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1 Intr oduction

Much hasbeenwritten recentlyaboutthe needfor effec-
tive toolsandmethodgor mining thewealthof informa-
tion presentin biomedicalliterature (Mack and Hehen-
bemer, 2002;Blagosklonty andPardee 2001 ;Rindflesch
et al., 2002)—theactivity of conceptuabiology. Key-
word searchenginesoperatingover large electronicdoc-
umentstoreqgsuchasPubMedandthe PNAS) offer some
help, but therearefundamentabbstacleghatlimit their
effectivenessin thefirstinstancethereis nogeneraton-
sensusamongscientistsaboutthe vernacularto be used
when describingresearchaboutgenes,proteins,drugs,
diseasestissuesand therapies,making it very difficult
to formulatea searchquerythatretrievestheright docu-
ments. Secondlyfinding relevantarticlesis just oneas-
pect of the investigatve process. A more fundamental
goalis to establishlinks andrelationshipsbetweerfacts
existing in publishedliteraturein orderto “validatecur-
rent hypothesesr to generatenen ones” (Barnesand
Robertson,2002)—somethingeyword searchengines
dolittle to support.

One promisingsolutionis to bring biomedicallitera-
ture into the structuredorganisationof the GeneOntol-
ogy (GO) (Consortium,2000). A large numberof ge-
nomic/proteomicdatabasege.g. SwissProt,SGD, In-
terPro, FlyBase, etc) make use of GO in someway to
link andunify expressiondata,organizegenesand pro-
teinsinto moreor lesscoherenfunctionalgroupsandre-
solve someof the ambiguitiesin nomenclaturebut little
progresshasbeenmadetowardsexploiting GO directly
with documents. For example, a substantialsearchef-
fort madeby the authorsof this paperin mid-2002found
fewer thanthirty thousandMEDLINE abstractslirectly
orindirectly linkedto GO termsin public databasesThe
situationhasimproved greatly over the pastyear such
thata morerecentsearch(completedn April 2003)un-
coveredabout120,000MEDLINE abstractdinkedto the
GeneOntology but it will still take a very long time be-
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fore all six million abstractsontainedn the MEDLINE
databask are associatedvith GO termsif the process
continuego be donemanually

This paper describesthe “Gene Ontology Knowl-
edgeDiscovery System”(GO-KDS),a publicly available
webapplication(www. go- kds. com) thatusesmachine
learningtechniquego automaticallyconnectbiomedical
documentgo termsfrom the GeneOntology Generake-
manticmodelsfor eachGO termareinferredfrom train-
ing documentgyleanedfrom the referencesvailablein
public gene/proteindatabases.The modelsare subse-
guentlyusedto automaticallyclassifyall MEDLINE ab-
stractsto appropriateGO terms.

2 GO-KDS: The Technology

Machine learning is widely usedin bioinformaticsre-

searchwith applicationgo variousgenemining tasks—
such as peptide identification, microarray and mass-
spectrabnalysesEST correctionandsoforth. Thebasic
ideaof machinelearningis to createcomputermprograms
thatlearnhow to performsometaskbasediponobsena-

tionsaboutsamplgudgmentsmadeby humanexperts.

In the case of documentclassification, the expert
givesthe learningalgorithmsomenumberof documents
deemedexemplarsof a particular semanticclass (and
usuallysomenumberthatarenot). The algorithmiden-
tifies all salientfeaturesof the documentsand weights
thosethatarethe bestindicatorsfor determiningwhether
or noteachdocumentis aninstanceof the conceptbeing
learned. The resultis a characteristiccomputermodel
that cansubsequentlye usedto predicthow likely it is
that ary future novel documentalso belongsin that se-
manticclass.

IMEDLINE is oftencited ashaving 12million abstractsbut
abouthalf areactuallyretractionsandcorrections.



2.1 Thetraining data

Thetraining datafor GO-KDS wasobtainedfrom those
publicly availablegenedatabasethatincludereferences
to MEDLINE (or PubMed)document&ndsupportdirect
or indirectassociationso the GeneOntology’. Approxi-
mately26,500trainingdocumentgor nearly3700differ-
entGO termswereobtainedn this way?>.

2.2 Textpreprocessing

The featuresof a documenthatare mostusefulfor pre-
dicting its classareprimarily its words(thoughmetadata
canoccasionallybe useful). To make the words acces-
sible for the machinelearningalgorithm, it is necessary
to preprocesshe input documentsn a way that makes
the generalsemanticof eachdocumentas conspicuous
aspossiblein thetokenstream.

Empirical studiesrevealedthat mary generallinguis-
tic operationswere unhelpful for GO-KDS. For exam-
ple, several stemmersveretrialed (including a Porters-
style greedystemmerand a rule-basednflectional lem-
matizer)but failedto delivergenerailmprovemenin doc-
umentclassificationtasks. Similalrly, bigramsand soft-
parsedconstituentsnadesignificantdemandsn system
resourcesvithout deliveringincreasedaccurag. Evena
custom-hiilt “chemicalname”parser(i.e. a morpholog-
ical analyzerthat would, for example,parsea word like
“proteoglycan’into “proteo” and“glycan”) provedto be
of little value. Ultimately, tokenizationwas restricted
to the removal of function words (i.e. stopwords),the
expansionof Unicode abbreiations and symbols, and
the parsingof complex genenames(e.g. a genename
suchas”apo-H64Y/V68F” generateshe features’apo-
H64Y/V68F”, "apo”, "H64Y” and"V68F").

2.3 Learning Algorithm

In selecting appropriatemachine learning technology
therewere a numberof stringentconstraints. First was
the needfor the underlyingalgorithmto be ableto scale
to large numbersof catayories(around3,500), training
documentgabout30,000)andan evenlarger numberof
documentso becategorized(abouté million). Within the
setof training documentghereare abouta million dis-
tinct wordsthatwereusedasfeatures Anotherissuewas
the extreme skewnessof mostof the catgyories- some
containedasfew astwo positive training documentut
of 30,000.

The traditional algorithmswhich have beenusedfor
this type of applicationare Naive Bayes(NB) and Sup-

°The databasesisedwere SwissProt,Gen Bank,FlyBase,
GOA, GrameneOryza, MGI, PomBase,RGD, SGD, TAIR,
TIGR, WB, InterProandAmiGO.

*TheMay 2003searctoundover 110,000MEDLINE doc-
umentsassociatedvith 4700 GO terms, but resultsfrom this
new dataarenotyetavailable

port Vector Machines(SVM) (Mitchell, 1997). We ex-

perimentedvith usinganumberof differentSVM imple-
mentations.On small subsetof the dataSVM wasable
to achiezegoodaccurag. Unfortunatelythelargeandun-
certainmemoryrequirementof this algorithm coupled
with the supetlineardependencef its executiontime on
the numberof traininginstancesneanghatit wasinfea-
sibleto usemorethanafew hundredraininginstances.

We alsoimplementeda straightforward Naive Bayes
algorithmbut found thatits accuray wastoo low to be
useful. This experiencecontradictsthat reportedelse-
wherein theliterature(Mitchell, 1997).

To getmaximalaccuray both Naive Bayesand SVM
requireaninitial passto selecta featureset. During our
initial investigationghis wasfelt to betoo slow to befea-
sible. In retrospectve could probablyhave engineeredt
to work but giventhatthe WCL systemdoesnot require
it for goodperformanceve have notrevisitedthisissue.

Giventhis experiencewe decidedo build our own un-
derlying algorithm. It is loosely basedon Naive Bayes
in thatit makesuseof the same’bag of words” statistics
that Naive Bayesdoes. Thatis, we only keeptrack of
how mary timeseachword hasoccurredin a document
of eachclass.An advantageof thisis thatlike NB we can
easilymake useof leave-one-out(LOO) predictionsfor
evaluatingour performance.

The LOO procedureis usedwhen predicting docu-
mentstaken from thetraining set. First the statisticsfor
the documentare subtractedrom the underlyingword
counts,thenthe predictionis doneandfinally the statis-
tics are restored. The time for this is roughly the same
asfor addinga documento the statisticssoit is feasible
to do it for all documentsn thetraining set. This LOO
predictionis thusnot biasedby overfitting, thatis, it is a
true reflectionof how new previously unseerdocuments
arelikely to be predictedby the system.

2.3.1 WCL

The WCL algorithmassignsa scoreS to eachdocu-
mentD asfollows:

S=2 wep f(w)

wheref(w) is somefunctionof thestatisticsfor theword
w. Thefinal scoreS is usedfor comparatiely rank-
ing differentdocumentswithin one class,later we will
dealwith theissueof actuallycomputingprobabilitiesof
membership.Both NB and SVM fit within this frame-
work. For SVM the valuesfor f(w) are computedby
an iterative relaxationalgorithm. NB is formulatedthis
way by taking f(w) = log(P(w|C)) whereP(w|C) is
an estimateof the probability of the word w giventhat
thedocumenis in catggory C.

In describingthe actualformulationof f(w) for WCL
we will give a seriesof refinements. The first of



theselooks like an incorrectversionof NB, f(w) =
log(P(Clw)) — log(P(C)). (P(C|w) is an estimateof
the probability thatthe documents in category C given
that the word w is in the document. P(C) is an esti-
mateof the probability thatthe documentis in category
C). Theintuition hereis that f (w) is zerowhen P(C|w)
and P(C) arethe same,thatis, w is completelyunin-
formative. As is typical for suchestimateswe let the
estimatorsP (Clw) = ny,c +1/2/ny + 1 andP(C) =
nc + 1/2/n + 1 (nisthetotalnumberof documentsp,,
is the numberof documentghatthe word w appearsn
andn,,, ¢ isthenumberof documentshatarein cateory
C andwhich containtheword w.) Notethatusingthese
estimatorgdog(P(C|w)) = log(nc+1/2)—log(ny,+1).

Estimatorsof theform (n + a)/(N + 1) areobtained
by assuminga prior probability distribution of p'~ and
computingthe Bayesianestimateof the expectedpos-
terior probability,. However, becausewne are using the
log(P(C|w)) in f(w) whatwe shouldstrictly dois esti-
matetheexpectedogarithmof the probabilityratherthan
the probabilityitself. This givesan estimatorof theform
Y(n + a) — P(N + 1) replacinglog by psi. (¢(x) is
the digammafunction (Abramawitz and Stegun (Eds.),
1972)).Now we get f(w) = Y (nw,c + 1/2) — 9(ny, +
1) —¢(ne +1/2) +p(n+1).

This formulation gave a significantperformancem-
provementover the simple logarithmicform. However,
like NB and SVM we found that selectinga featureset
of wordswas necessaryn orderto getthe bestperfor
mance. This is unsatisfyingbecauseddingmoreinfor-
mation (that is the statisticsfor words outsidethe fea-
ture set) shouldnot degradeperformance.One problem
thatwasapparentvasthatwordsthat occurredvery sel-
dom, sayonceor twice, could have high valuesfor f(w)
and were contributing unduly to to the final scores. To
reducethe contribution of suchwords we formulateda
functiono(w) which estimateghe standarddeviation of
f(w). Thenthescorecanbereformulatedas:

S =2 wep f(w)/o(w)

Theexpectedvalueof the standarddeviation of theloga-
rithm of the probabilitiesis o(w) = ¥1 (nw,c + 1/2) —
Y1(nw +1) —=1(nc +1/2) + 1 (n+1). (1 isthefirst
polygammdunctionwhichis the derivative of ).

This formulation gave a further significantimprove-
mentto performance However, anotherissuearosethat

the scoreswvere dependenon the sizeof the documents.

Thatis, adocumentvith mary wordsoftengave amuch
largerscore.This becameanissuewhensomeof thedoc-
umentswe were working with were shortabstractsand
otherswerefull academigapers.To correctfor this the
scorewasnormalizedo allow for thelengthusing:

N =3 yepl/o(w)

andthensettingthefinal correctedscoreto be
R=S/N.
It is thisformulationthatwasusedin GO-KDS.

2.3.2 Calibration

Thescoreobtainedabove only ranksdocumentsvithin
a particular category it makes no decisionaboutactual
membershipn the cateyory. In orderto compareour re-
sultswith othertechniqguesuchasSVM thefacility was
includedto determineathresholdsothatscoresaabovethe
thresholdwere consideredo be in the catggory. SVM
doesthis automaticallyaspartof its execution.

WCL doesthis by first collectingthe LOO prediction
scorefor eachtrainingdocumentThisallowsthenumber
of incorrectdecisionsto be calculatedfor eachpossible
settingof the threshold. The actualthresholdis chosen
asthe breakeven point wherethe numberof falseposi-
tivesequalsthe numberof falsenegatvesandwherethe
precisionandrecallarethe same.

As well asa thresholdGO-KDS needsan estimateof
whatthe probability of memberships givena scorefor a
document.lt usesthesefor providing feedbacktio users
aboutthe probability of membershigit doesthis crudely
with aoneto five starsystem)andalsoto avoid indexing
large numbersof documentswith low (lessthan 10%)
probabilitiesof membership.

The probabilitiesare estimatedusing the sameset of
LOO scoresas usedfor computingthe threshold. An
adaptve subdvision is doneof the rangeof scoresand
a countmadeof the numberof positives and negatives
within eachregion. Thesecountsarethenusedto esti-
matethe true probabilities. Careis takenin this process
to ensurethat the probability assignmentsire a strictly
increasingunctionof thescores.

2.3.3 Engineering

It wasimportantto get a good fast underlyingalgo-
rithm. WCL providesthis by ensuringthatmemoryand
time usageare at worst linear in the size of the docu-
ments.Also it permitsLOO predictionswvhichallowsfast
and accurateevaluationof performance.That said, sig-
nificantengineeringvasstill requiredto getsatisfctory
performance.This centeredaroundcarefully sharingthe
tablesof word countsbetweerdifferentcategory models
and using sparsecompactrepresentations.The system
waswrittenin Javawhich giveseaseof portability across
differentoperatingsystemsbut which doesrequirecare
to ensurethatthe objectorientednatureof Jasa doesnot
undulyslow down execution.

Thefinal resultof thisis thatusinga singlecommodity
PentiumlV processowith agigabyteof RAM it is possi-
ble to build themodelsfor GO-KDSanddoanLOO eval-
uationof thetrainingdocumentsn lessthananhour. The



completeindexing of the 6 million documentsn MED-
LINE takes1.5daysusing5 commodityprocessors.

2.4 Classificationaccuracy

Measuringthe perfomanceof WCL againstary sort of
baselinds difficult becausgublishedresultsfor a study
of comparablescaleusinganotherclassificationscheme
arenot available. Perhapghe closestwork is thatdone
by Raychaudrit al. (Raychaudhuretal., 2002),where
a “maximum entropy” techniquewasemployedto cate-
gorize21 GOtermsusingtrainingandtestdocumentex-
tractedfrom PubMedusinghandcraftedeywordqueries.
Their studyreportsthat modelstrainedon Medline doc-
umentspublishedprior to 2001 achieved an accurag of
72.8%whentestedon documentgpublishedin 2001. To
malke the ocmparisonan attemptwas madeto recreate
their samplecorpusas bestas possible,and experimen-
tationwith GO-KDS onthe same21 cateyoriesachiered
an accuray of 70.5% (at the precision-recalbrealeven
point). While thesenumbersarenotdirectly comparable,
they do indicatethat the weightedconfidencdearneris
delivering acceptableclassificationaccurag, andthere-
fore that GO-KDS offers a practicalway to connectvast
amountsof biomedicalliteratureto the geneontology
The major bottle-neckto further improvements pothin
termsof accuray and coverageof the ontology, is ob-
tainingmoregoodquality training data. Our hopeis that
GO-KDS itself canbe usedto bootstrapthis processal-
lowing putatve memberf categoriesto beselectecand
thenhave humanscheckthesesuggestions.

3 Remarks

The growing needfor effective text mining applications
specificallyfor biologistsis widely recognizedwhere“it
is becomingincreasinglymore difficult to keepup with
the avalancheof informationflooding researchournals”
(Krauthammeeet al., 2002). Keyword searchingof elec-
tronic documentstoresis useful but limited by the fact
that“synonymsaboundin freetext, andthereare multi-
ple waysof expressinghe sameidea... Theambiguities
in freetext mustbereconciledwith therigorousstructure
requiredoy computersThis problemis unsohedanddif-
ficult” (ChangandAltman, 2002).Controlledvocatular-
ies like MeSH “go someway to standardizingkeyword
searching.. However, MeSH doesnot provide the level
of detailor sophisticatiomeededo ensureprecisionand
recall of relevantabstractdor the drug discovery scien-
tist” (BarnesandRobertson2002). Thesefactshave led
mary writers to speculateon the tremendougotential
offered by structuredontologiesas mechanismgo con-
trol the context of computationakearchesver published
reports. “By capturingknowledgeabouta domainin a
sharableandcomputationallyaccessibléorm, ontologies
can provide defined,accessibleand computableseman-

tics aboutthe domainknowledgethey describe”(Lord et
al.,2002).

GO-KDSusegext mining techniqueso automatically
connectresearctdocumentgo ontology terms, thereby
amplifying the potentialof GO to elucidatethe knowl-
edgeembeddedvithin biomedicalliterature.
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