
 
 
 

http://waikato.researchgateway.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the Act 

and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right to 

be identified as the author of the thesis, and due acknowledgement will be made to 

the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://waikato.researchgateway.ac.nz/


Department of Computer Science

Hamilton, NewZealand

Fast Algorithms for Nearest

Neighbour Search

Ashraf Masood Kibriya

This thesis is submitted in partial fulfilment of the requirements

for the degree of Master of Science at The University of Waikato.

March 2007

c© 2007 Ashraf Masood Kibriya





Abstract

The nearest neighbour problem is of practical significance in a number of fields. Often we

are interested in finding an object near to a given query object. The problem is old, and a

large number of solutions have been proposed for it in the literature. However, it remains

the case that even the most popular of the techniques proposed for its solution have not

been compared against each other. Also, many techniques, including the old and popular

ones, can be implemented in a number of ways, and often the different implementations

of a technique have not been thoroughly compared either.

This research presents a detailed investigation of different implementations of two pop-

ular nearest neighbour search data structures, KDTrees and Metric Trees, and compares

the different implementations of each of the two structures against each other. The best

implementations of these structures are then compared against each other and against two

other techniques, Annulus Method and Cover Trees. Annulus Method is an old technique

that was rediscovered during the research for this thesis. Cover Trees are one of the most

novel and promising data structures for nearest neighbour search that have been proposed

in the literature.

i





Acknowledgments

The continued support of Department of Computer Science’s Machine Learning group,

and particularly my supervisor Dr. Eibe Frank, is greatly appreciated, without which this

thesis would not have been possible.

iii





Contents

Abstract i

Acknowledgments iii

1 Introduction: The Nearest Neighbour Problem 1

1.1 Basic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Extensions and Variations of the Problem . . . . . . . . . . . . . . . . . . . 1

1.3 Applications of the NN Problem . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Characteristics Common to NN Applications . . . . . . . . . . . . . . . . . 3

1.5 Objectives and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Towards Solving the NN problem 7

2.1 Techniques Proposed as Solution . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Partial Distance Search (PDS) . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 k-Dimensional Trees (KDTrees), BBF-Trees and Variants . . . . . . 10

2.1.3 Metric (Ball) Trees, vp-Trees and Hybrid Sp-Trees . . . . . . . . . . 12

2.1.4 Voronoi Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Orchard’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.6 Annulus Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.7 AESA and LAESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.8 R-Trees, X-Trees, M-Trees, TV-Trees, SR-Trees and VA-Files . . . . 21

2.1.9 Locality Sensitive Hashing (LSH) . . . . . . . . . . . . . . . . . . . . 24

2.1.10 Navigating Nets and Cover Trees . . . . . . . . . . . . . . . . . . . . 25

2.2 Techniques Selected for Evaluation . . . . . . . . . . . . . . . . . . . . . . . 27

3 Evaluated Techniques in depth 29

3.1 KDTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Basic query procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Construction in detail . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.1.4 Query in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Metric Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Basic Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Construction in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Query in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Annulus Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Method’s Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Method’s Query Procedure . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 CoverTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Basic Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.3 Structures in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Experimental Evaluation 69

4.1 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 KDTrees’ Construction Methods . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Metric Trees’ Construction Methods . . . . . . . . . . . . . . . . . . 86

4.3.3 NN Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusion 113

A Additional Results for KDTrees 115

B Additional Results for Metric Trees 125

C Additional Results for NN Methods 133

vi



List of Figures

1.1 ε-Approximated Nearest Neighbour. . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Typical KDTree/BBFTree decomposition. . . . . . . . . . . . . . . . . . . . 11

2.2 A (a) KDTree vs a (b) BBD-Tree on the same data. . . . . . . . . . . . . . 12

2.3 A typical metric tree decomposition. . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Illustration of a vp-tree decomposition. . . . . . . . . . . . . . . . . . . . . . 14

2.5 An order-1 Voronoi space decomposition. . . . . . . . . . . . . . . . . . . . 16

2.6 Orchard’s method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Annulus method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Graphical illustration of Annulus method. . . . . . . . . . . . . . . . . . . 19

2.9 AESA’s elimination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 AESA’s approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 VA-File structure (Weber et al., 1998). . . . . . . . . . . . . . . . . . . . . . 23

3.1 Illustration of KDTree construction. . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Illustration of KDTree query. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Different KDTree construction methods. . . . . . . . . . . . . . . . . . . . . 38

3.4 Sproull’s method of overlap detection for KDTrees. . . . . . . . . . . . . . . 39

3.5 Incremental Distance Calculation. . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Top Down construction method for Metric Trees. . . . . . . . . . . . . . . . 44

3.7 Middle Out construction method of Metric Trees. . . . . . . . . . . . . . . . 45

3.8 Illustration of Metric Trees query procedure. . . . . . . . . . . . . . . . . . 47

3.9 Different construction methods of Metric Trees. . . . . . . . . . . . . . . . . 52

3.10 Metric Trees’ pruning criterion. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Different reference points for Annulus Method. . . . . . . . . . . . . . . . . 58

3.12 Illustration of Cover Trees’ construction process. . . . . . . . . . . . . . . . 61

3.13 Illustration of Cover Tree query. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Pruning during a Cover Tree’s query procedure. . . . . . . . . . . . . . . . . 64

4.1 Evaluated Point Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 KDTrees’ construction time for increasing n. . . . . . . . . . . . . . . . . . 82

vii



4.3 KDTrees’ construction time for increasing d. . . . . . . . . . . . . . . . . . . 83

4.4 Avg query points visited by KDTrees for increasing n on non-uniform query. 87

4.5 Avg query points visited by KDTrees for increasing n on uniform query. . . 88

4.6 Avg query points visited by KDTrees for increasing d on non-uniform query. 89

4.7 Avg query points visited by KDTrees for increasing d on uniform query. . . 90

4.8 Metric Trees’ construction time for increasing n. . . . . . . . . . . . . . . . 91

4.9 Metric Trees’ construction time for increasing d. . . . . . . . . . . . . . . . 92

4.10 Avg points visited by Metric Trees for increasing n on non-uniform query. . 95

4.11 Avg points visited by Metric Trees for increasing n on uniform query. . . . 96

4.12 Avg points visited by Metric Trees for increasing d on non-uniform query. . 97

4.13 Avg points visited by Metric Trees for increasing d on uniform query. . . . . 98

4.14 Preprocessing time of NN methods for increasing n. . . . . . . . . . . . . . 100

4.15 Preprocessing time of NN methods for increasing d. . . . . . . . . . . . . . . 101

4.16 Avg points visited by NN Methods for increasing n on non-uniform query. . 103

4.17 Avg points visited by NN Methods for increasing n on uniform query. . . . 104

4.18 Avg points visited by NN Methods for increasing d on non-uniform query. . 105

4.19 Avg points visited by NN Methods for increasing d on uniform query. . . . 106

4.20 CPU query time of NN Methods for increasing n on non-uniform query. . . 108

4.21 CPU query time of NN Methods for increasing n on uniform query. . . . . . 109

4.22 CPU query time of NN Methods for increasing d on non-uniform query. . . 110

4.23 CPU query time of NN Methods for increasing d on uniform query. . . . . . 111

A.1 KDTrees’ construction time for increasing n. . . . . . . . . . . . . . . . . . 116

A.2 KDTrees’ construction time for increasing d. . . . . . . . . . . . . . . . . . . 117

A.3 KMeans O(d1.5) construction time. . . . . . . . . . . . . . . . . . . . . . . . 118

A.4 Degradation of KDTrees towards n at higher d’s. . . . . . . . . . . . . . . . 119

A.5 CPU query time of KDTrees for increasing n on non-uniform query. . . . . 120

A.6 CPU query time of KDTrees for increasing n on uniform query. . . . . . . . 121

A.7 CPU query time of KDTrees for increasing d on non-uniform query. . . . . 122

A.8 CPU query time of KDTrees for increasing d on uniform query. . . . . . . . 123

B.1 Metric Trees’ construction time for increasing n with d=16. . . . . . . . . . 126

B.2 Metric Trees’ construction time for increasing d with n=100K. . . . . . . . 127

B.3 CPU query time of Metric Trees for increasing n on non-uniform query. . . 128

B.4 CPU query time of Metric Trees for increasing n on uniform query. . . . . . 129

B.5 CPU query time of Metric Trees for increasing d on non-uniform query. . . 130

viii



B.6 CPU query time of Metric Trees for increasing d on uniform query. . . . . . 131

C.1 Preprocessing time of NN methods for increasing n with d=2. . . . . . . . . 134

C.2 Preprocessing time of NN methods for increasing d with n=16K. . . . . . . 135

ix





List of Tables

2.1 Exact and approx. NN techniques . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Evaluated methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Measurements made for each NN method on each generated dataset. . . . 72

4.3 Additional measurements made for tree based NN methods. . . . . . . . . 72

4.4 Distributions on which the NN methods were evaluated. . . . . . . . . . . 74

xi



Department of Computer Science

Hamilton, NewZealand

Fast Algorithms for Nearest

Neighbour Search

Ashraf Masood Kibriya

This thesis is submitted in partial fulfilment of the requirements

for the degree of Master of Science at The University of Waikato.

March 2007

c© 2007 Ashraf Masood Kibriya





Abstract

The nearest neighbour problem is of practical significance in a number of fields. Often we

are interested in finding an object near to a given query object. The problem is old, and a

large number of solutions have been proposed for it in the literature. However, it remains

the case that even the most popular of the techniques proposed for its solution have not

been compared against each other. Also, many techniques, including the old and popular

ones, can be implemented in a number of ways, and often the different implementations

of a technique have not been thoroughly compared either.

This research presents a detailed investigation of different implementations of two pop-

ular nearest neighbour search data structures, KDTrees and Metric Trees, and compares

the different implementations of each of the two structures against each other. The best

implementations of these structures are then compared against each other and against two

other techniques, Annulus Method and Cover Trees. Annulus Method is an old technique

that was rediscovered during the research for this thesis. Cover Trees are one of the most

novel and promising data structures for nearest neighbour search that have been proposed

in the literature.

i





Acknowledgments

The continued support of Department of Computer Science’s Machine Learning group,

and particularly my supervisor Dr. Eibe Frank, is greatly appreciated, without which this

thesis would not have been possible.

iii





Contents

Abstract i

Acknowledgments iii

1 Introduction: The Nearest Neighbour Problem 1

1.1 Basic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Extensions and Variations of the Problem . . . . . . . . . . . . . . . . . . . 1

1.3 Applications of the NN Problem . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Characteristics Common to NN Applications . . . . . . . . . . . . . . . . . 3

1.5 Objectives and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Towards Solving the NN problem 7

2.1 Techniques Proposed as Solution . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Partial Distance Search (PDS) . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 k-Dimensional Trees (KDTrees), BBF-Trees and Variants . . . . . . 10

2.1.3 Metric (Ball) Trees, vp-Trees and Hybrid Sp-Trees . . . . . . . . . . 12

2.1.4 Voronoi Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Orchard’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.6 Annulus Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.7 AESA and LAESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.8 R-Trees, X-Trees, M-Trees, TV-Trees, SR-Trees and VA-Files . . . . 21

2.1.9 Locality Sensitive Hashing (LSH) . . . . . . . . . . . . . . . . . . . . 24

2.1.10 Navigating Nets and Cover Trees . . . . . . . . . . . . . . . . . . . . 25

2.2 Techniques Selected for Evaluation . . . . . . . . . . . . . . . . . . . . . . . 27

3 Evaluated Techniques in depth 29

3.1 KDTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Basic query procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Construction in detail . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.1.4 Query in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Metric Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Basic Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Construction in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Query in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Annulus Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Method’s Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Method’s Query Procedure . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 CoverTrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Basic Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.3 Structures in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Experimental Evaluation 69

4.1 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 KDTrees’ Construction Methods . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Metric Trees’ Construction Methods . . . . . . . . . . . . . . . . . . 86

4.3.3 NN Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusion 113

A Additional Results for KDTrees 115

B Additional Results for Metric Trees 125

C Additional Results for NN Methods 133

vi



List of Figures

1.1 ε-Approximated Nearest Neighbour. . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Typical KDTree/BBFTree decomposition. . . . . . . . . . . . . . . . . . . . 11

2.2 A (a) KDTree vs a (b) BBD-Tree on the same data. . . . . . . . . . . . . . 12

2.3 A typical metric tree decomposition. . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Illustration of a vp-tree decomposition. . . . . . . . . . . . . . . . . . . . . . 14

2.5 An order-1 Voronoi space decomposition. . . . . . . . . . . . . . . . . . . . 16

2.6 Orchard’s method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Annulus method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Graphical illustration of Annulus method. . . . . . . . . . . . . . . . . . . 19

2.9 AESA’s elimination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 AESA’s approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 VA-File structure (Weber et al., 1998). . . . . . . . . . . . . . . . . . . . . . 23

3.1 Illustration of KDTree construction. . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Illustration of KDTree query. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Different KDTree construction methods. . . . . . . . . . . . . . . . . . . . . 38

3.4 Sproull’s method of overlap detection for KDTrees. . . . . . . . . . . . . . . 39

3.5 Incremental Distance Calculation. . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Top Down construction method for Metric Trees. . . . . . . . . . . . . . . . 44

3.7 Middle Out construction method of Metric Trees. . . . . . . . . . . . . . . . 45

3.8 Illustration of Metric Trees query procedure. . . . . . . . . . . . . . . . . . 47

3.9 Different construction methods of Metric Trees. . . . . . . . . . . . . . . . . 52

3.10 Metric Trees’ pruning criterion. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Different reference points for Annulus Method. . . . . . . . . . . . . . . . . 58

3.12 Illustration of Cover Trees’ construction process. . . . . . . . . . . . . . . . 61

3.13 Illustration of Cover Tree query. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Pruning during a Cover Tree’s query procedure. . . . . . . . . . . . . . . . . 64

4.1 Evaluated Point Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 KDTrees’ construction time for increasing n. . . . . . . . . . . . . . . . . . 82

vii



4.3 KDTrees’ construction time for increasing d. . . . . . . . . . . . . . . . . . . 83

4.4 Avg query points visited by KDTrees for increasing n on non-uniform query. 87

4.5 Avg query points visited by KDTrees for increasing n on uniform query. . . 88

4.6 Avg query points visited by KDTrees for increasing d on non-uniform query. 89

4.7 Avg query points visited by KDTrees for increasing d on uniform query. . . 90

4.8 Metric Trees’ construction time for increasing n. . . . . . . . . . . . . . . . 91

4.9 Metric Trees’ construction time for increasing d. . . . . . . . . . . . . . . . 92

4.10 Avg points visited by Metric Trees for increasing n on non-uniform query. . 95

4.11 Avg points visited by Metric Trees for increasing n on uniform query. . . . 96

4.12 Avg points visited by Metric Trees for increasing d on non-uniform query. . 97

4.13 Avg points visited by Metric Trees for increasing d on uniform query. . . . . 98

4.14 Preprocessing time of NN methods for increasing n. . . . . . . . . . . . . . 100

4.15 Preprocessing time of NN methods for increasing d. . . . . . . . . . . . . . . 101

4.16 Avg points visited by NN Methods for increasing n on non-uniform query. . 103

4.17 Avg points visited by NN Methods for increasing n on uniform query. . . . 104

4.18 Avg points visited by NN Methods for increasing d on non-uniform query. . 105

4.19 Avg points visited by NN Methods for increasing d on uniform query. . . . 106

4.20 CPU query time of NN Methods for increasing n on non-uniform query. . . 108

4.21 CPU query time of NN Methods for increasing n on uniform query. . . . . . 109

4.22 CPU query time of NN Methods for increasing d on non-uniform query. . . 110

4.23 CPU query time of NN Methods for increasing d on uniform query. . . . . . 111

A.1 KDTrees’ construction time for increasing n. . . . . . . . . . . . . . . . . . 116

A.2 KDTrees’ construction time for increasing d. . . . . . . . . . . . . . . . . . . 117

A.3 KMeans O(d1.5) construction time. . . . . . . . . . . . . . . . . . . . . . . . 118

A.4 Degradation of KDTrees towards n at higher d’s. . . . . . . . . . . . . . . . 119

A.5 CPU query time of KDTrees for increasing n on non-uniform query. . . . . 120

A.6 CPU query time of KDTrees for increasing n on uniform query. . . . . . . . 121

A.7 CPU query time of KDTrees for increasing d on non-uniform query. . . . . 122

A.8 CPU query time of KDTrees for increasing d on uniform query. . . . . . . . 123

B.1 Metric Trees’ construction time for increasing n with d=16. . . . . . . . . . 126

B.2 Metric Trees’ construction time for increasing d with n=100K. . . . . . . . 127

B.3 CPU query time of Metric Trees for increasing n on non-uniform query. . . 128

B.4 CPU query time of Metric Trees for increasing n on uniform query. . . . . . 129

B.5 CPU query time of Metric Trees for increasing d on non-uniform query. . . 130

viii



B.6 CPU query time of Metric Trees for increasing d on uniform query. . . . . . 131

C.1 Preprocessing time of NN methods for increasing n with d=2. . . . . . . . . 134

C.2 Preprocessing time of NN methods for increasing d with n=16K. . . . . . . 135

ix





List of Tables

2.1 Exact and approx. NN techniques . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Evaluated methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Measurements made for each NN method on each generated dataset. . . . 72

4.3 Additional measurements made for tree based NN methods. . . . . . . . . 72

4.4 Distributions on which the NN methods were evaluated. . . . . . . . . . . 74

xi





Chapter 1

Introduction: The Nearest

Neighbour Problem

Nearest neighbour (NN) search is an old problem that is of practical importance in a

number fields. It involves finding, from a given set of points, one or more points that are

nearest to another given point, called the query point. The problem comes up in fields

as diverse as data compression, computational biology, computer vision and information

retrieval. It was originally proposed in 1969 by Minsky and Papert (Minsky & Papert,

1969). Since then, it has been extensively studied and a vast number of data structures,

algorithms and techniques have been proposed for its solution. Though nearest neighbour

is the most dominant term used, it is also known as the best-match, closest-match, closest

point and the post office problem. The term similarity search is also often used in the

information retrieval field and the database community.

1.1 Basic Definition

The NN search problem is:

Given a set of n points S in some d-dimensional space X and a distance (or

dissimilarity) measure M , our task is to preprocess the points in S in such a

way that, given a query point q ∈ X, we can quickly find the point in S which

is nearest (or most similar) to q.

1.2 Extensions and Variations of the Problem

A natural and straight forward extension of this problem is k-nearest neighbour (kNN)

search, in which we are interested in the k (≤ |S|) nearest points to q, contained in S.

The NN search then just becomes a special case of kNN search with k=1.

A slight variation of NN search, advocated by some (Indyk & Motwani, 1998; Datar

et al., 2004) in place of NN search, is ε-approximate NN (ε-NN) search, where given a

1



r

q

p

p'

Figure 1.1: ε-Approximated Nearest Neighbour.

user defined error bound ε ≥ 0, the task is to find a point p′ in S which is at most ε

times farther than the exact NN p (also in S), i.e. p, p′ ∈ S |M(p′, q) ≤ (1 + ε)M(p, q).

For the kNN case this simply extends to finding k neighbours p′
1, p

′
2, ..p

′
k such that any

of the ith ε-approximate NN p′i is at most ε times farther than the exact ith NN pi, i.e.

M(p′i, q) ≤ (1 + ε)M(pi, q). Fig. 1.1 illustrates this graphically.

1.3 Applications of the NN Problem

The kNN search is of practical significance in a number of fields. Some of those, along

with examples of their use of kNN search, include:

• Data compression: Here, it is used in a method called vector quantization for

speech and image compression (Gersho & Gray, 1991). It involves blocking speech

or image waveform signals into vectors of fixed length. A set of codevectors is first

computed based on a set of training vectors, then each new vector is encoded with

the index of its nearest neighbour among the codevectors.

• Pattern recognition, datamining and machine learning: Here, one of the most

widely used classifier/learner is the kNN classifier (Cover & Hart, 1967). It is based

on straight forward adoption of the kNN search, and works by assigning a given test

point the majority class of its k-nearest neighbours. Also, Locally weighted learning

(Atkeson et al., 1997) is another technique which utilizes kNN search. It works by

training its base classifier/learner on training points that are nearest neighbours of

a given test point.

• Bioinformatics: Here, kNN and its variant classifiers have been applied with suc-

cess to biological and clinical data. They have been used for cancer classification

2



(Niijima & Kuhara, 2005), for detecting rRNA sequences (Robinson-Cox et al.,

1995), and, using gene-expression data for tumour classification (Dudoit et al.,

2002) and tissue classification, (Li et al., 2004). In cases involving gene selection

(Niijima & Kuhara, 2005; Dudoit et al., 2002; Li et al., 2004), these classifiers have

been observed to perform as well or even better than state-of-the-art SVM based

classifiers.

• Multimedia databases and libraries: Here, similarity search is often used to

retrieve multimedia content similar to a user query. The systems usually allow

content-based queries, i.e. queries in the form of object shapes, texture, dominant

colours, and scene descriptions etc. for images and video (Flickner et al., 1995;

Pentland et al., 1994; Smith & Chang, 1996; Bach et al., 1996), and in the form of

dominant frequency and pitch (which can also be given as an acoustic input from

the user) etc. in case of an audio/music library (Ghias et al., 1995; McNab et al.,

1997; Tseng, 1999; Uitdenbogerd & Zobel, 2002; Zhu et al., 2003).

• Computer vision: Here, NN search is an important tool used for the task of object

classification, which involves finding similarities between images (Marshall, 2006).

It has also been applied recently in a prototype of a robust multi-target tracking

system, which tracks players in a hockey rink (Cai et al., 2006).

• Document/information retrieval: Here, NN search is often used method to

retrieve and rank documents given a user query (Lucarella, 1988; Deerwester et al.,

1990; Faloutsos & Oard, 1995).

1.4 Characteristics Common to NN Applications

In almost all of the above, the general representation of objects of interest (documents,

images, etc.) including the queries is as vectors or points in some real d-dimensional

space X = Rd, sometimes also called the feature vector representation; since each of the

dimensions of the vectors correspond to some feature or attribute of the objects they

represent. The closeness or (dis)similarity of the vectors (or points) is measured using

a measure M which is usually a metric (a.k.a. distance function). However, both the

object representation and the choice of similarity/nearness measure are usually dependent

on the application domain. In string classification, for example, the objects are generally

represented as string sequences rather than vectors (Aggarwal, 2002; Mollineda et al.,

2003), even in cases when the employed distance measure (usually edit distance) is a

3



metric (Mollineda et al., 2003). Similarly, the Dynamic Time Warping (DTW) distance

measure used in speech recognition (Vidal et al., 1988), and the NEMr shape-distance

measure employed in IBM’s QBIC system (Flickner et al., 1995), as noted by Faragó et al.

(Faragó et al., 1993) and Fagin and Stockmeyer (Fagin & Stockmeyer, 1998) respectively,

are not exact metrics.

Nevertheless, almost all of the studies of (k)NN search that were reviewed as part of

the research for this thesis, have concentrated on points/vectors in a real d-dimensional

metric space. Because often it is easier to represent objects in terms of vectors, and for

some domain specific measure to be mapped to a metric. Some of the techniques that

have been proposed for the problem have even been devised for some particular metric

(e.g. the initial version of LSH (Indyk & Motwani, 1998)). Many times even the NN-

search problem itself has been defined with insistence on points being in a metric space

(Arya et al., 1998; Maneewongvatana & Mount, 2002; Indyk & Motwani, 1998; Indyk,

1998, 2002)1. This, though, is pretty restrictive, given some of the earliest studies of the

problem used more general measures instead of metrics (Friedman et al., 1977).

1.5 Objectives and Scope of the Thesis

It was observed during the review of the literature that even the most popular of the

large number of techniques proposed since the initial inception of the problem, have not

been thoroughly evaluated against each other. Also observed was the fact that there

exists some considerable variation in how many of these techniques can be implemented.

This also has not been thoroughly investigated either (either theoretically or empirically).

When this research project was started it was intended to implement and empirically

evaluate all the algorithms and techniques proposed in the literature. However, given

the sheer volume of solutions proposed, compounded with the fact of different ways of

implementing many of them and their different possible parameter settings, plus the fact

that many solutions have been proposed for some specific similarity measure, and not to

mention the fact that a number of those deal with some slight variation of the problem

(e.g. ε-kNN) or the difficulties of gaps that exist between abstract theoretical descriptions

to concrete implementations of the algorithms, that the initially intended goal was deemed

unattainable. This was further exacerbated by the fact that a large number of techniques

that exist have been designed for external memory (in order to reduce the I/O overhead in

databases), and often cannot be fairly compared to those designed to work in main memory.

1Indyk and his group have corrected this in their latest publications (Andoni & Indyk, 2006;
Shakhnarovich et al., 2006a)

4



Hence, to make the project more tractable, the goal of the research was narrowed down to

include only the most popular of the old and the most promising of the novel techniques,

that (a) work in main memory, (b) are applicable to vector/point representation, (c)

use the Euclidean metric as distance measure, (d) have not been cross-evaluated, and

(e) support exact NN search. This resulted in a detailed investigation of two popular

data structures, KDTrees and Metric Trees, and their different proposed implementation

methods were compared against each other. Later, the best implementations of the two

techniques were evaluated against each other, and against one independently developed

older technique, the Annulus Method, and one recently proposed–promising but not well

evaluated–data structure, the Cover Trees.

1.6 Thesis Overview

The remainder of this thesis is structured as follows. The next chapter is devoted to

solving the NN problem. It discusses the properties that would be required of an ideal

solution, and the apparent difficulties of arriving at one. It also lists and describes many

of the methods proposed so far, including the ones that were selected for evaluation, along

with the reasons of their selection. The chapter that follows next (Chapter 3) delves more

deeply into the details of each of the selected methods. Chapter 4 outlines the strategy

used for evaluating these methods and presents the results. First, the various construction

methods of the two popular algorithms, KDTrees and Metric Trees, are compared, and

then the best of their construction methods are cross-evaluated against each other and

against the rest of the selected methods. The thesis concludes with some comments and

remarks in Chapter 5.

5





Chapter 2

Towards Solving the NN problem

Given n d-dimensional data points, a simple linear search (the brute force method) takes

O(dn) time to find an exact NN of a given query point, while taking O(dn) space and

only O(1) preprocessing time (since no preprocessing is performed). Hence, in order to do

better than that, a data structure or an algorithm must try to find a NN in time sublinear

in either d or n, or both d and n. Moreover, it should try to achieve that in space and

preprocessing time that is linear or near linear in d and n. Since intuitively it’s far simpler

to eliminate points rather than trying to reduce the number dimensions looked at during

a NN search, all known NN search techniques with the exception of two, PDS & TV-Tree,

try to achieve a query time1 sublinear in n.

In terms of n, ideal solutions exist with logarithmic query time, and near linear pre-

processing and linear space requirements, for d ≤ 2. For d = 1, a simple binary search

on a sorted array gives O(logn) query time in the worst case, while requiring only O(n)

space and O(nlogn) preprocessing time (which equates to time required for sorting the

array in this case). For d = 2, O(logn) query time in the worst case, with linear space

and near linear preprocessing time, is possible using methods based on Voronoi diagrams

(Lee, 1982; Aurenhammer, 1991). However, for d > 2, no known solution exists that can

guarantee a sublinear query time while still keeping the space complexity linear and the

preprocessing time near linear. Still, for moderate values of d (≤ 10), algorithms exist

that, though not in the worst case, but in practice (i.e. expected case) give sublinear

query time, with linear space and near linear preprocessing. However, for higher val-

ues of d (≥10) almost all of the known techniques are plagued with what is called the

curse-of-dimensionality2. Roughly speaking what this means is that for points which are

distributed somewhat uniformly, as their dimensionality increases, they become more and

more sparse/scattered, and tend to lie more towards the boundaries of the space, making

them almost equally distant from each other. This breaks down the idea of locality of

1Time to find (k)NNs of given a query q, here and elsewhere.
2Originally coined by Bellman in 1961 in “Adaptive Control Processes: A Guided Tour”, Princeton

University Press, 1961.

7



the points, since the local neighbourhoods become so large that they tend to comprise the

entire point space. As a consequence most of the proposed algorithms, when searching for

the nearest neighbour of a given query, degenerate to simple linear search, since (almost)

all the data points have to be looked at, and often they take longer than the linear search

itself due to their involved overheads. The curse was the main motivation behind algo-

rithms for ε-NN search, and also the newer algorithms that are based on the concept of

intrinsic dimensionality (defined below) of the data. A more meticulous coverage of the

curse can be found in (Hastie et al., 2001), (Katayama & Satoh, 2001) and (Fayyad

et al., 1996). Also, there is some debate regarding the usefulness of the NN problem at

such high dimensions (Beyer et al., 1999; Hinneburg et al., 2000).

In practical problems it often turns out that the data points, even though being em-

bedded in a high dimensional space, are not so widely scattered after all. Due to the

dependencies among the dimensions (i.e co-relation among the attributes/features of the

objects) they are usually clustered in some lower dimensional subspace. Indeed, many of

the algorithms that should break down in such cases (e.g. KDTrees, Metric Trees etc.)

sometimes do not and work better than expected. Such low-dimensional nature in high

dimensional embeddings is called the intrinsic dimensionality of the points. Some recently

proposed techniques such as Cover Trees and Navigating Nets try to exploit this peculiar

nature common in real world data to circumvent the curse.

A number of dimensionality reduction techniques are also common in practice to miti-

gate the effect of the curse, even though the inter-point distances are not exactly preserved

after the reduction. In the document/information retrieval field some sort of dimensional-

ity reduction technique is essential, since it’s often the case that d � n. Random Projec-

tions, Singular Value Decomposition (SVD), Principal Components Analysis (PCA), and

Latent Semantic Indexing (LSI) (which is specific to IR), are some of the techniques that

are generally used.

2.1 Techniques Proposed as Solution

Most of the techniques proposed for (k)NN and ε-(k)NN search, that are applicable to

vector/point representation and try to achieve query time sublinear in n, are based around

two general traditions of solving the problem. They either partition/decompose the point

space to reduce the points looked at by eliminating regions unlikely to contain a NN,

or they project the vectors to one or more scalar values and somehow try to reduce the

points looked at using the scalar projections of data and query vectors. Those of such

8



Exact NN Based on Space Partitioning
1. KDTrees 6. X-Trees
2. Metrics Trees 7. M-Trees
3. vp-Trees 8. SR-Trees
4. Voronoi Diagrams 9. TV-Trees
5. R-Trees 10. VA-Files
Based on Scalar Projection
1. Orchard’s Method 4. LAESA
2. Annulus Method 5. LSH
3. AESA
Based on Intrinsic Dimensionality
1. Cover Trees

Approx NN Based on Space Partitioning
1. BBF-Trees (KDTrees with Priority Queue)
2. BBD-Trees
3. Hybrid Sp-Trees
Based on Scalar Projection
1. LSH
Based on Intrinsic Dimensionality
1. Navigating Nets

Table 2.1: Exact and approx. NN techniques

techniques that have captured the interest of other researchers, and the novel ones based

on the idea of trying to exploit the intrinsic dimensionality of the data, are summarized

in Table 2.1. The only known techniques that try to achieve query time sublinear in d

are Partial Distance Search (PDS) (also known as Partial Distance Calculation) and TV-

Trees. TV-Trees, however, try to reduce not only d but also n (hence are also mentioned in

Table 2.1). These and the techniques in Table 2.1 are described in brief in the paragraphs

below.

2.1.1 Partial Distance Search (PDS)

Originally proposed by Bei and Gray (Bei & Gray, 1985) it provides only moderate accel-

eration on its own. However, it is extremely simple and is general enough to be applied

in conjunction with almost any other technique known for NN search.

The technique works by stopping the calculation of a point’s distance to the query, if

at any point during the calculation, the accumulated distance of the point becomes larger

than the distance of the best (kth)NN, encountered among all the points so far looked at

during the search. So, for example, for any Minkowsky-p (Lp) metric (e.g. Manhattan

(L1) metric and Euclidean (L2) metric) of the form: d(x, y)p =
(

∑d
i=1 |xi − yi|p

)1/p
, it

will skip the sum calculation for all dimensions > i, if at i the sum becomes larger than

the overall sum of the best (kth)NN among all the points so far encountered.

9



The technique can be applied to any other dissimilarity measure that accumulates or

adds values for different dimensions during calculation of the distance.

2.1.2 k-Dimensional Trees (KDTrees), BBF-Trees and Variants

Multidimensional binary search trees, called in short by the author as KDTrees (where k

is the dimensionality of the space), were originally proposed by Bentley in 1975 (Bentley,

1975) for associative retrieval of records in a file. Their potential for NN search was

observed by Bentley, and hence were quickly adopted for NN searching, with an optimized

version by Friedman, Bentley and Finkel in 1977 (Friedman et al., 1977). Since then,

these trees are by far the most popular search technique employed for NN search.

The trees hierarchically partition the point space into mutually exclusive rectangular

regions by recursively splitting it with axis-parallel hyperplanes. The splitting is binary,

with each non-terminal internal node splitting a region into two sub regions. The search for

(k)NN is carried out recursively, with the region containing the query point being searched

first and then only those of the remaining ones which are likely to contain the (k th)NN.

More specifically, after recursively narrowing down to the region of a leaf node containing

the query, the points inside the region are looked at, and then a ball (hypersphere to be

exact), centred at the query and with radius equal to the query’s distance to the best

(kth)NN found so far, is computed. Afterwards during backtracking only those regions

which intersect with this query ball are searched, and the ball is updated each time a

better (kth) NN is encountered in another region.

The trees require data in vector representation. They utilize this representation very

efficiently and do not require any distance computation either during construction or

during much of NN search (distance computations are performed only when looking at

points inside a region of a leaf during the NN search). During both processes they only

look at the value of a point’s dimension that is orthogonal to the hyperplane used to split

a region.

The original version proposed by Friedman, Bentley, and Finkel (Friedman et al.,

1977) requires O(dnlogn) construction (preprocessing) time, and O(n) storage. For a

given query it takes O(logn) time in the expected case for moderate dimensions. The

query time, however, usually grows exponentially in d, and the tree, suffering from the

curse-of-dimensionality, usually degenerates to simple linear search at higher dimensions

(with slightly higher query time). The original version is general enough to be applied even

to non-metric distance measures, and requires measures to satisfy only a few constraints

given by the authors. Still, however, it is only known to be evaluated and found efficient

10



191.0<= 191.0>

176.0<= 176.0> 176.0<= 176.0>

95.5<= 95.5> 286.5<= 286.5> 286.5<= 286.5>

88.0<= 88.0> 264.0<= 264.0>

y [1]

x [2] x [3]

y [4] [5] y [10] y [11]

x [6]  [7] [12] [13] [14] x [15]

[8]  [9] [16] [17]

(a)

17

14

1613

12

7

8

5

9
q

(b)

Figure 2.1: (a) A typical 2 dimensional KDTree/BBFTree with (b) its graphical represen-
tation. The numbers in the rectangular regions in (b) correspond to the indices (given in
brackets) of the leaf nodes in (a).

for Minkowsky-p metrics.

Since the initial version a number of different constructions methods, modifications,

and enhancements have been proposed for the trees by different researchers. All, however,

fall far short of removing the curse-of-dimensionality and all, from what is known, have

only been devised with at most Minkowsky-p metrics in view.

Best-Bin-First (BBF) trees, developed by (Arya & Mount, 1993) and independently

by (Beis & Lowe, 1997), are a modification of KDTrees for ε-NN search. Using a priority

queue, they visit those regions first during back tracking that are nearer to the query

point, and terminate the search early if the distance to the nearest region in the queue

becomes greater than 1/(1 + ε) times the distance to the best encountered (k th)NN (i.e.

> 1/(1 + ε)×the radius of the query ball). As an example, consider Fig.2.1(b). For a

given query q, after searching region 9, a typical KDTree would then search the leaf node

of region 7, which is the first one encountered during backtracking as can be seen in Fig.

2.1(a). A BBF-Tree on the other hand, would first go on to search leaf 5 which is nearer

to the query. If L′ is a region associated with a node and r the radius of the query ball

(equal to the distance of the best encountered (kth)NN), for a given distance measure M

a KDTree would carry on the search until for all remaining nodes M(q, L′) > r, whereas a

BBF-Tree would terminate the search if for all remaining nodes M(q, L′) > 1/(1 + ε) × r.

This way it can be guaranteed that any (kth) neighbour found is at most by a factor of ε

further than the true (kth) nearest neighbour (see fig. 1.1).

11



(a) (b)

Figure 2.2: A (a) KDTree vs a (b) BBD-Tree on the same data.

A slight variation of BBF-Trees/KDTrees are the Balanced Box Decomposition (BBD)

trees (Arya et al., 1998). The only difference between these and BBF-Trees/KDTrees is

that for some nodes in BBD-Trees, their associated region is shrunk into two hyperrectan-

gles (based on some shrinkage rule) instead of being split. The resulting two hyperrectan-

gles after shrinking are set theoretic differences of each other and one of them completely

encloses the other. These structures guarantee worst case ε-NN query time of O(cd,εlogn),

where cd,ε ≤ dd1 − 6d/εe. However, some new enhancements to BBF/KDTrees by the

same authors have removed the performance disparity between BBF/KDTrees and BBD-

Trees, and the former are not known to perform significantly worse than the latter. The

difference between the two trees is illustrated graphically in Fig 2.2.

2.1.3 Metric (Ball) Trees, vp-Trees and Hybrid Sp-Trees

Metric trees, which are also known as Ball Trees, were presented by Omohundro (Omo-

hundro, 1989) and Uhlmann (Uhlmann, 1991a,b). These trees hierarchically partition the

point space into (hyper)spherical regions. These regions, unlike the ones in KDTrees, are

not mutually exclusive and are allowed to overlap. The points divided among the regions,

however, are not allowed to overlap and can only belong to one region or one of its sub

regions. Like in KDTrees, the partitioning is binary, and also like in KDTrees, the search

for a (k)NN is done recursively, with the region containing (or in some cases nearest to)

the query being examined first, followed by those regions that intersect with the query

ball (i.e. the ball centred at the query, with radius equal to the query’s distance to the

12



Figure 2.3: A typical metric tree decomposition.

best (kth)NN encountered so far, just like in KDTrees). Unlike KDTrees, they do not

require data to be in vector form. They are general enough to be applied to any data

representation as long as it is in a metric space.

The trees can be constructed in a number different of ways, given by a number of

different people, with Omohundro (Omohundro, 1989) alone giving 5 different construc-

tion methods. Most of the proposed construction methods work in O(nlogn) time, while

the space requirement regardless of the construction method, is always O(n). No bounds

for query time are known to be given for any of the construction methods, and also no

evaluation of the trees seems to have ever been carried out against established NN search

methods such as KDTrees. In spite of that these trees have been the centre of attention of

researchers recently (Moore, 2000; Liu et al., 2004; Liu et al., 2005), and are even claimed

to be the state-of-the-art so far for exact NN search in moderately high dimensions (Liu

et al., 2005); though without much theoretical or empirical underpinning. Like KDTrees,

these trees are also known to suffer from the curse-of-dimensionality at higher dimensions.

Fig 2.3 illustrates graphically a typical metric tree decomposition of 2-dimensional data.

Yianilos independently developed a slight variation of metric trees, which he called

Vantage Point Trees (vp-Trees) (Yianilos, 1993). These trees divide the point space using

spherical cuts into mutually exclusive (usually) semi-spherical regions. Each internal node

is associated with a data point, called the vantage point, which is the centre of the spherical

cut used to divide a (sub)space. The vantage point is usually chosen from one of the corner

points in the (sub)space. Fig 2.4 graphically illustrates a vp-tree decomposition.

Liu et al. (Liu et al., 2005) noted that during (k)NN search of a given query a metric

tree can spend up to 95% of the time in backtracking, i.e. after finding a good initial

13



Figure 2.4: Illustration of a vp-tree decomposition.

candidate for the (kth)NN in a leaf node, up to 95% of its total time can be taken in

making sure it has got the correct answer. To avoid this behaviour, they suggested a

variation of metric trees that reports an approximate answer, that is an ε-(k)NN, but in

a much shorter time. They called this variant Spill Tree (Sp-Tree). The key idea behind

Sp-Tree is to allow data points that are at the split boundary to spill over between the two

sub regions each time a region is divided, so that both sub regions contain the points near

the boundary. The amount of spill-over is controlled by a distance parameter τ , which

allows ε guarantees of ε-(k)NN. As noted by the authors, the Sp-Tree on its own is not

pratically viable, as the distance parameter τ can introduce cases where a large number

of points overlap and after division of a region both sub regions contain the same number

of points as the parent region, thereby making the sub-division routine go into an infinite

loop/recursion. Hence, for practical purposes they suggested a Hybrid Sp-Tree, a cross

between Metric Trees and Spill Trees, that contains both overlapping and non-overlapping

regions, and makes sure that at least a certain number of points of a region are divided

among the sub regions. It marks a region overlapping only if after division with parameter

τ both of its sub regions contain < ρ of its total number of points (the authors set ρ to

70%), otherwise it is marked non-overlapping. The search for a (k)NN in a Hybrid Sp-

Tree is also carried out in a hybrid fashion, with backtracking being skipped only for

overlapping regions and not for non-overlapping ones. These structures work very well

for ε-(k)NN, even in high dimensions. The authors in (Liu et al., 2005) also presented an

empirical evaluation of the structures against the initial version of LSH (discussed below

14



in section 2.1.9), the only technique known to work well in high dimensions, and have

shown Hybrid Sp-Trees to perform consistently better on a number of real-world datasets.

2.1.4 Voronoi Diagrams

Voronoi diagrams are of practical importance in a number of fields, which include, in

addition to computer science, meteorology, physics, astronomy, archaeology and biology,

e.g. see (Okabe et al., 2000). The diagrams have a long history of use, with their earliest

use being traced back to 1644 when they were used by the well known French philosopher

and mathematician René Descartes. Their general d-dimensional case was studied and

formalized by Russian mathematician Georgy Fedoseevich Voronoy, whom they are named

after. These are are also known as Voronoi tessellations or Dirichlet tessellations.

Voronoi diagrams partition a point space into convex polygons. The polygons are

constructed in such a way that each polygon is associated with a single data point and

any point that would be closer to this data point than any other would lie in this polygon.

The NN search then just becomes a search for the region that contains the query point,

and, because of the properties of Voronoi diagrams, the data point associated with that

region is guaranteed to be the NN of the query. For kNN search with k > 1, an order-k

Voronoi diagram of the data is computed. In order-k Voronoi diagrams, each polygonal

partition of the point space is associated with exactly k data points, and any point falling

in that region is closer to those k points than any other k points among the data. Figure

2.5 graphically illustrates an order-1 Voronoi space decomposition.

These structures are computationally only efficient for at most d = 2, for which they

require O(nlogn) preprocessing and O(n) space. For values higher than 2, their complexity

grows exponentially in d (O(ndd/2e) according to (Arya et al., 2002)). The NN search on

Voronoi diagrams takes only O(logn) time in the worst case, while kNN search takes only

O(logn + k) time. The search is done using an approach for planar point location in

straight line graphs. For a long time, a major drawback of this technique was that k for

kNN search needed to be known in advance before preprocessing, and had to remain fixed

for all queries. However, an approach developed by Aggarwal et al. (Aggarwal et al., 1990)

for compacting order-k Voronoi diagrams, allows all possible order-k Voronoi diagrams (i.e.

for k = 1...n − 1) to be stored in O(nlogn) space, while still guaranteeing O(logn + k)

query time. An extensive survey of these structures is available in (Aurenhammer, 1991)

and (Okabe et al., 2000).

15



Figure 2.5: An order-1 Voronoi space decomposition.

2.1.5 Orchard’s Method

Orchards’s method (Orchard, 1991) was designed specifically for Vector Quantization. It

works by selecting a point p as a candidate NN, computing its distance r to the query

q, and then eliminating all the points that are further than 2r from p, thereby exploiting

the geometrical property that they can not be nearer to q than p (See Fig. 2.6). After

elimination, the method looks for a neighbour better than p, in the points remaining,

within the circle of radius 2r centred at p (hypersphere in higher dimensions). If a neigh-

bour better than p is found, the elimination procedure is applied again, and again a better

neighbour is sought, in the new circle centred at the new best neighbour (with radius equal

to twice the new neighbour’s distance to the query). The selection of point p for the first

query is arbitrary, and for subsequent queries, it turns out in image compression, that the

best candidate is the NN of the last query processed, since a good initial candidate NN

translates to faster performance.

The method requires for the elimination round computed (and sorted) distances from

the point selected as a candidate NN to all the rest of the points. Since for the first

and all the subsequent queries, any point can be selected as a candidate NN (which

can subsequently be updated), it effectively requires all inter-data point distances to be

computed at preprocessing, and thus requires O(n2) space and O(n2) pre-processing time;

making it impractical for all but the smallest of NN problems. A slight variation of the

method computes distances of all the points to only m other points, and requires only

O(mn) time and space. If during search a need arises to go past the mth item on the

sorted distance lists, it simply resorts to simple linear search. The original version (the

16



p qr

2r

Figure 2.6: Orchard’s method. All the points outside the circle of radius 2r are eliminated,
and a better NN is sought in the remaining points inside the circle.

one with O(n2) preprocessing) in terms of query time, has been demonstrated to work

very well (Zatloukal et al., 2002). It compares favourably with KDTrees in moderate

dimensions, and also works well in higher dimensions. However, for its variant that has

O(mn) preprocessing, as the number of data points become large its performance degrades

considerably, and even at higher dimensions it lingers behind KDTrees, which themselves

are known to suffer from the curse-of-dimensionality.

2.1.6 Annulus Method

The Annulus Method, based around the mathematical concept of an annulus (a ring

shaped object), was also designed specifically for Vector Quantization (Huang et al., 1992).

Like Orchard’s method, it also exploits a geometrical property. It works by projecting the

points to their scalar distances from a fixed reference point (which is usually the origin).

First, the distances of the data points are calculated, and they are sorted according to

these distances and stored in an array or a list . Then, for a given query, its distance

from the reference point is calculated and the data point with the distance closest to

this distance is found in the array using binary search. The search for a (k)NN is then

17



p
closest

q

Figure 2.7: Annulus method for NN search. The point p’s distance from the reference
point is closest to that of the query q. The NN for the query is searched for in both
directions (or only one, if p is the first or last element) in the array from the position of p.

carried out by looking at points in both directions in the array starting from the position

of the point with the closest distance (see fig. 2.7). Geometrically, this corresponds to

looking in the annular region around the reference point that contains the query (in higher

dimensions, a hypertorus around the reference point), and as the search is carried out in

both directions in the array, we effectively expand this annular region to include more

points in space. The search stops when we encounter a point (or in the kNN case, the

best kth point) such that the circle centred at the query, with radius equal to the query’s

distance to this current point, is entirely within the annular region. The point found as

such is geometrically guaranteed to be the (kth)NN. Fig 2.8 (a) and 2.8 (b) demonstrate

this graphically. The number of points looked at is also geometrically guaranteed, and is

bounded by the number of points in the annular region that contains the query and has

width twice the query’s distance to the true (kth)NN.

As is fairly evident, this method requires only O(n) space and O(nlogn) preprocessing

time. The query time, as is intuitively conceivable, is demonstrated to grow linearly with

the number of data points (Zatloukal et al., 2002), and as such the method is not as

efficient as KDTrees for moderate dimensions. However, for higher dimensions, it does not

seem to suffer from the curse-of-dimensionality, and, in the same study (Zatloukal et al.,

2002), it is demonstrated to perform better than KDTrees.

18



q

p

q

p

(a) (b)

Figure 2.8: Graphical illustration of Annulus method.

2.1.7 AESA and LAESA

The approximating and eliminating search algorithm (AESA) was proposed by Enrique

Vidal (Vidal, 1986). It is claimed to search on average only a constant number of points,

implying that it has an expected query time of O(1). It employs the strategies of both

Orchard’s method and the Annulus method to eliminate points, and uses an approximation

technique to select a point nearer to the query to eliminate more points until it finds

the NN. The search starts by selecting an arbitrary point as a NN candidate and using

Orchard’s method’s elimination criteria to eliminate all the points that cannot be nearer

to the query than the selected candidate. The algorithm then goes into a loop of selecting

the next candidate NN using an approximation technique (discussed below), and using the

Annulus method’s strategy to eliminate all those points that cannot be nearer to the query

than the current best NN. In elimination, the algorithm looks at all the annular regions

that are defined from all the points looked at so far as candidate NNs (apart from the

current best NN). The search terminates when all the points have either been looked at or

have been eliminated, and the best NN candidate found at the termination of the search

is guaranteed to be the true exact NN. Figure 2.9 illustrates the elimination performed by

the algorithm inside the loop.

To select the next candidate NN, the algorithm uses a numerical approximation to find

a point nearest to the intersection of the circles that are centred at each of the points looked

at (including the current best NN) and have radii equal to those points’ distances to the

query. The point of intersection of such circles is the query point itself, and approximating

a point nearest to the intersection is therefore equivalent to approximating a point nearest

19



q

Figure 2.9: AESA’s elimination. Points not falling in the annular region of all of the points
so far looked at as candidate NNs (represented by x) are eliminated.

to the query. If the point found as such is not better than the current best NN (since

it is an approximation), then it is simply added to list of points looked at. Figure 2.10

illustrates the technique graphically. In the figure the points represented as X are the ones

that have so far been looked at, and the ones represented by circles are the ones that are

being considered as candidates for the next NN. The circles centred at the points looked

at are represented by arcs for clarity. The approximation chooses the point that has the

minimum sum of lengths for its arrows to each of the circles centred at the points looked

at, which in the case of the figure would be point p3.

For elimination, the algorithm requires distances from the points looked at, to all the

remaining data points (for both Orchard’s strategy at the start and Annulus’ strategy

during the loop), and hence requires O(n2) space and preprocessing time. A newer ver-

sion developed by Micó, Oncina and Vidal (Micó et al., 1994), called the linear AESA

(LAESA), removes this quadratic dependence of the algorithm, by selecting only a fixed

set of points at the start of the search as elimination reference points. Only the points

not lying in the annular regions of this set of points are removed, instead of annular re-

gions of all the points so far looked at. The points selected as elimination reference points

are the ones which are (approximately) at the corners of the point space. As shown by

the authors, there is no single number of elimination reference points that can give best

query-time performance in general. Instead, as was demonstrated by the authors, for best

performance the number can be reasonably large even for moderate dimensions (check

20



p1

p2

p3

p4

q

n1

n2

n3

Figure 2.10: AESA’s approximation technique. The point with the minimum sum of arrow
lengths is selected (p3).

again in paper moderate or high), and hence incur a cost that can grow very large with

increasing data size. In other words, it has a cn space and preprocessing requirement,

which, with a large c, can become huge for larger n’s.

2.1.8 R-Trees, X-Trees, M-Trees, TV-Trees, SR-Trees and VA-Files

These data structures are popular in the database community. They have been designed

specifically to reduce the I/O cost associated with external memory, and to work well in

a more dynamic setting (i.e. with efficient insertion and deletion operations since all the

data points cannot be known in advance at construction).

R-Trees (Guttman, 1984), like KDTrees, hierarchically partition the data into hy-

perrectangles. However, the partitioning is achieved also using hyperrectangles instead

of hyperplanes as in KDTrees. The partitioned rectangular regions are not mutually ex-

clusive, and are allowed to overlap. The leaf nodes consist of the minimum bounding

21



rectangles of the points that they contain, and the internal nodes consist of minimum

bounding rectangles of the points contained in their descendant leaves. A number of vari-

ants exist, that improve on the basic algorithm; such as the R+-Trees (Sellis et al., 1987),

R*-Trees (Beckmann et al., 1990) and recently proposed Priority R-Trees (PR-Trees)

(Arge et al., 2004). The variant R*-Tree is the most popular one used in practice.

X-Trees (Berchtold et al., 1996) are similar to R-Trees. The only major difference is

that they employ an overlap-minimizing split algorithm and the concept of super nodes,

which, as shown by the authors, enhances their performance by orders of magnitude

compared to R*-trees and TV-Trees (discussed below).

M-Trees (Ciaccia et al., 1997), are the database variant of metric trees, with opti-

mizations for reducing I/O costs. They hierarchically partition the point space, just like

metric trees, into hyperspherical regions. The authors have demonstrated these to be

comparable in performance to R*-trees. The key advantage of these structures, as noted

by the authors, is their wider applicability, since, as opposed to R-Trees, they do not re-

quire objects to be represented as vectors, but only require them to be in a metric space.

Concurrently but independently White and Jain (White & Jain, 1996) have also proposed

similar structures, that are called SS-Trees, which also use bounding hyperspheres instead

of bounding hyperrectangles for partitioning.

TV-Trees (Lin et al., 1994), like M-Trees, also use spherical bounding regions to par-

tition points. In addition to that, they improve on R*-Trees by trying to reduce the effect

of the curse-of-dimensionality by using only a subset of the dimensions to discriminate

among the points. They rank all the dimensions by importance, and each sub-tree uses

only one or more of the most important dimensions (called the active dimensions) for

which the points have distinguishing values. If all the points have the same value for the

most important active dimension for some subtree, then this dimension is deactivated and

the most important dimension among the inactive ones is activated, thus shifting the ac-

tive dimensions (called telescoping). Due to this telescoping (activating/deactivating) of

the dimensions, the trees have a limited scope. They are effective only in problems where

there is some sort of discreteness in the values of the dimensions, that would allow one or

more objects to have the same value, and thus allow the idea of telescoping to work. The

trees have been shown empirically by the authors to perform better than R*-Trees.

SR-Trees (Katayama & Satoh, 1997) are a combination of R-Trees and SS-Trees. Each

node in the tree stores the minimum bounding rectangle as well as the minimum bounding

sphere of the points it contains. On real data, the trees have been shown by the authors to

perform better than both R*-Trees and SS-Trees. The trees have also been evaluated by

22



v1
v2
v3
v4

v1
v2
v3
v4

0.1  0.9
0.8  0.8
0.1  0.4
0.9  0.1

00   11
10   11
00   01
11   00

v1 v2

v3

v4

00

00

01 10 11

01

10

11

0.2

0.2

Data Grid Vector Data

Approx. File

Figure 2.11: VA-File structure (Weber et al., 1998).

Liu et al. against Metric Trees, in which case, however, they perform consistently worse

on a number of real-world datasets.

All of the above structures are known to suffer from the curse-of-dimensionality. Fur-

thermore, Weber, Schek and Blott (Weber et al., 1998) have shown theoretically that,

for a uniform hypercube, any techniques based on minimum bounding hyperrectangles or

minimum bounding hyperspheres is likely to suffer from the curse. Thus, they proposed

what they called Vector Approximation file (VA-File) structures (Weber et al., 1998; We-

ber & Blott, 1997). These structures divide the point space into a rectangular grid (not

hierarchical) and use an approximation file to map each data point/vector to one of the

cells in the grid using a fixed length identifier bit string. The unique bit string identifying

each cell is itself a concatenation of individual bit strings identifying a small section of

each of the dimensions. The approximation file used in the structures also stores, in addi-

tion to the bit strings of the data points, the lower and upper bounds of each dimension.

Hence, given the number of sections along each dimension (which is 2bi for a bit string of

length bi for dimension i), the bounds of every cell along all the dimensions can be easily

determined using the approximation file only. For a given query the whole approximation

file is searched first, and lower and upper bound for the (k)NN of the query are deter-

mined, then only the vectors lying within these bounds are looked at in the data grid. The

approximation file is much smaller compared to the data grid, to the tune of 12.5%-25%,

and hence even with full examination of the file, considerable speed-up is achieved. The

structures have been shown by the authors to outperform R*-Trees and X-trees. Fig. 2.11

illustrate a two dimensional VA-File structure, with the data grid, the approximation file

and the corresponding data vectors.

23



2.1.9 Locality Sensitive Hashing (LSH)

Locality Sensitive Hashing (LSH) proposed by Indyk and Motwani (Indyk & Motwani,

1998), as the name implies, is based on a hashing scheme which is sensitive to position

of the points. The technique was designed specifically for ε-NN search and especially

to perform well in high-dimensions. However, it works only for Hamming metric space

({0, 1}d), and, for it to be utilized, objects represented in other metric spaces have to be

mapped to Hamming space. The technique has a worst case query time of O(dn1/(1+ε)). It

works well both in main and in external memory, and in a later study by the same authors

has been shown to perform better than SR-Trees (Gionis et al., 1999). No evaluation

of the technique, however, is known to have been carried out against established main

memory methods such as KDTrees or BBF-Trees.

The basic idea behind the technique is to use a number of hash functions with the

property that the probability of collision for points that are closer to each other is much

higher than the probability for points that are further apart. First, during preprocessing,

a certain number of hash functions are selected randomly from a family of hash functions

which satisfy the said property (i.e. have higher probability of collisions for points closer

to each other). Then each of the data points is hashed by each of the selected hash

functions, and is then stored. At query time, a given query is also hashed by each of the

used hash functions, and its (k)NN is then searched for in the buckets/cells returned by

these functions.

Recently, a newer version of the technique has been proposed (Datar et al., 2004). It

works for Minkowsky-p metrics for p ∈ (0, 2]. The new version, however, does not solve

the ε-NN or the NN problem directly. Instead it solves a slight variation of the problems,

called the near neighbour and its associated ε-near neighbour problem: given a query q

and distance r, find a point within distance r from the query (or within (1+ε) ·r for ε-near

neighbour). In case of (exact) near neighbour (which was never intended to be solved when

the technique was proposed initially), there is no guarantee of sublinear worst-case query

time (Shakhnarovich et al., 2006b), and it can only be achieved for datasets with restricted

growth (explained in detail in the next section). The new version has been evaluated by the

authors against BBF-Trees, and has been shown to perform better. Since, the new version

does not deal directly with the ε-NN problem, its evaluation was carried out by ensuring

the existence of a nearest neighbour within the specified distance r (by transformation in

case of real datasets (Shakhnarovich et al., 2006c) and by way of generation in case of

synthetic ones (Datar et al., 2004)). The authors, however, have not evaluated the new

24



version against Hybrid Sp-Trees, which are known to perform consistently better than the

initial version of LSH. The performance of the new version compared to Hybrid Sp-Trees

is thus an open question.

2.1.10 Navigating Nets and Cover Trees

These structures try to exploit the intrinsic dimensionality of a dataset (i.e. data points

plus the query points). They work by placing assumptions that the datasets (or the metric

spaces in which they are embedded), regardless of their actual number of dimensions,

exhibit certain restricted or bounded growth. A simple notion of such bounded growth was

presented by Karger and Ruhl (Karger & Ruhl, 2002). They defined a growth bound on

a dataset such that the number of points in a ball (hypershere to be precise) centred at

any point p is at most c times the number of points in a ball of half the radius centred

at the same point; more formally, for all points p (in the dataset) and for all radii r > 0,

|B(p, 2r)| ≤ c·|B(p, r)|. Their presented growth bound only allows points to come into view

at a constant rate c (called the expansion rate), and rules out the possibility of suddenly

encountering an exponentially high number of points as the ball around p is expanded.

Such growth, as pointed out by Karger and Ruhl, occurs naturally in domains like peer-

to-peer networks and the internet. Karger and Ruhl also presented a data structure for

NN search which works well for geometries/datasets satisfying their growth bound.

A similar bound property was defined by Krauthgamer and Lee (Krauthgamer &

Lee, 2004). Their growth bound, however, as shown in (Gupta et al., 2003), is more

general than the one by Karger and Ruhl. Their growth bound definition is: every set

of points in the dataset should be able to be completely covered with at most 2ρ sets of

half the diameter; or, in other words, any ball about a point p in the dataset should be

able to be completely covered (in terms of the points it contains) with at most 2ρ balls of

half the radius. They defined the intrinsic or abstract dimensionality of a dataset, using

this growth bound, as the minimum ρ for which this bound holds. This growth bound

forms the basis of Navigating Nets, data structures for ε-NN search, which the authors

also presented with their growth bound in (Krauthgamer & Lee, 2004). Navigating Nets

work by arranging the points in levels, such that each lower level acts as a cover for the

previous level, and each lower level has balls half the radius than the ones at the previous

level. The top level consists of a single point with a ball centred at it that has radius

2i′ for an i′ big enough to cover the entire set of data points. The next level consists of

points with balls of half the radius than the top most ball (2i′−1), which cover the points

at a finer level. The bottom-most level consists of points that have balls covering only

25



those single points. The structure is built in a greedy manner, where the first point in

the list of points of the top level ball is used to build a smaller ball at the next level,

and the first point inside the smaller ball is used to build a ball smaller at the level next.

This is done recursively until we reach a level where a ball consists of a single point (on

which that ball is centred). Then the build procedure back tracks to the last higher level

cover ball that still has unprocessed points left, and picks the next point to greedily build

cover balls at lower levels. Using the same terminology as Krauthgamer and Lee, if dmax

is the maximum of the inter-point distances of the data points, dmin the minimum, and

∆ = dmax/dmin the ratio between the maximum and the minimum inter-point distances,

then the number of levels of a Navigating Net on a dataset is O(log∆). If the dataset

satisfies the growth bound given by authors, then every ball has at most O(1) cover balls

at the lower level (because of the constant ρ).

The search for a (k)NN of a given query q is carried out by going down the levels of a

Navigating Net and adding to a set of candidate NNs the children of a point whose ball

intersects with the ball centred at the query. The radius of the query ball is set to the

distance of the current best (kth)NN plus the radius of cover balls at the level currently

being looked at. The search begins by adding the top-most point to the set of candidate

NNs and setting the radius of the query ball as mentioned, so as to cover the entire point

space, and then adding all the children of the top point to the set of candidate NNs.

Then the search descends to the lower level, contracts the radius of the query ball (to

the distance of the current best NN plus the radius of cover balls at this lower level) and

adds the children of only those children of the top point whose balls intersect with the

contracted query ball. The search carries on in this manner until we reach the bottom-

most level or if at some level the current best (kth)NN cannot be at a distance more than ε

farther from the query than the exact (kth)NN. Hence, at the end of the search the current

best (k)NN is the ε-NN of the given query. For a dataset satisfying the authors’ growth

bound, the search procedure takes no longer than O(log∆), and if the dataset instead

satisfies the growth bound of Karger and Ruhl (which is a special case of Krauthgamer

and Lee’s growth bound), then the search procedure takes no longer than O(logn).

Beygelzimer, Kakade and Langford, presented a data structure for NN and ε-NN search

based on Navigating Nets, which they called Cover Trees (Beygelzimer et al., 2006). In a

Navigating Net each point at some lower level is allowed to have more than one parent point

from the previous level (i.e. points are allowed to overlap among balls in any intermediate

level), and also each level has also a pointer to the previous top level. In Cover Trees, the

authors removed these redundancies to convert the graph rendered by a Navigating Net

26



into a tree, while still preserving the construction and query time. Furthermore, they also

used the growth bound of Karger and Ruhl, as the one by Krauthgamer and Lee does not

have strong theoretical guarantees for exact NN search.

Navigating Nets are not known to have been empirically evaluated against any other

known technique for ε-NN search, whereas Cover Trees have only been evaluated (in the

paper in which they were presented) against the little-known sb(S) data structures by

Clarkson (Clarkson, 1999, 2002). This is in spite of the fact that an excellent implemen-

tation of KDTrees and BBF-Trees, for NN and ε-NN search, is freely available (Mount

& Arya, 1997) that can be easily integrated with any other data structure/technique for

evaluation.

2.2 Techniques Selected for Evaluation

It can be noticed from the above brief survey of NN search techniques that most of them

have not been compared (empirically) against each other, sometimes not even against

the old and established ones. This is particularly true for main memory techniques not

belonging to the database field. Even when the evaluation has been performed, and even

for the techniques in the database field, often the conclusions have been drawn based on

some particular domain of datasets, or sometimes even based on just one dataset only!

Notable examples include (Gionis et al., 1999; Shakhnarovich et al., 2006c), who have only

compared LSH to others on image data, (Zatloukal et al., 2002), who have only evaluated

NN methods for image compression, and (Katayama & Satoh, 1997), who advocate their

SR-Trees to be better than R*-Trees based on results for just one real-world dataset. In

contrast Yianilos, when he evaluated his vp-Trees against KD-Trees (Yianilos, 1993),

made sure that he stayed clear from drawing strong conclusions based on evaluation on a

small sample of datasets that are never likely to be representative of all kinds of datasets

found in practice.

For the research of this thesis, keeping in line with the objectives and scope outlined

in Section 1.5, the following of the above techniques for exact NN search were selected for

evaluation:

• KDTrees: They were selected because they are the oldest and one of the most

established methods for NN search, and a number of construction methods have

been proposed for them by different authors that have not been compared with each

other. During the research that is presented in this thesis, another construction

method was independently developed and was also investigated.

27



• Metric Trees: As mentioned above, they are claimed to be the state-of-the-art

for moderately high dimensions (better than KDTrees). However, they are only

known to have been properly evaluated against SR-Trees and never against the

established KDTrees. Moreover, a number of different construction methods by

different people were found in the literature that are also not known to have been

empirically compared with each other.

• Annulus Method: A variant of the Annulus Method was independently developed

during the research for this thesis. It was also compared against the rest of the

techniques.

• Cover Trees: Cover Trees, as mentioned above, are the most novel technique pro-

posed so far for NN search. However, as mentioned above, they have only been

evaluated against one little known data structure, and hence were also selected for

evaluation.

Orchard’s method and AESA were not selected for evaluation because of their O(n2)

construction cost, which makes them impractical even for modest data sizes. LAESA,

the linear variant of AESA, was discovered very late during the research for this thesis

and could not looked at. However, as noted by the authors, it also has a high space and

construction cost, which even though constant makes the technique infeasible for large

data sizes. Voronoi diagrams have been thoroughly studied, and are known to be the best

solution for NN search for d = 2 (with linear space and near linear preprocessing), and

hence did not warrant further attention in this thesis. LSH and Hybrid Sp-Trees, which are

probably the only state-of-the-art for high dimensions (with linear space requirements),

as mentioned above, deal with a slight variation of the NN problem, and hence fell outside

the scope of this thesis. Same was the case for the techniques from the database field,

which are not optimized for main memory and were not looked at. vp-Trees, the variant of

Metric Trees discussed above, have been compared by their author to KDTrees (Yianilos,

1993), and were not found to be consistently better, and, also, they have not gained much

popularity since they were first proposed (only (Brin, 1995) is known to have looked at

them); therefore, they were also not looked at.

The evaluation of the selected techniques was carried out on a wide variety of synthetic

datasets, many of which were generated so as to mimic the properties of the ones found

in practice, while some were generated to try to maximize the worst-case behaviour of the

selected techniques. This is discussed in Section 4.2.

28



Chapter 3

Evaluated Techniques in depth

The NN search techniques KDTrees, Metric Trees, Annulus Method, and Cover Trees,

were selected for evaluation. These techniques are discussed in detail in the sections

below. Throughout this chapter, and the remainder of the thesis, we’ll assume points in

a d dimensional Euclidean space X, and a set S ⊂ X of n data points and a set Q ⊂ X

of m query points.

3.1 KDTrees

KDTrees are binary trees that partition/decompose the point space into hyperrectangu-

lar regions by hierarchically splitting it using axis-aligned hyperplanes. Each node of a

KDTree is associated with a hyperrectangular region of the point space that it represents,

with the root node being associated with a hyperrectangle comprising the entire point

space. Internal nodes, in addition to the region they represent, also store information on

the splitting hyperplane that splits their region, and also each of the two sub-regions as

children that result from the split. Leaf nodes of the tree comprise of unsplit rectangular

regions of the point space, and, using Friedman et al.’s (Friedman et al., 1977) terminology,

are called buckets.

3.1.1 Basic Construction

A KDTree is constructed by recursively splitting the point space with axis aligned hyper-

planes. Starting initially with a hyperrectangular region comprising the whole point space,

a dimension and a value for that dimension, subsequently called splitdim and splitval,

are chosen. Then, the points in the region with splitdim ≤ splitval (and their associated

subregion) are assigned to left branch of the tree and the points with splitdim > splitval

are assigned to the right. This amounts to splitting the region with a splitdim = splitval

hyperplane that is orthogonal to splitdim and parallel to all other dimensions. The pro-

cess is applied recursively to each of the sub-regions resulting from the split, and is carried

29



on until ≤ b points remain in a resulting sub-region. The number of points b (bucket size),

at which the recursive splitting stops, is a user specified parameter. Figure 3.1 illustrates

graphically the construction procedure on a 2-dimensional set of data points. It shows the

first three steps of the construction process and the final result, on the tree and the point

space. In the graphical representation of the tree, splitdim is shown inside the nodes,

whereas splitval is shown on the edges. In the point space illustration, each splitting line

is labelled by the number of the internal node in the tree figure that is associated with that

line, where as the numbers inside the unsplit rectangular regions represent the associated

leaf nodes in the tree figure.

The procedure above is for offline construction of the tree, where all the data points

are available at the start of the construction method. Online construction of the tree is

also possible with a point insertion procedure. In this procedure, for a given datapoint p,

the leaf region (bucket) that contains this point is located by a procedure similar to the

NN search described in the next section. Upon finding the bucket into which p falls, p is

inserted into it, and if after insertion the number of points in the bucket becomes greater

than the bucket size, then the bucket is split by choosing a suitable splitdim and splitval.

This online construction method, however, is affected by the order in which the points are

inserted, and the tree shape can differ widely for different orderings of the points. This

insertion procedure can also be used in conjunction with the offline construction method,

to insert points later on after the initial construction.

3.1.2 Basic query procedure

For a given query q, starting from the root node, the side of the splitting hyperplane

containing the query is determined by comparing the query’s splitdim value against the

splitval stored in the node. This is done recursively until we find the region of the leaf

node containing the query. On encountering the leaf region (bucket) containing the query,

simple linear search is used to find and store the kNNs of the query from among the points

of that region. Doing this is equivalent to computing the ball centred at the query with

radius equal to the distance of the query to the best kth NN encountered so far. During

back tracking, the other side of the splitting hyperplane of each internal node encountered

so far is inspected only if the query ball intersects with that hyperplane and overlaps with

the region on the other side. If the query ball does overlap, then the same recursive search

procedure is applied on the other side, and the query ball is shrunk each time a better k th

NN is encountered in another leaf region. Figure 3.2 gives an example of the NN search

using this method. The arrowed line in the tree figure shows the nodes in the order they

30



1

3

2

1

3

2

4 5

3

1

2

4 5

6

7

1

2

3

4

6

7 5

10 11

12

13

14

15

16 17

8 9

191.0<= 191.0>

176.0<= 176.0> 176.0<= 176.0>

95.5<= 95.5> 286.5<= 286.5> 286.5<= 286.5>

88.0<= 88.0> 264.0<= 264.0>

y [1]

x [2] x [3]

y [4] [5] y [10] y [11]

x [6]  [7] [12] [13] [14] x [15]

[8]  [9] [16] [17]

191.0<= 191.0>

176.0<= 176.0>

95.5<= 95.5>

y [1]

x [2] [3]

y [4] [5]

[6]  [7]

191.0<= 191.0>

176.0<= 176.0>

y [1]

x [2] [3]

[4] [5]

191.0<= 191.0>

y [1]

[2] [3]

X

Y

Figure 3.1: Illustration of KDTree construction. The first three steps and the final fully
constructed tree.

31



1

2

3

4 5

6

7

8 9

10 11

15

12

13

14

16 17

1 2 3

191.0<= 191.0>

176.0<= 176.0> 176.0<= 176.0>

95.5<= 95.5> 286.5<= 286.5> 286.5<= 286.5>

88.0<= 88.0> 264.0<= 264.0>

y [1]

x [2] x [3]

y [4] [5] y [10] y [11]

x [6]  [7] [12] [13] [14] x [15]

[8]  [9] [16] [17]

1

23

13

1

2

3

4 5

6

7

8 9

10 11

15

12 14

16 17

1

2

3

4 5

6

7

8 9

10 11

15

12

13

14

16 17

Figure 3.2: Illustration of KDTree query.

are visited, and the point space figure shows the query ball as it is updated each time a

leaf region is visited.

3.1.3 Construction in detail

Let us now look at the construction procedure in more detail. The construction of a

KDTree (both offline and online) is mainly affected by the choice of splitdim and splitval.

Since the KDTrees were initially proposed a number of different suggestions have been

made for the choice of splitdim and splitval. However, in most of the cases there does not

exist much theoretical or empirical evidence on which one is the best choice in general.

During the review of the literature, it was observed that in the most recent past,

most of the research on KDTrees has been carried out by of Andrew Moore’s group, and

group of David M. Mount and Sunil Arya. Mount and Arya have even provided a GNU

licensed software library, called Approximate Nearest Neighbor (ANN) library (Mount &

32



Arya, 1997), that includes an excellent implementation KDTrees along with a number of

construction methods, plus a number other NN techniques and a host of features for their

evaluation. Moore and his group, in a number of their publications have either used the

construction method of Friedman et. al (Friedman et al., 1977), which could be called the

Median of Widest Dimension, or one their own proposed Midpoint of Widest Dimension.

For example in (Moore, 1991), (Deng & Moore, 1995) and (Moore et al., 1997) they

have used Midpoint of Widest Dimension, whereas in (Gray & Moore, 2004) they have

suggested to use Median of Widest Dimension. Hence, it is not clear which method is best

to use in general practice. Group of Mount and Arya have provided a number construction

methods, and they have also provided theoretical and empirical studies comparing them

to Friedman et al.’s Median of Widest Dimension. However, they have not looked at

Midpoint of Widest Dimension method that is proposed by Moore and his group.

During the research of this thesis, another method for choosing splitdim and splitval

was independently developed and tried out. It is based on inspiration from the K-Means

clustering technique, and hence is called the KMeans Inspired Method. This method, and

the one by Friedman et al., and the ones by groups of Moore, and Mount and Arya are

described in detail below.

• Median of Widest Dimension: This was presented by Friedman et al. (Fried-

man et al., 1977). It is also called the standard method, or the standard splitting

rule. This method chooses splitdim to be the dimension in which the points in a

region to be split have maximum spread, and splitval to be the median point value

in that dimension. Choosing splitdim and splitval as such guarantees a perfectly

balanced tree of depth O(logn), with at most O(n) nodes, while taking O(nlogn)

construction time. Also, the query time in expected case is O(logn). Uptil now, this

original construction method is the most popular one and the one most widely used

in practice.

• Midpoint of Widest Dimension: This method appears to have been first pro-

posed by Moore in his Phd thesis (Moore, 1991) (most probably as no other study

is known to have mentioned this method). This method, just like Median of Widest

Dimension, chooses the splitdim to be the dimension in which points in a region

to be split have maximum spread, but chooses the splitval to be the mid-point of

points’ spread in the chosen splitdim instead of the median value. The method does

not produce totally balanced tree, and does not guarantee O(logn) query time. How-

ever, as it was noted by Moore in (Moore, 1991), the Median of Widest Dimension

33



can produce long thin regions for badly skewed data. This happens if, in a region

about to be split the points are spread more along one dimension than any other, in

which case the Median of Widest Dimension method splits the region only along this

long dimension into a series of long thin regions (see Figure 3.3(a)). Moore argued in

(Moore, 1991) that his method favours larger squarer regions more than thin ones,

which fill up empty spaces in the point space, at the cost of slight imbalance of the

tree (Figure 3.3(b) shows an example). This allows fewer leaf regions to be inspected

if a query ball overlaps into the empty spaces partitioned by these squarer (instead

of the thinner) regions. However, no empirical or theoretical evidence is known to

have been given to show that inspecting fewer but larger regions in practice also

reduces the query time compared to Median of Widest Dimension. Like the Median

of Widest Dimension, this method does guarantee O(n) nodes, but because of the

non-logarithmic depth not the O(nlogn) construction time.

• Midpoint of Widest Side: This method was proposed by Arya et al. (Arya et al.,

1998) in conjunction with BBD-Trees, and is included in the ANN Library as one of

the construction methods of KDTrees. It select splitdim to be the dimension along

which the side of the region to be split is widest, and splitval to be the midpoint of

that side of the region. This, however, sometimes results in splits in which one of the

resulting sub-regions is empty. The method, hence, does not produce balanced trees

and doest not guarantee either O(logn) depth, O(n) number of nodes, or O(nlogn)

construction time. The method does however, produces larger squarer regions, like

the Midpoint of Widest Dimension above, and guarantees that aspect ratio of the

regions (the ratio between the longest and the shortest side) is at most 2. This

bounded aspect ratio property of MidPoint of Widest Side was shown by Arya et

al. (Arya et al., 1998) to be important for achieving O(logn) query time in worst

case in ε-NN searching1. This method is not the suggested one for KDTrees by the

group of Mount and Arya, and hence was not evaluated for this thesis.

• Sliding Midpoint (SlMidPt) of Widest Side: This method was introduced

by Mount and Arya in their ANN library to over come the short comings of both

Median of Widest Dimension, and Midpoint of Widest Side. It is suggested as the

method of choice by Mount and Arya in their ANN library (Mount, 2006). It selects

the splitdim in the same way as Midpoint of Widest Side, which is the dimension in

which the region has its widest side. However, the selection of splitval is modified,

1The dependence of query time on d is still exponential

34



if setting it to the midpoint of the region’s widest side is resulting in an empty

subregion, then the splitval is slide towards the non-empty subregion until there

is at least one data point on the empty side. The tree produced as such is not

balanced, and is not guaranteed of O(logn) depth. Also, unlike in the Midpoint of

Widest Side, the aspect ratio is not bounded for all regions. The tree, however,

has the property that it adopts well to the structure of the data, with most of

its leaf regions concentrated towards the data points and thus avoiding the empty

spaces (see Figure 3.3(c)), and it has been argued by Maneewongvatana and Mount

(Maneewongvatana & Mount, 2002, 2001) that in practice the depth of the tree

is O(logn). Maneewongvatana and Mount in (Maneewongvatana & Mount, 2002)

have also presented an empirical analysis of the method and have shown it to give

better query time than the Median of Widest Dimension method if query set Q

does not follow the distribution of the data S, but not consistently better if both

Q and S are from the same distribution. In (Maneewongvatana & Mount, 1999)

Maneewongvatana and Mount have also suggested that the method still has the

benefits of Midpoint of Widest Sides’ bounded aspect ratio property, even though

not all regions in the tree produced have bounded aspect ratio. The method gives

O(nlogn) construction time in practice, however, it is not guaranteed because of the

non-logarithmic depth (Maneewongvatana & Mount, 2002, 2001).

• Fair and Sliding Fair Methods: These methods are also included in the ANN

library (in the ANN manual (Mount, 2006) referred to as fair-split and sliding fair-

split rules). The Fair method tries to achieve a balanced tree structure while still

maintaining the aspect ratio bound on the regions. However, unlike in the Midpoint

of Widest Side method, in this method the bound is user specified. The method first

selects the dimensions which can be used for splitting without violating the bound,

and then selects as splitdim the one in which the region has the maximum point

spread. The splitval is then chosen such that the points are divided as evenly as

possible among the two sub-regions, while still maintaining the aspect ratio bound.

The method, however, like Midpoint of Widest Side method, can generate empty

regions. Sliding Fair Method overcomes the short coming of the Fair Method, using

the same strategy as the Sliding Midpoint of Widest Side.

Note that these two methods are only mentioned for completeness sake here, as they

are not suggested to be the best by the group of Mount and Arya, and, apart from

the ANN manual (Mount, 2006), no known publication is known to mention their

35



use. Hence, they were not evaluated in this thesis.

• KMeans Inspired Method: This method was developed independently during the

research for this thesis. It is based on the well known K-Means clustering algorithm.

In a K-Means clustering algorithm the goal is to choose a set of K cluster centres,

such that the total sum of squared distances of the data points to their nearest cluster

centre is minimum. Mathematically, the goal is to minimize following function J ,

where ck is one of the K cluster centres, and xk
i is the datapoint i that has been

assigned to cluster centre ck:

J =
K

∑

k=1

nk
∑

i=1

|xk
i − ck|2.

In the KMeans Inspired Method, we try to select an axis orthogonal split such that

the sum of squared distances of the points to their respective centres on each of side

of the split is minimum. To achieve this, the points are sorted along each dimension,

and a split value s is selected that minimizes the squared distance of the points to

their cluster centres on each side of the splitting plane. The splitdim is chosen to

be the dimension for which the squared distance of points is minimum, and splitval

to be the value that was calculated earlier for the selected splitdim (which gave the

minimum squared distance for that dimension). Mathematically, for each dimension

j, after sorting the points along the dimension j, we calculate

splitval = mins(
s

∑

i=1

(xi − x̄1)
2 +

n
∑

i=s+1

(xi − x̄2|2),

where,

x̄1 =

∑s
i=1 xi

s
,

and

x̄2 =

∑n
i=s+1 xi

s − n
,

and then select the splitdim to be the one for which splitval is minimized.

Note, that the sum
∑s

i=1(xi − x̄1)
2 above is

s
∑

i=1

(xi − x̄1)
2 =

s
∑

i=1

x2
i − sx̄2

1,

and hence, can be calculated with one linear scan of the data points for all split

locations s (which is also true for the symmetrical case of
∑n

i=s+1(xi−x̄2)
2). However,

36



since both xi and x̄1 are d dimensional vectors, each squared distance above involves

another sum over all the dimensions j, and, if xij and x̄1j are co-ordinates of the jth

dimension of xi and x̄1 respectively, the above actually is:

s
∑

i=1

d
∑

j=1

(xij − x̄1j)
2 =

s
∑

i=1

d
∑

j=1

x2
ij − s

d
∑

j=1

x̄2
1j . (3.1)

Hence, as it can be noticed from the above that the construction time of this method

is linear in n but quadratic in d, and hence the method is not feasible for higher

dimensions. Figure 3.3 (d) graphically illustrates the result of applying this method

to an example data.

All of the above methods can be affected by the points’ range along each dimension.

If one dimension is hugely wider than others, than it would always be used for splitting

instead of any other. Hence, to make the trees adapt better to the structure of the data,

the points’ values along each dimension were normalized (to lie in [0,1]).

Apart from the choice of splitdim and splitval, the only other remaining factor that

affects the construction of KDTrees, is the user specified parameter for bucket size b. It

was theoretically analysed by Friedman et al. and was shown in terms of query time to

be optimal at b = 1. However, since then it has been looked at least by Sproull (Sproull,

1991), and Talbert and Fisher (Talbert & Fisher, 2000), to name few, who have empirically

shown it to be not the case. Both Sproull, and Talbert and Fisher, have not suggested any

single optimal value, and have only performed their study on a single dataset, searching

for a single nearest neighbour (k = 1). No other study is known to give either theoretical

or empirical suggestions of an optimal value. For this thesis, a single value of b = 40 was

selected. It was chosen to adequately cover the maximum evaluated k (= 10), in order

to maximize the probability of finding all the kNNs in the first encountered leaf, thus to

maximize pruning and speed up the kNN search. This value is near the optimal value of

both Sproull, and Talbert and Fisher, and, as will be seen in the next chapter, produces

results which compare well with other NN search techniques.

3.1.4 Query in detail

During backtracking, when searching for k nearest neighbours of a given query, for every

internal node encountered during the recursion we only look at the side of its splitting

plane that does not contain the query only if the query ball intersects with the splitting

plane and overlaps with the region on the other side.

37



(a) (b)

(c) (d)

Figure 3.3: KDTree construction methods: (a) Median of Widest Dimension, (b) Mid-
point of Widest Dimension, (c) Sliding Midpoint of Widest Side, and (d) KMeansInspired
method.

38



r

r1
2

34

q

Figure 3.4: Sproull’s method for overlap detection. Region 4 is also searched even though
it does not overlap with the query ball.

To determine the overlap, different approaches exist. Friedman et. al, in their original

version of KDTree, stored the bounds of each rectangular region represented by a node

and calculated the exact distance of the query to that rectangle. Sproull suggested an

alternative technique to do away with the need of storing rectangular bounds of a region

in a node. He suggested to check the overlap only against the hypercube bounding the

query ball. This amounts to only looking at the distance of the query point to the side of

the cube orthogonal to splitdim, and seeing if that distance is greater than the distance

to the splitting plane. This involves only looking at the splitdim co-ordinate of the query.

So, if qj is the jth co-ordinate of the query point and r the radius of the query ball, then

there is an overlap if:

|qsplitdim − r| ≥ |qsplitdim − splitval|

The method, since it does not calculate the exact distance, has the drawback that those

regions that do not overlap with the query ball and hence cannot contain the (k th) NN

are also searched (see Figure 3.4).

Arya and Mount in (Arya & Mount, 1993) noted that in higher dimensions, because of

the large difference between the volume of a ball and its enclosing hypercube, the Sproull’s

method can result in visiting a significantly high number unwanted regions. Hence, Arya

and Mount suggested another technique that does away with the need of both storing

the rectangular bounds of a region as well as doing inexact distance calculation. They

introduced in (Arya & Mount, 1993), what they call incremental distance calculation. This

39



q

Figure 3.5: Incremental Distance Calculation.

method maintains a variable dist throughout the recursive search, and incrementally adds

to this variable the exact distance of a region, which intersects with the query ball and

needs to be searched. It only stores bounds of a region along splitdim, which are required

to incrementally calculate the exact distance. The method is illustrated graphically in

Figure 3.5. This method is also utilized in the KDTrees implemented for this thesis

employed.

3.1.5 Implementation details

For the research of this thesis, the KDTrees were implemented using an array of indices

for the data points. Each node of the KDTree stores a start and end index of this indices

array, and the subarray defined by those start and end indices store the points contained

in the rectangular region defined by that node. Each time a region of a node is split

the subarray, defined by the start and end indices stored in the node, is re-arranged

such that the points belonging to the left child (those with splitdim ≤ splitval) are on

the left side of the sub-array and the points belonging to the right child (those with

splitdim > splitval) are on the right side of the sub-array. The start and end indices

of the left and right child are then set accordingly after the split. The root node stores

the start and end indices that comprise of the whole array, and the whole build process

of hierarchically decomposing the point space also hierarchically rearranges the array so

that each sub-array (defined by start and end indices in the nodes) contains the points of

40



each region in the decomposition. The internal nodes of KDTrees, traditionally, only store

information on the splitting hyperplane and the bounds of the rectangular region defined

by the nodes. They usually do not store any information on the points inside their regions,

as it is usually stored in the leaf nodes (e.g. as in the ANN implementation (Mount &

Arya, 1997)). However, due to the efficient use of only one single array for the whole tree,

the internal nodes of the KDTrees implemented for this thesis also contain references to

each of the points inside their region.

During kNN search, the implementation utilizes a priority queue (PQ) to store the k

NNs and the distances of the k NNs to the query. The radius of the query ball is taken

to be the distance of the top most (farthest) element on the PQ. The PQ is updated each

time a better kth NN is found during the search. At the start, the PQ is initialized with k

null elements and distances set to positive infinity. This ensures that in case k > b (bucket

size) the query ball intersects with all the regions and that we do find k NNs for a given

query when k > b.

To further speed up the kNN search, the trees were augmented with Partial Distance

Search (PDS). The trees use PDS instead of simple linear search when NNs are searched

inside leaf regions.

Care was taken to optimize the implementation in every way possible. The imple-

mented trees calculate only the squared distance while searching for kNNs of a given

query, and avoid costly square root operations. The actual and squared distances of a

given query q increase monotonically, and the costly square root operation is not neces-

sary to determine if one distance is greater than the other as long as both the distances

are measured from the same point q. Once the search is complete, the trees take the

square root of the distances of only the k NNs remaining at the end, and hence avoid

the operation for all the intermediate points looked at (and all the nodes pruned away)

during the search. Furthermore, for Median of Widest Dimension construction method, a

fast median finding algorithm described in (Manber, 1989) was used that works in O(1)

expected time. Its runtime was confirmed empirically on a series of randomly generated

numbers, when the algorithm was compared against a few other alternatives in a small

scale experiment during the implementation phase of this thesis.

To deal with pathological cases when too many points are co-linear or are too near to

each other, the build procedure stops the splitting of a region not only if there are ≤ b

points in the region, but also if the spread of the points in a region becomes lower than a

given threshold. Hence, the implementation stops splitting either if the number of points

in a region is falls below b = 40 or if the spread of the points (that are inside that region)

41



along splitdim is less than 0.01 (i.e. less than 1% of the spread of all the data points along

splitdim).

3.2 Metric Trees

Metric Trees like the KDTrees are also binary trees. They hierarchically decompose the

point space into hyperspherical regions. Each node of the tree is associated with a single

ball representing a hyperspherical region of the point space, and stores that ball’s centre

and radius. Each node also stores the points that are inside it’s ball. An internal node,

in addition to these, also stores it’s two child nodes which decompose it’s ball into two

(usually) smaller balls. The balls are allowed to overlap. However, the points can only

belong to one ball and only one of it’s sub-balls. The trees require only the pair wise

distances of the points to be known, that is they only require the distance measure to be

a metric, and hence are called Metric Trees.

3.2.1 Basic Construction

Metric Trees, unlike other NN methods evaluated in this thesis, do not have a single basic

construction method. In KDTrees, for example, construction involves selecting a splitdim

and splitval for a region and then splitting the region according to these selected values.

All the variants of KDTree’s construction methods then just deal with the selection of

splitdim and splitval. In Metric Trees, however, unlike the KDTrees and others, there is

no such single fundamental method of construction.

Metric Trees have three fundamental construction methods. These are Top Down,

Bottom Up and Middle Out construction methods. The description of these methods

follows below.

1. Top Down Construction: The Top Down construction method, as the name

implies, builds the tree from the top node to the bottom ones. This method is

somewhat similar to the KDTrees’ construction method . We start by assigning the

root node a ball bounding the whole point space. The root ball is then split into two

(usually) smaller balls which are then assigned to the two children of the root node.

The splitting process is then recursively applied to each of the two child balls, and

like in KDTrees, the splitting stops when the number of points in a ball falls below a

given threshold (similar to the bucket size b parameter in KDTrees). The procedure

is illustrated graphically in Figure 3.6. In the ball decomposition in Figure 3.6, the

balls of leaf nodes are represented with lighter balls, whereas the darker ones are for

42



the internal nodes. The numbers inside the balls represent the ball centre and also

denote the node/leaf to which a ball belongs in the corresponding tree illustration

on the left hand side in the figure.

2. Bottom Up Construction: The Bottom Up construction methods builds the tree

by building the bottom most nodes first and then iteratively going up building the

higher nodes. The method starts by finding from all the points a pair which has

the smallest bounding ball, and then creating a node for that pair of points. The

method then iteratively finds and builds nodes for a pair of points, or nodes, or a

pair consisting of a node and a point, whichever has the minimum bounding ball

than the rest of the pairs. This iterative procedure of finding and building of nodes

for pairs with minimum bounding ball continues until all points have been merged

into nodes, and all nodes have been merged into one top node.

3. Middle Out Construction: This method works by finding clusters among the

points and then building nodes from those clusters using a method called Anchors

Hierarchy (discussed below in the next section 3.2.3). These nodes of point clusters

are then merged using the Bottom Up construction into one top node. The process

of finding clusters, building nodes, and then merging them into one top node is then

applied recursively to each of the nodes of clusters created earlier, and the recursion

stops if for some node the number of points falls below a given threshold. Figure 3.7

gives a sketch of the algorithm graphically.

3.2.2 Basic Query

In Metric Trees, the hyperspheres (balls) decomposing the point space, unlike the hyper-

rectangular regions of KDTrees, are completely closed. The balls corresponding to the leaf

nodes are often concentrated towards clusters of points in the point space, and hence it

is possible that a given query q does not lie in any leaf region. Hence, for a given query

q, the kNN search is carried out by first inspecting the leaf node whose ball is nearest

to the query (or whose ball centre is nearest to the query, if both leaf balls contain the

query). At each internal node, the search procedure measures the distance of q to the

ball centres of each child node, and recursively inspects the child node whose ball (or, in

case of both balls containing q, whose ball’s centre) is nearer to q. Upon reaching the

desired leaf node, the kNNs of q are searched among its points using simple linear search,

and are stored. Like the KDTrees, doing so is equivalent to computing the query ball,

which is centred at q and has radius equal to the best encountered k th NN. During back

43



node 0[75] 0

0
1

2

0
1

2

3

4

0
1

2

3

45

6

node 0[75]

node 1[36] node 2[39]

node 0[75]

node 1[36] node 2[39]

leaf 3[12] leaf 4[24] leaf 5[14] leaf 6[25]

node 0[75]

node 1[36] node 2[39]node 1[36]

leaf 3[12] leaf 4[24]

Figure 3.6: Top Down construction method for Metric Trees.

44



(a) (b)

(c)

Figure 3.7: Middle Out construction method for Metric Trees. (a) Tree after creating clus-
ter nodes, (b) after merging the clusters nodes into one top node, and (c) after recursively
applying the process inside each of the cluster nodes.

45



tracking, at each encountered internal node, the procedure only inspects its other child

(whose ball/ball’s centre was farther from the query) if the query ball intersects with it. If

there is an intersection, then the whole procedure is applied recursively to the other child.

Figure 3.8 gives a graphical example of the procedure.

3.2.3 Construction in Detail

Let us now look at the construction if the trees in more detail. Metric Trees since their

initial inception, have a number of construction methods proposed for them. Most of the

methods are from Omohundro, who is one of the authors who initially proposed the struc-

tures, whereas more recently a few have been suggested by Moore. Omohundro, when

he presented Metric Trees (he called them Ball Trees) in (Omohundro, 1989), gave five

different construction methods for the structures. He also gave an experimental compar-

ison of the his presented methods. He, however, only compared the methods in terms of

their construction time and the total volume of balls created, for a given number of data

points. He did not evaluate his methods in terms of their query time. While recently,

the methods presented by Moore in (Moore, 2000), have not been evaluated against the

methods of Omohundro or any other, either by Moore or his group. Uhlmann, the other

presenter of the structures, also gave a construction method when he presented the trees

in (Uhlmann, 1991a,b). His method has not much received attention of the others, and

no study is known to be published by him or anyone else which gives the evaluation of his

method against other proposed methods.

The various construction methods for the trees are described in detail below, grouped

by their presenters, Omohundro, Uhlmann, and Moore.

Omohundro’s Methods

1. Median of Widest Dimension: This method is similar to the KDTree’s stan-

dard construction method (called by Omohundro the k-d Construction method),

and builds the tree top down. It splits a region according to the median value of

it’s points in the dimension in which they are maximally spread. After finding the

dimension splitdim in which the points of a node are most spread and the median

value splitval along splitdim, similarly to KDTrees, this method makes the left ball

from the points whose splitdim is less than or equal splitval and makes the right

ball from the points whose splitdim is greater than the splitval. The Metric Tree

constructed with this method is always perfectly balanced, has O(logn) depth, and

can be constructed in O(nlogn) time.

46



node 0[75]

node 1[36] node 2[39]

leaf 3[12] leaf 4[24] leaf 5[14] leaf 6[25]

q

q

21

1

2

0
1

2

3

45

6

Figure 3.8: Illustration of Metric Trees query procedure.

47



2. Online Insertion Method: This method constructs the tree top down and online

by point insertion. It inserts a point into the node which would result in minimum

increase in the volume of the tree. For a given point p, it goes through the nodes

of the tree, calculating their volume increase and the increase in volume of their

ancestors, that would occur as a result of inserting p in them. The method maintains

the candidate nodes for insertion of p in a priority queue and inserts p in the best

node it finds that gives the minimum volume increase for the whole tree.

3. Cheaper Online Insertion Method: This method is similar to the Online In-

sertion Method. The only difference is that instead of storing the points in PQ and

looking at both the branches of the tree at each internal node when searching for the

best node for insertion, it only looks at the branch of the child which gives smaller

volume increase and does not maintain a PQ of candidate nodes. The best node

is found in this heuristic manner and the point is inserted in the best node. The

method is cheaper in computational and storage cost as less nodes are inspected and

no node needs to be stored during the procedure.

4. Minimum Volume Increase Heuristic: This method similarly to Online Inser-

tion Method tries to produce trees with the minimum sum of ball volumes. The

method similarly to Online Insertion works top down, however, it is offline and re-

quires all points to be known in advance. For a given node region, this method sorts

the region’s points along each dimension, and then for each dimension after sorting

it goes through the sorted list of points twice, first from left to right and then from

right to left. When going from left to right through a list, the method calculates

the volume of the ball bounding the points, as each point is scanned (or in other

words each new point is inserted into the ball and its volume is calculated). The

same is done when doing the reverse pass from right to left. These two passes for

a dimension then give the volume of the bounding balls on both sides of each split

location of the points along that dimension. The method then uses the two balls

which had the minimum sum of volumes, for some dimension and its associated split

location, to split the given node. This method is somewhat similar to the KDTree’s

KMeans Inspired Method. There we find a splitdim and splitval which give the

minimum sum of squared distance for points on both sides, and then split the re-

gion into hyperrectangles according to those splitdim and splitval. Here, we find a

splitdim and splitval which would give the minimum volume of bounding balls for

points on both sides, and then split the region into two hyperspheres with the balls

48



of those splitdim and splitval. According to Omohundro, the method as such takes

O(n(logn)2) construction time.

5. Bottom Up method: Omohundro’s described Bottom Up method works similarly

to what has been described earlier in section 3.2.1. It maintains a list consisting of

points and nodes, and iteratively finds from the list, a pair of points, or nodes, or

a pair consisting of a point and a node, whichever has the smallest bounding ball,

and creates a node for that pair with that smallest bounding ball. The method then

replaces the pair for which the node is created, with the created node in the list,

and iterates again to create a node with the smallest bounding ball. The ball size is

measured using the volume by Omohundro. However, since the volume and a ball’s

radius both increase monotonically with each other, radius is sufficient to measure

a ball’s size as has been done by Moore in (Moore, 2000). It can be noticed that

the process can require upto n(n−1)
2 distance computations (for calculating radius of

bounding ball) for a single pass for building a node from a pair. Hence, in worst

case if O(n) nodes are created, the method can take upto O(n3) construction time.

Omohundro, when he presented the above construction methods in (Omohundro,

1989), suggested that the Median of Widest Dimension produces the best quality trees (in

terms of fitting to the structure of the data, measured by Omohundro with total volume

of balls in the tree) when the data is uniformly distributed. However, when the data is

clustered or non-uniform, then according to Omohundro, Bottom Up produces the best

quality trees followed closely by Minimum Volume Increase Heuristic method. In this the-

sis, we more interested in the query time performance of a NN search method. However,

intuitively if a structure adopts well to the local structure of the data, it is more likely

to narrow down to the right region of a query point, and more likely prune away regions

unlikely to contain a NN. Hence, based on this intuitive idea, Omohundro’s Median of

Widest Dimension, and Bottom Up and Minimum Volume Increase Heuristic methods

were implemented, as they represented the two ends of the spectrum (of adapting to the

structure of the data) and were likely to contain the best candidate in terms of query

time performance and would have reinforced this intuitive idea if it were true in prac-

tice. The Bottom Up method, which has a prohibitively high construction cost, was not

implemented for evaluation but just to compare how well other methods fit the data in

comparison with the Bottom Up, as it was the best one that fit to the local structure.

Omohundro in (Omohundro, 1989) used balls instead of points to construct the trees.

So, instead of a set of points, he considered a set of balls and built the tree for that set of

49



balls. Immediately after the Minimum Volume Increase Heuristic method of Omohundro

was implemented during the research phase of this thesis, it was noticed that it was

producing extremely skewed trees. Each node of the tree was being split with one ball

consisting of only one point and the other consisting of the rest of the points. While trying

to carefully debug the implementation it was revealed that it was always the case that

minimum sum of ball volumes in (almost) every case would only occur if one ball consisted

of only one point (and hence have zero volume) and the other of the rest of the points.

Though every strife was taken to make sure the implementation as error free as possible

and as close as possible to the original description, still the implementation could not be

made to work as shown in (Omohundro, 1989). Even though Omohundro in (Omohundro,

1989) used balls instead of points, he still used the degenerate cases where balls consisted

of single points, which should in essence be equivalent to what has been performed for this

thesis, however, still the method could not be made to work as described. Hence, the full

evaluation of Minimum Volume Increase Heuristic could not be performed in this thesis,

and only Median of Widest Dimension of Omohundro was fully evaluated against the rest.

Preliminary evaluation of the method, whilst it produced skewed trees, also showed that

it was not worthwhile to proceed with the full evaluation, as the method performed poorly

compared to others.

Uhlmann’s Method

1. Median Distance From Arbitrary Point: This is a Top Down construction

method. It splits a ball of a node into two balls based on the median distance

of an arbitrarily selected point to all the other points inside the ball. Hence, after

arbitrarily selecting a point p′ from inside the ball, the method computes it’s distance

to all the other points inside the ball, and then computes the median value m of

those distances. The method then creates a ball for the left child from all points

pi|d(pi, p) ≤ m, and makes a ball for the right child from all points pi|d(pi, p) > m.

The tree as such can thus be constructed with O(nlogn) distance computations in

O(dnlogn) time, which is perfectly balanced and has O(logn) depth.

Moore’s Methods

1. Points Closest to Furthest Pair: This is also a Top Down construction method

presented by Moore in (Moore, 2000). It splits a ball based on the pair of points

inside the ball which are furthest from each other. Finding the furthest pair in a ball

with n points is an O(n2) process, hence, the method uses a linear time heuristic to

50



find approximate furthest pair. The method works by finding a point p1 which is

furthest from the centre of the ball of a given node. It then computes the distance

of p1 to all the other points inside the ball to find p2 which is furthest from p1. The

method then creates a ball for the left child from the points which are closer to p1

(than p2), and creates a ball for the right child from points which are closer to p2.

The method has the property that it adopts very well to the structure of the data. Of

all the methods only the Bottom Up construction sometimes exceeds this method in

this property. The method though works very fast in practice, no theoretical upper

bound for it’s construction time has been given.

2. Middle Out method: Also presented in (Moore, 2000), this method was de-

vised specifically to speed up KMeans clustering algorithm using Metric Trees. The

method works by using the Anchors Hierarchy method (also presented in (Moore,

2000)) to first find
√

n clusters and to make ball nodes out of them. It then uses

the Bottom Up method to merge those balls into one top ball, and then recursively

applies the Anchors Hierarchy and Bottom Up method to each of the
√

n balls of

clusters initially created.

The Anchors Hierarchy method works by selecting an arbitrary point, called anchor

a1, from the given set of points and then creating a ball centred at a1 which includes

all the points. The method then takes the point furthest from a1 as the next anchor

a2, and creates another ball for a2 assigning it all the points which are closer to a2

than a1. The method then iteratively selects the next anchor ai which is the furthest

point in the biggest ball and makes a ball for it assigning it all those points which

are nearest to ai than any other anchor. The iteration carries on until
√

n balls for

a given set of n points are created.

Figure 3.9 graphically illustrates Metric Trees constructed with each of the methods

that were evaluated in this thesis; namely, the Median of Widest Dimension, Median

Distance From Arbitrary Point, Points Closest to Furthest Pair, and the Middle Out

method. Bottom Up method is also included in the figure as it produces the best quality

trees in terms of fitting to the structure of the data. It is included to show the quality of

the trees produced by the other methods in comparison with the best. It can be seen from

the figure that in terms of quality, Bottom Up is followed by, in order: Middle Out, Points

Closest to Furthest Pair, Median of Widest Dimension, and lastly the Median Distance

From Arbitrary Point method.

All the construction methods mentioned above, from Omohundro, Uhlmann, and

51



(a) (b)

(c) (d)

(e)

Figure 3.9: Metric Tree constructed with (a) Bottom Up, (b) Middle Out, (c) Points
Closest to Furthest Pair, (d) Median of Widest Dimension, and (e) Median Distance From
Arbitrary Point.

52



Moore, do not have any theoretical worst or expected case upper bound for their query

time. Though the trees are said to perform well in practice.

Omohundro, when he presented the Metric Trees in (Omohundro, 1989), kept the

discussion general and did not go into the details of the structures. He did not clearly define

the notion of a ball’s centre. It was also not defined clearly by Uhlmann in (Uhlmann,

1991a,b). For the trees implemented for this thesis, a ball’s centre was taken to be the

centroid of the points, which is also the centre of points geometrically and has been used

by Moore (Moore, 2000). It is calculated in exactly the same way as the centre of points

mentioned for KMeans Inspired method for KDTrees in section 3.1.3. Hence, if c is the

centre of a ball containing n points, and if cj is the jth component of the centre and xij

the jth component of a point xi in the ball, then each cj is calculated as:

cj =

∑n
i=1 xij

n
(3.2)

The radius of each ball is then set to the distance of the point furthest from the centre c.

Moreover, both Omohundro and Uhlmann in their presentation of Metric Trees, unlike

Moore, did not use the notion of maximum leaf size, that is they did not stop their recursive

tree construction if the number of points in a ball fell below some given threshold. However,

since Omohundro used the concept of balls instead of points, he did imply a maximum

leaf size of 1. To make the comparison of the different construction methods, and that

of Metric Trees against KDTrees fairer (as KDTrees use bucket size as maximum leaf

size), the construction methods of Omohundro and Uhlmann that were evaluated were

implemented with the notion of maximum leaf size as the stopping criteria. Hence, for

each method used in this thesis the recursive construction stopped if the number of points

in a ball fell below (or became equal to) a user specified threshold. The threshold was set

to 40 to match the one of KDTrees. Even though, the Bottom Up construction method

was not fully evaluated, the notion of maximum leaf size was also applied to it. In the

Bottom Up construction, it was applied using a post process procedure that converts all

nodes into leaf nodes (by discarding all its descendants), which have less than or equal to

the threshold number of points.

Omohundro in his description of the trees, uses balls which bound its child balls.

Whereas, both Uhlmann and Moore have used balls which bound the points contained in

a ball. Omohundro’s technique results in parent balls which are larger and totally contain

the child balls. However, in Uhlmann’s and Moore’s approach the parent balls are smaller

as they only bound the points inside both of their child balls. For this thesis, even for the

53



Omohundro’s evaluated construction methods, the approach of Uhlmann and Moore was

used, since during kNN search tighter parent balls are likely to result in better pruning.

However, in the Middle Out construction method, even Moore has used parent balls which

only bound the child balls. This is so because otherwise the Bottom Up process would

instead of doing
√

n distance computations for
√

n balls of clusters, would end up doing full

O(n) distance computations for merging a single pair of balls, and the construction cost,

though not as high as O(n3), would still be O(n·√n = n3/2). Hence, in the implementation

of Middle Out method in this thesis too, the parent ball during Bottom Up is computed

big enough to completely enclose the child balls.

The notion of maximum point spread in leaf nodes, which is similar to that used

in KDTrees, also seems to have been used in the implementation of Metric Trees by

Moore and his group (available by request from http://www.autonlab.org/autonweb/-

10408.html?branch=1&language=2). In addition to maximum leaf size they also seem to

be using a threshold (0.01) of ball radius (which essentially reflects the point spread inside

a ball) as another stopping criterion for the construction process. As in KDTrees, this

is probably also to deal with pathological cases where too many points in a dataset are

co-linear. However, this stopping criterion is not mentioned in any of the publications

known for the trees by Moore and his group. Hence, the criterion was not used in the

Metric Trees implemented for this thesis. Since data exhibiting such pathological cases

was also not used for evaluating the NN methods in this thesis, the comparison of the

trees with the implemented KDTrees that use this stopping criterion is not unfair. The

implementation of the trees, however, is readily modifiable, and this additional criterion

can be accommodated with ease if ever required.

3.2.4 Query in Detail

Uhlmann in his description of Metric Trees only considered range queries (points within a

specified distance r from the query), and did not provide any procedure for kNN search.

Uhlmann and Moore, however, have both considered kNN search and have provided effi-

cient procedures which are essentially the same.

Moore and his group have provided their procedure for kNN search for Metric Trees

in (Liu et al., 2004). Their procedure works exactly the same as had been described in

section 3.2.2. The criteria for detecting the intersection of the query ball with a node’s

ball, that their procedure uses to prune away nodes which do not intersect the query ball,

is as follows.

Let ci be the centre of the ball of some node i against which we need to detect the

54



q ci
r ri

d

Figure 3.10: Metric Trees’ pruning criterion. The node corresponding to ball ci is only
pruned if r < d − ri.

intersection, and let ri be its radius. Let r be the radius of the query ball, equal to the

distance of the best encountered kth NN. The query ball does not intersect with the node’s

ball, if

r < |q − ci| − ri, (3.3)

and the node can thus be pruned away. However, if r ≥ |q − ci| − ri, then there is an

intersection and we would need to search inside the node to be sure we have found the

exact kNNs. This pruning criteria is illustrated graphically in Figure 3.10.

3.2.5 Implementation Details

The Metric Trees, like the KDTrees, were implemented using an array of indices for the

points. The array is re-arranged in accordance with the build procedure and each node

stores the start and end index of this indices array for the portion of the array assigned to

its region. The points inside a node are contained in the portion of the array defined by the

start and end index stored in the node. Each time a node is split the points belonging to

it’s left child are moved to left of the node’s portion of the array, and the points belonging

to the right child are moved to the right in the node’s portion of the array. The start and

end indices for the left and right child of the node are then set accordingly so that they

point to their respective sub-portions in the node’s portion of the array.

Like the KDTrees, the k NNs during the kNN search in Metric Trees were stored in

a priority queue (PQ). Same as in KDTrees, the PQ was initialized with k null objects

and +∞ distances, so that the query ball intersects with all the regions (as the radius of

the query ball is taken to be the kth largest distance on the top of the PQ) and we are

guaranteed to find k neighbours in case the maximum leaf size parameter is less than k.

55



After putting in the PQ the first k neighbours found in the first leaf during the search (or

the first few if maximum leaf size > k), the PQ is then only updated if a better k th NN is

encountered in some other leaf region during the search.

The Metric Trees, were also augmented with PDS, which is used in place of simple

linear search when k NNs are searched inside a leaf region. The PDS returns +∞ if a

point is farther than the current kth NN.

Same as in KDTrees, care was also taken to optimize the implementation of the Metric

Trees as much as possible. Only squared distances were calculated during the kNN search

to avoid the costly square root operation. The square root of the distances was taken only

for the k NNs remaining at the end of the search. However, unlike KDTrees, for pruning

away nodes exact unsquared distances are calculated. This is so, because the pruning

criteria in Metric Trees involves distances measured from two different points (r and rc

in 3.3), and hence the monotonic relationship between squared and unsquared distances

does not exactly hold. Furthermore, for the Median of Widest Dimension construction

method, as in KDTrees, O(1) median finding algorithm of (Manber, 1989) was used.

3.3 Annulus Method

The Annulus Method works by projecting the points to scalar values, and then using that

scalar projection as the basis of kNN search. The method selects a point as a reference

point, and then projects all the data points according to their distances from this reference

point. For a given query, the method also projects it to it’s distance from the same

reference point, and then searches for its neighbours by going in both directions from the

position of the query’s distance in the scalar projection of the data points. The data points

encountered in each direction in the scalar projection are considered as candidate NNs of

the query. Projecting the data points as such amounts to approximating their position in

the point space as seen from the reference point, and search for NNs of a query using this

projection amounts to searching in this approximate space. When the search starts from

the position of a query’s distance in the projection, it is actually equivalent to looking

at points on the circle around the reference point which has radius equal to the query’s

distance from the reference point. As the search proceeds in both the directions from

the position of query’s distance in the projection, it actually amounts to expanding this

circle in both the directions into an annulus, and thereby examining the points inside that

annular region. The search stops when the query ball is completely inside this annular

region.

56



3.3.1 Method’s Preprocessing

The method during preprocessing computes the distance of the data point to the reference

point and then stores them in an array. The array is then sorted using some efficient sort

function. The method thus takes O(n) space and O(nlogn) computational time.

A natural choice for the reference point is the origin or the zero vector. However,

during kNN search this can result in looking at points in the whole of the annulus around

the origin, especially if the data points are spread in all the four quadrants and the origin

is included in the point space (see Figure 3.11(a)). In order to keep the number of points

looked at during the kNN search minimum, the Annulus Method implemented for this

thesis uses a reference point which is the absolute minimum of the point space. This

ensures that the annular region looked at during the kNN search is always confined to the

first quadrant, and thereby avoid looking at points which are too far away to be NNs of

a given query (see Figure 3.11(b)). If v is the reference point, with vj the value of its jth

dimension, and xij the value of the jth dimension of point xi among the n data points,

then the absolute minimum v of the data points is defined as:

vj = min(x1j , x2j , . . . , xnj).

The reference point v can thus be calculated in O(n) time. The total computational cost

of the method with the calculation of the reference point, therefore still remains O(nlogn)

(in actual it is nlogn+n).

The sorting in the Annulus Method implemented for this thesis, is done using an ef-

ficient implementation of quicksort. Though, quicksort has an O(n2) worst case sorting

time, in practice it almost always works O(nlogn) time. The implementation of the quick-

sort used in this thesis was empirically found to be faster than the (publicly available)

implementations of other sorting methods, in a small scale comparison study during the

research phase of this thesis.

The array of distances computed by the implemented Annulus Method, is a 2-

dimensional array. It stores the points’ distances from v as well as the points’ indices, as a

reference to the points. The quicksort routine was thus modified to sort this 2-dimensional

array according to the distance dimension while still keeping in sync the indices dimension

of the array, so that the association of a point with each distance is not lost.

57



q

(a)

q

(b)

Figure 3.11: Reference points for the Annulus method. (a) Origin, which can result in
a bigger annular region and thus more points being examined. (b) The minimum point
in the point space which results in only the annular region in the first quadrant being
examined.

3.3.2 Method’s Query Procedure

For a given query q, its distance is first calculated from the reference point v. Then

binary search procedure is used to find the position of the query’s distance in the array of

sorted distances of the data points, which was computed during the preprocessing. The

search then looks at points, as referred by the indices dimension of the 2-dimensional

distance array, in both the directions starting from the position of the query’s distance

in the distance array. It might be the case, especially if the query does not follow the

structure/distribution of the data, that the query point q is either located at (or below)

the reference point v, or at (or farther than) the point which is furthest from v. In such

a case the position of the query’s distance returned by binary search is at the end of the

array, and the search for k NNs then just proceeds in one direction. Also, if during the

search one side of the array is completely exhausted, in cases where the query’s distance

is near rather than at the end of the array, then again the search only proceeds in one

direction. For each data point looked at during the search, it’s distance to the query

is calculated, and the point and it’s distance are stored in a priority queue (PQ) holding

kNNs of the query, if it’s distance is less than the distance of the current k th NN on the PQ.

Like in the other NN methods of this thesis, the PQ is initialized with k null objects and

+∞ distances. The search terminates when the radius of the query ball does not overlap

with the points in each direction, that is the query ball is entirely within the annulus

58



whose width is defined by the distances of the points on each side of our search. The

overlap of the query ball is determined as follows. Let xlo be the data point encountered

in our search on the low side of the array (side nearer to v), let xhi be the data point on

the hi side, and let dlo and dhi be respectively their distances from v. Also, Let dqv be the

distance of the query from v. Then the query ball of radius r intersects with the region

outside the annulus any one of the following conditions hold:

dlo ≥ dqv − r (3.4)

dhi ≤ dqv + r (3.5)

If none of the above conditions hold, then the query ball does not intersect with the region

outside the annulus and is completely with the annulus. At such a point the kNN search

can be terminated and the data points found as the k NNs of the query are geometrically

guaranteed to be the exact k NNs.

The Annulus Method implemented for this thesis, at each iteration of the search pro-

cedure looks at one point in each direction in the array (or only in one direction if only

one direction can be searched). It, however, in each iteration keeps looking at the points

in one direction as long as the points in that direction are equidistant from v. Points

which are equidistant from v are on the surface of the (quarter) circle from v and are also

equidistant from the query, and thus all need to be looked at. Doing so ensures that at

each iteration we have looked at all the points inside the annular region.

The query time of the method depends on the time to search for the position of the

query’s distance from v in the distances array, plus the time spent looking at the points

during the search using that array. The binary search used for finding the position of the

query’s distance in the distance array takes O(logn) time, while common intuition suggests

that the time spent on looking at points in the distance array should also be sublinear

in n. Also, intuition suggests, that the time spent on looking at points in the distance

array should grow linearly with the dimension d and the method should not suffer from

the curse-of-dimensionality.

3.4 CoverTrees

CoverTrees are N -ary trees, where each internal node has an outdegree of ≤ N . Each

node of the tree contains a single point p, and a ball which is centred at p. All nodes

59



are arranged in levels2, and nodes at a level i have balls of radius 2i. The top level of

the tree consists of a single node, with a ball big enough to cover the entire set of data

points, and its descendants at lower levels have balls of smaller radii that cover the points

in finer detail. The lowest level leaf nodes of the tree have balls that, apart from the point

contained in the leaf node, do not cover any other point.

This tree structure, like the Metric Trees, can probably be viewed as a hyperspherical

decomposition of the point space. However, it is not exactly a decomposition. The con-

struction process of a Cover Tree follows much tighter set of constraints than the one for

structures like Metric Trees. This allows a Cover Tree to have certain properties which

are probably not possible in a simple decomposition. These constructions constraints and

the properties thus achieved are discussed in the subsections below.

3.4.1 Basic Construction

The build process starts by building the root node with an arbitrary data point p and a

ball centred at that arbitrarily selected point p which has radius 2i, where i is chosen to

be big enough to cover the entire set of data points. The same data point p of the root

node is then used to build a child node at the next lower level i − 1 with a ball of radius

2i−1. This process of building child nodes is applied recursively until we reach some level

i′ at which the the ball centred at p and radius 2i−i′ does not cover any point other than

p. At this stage the created node at level i′ is made into a leaf node, and the build process

backtracks to the last created node at level i′+1. The build process then arbitrarily selects

a point p′ in the ball of the last created node at level i′ + 1, and recursively applies the

whole build process to make finer cover balls for that node’s ball starting from point p ′.

When the build procedure returns from the recursive call for point p′, it may have made

covering balls for all the points inside the ball of the node at i′ + 1; however, if any points

are still remaining then another one is selected arbitrarily and the whole build process is

recursively applied again using the new selected point, otherwise the build process simply

backtracks to the previous node at level i′ + 2. The build process is applied recursively

in a similar manner to all nodes created with p at levels > i′ + 1, as the build process

further backtracks. Figure 3.12 graphically illustrates the tree building process. It shows

the structure of the tree at the end of first, second, and third and final branch of the

recursive construction process (branches from the main initial branch).

The tree constructed as such satisfies the following three constraints:

2The notion of levels here is different from the classical notion of levels in tree data structures. Here
levels have the same meaning as the scales/levels in Navigating Nets (Krauthgamer & Lee, 2004)

60



(a) (b)

(c)

Figure 3.12: Illustration of Cover Trees’ construction process. Tree at the end of (a) first
branch of recursion, (b) second branch of recursion, and (3) third and final branch of
recursion.

61



1. Nesting: The set of points stored in the internal nodes at any level i of the tree is

a subset of the points stored in the internal nodes at level i − 1. Hence, if Ci is the

set of points stored in the internal nodes at level i, then: Ci ⊂ Ci−1

2. Separation: For any points p, q stored in the nodes at level i, d(p, q) > 2i. Thus,

no point stored in a node can be inside the ball of another node at the same level.

3. Tree: Any node (and the point stored in that node) at level i − 1, has exactly one

parent at the previous level i, and hence the graph rendered by the construction is

a tree.

Furthermore, it can be noticed that in the tree constructed with the above procedure,

the radius of the top most ball depends on the maximum of the inter-point distances, dmax.

Whereas, the radius of the balls at the bottom most levels depends on the minimum,

dmin, of the inter-point distances. Hence, the depth of the tree depends on the ratio

∆ = dmax/dmin between the maximum and minimum inter-point distances, and is at

most O(log∆). If the dataset, on which the tree is built, follows the growth bound of

Karger and Ruhl then the depth of the tree is O(clogn) (more detail on this later in

section 3.4.3).

The original description of the Cover Trees and Navigating Nets, by (Beygelzimer

et al., 2006) and (Krauthgamer & Lee, 2004) respectively, is somewhat more complex than

the one that has been presented above. Both (Beygelzimer et al., 2006) and (Krauthgamer

& Lee, 2004) have presented a more abstract description of the structures by considering

an infinite number of levels (from −∞ to ∞), while in the above and the rest of the

description below we only consider the levels explicitly necessary to build the tree. The

description here is more concrete and should be easier to view in terms of implementation

of the structures.

3.4.2 Basic Query

For a given query q, we go down the levels of the tree, inspecting nodes at each level. At

each level i we add only those child nodes for inspection at the lower level (i − 1) whose

points are inside the query ball. The radius of the query ball at each level i is set to the

distance of the current best kth NN (found from among the points stored in the nodes

that have so far been inspected) plus the radius of the balls at level i (2i). This amounts

to shrinking the query ball as we go down the levels, and adding only those child nodes

for inspection at the next level whose ball centres (points stored in the nodes) are within

the query ball. The search stops when at some level the inspected nodes are all leaf nodes

62



q

q

q

i

i-1

i-2

i-3

i-4

Figure 3.13: Illustration of Cover Tree query.

and have no children. At this stage the best encountered kth NN is the exact kth NN of

the query.

Figure 3.13 illustrates graphically the query procedure for 1-NN on the cover tree of

Figure 3.12. We start from the root node, going down the branches of all it’s children, as

they are all inside the query ball. At the next level, i−1, we only go down the branches of

those nodes whose points are inside the shrunk query ball. Then, at level i− 2 the search

is terminated, as all the nodes being inspected there are leaf nodes, and the NN found

from the nodes so far inspected is reported as the NN of the query.

It can be noticed from the above brief description, that the kNN search in a Cover

Tree is fairly different than the one in structures that hierarchically decompose/partition

the point space (like Metric Trees and KDTrees). First of all there is no backtracking in

the search, we only follow one line of search which is guaranteed to return the exact k

NNs. Secondly, we do not look into regions which simply intersect with the query ball.

We only look inside the ball of a node, if its ball’s centre, that is the point p stored in

the node, is inside the query ball. These properties are only achievable because of the

tighter set of constraints that are imposed upon the Cover Trees during construction. For

an insight into how these properties hold for kNN search consider Figure 3.14. It shows

63



r
q

p

r+2i

2i

2i-1

p'

Figure 3.14: Pruning during a Cover Tree’s query procedure.

the query ball for a query q at level i. The point p in the figure is the current best k th

NN, found in a node at level i, which has distance r to the query. p′ is the point of child

node under consideration. The radius of the query ball is set to r plus 2i (where 2i is

the radius of the balls at level i). Note, that the ball of the node for point p ′ can only

contain a neighbour nearer than p, if it intersects with the ball of radius r centred at q.

For this to occur the ball of the node for point p′ needs to be at least completely inside

the the annular region of width 2i centred at q, thus implying that the point p′ be inside

the query ball of radius r + 2i. This would always be true regardless of the distance r of

the query to the current best kth NN, as the width of the annular region would always be

twice the radius of the balls of lower level being considered for inspection. Hence, we can

ignore all balls of nodes that even though intersect with the query ball but do not have

their ball centres inside the query ball. This would not have been possible if balls at level

i−1 were of arbitrary radius, as can happen in Metric Trees, but only if the balls at lower

levels are of fixed predetermined smaller radius. Moreover, it would probably be easier to

see Figure 3.13 in conjunction with Figure 3.14 that as we go down the levels shrinking

the query ball from a volume big enough to cover the entire point space, we cannot miss

any kth NN of a given query.

3.4.3 Structures in detail

Let us consider the growth bound of Karger and Ruhl again (Karger & Ruhl, 2002). Let

B(p, r) denote a ball of radius r centred at p, |B(p, r)| the number of points in that ball,

and Ci the set of points stored in the nodes at level i of a cover tree. The growth bound

64



of Karger and Ruhl is:

|B(p, 2r)| ≤ c · |B(p, r)|,

where c is the expansion rate or the expansion constant of the dataset (S∪Q). The growth

bound of Krauthgamer and Lee defined in (Krauthgamer & Lee, 2004) (see section), on

which the Cover Trees are based, is more general than the one above by Karger and Ruhl.

It, however, as noted by Beygelzimer, Kakade and Langford in (Beygelzimer et al., 2005),

does not have strong provable results, and the ones that are present are only applicable

to ε-NN search. Since the growth bound of Karger and Ruhl above is a subclass of the

bound of Krauthgamer and Lee, Beygelzimer, Kakade and Langford have presented their

results and analyses of the Cover Trees based on the above growth bound.

Beygelzimer, Kakade and Langford in (Beygelzimer et al., 2005), have provided an

extensive theoretical analysis of the Cover Trees based on the expansion constant c of

Karger and Ruhl’s growth bound. If the dataset satisfies the above bound then a Cover

Tree, by the procedure mentioned above in section 3.4.1 (the batch construction method

in (Beygelzimer et al., 2005)), can be constructed in O(c6nlogn) time. The tree only

takes O(n) space. The depth is bounded by O(c2logn), whereas the width (defined as the

maximum number of children of a node) is O(c4). The query time required by the tree is

O(c12logn). If no assumption about the growth of a dataset is made, that is the growth

bound of the above is not considered at all (or if the c is too large), then the time required

to construct the trees is O(n2). The space requirement of the trees though still remains

O(n). The Cover Trees improve on Navigating Nets in this respect, as the Navigating Nets

in addition to O(n2) construction time also require O(n2) space if no assumption about

the growth of the dataset is made.

Beygelzimer, Kakade and Langford in (Beygelzimer et al., 2006) and (Beygelzimer

et al., 2005) have also analysed the relevance of the expansion constant c as the basis

of analysis of Cover Trees. They have shown empirically for two real world datasets

having the same worst case expansion constant c, that the speed up achieved on subsets

of the same size of the two datasets is greatly different. This is due to the fact that the

distribution of the rate of expansion c of a dataset can be different across points (probably

due to the skewed distribution of the dataset). However, since c is not required as a

parameter for the construction of the trees, even with different distribution of c among

the points the trees can still provide optimum performance, in terms of construction and

query time, if used in conjunction with ML/statistical techniques like cross validation and

random subsampling, where different subsets of the data are used.

65



The construction method mentioned above in section 3.4.1 is an offline construction

method, which requires a batch of points for construction (hence called batch construction

in (Beygelzimer et al., 2005)). An online method based on single point insertion is also

given in (Beygelzimer et al., 2006) and (Beygelzimer et al., 2005). It is similar to the kNN

query method described above (in section 3.4.1)and works as follows. For a given point p,

we go down the levels of the tree while shrinking the ball of p. At each level i, the radius

of the ball of p is set to 2i, and we only add those nodes for consideration at the next

lower level, whose points are inside the ball of p. When we reach a level where no points

are inside the ball of p, we go back to the previous level select an arbitrary point p ′ from

inside the ball of p and insert p as a child at the lower level in the node of p′. Note, that

if p′ is inside the ball of p, then p is also inside the ball of p′, and hence can be a child of

p′ while still satisfying the Cover Tree’s construction constraints. A single point insertion,

as described, takes O(c6logn) time. A single point removal method has also been provided

by the authors the trees. It is similar to the described point insertion method and works

in O(c6logn) time.

In all of the above we have considered nodes having balls of radius of the form 2i.

This, however, need not be the case, and any base other than 2 can work with the trees

(i.e. any radius of the form bi). According to the authors in (Beygelzimer et al., 2005), a

smaller base gives better performance in practice, and the results that have been reported

for the trees in (Beygelzimer et al., 2006, 2005) are with a base smaller than 2. The

authors, however, have not suggested any optimal value for the base, and have not given

any theoretical or empirical analysis of the effect of different bases on the trees. Moreover,

the base used for the results reported in (Beygelzimer et al., 2006, 2005) has also not been

given. The implementation of the trees used for this thesis uses a base of 1.3, which is the

default value in the implementation of the Cover Trees made available by the authors.

For the purposes of clarity a small detail has been left out from the discussion of the

cover trees so far. A child of a node at level i does not need to be at the next lower

level i − 1. Infact, after creating the child node at level i − 1, if the maximum inter-point

distance in it’s ball is less than 2i−1 and a ball of radius 2i−2 or smaller can completely

cover the points inside the ball, then the radius of the child’s ball is set to the minimum 2i′

so as to cover all the points, and the child node then is made at level i′ (where i′ < i− 1).

This makes the ball of the child node as small as possible, while still allowing the pruning

method mentioned in section 3.4.2 to be applicable. Furthermore, another detail that

has been left out is that the leaf node does not need to contain a ball at all. In the

original description of the trees the leaf nodes are considered to be at the lowest level

66



possible (−∞), and hence have the smallest of the balls. For easier comprehension of the

structures, this detail was deliberately left out in figures 3.12 and 3.13 where leaf balls

at level i − 2 are of the same radius as the other ball at that level. In actual practice

the leaf nodes do not need to have balls and are implicitly considered to be at the lowest

level with the smallest balls, even though being much higher in depth in the actual tree

structure. This detail was left out, because if single points inserted in the trees (using

the procedure mentioned above) end up being inserted beneath a leaf node, then that

leaf node is converted into an internal node at the level at which it is located in the tree.

Explaining the single point insertion method in a comprehensible manner would have been

much harder, if this small detail was not left out.

Moreover, in the implementation of the Cover Trees made available by the authors,

the pruning seems to be more stringent than what has been described in section 3.4.2 (or

by the authors in (Beygelzimer et al., 2005, 2006)). In the implementation the authors

seem to be pruning away the nodes not lying in the query ball, at the level of those nodes.

So, instead of checking if the points at the level i − 1 are inside the query ball of radius

r + 2i, the implementation checks if they are inside the query ball of radius of r + 2i−1.

The pruning criteria of section 3.4.2 still holds in this case. Still, in this case the ball

centre of a node at level i− 1, needs to be inside the query ball (at least on it’s boundary)

of radius r + 2i−1, in order to intersect with the query ball of radius r and thus contain a

neighbour nearer than r to the query. In this case the query ball is much tighter and can

hence result in better pruning.

3.4.4 Implementation details

The Cover Tree implemented for the research of this thesis is a straight forward

Java translation of the C++ code made available by the authors (Available from

http://www.hunch.net/∼jl/projects/cover tree/cover tree.html). The Java translation,

however, did not include the very low level optimizations that were used by the authors in

their code. The authors in their C++ code have sometimes used CPU registers to store

variables, while throughout their program seem to be using data vectors’ with lengths

padded to CPU’s word boundary. At places the authors also seem to be using code specif-

ically for Intel’s SSE optimizations. Not all of these optimizations are available in Java.

Furthermore, implementing even some of these would have made our comparison of Cover

Trees somewhat unfair with other NN methods, since none of these were not included in

the implementations of the others, which were implemented much earlier than the Cover

Trees during research. Therefore, these low level optimizations were not included.

67



The implemented Cover Trees are augmented with PDS. This was actually present

in the C++ code of the authors, and was included during the translation. During the

evaluation phase, however, a bug was discovered in the author’s translated code. In the

PDS of the authors code, when an accumulated sum for a point becomes larger than the

provided sum of the kth NN, it simply returns the square root of the sum as it is, whereas

in the PDS that complements implementations of other NN methods in this thesis, a

value much larger (+∞) is returned. The problem arises due to numerical imprecision

when taking the square root. In the PDS of Cover Tree’s authors, in some cases, if the

accumulated sum in only slightly larger than the sum of the k th NN, then taking square

root makes it equal to the square root of the sum of the kth NN. Hence, a point which

is farther than the kth NN and should be eliminated is still included. This problem was

corrected when it was found during the evaluation phase, and the results reported in

this thesis were generated with the corrected version. The PDS of the Cover Trees was

corrected in line with the PDS of the other methods, to return +∞ when a sum became

larger than the sum of the kth NN.

In the construction and point insertion methods mentioned in (Beygelzimer et al.,

2005, 2006) and the above, an arbitrary point is selected whenever more than one choice

of points is available. In the implementation made available by the authors, and hence

the one used in this thesis, only the construction method (offline one) is available and it

always selects the first point from the set of points whenever more than one choices are

present. It thus works in a greedy manner, and builds the structure with the first choice

available.

68



Chapter 4

Experimental Evaluation

In the evaluation phase, the various construction methods of KDTrees and Metric Trees

were first compared against each other. These two trees with their best construction

methods were then compared against each other, and against Annulus Method and the

Cover Trees.

The various construction methods of KDTrees, mentioned in Section 3.1.3, have not

been empirically compared with each other in any published study known for the trees.

Although people have compared the construction methods of KDTrees before (Talbert

& Fisher, 2000; Maneewongvatana & Mount, 2002), even some of the ones mentioned

in Section 3.1.3 (in (Maneewongvatana & Mount, 2002)); however, not all the methods

of Section 3.1.3 are known to be compared. In case of Metric Trees, only Omohundro

(Omohundro, 1989) has presented a comparison of their construction methods; however

he only compared the methods that he himself had presented, and no published results are

known for any of the other construction methods, mentioned in Section 3.2.3, that were

presented later by other people. Table 4.1 gives in summary the construction methods of

KDTrees and Metric Trees that were compared against each other in this study.

The popular NN search methods KDTrees and Metric Trees, are also not known to

be empirically compared against each other before. Though Marshall is known to be

currently working on evaluating the two against each other (along with a number of other

methods), his preliminary report (Marshall, 2006) suggests the scope of his comparison

is limited only to a particular domain, and also he does not seem to be looking at the

various construction methods proposed for the two trees. Cover Trees, since they are one

of the most novel of the proposed techniques and were not compared against other popular

methods by their authors, still remain to be compared against KDTrees and Metric Trees.

The Annulus Method has only known to been compared against KDTrees (Zatloukal et al.,

2002) but not Metric Trees.

In the comparison of these NN search methods, simple linear search augmented with

PDS was also included, to serve as a baseline. It was included to assess how well complex

69



KDTrees’ construction methods compared
1. Median of Widest Dimension (Median)
2. Midpoint of Widest Dimension (MidPt)
3. Sliding Midpoint of Widest Side (SlMidPt)
4. KMeans Inspired Method (KMeans)

Metric Tree’s construction methods compared
1. Median of Widest Dimension (MedianValue)
2. Median Distance From Arbitrary Point (MedianDistance)
3. Points Closest to Furthest Pair (FurthestPair)
4. Middle Out

NN methods compared
1. KDTrees (with SlMidPt)
2. Metric Trees (with MiddleOut)
3. Annulus Method
4. Cover Trees
5. Linear search with PDS

Table 4.1: Evaluated methods.

and specialized NN search methods perform compared to having no specialization at all,

and to check whether it is worthwhile to use specialized methods in every situation. The

NN search methods compared are also given in summary in Table 4.1.

All of the (specialized) methods that are evaluated are roughly equivalent in prepro-

cessing time and space requirements. Hence, the main comparison of the methods was in

terms of their query time performance. However, evaluation of preprocessing time is also

included, for the sake of completeness and to demonstrate the effect of constant factors

hidden by the O notation. All the evaluated methods, as mentioned earlier in the last

chapter, were augmented with PDS to further boost their query time performance.

The next section (4.1) describes in detail the procedure that was used to evaluate the

methods against each other. It also describes in detail the experiments that were performed

to compare the methods. The section next (4.2) outlines the datasets that were used in the

experiments performed, and the results of those experiments are presented in summary in

the last section (4.3) of this chapter. Note that only selected results are presented, which

best show the overall trends, and are hence representative of the overall set of results.

Some additional results are also included in the appendices, to support the ones in the

main text.

70



4.1 Evaluation Procedure

Since we are interested in the query performance of a method. Each method’s query

performance was assessed for increasing data size and increasing dimensionality, for a fixed

query size. The query size was fixed at 1000, and the data size (n) and dimensionality (d)

were initially doubled and then increased to a much higher value in the end. The following

sizes of n and d were used:

n = 1000, 2000, 4000, 8000, 16000, 100000,
d = 2, 4, 8, 16, 32, 80.

For each combination of values of n and d above, datasets were synthetically generated and

each method was assessed on a dataset using a separately generated query set of the same

d and of fixed size 1000. Assessing each method as such, in effect gave the performance

measurement of the method for increasing n for each d, and for increasing d for each n. For

each combination of n and d, the datasets were generated synthetically from a number of

selected distributions (described in detail in the next section), and for each combination

of distribution (D), n and d, each method was evaluated 5 times and the results were

averaged over those five runs. The total number of datasets generated, hence, was the

product of the number of runs (providing a different random number seed), the number of

evaluated distributions (described in the next section), the number of evaluated data sizes,

and the number of evaluated dimensions, i.e. 5 × |D| × |n| × |d|. For each of generated

dataset, two query sets were generated (both having the same d as the data and both

of size 1000), one with the same distribution as that of the data, and one with uniform

distribution. Each method was assessed on both these query sets for each dataset, to see

how well the method performs when the queries do and when they do not conform to

the distribution of the data. Hence, the overall evaluations carried out gave the average

measurements of a method for increasing n for each d, and for increasing d for each n,

for each distribution when the query does and does not conform to the distribution of the

data.

For each NN method the measurements given in Table 4.2 were made for each generated

dataset (which were in total 5×|D|×|n|×|d|). In addition to these, for tree based methods,

i.e. for KDTrees, Metric Trees and Cover Trees, the measurements given in Table 4.3 were

also made. These whole set of measurements on all the generated datasets, for a NN

method, constituted a single experiment, and the experiment was repeated for each value

71



1. Elapsed preprocess time 7. Min points visited
2. Elapsed query time 8. Max points visited
3. CPU preprocess time 9. Total Coords looked at per point
4. CPU query time 10. Avg. Coords looked at per point
5. Total points visited 11. Min Coords looked at per point
6. Avg. points visited 12. Max Coords looked at per point

Table 4.2: Measurements made for each NN method on each generated dataset.

1. MaxDepth 7. Max internal nodes visited
2. TreeSize 8. Total leaves visited
3. NumLeaves 9. Avg. leaves visited
4. Total internal nodes visited 10. Min leaves visited
5. Avg. internal nodes visited 11. Max leaves visited
6. Min internal nodes visited

Table 4.3: Additional measurements made for tree based NN methods.

of k (number of NNs) that was evaluated. The values of k that were selected for evaluation,

are the following:

k = 1, 5, 10.

In Table 4.2 preprocess times (both elapsed and CPU) are the times taken by the

construction/preprocessing procedure of the evaluated NN search method, and the query

times (both elapsed and CPU) are the times taken by the NN search method to return the

kNNs of the whole query set. The elapsed times are the elapsed clock times for the NN

search method, whereas the CPU times (which are available with ThreadMXBean class in

java.lang.management package in the newer Java 1.5) are the times actually spent by the

CPU executing the NN search method. The total, avg., min and max points visited are

respectively the total, average, minimum and maximum datapoints looked at per query

by the NN search method for the given query set. The total, avg., min and max coords

looked at per point represent respectively the total, average, minimum, and maximum

coordinates/dimensions inspected by the PDS (augmented to the evaluated NN search

method) for each visited datapoint for the whole query set.

In Table 4.3, MaxDepth refers to the maximum depth of the tree NN data structure,

TreeSize refers to the number of its internal and leaf nodes, and NumLeaves the number of

only its leaf nodes. Total, avg., min and max internal nodes visited represent respectively

the total, average, minimum and maximum internal nodes visited in the tree during kNN

search for the whole given query set, and likewise total, avg., min and max leaves visited

are the total, average, minimum and maximum leaves visited during kNN search for the

whole of the given query set.

72



The analysis of the query performance of the NN methods was performed only with

the measures CPU query time, and Avg. Points Visited. Whereas the preprocessing

was analysed only with the CPU preprocess time measure. It was originally intended to

perform a deeper analysis of the methods using the other measures. However, the sheer

volume of results produced from the evaluation procedure discussed above made the task

a lot less tractable. This can be noticed from the volume of only the representative results

placed in the main text in Section 4.3. A brief shallow analysis of the other measures that

was performed also suggested the selected measures to be good indicators of the methods’

performance. Also, because of the large volume of output and to keep the analysis focused

on the main objectives of this thesis, the analysis of the combining effect of PDS with

other NN methods, using the Coords looked at per point measures (in conjunction with

others), could not be performed.

For all the evaluations that were carried out, each dimension of the generated data and

query sets was normalized (to lie in [0,1]). It was done just before calculating a distance

(both squared and unsquared) between points, and was done to ensure that in the calcu-

lated distance the contributions of the dimensions along which the points are most widely

spread do not dominate the contributions from the other narrower dimensions. It can be

the case in practical datasets that one or more dimensions are much wider (have a higher

range) than the rest of the dimensions, whereas the data is more clustered/structured in

those narrow dimensions. Hence, in such cases the contributions to the distance of the

narrower dimensions carry more information with regards to the NN problem than the

contribution of the dimension with the widest range. However, this is domain dependant,

and sometimes the contribution due to the wide range of a dimension is also equally impor-

tant. For this thesis, since the aforementioned rationale applied fittingly to the generated

data and query sets, it made more sense to normalize.

For all the evaluations, KDTrees and Metric Trees had their maximum leaf size pa-

rameter set to 40. Whereas, the maximum point spread in a leaf for KDTrees was set

to 0.01. A parameter with similar notion of maximum point spread was not necessary

for Metric Trees (and was not implemented, as mentioned in the last chapter) as the

evaluation did not include pathological datasets with many co-linear points. For Median

Distance From Arbitrary Point and Middle Out construction methods of Metric Trees,

which require selecting an arbitrary (on random) point from a given set of points, the

random seed parameter was arbitrarily set respectively to 17 and 1. The base parameter

for Cover Trees was set to 1.3, which is the default value in the version implemented by

their authors. Details of these parameters can be found in the relevant sections of the last

73



1. Uniform 10. Straight Line with Noise
2. Gaussian 11. Two Straight Lines
3. Laplacian 12. Two Straight Lines with Noise
4. Correlated Gaussian 13. Plane
5. Correlated Laplacian 14. Plane with Noise
6. Clustered Gaussian 15. Two Planes
7. Clustered Orthogonal Flats 16. Two Planes with Noise
8. Clustered Ellipsoids 17. Periodic Functions
9. Straight Line 18. Periodic Functions with Noise

Table 4.4: Distributions on which the NN methods were evaluated.

chapter.

All the evaluated NN methods, their supporting classes, and the classes for the eval-

uation procedure, were implemented within the framework of Weka (Witten & Frank,

2005). The evaluation was carried out using Weka’s Experimenter environment, and each

experiment was distributed among three identically configured machines. It can be no-

ticed that the values of n and d that are evaluated are rather modest. It ought to be

mentioned that initially it was intended to evaluate n upto 10,000,000 points and d upto

1024 dimensions. However, the extra memory overhead associated with the Instances

and Instance classes of Weka, which respectively represented data/query sets and single

data/query points, did not allow experiments to be performed with such high values of n

and d, even on machines with a sizeable 1GB of RAM. The machines on which the ex-

periments were performed were identically configured with P4 3.0GHz single CPU (with

HyperThreading technology)and 976MB of RAM, that ran Gentoo version 1.6.13 of linux

and J2SE version 1.5.0 10.

4.2 Evaluation Datasets

The data and query sets on which the methods were evaluated were synthetically generated

from a number of distributions. These distributions included all the ones in the ANN

library (Mount & Arya, 1997) (ver. 1.1), plus a few additional ones. The sets were

generated for each run from the distributions using a different random number seed. For

most distributions, the sets were generated using the ANN library itself, and were output

as ARFF format of Weka for evaluation in Weka’s Experimenter environment. The point

distributions that were used for evaluation are listed in Table 4.4 and are discussed in brief

below.

• Uniform: The points in this distribution were generated by drawing uniformly a

74



value from the interval [-1,1] for each of the dimensions, which, in the ANN library, is

achieved through a uniform random number generator given by (Press et al., 1992).

The points thus generated are uniformly distributed and do not exhibit any clustering

or structure. This distribution, hence, formed the base case for the evaluated NN

methods, to see how well they performed in the absence of any structure or cluster

in the data.

• Gaussian: The points in this distribution were generated by drawing each coordi-

nate (value of a dimension) of a point from the Gaussian distribution with mean 0

and standard deviation specified by the parameter std_dev. This distribution in the

ANN library is implemented using Box, Muller, and Marsaglia’s polar method, sim-

ilar to the one described in (Knuth, 1997). For this thesis, the std_dev parameter

for the generated sets was left to the default value of 1.0.

• Laplacian: In this distribution each coordinate xiof a point was generated from

Laplacian distribution with 0 mean and unit variance, using the following equation:

xi =
b

2
× e−b×|x|,

where x is a uniform random variable in [0,1], and b was set to
√

2.0 to make the

variance of the distribution equal to 1.0.

• Correlated Gaussian & Correlated Laplacian: These distributions model data

from speech processing. For these distributions each coordinate xi of points, for

i > 0, was generated using the following recurrence relation:

xi = ρxi−1 + Wi,

where Wi is an independent and identically distributed random variable with mean

0, and ρ is the correlation coefficient parameter. The initial x0 for the above equation

is generated from the corresponding uncorrelated Gaussian or Laplacian distribution

(using the above mentioned methods). For this thesis, ρ was set to 0.8.

• Clustered Gaussian: This distribution, given in the ANN library, is designed

to model data that is clustered, and the clusters are full dimensional (i.e. they

encompass all the dimensions to form their clusters). The distribution routine takes

the number of clusters to generate as a parameter. It first randomly generates points

as cluster centres (whose each coordinate is from [-1,1]) for the specified number of

75



clusters, and then uses the Gaussian distribution procedure mentioned above to

generate points around each of the cluster centres with specified standard deviation

std_dev. The points are generated evenly for all the clusters. For this thesis, the

number of clusters was set to 4, and std_dev for the clusters was set to 0.1. Note,

that in this and all the rest of the clustered distributions mentioned below, the cluster

centres (and the specified std_dev) are same for both the data and the query set

(for each run), allowing them to both have the same distribution.

• Clustered Orthogonal Flats: This distribution is designed to model points which

are clustered on some m-dimensional axis-parallel flats/hyper-planes. It takes as pa-

rameters, the number of flats to generate, max_clus_dim as the maximum possible

m for the flats, and std_dev as the standard deviation of the points along the flat

dimensions. For each flat, the distribution routine randomly selects between 1 to

max_clus_dim dimensions which would be wide, and treats the remaining unse-

lected dimensions as flat dimensions. The points are then evenly generated for each

flat by drawing their coordinates uniformly from [-1,1] for wide dimensions, and

from Gaussian distribution, that has a randomly selected mean (from [-1.,1]) and

std_dev standard deviation, for the flat dimensions. Thus, it generates points on

hyper-planes for std_dev=0, and generates points that are slightly perturbed from

the hyperplanes for std_dev>0, and each hyper-plane is at most max_clus_dim-

dimensional (max_clus_dim ≤ d) and is axis-parallel. For this thesis, number of

flats was set to 3, std_dev was set to 0.1, and max_clus_dim was left to the default

value of 1. This produced points on three 3-dimensional flats (planes) embedded in

higher dimensions.

• Clustered Ellipsoids: This distribution is designed to model points which are

clustered, and where each cluster (unlike the Clustered Gaussian above) lies close

to a lower dimensional subspace. The distribution routine takes as parameters,

the number of required clusters, max_clus_dim, std_dev_lo and std_dev_hi, and

std_dev. It first randomly generates points as cluster centres for the require number

of clusters, then for each cluster it randomly selects upto max_clus_dim number of

dimensions and a standard deviation for each of the selected dimensions from the

range [std_dev_lo, std_dev_hi]. Then, it generates points around each of the

cluster centres drawing their coordinates from Gaussian distribution with the earlier

selected standard deviation for selected dimensions, and with the std_dev standard

deviation for unselected dimensions (mean of the Gaussian is the corresponding

76



coordinate of the cluster centre). This generates points in clusters that are elliptical

in shape. For this thesis, number of clusters was set to 5, max_clus_dim was left to

default 1, std_dev_lo was set to 0.01, std_dev_hi to 0.09, and std_dev to 0.1.

• Straight Line: This distribution was added to the ANN library. It generates points

lying in a straight line which is embedded in high dimensions. This distribution was

chosen because KDTrees are known to perform poorly on points in a straight line

(Yianilos, 1993). The distribution routine generates each coordinate xi, for i > 0,

using the following slope-intercept equation:

xi = mxi−1 + c,

and generates x0 from the uniform distribution over [-1,1]. For this thesis, m and c

were respectively set to 0.5 and 10.

• Straight Line with Noise: This distribution was also added to the ANN library. It

was chosen to see how the NN methods behave if some perturbation/noise is present

in points lying on a straight line. It generates points exactly as above (as in Straight

Line distribution), and then simply adds some uniform noise to each coordinate of

a point. The noise is added as follows:

xi = xi + noiserate× noisevariance× x,

where x is drawn from uniform distribution over [-1,1], and, for this thesis, noiserate

and noisevairance were respectively set to 0.2 and 2.0.

• Two Straight Lines: This distribution was also added to ANN. It was chosen to

see how the NN methods perform if more than one lines are present. It generates

points in exactly the same way as mentioned above in Straight Line distribution.

The only difference is that the second line has a slope of − 1
m and intercept c/2, and

the points are generated such that there are even number of points among the two

lines. The lines produced as such are non-parallel and non-intersecting.

• Two Straight Lines with Noise: This distribution also was added to ANN. It

generates points exactly as above, and adds noise exactly as mentioned in Straight

Line with Noise distribution above.

• Plane: The hyper-planes generated with Clustered Orthogonal Flats distribution,

which is inbuilt in the ANN library, are axis-parallel. Hence, a distribution for non-

77



axis-parallel hyper-planes was also implemented. This distribution produces points

on a single d-dimensional hyper-plane which is non-axis-parallel. The distribution

routine generates the required d-dimensional points using the following equation,

which is similar to the equation of a line in slope-intercept form:

xd−1 = mx0 + mx1 + . . . + mxd−2 + c.

In the above, x0, x1, . . . , xd−2 are generated from uniform [-1,1], and, for this thesis,

m and c were set respectively to 0.5 and 10.

• Plane with Noise: This distribution produces points exactly as above, except

that extra noise is also added to the each of the coordinates of a generated point.

The added noise (from uniform [-1,1]) is controlled by parameters noiserate and

noisevairance, which were respectively set to 0.2 and 2.0.

• Two Planes: This distribution, also added to ANN, produces two hyperplane which

are non-axis-parallel and are intersecting. It produces points by using − 1
m instead

of m in the equation of the second plane and by ensuring that the number of points

generated are even for the two planes.

• Two Planes with Noise: This distribution generates points exactly as above,

but with added noise. The noise parameters noiserate and noisevairance were

respectively set to 0.2 and 2.0.

• Periodic Functions: In all of the above distributions, the points are either in some

form of clusters and/or on a line/plane. However, there can be situations where

points lie on some form of a curve, which is a product of some function. Hence, to

model such a scenario, which can occur in data from scientific/engineering observa-

tions, this distribution was implemented. It generates points lying on trigonometric

functions. The distribution routine generates the points as follows. First the x0

coordinate of a d-dimensional point is generated from uniform [-10,10], then the

routine generates rest of the d−1 coordinates using cos(x), sin(|x|)
|x| , and sin(x) func-

tions repeated in order on x0, i.e. x1 = cos(x0), x2 = sin(|x0|)
|x0|

, x3 = sin(x0), x4 =

cos(x0), ... and so on. The points generated as such lie on a single line that is

curved in every dimension except the first. This distribution, unlike the others, was

not implemented in ANN, instead it was implemented as a separate class under

Weka.

78



• Periodic Functions with Noise: This distribution generates the points exactly

as above, and then simply adds uniform noise to the points. Unlike the other noisy

distributions, the noise in this distribution is added from uniform [0,1] and is only

controlled by the noiserate parameter. The noisevairance parameter is hard

coded to be the range of the dimension to which the noise is being added, which

makes the noiserate parameter more meaningful. For this thesis, the noiserate

parameter was set like the other distributions to 0.2, whereas the distribution was

implemented like the above as a separate class under Weka.

All of the above distributions are illustrated graphically in 2 dimensions in Figure 4.1.

4.3 Results

The representative results of the experimental evaluation of the NN methods are pre-

sented in the following subsections. First results for the construction methods of KDTrees

are presented, then the results for the construction methods of Metric Trees. Finally re-

sults comparing the different NN methods are presented. The subsections also present a

discussion and analysis of their respective results.

The preprocessing/construction performance of the methods is assessed in terms of the

CPU preprocess time. Whereas, the query performance of the methods is assessed in terms

of CPU query time per query, and Avg. Points Visited per query for the given query set

(these measures are described above in Section 4.1). Avg. Points Visited is used in addition

to the CPU query time because it is a more direct measure of a method’s effectiveness

as all the evaluated methods achieve speed up by trying to reduce the number of points

inspected during kNN search. However, the additional overhead involved in reducing the

number of points inspected entails the assessment of methods’ CPU query time as well.

4.3.1 KDTrees’ Construction Methods

Let us first look at the construction times of the selected construction methods of KDTrees.

Figure 4.2 shows the plot matrix of construction time of the methods for increasing data

size (n) for d = 16, and Figure 4.3 shows the plot matrix of construction time for increasing

d for n = 100000. In both the figures the matrices contain plots for each of the evaluated

point distributions, and all the plots have their x and y axes on log scale. This basic

pattern of figures for presenting results is also used for all the rest of the results that are

presented later in the thesis.

79



Figure 4.1: Evaluated Point Distributions (from left to right and top to bottom): (1) Uni-
form, (2) Gaussian, (3) Laplacian, (4) Correlated Gaussian, (5) Correlated Laplacian, (6)
Clustered Gaussian, (7) Clustered Orthogonal Flats, (8) Clustered Ellipsoids, (9) Straight
Line, (10) Straight Line with Noise, (11) Two Straight Lines, (12) Two Straight Lines
with Noise, (13) Plane, (14) Plane with Noise, (15) Two Planes, (16) Two Planes with
Noise, (17) Periodic Functions, and (18) Periodic Functions with Noise.

80



In Figure 4.2 for comparison the nlogn line is also plotted, as all the KDTree construc-

tion methods that are evaluated work in O(nlogn) time. Since the values on y-axis in the

figure represent CPU time, which are much less than the actual values of nlogn, the nlogn

line has been shifted down to lie with the rest of lines for easier comparison. It can be

noticed in the figure that for all the methods, on (almost) all the point distributions, as n

increases the construction time stabilizes and grows at a constant polynomial rate. Also,

the slope of each method’s construction line is slightly higher than that of the nlogn line,

suggesting that the construction time of each method grows at a rate which is polynomial

but slightly higher than nlogn.

Dependence of the construction time of the methods on d is shown in Figure 4.3. For

comparison, the figure also includes a shifted y = d line . It can be noticed from the figure

that for all the methods the construction time grows at a slightly increasing exponential

rate. However, in almost all cases all the methods, with the exception of KMeans and

SlMidPt, grow sublinear in d (i.e. at a rate dx<1), since the slope of their lines is less than

that of the line y = d. KMeans grows at a rate higher than d, as it is known to work

in O(d2). SlMidPt, which does not have any runtime guarantees, as can be noticed in

the figure, almost always grows less than or equal to d except on the distributions where

points lie on a line (i.e. the straight line and functions distributions). KMeans empirically,

in plots not shown here in the main text, seems to grow at a rate more similar to d1.5

rather than the theoretical d2, whereas the SlMidPt method always grows slower than d1.5

except on the line distributions where it approaches d1.5.

Overall from both the figures it can be seen that KMeans has the highest construc-

tion time, Median and MidPt methods in every case are similar, and SlMidPt is higher

than Median and MidPt but only on clustered and line distributions and only for higher

dimensions. This higher cost of SlMidPt is probably due to its trade-off of better fit to

the structure of the data. Trends similar to what has been described, were also observed

in plots similar to Figure 4.2 and Figure 4.3 but with different fixed values of n and d.

This can be observed in another two plots similar to Figure 4.2 and Figure 4.3 but with

different fixed values of n and d that have been placed in Appendix A. Furthermore, in

Appendix A Figure 4.3 plot with y = d1.5 line instead of y = d is also included to illustrate

the empirically observed growth rates of KMeans and SlMidPoint methods.

Let us now look at the query performance of the selected construction methods of

KDTrees. Figure 4.4 for k = 5 and d = 4, shows the average points visited by the methods

for increasing n on non-uniform query (i.e. having the same distribution as that of the

data), and Figure 4.5 for k = 5 and d = 4, shows the average points visited for increasing

81



 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

uniform

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

gauss

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

laplace

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-gauss

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-laplace

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-gauss

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-orth-flats

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-ellipsoids

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

functions

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=16)

Median
MidPt

SlMidPt
KMeans

n*logn

F
igu

re
4.2:

K
D

T
rees’

con
stru

ction
tim

e
for

in
creasin

g
n
.

82



 0.1

 1

 10

 100

 1000

 10000

803216842

uniform

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

laplace

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

co-gauss

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

co-laplace

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

clus-gauss

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

clus-orth-flats

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

803216842

line

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

line-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

803216842

twolines

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

twolines-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

plane

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

twoplanes

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

twoplanes-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

functions

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

 0.1

 1

 10

 100

 1000

 10000

803216842

functions-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d

F
igu

re
4.3:

K
D

T
rees’

con
stru

ction
tim

e
for

in
creasin

g
d
.

83



n on uniform query. Theory tells us that KDTrees in expected case should inspect logn

points. In both figures, 4.4 and 4.5, logn line is also plotted for comparison. It can be

seen in case of non-uniform query in Figure 4.4, that apart from co-laplace, clus-gauss

and non-noisy line distributions, all the methods in the end grow at a rate slower or equal

to logn. Whereas, in case of uniform query in Figure 4.5, on almost all distributions (all

but uniform), all methods apart from SlMidPt from the very start grow at a rate faster

than logn. SlMidPt in case of uniform query grows at or near the rate of logn on all but

the non-noisy line distributions. KDTrees are known to perform poorly on points lying

on a line, and this is evident from the exponential growth of every construction method

on non-noisy line distributions in case of non-uniform query (when query points are also

on the same line), and in case of uniform query, from SlMidPt’s exponential growth near

the end, on non-noisy line distributions. All the rest of the exceptions in which the rate

of growth of one or more methods is greater than logn, both in case of uniform and non-

uniform query, the rate actually approaches the rate of linear growth n. However, in every

exception the number of average points visited is still less than n. This can be seen in

figures similar to 4.4 to 4.5 in Appendix A which are plotted with y = n line. Hence, from

the figures (4.4 & 4.5) it seems the logn rate of growth can only be achieved by KDTrees

on non-uniform query (when the query follows the distribution of the data), and in case

of uniform query, only with SlMidPt construction method. It ought to be mentioned that

only the rate of growth of logn is achievable, as in both figures 4.4 and 4.5 the logn line

has been shifted up and the actual number of average points visited is some constant times

higher. The actual number is though still sublinear, which can be seen in the equivalent

figures just mentioned that are placed in Appendix A with (unshifted) y = n line.

The trends in Figure 4.4 and Figure 4.5 become much clearer when we consider figures

4.6 and 4.7 which show the average points visited for increasing d for n = 100000 and k = 5,

for respectively non-uniform and uniform query. In Figure 4.6, for most distributions a

peculiar S shape can be noticed, which is not so present in Figure 4.7, especially not for

methods other than SlMidPt. This is because of logn growth rate, that is only possible for

KDTrees on lower d’s, which then grows exponentially and tapers off at the polynomial

rate n as d becomes large. Since, for uniform query all the construction methods apart

from SlMidPt grow nearer to the (polynomial) linear rate n even for lower dimensions, this

peculiar S shape is not so present in Figure 4.7, and the number of points visited in most

cases for these methods grows at a constant (polynomial) rate with respect to d, before

tapering off at linear rate n. This, thus, further reasserts the fact for logn growth that

is observed in figures 4.4 and 4.5 above, and also further shows, in line with the theory,

84



that the logn growth rate is only achievable by KDTrees for lower d’s. As d becomes large

the trees tend to degenerate to simple linear search. This can be observed from both the

figures, where the trees either degenerate completely to simple linear search, visiting all

the 100000 points, or taper off at the rate n. However, this does not apply to non-noisy

line distributions, which stand out as an exceptional case. As can be seen in Figure 4.6 for

non-uniform query, the number of points visited is almost always constant for non-noisy

line distributions. Only on functions distribution for KMeans it grows, but still slower

than the exponential rate, while for SlMidPt on straight line distributions it grows in the

negative direction. This shows that for non-noisy line distributions the number of points

visited grows exponentially (while still being sublinear) only with respect to n, while it

stays almost constant for increasing d’s. This, however, only holds true for non-uniform

query, and, as can be seen in Figure 4.7, not for uniform query (when the query points are

not on the line). Another peculiar feature that ought to be pointed out in Figure 4.6, is

that for co-laplace and planar distributions, the number of points visited for d = 4 is less

than that for d = 2. This is because in d = 2 these distributions form a line, as can be

seen in Figure 4.1, and hence, because of the exponential rather than the logarithmic rate

of growth the number of points visited for these distributions is higher at d = 2 (especially

with the high value of n = 100000 selected for the figure). A figure similar to 4.4 but with

d = 2 is placed in Appendix A to show the exponential growth on these distributions at

d = 2.

Overall in summary, figures 4.4, 4.5, 4.6 and 4.7 indicate that all the construction

methods of KDTrees apart from SlMidPt offer logarithmic rate of growth (O(logn), as it

grows similar to logn but is some constant times higher) only for lower d’s and only for non-

uniform query, which grows exponentially towards linear n as d gets higher (see Figure A.4

similar to Figure 4.4 but for d = 32). SlMidPt offers similar growth but is not restricted

to just non-uniform query, it offers it for both non-uniform as well as uniform query. The

methods other than the SlMidPt on uniform query give near linear rate of growth (near

to O(n) but strictly less than n), which also grows towards linear n as d gets higher.

All the construction methods including SlMidtPt grow exponentially (though still being

sublinear) with n for non-noisy line distributions, while remain constant for increasing d.

However, the methods apart from SlMidPt, only exhibit this for non-uniform query (when

query points are also on the line), and when the query is uniform even at moderate d’s they

degrade to linear n . SlMidPt on non-noisy line distributions with uniform query, grows

exponentially with d, but even at higher d’s stays significantly sublinear. Trends similar

to what has been described were observed with fixed values of k, d and n other than the

85



ones used in figures 4.4, 4.5, 4.6 and 4.7, and hence the figures presented represent the

overall trends in the complete results.

In terms of average points visited, as can be seen from figures 4.4, 4.5, 4.6 and 4.7,

SlMidPt construction method of KDTrees is superior to other methods on clustered and

line distributions when the query is uniform, whereas when the query is non-uniform it

behaves almost exactly (infact better on line distributions) as the other methods. Though,

it does exhibit higher construction time (d1.5) on line distributions but this comes at a

trade-off of better fit to the data which, as can be seen from the figures, gives better query

performance. This behaviour of the SlMidPt method also holds in terms of CPU query

time. This can be seen in figures equivalent to 4.4, 4.5, 4.6 and 4.7, placed in Appendix

A, which plot CPU query time rather than average points visited for increasing n and

d. Hence, the SlMidPt construction method was selected for KDTrees, for their further

comparison with the rest of the NN methods.

4.3.2 Metric Trees’ Construction Methods

Let us now look at the selected construction methods of Metric Trees. Figure 4.8 shows

the construction time of the methods for increasing n for d = 16, and Figure 4.9 shows

the construction time for increasing d for n = 16000. It can be seen in Figure 4.8 that the

construction time of the MiddleOut method grows at a rate which is slightly exponential,

while the rest of the methods grow at a rate which is a (fairly) constant polynomial but

slightly higher than nlogn. While MiddleOut and PointsClosestToFurtherPair do not have

any guarantee, the rest of the methods in theory work in O(nlogn). With respect to d,

it can be seen in Figure 4.9, that the methods grow at a variable rate which is either

lower or near to linear d. Overall from both the figures, it can be seen that MedianValue

and MedianDistance have very similar construction times. FurthestPair exhibits growth

pattern similar to the two, but is a constant times higher. Whereas, MiddleOut has

the highest construction time and does not follow the growth pattern of the rest of the

methods. Similar trends to what has been described were observed in plots for other fixed

values of n and d. Two more similar plots with different values of n and d can be found

in Appendix B.

Let us now look at the methods’ query performance. Figures 4.10[1] and 4.11[2] show

respectively for non-uniform and uniform query, the average points visited by the methods

for increasing n, for d = 4 and k = 5. It can be seen in Figure 4.10[1] that for non-

uniform query all the methods apart from MedianDistance, in the end have a growth

rate lower or near (slightly higher) to logn. For uniform query, these methods (other than

86



 100

 1000

100000160008000400020001000

uniform

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

laplace

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

co-gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

co-laplace

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

clus-gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 10

 100

 1000

100000160008000400020001000

clus-orth-flats

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

clus-ellipsoids

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 10

 100

 1000

100000160008000400020001000

line

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

plane

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 10

 100

 1000

100000160008000400020001000

twolines

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

twoplanes

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

line-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

plane-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 10

 100

 1000

100000160008000400020001000

twolines-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

twoplanes-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 10

 100

 1000

100000160008000400020001000

functions

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 10

 100

 1000

100000160008000400020001000

functions-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

F
igu

re
4.4:

A
v
g

q
u
ery

p
oin

ts
v
isited

b
y

K
D

T
rees

for
in

creasin
g

n
on

n
on

-u
n
iform

q
u
ery.

87



 100

 1000

100000160008000400020001000

uniform

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

100000160008000400020001000

gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

laplace

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

co-gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

co-laplace

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

clus-gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

clus-orth-flats

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

clus-ellipsoids

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 10

 100

 1000

 10000

 100000

100000160008000400020001000

line

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

plane

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 10

 100

 1000

 10000

 100000

100000160008000400020001000

twolines

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

twoplanes

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

line-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

plane-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

twolines-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

twoplanes-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

 100000

100000160008000400020001000

functions

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 100

 1000

 10000

100000160008000400020001000

functions-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

F
igu

re
4.5:

A
v
g

q
u
ery

p
oin

ts
v
isited

b
y

K
D

T
rees

for
in

creasin
g

n
on

u
n
iform

q
u
ery.

88



 10

 100

 1000

 10000

 100000

803216842

uniform

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

gauss

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

laplace

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

co-gauss

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

co-laplace

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

clus-gauss

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

clus-orth-flats

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

clus-ellipsoids

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

803216842

line

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

line-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

803216842

twolines

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

twolines-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

plane

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

plane-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

twoplanes

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

twoplanes-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

803216842

functions

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

functions-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

F
igu

re
4.6:

A
v
g

q
u
ery

p
oin

ts
v
isited

b
y

K
D

T
rees

for
in

creasin
g

d
on

n
on

-u
n
iform

q
u
ery.

89



 10

 100

 1000

 10000

 100000

803216842

uniform

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

gauss

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

laplace

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

co-gauss

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

co-laplace

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

clus-gauss

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

clus-orth-flats

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

clus-ellipsoids

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

line

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

line-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

twolines

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

twolines-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

plane

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

plane-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

twoplanes

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

twoplanes-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 100

 1000

 10000

 100000

803216842

functions

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 10

 100

 1000

 10000

 100000

803216842

functions-noisy

AvgPointsVisited vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

F
igu

re
4.7:

A
v
g

q
u
ery

p
oin

ts
v
isited

b
y

K
D

T
rees

for
in

creasin
g

d
on

u
n
iform

q
u
ery.

90



 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

uniform

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

gauss

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

laplace

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

co-gauss

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

co-laplace

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

clus-gauss

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

clus-orth-flats

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

clus-ellipsoids

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

line

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

line-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

twolines

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

twolines-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

plane

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

plane-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

twoplanes

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

twoplanes-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

functions

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

functions-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=4)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

F
igu

re
4.8:

M
etric

T
rees’

con
stru

ction
tim

e
for

in
creasin

g
n
.

91



 0.01

 0.1

 1

 10

 100

803216842

uniform

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

gauss

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

laplace

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

co-gauss

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.01

 0.1

 1

 10

 100

803216842

co-laplace

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

clus-gauss

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.01

 0.1

 1

 10

 100

803216842

clus-orth-flats

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.01

 0.1

 1

 10

 100

803216842

clus-ellipsoids

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.01

 0.1

 1

 10

803216842

line

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

line-noisy

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

twolines

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

twolines-noisy

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.01

 0.1

 1

 10

 100

803216842

plane

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.01

 0.1

 1

 10

 100

803216842

plane-noisy

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.01

 0.1

 1

 10

 100

803216842

twoplanes

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

twoplanes-noisy

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

functions

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

803216842

functions-noisy

CPUPreprocessTime vs Dim (Metric Tree n=16000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

F
igu

re
4.9:

M
etric

T
rees’

con
stru

ction
tim

e
for

in
creasin

g
d
.

92



MedianDistance) show mixed trends. On non-noisy line and planar distributions their rate

gets higher, whereas on clustered and co-laplace distributions FurthestPair and MiddleOut

get slightly lower but MedianValue does not show any clear trend. In all the rest of the

cases also there are no clear trends for these three methods. The MedianDistance method

for both non-uniform and uniform query has growth rate which is consistently higher than

logn. The number of points visited by MedianDistance is also consistently higher than all

the rest of the methods, except in the case of laplace distribution where it gets closer to

MedianValue for both non-uniform and uniform query. It ought to be emphasized all the

methods only have logn rate of growth, the actual number of points visited is a constant

times higher.

Figures 4.12[3] and 4.13[4], for respectively non-uniform and uniform query, plot the

average points visited for increasing d for n = 100000. In both the figures it can be seen

that all the methods, like the methods of KDTrees, grow quickly with respect to d (except

on non-noisy line distributions) and taper off at linear rate n. MedianValue is the worst

overall. All the rest of the methods mostly grow at a constant polynomial rate (non-

exponential) before tapering off at linear rate O(n). However, in some cases, especially on

planar distributions, one or more of these methods also show the peculiar S shape like the

KDTree methods, suggesting in those cases their logarithmic growth for lower dimensions.

The non-noisy straight line distributions are also an exception, where in the end all the

methods remain either constant or grow in the negative direction with respect to d for

both non-uniform and uniform query. Some methods on non-uniform query also exhibit

this for non-noisy functions distribution (non-noisy unstraight line), but on uniform query

they (and the rest of the methods) do not stay constant but grow at a slow rate. Similar

trends were also observed in figures similar to 4.10, 4.11, 4.12 and 4.13, but with different

fixed values of k, d and n.

From all the four figures, 4.10, 4.11, 4.12 and 4.13, it can be seen that MedianDistance

is the worst method overall (its better than MedianValue only for smaller d, and only on

laplace distribution). However, as can be noticed from the figures, there is no candidate

among the remaining methods which consistently (or almost consistently) performs better

than the others. All the remaining three methods are either sometimes better or sometimes

worse compared to each other. This indeed posed a dilemma for selecting a construction

method for further comparison of the trees with other NN methods. A closer inspection

of the figures, however, reveals that the FurthestPair method almost always ends up near

the bottom, and (almost always) is either the best or the second best in terms of query

performance. This also holds true if we look at CPU query time rather than average points

93



visited, as can be seen in figures B.3, B.4, B.5 and B.6 in Appendix B that are respectively

similar to figures 4.10[1], 4.11[2], 4.12[3] and 4.13[4]. The construction time of FurthestPair

is also on par with the method best in terms of construction time (MedianValue), while

still being significantly lower than the one which is the worst (MiddleOut). Hence, the

FurthestPair method was selected for Metric Trees, for their further comparison with other

NN methods.

4.3.3 NN Methods

Let us now look at the best construction methods of KDTrees and Metric Trees compared

with the other NN methods, i.e with the Annulus Method, Cover Trees and simple Linear

Search (with PDS). Since Linear Search does not perform any preprocessing, comparing

its CPU preprocessing time with the others would not serve any purpose, therefore it is

compared with the others only in terms of its query performance.

Figure 4.14 plots the preprocessing/construction time of the methods (other than Lin-

ear Search) for increasing n for d = 4, and Figure 4.15 plots the preprocessing/construction

time for increasing d for n = 100000. It can be seen in Figure 4.14 that apart from An-

nulus Method all the rest of the methods have preprocessing times which (mostly) grow

at a rate slightly higher than nlogn. Whereas, Annulus Method in all cases has a growth

rate lower than nlogn, which is because of its lower O(n) preprocessing cost. With respect

to d, it can be seen in Figure 4.15, that apart from Cover Trees all methods in almost

all cases grow at a rate either lower or equal to d. Cover Trees curiously grow at a rate

lower than d only upto d ≤ 8, after which for all but the non-noisy line distributions their

construction time shoots up exponentially. On non-noisy line distributions, though, they

grow slower than d even at higher d’s. This peculiar behaviour of Cover Trees is not fully

understood. Literature states their construction time to be O(c6nlogn), and it could be

that the expansion constant c becomes quite large after d = 8 for all but non-noisy line

distributions. However this can not be fully ascertained, as the literature does not state

explicitly either the Cover Trees’ or the expansion constant’s dependence directly on d.

Overall from figures 4.14 and 4.15, it can be seen that Annulus Method has the lowest

preprocessing time. SlMidPt of KDTrees is the next best method; however, on non-

noisy line distributions it becomes the worst for higher d’s. Cover Tree is similar to

FurthestPair upto d ≤ 8, after which it becomes the worst method on all but the non-

noisy line distributions. On non-noisy line distribution it is the worst method for lower

d’s but becomes the best for higher d’s. Metric Trees’ FurthestPair method is generally in

between SlMidPt and Cover Tree, either worse than KDTree and better than Cover Tree,

94



 100

 1000

 10000

 100000

100000160008000400020001000

uniform

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

gauss

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

laplace

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

co-gauss

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

co-laplace

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

clus-gauss

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

clus-orth-flats

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

clus-ellipsoids

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 10

 100

 1000

 10000

100000160008000400020001000

line

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

line-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 10

 100

 1000

 10000

100000160008000400020001000

twolines

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

twolines-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

plane

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

plane-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 10

 100

 1000

 10000

100000160008000400020001000

functions

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

functions-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

F
igu

re
4.10:

A
v
g

p
oin

ts
v
isited

b
y

M
etric

T
rees

for
in

creasin
g

n
on

n
on

-u
n
iform

q
u
ery.

95



 100

 1000

 10000

 100000

100000160008000400020001000

uniform

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

gauss

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

laplace

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

co-gauss

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

co-laplace

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

clus-gauss

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

clus-orth-flats

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

clus-ellipsoids

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

line

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

line-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

twolines

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

100000160008000400020001000

twolines-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

plane

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

plane-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

functions

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 100

 1000

 10000

 100000

100000160008000400020001000

functions-noisy

AvgPointsVisited vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

F
igu

re
4.11:

A
v
g

p
oin

ts
v
isited

b
y

M
etric

T
rees

for
in

creasin
g

n
on

u
n
iform

q
u
ery.

96



 10

 100

 1000

 10000

 100000

803216842

uniform

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

gauss

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

laplace

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

co-gauss

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

co-laplace

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

clus-gauss

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

clus-orth-flats

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

clus-ellipsoids

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

803216842

line

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

line-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

803216842

twolines

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

twolines-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

plane

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

plane-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

twoplanes

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

twoplanes-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

803216842

functions

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

functions-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

F
igu

re
4.12:

A
v
g

p
oin

ts
v
isited

b
y

M
etric

T
rees

for
in

creasin
g

d
on

n
on

-u
n
iform

q
u
ery.

97



 10

 100

 1000

 10000

 100000

803216842

uniform

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

gauss

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

laplace

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

co-gauss

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

co-laplace

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

clus-gauss

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

clus-orth-flats

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

clus-ellipsoids

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 1000

 10000

 100000

803216842

line

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

line-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

twolines

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

twolines-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 1000

 10000

 100000

803216842

plane

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

plane-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

twoplanes

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

twoplanes-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 100

 1000

 10000

 100000

803216842

functions

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 10

 100

 1000

 10000

 100000

803216842

functions-noisy

AvgPointsVisited vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

F
igu

re
4.13:

A
v
g

p
oin

ts
v
isited

b
y

M
etric

T
rees

for
in

creasin
g

d
on

u
n
iform

q
u
ery.

98



or vice versa, in case of non-noisy line distributions. The only notable exceptions to this

are the co-laplace and functions distributions, where FurthestPair is the worst method for

smaller d’s (< 16). Two more figures similar to 4.14 and 4.15 but with different fixed

values of d and n can be found in Appendix C.

Let us now look at the query performance of the methods. Figures 4.16[1] and 4.17[2]

for k = 5 and d = 4, plot the average data points visited by the methods for increasing

n for respectively non-uniform and uniform query. It can be seen for uniform query in

Figure 4.16[1], that the Annulus Method has the highest growth rate and is also the worst

method in most of the cases. Only on non-noisy line distributions it performs better and

is either the best or one of the best methods (low d’s on co-laplace distribution is also a

notable exception, where it performs better). On distributions other than non-noisy lines,

KDTree is the best method. On non-noisy line distributions it grows exponentially, and

for non-noisy unstraight lines it is the worst method for higher n’s. Metric Tree has a

growth rate similar to KDTree but is a constant times worse. Only for higher n’s on non-

noisy line distributions it becomes better than KDTree. Cover Tree has a higher growth

rate than both KDTree and Metric Tree, on all but the non-noisy line distributions. On

non-noisy line distributions its growth is similar to Metric Tree but lower than KDTree

at higher n’s. It is also the worst method on non-noisy line distributions at lower n’s

compared to KDTree and Metric Tree, at higher n’s KDTree either becomes the worst

or for unstraight line (functions distribution) comes close to Cover Tree. On rest of the

distributions (apart from non-noisy lines) Cover Tree is mostly in the middle, worse than

KDTree but better than Metric Tree, especially for n < 100000. In Figure 4.17[2] for

uniform query it can be seen that Annulus Method again has the highest growth rate and

it is the worst method overall compared to others. On most distributions its rate of growth

and the actual number of point visited get much closer to that of Linear Search. Cover

Tree is the best method or one of the best methods on all but the non-noisy straight line

distributions1 for n < 100000. Its rate of growth also gets much closer to KDTree and

Metric Tree, compared to its rate in case of non-uniform query. On non-noisy straight

line distributions KDTree is better than Cover Tree and is the best method, even though

on these distributions it exhibits a much higher rate of growth than either Cover Tree

or Metric Tree. On all the rest of the distributions (other than non-noisy straight lines)

KDTree and Metric Tree are mostly similar, and mostly worse than the Cover Tree. Only

in some cases one is better or worse than the other, or better than the Cover Tree for

1Cover Tree is also not the best on Uniform distribution, but the case of uniform distribution is exactly
the same as in Figure 4.16[1] and hence is not considered here.

99



 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

uniform

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

gauss

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

laplace

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-gauss

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-laplace

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-gauss

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-orth-flats

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-ellipsoids

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=4)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

F
igu

re
4.14:

P
rep

ro
cessin

g
tim

e
of

N
N

m
eth

o
d
s

for
in

creasin
g

n
.

100



 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

803216842

uniform

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

803216842

gauss

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

803216842

laplace

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

803216842

co-gauss

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

803216842

co-laplace

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

803216842

clus-gauss

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

803216842

clus-orth-flats

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

803216842

clus-ellipsoids

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

line

CPUPreprocessTime vs Dim (NNMethods n=100000)

 0.01

 0.1

 1

 10

 100

 1000

 10000

803216842

line-noisy

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

803216842

twolines

CPUPreprocessTime vs Dim (NNMethods n=100000)

 0.01

 0.1

 1

 10

 100

 1000

 10000

803216842

twolines-noisy

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

803216842

plane

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

803216842

plane-noisy

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

803216842

twoplanes

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

803216842

twoplanes-noisy

CPUPreprocessTime vs Dim (NNMethods n=100000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

803216842

functions

CPUPreprocessTime vs Dim (NNMethods n=100000)

 0.01

 0.1

 1

 10

 100

 1000

803216842

functions-noisy

CPUPreprocessTime vs Dim (NNMethods n=100000)

F
igu

re
4.15:

P
rep

ro
cessin

g
tim

e
of

N
N

m
eth

o
d
s

for
in

creasin
g

d
.

101



n = 100000.

Figures 4.18[3] and 4.19[4], for respectively non-uniform and uniform query, plot the

average data points visited by the methods for increasing d, for k = 5 and n = 100000.

It can be seen for non-uniform query in Figure 4.18[3] that for distributions other than

non-noisy lines, KDTree is the best method for lower d’s (< 16), whereas at higher d’s

Cover Tree is either the best or one of the best methods. Furthermore, Metric Tree on

these distributions performs better than Cover Tree for lower d’s but becomes worse as d

gets higher. This behaviour, however, is only on the selected high value of n of the figure,

as Cover Tree performs worse than Metric Tree (and KDTree) for n = 100000, as was seen

in Figure 4.16[1]. On non-noisy line distributions, it can be seen, that Annulus Method

and Metric Tree are better than others. It can be seen that Annulus Method is the worst

over all, it is only better on non-noisy lines and for higher d’s on noisy straight lines, while

Metric Tree is worse than KDTree for lower d’s, and worse or similar to Cover Tree for

higher d’s on all but the non-noisy line distributions. For uniform query, it can be seen

in Figure 4.19[4], Annulus Method is the worst overall; in many cases even at moderate

d values it completely degrades to Linear Search. Overall Cover Tree is the best method.

On distributions other than non-noisy lines, Metric Tree is mostly similar to Cover Tree

at low and high d’s, but mostly worse for middle d’s. KDTree also shows the similar

behaviour but in many cases is even worse than Metric Tree, and also sometimes worse

than Cover Tree and Metric Tree at high d’s. On non-noisy line distributions, Metric Tree

has the same rate of growth as Cover Tree but is a constant times worse, whereas KDTree

has a much higher growth rate and becomes worse than both the two as d increases.

Overall in summary, from figures 4.16[1], 4.17[2], 4.18[3], and 4.19[4], for non-uniform

query KDTree is the best for lower d’s (< 16) and Cover Tree is better for higher d’s.

For uniform query Cover Tree is the best. Annulus Method is the worst method overall;

only for non-uniform query on non-noisy straight lines it is good. Metric Tree offers

performance very similar to Cover Tree but is worse at higher d’s. Cover Tree, however,

has the drawback that it degrades faster than the others for increasing n on non-uniform

query. All methods can not cope with increasing d’s and degrade (completely) to Linear

Search on all but the clustered and line distributions, for both non-uniform and uniform

query.

Let us now look at how well the query performance of the methods measured in average

points visited matches the CPU query time. Figures 4.20[5], 4.21[6], 4.22[7] and 4.23[8],

are respectively equivalent to 4.16[1], 4.17[2], 4.18[3] and 4.19[4], but are plotted for CPU

query time rather than average points visited. It can be seen from the figures that the

102



 100

 1000

 10000

 100000

100000160008000400020001000

uniform

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

gauss

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

laplace

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

co-gauss

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

co-laplace

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

clus-gauss

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

clus-orth-flats

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

clus-ellipsoids

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 1

 10

 100

 1000

 10000

 100000

100000160008000400020001000

line

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

line-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

twolines

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

twolines-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

plane

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

plane-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

functions

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

functions-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

F
igu

re
4.16:

A
v
g

p
oin

ts
v
isited

b
y

N
N

M
eth

o
d
s

for
in

creasin
g

n
on

n
on

-u
n
iform

q
u
ery.

103



 100

 1000

 10000

 100000

100000160008000400020001000

uniform

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

gauss

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

laplace

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

co-gauss

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

co-laplace

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

clus-gauss

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

clus-orth-flats

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

clus-ellipsoids

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

line

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

line-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

twolines

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

twolines-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

plane

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

plane-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

100000160008000400020001000

functions

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

100000160008000400020001000

functions-noisy

AvgPointsVisited vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

F
igu

re
4.17:

A
v
g

p
oin

ts
v
isited

b
y

N
N

M
eth

o
d
s

for
in

creasin
g

n
on

u
n
iform

q
u
ery.

104



 10

 100

 1000

 10000

 100000

803216842

uniform

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

gauss

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

laplace

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

co-gauss

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

co-laplace

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

clus-gauss

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

clus-orth-flats

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

clus-ellipsoids

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 1

 10

 100

 1000

 10000

 100000

803216842

line

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

line-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

twolines

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

twolines-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 1

 10

 100

 1000

 10000

 100000

803216842

plane

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

plane-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

twoplanes

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

twoplanes-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

functions

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

functions-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

F
igu

re
4.18:

A
v
g

p
oin

ts
v
isited

b
y

N
N

M
eth

o
d
s

for
in

creasin
g

d
on

n
on

-u
n
iform

q
u
ery.

105



 10

 100

 1000

 10000

 100000

803216842

uniform

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

gauss

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

laplace

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

co-gauss

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

co-laplace

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

clus-gauss

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

clus-orth-flats

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

clus-ellipsoids

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

line

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

line-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

twolines

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

twolines-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

plane

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

plane-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

twoplanes

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

twoplanes-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 100

 1000

 10000

 100000

803216842

functions

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 10

 100

 1000

 10000

 100000

803216842

functions-noisy

AvgPointsVisited vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

F
igu

re
4.19:

A
v
g

p
oin

ts
v
isited

b
y

N
N

M
eth

o
d
s

for
in

creasin
g

d
on

u
n
iform

q
u
ery.

106



extra overhead involved in pruning away points from inspection starts to show up, and the

methods get much closer to Linear Search in CPU query time than they were in average

points visited. Cover Tree especially, because of it larger tree size relatively gets higher

than the other trees (though strangely its growth rate become lower for increasing n).

In Figure 4.21[6], for increasing n on uniform query, it is no longer the best method for

n < 100000 like in Figure 4.17[2], infact it is the worst method compared to KDTree and

Metric Tree, and KDTree, probably because of its simpler and faster pruning procedure, is

the best method. Also, it can be seen in Figure 4.21[6], that on most distributions Annulus

Method gets even worse than Linear Search for higher n’s, while it was not the case in

Figure 4.17[2]. With respect to d it can be seen in Figure 4.22[7], that for non-uniform

query KDTree (on distributions other than non-noisy lines) is not only still the best for

lower d’s but becomes better or equivalent to others even at moderate and higher values

of d. For uniform query (Figure 4.23[8]) Cover Tree is still the best for moderate d values,

but not any more on planar distributions, where KDTree now becomes the best even at

high d’s. All the methods, however, are of not much use for d > 16 on distributions other

than the clustered and non-noisy lines, as for both non-uniform and uniform query they

become even worse than the Linear Search for d > 16. Annulus Method, though, gets

worse even sooner, sometimes even at d = 2; thus performing much poorer than what was

initially hoped. Trends similar to what has been described were also observed in plots

with other fixed values of k, d, and n.

107



 0.01

 0.1

 1

 10

 100

100000160008000400020001000

uniform

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

gauss

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

laplace

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-gauss

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-laplace

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-gauss

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-orth-flats

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-ellipsoids

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

F
igu

re
4.20:

C
P

U
q
u
ery

tim
e

of
N

N
M

eth
o
d
s

for
in

creasin
g

n
on

n
on

-u
n
iform

q
u
ery.

108



 0.01

 0.1

 1

 10

 100

100000160008000400020001000

uniform

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

gauss

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

laplace

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-gauss

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-laplace

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-gauss

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-orth-flats

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-ellipsoids

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions-noisy

CPUQueryTime vs TotalDataPts (K=5 d=4)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

F
igu

re
4.21:

C
P

U
q
u
ery

tim
e

of
N

N
M

eth
o
d
s

for
in

creasin
g

n
on

u
n
iform

q
u
ery.

109



 0.01

 0.1

 1

 10

 100

 1000

803216842

uniform

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.1

 1

 10

 100

 1000

803216842

co-laplace

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

803216842

line

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

twolines

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

twolines-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

803216842

functions

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

803216842

functions-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Non-uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

F
igu

re
4.22:

C
P

U
q
u
ery

tim
e

of
N

N
M

eth
o
d
s

for
in

creasin
g

d
on

n
on

-u
n
iform

q
u
ery.

110



 0.01

 0.1

 1

 10

 100

 1000

803216842

uniform

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-laplace

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.1

 1

 10

 100

 1000

803216842

line

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.1

 1

 10

 100

 1000

803216842

twolines

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

twolines-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.1

 1

 10

 100

 1000

803216842

plane

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.1

 1

 10

 100

 1000

803216842

functions

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

functions-noisy

CPUQueryTime vs Dim (K=5 n=100000)
Uniform Query

LinearSearch
Annulus
SlMidPt

FurthestPair
CoverTree

F
igu

re
4.23:

C
P

U
q
u
ery

tim
e

of
N

N
M

eth
o
d
s

for
in

creasin
g

d
on

u
n
iform

q
u
ery.

111





Chapter 5

Conclusion

Since the initial inception of the NN problem a large number of techniques have been

proposed for its solution. However, ideal solutions exist only for d ≤ 2, and solutions for

d > 2 are still far from ideal. All the proposed solutions for d > 2, that have reasonable

space and preprocessing time, degrade to Linear Search for d’s.

For moderate d’s (≤ 10), KDTrees are one of the oldest and most popular techniques

proposed for NN search. Metric Trees are a popular and newer technique, which are

claimed to be the state-of-the-art for moderate d’s. More recently, Cover Trees have

been proposed, which are designed to exploit the low intrinsic dimensionality of points

embedded in higher dimensions, and are thus claimed to give better performance even at

higher d’s. All these techniques, however, have not been thoroughly compared with each

other, and their performance relative to each other was essentially unknown. Moreover,

the two most popular techniques, KDTrees and Metric Trees, have a number proposed

construction methods, which have not been compared with each other either. This thesis

dealt with a thorough empirical investigation of the various construction methods for

KDTrees and Metric Trees, and also, comparison of the two trees against each other, and

against Cover Trees and the Annulus Method.

It was observed in the investigation carried out for this thesis that all the evaluated

techniques suffer from the curse-of-dimensionality and generally become worse than Linear

Search for d > 16. Excluding the Annulus Method, which always performed poorly, the

rest of methods are only better than Linear Search if the points are clustered or lie on a

line. KDTree is the best method if the query points have the same distribution as that of

the data, otherwise KDTree is best for low d’s but for higher d’s Cover Tree is the best.

KDTree is worse than the other methods only for points lying on a line, a case which is

uncommon in practice. In other cases, even if we look at points visited rather than raw

CPU times, KDTree is either better or very similar to Metric Tree. Hence, the state-of-the-

art claim of Metric Trees could not be verified. Cover Trees, though more sophisticated

and claimed to be better at higher d’s, performed very similar to Metric Trees in this

113



investigation. Only at moderate to high d’s, they are somewhat better than Metric Trees.

Cover Trees also appear to have a high query time overhead, as they are slightly better off

in terms of points visited than CPU query time, compared to Metric Trees and the others.

The Annulus Method, which is an old technique but was rediscovered during the research

performed for this thesis, was found to be the worst overall; only in the pathological case

of points lying on a line it gives better query performance than the others.

Among the construction methods for KDTrees, Sliding Midpoint of Widest Side

(SlMidPt) was found to be the best. It gives better query performance when query points

have a different distribution than the data, and also works equally well if their distribution

is the same. Among the construction methods for Metric Trees, Points Closest to Further

Pair (FurthestPair) was found to give optimal or near optimal query performance, with

little additional overhead in preprocessing/construction time.

114



Appendix A

Additional Results for KDTrees

115



 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

uniform

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

gauss

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

laplace

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-gauss

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-laplace

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-gauss

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-orth-flats

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-ellipsoids

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

100000160008000400020001000

line

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

100000160008000400020001000

twolines

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions-noisy

CPUPreprocessTime vs TotalDataPts (KDTree d=4)

Median
MidPt

SlMidPt
KMeans

n*logn

F
igu

re
A

.1:
K

D
T
rees’

con
stru

ction
tim

e
for

in
creasin

g
n
.

116



 0.01

 0.1

 1

 10

 100

 1000

803216842

uniform

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-laplace

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

803216842

line

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

803216842

twolines

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

twolines-noisy

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

functions

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

 0.01

 0.1

 1

 10

 100

 1000

803216842

functions-noisy

CPUPreprocessTime vs Dim (KDTree n=16000)

Median
MidPt

SlMidPt
KMeans

d

F
igu

re
A

.2:
K

D
T
rees’

con
stru

ction
tim

e
for

in
creasin

g
d
.

117



 0.1

 1

 10

 100

 1000

 10000

803216842

uniform

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

laplace

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

co-gauss

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

co-laplace

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

clus-gauss

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

clus-orth-flats

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

803216842

line

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

line-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

803216842

twolines

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

twolines-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

plane

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

twoplanes

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

twoplanes-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

functions

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

 0.1

 1

 10

 100

 1000

 10000

803216842

functions-noisy

CPUPreprocessTime vs Dim (KDTree n=100000)

Median
MidPt

SlMidPt
KMeans

d1.5

F
igu

re
A

.3:
K

M
ean

s
O

(d
1
.5)

con
stru

ction
tim

e.

118



 100

 1000

 10000

 100000

100000160008000400020001000

uniform

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

laplace

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

co-gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

co-laplace

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

clus-gauss

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

clus-orth-flats

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

clus-ellipsoids

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 10

 100

 1000

 10000

 100000

100000160008000400020001000

line

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

plane

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 10

 100

 1000

 10000

 100000

100000160008000400020001000

twolines

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

line-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

plane-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

twolines-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

twoplanes-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 10

 100

 1000

 10000

 100000

100000160008000400020001000

expressions

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

 100

 1000

 10000

 100000

100000160008000400020001000

expressions-noisy

AvgPointsVisited vs TotalDataPts (KDTree K=5 d=32)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

n

F
igu

re
A

.4:
D

egrad
ation

of
K

D
T
rees

tow
ard

s
n

at
h
igh

er
d
’s.

119



 0.01

 0.1

 1

100000160008000400020001000

uniform

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

gauss

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

laplace

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

co-gauss

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

co-laplace

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-gauss

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

clus-orth-flats

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

clus-ellipsoids

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

line

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

plane

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

twolines

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

twoplanes

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

line-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

plane-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

twolines-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

twoplanes-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

expressions

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

expressions-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

logn

F
igu

re
A

.5:
C

P
U

q
u
ery

tim
e

of
K

D
T
rees

for
in

creasin
g

n
on

n
on

-u
n
iform

q
u
ery.

120



 0.01

 0.1

 1

100000160008000400020001000

uniform

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

gauss

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

laplace

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

co-gauss

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

co-laplace

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-gauss

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-orth-flats

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-ellipsoids

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

plane

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

twoplanes

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

100000160008000400020001000

line-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

plane-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

twolines-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

twoplanes-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

expressions

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

expressions-noisy

CPUQueryTime vs TotalDataPts (KDTree K=5 d=4)
Uniform Query

Median
MidPt

SlMidPt
KMeans

logn

F
igu

re
A

.6:
C

P
U

q
u
ery

tim
e

of
K

D
T
rees

for
in

creasin
g

n
on

u
n
iform

q
u
ery.

121



 0.01

 0.1

 1

 10

 100

 1000

803216842

uniform

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

 100

 1000

803216842

co-laplace

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

803216842

line

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

803216842

twolines

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

803216842

twolines-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

803216842

expressions

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

803216842

expressions-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Non-uniform Query

Median
MidPt

SlMidPt
KMeans

F
igu

re
A

.7:
C

P
U

q
u
ery

tim
e

of
K

D
T
rees

for
in

creasin
g

d
on

n
on

-u
n
iform

q
u
ery.

122



 0.01

 0.1

 1

 10

 100

 1000

803216842

uniform

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-laplace

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

 100

 1000

803216842

line

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

 100

 1000

803216842

twolines

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

twolines-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

 100

 1000

803216842

plane

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.1

 1

 10

 100

 1000

803216842

expressions

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

 0.01

 0.1

 1

 10

 100

 1000

803216842

expressions-noisy

CPUQueryTime vs Dim (KDTree K=5 n=100000)
Uniform Query

Median
MidPt

SlMidPt
KMeans

F
igu

re
A

.8:
C

P
U

q
u
ery

tim
e

of
K

D
T
rees

for
in

creasin
g

d
on

u
n
iform

q
u
ery.

123





Appendix B

Additional Results for Metric

Trees

125



 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

uniform

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

gauss

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

laplace

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

co-gauss

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

co-laplace

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

clus-gauss

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

clus-orth-flats

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

clus-ellipsoids

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

line

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

line-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

twolines

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

twolines-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

plane

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

plane-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

twoplanes

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

twoplanes-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

functions

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

 0.01

 0.1

 1

 10

 100

 1000

100000160008000400020001000

functions-noisy

CPUPreprocessTime vs TotalDataPts (Metric Tree d=16)

MedianValue
MedianDistance

FurthestPair
MiddleOut

nlogn

F
igu

re
B

.1:
M

etric
T
rees’

con
stru

ction
tim

e
for

in
creasin

g
n

w
ith

d
=

16.

126



 0.1

 1

 10

 100

 1000

803216842

uniform

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

co-laplace

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

line

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

twolines

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

twolines-noisy

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

plane

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

functions

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

 0.1

 1

 10

 100

 1000

803216842

functions-noisy

CPUPreprocessTime vs Dim (Metric Tree n=100000)

MedianValue
MedianDistance

FurthestPair
MiddleOut

d

F
igu

re
B

.2:
M

etric
T
rees’

con
stru

ction
tim

e
for

in
creasin

g
d

w
ith

n
=

100K
.

127



 0.01

 0.1

 1

 10

 100

100000160008000400020001000

uniform

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

 100

100000160008000400020001000

gauss

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

 100

100000160008000400020001000

laplace

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-gauss

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

 100

100000160008000400020001000

co-laplace

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-gauss

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-orth-flats

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-ellipsoids

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

line

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

plane

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

twolines

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

twoplanes

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

 100

100000160008000400020001000

line-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

twolines-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

expressions

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

expressions-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

F
igu

re
B

.3:
C

P
U

q
u
ery

tim
e

of
M

etric
T
rees

for
in

creasin
g

n
on

n
on

-u
n
iform

q
u
ery.

128



 0.01

 0.1

 1

 10

 100

100000160008000400020001000

uniform

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

100000160008000400020001000

gauss

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

laplace

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

100000160008000400020001000

co-gauss

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

100000160008000400020001000

co-laplace

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-gauss

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

100000160008000400020001000

clus-orth-flats

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

clus-ellipsoids

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

line-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

100000160008000400020001000

twolines-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

expressions

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

expressions-noisy

CPUQueryTime vs TotalDataPts (Metric Tree K=5 d=4)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

logn

F
igu

re
B

.4:
C

P
U

q
u
ery

tim
e

of
M

etric
T
rees

for
in

creasin
g

n
on

u
n
iform

q
u
ery.

129



 0.01

 0.1

 1

 10

 100

 1000

803216842

uniform

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

co-laplace

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

803216842

line

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

803216842

twolines

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

twolines-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

803216842

expressions

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

803216842

expressions-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Non-uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

F
igu

re
B

.5:
C

P
U

q
u
ery

tim
e

of
M

etric
T
rees

for
in

creasin
g

d
on

n
on

-u
n
iform

q
u
ery.

130



 0.01

 0.1

 1

 10

 100

 1000

803216842

uniform

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

 10000

803216842

co-laplace

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

line

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

803216842

twolines

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

twolines-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

plane

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.1

 1

 10

 100

 1000

803216842

expressions

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

 0.01

 0.1

 1

 10

 100

 1000

803216842

expressions-noisy

CPUQueryTime vs Dim (Metric Tree K=5 n=100000)
Uniform Query

MedianValue
MedianDistance

FurthestPair
MiddleOut

F
igu

re
B

.6:
C

P
U

q
u
ery

tim
e

of
M

etric
T
rees

for
in

creasin
g

d
on

u
n
iform

q
u
ery.

131





Appendix C

Additional Results for NN

Methods

133



 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

uniform

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

gauss

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

laplace

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-gauss

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

co-laplace

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-gauss

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-orth-flats

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

clus-ellipsoids

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

line-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twolines-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

plane-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

twoplanes-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

 0.001

 0.01

 0.1

 1

 10

 100

100000160008000400020001000

functions-noisy

CPUPreprocessTime vs TotalDataPts (NNMethods d=2)

Annulus
SlMidPt

FurthestPair
CoverTree

nlogn

F
igu

re
C

.1:
P

rep
ro

cessin
g

tim
e

of
N

N
m

eth
o
d
s

for
in

creasin
g

n
w

ith
d
=

2.

134



 0.01

 0.1

 1

 10

 100

 1000

803216842

uniform

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

gauss

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

laplace

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-gauss

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

co-laplace

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-gauss

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-orth-flats

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

clus-ellipsoids

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

803216842

line

CPUPreprocessTime vs Dim (NNMethods n=16000)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

803216842

line-noisy

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

803216842

twolines

CPUPreprocessTime vs Dim (NNMethods n=16000)

 0.01

 0.1

 1

 10

 100

803216842

twolines-noisy

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

plane-noisy

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.001

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.01

 0.1

 1

 10

 100

 1000

803216842

twoplanes-noisy

CPUPreprocessTime vs Dim (NNMethods n=16000)

d
Annulus
SlMidPt

FurthestPair
CoverTree

 0.001

 0.01

 0.1

 1

 10

803216842

functions

CPUPreprocessTime vs Dim (NNMethods n=16000)

 0.01

 0.1

 1

 10

 100

803216842

functions-noisy

CPUPreprocessTime vs Dim (NNMethods n=16000)

F
igu

re
C

.2:
P

rep
ro

cessin
g

tim
e

of
N

N
m

eth
o
d
s

for
in

creasin
g

d
w

ith
n
=

16K
.

135





Bibliography

Aggarwal, A., Hansen, M. & Leighton, T. (1990). Solving query-retrieval problems by

compacting voronoi diagrams. In STOC ’90: Proceedings of the twenty-second annual

ACM symposium on Theory of computing (pp. 331–340). New York, NY, USA: ACM

Press.

Aggarwal, C. C. (2002). On effective classification of strings with wavelets. In KDD

’02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 163–172). New York, NY, USA: ACM Press.

Andoni, A. & Indyk, P. (2006). Efficient algorithms for substring near neighbor problem. In

SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete

algorithm (pp. 1203–1212). New York, NY, USA: ACM Press.

Arge, L., de Berg, M., Haverkort, H. J. & Yi, K. (2004). The priority r-tree: a practically

efficient and worst-case optimal r-tree. In SIGMOD ’04: Proceedings of the 2004

ACM SIGMOD international conference on Management of data (pp. 347–358). New

York, NY, USA: ACM Press.

Arya, S., Malamatos, T. & Mount, D. M. (2002). Space-efficient approximate voronoi

diagrams. In STOC ’02: Proceedings of the thiry-fourth annual ACM symposium on

Theory of computing (pp. 721–730). New York, NY, USA: ACM Press.

Arya, S. & Mount, D. M. (1993). Algorithms for fast vector quantization. In Proceedings

of the IEEE Data Compression Conference (DCC’93) (pp. 381–390). IEEE Press.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R. & Wu, A. Y. (1998). An optimal

algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of

the ACM, 45(6), 891–923.

Atkeson, C. G., Moore, A. W. & Schaal, S. (1997). Locally weighted learning. Artificial

Intelligence Review, 11(1-5), 11–73.

Aurenhammer, F. (1991). Voronoi diagrams–A survey of a fundamental geometric data

structure. ACM Computing Surveys, 23(3), 345–405.

137



Bach, J. R., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, R., Jain,

R. C. & Shu, C.-F. (1996). Virage image search engine: an open framework for image

management. In Sethi, I. K. & Jain, R. C. (Eds.), Proceedings of SPIE Vol. 2670,

Volume 2670 (pp. 76–87). SPIE.

Beckmann, N., Kriegel, H.-P., Schneider, R. & Seeger, B. (1990). The r*-tree: an efficient

and robust access method for points and rectangles. In SIGMOD ’90: Proceedings

of the 1990 ACM SIGMOD international conference on Management of data (pp.

322–331). New York, NY, USA: ACM Press.

Bei, C.-D. & Gray, R. M. (1985). An improvement of the minimum distortion encoding

algorithm for vector quantization. IEEE Transactions on Communications, COM-

33(10), 1132–1133.

Beis, J. S. & Lowe, D. G. (1997). Shape indexing using approximate nearest-neighbour

search in high-dimensional spaces. In CVPR ’97: Proceedings of the 1997 Conference

on Computer Vision and Pattern Recognition (CVPR ’97) (p. 1000). Washington,

DC, USA: IEEE Computer Society.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.

Commun. ACM, 18(9), 509–517.

Berchtold, S., Keim, D. A. & Kriegel, H.-P. (1996). The x-tree : An index structure

for high-dimensional data. In Vijayaraman, T. M., Buchmann, A. P., Mohan, C.

& Sarda, N. L. (Eds.), VLDB’96, Proceedings of 22th International Conference on

Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India (pp. 28–39).

Morgan Kaufmann.

Beyer, K. S., Goldstein, J., Ramakrishnan, R. & Shaft, U. (1999). When is ”nearest

neighbor” meaningful? In ICDT ’99: Proceeding of the 7th International Conference

on Database Theory (pp. 217–235). London, UK: Springer-Verlag.

Beygelzimer, A., Kakade, S. & Langford, J. (2005). Cover trees for nearest neighbor.

Unpublished. http://www.hunch.net/∼jl/projects/cover tree/paper/paper.ps.

Beygelzimer, A., Kakade, S. & Langford, J. (2006). Cover trees for nearest neighbor. In

ICML ’06: Proceedings of the 23rd international conference on Machine learning (pp.

97–104). New York, NY, USA: ACM Press.

138



Brin, S. (1995). Near neighbor search in large metric spaces. In VLDB ’95: Proceedings

of the 21th International Conference on Very Large Data Bases (pp. 574–584). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Cai, Y., de Freitas, N. & Little, J. J. (2006). Robust visual tracking for multiple targets.

In Leonardis, A., Bischof, H. & Pinz, A. (Eds.), Computer Vision – ECCV06 9th

European Conference on Computer Vision, Graz, Austria, May 7-13, 2006, Proceed-

ings, Part IV, Volume 3954 of Lecture Notes in Computer Science (pp. IV: 107–118).

Springer.

Ciaccia, P., Patella, M. & Zezula, P. (1997). M-tree: An efficient access method for

similarity search in metric spaces. In VLDB ’97: Proceedings of the 23rd Interna-

tional Conference on Very Large Data Bases (pp. 426–435). San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.

Clarkson, K. L. (1999). Nearest neighbor queries in metric spaces. Discrete & Computa-

tional Geometry, 22(1), 63–93.

Clarkson, K. L. (2002). Nearest neighbor searching in metric spaces: Experimental re-

sults for sb(S). See http://cm.bell-labs.com/who/clarkson/Msb/white paper.pdf and

http://cm.bell-labs.com/who/clarkson/Msb/readme.html.

Cover, T. M. & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Trans-

actions on Information Theory, 13(1), 21–27.

Datar, M., Immorlica, N., Indyk, P. & Mirrokni, V. S. (2004). Locality-sensitive hashing

scheme based on p-stable distributions. In SCG ’04: Proceedings of the twentieth

annual symposium on Computational geometry (pp. 253–262). New York, NY, USA:

ACM Press.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W. & Harshman, R. A.

(1990). Indexing by latent semantic analysis. Journal of the American Society of

Information Science, 41(6), 391–407.

Deng, K. & Moore, A. (1995). Multiresolution instance-based learning. In Proceedings

of the Twelfth International Joint Conference on Artificial Intellingence (pp. 1233–

1239). San Francisco: Morgan Kaufmann.

Dudoit, S., Fridlyand, J. & Speed, T. P. (2002). Comparison of discrimination methods

for the classification of tumors using gene expression data. Journal of the American

Statistical Association, 97(457), 77–87.

139



Fagin, R. & Stockmeyer, L. (1998). Relaxing the triangle inequality in pattern matching.

International Journal of Computer Vision, 28(3), 219–231.

Faloutsos, C. & Oard, D. W. (1995). A survey of information retrieval and filtering meth-

ods. Technical Report CS-TR-3514, Department of Computer Science, University of

Maryland.

Faragó, A., Linder, T. & Lugosi, G. (1993). Fast nearest-neighbor search in dissimilarity

spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9),

957–962.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R. (1996). Advances in

Knowledge Discovery and Data Mining, chapter 4, (p. 102). The MIT Press.

Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M.,

Hafner, J., Lee, D., Petkovic, D., Steele, D. & Yanker, P. (1995). Query by image

and video content: The qbic system. Computer, 28(9), 23–32.

Friedman, J. H., Bentley, J. L. & Finkel, R. A. (1977). An algorithm for finding best

matches in logarithmic expected time. ACM Transactions on Mathematics Software,

3(3), 209–226.

Gersho, A. & Gray, R. M. (1991). Vector quantization and signal compression (1 Ed.).

Norwell, MA, USA: Kluwer Academic Publishers.

Ghias, A., Logan, J., Chamberlin, D. & Smith, B. C. (1995). Query by humming: musical

information retrieval in an audio database. In MULTIMEDIA ’95: Proceedings of the

third ACM international conference on Multimedia (pp. 231–236). New York, NY,

USA: ACM Press.

Gionis, A., Indyk, P. & Motwani, R. (1999). Similarity search in high dimensions via

hashing. In Atkinson, M. P., Orlowska, M. E., Valduriez, P., Zdonik, S. B. & Brodie,

M. L. (Eds.), VLDB’99, Proceedings of 25th International Conference on Very Large

Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK (pp. 518–529). Morgan

Kaufmann.

Gray, A. & Moore, A. (2004). Tutorial on Data Structures for Fast Statistics.

In 21st International Conference on Machine Learning, 2004. Available from

http://www.cs.cmu.edu/∼agray/icml.html.

140



Gupta, A., Krauthgamer, R. & Lee, J. R. (2003). Bounded geometries, fractals, and

low-distortion embeddings. In FOCS ’03: Proceedings of the 44th Annual IEEE Sym-

posium on Foundations of Computer Science (p. 534). Washington, DC, USA: IEEE

Computer Society.

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. In SIGMOD

’84: Proceedings of the 1984 ACM SIGMOD international conference on Management

of data (pp. 47–57). New York, NY, USA: ACM Press.

Hastie, T., Tibshirani, R. & Friedman, J. (2001). The Elements of Statistical Learning

Data Mining, Inference, and Prediction, chapter 2, (pp. 22–27). Springer Series in

Statistics. Springer.

Hinneburg, A., Aggarwal, C. C. & Keim, D. A. (2000). What is the nearest neighbor in high

dimensional spaces? In VLDB ’00: Proceedings of the 26th International Conference

on Very Large Data Bases (pp. 506–515). San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc.

Huang, C.-M., Q. Bi, G. S. S. & Harris, R. W. (1992). Fast full search equivalent encoding

algorithms for image compression using vector quantization. IEEE Transactions on

Image Processing, 1(3), 413–416.

Indyk, P. (1998). On approximate nearest neighbors in non-euclidean spaces. In FOCS

’98: Proceedings of the 39th Annual Symposium on Foundations of Computer Science

(p. 148). Washington, DC, USA: IEEE Computer Society.

Indyk, P. (2002). Approximate nearest neighbor algorithms for frechet distance via product

metrics. In SCG ’02: Proceedings of the eighteenth annual symposium on Computa-

tional geometry (pp. 102–106). New York, NY, USA: ACM Press.

Indyk, P. & Motwani, R. (1998). Approximate nearest neighbors: towards removing

the curse of dimensionality. In STOC ’98: Proceedings of the thirtieth annual ACM

symposium on Theory of computing (pp. 604–613). New York, NY, USA: ACM Press.

Karger, D. R. & Ruhl, M. (2002). Finding nearest neighbors in growth-restricted metrics.

In STOC ’02: Proceedings of the thiry-fourth annual ACM symposium on Theory of

computing (pp. 741–750). New York, NY, USA: ACM Press.

Katayama, N. & Satoh, S. (1997). The sr-tree: An index structure for high-dimensional

nearest neighbor queries. In Peckham, J. (Ed.), SIGMOD 1997, Proceedings ACM

141



SIGMOD International Conference on Management of Data, May 13-15, 1997, Tuc-

son, Arizona, USA (pp. 369–380). ACM Press.

Katayama, N. & Satoh, S. (2001). Distinctiveness-sensitive nearest-neighbor search for

efficient similarity retrieval of multimedia information. In ICDE ’01: Proceedings of

the 17th International Conference on Data Engineering (p. 493). Washington, DC,

USA: IEEE Computer Society.

Knuth, D. E. (1997). The art of computer programming, volume 2: Seminumerical Algo-

rithms (3 Ed.). Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,

Inc.

Krauthgamer, R. & Lee, J. R. (2004). Navigating nets: simple algorithms for proximity

search. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium on

Discrete algorithms (pp. 798–807). Philadelphia, PA, USA: Society for Industrial and

Applied Mathematics.

Lee, D.-T. (1982). On k-nearest neighbor voronoi diagrams in the plane. IEEE Transac-

tions on Computers, C-31(6), 478–487.

Li, T., Zhang, C. & Ogihara, M. (2004). A comparative study of feature selection and

multiclass classification methods for tissue classification based on gene expression.

Bioinformatics, 20(15), 2429–2437.

Lin, K.-I., Jagadish, H. V. & Faloutsos, C. (1994). The tv-tree: An index structure for

high-dimensional data. VLDB J., 3(4), 517–542.

Liu, T., Moore, A. W., Gray, A. & Yang, K. (2005). An investigation of practical ap-

proximate nearest neighbor algorithms. In L. K. Saul, Y. Weiss & L. Bottou (Eds.),

Advances in Neural Information Processing Systems 17 (pp. 825–832). Cambridge,

MA: MIT Press.

Liu, T., Moore, A. W. & Gray, A. G. (2004). Efficient exact k-nn and nonparametric clas-

sification in high dimensions. In Advances in Neural Information Processing Systems

16. Cambridge, MA: MIT Press.

Lucarella, D. (1988). A document retrieval system based on nearest neighbour searching.

Journal of Information Science, 14(1), 25–33.

Manber, U. (1989). Introduction to Algorithms: A Creative Approach. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc.

142



Maneewongvatana, S. & Mount, D. M. (1999). It’s okay to be skinny, if your friends are

fat.

Maneewongvatana, S. & Mount, D. M. (2001). On the efficiency of nearest neighbor

searching with data clustered in lower dimensions. Technical Report UMIACS-TR-

2001-05, Univ. of Maryland, College Park, Inst. for Advanced Computer Studies.

Maneewongvatana, S. & Mount, D. M. (2002). Analysis of approximate nearest neighbor

searching with clustered point sets. In Goldwasser, M. H. & McGeoch, C. C. (Eds.),

Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS

Implementation Challenges, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science (pp. 105–123). American Mathematical Society.

Marshall, D. (2006). Nearest neighbour searching in highdimensional metric space. MSc

subthesis, Australian National University.

McNab, R. J., Smith, L. A., Bainbridge, D. & Witten, I. H. (1997). The new zealand

digital library melody index. D-Lib Magazine, 3(5), 22–32.

Micó, M. L., Oncina, J. & Vidal, E. (1994). A new version of the nearest-neighbour

approximating and eliminating search algorithm (AESA) with linear preprocessing

time and memory requirements. Pattern Recognition Letters, 15(1), 9–17.

Minsky, M. & Papert, S. (1969). Perceptrons (pp. 222–225). MIT Press.

Mollineda, R. A., Vidal, E. & Mart́ınez-Hinarejos, C. D. (2003). Adaptive learning for

string classification. In IbPRIA (pp. 564–571). Springer.

Moore, A. (1991). A tutorial on kd-trees. Extract from PhD Thesis. Available from

http://www.autonlab.org/autonweb/14665.html.

Moore, A., Schneider, J. & Deng, K. (1997). Efficient locally weighted polynomial re-

gression predictions. In Fisher, D. (Ed.), Proceedings of the Fourteenth International

Conference on Machine Learning (pp. 236–244). 340 Pine Street, 6th Fl., San Fran-

cisco, CA 94104: Morgan Kaufmann.

Moore, A. W. (2000). The anchors hierarchy: Using the triangle inequality to survive high

dimensional data. In UAI ’00: Proceedings of the 16th Conference on Uncertainty

in Artificial Intelligence (pp. 397–405). San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc.

143



Mount, D. M. (2006). ANN Programming Manual (1.1.1 Ed.). College Park, MD, USA:

Department of Computer Science, University of Maryland.

Mount, D. M. & Arya, S. (1997). ANN: A library for approximate nearest neighbor

searching. In CGC 2nd Annual Fall Workship on Computational Geometry, 1997.

Available from http://www.cs.umd.edu/∼mount/ANN.

Niijima, S. & Kuhara, S. (2005). Effective nearest neighbor methods for multiclass cancer

classification using microarray data. Poster presented at the 16th International Con-

ference on Genome Informatics, December 19-21, 2005, Yokohama Pacifico, Japan.

Available from http://www.jsbi.org/journal/GIW05/GIW05P051.pdf.

Okabe, A., Boots, B., Sugihara, K. & Chiu, S. N. (2000). Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams (2 Ed.). John Wiley & Sons.

Omohundro, S. M. (1989). Five balltree construction algorithms. Technical Report TR-

89-063, International Computer Science Institute.

Orchard, M. T. (1991). A fast nearest-neighbor search algorithm. In 1991 International

Conference on Acoustics, Speech and Signal Processing, 1991. ICASSP-91., Volume 4

(pp. 2297–3000). IEEE Press.

Pentland, A. P., Picard, R. W. & Scarloff, S. (1994). Photobook: tools for content-based

manipulation of image databases. In Niblack, C. W. & Jain, R. C. (Eds.), Proceedings

of SPIE Vol. 2185, Volume 2185 (pp. 34–47). SPIE.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992). Numeri-

cal Recipes in C: The Art of Scientific Computing (2 Ed.). New York, NY, USA:

Cambridge University Press.

Robinson-Cox, J. F., Bateson, M. M. & Ward, D. M. (1995). Evaluation of nearest-

neighbor methods for detection of chimeric small-subunit rrna sequences. Applied

and Environmental Microbiology, 61(4), 1240–1245.

Sellis, T. K., Roussopoulos, N. & Faloutsos, C. (1987). The r+-tree: A dynamic index

for multi-dimensional objects. In Stocker, P. M., Kent, W. & Hammersley, P. (Eds.),

VLDB’87, Proceedings of 13th International Conference on Very Large Data Bases,

September 1-4, 1987, Brighton, England (pp. 507–518). Morgan Kaufmann.

Shakhnarovich, G., Darrell, T. & Indyk, P. (2006a). Nearest-Neighbor Methods in Learning

and Vision: Theory and Practice, chapter 1, (pp. 1–2). The MIT Press.

144



Shakhnarovich, G., Darrell, T. & Indyk, P. (2006b). Nearest-Neighbor Methods in Learning

and Vision: Theory and Practice (1 Ed.) (p.6̃). Cambridge, MA: The MIT Press.

Shakhnarovich, G., Darrell, T. & Indyk, P. (2006c). Nearest-Neighbor Methods in Learning

and Vision: Theory and Practice (1 Ed.) (p.6̃4). Cambridge, MA: The MIT Press.

Smith, J. R. & Chang, S.-F. (1996). Visualseek: a fully automated content-based image

query system. In MULTIMEDIA ’96: Proceedings of the fourth ACM international

conference on Multimedia (pp. 87–98). New York, NY, USA: ACM Press.

Sproull, R. F. (1991). Refinements to nearest-neighbor searching in k-dimensional trees.

Algorithmica, 6(4), 579–589.

Talbert, D. A. & Fisher, D. (2000). An empirical analysis of techniques for constructing and

searching k-dimensional trees. In KDD ’00: Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining (pp. 26–33). New

York, NY, USA: ACM Press.

Tseng, Y.-H. (1999). Content-based retrieval for music collections. In SIGIR ’99: Pro-

ceedings of the 22nd annual international ACM SIGIR conference on Research and

development in information retrieval (pp. 176–182). New York, NY, USA: ACM Press.

Uhlmann, J. K. (1991a). Metric trees. Applied Mathematics Letters, 4(5), 61–62.

Uhlmann, J. K. (1991b). Satisfying general proximity / similarity queries with metric

trees. Information Processing Letters, 40(4), 175–179.

Uitdenbogerd, A. L. & Zobel, J. (2002). Music ranking techniques evaluated. In ACSC

’02: Proceedings of the twenty-fifth Australasian conference on Computer science (pp.

275–283). Darlinghurst, Australia, Australia: Australian Computer Society, Inc.

Vidal, E. (1986). An algorithm for finding nearest neighbours in (approximately) constant

average time. Pattern Recognition Letters, 4(3), 145–157.

Vidal, E., Rulot, H. M., Casacuberta, F. & Bened́ı, J.-M. (1988). On the use of a metric-

space search algorithm (aesa) for fast dtw-based recognition of isolated words. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 36(5), 651–660.

Weber, R. & Blott, S. (1997). An approximation based data structure for similarity search.

Technical report, Institute of Information Systems, ETH Zurich.

145



Weber, R., Schek, H.-J. & Blott, S. (1998). A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces. In VLDB ’98: Proceedings

of the 24rd International Conference on Very Large Data Bases (pp. 194–205). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

White, D. A. & Jain, R. (1996). Similarity indexing with the ss-tree. In ICDE ’96:

Proceedings of the Twelfth International Conference on Data Engineering (pp. 516–

523). Washington, DC, USA: IEEE Computer Society.

Witten, I. H. & Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques (2 Ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search in

general metric spaces. In SODA ’93: Proceedings of the fourth annual ACM-SIAM

Symposium on Discrete algorithms (pp. 311–321). Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics.

Zatloukal, K., Johnson, M. H. & Ladner, R. E. (2002). Nearest neighbor search for data

compression. In Goldwasser, M. H. & McGeoch, C. C. (Eds.), Data Structures, Near

Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Chal-

lenges, DIMACS Series in Discrete Mathematics and Theoretical Computer Science

(pp. 69–87). American Mathematical Society.

Zhu, Y., Shasha, D. & Zhao, X. (2003). Query by humming: in action with its technology

revealed. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international

conference on Management of data (pp. 675–675). New York, NY, USA: ACM Press.

146


