data needed to be made available for algorithm development,
and the lack of quality data was a significant handicap for research. Other researchers
have also raised concerns about the lack of quality data for research and algorithm
development, and have called for the release of more surgical tool datasets into the
research community so that better models can be generated (Twinanda, Shehata,
Mutter, et al., 2017). These concerns are addressed in our work.

5.4.1 Surgery Dataset

The currently available datasets used for surgical tool recognition offer a limited
range of instruments to work with, with a maximum of 21 instruments. Given that
Sklar, a surgical instrument manufacturer that claimed to offer the largest product line
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of instruments, reported that their product line consists of 19,000 surgical instruments
(Sklar, 2016), datasets with a wider range of classes are required for research. As part
of our work, an important task that we undertook was to develop a comprehensive
dataset of surgical tools based on specialities, with a hierarchical structure – speciality,
pack, set and tool, as shown in Fig. 5.4. We created an initial dataset of surgical
instrument images: over forty-thousand images of surgical tools were captured under
different lighting conditions and with different backgrounds. We captured RGB
images of surgical tools using a DSLR camera on site in a major hospital under realistic
conditions and with the surgical tools currently in use. Image backgrounds in our
initial dataset were essentially flat colours, even though different colour backgrounds
were used. Discussions with potential end-users highlighted the fact that many more
images would have to be included as we further developed our dataset, including
much greater occlusions, illumination changes, and the presence of blood, tissue
and smoke in the images, which would be more representative of crowded, messy,
real-world conditions.

Illumination sources included natural light – direct sunlight and shaded light –
LED, halogen and fluorescent lighting, and this accurately reflected the illumination
working conditions within the hospital. Distances of the surgical tools to the camera
to the object ranged from 60 to 150 cm., and the average class size was 74 images.
Images captured included individual object images as well as cluttered, clustered and
occluded objects. Our initial focus was on Orthopaedics and General Surgery, two
out of the 14 surgical specialities (ACS, 2021) as discussed earlier. We selected these
specialities since general surgery instruments are the most commonly used tools
across all surgeries and provide instrument volume, while orthopaedics provides
variety and complexity given the wide range of procedures, instruments and implants
used in orthopaedic surgery. We will add other specialities as we develop this dataset,
to reflect the complexities inherent in each of the surgical specialities. In this initial
dataset, we covered 2 specialities, 12 packs, 35 sets and 361 different tool types
or classes. This dataset was designed to offer a large variety of tools, arranged
hierarchically to reflect how surgical tools are organised in real-world conditions.

5.4.2 Surgery Knowledge Base

Marcus (2020) highlights a need for implementation of models with hybrid architec-
ture, rich prior knowledge, and sophisticated reasoning techniques. An important
task for us was to make rich information or knowledge accessible for domain infer-
ence (Marcus, 2020; Garcez et al., 2019). To achieve this in the surgery domain, we
developed a comprehensive surgery knowledge-base to permit better classification,
deductive inference and semantic interpretation (Hoehndorf and Queralt-Rosinach,
2017). We set up this surgery knowledge-base as an attribute matrix (Fig. 5.5) which
proved to be a convenient and useful data structure capturing rich information read-
ily available for computational reasoning. In addition to only providing the image
labels, our potential end-users indicated that additional information about each tool
could be useful under real world use conditions, including information as to which
speciality the particular tool belonged to, and the pack and set details. We annotated
18,238 individual instruments from the dataset, and the data that we provided for
each image includes class information at four levels: speciality, pack, set and tool.
We also provide other information that can potentially be useful as we develop our
model and architecture further. Such information can be used for the predictions of
finer attributes of each tool and to assist in classification of unknown or new classes,
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FIGURE 5.6: Architecture with Forward Connections

an issue that is significant given the fact that new tools and classes are continually
being introduced in the hospitals.

5.4.3 OctopusNet Architecture

Our knowledge representation annotations were in the form of categorical variables,
where text values represented the multiple classes, and these variables needed to be
encoded for use in our model. We first created category objects by converting each
column in the data-frame to a category. We then used label encoding to replace each
of the categorical values with a numeric value between 0 and the number of classes
minus 1, and used one hot encoding to represent the categorical variables as binary
vectors.

We implemented a custom data generator for the data handling, since our objec-
tive was to build a single model that was capable of predicting four distinct outputs
for one image input. This data handler was designed to generate batches of data
that were provided to our multi-output model; each image fed to the model was also
accompanied by its class labels at four levels. A custom method was used to obtain a
given batch of data with the training and multi output label data; it was called with
the batch size and real time image augmentation was used for the training phase. We
then used train and validation data generators based on our data handler to provide
batches of data to the model.

Our architecture consisted of a ResNet-50V2 network as the base model around
which the rest of the architecture was built. We added separate classification pipelines
to the base network, one for each prediction of interest – speciality, set, pack and
tool – to create the OctopusNet architecture. The benefit of this architecture was that
separate predictions were generated at each level, allowing for better interpretation of
the results. Our prototype system was trained on the training images of the surgery
dataset and knowledge base, which captured 2 specialities, 12 packs, 35 sets and
361 possible tools. With the ResNet-50V2 CNN as the base model, classification
pipelines were created via dense layers with ReLU activation, which acted as message
propagation or shortcut connections (He, Zhang, Ren, et al., 2016). These were direct
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TABLE 5.2: Training Configuration

Optimiser Learning
Rate

Epochs Activation Loss Metric

Adam 0.001 120 Softmax Categorical
Crossentropy
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FIGURE 5.7: OctopusNet with Full Connections

path connections that propagated information across levels – for example, speciality
latent information is propagated towards the pack, set and tool levels. The outputs
of each pipeline were provided to a final dense layer for the classification at each
level. Our architecture was designed to permit information transfer between each
classification pipeline, since it captures both intra-level and inter-level relations. The
speciality level influences the pack level, both speciality and pack level influences the
set level and all three higher levels influence the tool level for classification.

We froze the pre-trained ResNet-50V2 base network from the input layer up to
the start of Block 5 while training the other layers. We trained the network for 120
epochs and implemented early stopping on validation loss. The model was trained
on 14,680 annotated training images, and validated on 3558 images. The surgery
knowledge base annotations were relied upon in the training, with their detailed
and multi-level manual annotations. A range of augmentations were carried out,
including horizontal flip, random contrast and random brightness. We used the
training schedule as in Table 5.2, with a batch size of 64 images. We implemented a
learning rate schedule with the low initial learning rate; the rate was decreased to
0.0001 at epoch 75 and to 0.00005 at epoch 95. A dropout rate of 0.2 was imposed. We
used a separate set of images for testing and the model did not see the test images
in training or in validation. Our architecture and training decisions are based on
experiments and on previous work (Ferreira et al., 2018; Wang et al., 2018; Inoue,
Forster, and Santos, 2020), and we conducted the following three experiments:

1. Surgical Tools: We modified the ResNet-50V2 model by removing the classifica-
tion block and adding a custom classification block with a dropout and dense
layer with 361 outputs. We trained this modified model on the training image
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set of the Surgical Tool dataset. We used tool labels and the training config-
uration as in Table 5.2, and implemented early stopping on validation data
categorical accuracy. We then used this model as the base model, and added the
classification pipelines to the base. We froze the model up to the start of Block
5, and trained it on the training data. This is a simple approach that provided
the benchmark model against which our other experimental architectures were
evaluated.

2. Forward Connected: In this architecture, we used the Surgical Tool weights and
the multi-level classification architecture as discussed above, but modified the
model to include shortcut connections that provided direct paths to propagate
information in the top down direction in the label hierarchy. Each level was
connected in the forward (top-down) direction to other levels – speciality level
predictions provided information to pack, set and tool level; pack levels pro-
vided information to set and tool level; set level predictions were passed on to
the tool level. Outputs were provided to a dense layer for final classification.
The architecture is depicted in Fig. 5.6. Layer-wise addition was used for the
connections; a list of tensors were provided as input and the layer-wise addition
returned a single tensor of the same shape. By using this functionality, we
ensured that the trainable parameters remained at 2,587,034 parameters in all
experiments, so that we could accurately estimate the effects of our information
propagating connections.

3. Fully Connected: We used the Surgical Tool weights and made direct paths
for propagating information through connections in both the top down and
bottom up direction in the dataset hierarchy. In addition to the connections in
the forward direction (top down) as in the previous experiment, the tool level
provided information in the reverse direction to the set, pack and speciality
levels; the set level provided information to the pack and speciality level, and
the pack level provided information to the speciality level. The outputs were
fed through a dense layer to obtain the final prediction. This architecture is
depicted in Fig. 5.7 and is the full OctopusNet model. The trainable parameters
were maintained at 2,587,034.

5.5 Results and Conclusions

The results in Table 5.3 show that, despite training the same number of parameters in
all three cases, the use of shortcut or message passing connections improved overall
accuracy. The most significant improvement was in the mid-level predictions, or at
the pack and set level. The information provided from the predictions at the category
and tool levels greatly improved mid-level predictions, leading to better overall
accuracy for the model. This highlighted the importance of using addition layers and
connections that added the weights of each layer. The outputs from the connections
were added to the other outputs, and these shortcut connections did not add extra
parameters or complexity in terms of extra computations (He, Zhang, Ren, et al.,
2016). These connections used element-wise summation and an iterative estimation
procedure where features were refined through the various layers of the network.
Summation of weights can be viewed as a residual correction or delta to the input;
this resulted in successively refinement of the feature maps. The ResNet-50V2 Base
Block had already learnt a rough estimate of the representation by the prior training
on the surgical tool dataset, which was then iteratively refined by the successive
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TABLE 5.3: OctopusNet Results - Macro score or average reported for
all classes

Level Metric Surgical-
Tool (ST)
Weights

ST For-
ward
Con-
nected
(Fig. 5.6)

ST Fully
Con-
nected
(Fig. 5.7)

Category Accuracy score 0.99 0.98 1.00
Hamming
Loss

0.01 0.02 0.00

F1 score 0.98 0.96 1.00
Precision score 1.00 0.99 1.00
Recall score 0.99 0.99 1.00

Pack Accuracy score 0.85 0.92 0.98
Hamming
Loss

0.15 0.08 0.02

F1 score 0.81 0.87 0.97
Precision score 0.85 0.88 0.97
Recall score 0.80 0.86 0.97

Set Accuracy score 0.86 0.91 0.96
Hamming
Loss

0.14 0.09 0.04

F1 score 0.79 0.89 0.96
Precision score 0.79 0.90 0.96
Recall score 0.81 0.89 0.96

Tool Accuracy score 0.92 0.93 0.94
Hamming
Loss

0.08 0.07 0.06

F1 score 0.86 0.88 0.89
Precision score 0.92 0.93 0.93
Recall score 0.91 0.93 0.93
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layers. These layers cooperate to compute a single level of representation, layers
preserved feature identity and iteratively refined and reinforced their estimates of the
same features (He, Zhang, Ren, et al., 2016).

Interpretation is potentially enhanced since the technician or end user can be
provided with multiple predictions, at different levels. These predictions can be
evaluated against each other, and can be used by the end-user to reason about
the reliability of the model. The information can also assist in error checking and
correction, and to evaluate possible alternatives to the prediction presented. This is
important in real world conditions where fine grained tool distinctions may give rise
to errors. The provision of rich and relevant information to the users greatly helps in
achieving a clear understanding of each particular tool and its position in the surgical
dataset hierarchy.

5.5.1 Summary

We addressed the research question by designing a CNN that successfully utilised
the hierarchical nature of surgical tool classes to make improved predictions. This
was deployed and tested on a new surgical tool dataset and knowledge base. The
OctopusNet based system provides a good solution for classification of medical
images, if they are hierarchically organised with a large number of classes, with the
following benefits:

1. The OctopusNet architecture provides predictions at multiple levels for inter-
pretability and better understanding of the results.

2. We create a powerful knowledge representation data structure that can be
extended and modified easily.

3. The system provides for easy deployment in medical settings, and this model is
adaptable to different medical images based classification tasks with a hierar-
chical structure.

The solution is a proof of concept for accurate recognition of surgical tools by
utilising the hierarchical nature of the classes, but this is very much a work in progress.
Much more work has to be done to achieve the aim of intelligent management of
surgical tools in a hospital, thereby reducing incidents of lost tools and packing errors,
lowering costs, increasing patient safety and system efficiencies. Maier-Hein et al.
(2020) discussed the lack of machine learning success stories in surgery, and contrasted
it to success with machine learning research in other medical areas, such as radiology,
dermatology, gastroenterology and mental health. This lack of success was directly
attributed to the lack of quality annotated data, representative of the surgery domain.
The authors recommended creating and providing access to larger, representative and
annotated datasets, something that could lead to improved outcomes and success
stories in the application of machine learning to surgery. We seek to address this issue
in our work, and have set up both a preliminary surgical dataset and a knowledge
base data structure with our OctopusNet CNN. These assets will be further developed
with an intention of making them publicly available to facilitate research in this area.

5.5.2 Future Work

Our work addressed some of the issues with surgical tool management that we high-
lighted earlier in this paper, such as managing the volume, variety and complexity of
surgical tools. We plan to add to our preliminary dataset, and will comprehensively
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capture images across all the surgical specialities. More images with occlusions,
reflections, illumination changes, the presence of blood, tissue and smoke will be
included in the dataset and also images with different modalities, such as infrared
and depth images. Open surgery and laparoscopic surgery images will be sourced,
including live surgeries. The attribute matrix will be expanded and better defined, by
drawing on medical and surgical tool expertise to clarify terminology and naming
conventions. Future work also includes testing the system in practical settings; for
example, in the identification and tracking of surgical tool usage during surgery, in
the management of misplaced tools, and in the accurate learning of new and un-
known tools. This surgical tool dataset and knowledge base can potentially become
an important resource for innovative research that successfully addresses the mission
critical nature of surgical tool management in a hospital.
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Chapter 6

Evaluation of Deep Learning
Techniques on a Novel Hierarchical
Surgical Tool Dataset

The work in this chapter was presented at the 2021 Australasian Joint Conference on
Artificial Intelligence – where it was awarded 2nd Place in the Best Applied Paper
Category.

Given significant interest in the surgical tool dataset from the research community,
this chapter reports efforts to improve and evaluate the usefulness of the dataset.
In addition to 360 surgical tool classes, the dataset was designed with a four level
hierarchical structure defined by 2 specialities, 12 packs and 35 sets. To evaluate the
performance of this dataset with Deep Learning techniques, the work conducted em-
ployed different convolutional neural network training strategies to evaluate image
classification and retrieval performance, including the utilisation of prior information
in the form of a taxonomic hierarchy tree structure. The work evaluated the effects
of image size and the number of images per class on model predictive performance,
to see if the dataset could be improved. Experiments with the mapping of image
features and class embeddings in semantic space using measures of semantic simi-
larity between classes show that providing prior information results in a significant
improvement in image retrieval performance on the dataset, demonstrating the use-
fulness of the chosen structure. The dataset was then made freely available for public
research in this area.

6.1 Introduction

Surgical tool management in hospitals is a difficult, time consuming and costly task;
lost, misplaced or unavailable surgical tools were estimated to cost just one New
Zealand hospital over NZ$500,000 annually (Unit Manager, personal communication,
Nov. 2019). Challenges faced in management of these tools included high inventory
levels, multiple surgical tool set assembly errors, high staffing requirements, high
costs, inconsistent availability of surgical tools, and non-functional or broken instru-
ments being presented at surgery. Large volumes and varieties of surgical tools (Fig.
6.1) also pose a formidable challenge for management. According to Stockert and
Langerman (2014), just one institution can process over 100,000 surgical trays and 2.6
million tools every year. With an average of 38 surgical instruments present per tray,
and six trays deployed on average per surgery (Mhlaba et al., 2015), managing this
volume and complexity manually under mission-critical conditions is a challenging
task. Surgical tool detection and recognition through artificial intelligence (AI) and
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Hoffman Compact Set and Tools

FIGURE 6.1: Surgical Set and Tool Examples

TABLE 6.1: Current Tool Datasets

Characteristic CATARACTS
(Al Hajj,
Lamard, Conze,
et al., 2019)

Cholec80
(Twinanda,
Shehata, Mutter,
et al., 2017)

EndoVis2017
(Allan et al.,
2019)

ROBUST-
MIS19 (Ross,
Reinke, and
Full, 2019)

Size 50 videos 80 Videos 10 Videos 30 Videos
Focus Cataract

Surgeries
Cholecystectomy
Surgeries

Abdominal
(Porcine)

Varied
Surgeries

Use Case Detection Detection Segmentation Detection
Classes 21 7 7 2
Annotations Binary Bounding Boxes Masks Masks
Structure Flat Flat Flat Flat

machine learning systems can provide a solution that can reduce incidents of lost or
misplaced tools, improve packing accuracy, reduce errors, lower costs, and improve
overall efficiencies within hospitals. Surgical tool recognition can be used in AI
based hospital inventory management systems, and also in robotic and computer-
assisted surgery, instrument position recognition, and in surgical monitoring, audit
and training (Sarikaya, Corso, and Guru, 2017; Zhao et al., 2017; Leppanen et al.,
2018).

Maier-Hein et al. (2020) discussed the lack of success stories in the application
of machine learning to surgery, and contrasted it to success in other medical fields,
such as radiology and dermatology. This was directly attributed to the lack of quality
annotated data, representative of the surgery domain, and the small size and limited
representation of currently available datasets were reported to be major problems.
One available labelled surgical tool dataset, while useful, provides images of only
four tools (Lavado, 2018). Similarly, the currently available surgical tool datasets
with a larger number of tools do not offer a sufficiently large range nor are they
arranged hierarchically (Table 6.1). Kohli, Summers, and Geis (2017) highlighted
the lack of data for medical image evaluation with machine learning, and described
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current research as being “data starved” in this area. Current research focuses on
convolutional neural networks (CNNs) trained on small medical datasets and the
actual detection of less than fifty types of tools (Al Hajj, Lamard, Conze, et al., 2019);
however, there are many thousands of surgical instrument types in circulation (Sklar,
2016). Clearly a new approach is required to handle this volume and variety of
surgical tools. To help in addressing these challenges, we created a new surgical tool
dataset named HOSPITools, short for “Hierarchically Organised Surgical Procedure
Instruments and Tools”. This dataset offers a wide range of tools, and we evaluate its
performance with different deep learning methods and techniques.

6.2 Class Hierarchies and Training Strategies

Image features learned by CNNs have been used extensively to classify images, or to
retrieve images that are visually similar to a query image (Barz and Denzler, 2019).
While deep CNNs are extremely effective in object classification and recognition, clas-
sification of fine-grained classes and discrimination between classes with relatively
minor differences is a challenge (Setti, 2018). This is a significant problem for our
work, since many surgical tools are visually similar and often differ in minor, subtle
and hard to discern ways. An approach that can potentially improve classification
or retrieval performance for such fine grained classes is to embed prior knowledge
of the classes or class hierarchies into the model (Deng, Berg, and Fei-Fei, 2011).
Class hierarchies share knowledge of relationships in the ground truth class label
arrangements, as opposed to class labels in a flattened arrangement where every class
is assumed independent and unrelated, and incorporating this information into the
model can potentially lead to better classification and retrieval performance.

The main challenge, as highlighted by Narayana et al. (2019), lies in mapping
images and labels to a shared latent space where embeddings that correspond to a
similar semantic (not just visual) concepts lie closer to each other than embeddings
corresponding to different semantic concepts. They addressed this problem by first
constructing a semantic embedding space based on prior domain knowledge and then
projecting image embeddings onto this fixed semantic embedding space. Their model
ensured that distance between image embeddings were similar to corresponding
class embedding distances in the semantic embedding space (Narayana et al., 2019).
Barz and Denzler (2019) computed class embeddings by a deterministic algorithm
based on prior domain knowledge encoded in a hierarchy of classes – this was a novel
feature level approach that mapped image embeddings to semantic embeddings, and
successfully incorporated class information and semantic relationships into a deep
learning model. The semantic embeddings of image features were shown to result in
a model that was much more invariant against superficial visual differences such as
colour and shape (Barz and Denzler, 2019), and we therefore experiment with this
method for our project.

The most common loss function used in the training of CNNs is the categorical
cross-entropy loss in conjunction with a softmax activation, also known as the softmax
loss (Barz and Denzler, 2019; Wen et al., 2016).

LCCE = −
k

∑
i=1

ci log (ĉi) (6.1)

In Equation 6.1, ĉi represents the probability score for class ci. This training strategy
separates the classes, but it may not be sufficient for fine grained classification tasks
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FIGURE 6.2: Surgical Tool Dataset Structure

(Barz and Denzler, 2019). The center-loss was therefore designed to increase the
separation of classes while minimizing the distances between samples from the same
class, and was defined as (Wen et al., 2016):

Lcenter−loss =
1
2

k

∑
i=1

∥∥xi − cyi

∥∥2
2 (6.2)

In Equation 6.2, xi represents the center of the ith class and cyi the deep feature vectors
for each class. A multiple loss training strategy was used where the center-loss
was employed to pull the deep features of the same class to their centers, while the
softmax loss forced the deep features of different classes apart (Wen et al., 2016). A
combination of losses was also employed by Barz and Denzler (2019), who used a
classification loss along with an embedding loss designed to maximise the cosine
similarity or the inner product between the image features and the embeddings of
their classes. This correlation or cosine loss function was defined as:

LCORR =
1
k

k

∑
i=1

(
1 − ψ (Ii)

⊤ φ
(
cyi

))
(6.3)

In Equation 6.3, φ defined the class embedding function, ψ the embedding function
for image I, and ⊤ referred to matrix multiplication using the transpose of the embed-
dings, equivalent to the inner product or the dot product of the embeddings. Another
important distance based loss is the mean squared error (MSE) loss, defined for class
ci as:

LMSE =
1
k

k

∑
i=1

(ci − ĉi)
2 (6.4)

We evaluate our dataset with these training strategies and loss functions.
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6.3 Methodology

In this section, we describe the HOSPITools dataset, and we experiment with different
strategies to train CNNs using this dataset. We believe that this dataset can be an
important resource for AI and machine learning research on surgical tool manage-
ment, and we use our experience with CNN training strategies to try to improve its
structure and organisation.

6.3.1 Surgery Dataset

We developed our surgical dataset based on an hierarchical structure – speciality, pack,
set and tool – as shown in Fig. 6.2. We captured RGB images of surgical tools using a
DSLR camera, and manually arranged the images hierarchically in the dataset. We
took these pictures on site in a major hospital, with the surgical tools currently in use.
Image backgrounds were essentially flat colours, even though different backgrounds
were used. Illumination sources included natural light – direct sunlight and shaded
light – LED, halogen and fluorescent lighting. Distances of the camera to the object
ranged from 60 to 150 cms. We focused on two specialities – Orthopaedics and
General Surgery – for the initial stages of development of the dataset. The former
speciality offers a wide range of instruments, implants and screws, while the latter
covers the most common instruments used across all open surgery. We propose to add
images of tools used in all 14 surgical specialities reported by the American College
of Surgeons (ACS, 2021) in a phased manner as we develop this dataset. Our initial
dataset consisted of 15,522 images across all hierarchies, with 11,712 images in the
training set and 2,810 images in the validation set. We reserved a further 1,000 images
for the test set, which the models did not see during training. While the average
class size was 74 images, the range was from 139 images to as low as 10 images.
This allowed us to evaluate the performance of the CNN training strategies with low
class frequencies, and to explore how the dataset could be optimally structured with
minimum images per class required for good performance.

6.3.2 Surgery Hierarchy

While it was relatively straightforward to train a baseline classifier using only the
images and labels, some of our other strategies required additional information to
be provided to the model. We therefore created a four level hierarchy in the surgery
tool dataset, which consisted of speciality (2 classes), pack (12 classes), set (35 classes)
and tool (360 classes) levels. The hierarchy was detailed in an indented tree format,
which we then converted into “child-parent” tuples, as discussed by Barz and Denzler
(2019). Dictionaries mapping class labels to lists of parent class labels and to child
class labels in the hierarchy were created, and also a dictionary mapping hypernym
identities of each element (class) to depths in the tree. We also developed lists of node
identities, commencing with the direct hypernym of the given element and ending
with the root node.

We only considered the taxonomic or hierarchical relationship between our classes
in our work. The easiest relation is the “is-a” relation, which allows the specification
of a hierarchical structure (Barz and Denzler, 2019). Hierarchies, most commonly
represented as tree structures, provided us with an effective tool to organise and
present the relationships and prior knowledge in our classes. In our tree structure,
each class or node has just one parent class and distance was defined in terms of the
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length of the shortest path between two classes ci, cj. The dissimilarity of the classes
dG and the semantic similarity sG was defined as (Barz and Denzler, 2019):

dG =
height(LCS(ci, cj))

height (G)
sG(ci, cj) = 1 − dG(ci, cj)

(6.5)

In Equation 6.5, LCS stands for lowest common subsumer – a class ci was a
subsumer of cj if cj was a descendant of ci – and height (G) is the height of the entire
hierarchy. Using this, we obtained similarity measures in the range (0, 1), where “1”
represented the maximum similarity (no distance) between classes. This information
can then be used to train a CNN for image classification and retrieval (Brust and
Denzler, 2019), as will be shown in the next section.

6.3.3 CNN Training Strategies

We used the well researched and widely used ResNet-50 (He, Zhang, Ren, et al., 2016)
for all our experiments. We computed the channel mean and standard deviation of the
images in the training set, and used it to normalise the data. We resized the original
6000 × 4000 pixel images to 150 × 100 pixels, and used multiple data augmentation
techniques, including flipping, scale augmentation and random cropping, to add
diversity to the training data (He, Zhang, Ren, et al., 2016). We evaluated the following
experiments for our image classification and retrieval tasks, including hierarchy-based
semantic image embeddings, based on prior work by Barz and Denzler (2019):

Baseline Classifier : As a baseline, we used a standard ResNet-50 and the features
extracted from the layer before the final classification layer of the network architecture.
We used categorical cross entropy as the loss function.

Center-loss : We used the ResNet-50 architecture and trained it with both center-
loss and softmax loss, following Wen et al. (2016). We maintained the center-loss
weight at 0.1 – this value was used to balance the two loss functions. Wen et al. (2016)
experimented with changes of this weight from 0 to 0.1; with the weight at 0, or
only using softmax loss, they obtained a poor result but performance was relatively
unchanged across other variations of this weight.

MDS Embeddings : We computed embeddings in 360 dimensional space so that
the distances of class embeddings corresponded to their semantic dissimilarity (Eq.
6.5) using classical multidimensional scaling (MDS). We used the MSE loss in this
distance based approach.

Sphere Embeddings : We calculated a “360-by-360” matrix specifying the distance
between each pair of classes, based on the dissimilarity score of the two classes
(Eq. 6.5). Following Barz and Denzler (2019), with the first class at the origin, the
second class was located at an offset along the first axis by the specified distance.
We then placed all remaining classes in an iterative manner at an intersection of the
hyperspheres centered at existing classes, with the radii set at the distance of the new
class. We used the MSE loss in this training strategy.
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Unitsphere Embeddings : The problem statement is: Given a distance matrix D,
we wanted to place the set of points on a unit hypersphere which produce the same
distance matrix. We used Eq. 6.5 to calculate similarities and the following equation
to place class embeddings, where φ defined the class embedding function and ⊤

referred to matrix multiplication using the transpose of the embeddings, equivalent
to the inner product or the dot product of the embeddings (Barz and Denzler, 2019):

φ (ci)
⊤ φ

(
cj
)
= sG

(
ci, cj

)
∥φ (ci)∥ = 1

(6.6)

Equation 6.6 stated that the correlation of class embeddings should equal their
similarity. The second function ensured that the L2-norm embeddings were on
the unit hypersphere, and the dot product was then used as a substitute for the
Euclidean distance (Barz and Denzler, 2020). The network was trained to minimise the
difference between image representations and the embeddings of their respective class
as per the guidelines of Barz and Denzler (2019) using a combined loss LCORR+CCE =
LCORR +λLCCE. Since we desired that the embedding loss LCORR dominated learning,
we set λ to a very low value (0.1) in our experiments (a similar value was used in the
center-loss strategy).

We tried two different learning schedules for our training, a standard ResNet
training schedule and Stochastic Gradient Descent with Cosine Annealing and Warm
Restart (SGDR) (Loshchilov and Hutter, 2017). While we tested these learning rates
on each of our strategies, we only present the SGDR results since they are much better.
This schedule implemented warm restarts, where in each restart the learning rate was
initialized to a new value, scheduled to decrease over the cycle. The initial learning
rate at the beginning of each cycle was 0.1, decreasing to a minimum of 10–6 using
cosine annealing based on number of epochs since the last restart (Loshchilov and
Hutter, 2017). The first cycle was set at 12 epochs, the multiplier for cycle length was
set at 2, and training was for 5 cycles or 372 epochs (Barz and Denzler, 2019).

6.3.4 Metrics Reported

We report the Accuracy, Top-5 Accuracy, Hierarchical Accuracy and F1-Score for the
classification performance. For the retrieval tasks, we report the hierarchical precision
of the nearest neighbour search performed on different image embeddings – HP@k for
different k values, Average Hierarchical Precision (AHP) and Mean Average Precision
(mAP). The Hierarchical Precision at k (HP@k) is a generalization of Precision@k
which takes class similarities into account (Deng, Berg, and Fei-Fei, 2011), and we
report this for k at 250. This is calculated by the sum of similarities between query
image class and retrieved image class over the top k retrieval results, divided by the
maximum possible sum of top-k class similarities. Average Hierarchical Precision
is defined by the area under the hierarchical precision curve, with the optimum
normalized at 1.0. The Mean Average Precision, which does not consider class
similarities, is also reported for comparison.

Class similarity is reported by the Wu-Palmer similarity metric (“WUP”), which
considered the height and position of classes relative to each other in the tree – classes
further from the root with a common parent tend to be more semantically similar.
The WUP measure was calculated from equation 6.5, using the sG(ci, cj) definition.
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TABLE 6.2: Classification Results

SGDR Accuracy Top-5
Accuracy

Hierarchical
Accuracy

F1-Score

Classifier 0.84 0.98 0.80 0.81
Center-loss 0.88 1.00 0.83 0.86
MDS 0.83 0.96 0.79 0.80
Spheres 0.85 0.98 0.81 0.82
Unitsphere 0.88 0.99 0.84 0.86

TABLE 6.3: Retrieval Results (WUP)

SGDR HP@1 HP@10 HP@50 HP@100 AHP mAP

Classifier 0.84 0.68 0.56 0.54 0.83 0.47
Center-loss 0.91 0.81 0.65 0.60 0.84 0.76
MDS 0.90 0.87 0.87 0.87 0.95 0.73
Spheres 0.90 0.88 0.89 0.89 0.97 0.76
Unitsphere 0.93 0.91 0.91 0.91 0.98 0.84

6.4 Experiments and Results

Classification performance is good across the board, and there is no significant
improvement in basic accuracy by including hierarchical information, as shown in
Table 6.2. However, the biggest impact of including prior information and in the
embedding strategies is found in the retrieval task, as shown in Table 6.3. Retrieval
of single images is good for all models tested, but as the number of similar images
retrieved increases, there is a definite advantage in terms of the embedding strategies.
There is a significant drop in accuracy with increase in the k value with the Classifier
and Center-loss models, but embedding with the MDS, Spheres and Unitsphere
strategies demonstrates a consistent performance across different k values. Since
the number of images per class is low, smaller k values retrieve images from exactly
the same category as the query but as k increases, images are retrieved from outside
the direct class. This is where the incorporation of semantic information excels,
retrieving images from semantically similar classes even at higher k values. Semantic
information significantly improves the quality of content-based image retrieval, by
retrieving images that are both visually and semantically similar. Incorporating prior
knowledge about class similarities by mapping class embeddings in semantic space
appears to facilitate better learning by the CNN, thereby leading to better retrieval
results. Organising the surgical tool dataset in the form of a hierarchical structure, and
providing additional information about the taxonomic or hierarchical relationship
between our classes, is therefore conclusively demonstrated to be an approach that
leads to better performance, at least for the image retrieval tasks.

6.4.1 Does Size Matter?

The original images were captured at 6000 by 4000 pixels, on the assumption that
finer detail could be captured and it would be easier to down-sample the images
than to up-sample. Down-sampling was done to improve data handling, storage
and processing, and we evaluated the effects of resizing images in the pre-processing
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TABLE 6.4: Class Frequency Classification Results

Images per Class Class F1-Score

139 Curved Mayo Scissors 0.96
117 7-inch Metzenbaum Scissors 0.94
15 0.76mm Drill Bit with 10mm Stop Mini

QC
0.17

18 0.76mm Drill Bit with 12mm Stop Mini
QC

0.22

13 Universal Spinal System Holding
Sleeve

1

11 Jacobs Chuck 1

pipeline on the CNN performance. We experimented with images of 600 by 400 pixels,
with 300 by 200 pixels, with resizing the images to 224 by 224 with padding, and with
image size of 150 by 100 pixels. There was no degradation in performance even at
the smaller sizes, and so we implemented our training at an image size of 150 by 100
pixels, with random cropping of 100 by 100 pixels during augmentation. Our findings
can be contrasted with the work of Sabottke and Spiele (2020), who examined image
resolution variations on CNN performance for radio-graphic images. While they did
find some performance differences, this was relevant only when finer details needed
to be captured for the diagnosis-specific tasks. For our objects of interest, image size
variances do not appear to be as significant but this is a promising avenue for future
work.

6.4.2 Class Frequencies

The class frequencies for the training set were averaged at 74 images, with a range
from 10 to 139 images per class. While additional images were available, we wanted
to test performance with different class frequencies. This was difficult to analyse –
we obtained good classification results (Unitsphere strategy) even with 11 images
per class, while much higher class frequencies did not yield the best results (Table
6.4). Clearly the number of images required for good performance depends on the
particular tool and its distinctiveness in the dataset. An initial benchmark – at least
for this dataset, for classification tasks, with the prior hierarchy information, and for
these types of tools – does appear to be at least 40 images per class but this is not
conclusive. As more cluttered images in realistic and messy settings are added, more
images will be required to maintain accuracy and predictive performance. We will
revisit this as we expand the scope and scale of our dataset.

6.5 Conclusions and Future Work

We developed a new surgical tool dataset – HOSPITools – and used it to test different
CNN learning strategies. We demonstrated that the hierarchical nature of surgical
tool classes could be used to make improved predictions. We also used the training to
explore how the dataset should be structured and to evaluate some design parameters.
This was a proof of concept for accurate recognition of surgical tools by utilising
the hierarchical nature of the classes, and this solution can be used for intelligent
management of surgical tools in a hospital.
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We will continue to improve the dataset, with a view to making it publicly
available for AI and machine learning research. We will address threats to the validity
and utility of our work by adding images from more of the 14 surgical specialities,
and by including greater coverage and variety in each speciality. We will include
images with greater occlusions, reflections, illumination changes, the presence of
blood, tissue and smoke, varied backgrounds, and from different modalities such as
video, infrared and depth images. Open surgery and laparoscopic surgery images
need to be sourced if possible, including live surgeries. If we can do this, then the
surgery tool dataset can potentially be a valuable resource for the AI and machine
learning communities.
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Chapter 7

Making OctopusNet Robust

This chapter evaluates ways of making the OctopusNet better able to cope with
changes in illumination and backgrounds, so that it can cope with real world condi-
tions. The work conducted tests the CNN performance with challenging images, and
find that performance degrades with changes in backgrounds and illumination. It
therefore evaluates methods to make OctopusNet more robust to changes in illumina-
tion and backgrounds, develops and uses synthetic data and filter based purposeful
augmentation, and achieves improved performance with this augmented dataset.

7.1 Introduction

Maron et al. (2021) highlighted the brittleness in performance of CNNs, stating that
small changes in the input image had major adverse effects on the classification per-
formance of the CNN. These image changes reflected the actual variations in images
acquired under routine real world conditions, and this brittleness — along with a
resultant lack of robustness and reliability — impeded the successful deployment
of AI-based systems and tools into routine medical settings. Similarly, Dapello et al.
(2020) stated that CNNs struggled to cope with imperceptibly small perturbations in
images (adversarial attacks), and had difficultly in recognising objects in corrupted or
noisy images. Adversarial training on explicitly crafted perturbed images to counter
such attacks was expensive, and could lead to performance degradation. Techniques
to address the brittleness in CNN performance were therefore developed by these
researchers, which was evaluated in this chapter.

Maron et al. (2021) investigated data augmentation, test time augmentation and
anti-aliased networks in search of a solution for this brittleness issue, and used arti-
ficial image transformations such as rotations, altered brightness or various zooms
along with real images in their training and testing. Extreme forms of artificial data
augmentation were used during the training stage with beneficial results. Trem-
blay et al. (2018) used non-artistically generated synthetic data to train CNNs, and
demonstrated that such a trained model provided very good performance. This
approach relied on domain randomization to generate synthetic data for training a
neural network. The authors hypothesised that the crude images created by their
technique was actually beneficial since it forced the CNN to focus on relevant details
in the image. Huh et al. (2018) developed a synthetic data generation framework
that created visual variations such as motion blur and occlusions in the images, and
showed that including synthetic data with visual variations in the training dataset
significantly improved real-time performance of object detectors. Jo, Na, and Song
(2017) generated training data by synthesizing images of background and relevant
objects, and added noise and variable illumination or brightness to the images of
objects from different viewpoints. in total, 40 backgrounds and 36 relevant objects
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were used to create 25,000 training images with an average of 17.36 images per
background/object, and better results were obtained with this synthetic dataset as
compared to the results obtained using a real training dataset with 13,000 images
of similar objects. Hinterstoisser et al. (2019) created a purely synthetic dataset by
using 3D background models to provide background images with realistic shapes
and textures. The objects of interest were then rendered on top of these backgrounds.
They demonstrated that using this synthetic dataset in training resulted in better
performance on a challenging evaluation dataset when compared to CNN models
trained with real data. Barros Barbosa et al. (2017) developed a large synthetic dataset
by using photo-realistic human body generation software, and used it to train a CNN
to recognise multiple discriminative structural attributes of human figures. Their
method used synthetic images of human avatars as proxies for real human images.
Similarly, Manettas, Nikolakis, and Alexopoulos (2021) developed a synthetic dataset
of manufactured parts by using a range of simulation tools. Many synthetic datasets
are currently available to train CNNs, including Flying Chairs, FlyingThings3D,
SceneNet, SceneNet RGB-D, SYNTHIA and Virtual KITTI (Tremblay et al., 2018),
however these are very specific in purpose and object coverage. An potentially useful
initiative was to create purposeful and specific synthetic data for experiments, and to
evaluate how such synthetic datasets could be used to make OctopusNet more robust
to changes in illumination and background conditions.

7.2 Methods

Nowruzi et al. (2019) stated that the two general methods for synthetic data gen-
eration were real data augmentation and data generation through simulation; this
research adopted the former approach of adding objects to existing frames or back-
grounds to create our synthetic surgical tool dataset. The authors also cautioned that
the size of a dataset should not be the only consideration for quality or effectiveness,
but image diversity, completeness, appearance, object occurrence frequency and dis-
tribution should also be considered. This was considered while creating synthetically
augmented training and test datasets for the OctopusNet model.

Techniques similar to the works cited in the previous section were relied on to
develop a training dataset of synthetic data. Image composition was used to generate
new images by composing the isolated object of interest – or specific surgical tool – as
a foreground on multiple background images (Figure 7.1). Since the images in the
HospiTools dataset consisted of clean objects with well defined coloured backgrounds,
the work used standard techniques to cut out the tool from the images. Experiments
with edge detection techniques were conducted — including Laplacian, Canny and
Sobel gradient edges to detect object edges — and Canny was used as it provided the
optimal results for these particular images. Noise was then filtered out with median
filters, and the largest contour in the image by area was found. Using the resultant
polygon, contour detection techniques were used to define the object of interest and
to fill in the holes, and contour smoothing algorithms and Gaussian Blur was used
to define the edges. Once this was achieved and a satisfactory approximate contour
of the surgical tool was obtained, the GrabCut algorithm (Rother, Kolmogorov, and
Blake, 2004) was used with accurate background and foreground differentiation to
cut out and save the surgical tool mask. These surgical tool object masks were then
composed on a range of different backgrounds, and variations were obtained through
various random rotations, random zoom, random translations, random cut-outs and
random horizontal flips.
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FIGURE 7.1: Example of Synthetic Dataset Composition

Simple techniques were used to remove the backgrounds in the surgical tool
images, to isolate the actual tool, and then to superimpose the tool image on various
backgrounds, including more realistic medical backgrounds. Background images
were created using a DSLR camera, and medical and tissue images from work by
Garcia-Peraza-Herrera et al. (2021b) was also used. Multiple transformations were
introduced while superimposing the tool object on the background, including flipping,
random resizing, random rotation, random cutouts and random noise. A similar
approach had been adopted by Tremblay et al. (2018), which was to paste real images
(as opposed to synthetic images) of objects on background images. The background
could then include images of actual surgeries and was more representative of actual
use conditions of the tools. The augmented dataset consisting of 500 images per class
for 19 classes was developed using these techniques, and there were a total of 9500
images in the synthetic dataset. Examples of the synthetic dataset are provided in
Figure 7.2.

7.2.1 OctopusNet with HospiTools and Synthetic Datasets

The OctopusNet architecture (as presented in Chapter 4 and Chapter 5 of this thesis)
was trained on a subset of the HospiTools dataset and on the Synthetic Tool Dataset,
with the same training configurations used earlier — as in Table 7.1. During training,
the data augmentations of random brightness, random contrast, and random flips
were applied. In both cases, early stoppage of training was adopted to avoid over-
fitting, and the best reported model was retained. Both architectures was trained on a
batch size of 16 on an NVIDIA 3060 GPU based machine. Augmentation was used
while training on the HospiTools dataset but not while training on the Synthetic Tool
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FIGURE 7.2: Synthetic Dataset Example Images
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TABLE 7.1: Training Configuration for Synthetic Dataset Experiments

Optimiser Learning
Rate

Epochs Activation Loss Metric

Adam 0.001 100 Softmax Categorical
Crossentropy

Categorical
Accuracy

dataset since experiments had found that adding training time augmentation on the
synthetic images degraded performance.

The ResNet-50V2 base network was pre-trained on the relevant dataset — a
subset of the HospiTools dataset and the new Synthetic Tool dataset — in each
training regime. The pre-trained ResNet-50V2 base network was then frozen from
the input layer up to the start of Block 5 while training the other layers. This freezing
strategy had also been evaluated by Hinterstoisser et al. (2019) and by Tremblay et al.
(2018), who evaluated the performance results from freezing the weights of the early
network layers (in their cases pre-trained on ImageNet) when training with synthetic
data. The network was trained for 100 epochs with early stopping implemented on
validation loss. A learning rate schedule was imposed with a low initial learning rate;
the rate was decreased to 0.0001 at epoch 45 and to 0.00005 at epoch 65. A dropout
rate of 0.3 was imposed. Separate holdout sets of images for testing were used, as
discussed below.

7.2.2 OctopusNet with Challenging Test Datasets

To test the performance of the networks, three challenging datasets were created, in
addition to the held-out test set of the HospiTools dataset. A “real” dataset was de-
veloped by taking images of surgical tools with varying backgrounds and in different
illumination conditions. There was significant variety created in these “real” test
images, and this included multiple different illumination sources at varying distances,
changes of background, and changes in orientation and distance to the object of inter-
est. Challenging backgrounds were introduced, including highly reflective surfaces,
light absorbing surfaces, textured and coloured backgrounds, and surfaces with wood
grain striations. A further “mixed” dataset was then created which consisted of a
range of images from the real and synthetic datasets. This dataset included variations
in the image sizes, occlusions in the images, and different class frequencies in the
test sets, including imbalanced classes. The class frequencies of these test sets are
presented in Table 7.2. Examples of the real test dataset are provided in Figure 7.3,
and examples of the mixed test dataset are provided in Figure 7.4. It was anticipated
that this would provide a good test of the architecture and of the use of synthetic data
for training to increase robustness of the CNN.

7.2.3 OctopusNet with Synthetic Filters Dataset

Since training with synthetic datasets was resulting in good predictive performance
boosts, experiments with standard and innovative image creation and augmentation
techniques was conducted to further enhance the dataset. Since off-the-shelf image
augmentation libraries did not result in good training and performance, a range of
image filters were developed, which were applied to the standard HospiTools image
dataset. These filters were developed based on the OpenCV library and its functions.
For example, the “line” function was used to add vertical, slanted lines to simulate
rain, the “blur” function to add dirt and blood effects to patches in the image or to
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TABLE 7.2: Class Frequencies - Challenging Test Sets

Class HospiTools Synthetic Mixed Real

Bearing Plates 3-Hole 7-Peg
Right Narrow

73 50 100 0

Lahey Forceps 72 50 168 0
Multi-pin Clamp Grey-Orange 66 50 100 68
Clavicle Plate 3.5-2.7 5-Hole
Right

53 50 100 0

7 Inch Metzenbaum Scissors 82 50 156 56
Crile Artery Forceps 79 50 110 10
9 Inch DeBakey Needle Holder 64 50 100 0
6 Inch Mayo Needle Holder 75 50 100 0
2.4mm Titanium T-Plate 2-Hole x
8-Hole 54mm

72 50 100 0

8 Inch Babcock Tissue Forceps 36 50 255 155
Ball and Socket Towel Clips 72 50 100 0
Littlewood Tissue Forceps 74 50 100 0
Allis Tissue Forceps 71 50 180 80
Dressing Scissors 74 50 286 186
2.0mm Titanium Straight Plate
12-Hole 71mm

47 50 100 0

Fixed Angle Plates 3-Hole 7-Peg
Left

60 50 100 0

Clavicle Plate Medial 8 Hole 82 50 100 0
Mayo Artery Forceps 79 50 100 0
Pin to Rod Coupling Grey-
Orange

105 50 100 0

  

FIGURE 7.3: Real Test Dataset Example Images
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FIGURE 7.4: Mixed Test Dataset Example Images

  

FIGURE 7.5: Synthetic Filters Dataset Example Images
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simulate movement, and the brightness or dark effects by changing pixel values in
the images.

In all, 19 different filters were developed and utilised to add various effects to
the images, and this included three intensities of brightness filters, three degrees of
dirt filters, three speeds of motion filters, three densities of focused rain filters and
three flare level filters – light, medium and heavy in all cases. In addition, one heavy
dark illumination filter, one blood splatter filter, and two unfocused rain moisture
filters were applied. For each filter effect, an average of 68 images were created for
each of the 32 classes selected for augmentation —- resulting in a total number of
41,534 images in the Synthetic Filter Dataset. This resulted in a heavily augmented
dataset as in Fig 7.5 with an average of 1297 images per class. This was purposeful
augmentation, to reflect the types of image variations that the CNN might see in real
world conditions. The OctopusNet CNN was trained on this filter-based synthetic
dataset and its performance was evaluated.

7.2.4 OctopusNet with Synthetic Filters Dataset and Distractor Classes

As a final test, experiments were conducted based on the addition of “Distractor
Classes” (Garcia-Peraza-Herrera et al., 2021b) to the Synthetic Filters Dataset during
training. This was done to evaluate if distractor classes could improve training, by
forcing the CNN to focus on only relevant aspects of the dataset and images. This
was an approach used by Garcia-Peraza-Herrera et al. (2021b), who used “flying
distractors” or artefacts that were not present in their real images. They hypothesised
that these distractors would assist the CNN to focus on the segmentation features to
detect surgical tools. To create the distractor classes, two classes with random images
were introduced, as shown in Fig. 7.6. The classes included approx. 500 random
images each, and meaningless annotations for each class were added to the attribute
matrix. OctopusNet was trained using the synthetic dataset and the distractor classes,
and its performance was evaluated.

7.3 Results

The results of training OctopusNet on the HospiTools Dataset and testing it on the
challenging test sets are presented in Table 7.3, and the results of training OctopusNet
on the Synthetic Dataset are presented in Table 7.4. As reported by Tremblay et al.
(2018), the work conducted and reported in this section also finds that there is a
significantly improved performance from training the network on synthetic data,
particularly at the set and tool level accuracy. Results on the mixed dataset are
encouraging, and there is significant improvement in the results on the challenging
real images — even though much more work is required to get the performance
levels to an acceptable standards. Adding variations to synthetic data, changing
backgrounds, adding different illumination sources, zooming in and out and creating
different perspectives / angles of vision are fairly easy to implement yet are clearly
powerful in terms of increasing robustness to issues such as changes in illumination
and background, and in reducing brittleness of the model.

The results of training OctopusNet with the filter-based synthetic dataset are
presented in Table 7.5. The results were encouraging — while the accuracy results
were good at all levels for the Test set of the Filter Dataset, performance was also
improved on the HospiTools Test data even though the model had not seen any
images from the HospiTools dataset during training. The results with this dataset
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TABLE 7.3: Results - OctopusNet Trained on HospiTools Dataset

Level Metric HospiTools Synthetic Real Mixed

Speciality Accuracy 1.00 0.84 0.97 0.87
Hamming Loss 0.00 0.16 0.03 0.13
f1 score macro 1.00 0.83 0.87 0.85
Precision 1.00 0.85 0.82 0.85
Recall 1.00 0.83 0.93 0.84

Pack Accuracy 0.97 0.45 0.50 0.46
Hamming Loss 0.03 0.55 0.50 0.54
f1 score macro 0.98 0.49 0.70 0.52
Precision 0.99 0.61 0.70 0.65
Recall 0.98 0.45 0.74 0.47

Set Accuracy 0.99 0.64 0.65 0.64
Hamming Loss 0.01 0.36 0.35 0.36
f1 score macro 0.99 0.39 0.46 0.41
Precision 0.99 0.50 0.47 0.57
Recall 1.00 0.37 0.53 0.39

Tool Accuracy 0.98 0.22 0.18 0.20
Hamming Loss 0.02 0.78 0.82 0.80
f1 score macro 0.98 0.19 0.29 0.20
Precision 0.98 0.27 0.33 0.29
Recall 0.98 0.20 0.37 0.23

TABLE 7.4: Results - OctopusNet Trained on Synthetic Dataset

Level Metric HospiTools Synthetic Real Mixed

Speciality Accuracy 0.70 0.97 0.71 0.91
Hamming Loss 0.30 0.03 0.29 0.09
f1 score macro 0.69 0.97 0.55 0.91
Precision 0.78 0.97 0.58 0.90
Recall 0.75 0.97 0.85 0.94

Pack Accuracy 0.71 0.90 0.45 0.80
Hamming Loss 0.29 0.10 0.55 0.20
f1 score macro 0.69 0.93 0.47 0.85
Precision 0.74 0.93 0.46 0.86
Recall 0.73 0.94 0.68 0.87

Set Accuracy 0.84 0.99 0.67 0.92
Hamming Loss 0.16 0.01 0.33 0.08
f1 score macro 0.82 0.99 0.54 0.94
Precision 0.80 0.99 0.52 0.94
Recall 0.87 0.98 0.76 0.95

Tool Accuracy 0.61 0.82 0.24 0.68
Hamming Loss 0.39 0.18 0.76 0.32
f1 score macro 0.61 0.82 0.28 0.72
Precision 0.73 0.86 0.30 0.74
Recall 0.63 0.82 0.47 0.76
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TABLE 7.5: Results - OctopusNet With Synthetic Filters

Level Metric Synthetic
Filters

HospiTools Real

Speciality Accuracy 1.00 1.00 0.94
Hamming Loss 0.00 0.00 0.06
f1 score macro 1.00 1.00 0.84
Precision 1.00 1.00 0.78
Recall 1.00 1.00 0.97

Pack Accuracy 1.00 1.00 0.58
Hamming Loss 0.00 0.00 0.42
f1 score macro 1.00 1.00 0.65
Precision 1.00 1.00 0.62
Recall 1.00 1.00 0.81

Set Accuracy 1.00 1.00 0.67
Hamming Loss 0.00 0.00 0.33
f1 score macro 1.00 1.00 0.66
Precision 1.00 1.00 0.63
Recall 0.99 1.00 0.84

Tool Accuracy 1.00 1.00 0.27
Hamming Loss 0.00 0.00 0.73
f1 score macro 1.00 1.00 0.54
Precision 1.00 1.00 0.52
Recall 0.99 1.00 0.81

were much better than the results obtained with the previous synthetic dataset,
and the implications are that purposeful augmentation using a range of filters is a
useful technique. Clearly both synthetic images and heavily — but specifically —
augmented filter based synthetic images can be used to achieve good performance,
and good results are obtainable even in the absence or shortage of actual images.
However, the Filter Synthetic Dataset trained CNN performance on the challenging
“real” images does not improve from the results we obtained from training with the
previous synthetic dataset, even though it is still better than training with normal
images.

OctopusNet was trained using the synthetic dataset and the distractor classes,
and the test results are presented in Table 7.6. It was found that the addition of
Distractor Classes did not improve or degrade the results significantly, but that
there was consistently good predictive performance in test results from the unseen
HospiTools images.

7.4 Conclusions

The work conducted in this chapter reported that synthetic data is useful for training
of the CNN, and specific data augmentation using filters is also useful, particularly
in terms of better predictive performance and accuracy at the set and tool level
of predictions. It used the first of the two methods for synthetic data creation as
discussed by Nowruzi et al. (2019) – real data augmentation, but work could include
surgical tool image generation in surgical settings by using simulations that leverage
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FIGURE 7.6: Distractor Classes Examples

TABLE 7.6: Results - OctopusNet With Synthetic Filters and Distractor
Classes

Level Metric Synthetic
Filters and
Distractors

HospiTools Real

Speciality Accuracy 1.00 1.00 0.80
Hamming Loss 0.00 0.00 0.20
f1 score macro 0.77 0.80 0.51
Precision 0.81 0.83 0.45
Recall 0.80 0.83 0.75

Pack Accuracy 0.99 1.00 0.55
Hamming Loss 0.01 0.00 0.45
f1 score macro 0.90 0.91 0.58
Precision 0.92 0.93 0.55
Recall 0.92 0.92 0.76

Set Accuracy 1.00 1.00 0.64
Hamming Loss 0.00 0.00 0.36
f1 score macro 0.92 0.93 0.63
Precision 0.93 0.94 0.64
Recall 0.93 0.94 0.78

Tool Accuracy 0.99 1.00 0.29
Hamming Loss 0.01 0.00 0.71
f1 score macro 0.96 0.97 0.49
Precision 0.97 0.98 0.45
Recall 0.97 0.97 0.78
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3-D images and digital twins (Kritzinger et al., 2018; Tao et al., 2019). Future work
can build on this foundation of synthetic images by creating additional surgical tool
images with much more variety, training on combinations of real and synthetic data,
training on synthetic data and fine tuning on real data, and other strategies to improve
performance. This reliance on synthetic data is much easier to accomplish, less
complicated and less expensive than taking real images in actual hospital conditions,
and provides a viable forward path for increasing the deployability of the surgical
tool management system in actual hospital and clinic settings.



98

Chapter 8

Informed Machine Learning

Previous chapters in this thesis (Chapters 4 and 5) have described the dataset, and
developed a CNN framework that successfully utilised the hierarchical nature of
surgical tool classes to provide a comprehensive set of classifications for each cate-
gory, sub-category, sub-set and specific tool. To complement the dataset, a surgery
knowledge-base was developed as an attribute-matrix which makes relevant and
useful information available to the training regime. This proved to be a convenient
and useful data structure that captures rich information of class attributes — or the
nameable properties of classes — and makes it readily available for computational
reasoning (Lampert, Nickisch, and Harmeling, 2014). The work reported in this
chapter experiments with using this prior information in training a CNN, since this
could be useful in accurate classification of new surgical tools that have not been
seen by the CNN. It therefore address informed machine learning, defined in terms
of the integration of prior knowledge into the training process of the CNN (Rueden
et al., 2021). This explicit integration of knowledge into the machine learning pipeline
has also been described as knowledge infused learning (Dash et al., 2022). Machine
learning algorithms which integrate domain knowledge have been shown to perform
better than purely data-driven machine learning (Deng et al., 2020) — earlier chapters
have reported results from experiments using prior knowledge, and the work in this
chapter experiments with new ways to incorporate surgical tool knowledge in a CNN
using the dataset and knowledge-base.

8.1 Surgical Tool Detection Prototype and Deployment

A specific target of the work in this thesis was deployment and testing in real world
conditions, and the intention was to develop a scanning system — Figure 8.1 — and
deploy it in critical points within a hospital. This system could be used to scan tools
at various points and track the flow of tools within the hospital — Figure 8.2 — as
well as to assist in packing of tool. Unfortunately, this was not possible due to the
COVID-19 crisis since priorities within hospitals were oriented towards critical and
emergency care, and there was no access to test the system in a hospital. However,
a prototype system was developed — Figures 8.3 and 8.4 — and was evaluated in
simulated conditions, though this was only possible within research labs. This system
can correctly identify tools, provide possible alternatives to the end-user, provide
basic information about the set that the tool belongs to and other inventory details
— Figure 8.5. This is potentially useful, but it still needs to be evaluated in actual
conditions.

A further issue is the fact that additional prior information is available which
can be incorporated into the model to improve training and predictive performance.
The work conducted in this chapter therefore focuses on the use of attributes as
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FIGURE 8.1: Example of a Prototype Testing Setup

external sources of knowledge, and uses the attribute matrix as prior information
in the training regime of a CNN. It uses text and knowledge graphs to formally
represent prior knowledge and on a learning algorithm approach for knowledge
integration, implemented as a loss function and regularizer in the training process
(Rueden et al., 2021; Dash et al., 2022). The intention is to use both images and
attributes in the training process in an effective manner. The utility of such multi-
modal representations — where images and attributes form the two modes — in
the intelligent management of surgical tools is addressed in the next sections, and
the provision of additional information in the training process to improve predictive
performance of a CNN is evaluated.

8.2 Image-Text Embeddings

An earlier section (Chapter 6) had evaluated techniques to map images and labels to a
shared latent space where prior domain knowledge was used to construct a semantic
embedding space, and then image embeddings were projected to this space (Barz and
Denzler, 2019; Narayana et al., 2019). The basic idea was that distances between image
embeddings were similar to class embedding distances in the semantic embedding
space. The approach of Barz and Denzler (2019) was adopted, that relied on domain
knowledge encoded in a hierarchy of classes to incorporate class information and
semantic relationships into a deep learning model, and the technique achieved good
results on the surgical tool dataset. The work conducted in this chapter further
explores the use of prior knowledge in the training of a CNN.

A critical concern in computer vision based solution is the transformation of pixel
representation of images into more useful representations, or feature extraction. This
has been defined in terms of dimension reduction — capturing and retaining relevant
information from the original pixel representations in a lower dimension space.
Techniques relied on for feature extraction in images include principal component
analysis (PCA), projection histograms, Zernike moments, Fourier descriptors, Gabor
filters and template matching — to mention just a few important methods (Kumar
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FIGURE 8.2: Example of Prototype Tool Scanning Point

FIGURE 8.3: Example of Prototype System User Interface
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FIGURE 8.4: Informative Inference Results using Prototype System

FIGURE 8.5: Detection Examples with Prototype System
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and Bhatia, 2014). Akata et al. (2015) stated that good image representations are
critical for good performance, and highlighted how features extracted using a CNN
are useful for many applications. Feature extraction using CNNs and the subsequent
vector representations of images — or embeddings — have been gainfully used for
many computer vision tasks (Ueki, 2021). Specially designed embedding networks
have been used both for feature extraction and for the organisation of the vector
representations or embeddings into low-dimensional output spaces (Frome et al.,
2013; Miller et al., 2020; Narayana et al., 2019; Wang, Li, and Lazebnik, 2016). Such
networks are trained to learn an embedding space where similar embeddings are
closer than dissimilar embeddings, and this can be used for image retrieval and
classification tasks (Ueki, 2021).

Defining how embeddings are organized or mapped in the output space is a
critical aspect of any system or solution. Feature embeddings should retain user
defined concepts of semantic similarity — where images perceived as being similar
in some form should be closer in the embedding space than images deemed to be
different. This is not a trivial task, since images may have illumination, background,
orientation or resolution differences yet are defined to be semantically similar by
a user. One widely used technique to retain semantic similarity is metric learning
(Weinberger, Blitzer, and Saul, 2005), where the feature representations are mapped
or organised in an embedding space such that the L2 distances between embeddings
correlate to the similarity between images. This can also be used for text — for
example, Akata et al. (2015) used both image and text embeddings, mapped in
a joint framework that learnt the compatibility between the different embedding
types. Wang, Li, and Lazebnik (2016) sought to learn a lower dimension latent space
for image and text embeddings, where vectors from the two modalities could be
compared. In their solution, they used a two-branch neural network for learning
joint image and text embeddings. In such a learned embedding space, metrics such
as the L2-distance can be used to determine the similarity or dissimilarity between
embeddings.

In other work using this approach, Frome et al. (2013) developed a deep visual-
semantic embedding model (DeViSE) that learned semantic relationships between
labels, and mapped images into semantic embedding space. Demirel, Cinbis, and
Ikizler (2017) proposed attribute-based zero-shot learning which mapped distinc-
tive attributes in images to a semantic word vector space. Their system evaluated
similarities between classes and combination of attribute names to evaluate visual
similarity, and this was then used to predict unseen classes based only on these
names. Akata et al. (2015) developed a “Structured Joint Embedding” framework that
related image embeddings and text embeddings through a compatibility function,
and demonstrated that embedding labels in an Euclidean space was an effective
technique to capture relationships between classes. In a mapping function approach
used for zero-shot learning, Socher et al. (2013) trained a deep neural network on
images to obtain rich image representations along with a language model that ob-
tained embedding representations for relevant words. Linear mapping was used to
link the image representation space to the embedding space for eight classes that the
model was trained on. The system then evaluated if a given test image was from the
8 classes; else the nearest class in the embedding space was used to classify the image.
The next section discusses some of the issues and challenges in using multi-modal
embeddings.
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8.2.1 Multi-modal Learning

Miller et al. (2020) used metadata — text descriptions, titles and tags — along with
images in a multi-modal model to improve image classification. Their model used
ResNet50 and a Universal Sentence Encoder to process images and text in parallel
towers of deep convolutional and sequence networks. Features specific to each
modality — image, text descriptors and labels — were extracted, flattened and
concatenated via dense layers into a single feature vector, and predictions were
obtained from the combined feature vector. A useful approach for training Image-Text
CNN models is therefore using neural networks to extract high-level features of both
images and text. Those features can then be projected onto a shared visual-semantic
or multi-modal embedding space in such a way that correlated embeddings in the
shared multi-modal space are closer to each other while uncorrelated embeddings
should be far from each other (Wehrmann, Kolling, and Barros, 2019). For example,
Gong et al. (2013) discussed how canonical correlation analysis (CCA) can be used to
map visual and and textual features into a cross-modal common latent space where
their correlation is maximized.

Using multi-modal embeddings — specifically, image and text representations
— to share a common latent space could allow exploitation of any complementary
information between these modalities, within the enriched common latent space.
Enriched in this context refers to the incorporation of additional semantic information
in the mapping space, and complementary information could exist between an
image and associated textual information that describes the object, scene or concept
(Gallo, Calefati, and Nawaz, 2017). However, there are significant challenges that
arise in a multi-modal setting because of what has been referred to as a media
gap, where inconsistencies in the features from different modalities can make it
difficult to exploit complementary knowledge (Narayana et al., 2019). Bayoudh et al.
(2022) points out that mono-modal representations — which can be from image,
text, audio, video sources — are about linear or nonlinear mappings to high-level
semantic representations. There are significant issues in adapting the deep learning
model to properly utilise the representation spaces of both the input and output
modalities. In this context therefore, the joint or shared embedding space is crucial
for exploiting any synergies in the multi-modal data (Bayoudh et al., 2022). The
main challenge lies in mapping images and text to a shared latent space where the
embeddings corresponding to a similar semantic concept lie closer to each other
than the embeddings corresponding to different semantic concepts, irrespective
of the modalities (Narayana et al., 2019). Multi-modal learning is therefore about
representing a specific object of interest from multiple perspectives or modalities,
while maintaining any complementary information and semantic context which can
be used to train the network (Bayoudh et al., 2022).

To address this issue, Wang, Li, and Lazebnik (2016) mapped both image and
sentence representations — with different dimensions and using different feature
extractions techniques — to a joint common dimension space by using a two branch
deep CNN framework. Each branch consisted of fully connected layers, a Rectified
Linear Unit (ReLU), batch normalization and L2 normalization. Embedding outputs
from the image and text layers were L2-normalized and so the inner product between
embeddings — equivalent to the Euclidean distance in this space — was used to
measure similarity or dissimilarity between embeddings. The work reported in this
chapter explores this technique and approach further.

A multi-modal representation needs to be able to leverage any correlation power
of each individual mono-modal representation via an aggregation of outputs. This
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can be achieved by early fusion, where representative mono-modal features are fused
before being classified, or by late fusion, where the features are classified before fusion
for a final decision (Bayoudh et al., 2022). Early fusion has also been defined to be at
the level of features — for example, by concatenating image and text embeddings
into one multi-modal vector — while later fusion is at the level of decisions — for
example, image and text embeddings are used to obtain independent decisions and a
final decision is calculated based on the weighted product of these two independent
decisions (Gallo, Calefati, and Nawaz, 2017). This work maintains a focus on late
fusion.

8.3 Prior Domain Knowledge

In informed machine learning models, knowledge transfer is achieved by utilising
prior information from attributes, class hierarchies, vector embeddings of names, or
text descriptions of classes (Xian et al., 2018; Pourpanah et al., 2020). A common
approach has been to use text data that describes class characteristics to classify
object categories. This relies on semantic embeddings to learn a mapping from visual
space to semantic space, represented by semantic word vectors (Demirel, Cinbis, and
Ikizler, 2017; Socher et al., 2013; Frome et al., 2013). A system can consist of, for
example, a pre-trained neural network that generates image features for each object
in the image, a model trained on prior knowledge in the form of relevant text that
represents words as vectors, and a neural network that projects the object features to
the suitable embedding space. The distance between text embeddings corresponding
to two words has been shown to be an effective method for measuring the semantic
similarity of the corresponding words, and this has been used to trained CNNs for
good predictive performance (Narayana et al., 2019).

A significant problem in using a text based approach for surgical tool management
is the requirement for a corpus that accurately captures domain information. There
are no databases of textual descriptions for each surgical tool, though there are
textbooks and manufacturer’s manuals that provide a basic terminology. In general
terms however, available text is inconsistent, imprecise, sometimes irrelevant, noisy
and overloaded with ambiguous words. A further problem is that such text has
low semantic expression and cannot accurately capture fine-grained relationships
between tool classes (Chen et al., 2021b). A major task therefore, was to create such a
database of textual descriptions, and this was created in the form of a surgical tool
knowledge-base. This was in the form of an attribute matrix or a set of annotations
where each row represents a particular surgical tool, and this attribute set can be
expanded to add multiple other descriptors. The annotations capture details such
as the surgical speciality, pack and set that the tool is belongs to, and other details
such as size, shape, type and special features. Additional annotations include image
modalities, illumination sources, geographic location, tool manufacturer and camera
type. Multiple other attributes could be usefully added to the attribute matrix;
for example, to identify the particular surgeon and his/her preferences so that a
constrained set of tools could be used for predictions.

While this is a start on creating a dataset of textual descriptions for surgical tool,
work to improve the quality, accuracy and comprehensiveness of the annotations con-
tinues to progress. Again, the current pandemic situation and subsequent demands
on the workload of medical professionals meant that planned meetings with doctors
and surgical tool technicians to evaluate and improve the surgical tool annotations
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and textual descriptions had to be cancelled. However, the current annotations pro-
vide a basic starting point for experiments and this attribute matrix was therefore
used to provide prior information to the model during training.

While text is commonly used in CNN models, other forms of knowledge can
also be used. Chen et al. (2021b) defined the external knowledge used to craft such
relationships into four kinds — text, attribute, Knowledge Graph (KG) and ontology
and rules. Rueden et al. (2021) defined eight categories of knowledge representations
in their exhaustive survey of informed machine learning – including logic rules,
knowledge graphs, probabilistic relations and human feedback. This work relies on
both texts and a knowledge graph approach in the experiments, and the method is
described in a later section. Incorporation of knowledge-graph based information into
a deep learning model has been termed knowledge-infused learning, and knowledge
graphs have been shown to be useful for the structured representations of knowledge
(Dash et al., 2022).

Wehrmann, Kolling, and Barros (2019) evaluated the impact of different pre-
trained word embeddings in their models — such as GloVe embeddings (Penning-
ton, Socher, and Manning, 2014) and concatenation of randomly initialized word-
embeddings and Glove vectors. Their working hypothesis was that their models
would benefit from pre-trained embeddings, because such embeddings already in-
corporated rich semantic representations. Akata et al. (2015) also evaluated five dif-
ferent word embeddings, defined as supervised attributes, unsupervised Word2Vec
(Mikolov et al., 2013), GloVe, Bag of Words, and WordNet-derived similarity em-
beddings. For Word2Vec and GloVe embeddings, they pre-trained the system using
Wikipedia text. Miller et al. (2020) discussed Word2Vec, GloVe, Universal Sentence En-
coder and BERT (Bidirectional Encoder Representations from Transformers) (Devlin
et al., 2019) in their work.

In work that focused on the medical domain, Rasmy et al. (2021) developed a
medically contextualized embedding model which they termed Med-BERT. This
was pre-trained on a very large structured electronic health records (EHRs) dataset.
This was, however, more oriented to disease prediction studies, including diabetes
heart failures and pancreatic cancer conditions. In a similar manner, Li et al. (2021)
developed BEHR (or BERT for EHR) which was described as a deep neural sequence
model for EHRs, focused on medical diagnosis, medication and measurements tasks.
Shang et al. (2019) presented G-BERT, a model based on BERT and Graph Neural
Networks (GNNs), for medical code representation and medication recommendation
and Huang, Altosaar, and Ranganath (2019) applied BERT to clinical notes to build
a model for hospital readmission predictions. While these initiatives targeted the
medical domain in general, there is no BERT model trained on surgical datasets.
However BERT has been shown in the above works to be useful for medical contexts,
and this work therefore relied on BERT and processed the surgical tool annotations
accordingly. BERT pre-processing includes marking out paired sentences, which facil-
itates contextual learning. BERT can also capture semantic data about meanings and
relationships of phrases and sentences, permitting richer comparison of relationships
between phrases and not just individual words (Miller et al., 2020). This is important,
since short sentence descriptors are useful for attribute definitions. Narayana et al.
(2019) used BERT embeddings for their word or text representations, and also calcu-
lated the TF-IDF of text features to determine the importance for each word in the
corpus. This work adopts a similar approach and relies on BERT representations for
the surgical tool attributes and text used in information integration in the model.

Attributes are useful as knowledge representation because they can potentially
offer good semantic expression, can be tightly and succinctly defined, and can be
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class tool_type tool_shape tool_features tool_size

2.0mm_Titanium_Straight_Plate_12_Hole_71mm straight_plate_titanium 2.0mm 12_hole 71mm

2.4mm_Titanium_T-Plate_2_Holex8_Hole_54mm T-Plate_titanium 2.4mm_by_54m
m

2_hole 8_hole

6_Mayo_Needle_Holder needle_holder Mayo ring_and_lock 6_inch_gold_handles

7_Metzenbaum_Scissors delicate_tissue_scissors Metzenbaum ring_no_lock 7_inch_tapered_tip

8_Babcock_Tissue_Forceps tissue_forceps Babcock ring_and_lock 8_inch_ring_tip

9_DeBakey_Needle_Holder needle_holder Debakey thumb 9_inch_tapered_tip

Allis_Tissue_Forceps tissue_forceps Allis ring_and_lock narrow_gap_tip

Ball_&_Socket_Towel_Clips towel_clips Ball_and_socket ring_and_lock ring_with_ball

Bearing_Plates_3_Hole_7_Peg_Right_N bearing_plate 3_hole 7_peg right

Clavicle_Plate_3.5-2.7_5_Hole_Right clavicle_plate right 5_hole 3.5_2.7mm

Clavicle_Plate_Medial_8_Hole clavicle_plate medial 8_hole rounded_ends

Crile_Artery_Forceps artery_forceps Crile ring_and_lock curved_pointed_tip

Dressing_Scissors general_cutting Dressing ring_no_lock blunt

Fixed_Angle_Plates_3_Hole_7_Peg_Left fixed_angle_plate 3_hole 7_peg left

Lahey_Forceps haemostat Lahey ring_and_lock touching_tip

Littlewood_Tissue_Forceps tissue_forceps Littlewood ring_and_lock oval_tip

Mayo_Artery_Forceps artery_forceps Mayo ring_and_lock touching_tip

Multi-pin-clamp-grey-orange multi_pin_clamp grey_orange rectangle_block 4_holes

Pin-to-rod-coupling-grey-orange pin_to_rod_coupling grey_orange pin_holder rod_holder

FIGURE 8.6: Example of Processed Text for Bert

structured to be less noisy and less ambiguous than plain text sentences. Attributes
have also been shown to be able to capture relationships between classes to some
extent (Chen et al., 2021b). However, defining attributes in a surgical domain requires
considerable expertise to ensure succinctness, accuracy, distinctiveness and reliability.
As pointed out by Akata et al. (2015), annotation with large numbers of very specific
attributes may lead to better predictive performance but is an expensive and time
consuming data gathering task. The current annotations are used as a proof of
concept, but it is clear that better attribute definitions are needed for better outcomes.
This will be addressed in future work but the current experiments highlight the utility
of such information in the training of a CNN.

Knowledge graphs have been stated to be more expressive than text and attributes,
and therefore this section explores this further. In relevant work using knowledge
graphs, Timofeev et al. (2020) developed a neural graph learning framework that
effectively used a knowledge graph structure to regularize training of CNNs. In their
structure, an image was treated as a “vertex” and pair of images was treated as an
“edge”, and the resulting graph was used in the machine learning pipeline. Narayana
et al. (2019) used a similar approach to create a semantic graph of classes — where
each class was a vertex of the graph and two classes were connected by an edge. The
cosine distance between two class embeddings was treated as edge weights, and two
semantically similar classes had a lower edge weight compared to two semantically
different classes. The research work in this section incorporated a semantic graph
in the training of the CNN model, in a similar manner to Narayana et al. (2019) but
used distance between attributes in the form of an adjacency matrix that effectively
captured the relevant semantic information.

8.4 Methods

The experiments used ResNet50 trained on ImageNet to extract image embeddings.
The ResNet50 model was not fine-tuned on our HospiTools dataset as in previous
experiments, but preliminary work ensured that good predictive performance was
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text classes processed_text clean_classes mapped_classes

needle_holder 9_DeBakey_Needle_Holder [CLS] needle holder [SEP] [CLS] 9 debakey needle holder [SEP] 5

ring_no_lock 7_Metzenbaum_Scissors [CLS] ring no lock [SEP] [CLS] 7 metzenbaum scissors [SEP] 3

ring_and_lock 6_Mayo_Needle_Holder [CLS] ring lock [SEP] [CLS] 6 mayo needle holder [SEP] 2

ring_and_lock 8_Babcock_Tissue_Forceps [CLS] ring lock [SEP] [CLS] 8 babcock tissue forceps [SEP] 4

71mm 2.0mm_Titanium_Straight_Plate_12_H
ole_71mm

[CLS] 71mm [SEP] [CLS] 2.0mm titanium straight plate 12 
hole 71mm [SEP]

0

narrow_gap_tip Allis_Tissue_Forceps [CLS] narrow gap tip [SEP] [CLS] allis tissue forceps [SEP] 6

Ball_and_socket Ball_&_Socket_Towel_Clips [CLS] ball socket [SEP] [CLS] ball socket towel clips [SEP] 7

grey_orange multi-pin-clamp-grey-orange [CLS] grey orange [SEP] [CLS] multi pin clamp grey orange [SEP] 17

Babcock 8_Babcock_Tissue_Forceps [CLS] babcock [SEP] [CLS] 8 babcock tissue forceps [SEP] 4

FIGURE 8.7: Attribute Matrix Examples

achieved using a standard ResNet50 trained on ImageNet. Further work was then
conducted to evaluate improvements, if any, in predictive performance by incorpora-
tion of prior information in the machine learning pipeline. Text attributes (as per the
example in Table 8.6) and an attribute-based semantic graph — developed in the form
of an adjacency matrix — were used, which relied on BERT embeddings for word and
sentence representations. The attribute text representation was cleaned, underscores
with blank spaces were replaced, irrelevant words, hyphens, slashes and apostrophes
were checked for and removed, and starting and ending tags were added — [CLS]
and [SEP] — as required for BERT processing (Miller et al., 2020). Relevant details
such as numbers and special names were retained. The cleaned text was mapped
to identity numbers, and an example of the final processed matrix is presented in
Figure 8.7. A BERT Tokenizer was used to convert word segment tokens to identities,
and the last 4 layers from the resultant 12 layers were encoded and extracted. As
recommended by (Devlin et al., 2019) and Narayana et al. (2019), the embeddings
from the last four layers for each word were concatenated, and the word embeddings
were averaged. The model that was developed used the attribute embeddings along
with image embeddings as training input, and predictions were based off these two
modalities.

In a second use of the attribute information, distance information was encoded in
a adjacency matrix (also referred to in the literature as a semantic graph) and a dis-
tance regularisation loss was used in a set of experiments (Dash et al., 2022; Takeishi
and Akimoto, 2018). The attribute embeddings extracted using BERT were used to
construct an adjacency matrix or semantic graph. In this graph, each attribute embed-
ding was a graph vertex and the cosine distance between two attribute embeddings
was used as the edge weights (Narayana et al., 2019). The cosine distance values
between the attributes was used to develop an adjacency matrix, which was used
as a reference during training. The adjacency matrix Aij captures the non-negative
weights associated with each attribute as the cosine distance to the other attributes in
the graph. Visualised as a semantic graph, there were 56 vertices corresponding to 56
different attributes in the matrix. The adjacency matrix is used as a regularization
or graph loss function designed to force semantically similar attributes to be closer
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FIGURE 8.8: Prediction Pipeline Network and Shared Layer Architec-
ture

to each other. As in previous experiments, the embeddings were L2 normalized to
restrict the universal embedding space to the unit sphere.

Both image and attribute embeddings were relied on for the predictions pipeline.
The network was trained on a set of 19 classes from the HospiTools dataset, with on
average 95 images per class. General Surgery and Orthopaedics were represented in
the classes, and a cross-section of classes from each speciality ere used. The model
was tested on a hold-out set of images from the 19 classes. The model was also tested
on another set of 25 classes that included both known classes that the model had seen
during training, and unknown classes that had not been used in training. This was
done to evaluate how the model would cope in Zero Shot Learning conditions, and
what attributes could be relevant in predictions.

A ResNet50 model with ImageNet weights was used to obtain the image em-
beddings and BERT was used to obtain the attribute embeddings. There were two
separate networks in the model, implemented in PyTorch — an image network with
five blocks and an attribute network with two blocks. A block was formed by a fully
connected hidden layer of 512 units, followed by a batch normalisation, a leaky-ReLU
and a dropout layer. The image embeddings were resized from 2048 to 512 units and
were processed by the image network. The attribute embeddings were resized from
3072 to 512 units using the first linear layers, and processed by the attribute network.
The outputs from the respective network were L2 normalised, and classified by a
shared fully connected classification layer (Figure 8.8. This architecture was based
on work by Wang, Li, and Lazebnik (2016), Narayana et al. (2019) and Miller et al.
(2020), and was designed to map image and text embeddings to a shared embedding
space. The L2 normalized embeddings from both the images and attributes were
classified by this shared hidden layer to provide predictions. The work employed
the late fusion approach for multi-modal classification where the classification scores
from image and attribute modalities are added based on user-defined weights.

Dash et al. (2022) refer to the incorporation of penalty terms or constraints into
the loss function as a standard way of incorporating domain-knowledge into a deep
network. This approach was used, and experiments with the use of the following
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four losses in the machine learning pipeline were conducted:

• Categorical Cross Entropy Loss : This uses the categorical cross entropy loss
with softmax activation to minimise the distance between predictions and labels,
to ensure class level similarity, as in previously reported work.

LCCE = −
k

∑
i=1

ci log (ĉi) (8.1)

In Equation 8.1, ĉi represents the probability score for class ci.

• Semantic Similarity Loss: This loss was designed so that embeddings of seman-
tically similar classes were closer than embeddings from semantically different
classes (Timofeev et al., 2020). The regularization ensured that the distance
between any two embeddings was equal to the edge weight or cosine distance
of their corresponding classes in the adjacency matrix. The Mean Square Error
or MSE was used for this loss, and the MSE loss was applied on the distance
between two embeddings and the cosine distance of their corresponding classes,
as under:

LSEM =
1
k

k

∑
i=1

σij

(
ψ (ci)

⊤ φ
(
cj
)
− Aij

)2
(8.2)

In Equation 8.2, φ and ψ defined the embedding functions for each class, and
⊤ was the dot product. The adjacency matrix of semantic class distances was
represented by Aij. A σ was also used, based on a margin which was set to 1
if both Aij and ψ (ci)

⊤ φ
(
cj
)

< margin, else σ = 0. The margin was set at 0.7 in
the experiments, so that the loss function was only applied when the cosine
distance was less than 0.7 for any two classes or embeddings, and embeddings
that were far apart were ignored.

• Center-Loss: A Center-Loss was used between attribute and label embeddings,
and also between image and label embeddings. The center-loss was designed
to increase the separation of classes while minimizing the distances between
embeddings from the same class (Wen et al., 2016).This loss had been used
in previous work, reported in Chapter 6, and had achieved good results. The
Center-Loss was defined by the following:

Lcenter−loss =
1
2

k

∑
i=1

∥∥xi − cyi

∥∥2
2 (8.3)

In Equation 8.3, xi represents the center of the ith class and cyi the attribute
embeddings for the class.

• Multi-Modal Gap Loss: This loss was designed to ensure that image and at-
tribute embeddings from the same class are pulled closer together, or to min-
imise the distance. This addresses the issue around the modal gap, as discussed
earlier.

LCORR =
1
k

k

∑
i=1

(
1 − ψ (Ii)

⊤ φ
(
cyi

))
(8.4)
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In Equation 8.4, φ defined the attribute embedding function, ψ the embedding
function for image I, and ⊤ was the dot product.

In these loss functions, the categorical cross entropy loss used predictions and
labels, semantic similarity loss used the adjacency matrix, center-loss used either the
image or attribute embeddings and the corresponding labels, and the multi-modal gap
loss used the image and attribute embeddings in their functions. After experimenting
with different losses and loss weights, a final loss based on a combination of three of
the above losses was used. This final loss used categorical cross entropy loss with
softmax, semantic similarity loss and multi-modal gap loss with specific weights
provided to each loss, as under:

LFinal = ωcceLCCE + ωsemLSEM + ωcorrLCORR (8.5)

After experimentation with different values, the weights were set at 0.4 for cate-
gorical cross entropy loss with softmax, and at 0.3 for the semantic similarity loss and
multi-modal gap loss. A dropout rate of 0.15 was implemented and the network was
trained for 60 epochs using RMSProp optimizer. The learning rate was set at 0.001
and momentum set to 0.9, with a batch size of 20 — the final training parameters
were set based on prior work by Narayana et al. (2019) and Wang, Li, and Lazebnik
(2016), and also based on wide ranging experiments with different parameters.

8.5 Results

Good benchmark results were obtained using only images and labels for training
(Table8.1, first column) using the categorical cross entropy loss with softmax. It was
noted that there was an improvement in predictive performance using information
infusion with the attribute pipeline and multi-modal gap loss added. This further
improved when attribute graph regularisation and semantic similarity loss was
added. Overall, there was a significant improvement in accuracy and precision
performance when late addition fusion was used along with the incorporation of
attribute information in the training process. In this case, equal weights were assigned
to the mono-modal predictions from image and text, and outputs were added to drive
a final prediction. This demonstrates the effectiveness of including prior domain
knowledge in the machine learning pipeline.

The work conducted include experiments with concatenation of the mono-modal
features before classification instead of addition, as recommended by Miller et al.
(2020), but accuracy dropped to 74% on the test set. This work therefore used addi-
tion of mono-modal features as recommended by Narayana et al. (2019) in its final
predictions. Center-Loss did not improve performance over the benchmark results,
with a drop to 69% in accuracy on the test set. It was also noted that adding more
attributes — many of which were common across classes such as the speciality, pack
and set information — significantly degraded the performance, with a drop to 55%
accuracy on the test set. The attributes did not discriminate or define distinctiveness
across classes to a sufficient extent, and this resulted in a reduction in performance of
the system. This highlights the importance of using distinctive, specific and precise
annotations in the knowledge pipeline, even if collecting such data is an expensive
proposition (Akata et al., 2015). In this case, less is actually more — introducing
additional large numbers of annotations are not as relevant as ensuring a small set of
distinctive, precise and specific annotations.
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TABLE 8.1: Results - Informed Training

Metric Image Only Image and
Attributes
(Text)

Image, Attributes
and Attribute
Semantic Graph

Test Set:
Accuracy 0.70 0.77 0.81
Hamming Loss 0.29 0.23 0.19
F1 Score 0.71 0.79 0.81
Precision 0.72 0.79 0.82
Recall 0.84 0.89 0.87

Known-Unknown Test
Set:
Accuracy 0.30 0.35 0.34
Hamming Loss 0.69 0.64 0.65
F1 Score 0.28 0.30 0.31
Precision 0.30 0.35 0.34
Recall 0.29 0.29 0.32

8.6 Discussion and Future Work

This was a proof of concept for “Informed Machine Learning”, where prior domain
knowledge is included in the machine learning pipeline. The results demonstrate
that prior information can be gainfully used to improve predictive performance of
the CNN, but that using the correct set of attributes is a critical issue. This was
highlighted by experiments where accuracy dropped when additional attributes
were introduced, because these attributes were not discriminative and precise, and
therefore introduced noise and ambiguity in the system. The experiments conducted
highlighted the utility of such information and also a need to further experiment with
techniques to create a relevant, semantically meaningful corpus and set of attributes
that can enrich any surgical tool management system. While a start has been made in
this research to create a surgical tool description textual dataset, further improvement
that were planned as part of the experiments were not possible due to the on-going
crisis with the COVID-19 pandemic. This unfortunately led to the cancellation of
planned workshops and meetings with health professionals to improve and refine the
annotations and textual descriptions of surgical tools. Additional work is therefore
needed to define an more comprehensive set of annotations that can be gainfully
used by the informed machine learning system, and which can potentially be used
to train a Surgical-BERT model for improved performance. While currently only
images are used to make a prediction, with an improved set of annotations, text
can also be used to predict or identify details of a particular surgical tool. Future
work will incorporate knowledge infusion techniques using the adjacency matrix and
regularisation functions into the OctopusNet model.
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Chapter 9

Conclusions and Future Work

This chapter presents the thesis conclusions and plans for future work for the intel-
ligent management of surgical tools. It demonstrates how the research questions
have been addressed, reports problems and shortcomings, and how the research
hypothesis has been resolved. The section provides directions for future work.

9.1 The Hypothesis and Research Questions

The research proposal was to develop an applied deep learning system that could
recognise and classify surgical tools. The research hypothesis was as follows:

A hierarchical, informed, robust machine learning based system can be developed for
effective management of surgical tools.

9.1.1 Research Questions

The specific research questions are enumerated below, and the work that specifically
addresses each question is detailed:

• RQ1 – How can a convolutional neural network be designed for recognition
of surgical tools, effectively utilising the hierarchical nature of surgical tool
classes? This question was addressed in Chapters 4 and 5.

• RQ2 – How can the design of a CNN be improved for interpretable deep learn-
ing for intelligent surgical tool management, by incorporating prior information
and knowledge of relationships in the ground truth class label arrangements?
This strategy was addressed in Chapter 6.

• RQ3 – How can the robustness of a CNN be improved for recognition of surgical
tools under challenging conditions, addressing volume, variety, complexity and
illumination / reflection / occlusion issues? This problem was addressed in
Chapter 7.

• RQ4 –How can nominal attribute information be included in a Machine Learn-
ing model to improve the predictions of a CNN for surgical tool management?
This issue was addressed in Chapter 8.

To address the research questions, the thesis describes work conducted to develop
a computer vision and deep learning system that could recognise and classify surgical
tools. The system needed to cope with a wide variety of tools, with very subtle differ-
ences in shapes. It had to work with high volumes, as well as varying illuminations
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and backgrounds. Methodology that was adopted included the creation of a surgical
tool image dataset, development of a surgery knowledge-base, training CNNs to
recognise surgical tools, integration of CNNs with prior knowledge, and deployment
of a prototype system. State of the art techniques were developed to cope with
volume, variety and vision problems, and algorithms were designed and adapted to
address specific surgery tool recognition issues. The system needed to be robust, and
synthetic data was used to increase robustness of the network to illumination and
background changes. Prior knowledge and information was also relied on to improve
predictive performance of a CNN. The specific thesis contributions are detailed in the
next section.

9.1.2 Thesis Contributions

• This research proposal focused on designing a deep learning surgical tools
system that could perform effectively in the medical domain.

• New datasets and algorithms were developed that addressed management of
surgical tools.

• A prototype was developed for computer vision based intelligent management
of surgical tools to demonstrate the effectiveness, efficiency and accuracy of the
system – however this could not be tested in real world conditions.

• Domain Knowledge was developed in the form of a Surgical Tool dataset and
a Surgery Knowledge Base, this was made open source to support further
research in this area.

• New architectures were designed to provide rich and relevant information to
the end-user, in the form of multiple, hierarchical predictions.

• The dataset was enhanced with synthetic data, using a range of techniques, and
the CNN was trained with this synthetically augmented dataset, with improved
predictive performance and robustness.

• Experiments with incorporation of prior domain knowledge and information
in the training of a CNN were conducted, with good results.

• A contribution is a deeper insight into how to design and train real world deep
learning systems for practical applications. The results of this research may
be useful for hospitals, District Health Boards and the government, and can
contribute to greater efficiencies and cost savings across multiple organisations.

Given the mission critical nature of surgical tool management in a hospital, the ac-
tual deployment, integration, adoption and testing of such systems in actual hospital
conditions – or MLOps – needs to be addressed (Makinen et al., 2021). The survey
conducted and reported in this thesis has shown that most available surgical tool
datasets are small sized, specific to a surgical procedure type, privately generated and
maintained (Rieke et al., 2020) – future work will evaluate federated learning (Yang
et al., 2019b; Zhang et al., 2021) as a strategy to increase access to smaller and private
datasets while managing issues of security and ownership. This approach will allow
private, smaller datasets to be used for local training, prior to aggregation at a central
point for deep learning. Zhang et al. (2021) show how distributed training across
data islands address privacy concerns while allowing access to data for ML models.
Future work will therefore evaluate the use of federated learning and MLOps for
intelligent surgical tool management.



114 Chapter 9. Conclusions and Future Work

9.2 Conclusions

This thesis addresses a novel issue – the intelligent management of surgical tools in
a hospital using deep learning methods. The thesis work conceptualises a radically
new way of approaching a fundamental issue, replacing inefficient manual systems
with transformative state of the art technology. While the end result is potentially
revolutionary, the development path needs to be evolutionary, particularly given
the risks inherent in the medical domain. Implementation of this system within the
New Zealand health system can realise significant savings in the short term through
better efficiencies and lower losses, patient and surgery safety can be improved, and
many millions of dollars can be saved in the long term through better inventory
management. While this thesis has made a start in development of a hierarchical,
robust and informed surgical management system using machine learning, it is
acknowledged that much more work needs to be done to implement the system in
real world and critical medical conditions.
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