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Abstract 
 

This study deals with medium density wood fibre (MDF) and Kraft fibre reinforced 

polypropylene (PP) composites produced using extrusion followed by injection 

moulding. Initially, composites were produced with MDF fibre using 10, 20, 30, 40, 

50 and 60 wt% fibre, and 1, 2, 3 and 4 wt% maleated polypropylene (MAPP) as a 

coupling agent. A fibre content of 50 wt% with 3 wt% MAPP was found to be 

optimum. Alkali treatment of fibre was carried out to improve the interfacial 

bonding. After treatment, fibre surface charge was found to increase, but single fibre 

tensile strength (TS) and Young’s modulus were (YM) decreased. Alkali treatment 

reduced composite TS but increased YM.  

The effects of hemicellulose and residual lignin content were assessed with 

Kraft fibre (subjected to different stages of a standard Kraft pulping process and 

therefore consisting of different hemicellulose and residual lignin contents). Fibre 

surface charge was found to increase with decreasing residual lignin content. 

Composites containing higher amounts of lignin lead to lower TS and lower thermal 

stability. Composites were subjected to accelerated weathering for 1000 hours. TS 

and YM were found to decrease during weathering, and the extent of reduction was 

found to be higher for composites with higher residual lignin. The reduction of 

mechanical properties was found to be due to degradation of lignin and PP chain 

scission as evaluated by increase in PP crystallinity after weathering. As low lignin 

(bleached) Kraft fibre composites were found to provide superior mechanical 

properties, as well as more stable during accelerated weathering, further study 

including optimisation of MAPP content, effects of fibre contents, fibre length, fibre 
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beating, hygrothermal ageing and recycling were carried out with bleached Kraft 

fibre. 

MAPP contents of 1, 2, 3, 4, 5, 7 and 10 wt% were used in Kraft fibre 

reinforced PP composites, and 3-5 wt% was found to be most favourable. Composite 

fibre content was varied between 30-50 wt%, and 40 wt% found to provide the 

maximum TS. To investigate the effects of fibre length on composites, fibre fractions 

of different length distribution were separated using a pressure screen. TS, YM and 

impact strength were found to decrease and failure strain (FS) increased with 

decreasing fibre length. To improve the interfacial bonding, the fibre was treated by 

mechanical beater. Fibre beating increased the TS of composites up to a certain 

point, beyond which TS decreased. Hygothermal ageing of composites was carried 

out by immersing specimens in distilled water at 30, 50 and 70°C over an 8-month 

period. Equilibrium moisture content and diffusion coefficient increased with 

increased fibre content in composites as well as with increased immersion 

temperature. Composites without coupling agent showed higher water uptake and 

diffusion coefficient than that of with coupling agent. After hygrothermal ageing the 

TS and YM decreased but FS and impact strength were found to increase. 

An investigation into the effects of recycling was carried out with composites 

containing either 40 wt% or 50 wt% fibre (bleached Kraft) with 4 wt% MAPP, and 

recycled up to eight times. For composites with 40 wt% fibre, TS and YM were 

found to decrease with increased recycling by up to 25% for TS and 17% for YM 

(after being recycled 8 times). Although TS was lower for virgin composites with 50 

wt% fibre than for those with 40 wt% fibre, this initially increased with recycling by 

up to 14% (after being recycled 2 times), which was considered to be due to 

improved fibre dispersion, but then decreased with further recycling, and an overall 



 iv

11% reduction of TS was found after recycling 8 times compared to the virgin 

composites. YM was higher for virgin composites with 50 wt% fibre than those with 

for 40 wt% fibre, and also initially increased with recycling but decreased upon 

further recycling. Recycling was found to increase thermal stability. The TS of 

composites made by combining recycled with virgin materials was also assessed. 

Hygrothermal ageing behaviour of recycled composites was also investigated by 

immersing specimens in distilled water at 50°C over a 9 month period. It was found 

that the diffusion coefficient and the equilibrium moisture contents of composites 

decreased with increased number of times the materials were recycled. After 

hygrothermal ageing, TS and YM of composites were found to decrease. However, 

the extent of reduction was found to decrease with increased recycling. 
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Abstract 
 

This study deals with medium density wood fibre (MDF) and Kraft fibre reinforced 

polypropylene (PP) composites produced using extrusion followed by injection 

moulding. Initially, composites were produced with MDF fibre using 10, 20, 30, 40, 

50 and 60 wt% fibre, and 1, 2, 3 and 4 wt% maleated polypropylene (MAPP) as a 

coupling agent. A fibre content of 50 wt% with 3 wt% MAPP was found to be 

optimum. Alkali treatment of fibre was carried out to improve the interfacial 

bonding. After treatment, fibre surface charge was found to increase, but single fibre 

tensile strength (TS) and Young’s modulus were (YM) decreased. Alkali treatment 

reduced composite TS but increased YM.  

The effects of hemicellulose and residual lignin content were assessed with 

Kraft fibre (subjected to different stages of a standard Kraft pulping process and 

therefore consisting of different hemicellulose and residual lignin contents). Fibre 

surface charge was found to increase with decreasing residual lignin content. 

Composites containing higher amounts of lignin lead to lower TS and lower thermal 

stability. Composites were subjected to accelerated weathering for 1000 hours. TS 

and YM were found to decrease during weathering, and the extent of reduction was 

found to be higher for composites with higher residual lignin. The reduction of 

mechanical properties was found to be due to degradation of lignin and PP chain 

scission as evaluated by increase in PP crystallinity after weathering. As low lignin 

(bleached) Kraft fibre composites were found to provide superior mechanical 

properties, as well as more stable during accelerated weathering, further study 

including optimisation of MAPP content, effects of fibre contents, fibre length, fibre 
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beating, hygrothermal ageing and recycling were carried out with bleached Kraft 

fibre. 

MAPP contents of 1, 2, 3, 4, 5, 7 and 10 wt% were used in Kraft fibre 

reinforced PP composites, and 3-5 wt% was found to be most favourable. Composite 

fibre content was varied between 30-50 wt%, and 40 wt% found to provide the 

maximum TS. To investigate the effects of fibre length on composites, fibre fractions 

of different length distribution were separated using a pressure screen. TS, YM and 

impact strength were found to decrease and failure strain (FS) increased with 

decreasing fibre length. To improve the interfacial bonding, the fibre was treated by 

mechanical beater. Fibre beating increased the TS of composites up to a certain 

point, beyond which TS decreased. Hygothermal ageing of composites was carried 

out by immersing specimens in distilled water at 30, 50 and 70°C over an 8-month 

period. Equilibrium moisture content and diffusion coefficient increased with 

increased fibre content in composites as well as with increased immersion 

temperature. Composites without coupling agent showed higher water uptake and 

diffusion coefficient than that of with coupling agent. After hygrothermal ageing the 

TS and YM decreased but FS and impact strength were found to increase. 

An investigation into the effects of recycling was carried out with composites 

containing either 40 wt% or 50 wt% fibre (bleached Kraft) with 4 wt% MAPP, and 

recycled up to eight times. For composites with 40 wt% fibre, TS and YM were 

found to decrease with increased recycling by up to 25% for TS and 17% for YM 

(after being recycled 8 times). Although TS was lower for virgin composites with 50 

wt% fibre than for those with 40 wt% fibre, this initially increased with recycling by 

up to 14% (after being recycled 2 times), which was considered to be due to 

improved fibre dispersion, but then decreased with further recycling, and an overall 
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11% reduction of TS was found after recycling 8 times compared to the virgin 

composites. YM was higher for virgin composites with 50 wt% fibre than those with 

for 40 wt% fibre, and also initially increased with recycling but decreased upon 

further recycling. Recycling was found to increase thermal stability. The TS of 

composites made by combining recycled with virgin materials was also assessed. 

Hygrothermal ageing behaviour of recycled composites was also investigated by 

immersing specimens in distilled water at 50°C over a 9 month period. It was found 

that the diffusion coefficient and the equilibrium moisture contents of composites 

decreased with increased number of times the materials were recycled. After 

hygrothermal ageing, TS and YM of composites were found to decrease. However, 

the extent of reduction was found to decrease with increased recycling. 
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CHAPTER-ONE 
 

 PROJECT INTRODUCTION 
 

1.1  Introduction 
Composites are comprised of combinations of two or more materials with different 

composition or form. The constituents retain their identities in a composite and do 

not dissolve or merge, but act together [1]. A composite may have a ceramic, 

metallic or polymeric (thermoset or thermoplastic) matrix. The fibres can also be 

ceramic, metallic or polymeric, however, a more common classification relates to 

whether they are synthetic (e.g. glass fibre, carbon fibre, Kevlar fibre) or natural 

(wood fibre, hemp fibre, flax fibre, jute fibre etc). Therefore, the number and variety 

of composites available are very large. Fibre-reinforced composite materials 

commonly consist of fibres of high strength and Young’s modulus embedded in, or 

bonded to, a matrix with a distinct interface between them. In general, the fibres are 

the principal load carrying members, while the surrounding matrix holds them in the 

desired location and orientation, acting as a load transfer medium between them.  

The idea of using natural fibres as reinforcement in composite materials is not 

new. Natural fibres were used over 3000 years ago in composite systems in ancient 

Egypt, where straw and clay were mixed together to build walls [2]. Many centuries 

later, in 1896, aeroplane seats were made of natural fibres with a small content of 

polymeric binders. As early as 1908, the first composite materials were applied in the 

fabrication of large quantities of sheets, tubes and pipes [3]. However, during the 

70’s and 80’s, cellulose fibres were gradually substituted by newly developed 

synthetic fibres due to better performance. Over the past few years, there has been a 

renewed interest in using natural fibres as reinforcement materials in the plastics 
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industry [3]. More recently, critical discussion about the preservation of natural 

resources and recycling has led to further interest concerning natural materials with 

the focus on renewable raw materials [4]. As mentioned earlier, there is a wide 

variety of different natural fibres which can be applied as reinforcement. Wood fibre 

is the most widely used lignocellulosic fibre for reinforcing plastics. It can be 

obtained from variety of processes, namely: thermomechanical, soda, sulphite, 

sulphate (Kraft) and semi-chemical pulping [5,6]. Wood fibre composites offer 

several advantages over synthetic fibre composites such as: low density, improved 

acoustic properties, favourable processing properties (e.g. low wear on tools), 

occupational health benefits compared to glass fibres, as well as positive effects on 

agriculture  with comparable mechanical properties [7]. 

There are many applications of wood plastic composites (WPC) in everyday 

life. Wood fibre/polypropylene (PP) composites are used in cars behind the vinyl 

carpeting on the doors, consoles and seat backs. Residential construction applications 

include windows, sidings, and roof tiles. Many window and door manufacturers are 

considering WPC as an alternative to solid wood in cladding components [8]. In 

North America, building products, particularly decking, account for 75% of the total 

WPC market [9]. 

As the outdoor applications of WPC become more widespread, the durability 

of its products against weathering, particularly ultra-violet (UV) light becomes of 

concern. UV exposure can cause changes in the surface chemistry of the composite, 

also known as photodegradation, which may lead to discoloration making the 

products aesthetically unappealing [10,11,12]. Composites reinforced with natural 

fibres containing large amounts of lignin have been shown to be more susceptible to 

UV degradation than those with negligible amounts of lignin [13,14]. Removal of 
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lignin, hemicellulose and water soluble components has the potential to reduce UV 

degradability [15]. Scientists have begun to investigate the UV durability of WPC. 

Work with wood fibre reinforced polyolefin composites has focused mainly on 

changes in appearance and mechanical properties [10,11,12]. However, little work 

has provided insight into the mechanism of change of WPC properties containing 

different lignin contents due to UV exposure [16].  

Another main concern is the hydrophilic nature of wood fibre, which results 

in an incompatibility with hydrophobic polymeric matrices leading to poor 

mechanical properties. Further, in moist environment, due to this hydrophilicity, 

swelling by water uptake can lead to micro-cracking of the composite and 

degradation of mechanical properties [ 17 ]. For this to be predictable, an 

understanding is required of the relationship between water absorption kinetics with 

mechanical properties.  

It might be expected that treatments which improve interfacial bonding would 

improve mechanical properties as well as moisture resistance. Good wetting of the 

fibre by the matrix and adequate fibre–matrix bonding has been shown to decrease 

the rate and amount of water absorption in the interfacial region of the composite 

[ 18 ]. Optimisation of interfacial adhesion between cellulose-based fibres and 

thermoplastics has been the focus of a large amount of research conducted during the 

last two decades [19,20,21]. However, it has proved difficult to entirely eliminate the 

absorption of moisture in the composites without using expensive surface barriers 

[22]. The most cost effective benefit for improving moisture resistance along with 

mechanical performance of WPC’s has been found with coupling agents, which play 

an important role in improving compatibility and adhesion between polar wood fibre 

and non-polar polymer matrices by forming bridges of chemical bonds between the 
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fibre and the matrix. So far, more than forty coupling agents have been used in 

production and research. Among them, maleated polypropylene (MAPP) is the most 

popular one as well as the most effective [23]. However, these studies tend to focus 

on only a small range of fibre contents and do not include coverage of New Zealand 

radiata pine Kraft fibre. Alkali treatment, which could improve UV resistance by 

removing lignin as mentioned previously, could also increase the number of reactive 

hydroxyl groups (-OH) on the fibre surface available for chemical bonding, thus 

improving composite strength [24]. Mechanical beating of fibre is also widely used 

in paper making as a method of improving interfacial bonding. It has been suggested 

that beaten fibres should exhibit increased fibre–matrix bonding due to the increase 

in fibre surface area [25,26], and some work has been done on the effects of fibre 

beating in cement fibre composites [25,26]. However, no literature was found 

concerning the effect of beating of wood fibre in PP composites. Therefore, beating 

needs to be attempted as a fibre pre-treatment process to improve the interfacial 

bonding between the fibre and the matrix. 

As mentioned earlier, concern for the environment has led to increasing 

pressure to recycle materials at the end of their useful life, but very little work has 

been done on recycling of WPC and the associated mechanism. Therefore, extensive 

study is needed to investigate the extent to which WPC materials are recyclable.  

1.2  Objectives  
The specific objectives of this thesis were to study: 

The effects of coupling agent and alkali treatment on medium density fibre 

(MDF) fibre reinforced PP composites: 

• Assessing the effects of maleated polypropylene (MAPP) coupling agent on 

composite properties over a wide range of fibre volume fractions  
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• Study the effects of alkali fibre pre-treatment on composite mechanical 

properties 

• Comparison with models for tensile strength and Young’s modulus. 

The effects of residual lignin and hemicellulose content on the accelerated 

weathering of wood fibre (Kraft) reinforced PP composites: 

• Evaluate the effects of residual lignin and hemicellulose content on 

composite properties 

• Investigate the degradation behaviour of wood fibre reinforced PP composites 

under accelerated weathering conditions. 

Fibre pre-treatment and hygrothermal ageing of wood fibre (Kraft) reinforced 

PP composites: 

• Optimisation of coupling agent for bleached Kraft fibre reinforced PP 

composites 

• Investigation of the effects of fibre volume fraction and fibre length on 

composite properties 

• Assessing fibre pre-treatment by mechanical beating and its effects on 

composite properties 

• Study of hygrothermal ageing at different temperatures and its effects on 

composites properties. 

Effects of recycling on wood fibre (Kraft) reinforced PP composites: 

• Evaluation of the effects of recycling on mechanical properties 

• Investigate the effects of recycling on thermal and crystalline behaviour 

• Relate hygrothermal aging with recycling of composites. 



 6

CHAPTER-TWO 
 

LITERATURE REVIEW 
 
2.1  Introduction 
This chapter describes the physical, chemical and mechanical properties of wood 

fibre, and some methods of pulping process. Matrix, its types and role of matrix in 

composites were also discussed. Major factors controlling the performance of 

composites were briefly described. Special emphasis was given on the methods of 

modification of fibre-matrix interface as it plays an important role on mechanical 

properties of composites. Both hygrothermal and UV degradation behaviour of 

composites were assessed mentioning some previous work in these fields. As the 

disposal option for composites are becoming limited, degree of recyclability has been 

an important issue. Therefore, current status on recycling of composites was also 

presented. 

2.2  Natural Fibre 
 
2.2.1  Natural Fibre and Its Source 

There is a wide variety of cellulose fibres that can be used to reinforce 

thermoplastics. These include wood fibres, and a variety of agro-based fibres such as 

stems, stalks, bast, leaves and seed hairs. These fibres are abundantly available 

throughout the world. Cellulose fibres, depending on the part of the plant from which 

they are taken, can be classified as [27,28]: 

Grasses and reeds: These fibres come from the stems of monocotyledonous plants 

such as bamboo and sugar cane. Both types of fibres can be used to reinforce 

plastics. 
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Leaf fibres: Leaf fibres are fibres that run lengthwise through the leaves of most 

monocotyledonous plants such as sisal, henequen, abaca and esparto. These fibres, 

which are also referred to as ‘hard fibres’, are the most commonly employed as 

reinforcing agents in plastics. 

Bast fibres: These fibres (bundles) come from the inner bark (phloem or bast) of the 

stems of dicotyledonous plants. Common examples are jute, flax, hemp, and kenaf. 

Seed and fruit hairs: These are fibres that come from seed-hairs and flosses, which 

are primarily represented by cotton and coconut. 

Wood fibres: These fibres come from the xylem of angiosperm (hardwood) and 

gymnosperm (softwood) trees. Examples include maple, yellow poplar, pine and 

spruce. 

Wood fibre is the most abundantly used cellulosic fibre due to their extensive 

use in pulp and paper industries. Commercially important fibre sources and world 

production are listed below: 

Table 2.1: Commercially important fibre sources and annual production [29]: 

Fibre source Species World Production 
(103 tonnes) 

Origin 

Wood (>10,000 species) 1,750,000 Stem 
Bamboo (> 1250 species) 10,000 Stem 
Cotton lint Gossypium sp. 18,450 Fruit 
Jute Corchorus sp. 2,300 Stem 
Kenaf Hibiscas cannabinus 970 Stem 
Flax Linum usitatissimum 830 Stem 
Sisal Agave sisilana 378 Leaf 
Hemp Canabis sativa 214 Stem 
Coir Cocos nucifera 100 Fruit 
Abaca Musta textiles 70 Leaf 

 

2.2.2  Wood Fibre  

Wood is comprised primarily of spindle-shaped cells. The thickened walls are 

composites of the three structural component polymers, with contiguous cells held 
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together by lignin. Figure 2.1 provides a common representation of the organization 

of wood cell wall structure and ultra structure.  

 

Figure 2.1: Schematic illustration of the molecular architecture of wood tissue, showing 

the relationship of contiguous cells (left), cutaway view of the cell wall layers, S1-S3- 

secondary cell wall layers; P- Primary wall; and M.L- middle lamella [30]. 

 

The basic morphology of wood cell walls is determined by the cellulose, which 

makes up approximately 45% of the weight of wood. It is a linear polymer of 

anhydrocellobiose units linked by β-1,4-glycosidic bonds. Van der Waals forces and 

hydrogen bonding interactions between and within cellulose molecules, make natural 

cellulose structurally complex. The individual cellulose molecules are arrayed in 

bundles known as microfibrils, each of which contains approximately 40 individual 

cellulose molecules. Within these bundles the cellulose is highly ordered and thus 

appears crystalline in diffraction measurements. Because the fibrils have long-range 

curvature in their native state and are subjected to torsional deformation, 
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diffractometric measurements indicate some amorphous character. The microfibrils 

are arranged in lamella that are in the plane of the cell wall. The cell wall is 

comprised of layers of microfibrils: the primary wall, which is laid down first by the 

living cell, the fibrils appear to be randomly oriented within a matrix consisting of 

xyloglucan and pectic substances at the cell surface. Nests are the secondary layers 

(the bulk of the weight of wood), in which the cellulose microfibrils are organized 

parallel to each other in lamellae. Within the lamellae, the microfibrils spiral at an 

angle to the long axis of the cell. Three regions are identified within the secondary 

wall: the S1, S2, and S3 layers (see Figure 2.1); within these, the microfibrils have 

different parallel orientations in respect to the axis of the cell. The bulk of the wall is 

the S2 layer, in which the microfibrils are at an acute angle to the long axis of the 

cell; the angle diminishes from juvenile to mature wood and eventually the fibrils are 

essentially parallel to the cell axis. The cellulose fibrils nearest the lumen of the cell 

comprise the tertiary layer and are oriented nearly perpendicular to the long axis of 

the cell [30]. 

2.2.3  Chemical Composition of Wood Fibre  

Climatic conditions, age and the digestion process influences not only the structure 

of the fibre but also the chemical composition. Wood is composed of cellulose, 

hemicelluloses, and lignin. Softwoods (like Radiata pine) and hardwoods (like 

Eucalyptus) have fairly similar cellulose contents, but the lignin content of softwoods 

is somewhat higher. Radiata pine contains typically 42% cellulose, 29% lignin and 

7% hemicelluloses. In addition to these basic constituents, most woods also contain 

extractives. When pulping coniferous species (like Radiata pine) according to the 

kraft process, these extractives can be recovered as by products (turpentine and tar 

oil) [31]. Chemical constituent of some natural fibre are shown in Table 2.2. 
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Table 2. 2: The chemical constituents of some important plant fibres [32]: 

Fibre Type Cellulose 
content (%) 

Lignin content 
(%) 

Pectin content 
(%) 

Flax Bast 65-85 1-4 5-12 
Hemp Bast 60-77 3-10 5-14 
Jute Bast 45-63 12-25 4-10 
Kenaf Bast 45-57 8-13 3-5 
Sisal Leaf 50-64 - - 
Abaca Leaf 60 12-13 1 
Coir Seed 30 40-45 - 
Cotton Seed 85-90 - 0-1 
Softwood Wood 40-45 26-34 0-1 
Hardwood Wood 40-45 20-30 0-1 

 

Cellulose: Cellulose is the essential component of wood. In 1838, Anselme Payen 

suggested that the cell walls of large numbers of plants consist of the same substance, 

to which he gave the name cellulose [33]. It is generally accepted that cellulose is a 

linear condensation polymer consisting of D-anhydroglucopyranose units (often 

abbreviated as anhydroglucose units or even as glucose units for convenience) joined 

together by β-1,4-glycosidic bonds. It is thus a 1,4-β-D-glucan. The pyranose rings 

are in the 4C1 conformation, which means that the –CH2OH and –OH groups, as 

well as the glycosidic bonds, are equatorial with respect to the mean planes of the 

rings. The Haworth projection formula of cellulose is shown in Figure 2.2. The 

molecular structure of cellulose is responsible for its supramolecular structure and 

this, in turn, determines many of its chemical and physical properties. In the fully 

extended molecule, adjacent chain units are orientated by their mean planes at an 

angle of 180° to each other. Thus, the repeating unit in cellulose is the 

anhydrocellulobiose unit and the number of repeating units per molecule is half the 

degree of polymerisation. This may be as high as 14,000 in native cellulose, but 

purification procedures usually reduce it to in the order of 2,500 [33]. The 

mechanical properties of natural fibres depend on its cellulose type, because each 
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type of cellulose has its own cell geometry and the geometrical conditions determine 

the mechanical properties [33,34].    

   

Figure 2.2: Structure of Cellulose. 

Hemi-cellulose: Hemi-cellulose is not a form of cellulose; it comprises a group of 

polysaccharides (excluding pectin) that remains associated with the cellulose after 

lignin has been removed. The hemi-cellulose differs from cellulose in three 

important aspects. In the first place, they contain several different sugar units 

whereas cellulose contains only 1,4-β-D-glucopyranose units. Secondly, they exhibit 

a considerable degree of chain branching, whereas cellulose is a strictly linear 

polymer. Thirdly, the degree of polymerization of native cellulose is ten to one 

hundred times higher than that of hemi-cellulose. Unlike cellulose, the constituents 

of hemi-cellulose differ from plant to plant [33].  

Lignin: Lignins are the reinforcing substance that make tree cells wood ‘hard’ and 

'woody' rather than soft which are complex hydrocarbon polymer with both aliphatic 

and aromatic constituents [33]. Their chief monomer units are various ring-

substituted phenyl-propanes linked together (see Figure 2.3) in ways, which are still 

not fully understood. Structural details differ from one source to another [33]. The 

mechanical properties are lower (Young’s modulus of about 4 GPa) than those of 

cellulose (average of about 30 GPa) [35].  
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Figure 2. 3: Structure of lignin. 

 
2.2.4  Physical and Mechanical Properties of Fibre 

Natural fibres are in general suitable to reinforce plastics, due to their relative high 

strength and stiffness and low density (see Table 2.3) [ 36 ]. The range of the 

characteristic values is one of the drawbacks for all natural fibre, which can be 

explained by differences in fibre structure due to the overall environmental 

conditions during growth. Natural fibres can be processed in different ways to yield 

reinforcing elements having different mechanical properties. The modulus of bulk 

wood is about 10 GPa. Cellulose fibre with modulus up to 40 GPa can be separated 

from wood, for instance, by chemical pulping processes. Such fibres can be further 

subdivided by hydrolysis followed by mechanical disintegration into microfibrils 

with an elastic modulus of 70 GPa. Theoretical calculations of the elastic modulus of 
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cellulose chains have given values of up to 250 GPa, however, there is no technology 

available to separate these from microfibrils [37,38].  

Table 2. 3: Physical and mechanical properties of some natural fibres [32]: 

Fibre Density 
(gcm-3) 

Tensile 
strength 
(MPa) 

Young’s 
modulus 
(GPa) 

Specific 
strength 
(Pam3/g) 

Specific 
Young’s 
modulus 
(kPam3/g) 

Flax 1.4-1.5 500-900 50-70 357-600 36-47 
Hemp 1.48 300-800 30-60 203-541 20-41 
Jute 1.3-1.5 200-500 20-55 154-333 15-37 
Sisal 1.45 100-800 9-22 69-552 6-15 
Banana 1.4 500-700 7-20 375-500 5-14 
Softwood 1.4 100-170 10-50 71-121 7-36 
Hardwood 1.4 90-180 10-70 64-129 7-50 

 
2.2.5  Wood Type 

Wood fibre can be obtained from two types of wood namely, soft wood and hard 

wood.  

2.2.5.1     Soft wood 

Softwood is the wood from conifers; include, pine, spruce, cedar, fir, larch, douglas-

fir, hemlock, cypress, redwood and yew. Softwood and hardwood differ in 

microscopic structure. The structure of softwood is fairly uniform, with only two 

types of cells: tracheids and parenchyma cells. Softwood never has vessel elements 

for water transport, but relies on tracheids.  

Softwood has a huge range of uses: it is a prime material for structural 

building components, also found in furniture and other products such as millwork 

(mouldings, doors, windows). Softwood is also harvested for use in the production of 

paper, and for various types of board [39]. 
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2.2.5.2    Hardwood 

The term hardwood designates wood from broad-leaved (mostly deciduous, but not 

necessarily, in the case of tropical trees) or angiosperm trees. Hardwood contrasts 

with softwood, which comes from conifer trees. On average, hardwood is of higher 

density and hardness than softwood, but there is considerable variation in actual 

wood hardness in both groups, with a large amount of overlap; some hardwoods (e.g. 

balsa) are softer than most softwood, while yew is an example of hard softwood. 

Hardwoods have broad leaves and enclosed nuts or seeds such as acorns. They often 

grow in subtropical regions like Africa and also in Europe and other regions, such as 

Asia. Hardwood species are more varied than softwood.  

Hardwoods serve an enormous range of applications, including: buildings, 

furniture, flooring, utensils etc. Hardwoods are generally far more resistant to decay 

than softwoods when used for exterior work [40]. 

 
2.2.6  Radiata Pine  

Radiata pine (Pinus Radiata) is the dominant New Zealand wood spices. Pine is used 

extensively due to many factors, including the fact that pine grows relatively fast in 

New Zealand, it resists pest and diseases, responds well to intensive management and 

selective breeding programs. Pine is used for wide range of products including wood 

panels, veneers, fuel sources and paper. Radiata pine is made up of cells that are 

relatively uniform in terms of density and strength across the stem, although those 

nearest the centre are definitely shorter and weaker. This central zone or core wood is 

therefore usually not permitted in timber sawn for uses where strength is important. 

Wood from the outside of the stem has longer and stronger cells, so is well suited to 
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structural timber and pulps where greater strength is important. The wood also has 

lower resin/lignin content, an important factor for pulping [41]. 

2.2.7  Pulping 

 Pulping is the process of converting wood or nonwood material to separated pulp 

fibres for paper making. Processes range from mechanical, in which the wood is 

ground into fibres by disk refiners or grindstones, namely: stone groundwood, 

pressurised groundwood, refiner mechanical pulp, thermomechanical pulp to 

chemical, in which the fibres are separated by chemically degrading and dissolving, 

namely: soda pulp, sulphite pulp, sulphate (Kraft) pulp and semi-chemical pulps 

[42,43]. This study will concentrate on thermomechanical pulp for the production of 

MDF and Kraft pulp. 

2.2.7.1     Thermomechanical pulp (TMP) 

 Medium density fibres (MDF) also called TMP are prepared by breaking up of wood 

chips by heat, pressure and steam. The chips are heated up to 800C in the pre-

steaming bin, which softens the chips and creates uniform moisture content. The 

chips are then compressed and de-watered by a tapered screw in the pre-heater, 

which forms a plug that seals the screw against pressure from the pre-heater. Steam 

is injected into the pre-heater at 165-180oC with a pressure of 0.7-1.0 MPa. The final 

step in the production of wood fibres is the refining stage. The chips are forced into 

the eye of the refiner by plug screw, and then forced readily outwards between the 

refiner plates by steam pressure and a centrifugal force to break down the chips into 

fibres. Due to high temperature used, plasticization occurs, which aid the fibres shear 

in the middle lamella region and further soften the lignin component of the chips. 

The resulting pulp is light, both in colour and weight, of fine fibres which is also 

fluffy [44]. Mechanical pulping processes all use a lot of electrical energy and water. 
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However, they provide 80-90% recovery of total fibre. Mechanical pulping processes 

are cheaper to operate than more sophisticated chemical based systems. There are 

also fewer environmental issues, such as chemical contamination of sites and 

unpleasant smells [45]. 

2.2.7.2    Kraft pulp 

Internationally, Kraft is the most widely used pulp making process which is a partly 

mechanical and partly chemical process that produces a strong pulp. In Kraft pulping 

process, after de-barking, the wood chips are heated in a solution of NaOH and Na2S 

in a pressure cooker, during which time a lot of lignin is removed from the wood. 

The pressure is then released suddenly, causing the chips to fly apart into fibres. The 

pulp is washed with water to wash out the cooking chemicals and lignin from the 

fibre, so that they do not interfere with further processing steps. A sieve is used to 

remove knots and clumped-together uncooked fibres from the pulp. Bleaching 

commonly used to increase the brightness of pulp, largely removes lignin from wood 

fibres. This is done in two stages. Firstly, the pulp is treated with NaOH in the 

presence of O2. The NaOH removes hydrogen ions from the lignin and O2 breaks 

down the polymer. Then, the pulp is treated with ClO2, then a mixture of NaOH, O2 

and peroxide and finally, again with ClO2 to remove the remaining lignin [46]. 

Typically, unbleached Kraft fibres consists of 65–75% cellulose, 17–32% 

hemicellulose, and 3-8% lignin, while bleached fibres contain 70–80% cellulose and 

20–30% hemicellulose [47]. The removal of lignin from the fibre has the potential to 

increase fibre-matrix adhesion due to more open or rougher fibre surface leading to 

increased physical bonding with the matrix [48]. 
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2.3 Matrix  
The matrix plays a crucial role in the performance of polymers composites. Both 

thermosets and thermoplastics are attractive as matrix materials for composites.  

2.3.1 Thermosets 

Thermoset composites are normally chemically cured to a highly cross linked, three 

dimensional network structures. These cross linked structures are highly solvent and 

creep resistant. The fibre loading can be as high as 80% [49]. Thermosets used in 

composites include epoxy, phenols and polyesters.  

Advantages of thermosets matrix: 

• Chemical make up of thermosets being the most similar to natural fibres 

• Production is a lot simpler, as resin moulders can be used allowing the matrix 

and the reinforcing agent to be cured under mild processing conditions 

• Thermosets have a highly cross linked chain structure which does not allow 

the chains to slide and rotate easily   

• This chain structure gives thermosets high strength and good stiffness 

properties but ductility suffers, with thermosets generally showing a brittle 

form of failure.  

Disadvantages of thermosets matrix: 

• Complex formulation 

• Long processing cycle 

• High material cost 

• Brittle (may crack) 

• Require careful installation 

• High installation cost 



 18

2.3.2 Thermoplastics 

Thermoplastics are made up of flexible linear chains, which allowed thermoplastics 

to undergo elastic deformation due to the stretching of covalent bond within the 

chain. 

The advantages of the thermoplastic matrices: 

• Lower cost of processing them than thermosets 

• Design flexibility and ease of moulding complex parts; simple methods such  

as extrusion and injection moulding are used for processing these composites 

• They are flexible and tough, and exhibits good mechanical properties 

• Thermoplastics such as polypropylene have the lower level of moisture    

absorption 

• Recycling of composites is possible with thermoplastics. 

Disadvantages of thermoplastic matrices: 

• The percentage of loading is limited by the processability of the composite 

• The fibre orientation in the composites is random and the property 

modification is not as high as is observed in the thermoset composites 

[49,50].  

• Thermoplastics have a different chemical structure compared to natural fibres 

as they have a high non polar nature, so methods of improving the interfacial 

region between the two materials need to be investigated. 

However, after assessing the limitations and the benefits of thermoplastics and 

thermosets in the present study, thermoplastic was chosen. 

In thermoplastics, most of the work reported so far, deals with polymers such 

as polypropylene (PP), polyethylene (PE), polystyrene (PS), polyamide and 
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polyvinyl chloride (PVC). This is mainly because the processing temperature of 

thermoplastic is restricted to temperature below 200oC to avoid thermal degradation 

of natural fibres [51]. PP and PE have the lowest densities with low level of moisture 

absorption. PP has the best combination of strength and stiffness, therefore, PP was 

selected as a matrix for this study. 

2.3.2.1   Polypropylene (PP) 

 Polypropylene (PP) is a thermoplastic polymer, can be made by addition 

polymerisation process. PP has a melting point of about 165oC, glass transition 

temperature (Tg) about -10oC [52]. Most commercial PP has an intermediate level of 

crystallinity, between 40-60% [53]. Depending on their crystallinity, density ranges 

from 0.85 g/cm3 to 0.95 g/cm3. Its Young's modulus is also intermediate. Although, it 

is less tough than high density polyethylene (HDPE) and less flexible than low 

density polyethylene (LDPE), it is much more brittle than HDPE. This allows PP to 

be used as a replacement for engineering plastics, such as acrylonitrile butadiene 

styrene (ABS). PP can be made translucent when uncoloured but not completely 

transparent as polystyrene or acrylic. Polypropylene has very good resistance to 

fatigue [52]. 

There is a wide variety of applications of PP, including, food packaging, 

plastic parts and reusable containers of various types, thermal pants and shirts made 

for the military, laboratory equipment, loudspeakers, automotive components, and 

polymer banknotes [52].  

2.4 Wood Fibre Reinforced Plastics 
Wood fibre reinforced plastic are hybrid with their properties, with characteristics of 

both wood and plastics. Incorporation of wood fibres into plastic is now a standard 

technology to improve the mechanical properties of plastics. Physical properties like 
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Young’s modulus and tensile strength are enhanced in the end product with the 

aesthetic appeal look like wood. The mechanical properties of the fibres determine 

the stiffness and tensile strength of the composite [54].  

 
2.4.1 Mechanism of Reinforcement 

Reinforcement of a low modulus polymer with a high modulus, high strength fibre 

uses the plastic flow of the polymeric material under stress to transfer the load to the 

fibre; this gives a moderate strength high modulus composite. The aim of the 

combination is to produce a two phase material in which the primary phase (i.e. the 

fibres) is well dispersed and bonded by a weak secondary phase (i.e. the polymer 

matrix). The principal constituents influencing the strength and stiffness of 

composites are the reinforcing fibres, the matrix and the interface between the fibres 

and the matrix.  

The functional requirements of fibres in a composite should have [55]: 

• High modulus of elasticity to give stiffness to the composite 

• High ultimate strength 

• Low variation of strength between individual fibres 

• Stability during handling 

• Uniform diameter. 

The matrix should fulfil certain functions: 

• Bind the fibres together to protect their surfaces from damage during the 

service life of the composite 

• Transfer stresses to the fibres efficiently by adhesion/friction 

• Disperse and separate the fibres 

• Be chemically and thermally compatible with fibres. 
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2.5 Factors Controlling Performance of Fibre Reinforced  
 Composites 
The performance of a fibre reinforced composite depends largely upon the strength 

of the interfacial bond between the fibre and the matrix. A major concern for 

thermoplastic materials therefore is incompatibility between natural fibre and 

thermoplastic. The details, which have been identified, are as follows [56]: 

 
 2.5.1  Dispersion of Fibre in the Matrix 

The incorporation of fibres in thermoplastics leads to poor dispersion of the fibres 

due to the strong inter fibre hydrogen bonding which holds the fibre together. 

Treatment of the fibres and/or use of external processing aids can reduce these 

problems [57]. The surface adhesion between the fibre and the polymer plays an 

important role in the transmission of stress from matrix to the fibre and thus 

contributes toward the performance of the composite. Most polymers, especially 

thermoplastics, are non-polar (hydrophobic) substances that are not compatible with 

polar (hydrophilic) fibres; it prevents efficient fibre-matrix bonding. Therefore, the 

result is poor adhesion between polymer and fibre. In order to improve the affinity 

and adhesion between fibres and thermoplastic matrices, chemical coupling agents 

have been employed [58]. Maleic anhydride (MA)-grafted polypropylene (MAPP) 

has been reported to function efficiently for lignocelluloses-PP systems. Earlier 

results suggest that the amount of MA grafted and the molecular weights are both 

important parameters that determine the efficiency of the additive. The Maleic 

anhydride present in the MAPP not only provides polar interactions, but can 

covalently link to the hydroxyl groups on the lignocellulosic fibre. Grafting chemical 

series on to the fibre surface has also been reported to improve the interaction 
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properties between the fibres and matrix. Although grafting can improve properties 

of the composites to a significant extent, this process increase the materials cost of 

the system. The use of dispersing agent and/or coupling agents is a cheaper route to 

improve properties and makes more practical sense for high volume, low cost 

composites systems [60].       

 
2.5.2 Thermal Stability of the Fibre 

The primary drawback of the use of agro-fibres is the lower processing temperature 

permissible due to possibility of lignocelluloses degradation and/or the possibility of 

volatile emissions that could affect composites properties. The processing 

temperatures are thus limited to about 200oC, although it is possible to use higher 

temperatures for short periods of time. This limits the type of thermoplastics that can 

be used with agro-fibres to commodity thermoplastics such as polyethylene, 

polypropylene, polyvinyl chloride, and polystyrene [60].       

 
2.5.3 Hydrophilic Nature of Organic Fibre 

Moisture absorption can result in swelling of the fibres and concern about the 

dimensional stability of the agro-fibre composites. It affects the mechanical 

properties of composites. The absorption of moisture by the fibre is minimized in the 

composites due to encapsulation by the polymer. It is difficult to entirely eliminate 

the absorption of moisture without using expensive surface barriers on the composite 

surface. If necessary, the moisture absorption of the fibres can be dramatically 

reduced through the acetylating of some of the hydroxyl groups present in the fibre, 

but with increase in the cost of the fibre [59]. Good fibre-matrix bonding can also 

decrease the rate and amount of water absorbed by the composite [60].         
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2.5.4 Critical Fibre Length 

The fibre aspect ratio (length/diameter) is a critical parameter in a composite 

material. For each short fibre composite system, there is  a critical fibre aspect ratio, 

which may be defined as the minimum fibre aspect ratio in which the maximum 

allowable fibre stress can be achieved for a given load [61]. If the fibre aspect ratio 

is, lower than its critical value, insufficient stress will be transferred and 

reinforcement of the fibre will be insufficient (i.e. the fibre are not loaded to their 

maximum stress value). By contrast, if the fibre aspect ratio is too high, the fibres 

may get entangled during mixing, resulting in poor fibre dispersion. An aspect ratio 

in the range of 100-200 after composite processing is recommended for high 

performance short fibre composites [61]. 

 
2.5.5 Fibre Orientation 

Orientation of fibres related to one another plays an important role in composites. 

The strength of the unidirectional aligned composites normal to the fibre alignment 

(transverse) is less than that of the randomly oriented fibre composite. When the 

fibres are aligned perpendicular to the direction of force (transverse), fibres are not 

reinforcing the matrix to increase the strength of the composite in the direction of 

applied load [61]. Short fibre composites rarely consist of fibres oriented in a single 

direction. During extrusion and injection moulding, the polymer melt will undergo 

both extensional and shear flow. There will be rotation of the fibre during shear flow 

and alignment during elongation flow. Thus, it is possible to achieve some degree of 

fibre alignment by using extrusion and injection moulding [62]. 
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2.5.6  Fibre Volume Fraction 

One of the most significant factors determining the mechanical properties of 

composite is the content of reinforcing fibre. At low fibre volume fractions, a 

decrease in tensile strength is usually observed. This is due to the introduction of 

flaws created by the fibre ends. These flaws act as stress concentrations, and cause 

the bond between fibre and matrix to break. At higher volume fractions, the matrix is 

sufficiently restrained and the stress is more evenly distributed. This results in 

reinforcing effects outweighing the effects of the stress concentrations. As the fibre 

volume fraction is further increased, the tensile properties gradually improve until 

they surpass those of the matrix. The corresponding fibre volume fraction at which 

the strength properties of the composite cease to decline and start to increase is 

known as the critical fibre volume fraction. At very high fibre volume fractions, the 

strength of composites start to decrease due to insufficient filling of the matrix 

materials [ 63 ]. Another explanation for the decrease in composites mechanical 

processing could be due to the fact that, during the processing (extrusion and 

injection moulding) of short fibre reinforced polymer composites, fibre damage takes 

place as a result of fibre polymer interaction, fibre-fibre interaction and the fibre 

contact with the surface of the processing equipment. At high fibre volume fractions, 

there is an increase in fibre-fibre interaction and fibre equipment contact, leads to the 

reduction in mean fibre length, and if the mean fibre length is very smaller than the 

critical fibre length the reinforcing efficiency would be reduced [64].  

A large number of theoretical models based on the Rule of Mixtures have been 

developed to predict the tensile strength (TS) and Young’s modulus (YM) of 

composites as a function of fibre volume fraction [65]. The most widely applied 

models to predict TS and YM of composites are Parallel and Series models, which 
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assumes a state of uniform strain and the latter, a state of uniform stress in the 

individual components, respectively. The Parallel model represents the upper bound 

and the Series model represents the lower bounds for the TS and YM. These models 

assume a perfect interface [66]. The Hirsch’s model is a weighted average of the 

series and parallel models. An empirical parameter x  is introduced in Hirsch model 

that characterises the stress transfer between the fibre and matrix, which depends on 

fibre orientation, fibre length and fibre distribution. The value of x  can be varied 

from 0 to 1 to give best fit.  

Parallel model: 
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where, cM , mM  and fM  are the Young’s modulus of composite, matrix and fibre, 

respectively. cS , mS  and Sf are the tensile strength of composite, matrix and fibre, 
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respectively. V is the fibre volume fraction, and subscripts c , f and m indicate 

composite, fibre and matrix, respectively.  

 
2.6  Methods for Surface Modification of Natural Fibres 
The quality of the fibre–matrix interface is significant for the application of natural 

fibres as reinforcement for plastics. Physical and chemical methods can be used to 

optimise this interface. These modification methods are of different efficiency for the 

adhesion between fibre and matrix [67].  

 
 2.6.1  Physical Methods of Modification 

Physical treatments change structural and surface properties of the fibre and there by 

influence the mechanical bonding to polymers [68]. Physical methods, such as 

stretching, calendaring and thermo treatment can be used by no change of the 

chemical composition of the fibres. 

Electric discharge (corona, cold plasma) is another way of physical treatment. 

Corona treatment is one of the most interesting techniques for surface oxidation 

activation. This process changes the surface energy of the cellulose fibres and in case 

of wood, surface activation increases the amount of aldehyde groups [69]. 

The physical definition of plasma (glow-discharge) is an ionized gas with an 

essentially equal density of positive and negative charges. It can exist over an 

extremely wide range of temperature and pressure. The solar corona, a lightening 

bolt, a flame and a neon sign are all examples of plasma. For the purposes of textile 

modification, the low pressure (0.01 to 1 mbar) plasma, that is found in the neon sign 

or fluorescent light bulb are used. However, for the plasma treatment of polymeric 

substrates, the extremely energetic chemical environment of the plasma is utilized. 
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The same effects are reached by cold plasma treatment. Depending on the type and 

nature of the gases used, a variety of surface modification could be achieved. Surface 

cross linking could be introduced, surface energy could be increased or decreased, 

reactive free radicals and groups could be produced [69].  

Electric discharge methods are known to be very effective for non-active 

polymer substrates as polystyrene, polyethylene, polypropylene etc. They are 

successfully used for cellulose fibre modification, to decrease the melt viscosity of 

cellulose polyethylene composites and improve mechanical properties of cellulose 

polypropylene composites [70]. 

Mechanical beating is another physical method of modification of fibre which 

is widely used in paper making to improve interfacial bonding. The process of 

beating has three main effects, namely: 1) the fibres become shortened, 2) external 

fibrillation occurs, causing partial or sometimes total removal of the primary wall 

and causing fibrils to form on the surface of the fibre, thereby increasing the fibre 

surface area, and 3) internal fibrillation occurs, causing the fibres to become more 

conformable [71]. Thus, it is believed that beaten fibres should exhibit increased 

fibre–matrix bonding due to the increase in fibre surface area [72]. 

Nishi et al. [73] studied the refining on physical and electrokinetic properties 

of various cellulosic fibres. Refining increased the surface charge, specific surface 

area and specific volume of fibres, but did not change the total fibre charge. When 

refined to the same freeness, the pine kraft pulp had a higher surface charge, surface 

area and specific volume than the eucalyptus pulps. The pine kraft pulp required a 

higher refining energy than the eucalyptus pulps to reach the same freeness. The 

increased specific surface area as well as the increased surface charge of the fibres 

was apparently relevant to the improvement of fibre–fibre bonding. In other study 
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Nishi et al. [74] found that, the fibre surface charge increased with the degree of 

refining. 

No authors reported the effects of beating on wood fibre reinforced PP 

composites. Although, some work has been done on the effects of fibre beating on 

cement fibre composites [71,72]. However, no significance improvement on 

mechanical properties was observed for beating. 

 
2.6.2 Chemical Methods of Modification 

2.6.2.1     Alkali treatment of natural fibres (Mercerization) 

 Mercerization is the most common method of fibre treatment. The standard 

definition of mercerization (proposed by ASTM D 1965) is,  the process of 

subjecting a vegetable fibre to an interaction with a fairly concentrated aqueous 

solution of a strong base, to produce great swelling with resultant changes in the fine 

structure, dimension, morphology and mechanical properties [75].  

Sodium hydroxide treatment of cellulose fibres leads to the irreversible 

mercerisation effect, which increases the amount of amorphous cellulose at the 

expense of crystalline cellulose. The cellulose–sodium hydroxide reaction is thought 

to be as follows. 

Cell-OH + NaOH        Cell O-Na+ + H2O + [surface impurities] (2.7) 

Mercerisation improves adhesion, characteristics by removing surface 

impurities, thus exposing micro-fibrils, which then render the fibre topography with a 

rough texture. The rough and cleaned surface facilitates mechanical adhesion in 

addition to improved wetting ability of the resin. The composites produced from 

fibres treated with sodium hydroxide are in principle, expected to have improved 
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mechanical properties but only if there is no increase in the amorphous cellulose 

[76]. 

As discussed earlier cellulose forms the main structural component of natural 

fibres, although, the non-cellulosic components, e.g. lignin and hemicellulose, also 

play an important part in the characteristic properties of the fibre. Hemicellulose, 

which is thought to consist principally of xylan, polyuronide and hexosan, has been 

shown to be very sensitive to the action of caustic soda, which exerts only a slight 

effect on lignin or α-cellulose. Later studies about the alkali treatment of jute-fibres, 

for instance, reports about the removal of lignin and hemicellulose which affects the 

tensile characteristics of the fibres. When the hemicelluloses are removed, the inter-

fibrillar region is likely to be less dense and less rigid and thereby makes the fibrils 

more capable of rearranging themselves along the direction of tensile deformation. 

When natural fibres are stretched, such rearrangements amongst the fibrils would 

result in better load sharing by them and hence result in higher stress development in 

the fibre. In contrast, softening of the inter-fibrillar matrix adversely affects the stress 

transfer between the fibril and thereby, the overall stress development in the fibre 

under tensile deformation. As lignin is removed gradually, the middle lamella joining 

the ultimate cells is expected to be more plastic as well as homogeneous due to the 

gradual elimination of micro voids, while the ultimate cells themselves are affected 

only slightly.  

Further, some authors reported about changes in the crystallinity through 

alkaline treatment on coir and flax fibres. The increase in the percentage crystallinity 

index of alkali treated fibres occurs because of the removal on the cementing 

materials, which leads to a better packing of cellulose chains. Additionally, treatment 

with NaOH leads to a decrease in the spiral angle, i.e. closer to fibre axis, and 



 30

increase in molecular orientation. A fair amount of randomness is introduced in the 

orientation of the crystallites due to the removal of non-cellulosic matter. The 

Young’s modulus of fibres, for instance, is expected to increase with increasing 

degree of molecular orientation. Well oriented cellulosic fibres such have much 

higher Young's modulus than fibres with medium orientation. In addition to the 

modification of orientation and the consolidation of weak points, other important 

factors with regard to the mechanical properties could be the crystallite length and 

degree of crystallinity as well as the removal of fractions of cellulose at a very low 

degree of polymerization [77, 78, 79].  

Ray et al. [80] studied effects of alkali treated jute fibres on the mechanical 

properties of vinylester resin composites. They found that the alkali treatment 

improves the mechanical properties such as Young’s modulus, flexural strength and 

flexural modulus of the composite.  Jochen Gassan et al. [ 81 ] studied on the 

influence of alkali treatment on the mechanical properties of jute/epoxy composites. 

They found the the rougher surface morphology after alkali treatment did not 

improve the adhesion. Sreenivasan et al. [82] studied the influence of delignification 

and alkali treatment on the fine structure of coir fibres. The effect of successive 

removal of lignin and hemicelluloses on the fine structure has also been studied. 

Unlike other cellulosic fibres, alkali treatment failed to produce any increase in fibre 

elongation in coir.  Reddy et al. [83] studied the effect of alkali treatment (sodium 

hydroxide and potassium hydroxide) on the crystal structure and properties of jute 

fibres. The accessibility of jute treated at higher alkali concentrations increased with 

a decrease in crystallinity. Van de Weyenberg et al. [84] studied on the influence of 

chemical treatment and processing of flax fibres on their composites. A treatment 

consisting of a combination of alkali and dilute epoxy gave the highest improvement 
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of the flexural properties. Rout et al. [85] studied the effect of alkali treatment of coir 

fibre in polyester/coir composite system. They reported that 2% alkali-treated 

coir/polyester composites showed a significant improvement in tensile strength. 

Valadez-Gonzalez et al. [ 86 ] showed that alkali treatment of henequen fibre 

improved the fibre/matrix mechanical interlocking as well as interaction between 

fibre and matrix.  

2.6.2.2    Coupling agents 

Coupling is an important chemical modification method, which improves the 

interfacial adhesion. When two materials are incompatible, it is often possible to 

bring about compatibility by introducing a third material (also called coupling agent) 

that has properties intermediate between those of the other two. Strongly polarized 

cellulose fibres are inherently incompatible with hydrophobic polymers. Therefore, 

scientists have investigated a variety of coupling agents to improve the compatibility 

of the fibre and matrix [87].  

Mechanism of Coupling Agents: 

There are several mechanisms of coupling in materials [87]: 

• Weak boundary layers – coupling agents eliminate weak boundary layers 

• Deformable layers – coupling agents produce a tough, flexible layer 

• Restrained layers – coupling agents develop a highly crosslinked interface    

region, with a modulus intermediate between that of substrate and of the 

matrix 

• Wettability – coupling agents improve the wetting between polymer and  

substrate 

• Chemical bonding – coupling agents form covalent bonds with both  
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materials.  

• Acid–base effect – coupling agents alter acidity of substrate surface. 

The development of a definitive theory for the mechanism of bonding by coupling 

agents in composites is a complex problem. The main chemical bonding theory alone 

is not sufficient. So, the consideration of other concepts appears to be necessary, 

which include the morphology of the interface, the acid–base reactions at the 

interface, surface energy and the wetting phenomena [87,88,89]. 

Classification of coupling agents: 

Coupling agents are classified into organic, inorganic and organic-inorganic groups. 

Organic coupling agents are iso-cyanates, anhydrides, amides, imides, acrylates, 

chlorotriazines, epoxides, organic acids, monomers, polymers and copolymers. 

Inorganic coupling agents include silicates while organic-inorganic agents include 

silanes and titanates [57].    

Organic coupling agents normally have bi-or multifunctional group in their 

molecular structure. These functional groups, such as (-N=C=O) of isocyanates,  

[-(CO)2O-] of maleic anhydrides, and (Cl-) of dichloro triazine derivatives, interact 

with the polar groups [mainly hydroxyl groups (-OH)] of cellulose and lignin to form 

covalent or hydrogen bonding. Alternatively, organic coupling agents can modify the 

polymer matrix by graft copolymerization, thus resulting in strong adhesion, even 

crosslinking at the interface [90]. 

Inorganic coupling agents possibly act as dispersing agents to counteract the 

surface polarity of cellulose fibre and improve the compatibility between fibre and 

polymer. Only a few inorganic coupling agents have been used so far in wood fibre 

polymer composites [57]. Organic-inorganic coupling agents are hybrid compounds 

in structure. For example, titanates usually contain a titanium centre and an organic 
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part surrounding this inorganic atom. The functionalities of the organic part in these 

agents determine their coupling effectiveness. Organic-inorganic coupling agents are 

between organic and inorganic agents in functions [90,91]. 

Of the organic coupling agents, anhydrides sush as maleic anhydride (MA), 

acetic anhydride, succinic anhydride and phthalic anhydride are popular coupling 

agents in wood fibre reinforced plastic composite. Acetic anhydride, succinic 

anhydride and phthalic anhydride have two functional groups i.e. carboxylate groups 

(-COO-), which can link wood fibre through esterification and hydrogen bonding. 

However, maleic anhydride is an, β-unsaturated carbonyl compound, containing one 

carbon carbon double bond (-C=C-) and two carboxylate groups (-COO-). This 

conjugated structure greatly increase the graft reactivity of the carbon-carbon double 

bond on the heterocyclic ring with the polymer matrix through the conjugate addition 

under a radical initiator, resulting in crosslinking or strong adhesion at the interface 

[92]. However, the molecular chain of maleic anhydride is much shorter than that of 

polymer matrix and wood fibres. This discrete nature makes maleic anhydride not so 

effective to improve the interfacial adhesion. Therefore, long chains of high 

molecular weight are obtained usually by grafting maleic anhydride with 

polyethylene, polypropylene, and polystyrene to make it an ideal coupling agent for 

fibre-polymer composites [ 93 ]. The formed copolymer maleated polyethylene 

(MAPE or maleic anhydride-modified-polyethylene), maleated polypropylene 

(MAPP or maleic anhydride-modified-polypropylene), styrene/maleic anhydride 

(SMA), styrene-ethylene-butylene-styrene/maleic anhydride (SEBS-MA) are used as 

coupling agents [94] in fibre-polymer composites, creating both covalent bonding to 

the fibre surface and extensive molecular entanglement to improve properties of the 

interface. Theoretically, extremely long chains may reduce the possibility of 
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migration of the coupling agents to the fibre surface because of the short processing 

time [93]. If the molecular weight of the coupling agent is too high, it may entangle 

with the PP molecules so that the polar groups on the coupling agent have difficulty 

“finding” the –OH groups on the fibre surface [93]. 

The treatment of cellulose fibres with hot polypropylene–maleic anhydride 

(MAH–PP) copolymers provides covalent bonds across the interface [ 95 ]. The 

mechanism of reaction can be divided into two steps: 

• activation of the copolymer by heating (t=170°C) (before fibre treatment) and 

 

• esterification of cellulose. 

 

The interactions between non-polar thermoplastics such as PP and any 

coupling agents such as MAPP are resulted in predominant chain entanglement 

between them. Stresses applied to one chain can be transmitted to other entangled 

chains, and stress is distributed among many chains. These entanglements function 

like physical cross links, that provide some mechanical integrity up to and above the 

glass transition temperature, (Tg), but become ineffective at much higher 
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temperatures [96]. When polymer chains are very short, there is a little chance of 

entanglement between chains and they can easily slide past one another [97]. When 

the polymer chains are longer, entanglement between chains can occur and the 

viscosity of polymer becomes high. A minimum chain length or a critical molecular 

weight (Me) is necessary to develop these entanglements and typical polymer has a 

chain length between entanglements equivalent to Me varying from 10,000 to about 

40,000 [97].  

Silanes, represented as R-Si(OR)3, have better performance in organic-

inorganic coupling agents, recently used in wood fibre plastic composite, because the 

attachment of silanes to hydroxyl groups of cellulose or lignin is accomplished either 

directly to the alkoxy group (-OR) attached to silocon or via its hydrolyzed products 

(i.e silanol) by the hydrogen bond or ether linkage. The functional group (R-) in 

silanes also influences the coupling action [98]. The general mechanism of how 

alkoxysilanes form bonds with the fibre surface which contains hydroxyl groups is as 

follows [99]: 

 

 

 

 

 

Dichlorotriazines and derivatives have multifunctional groups in their molecular 

structure. These groups have different functions in the coupling reactions. On 

heterocyclic ring, the reactive chlorines react with the hydroxyl group (-OH) of wood 
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fibre and give rise to the ether linkage between the cellulose and the coupling agent. 

The electronegative nitrogen may link hydroxyl group through hydrogen bonding. 

On the alkyl chain, the carbon carbon double bonds (C=C) form covalent bonds with 

polymer matrix by grafting. At the same time, the electronegative nitrogen in the 

amino group and oxygen in the carboxylate groups also link the cellulose phase 

through hydrogen bonding [90]. 

Some thermosetting resin adhesives, such as phenol-formaldehyde resin (PF) 

and mono- or dimethylol melamine resin (DMM) has been introduced as a bonding 

agent in wood fibre plastic composites. PF and DMM resins can crosslink wood fibre 

with methylene (-CH2-) linkage resulting from the condensation reaction between 

their reactive methylol groups (-CH2OH) and hydroxyl groups (-OH) group of wood 

fibre. Although these methylol groups can not react with the thermoplastic matrix. 

PF and DMM improve the interfacial adhesion through molecular entanglement with 

the matrix [100]. 

Pre-Treatment: 

Pre-treatment of fibre and polymer with coupling agents is extensively applied before 

mixing to improve the mechanical properties. There are two pre-treatment methods: 

1. Coating coupling agents on fibre. 

2. Modifying fibre and polymer by graft co-polymerization. 

Coating coupling agents on fibre: 

 The compatibility between fibre and polymer is enhanced by coating fibres with 

coupling agents. This process can either cause hydroxyl groups (-OH) of fibres to 

react with coupling agents which have a linear molecular structure similar to the 

polymer matrix, or create a chemical interaction between coupling agents and matrix 

[101]. 
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Four kinds of coating methods have been used in wood plastic composites (WPC) 

production: compounding, blending, soaking and spraying. The compounding 

method mixes coupling agents at high temperature with fibres and polymers in an 

extruder. This method is mostly used in melt blending process. For the blending 

method, a coupling agent is coated on the surface of the fibre, polymer or both in a 

roll mill or a magnetic stirrer at low or high temperature. For the soaking method, 

fibre can be first impregnated in the form of sheets of paper with a coupling agent 

solution containing initiators or other additives. Then the impregnated paper is 

removed from the solution and placed between two pieces of polymer release film 

for moulding. In the spraying process, coupling agents are emulsified and sprayed on 

to the surface of the fibre. Both blending and spraying are suitable for the pre-coating 

of wood fibre and polymer before mixing. Spraying and soaking are better than 

compounding and blending for coating process because, coupling agents are 

distributed at the interface more evenly and efficiently in the former two cases. 

However, it is difficult to accurately control the impregnating amount of coupling 

agents for the soaking method [101]. 

Modifying fibre and polymer by graft co-polymerization: 

An effective method of chemical modification of natural fibres is graft 

copolymerization. This reaction is initiated by free radicals of the cellulose molecule. 

The cellulose is treated with an aqueous solution with selected ions and is exposed to 

a high energy radiation. Then the cellulose molecule cracks and radicals are formed. 

Afterwards, the radical sites of the cellulose are treated with a suitable solution 

(compatible with the polymer matrix), for example vinyl monomer, acrylonitrile, 

methyl methacrylate, polystyrene. The resulting co-polymer possesses properties 

characteristic of both, fibrous cellulose and grafted polymer [102].  
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MAPP for Wood/PP composites: 

Meyer was possibly the first person who suggested using a coupling agent (which he 

called a cross linking agent) to improve the mechanical properties of wood-polymer 

materials [ 103 ]. Bridgeford (1963) invented a method to graft olefinically 

unsaturated monomers onto wood fibre with a catalyst system containing ferrous 

cations and hydrogen peroxide to modify the compatibility between wood fibre and 

thermoplastic polymer [104 ]. Gaylord patented to combine cellulose and polyvinyl 

chloride in the presence of free radical initiator [105]. As pioneers in the applications 

of coupling agents in wood fibre plastic composite, Kalson and co-workers made an 

initial study on using maleic anhydride as the coupling agent in the cellulose flour 

and polypropylene composite [91]. Woodhams et al. successfully introduced Epolene 

E-43, a kind of maleic anhydride-modified-polypropylene (MAPP) with low 

molecular weight, as a coupling agent in thermo mechanical pulp (TMP) and PP 

composites [106]. Kazayawoko et al. [107] investigated the effectiveness of MAPP 

in bleached Kraft pulp (BKP) and unbleached thermo-mechanical pulp (TMP)-PP 

composites and reported that surface treatment of BKP increased the tensile strength 

of the composites by 28%  and TMP by 27%. Yuan et al. [108] used MAPP as a 

coupling agent for PP-waste news paper flour composites and reported improved 

compatibility and hence mechanical properties of PP and paper flour. Sanadi et al. 

[109] reported that improvement in properties by using MAPP depended on the 

amount of MA in the graft copolymer and the molecular weight of the copolymer. 

Bledzki et al. incorporated three compounding techniques (two-roll mill, high speed 

mixer and twin-screw extruder) for preparation of wood fibre/PP composites and 

found that application of MAPP (independently on way of introduction) resulted in 



 39

an important increase of tensile and flexural strength, but in negligible effect on 

tensile and flexural modulus. 

2.7  Processing Methods 
There are various methods for processing of randomly oriented fibre reinforced 

composites. These include the spray-up method, where polymer and resin are 

sprayed onto the mould simultaneously, centrifugal casting, where polymer and fibre 

are placed inside a cylinder mould which is rotated at high speed, vacuum bag and 

pressure bag processes, where fibre and polymer are placed on the mould and a 

pressure or vacuum is applied, hot and cold press, where fibre and polymer are 

placed on a mould and pressure is applied with and without heat, extrusion and 

injection moulding , where fibre and polymer are melted and mixed together then 

forced through a die to form a shape. This study will concentrate on extrusion and 

injection moulding processes. 

2.7.1  Extrusion  

The process of extrusion is similar to the squeezing of toothpaste or forming of 

spaghetti. As the viscosity of most plastic melt is high, extrusion requires the 

production of pressure in order to force the melt through the die. A screw pushes 

thermoplastic granules or powder through a heated cylinder, changing the plastic 

from solid to liquid and mixing the plastics as it moves through the barrel, then 

through the die which will give the plastic a constant cross section area. The plastic 

is melted in the barrel by the mechanical energy from the rotating screws and the 

heat, transferred from the high temperature barrels. There are two common types of 

extruders, single screw and double screw extruder. For single screw extruders, 

friction between the plastic and the rotating crew makes the resin rotate with the 

screw. The friction between the rotating resin and the barrel pushes the materials 
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forward and generate heat. Single screw extruders are not positive displacement, so 

they are not effective mixing device [110]. A twin screw extruder is a compounding 

device to uniformly blend plasticizers, fillers etc. into the plastic melt. Twin screw 

extruders have intermeshing screws, the relative motion of the flight of one screw 

inside the channel of another, pushes the material forward with very low friction. 

Heat is controlled from an outside force and is not controlled by the speed [110].  

 
 2.7.2  Injection Moulding 

Injection moulding is the most widely used polymeric fabrication process. A large 

force must be used to inject polymer into the hollow mould cavity. More melt must 

be packed into the mould during solidification to avoid shrinkage in the mould. 

Identical parts are produced through a cycle process involving the melting of pellet 

or powder resin followed by the injection of the polymer melt into the hollow mould 

cavity under higher pressure. Injection moulding can be used to form a wide variety 

of products, for both thermosets and plastics. Complexity is virtually unlimited, sizes 

can vary and excellent tolerance is also possible. With respect to reinforced 

composites, only randomly oriented short fibres can be used in this process, the 

orientation of the fibres in the composite are determined by the flow of the composite 

melt during filling of the mould cavity. The incorporation of short fibres in an 

injection moulded polymer increases the strength, modulus, impact, creep and heat 

resistance while decreasing the failure strain. Extrusion is used prior to injection 

moulding when mixing of a thermoplastic, filler and additive is required. Pellets of 

the compounded mix are then fed into the hoper are melted, the liquid melt is then 

injected into the closed mould cavity with a force. The melt is then allowed to cool 

and solidify before the mould is opened and the final product removed. The process 
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can then be repeated [111]. Advantages and disadvantages of injection moulding are 

as follows [112]: 

Advantages: 

• High production rates 

• Design flexibility 

• Repeatability within tolerances 

• Can process a wide range of materials 

• Relatively low labour 

• Little to no finishing of parts required 

• Minimum scrap losses 

Disadvantages: 

• High initial equipment investment 

• High start-up and running costs possible 

• Part must be designed for effective moulding 

• Accurate cost prediction for moulding job is difficult 

2.8 Recycling  
Concern for the environment, both in terms of limiting the use of finite resources and 

the need to manage waste disposal, has led to increasing pressure to recycle materials 

at the end of their useful life. In the metals industries, for instance, materials 

recycling operations are already well established and are driven by economics [113]. 

Polymers are generally more difficult to recycle and the economic incentives to 

recycle have been less favourable, particularly when waste disposal in landfills is 

relatively cheap. On the other hand, due to their low cost, large amount of post-

consumed plastic waste generated daily in large cities worldwide. To give an 
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example, a city in an emergent country with a population of three million inhabitants 

produces each day around 400 tonnes of plastic waste [114]. As a consequence, 

municipalities are becoming concerned about a 25% increase in plastic waste 

generation per year while the landfill area is only increasing at a 7.5% annual rate. 

Therefore, as Scott [118] points out, by the year 2015, there will be no disposal 

options for plastic waste. However, waste management is now a high priority within 

the European Union. As a consequence, it is already illegal to landfill composites 

waste in many EU countries. The “End-of-Life Vehicle Directive” (Directive 

2000/53/EC) regulates the disposal of vehicles and the requirements include that 

from 2015, 85% of the weight of all “End-of-Life” vehicles must be re-used or 

recycled, a further 10% may be subject to energy recovery with a maximum of only 

5% of the vehicle allowed to be disposed of in landfill. As vehicles have a life 

expectancy of more than 10 years, vehicles currently being manufactured must meet 

the 2015 requirements [113]. As a consequence of increasing legislation, there is a 

need for recycling routes to be established [113]. Although there are governmental 

regulations in countries such as Germany, recycled materials are avoided, not only 

due to their physical properties, but mainly because of their surface appearance. 

Indeed, many designers are reluctant to use them as they can be rejected by the 

market. However, this is an attitude that can change [115], as demonstrated in Brazil 

where around 15% of all rigid plastics and films consumed, are recycled and returned 

to industry [116]. Some states in the US are also concerned with recycling. For 

example, in Michigan, the recycling rate is close to 100% and proves the potential 

for recycling plastic waste as well as changes in market attitude [117].   

Plastic waste management can be carried out using three different approaches  

namely: thermo-mechanical recycling, energy recovery and biological recycling. 
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Thermo-mechanical recycling first involves mechanical recycling where the 

thermoplastics are granulated, followed by techniques as extrusion or 

thermoforming. Energy recovery can be performed in two distinct ways. One is 

incineration where the hydrocarbon polymers replace fossil fuels. The second 

approach is pyrolysis or by hydrogenation to low molecular weight hydrocarbons for 

use either as portable fuels or as polymer feedstock. Biological recycling takes 

advantage of polymer biodegradation, which is highly dependent on the polymer 

type and environmental conditions. However, this type of recycling most often 

involves not only high costs and complex procedures but also potential damage to the 

environment [118]. Of these three techniques, thermo-mechanical would be expected 

to involve the least energy in terms of the product “life cycle”.  

It may be considered that, to be economical, a thermo-mechanical recycling 

process must be designed in such a manner that the energy to recover the post-

consumer materials plus the energy to reprocessing must be equal to the amount of 

energy needed to produce the virgin material plus the energy required to dispose of 

the material. This balance does not, however, take into consideration environmental 

benefits. When those environmental gains are considered, higher energy 

consumption could be allowed during thermo-mechanical recycling for which the 

increase in cost could be compensated by indirect costs due to reduction in landfill, 

for example.  

Several authors have investigated the reprocessing of polypropylene. 

Guerrica-Echevarria et al. [ 119 ] have studied the evolution of rheological and 

mechanical properties of PP after repetitive injection moulding cycles. The main 

effect of reprocessing was found to decrease in molecular weight of the PP, the 

chemical structure, however, remains unchanged, melt viscosity and failure strain 
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also decreased. While, Xiang [120] has shown an important change in chemical 

structure and rheological values after 7 cycles of injection moulding. Another study 

[ 121 ] showed an increase in crystallinity and decrease in tensile strength and 

elongation at break after 7 extrusion cycles for virgin PP. 

Agro-based fibres are less brittle and softer than glass fibres and are likely to 

be easier to recycle than mineral based fibres. Although no post-consumer based 

recycling studies have been done on agro-based fibres [93], a study on the effects of 

reprocessing had been conducted by Walz et al. [122] where, 50% Kenaf fibre 

reinforced PP composites were reprocessed for 9 times.  Both tensile and flexural 

properties were found to decrease with increase number of times the materials were 

recycled. Arbelaiz et al. discussed about recycling of flax fibre bundle/polypropylene 

composites. After passing 4 times through injection moulding, tensile properties only 

showed a small decrease. A similar trend was shown by Joseph et al. [123] for 20 

wt% sisal fibre/LDPE matrix composites. Johan et al. [124] studied the properties of 

second generation composites made from recycled materials (60% wood fibre, 30% 

HDPE, 5% PET and 5% tackifier). In general, the mechanical properties, water 

resistance, and dimensional stability of second-generation panels were equivalent to 

or better than properties obtained from first-generation panels.  

2.9 Degradation and Environmental Effects 

Wood fibre is the most widely used lignocellulosic fibre for reinforcing plastics. 

There are many applications of wood plastic composites (WPC) in everyday life 

(discussed earlier in 1.1). However, the main disadvantage of natural fibre is their 

hydrophilic nature that lowers the compatibility with hydrophobic polymeric 

matrices. They also present poor environmental and dimensional stability that 
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prevent a wider use of natural fibre composites. The possibility for using these 

materials in outdoor applications makes it necessary to analyse their mechanical 

behaviour under the influence of the weathering action [17,125]. 

 
2.9.1 Degradation by Moisture Absorption 

Amorphous cellulose and hemicellulose are mostly responsible for the high water 

uptake of natural fibres, since they contain numerous easily accessible hydroxyl 

groups which give a high level of hydrophilic character to fibres. Due to this 

hydrophilicity, swelling by water uptake can lead to micro-cracking of the composite 

and degradation of mechanical properties [17]. Moisture penetration into composite 

materials occurs by three different mechanisms. The main process consists of 

diffusion of water molecules inside the micro-gaps between polymer chains. The 

other mechanisms are capillary transport into the gaps and flaws at the interfaces 

between fibres and polymer due to incomplete wettability and impregnation, and 

transport by micro-cracks in the matrix, formed during the compounding process 

[126,127]. The capillary mechanism involves the flow of water molecules into the 

interface between the fibres and the matrix. It is particularly significant when the 

interfacial adhesion is weak and when the debonding of the fibres and the matrix has 

started. In addition, transport by micro-cracks includes the flow and storage of water 

in the cracks, pores or small channels in the composite structure. These imperfections 

can be originated during the processing of the material, or due to environmental and 

service effects. The diffusion coefficient is the most important parameter for water 

absorption, as this shows the ability of solvent molecules to penetrate inside the 

composite structure. Over short times such that Mt/M∞≤0.5 the following equation 

can be used to determine the diffusion coefficient [128]: 
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where Mt is the moisture content at time t, M∞ is the moisture content at the 

equilibrium, L is the thickness of the sample and D is the diffusion coefficient.  

Rearranging equation (1) gives: 
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D can be obtained from the slope of the linear part of the plot of Mt versus the square 

root of time t.  

A lot of work has been done on hygrothrmal ageing on composites. Ana et al. 

[129] studied the water absorption on natural fibres/PP composites and was proved to 

follow the kinetics of a Fickian diffusion process, where the kinetics parameters were 

influenced by the content of fibre and the temperature. Mechanical properties were 

dramatically affected by the water absorption. Water-saturated samples presented 

poor mechanical properties such as lower values of Young’s modulus and tensile 

strength. For samples with low fibre content, water acted in some way as a plasticizer 

leading to slightly higher values of strain, although this effect disappeared with the 

increase in temperature or in fibre content. Joseph et al. [53] studied the 

environmental effects on sisal fibre reinforced PP composites. Water uptake of the 

composite was found to increase with fibre content and levelled off at longer periods. 

The chemically modified fibre composites showed a reduction in water uptake 

because of better interfacial bonding. Water uptake of the composite was found to 

increase with temperature since temperature activates the diffusion process. 

Reduction in tensile properties was observed due to the plasticisation effect of water. 

The fibre/matrix bonding becomes weak with increasing moisture content, resulting 
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in interfacial failure. Rongzhi Li studied environmental degradation of wood-HDPE 

composite [130], and it was found that, the interaction of the water absorption and 

desorption by the wood phase and the environmental stress cracks of the HDPE 

phase became the most damaging element to the wood-HDPE composite. 

 
2.9.2 Degradation by Ultra-Violet (UV) Radiation 

UV exposure can cause changes in the surface chemistry of the composite also 

known as photodegradation which may lead to discoloration making the products 

aesthetically unappealing [131,132133]. Furthermore, prolonged UV exposure may 

ultimately lead to loss in mechanical integrity [133]. The composites reinforced with 

fibres containing large amounts of lignin are more susceptible to natural weathering 

than those with negligible amounts of lignin. This is because lignin and 

hemicelluloses existing in the middle lamellae of wood fibre are more susceptible to 

chemical degradation than cellulose [134,135]. Hemicelluloses are responsible for 

moisture sorption and biological degradation in wood to a much greater extent than 

cellulose. Lignin is responsible for ultraviolet degradation [136]. Table 2.4 shows the 

cell wall polymers involved in each fibre property [137]. 

The photodegradation mechanisms of wood and plastic separately are well 

documented in the literature. However, the photodegradation mechanisms of WPC is 

complicated, because each component, namely wood and plastic, may degrade via a 

different mechanism. The photodegradation of wood is attributed to the degradation 

of its components namely cellulose, hemicellulose, lignin and extractives [138]. 

Research has shown that the breakdown of lignin to water soluble products  which 

eventually leads to the formation of chromophoric functional groups such as 

carboxylic acids, quinones and hydroperoxy radicals, is the main cause for 
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discoloration, mainly yellowing in wood [ 139 , 140 ]. Lignin undergoes 

photodegradation via many different pathways. Ultimately, they all lead to the 

formation of chromophoric groups which have a characteristic yellow colour [141].  

Table 2. 4: Cell wall polymers responsible for the properties of lignocellulosics in order 

of importance [137]: 

Strength Moisture absorption 
Crystalline cellulose Hemicellulose 

Non-crystalline cellulose Non-crystalline cellulose 
Hemicellulose +Lignin Lignin 

Lignin Crystalline cellulose 
Thermal degradation Ultraviolet degradation 

Hemicellulose Lignin 
Cellulose Hemicellulose 

Lignin Non-crystalline cellulose 
Biological degradation Crystalline cellulose 

Hemicellulose  
Non-crystalline cellulose  

Crystalline cellulose  
Lignin  

The degradation of PP is due to photo-oxidation promoted by UV irradiation [142]. 

Oxidative reaction initiated by UV radiation is represented in Figure 2.4 [53].   
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Figure 2. 4:  Oxidation reactions initiated by UV radiation [53]. 
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Figure 2. 5:  PP molecules after extensive photodegradation [53]. 

For the reaction, oxygen is used up before it can diffuse to the interior so that 

degradation is concentrated near the surface, even in polymers in which high UV 

levels are present in the interior. The photo oxidation process takes place mainly in 

the amorphous region because of the higher permeability to oxygen [53,143,144]. 

Schematic representation of PP molecules after extensive photodegradation is shown 

in Figure 2.5 [53]. 

The long-term behaviour of materials due to environmental influences can be 

evaluated by the real time observations of the materials exposed to natural conditions 

for several years [145]. However, research programme lasting 10 years or more are 

rare for organizational and economic reasons. Accelerated aging tests seem to be 

useful for this purpose. However, during accelerated weathering measured variables 

can include exposure time, UV exposure as radiant energy over a specific 

wavelength range, and water exposure as number of cycles or time. To allow better 

comparison between studies it is recommended that performance after weathering be 

reported after a specific radiant exposure, the time integral of irradiance [146].  
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Accelerated weathering in presence of water enhances the rate of degradation of 

WPC. Wood cell walls swell when penetrated by water, facilitating light penetration 

further into the wood providing sites for further degradation [147]. Furthermore, 

washing the degraded surface with water exposes new surfaces for degradation. 

Therefore, weathering of WPC results in a cyclical erosion of the surface as the 

lignin is degraded and subsequently washed away, exposing more lignin to 

degradation. Washing can also remove some water soluble extractives that impart 

colour to wood [146].  

Joseph et al. [53] studied the environmental degradation of sisal/PP 

composites. They found that, the tensile properties of both untreated and chemically 

treated composites decrease after exposure to UV radiation due to chain scission as a 

result of photooxidation. The decrease in tensile properties was greater for 

chemically treated rather than untreated composites. Nicole et al. [148] reported that, 

exposing the wood fibre/HDPE composites to either UV radiation with water spray 

or UV radiation alone showed that the majority of the loss in mechanical properties 

after weathering was caused by moisture effects. In addition to the acceleration of 

oxidation reactions caused by water absorption, the swelling of the wood cell wall 

compromises the interface between the wood and HDPE. Rongzhi Li [ 149 ] 

conducted long term degradations in weathering condition and in controlled 

environment conditions for wood  flake reinforced HDPE  composites and reported 

that, it retained about half of its initial strength and two thirds of its initial toughness 

after outdoor weathering for 205 days. Thermal degradation plays an important role 

in the environmental ageing of the wood-HDPE composite. Oxidative degradation 

was not significant at the low temperature of 37°C, demonstrated an impact at higher 

temperature than 67°C. In dry and indoor conditions, UV radiation had small but 
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noticeable influence over the composite. It mainly promotes environmental stress 

cracks of HDPE. UV exposure causes crosslinking and dissociation of HDPE 

molecular chains, embrittles HDPE. However UV degradation was limited to a thin 

layer at the surface of the composite. In the outdoor weathering experiment of the 

wood-HDPE composite, a mutual promotion of the water adsorption and desorption 

by the wood phase and the environmental stress cracks of the HDPE phase was the 

main factor in the degradation of the composite. Ragnar et al. [150] studied UV 

aging of PP/wood fibre composites and found that the PP matrix and the PP/wood 

fibre composite both displayed good UV-resistance with regard to mechanical 

properties. The PP matrix displayed a 10% reduction in flexural strength and a 50% 

reduction in impact strength. The wood-fibre composites displayed a maximum 20% 

reduction in flexural strength and almost retained impact strength. The degradation 

of the composites was restricted to a thin surface layer, owing to the screening effect 

of the wood fibres. The degraded layer had a chalky appearance, due to degradation 

of the PP matrix, leading to chemicrystallization and extensive surface cracking. The 

rate of degradation of the PP matrix was approximately twice as high in samples with 

50 wt% wood-fibres, compared to samples with 25 wt% fibres, owing to the higher 

number of chromophores in the former. DSC scans (second melting) of degraded 

surface layers revealed a maximum 33°C decrease in PP melting temperature, due to 

molecular chain scission and the formation of extraneous groups, such as carbonyls 

and hydroperoxides.  
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CHAPTER -THREE 
 

THE EFFECTS OF COUPLING AGENT AND ALKALI 
TREATMENT ON MDF FIBRE REINFORCED PP 

COMPOSITES 
 
3.1  Introduction 
This study investigates the effect of coupling agent and alkali fibre treatment on the 

physical and mechanical properties of MDF fibre reinforced PP composites. Initially 

composites were produced with 10, 20, 30, 40, 50 and 60 wt% fibre content and 1, 2, 

3 and 4 wt% maleated polypropylene (MAPP) as a coupling agent. The effects of 

alkali treatment were assessed for composites with 50 wt% fibre content. Prior to 

compounding, the fibre was treated with NaOH. The effects of treatment were 

assessed using single fibre tensile testing, kappa testing, zeta potential, scanning 

electron microscopy (SEM) and X-ray diffraction (XRD). Tensile testing and SEM 

were carried out to assess the effect of modification on composite mechanical 

properties and fracture behaviour.  

3.2  Experimental 
3.2.1  Materials 

High temperature thermomechanically pulped (TMP) radiata pine (Pinus Radiata) 

medium density wood fibre (MDF) was supplied by Forest Research, New Zealand. 

The fibre length ranged from 2-4 mm. The matrix polymer was a standard 

polypropylene (PP) powder with a density of 0.9 g/cc supplied by the Aldrich 

Chemical Company, Inc and maleated polypropylene (MAPP-AC 950P) with a 

saponification value of 35-40 mg KOH/g, a density of 0.93 g/cc and free maleic 
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anhydride content of less than 0.5% was supplied by Honeywell International, Inc, 

USA.  

3.2.2  Methods 

Alkali Treatment: Predetermined amounts of fibre was placed in a stainless steel 

canisters with pre-mixed NaOH solutions of concentrations 2%, 4%, 7% and 10% 

NaOH (by weight), such that the fibre: solution ratio was 1:20 by weight. The 

canisters were then inserted into a small lab-scale pulp digester for alkali treatment, 

with the predetermined treatment cycles, controlled by a 10-step controlled program. 

The treatment temperature was 110oC with a hold time at the maximum temperature 

of 25 minutes. After treatment, the fibres were thoroughly washed (until the pH 

reached 7-7.5) using a pulp and paper fibre-washer. Fibres were then dried at 80oC 

for 48 hours. 

Zeta potential: The pH dependent zeta (ξ) potential measurements on fibres were 

carried out using a Mutek SZP 06 System zeta potential based on the streaming 

potential method. An electrolyte solution of 0.001M KCl was forced by external 

pressure through a fibre plug. The pH value was varied between 3-11 by the addition 

of 0.1M HCl or KOH.  

Kappa testing: The half scale kappa test method used in this experiment was based 

on the AS/NZS 1301.201.2002, the Papro 1.106 kappa number (half scale–

modification) and TAPPI T 236 standards. The kappa number is a measure of the 

amount of residual lignin with the fibre and by definition, the volume (in ml) of 0.1N 

(0.0002M) potassium permanganate solution consumed by one gram of moisture free 

pulp. Kappa testing involves the reaction of a known concentration of potassium 

permangante solution with a predetermined amount of dried fibre. The potassium 
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permanganate reacts with lignin in the fibre, so the amount of potassium 

permanganate consumed is equivalent to the amount of lignin present in the fibre. To 

determine the amount of potassium permanganate consumed, a solution of sodium 

thiosulfate of a known concentaration was titrated against the fibre-permanganate 

mixture.  

The amount of lignin was determined from the kappa number using the relation 

[151]:  

Lignin (%) = (Kappa number x 0.00147) x100            (3.1) 

Single fibre tensile testing: The tensile testing of wood fibre was carried out 

according to the ASTM D3379-75 Standard Test Method for Tensile Strength and 

Young’s Modulus for High-Modulus Single Filament Materials, using an Instron 

4204 tensile test machine fitted with a 10 N load cell and operated at a cross-head 

speed of 0.5 mm/min.  

 

 

 

 

 

 

 

 

Figure 3. 1:  Schematic diagram of cardboard window with mounted single fibre. 
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Individual fibres were mounted on cardboard windows using poly-vinyl acetate 

(PVA) glue to provide a gauge length 2 mm (See Figure 3.1). An Olympus BX 60 

optical microscope was used to measure the diameter of single fibre. Approximately 

35/40 single fibres were tested for each batch.  

Scanning electron microscopy (SEM): Fibre and composite surfaces were 

examined using a Hitachi S-4000 field emission scanning electron microscope, 

operated at 5 kV. Samples were mounted with carbon tape on aluminium stubs and 

then sputter coated with platinum and paladium to make them conductive prior to 

SEM observation. 

X-ray diffraction (XRD): X-ray diffraction was carried out using a Philip’s X-ray 

diffractometer with a current of 15 mA and a voltage of 54 kV using CuKα radiation 

and a graphite monochromator with the range of 2θ =6-60o.  

Composite fabrication: Composites were fabricated using a TSE-16-TC twin-screw 

extruder with a 15.6 mm screw blade diameter at 180oC (maintaining 5 different 

temperature zones 100, 130, 160, 180 and 175oC from feed zone to exit die) and a 

screw speed setting of 100 rpm. Prior to extrusion, wood fibre, PP and coupling 

agent were dried in an oven at 80oC for a minimum of 48 hours. Following extrusion, 

the material was pelletised into lengths of less than 5 mm and injection moulded into 

specimens for tensile and 4-point bend testing using a BOY 15-S injection moulder 

using 100 rpm screw speed and 40% injection pressure. The screw speeds and 

injection pressure was maintained same for the production of all composites to 

reduce the anisotropy of the samples. Impact test specimens were produced from 

standard 4-point bend test samples by polishing to give a suitable sample width.  
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Composite tensile testing: Tensile testing was carried out according to ASTM 638-

03: Standard Test Method for Tensile Properties of Plastics. Test specimens were 

placed in a conditioning chamber at 23oC ± 3oC and 50 % ± 5 % relative humidity 

for 40 hours. The specimens were then tested using an Instron-4204 tensile testing 

machine fitted with a 5 kN load cell and operated at a cross-head speed of 5 mm/min. 

An Instron 2630-112 extensometer was used to measure the strain. Six specimens 

were tested for each batch with a gauge length of 50 mm. 

Four point bend testing: Four point bend testing was carried out according to the 

ASTM D6272-02: Standard Test Method for Flexural Properties of Unreinforced and 

Reinforced Plastics and Electrical Insulating Materials, using a Lloyd LR 100 K 

tensile tester fitted with a 50 kN load cell and a cross head speed of 15 mm/min. Six 

specimens were tested for each batch.   

Impact testing: Charpy impact testing was carried out based on ISO 179: Plastics-

Determination of Charpy Impact Strength. Dimensions of the samples were 80 mm x 

8 mm x 3.2 mm with a 0.25 mm single notch (type A). Testing was carried out using 

a Polytest advanced universal pendulum impact tester with an impact velocity of 2.9 

m/s at 21oC. 

Hardness testing: The surface hardness of composites was measured using a LM 

700 micro hardness tester with a test load of 25 g and dwell time of 20 s. 

Melt flow index: The melt flow index was obtained using a Dynisco MFI2 Melt 

flow indexer following ASTM D1238: Standard Test Method for Melt Flow Rates of 

Thermoplastics by Extrusion Plastometer, using an applied load of 3.80 kg at 230oC. 

Three independent tests were carried out on each sample.  
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Density: Density of composite was determined following the ASTM D 792-00: 

Standard Test Methods for Density and Specific Gravity (Relative Density) of 

Plastics by Displacement, using the following formula: 

waterinspecimenofmassappearent
airinspecimenofmassapparentgravitySpecific =             (3.2) 

3.3  Results and Discussion 

3.3.1  Effects of MAPP and Fibre Content 

The tensile strength (TS) and Young’s modulus (YM) of pure polypropylene samples 

moulded using the same conditions as the composites were 25 MPa and 1418 MPa 

respectively (see Figure 3.2 and 3.3).  

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70

Fibre content (wt%)

Te
ns

ile
 s

tre
ng

th
 (M

P
a)

0% MAPP
1%MAPP
2% MAPP
3%MAPP
4%MAPP

 

Figure 3. 2: Tensile strength versus fibre content (wt%) of composites. 

Without the use of a coupling agent, the TS of the composites (see Figure 3.2) 

decreased with increasing fibre content. This suggests that the interfacial bond 

between the fibre and the matrix is poor without coupling agent. This is supported by 

SEM (see Figure 3.4a) in which fibre pull-out and debonding predominates at the 

fracture surface. However, the YM was found to increase (see Figure 3.3) with 

increasing fibre content.  
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By using a coupling agent (MAPP), TS increased with increasing fibre 

content up to 50 wt% fibre, then a reduction was observed for 60 wt% fibre content, 

which could be due to the increase in viscosity, as indicated by reduction of melt 

flow index (see Table 3.1) resulting limited fibre distribution. TS was found to 

increase with increasing MAPP content up to 4 wt%, although, little difference on TS 

was found between 3 and 4 wt% MAPP content. YM was found to increase with 

increasing MAPP content in composites, and again, the difference in YM between 3 

and 4 wt% MAPP was very little (see Fig. 3.3). Therefore, 3 wt% MAPP content was 

taken to be an optimum amount, and the rest of the studies were carried out with 3 

wt% MAPP. The increase in TS and YM using MAPP appeared to be due to better 

interfacial bonding (see Figure 3.4b). 
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Figure 3. 3: Young’s modulus versus fibre content (wt%) of composites. 

Failure strain (FS) decreased with increasing fibre content in composites (see Figure 

3.5) from about 7% for 10 wt% fibre to about 1.2% for 60 wt% fibre content, which 

was due to the more brittle nature of the fibre than the matrix PP. A slight increase in 

FS was found for increasing MAPP content in composites which could be due to 

better interfacial bonding.  
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(a) Without MAPP (b) With 3 wt% MAPP 

Figure 3. 4:  SEM of 60 wt% fibre composites fracture surfaces with and without 

MAPP. 
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Figure 3. 5: Failure strain versus fibre content (wt%) of composites. 

Flexural strength, flexural modulus and hardness of composites increased (see Table 

3.1) with increasing fibre content, which could be due to the presence of fibres 

reducing plastic flow. Impact strength was found to decrease with increasing fibre 

content (see Table 3.1), which could be due to more brittle nature of fibre reinforced 

PP compared to PP alone. Density of composites was found to increase with 

increasing fibre content due to the density of the fibre being higher than that of PP 

[37,38]. 
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Table 3. 1: Properties of composites with different fibre content with 3 wt% MAPP: 

Fibre Content (wt %) PP 10 20 30 40 50 60 
Flexural strength (MPa) - 27 33 45 48 66 78 
Flexural modulus (MPa) - 3437 4088 5634 6369 7294 9510 
Vickers’ hardness 
number 6 6.4 7.1 7.8 8.5 9.9 10.5 

Impact strength (kJ/m2) 10.62 4.57 3.98 3.87 3.81 3.76 3.68 
Melt flow index (g/10 
min) 29.4 19.4 15.8 10.6 6.3 5.4 2.7 

Density (g/cm3) 0.90 0.91 0.97 1.05 1.12 1.17 1.25 
 

3.3.2 Effects of Alkali Treatment 

3.3.2.1    Characterisation of fibre 

 Residual lignin content decreased with increasing NaOH concentration in the 

digestion medium (see Table 3.2). The residual lignin content for untreated fibre was 

3% and decreased to 1.8% for 10% NaOH treated fibre. The surface charge of treated 

and untreated fibre was measured using the streaming potential method over a range 

of pH values for which the results are shown in Figure 3.6 with the ζplateau values 

given in Table 3.2. Natural cellulose fibres are negatively charged due to the 

presence of carboxyl and hydroxyl groups [152]. It has been evaluated elsewhere 

[153,154] that, the number of hydroxyl groups present at the surface of wood fibre is 

only approximately 1% of the total number in cellulose.  

The surface charge of fibre increased with increasing NaOH concentration in 

the digestion medium. This may be because, alkali reacts with the cementing 

materials of the fibre, particularly hemicellulose, and leads to the destruction of the 

mesh structure of the fibre, splitting the fibres into finer filaments [155]. The break-

down of the fibre bundles would increase the effective surface area, exposing further 
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hydroxyl and carboxyl groups and increasing the surface charge, which is supported 

by zeta potential measurements, where the magnitude of zeta potential increased 

from ζplateau= -9mV for untreated fibre to ζplateau= -13mV for 10% NaOH treated fibre 

(see Figure 3.6 and Table 3.2).  

Table 3. 2: Physical and mechanical properties of fibre before and after alkali 
treatment: 
Fibre type Single fibre 

tensile 
strength 
(MPa) 

Single fibre 
Young’s 
modulus 

(GPa) 

Residual 
lignin 

content (%) 

Zeta 
potential 

ζplateau (mV) 

IXRD 

Untreated 300 ±95 32±4.5 3.0 -9 77 

2% NaOH - - 2.5 -9.8 74 

4% NaOH - - 2.3 -11.5 71 

7% NaOH - - - -12.5 71 

10% NaOH 220±85 24±4.7 1.8 -13 69.5 
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Figure 3. 6: Zeta Potential of treated and untreated fibre against pH. 

Evidence of surface roughness was seen using SEM (see Figure 3.7). In addition, 

porosity and pore size on the fibre surface was found to increase with increasing 

alkali concentration resulting in a reduction of TS and YM of fibre respectively from 

300 MPa and 32 GPa for untreated fibre to 220 MPa and 24 GPa for 10% NaOH 

treated fibre (see Table 3.2).  
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The crystallinity index (IXRD) was determined from the XRD (see Figure 3.8) traces 

by using Equation 3.3, where I(002) is the peak intensity at an angle 22° representing 

crystalline material and I(am) is the peak intensity at 18° representing amorphous 

material in cellulosic fibres. 

100
)200(

)()200( x
I

II
I am

XRD

−
=  (3.3)

The crystallinity index was found to decrease with increasing NaOH concentration 

(see Table 3.2).  

(a) Untreated (b) 2% NaOH treated 10% NaOH treated 

Figure 3.7: SEM of fibre surfaces before and after alkali treatment. 
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Figure 3.8: XRD traces of  untreated and alkali treated fibre. 
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3.3.2.2   Characterisation of composites 

As 50% fibre content in composites was found to be optimum (see section 3.3.1) the 

effects of fibre pre-treatment were assessed on composites containing 50 wt% fibre. 

TS and FS decreased and YM increased with increasing NaOH concentration as 

shown in Table 3.3. The decrease in TS and FS could be due to the reduction of 

single fibre TS resulting from increase in fibre porosity. However, porosity appears 

to have improved physical interlocking leading to better interfacial bonding that 

resulted in an increase in YM. 

Table 3. 3: Mechanical properties of composites: 

Concentration of NaOH (%) 0 2 4 7 10 

Tensile strength (MPa) 45 43 41 40 38 

Young’s modulus 4700 4851 4912 5100 5200 

Failure strain (%) 2.5 2.1 1.8 1.2 1.0 

 
3.3.4  Modelling of Tensile Strength and Young’s modulus 

Figures 3.9 and 3.10 shows the experimental data of TS and YM as a function of 

fibre volume fraction, together with the predicted values (considering density of 

wood fibre=1.4 g/cc [32]) from the different models applied, namely: Series, Parallel 

and Hirsch’s model (see Equations 2.1-2.6 in section 2.5.6). It can be seen that, in all 

cases, TS and YM increased gradually with increasing fibre volume fraction. The 

best correlation between the experimental and theoretical values of TS and YM was 

found with the Hirsch model using fitting parameter x=0.2, but a deviation was 

observed for TS at higher fibre content, and approached to x=0.1, which could be due 

to fibre agglomeration. 
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Figure 3. 9: Tensile strength versus fibre volume fraction of composites (predicted 

values –solid line and experimental values---dotted line). 
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Figure 3. 10: Young’s modulus versus fibre volume fraction of composites (predicted 

values –solid line and experimental values---dotted line). 
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CHAPTER-FOUR 
 

THE EFFECTS OF RESIDUAL LIGNIN AND 
HEMICELLULOSE CONTENT ON THE ACCELERATED 

WEATHERING OF WOOD FIBRE (KRAFT) REINFORCED 
PP COMPOSITES 

 
4.1  Introduction 
In this chapter the ultraviolet (UV) weathering performance of wood fibre (subjected 

to different stages of a standard Kraft pulping process and therefore consisting of 

different hemicellulose and residual lignin contents) reinforced polypropylene (PP) 

composites were studied. Fibre was characterised by kappa testing, zeta potential, 

thermogravimetric analysis (TGA) and SEM. Composites were fabricated with 40 

wt% fibre, 3 wt% coupling agent (maleated polypropylene-MAPP) as 3. Accelerated 

weathering was carried out for 1000 hours on composites, and mechanical properties 

were evaluated before and after weathering by tensile testing, impact testing, 

differential scanning calorimetry (DSC), XRD, TGA and SEM.  

4.2  Experimental  
 
4.2.1   Materials 

 Radiata pine (Pinus Radiata) wood fibre collected from different point of the Kraft 

pulping process was supplied by Tasman Pulp & Paper Co Ltd, New Zealand. The 

matrix polypropylene (PP) and coupling agent MAPP used in this study were the 

same as mentioned in 3.2.1.  
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4.2.2   Methods 

Fibre characterisation: Fibre properties were assessed using kappa testing, zeta 

potential, SEM and TGA (as described in 3.2.2) and also by determination of 

hemicellulose content as outlined below. 

Determination of hemicellulose content: After removing pectin and wax by using 

organic solvent (methanol and benzene, 50:50 v/v), about 3-4 g of oven dried wood 

fibre was boiled for 3 hours in 20 g/L NaOH solution, then washed into a filter, dried 

overnight at 105oC and weighed again. The hemicellulose content was determined by 

the weight difference. 

Composite fabrication: Composites were fabricated using extrusion followed by 

injection moulding described in section 3.2.2. 

Accelerated weathering Testing: Accelerated weathering testing of composites was 

carried out using an accelerated weathering tester (Model QUV/ spray with solar eye 

irradiance control) following the ASTM G 154-00a: Standard Practice for Operating 

Fluorescent Light Apparatus for UV Exposure of Non-Metallic Materials. A 

fluorescent bulb UVA with 0.68 W/m2 irradiance (at 340 nm) was used, with cycles 

consisting of UV irradiation for 1 hr followed by 1 min spray of de-ionized water, 

then 2 hours condensation. The temperature was maintained at 50oC. The samples 

were submitted to the aging process for durations of 150 hours, 400 hours, 600 hours, 

800 hours and 1000 hours.   

Composite characterisation: Composites were characterised using tensile testing, 

impact testing, hardness testing, melt flow index, SEM, TGA, DSC and XRD 

(methods described in 3.2.2).  
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4.3   Results and Discussion 
 
4.3.1  Characterisation of Fibre 

Physical properties of fibres are summarised in Table 4.1. Residual lignin and 

hemicellulose content decreased with progressive washing and bleaching. Pre-

washed fibre, collected from the digester just after Kraft pulping process, contained 

the highest residual lignin (3.9%) and hemicellulose (21%) contents. 

Table 4. 1: Physical properties of pre-washed, washed and bleached fibre: 

Fibre Hemi-
cellulose 

content (%) 

Kappa 
number 

Residual lignin 
content (%) 

Zeta potential 
(ζplateau) (mV) 

Pre-washed 21 27 3.9 - 

Washed 20 17 2.4 -12 

Bleached 17 ≤1 ≈0 -16 

Intermediate residual lignin and hemicellulose contents were found for washed fibre, 

at which stage all the dissolved lignin had been removed by washing. The lowest 

lignin (virtually zero) and hemicellulose (17%) was found for bleached fibre. The 

surface charge of washed and bleached fibre was measured using the streaming 

potential method over a range of pH values for which the results are shown in Figure 

4.1 (with plateaux values shown in Table 4.1). Generally, natural cellulose fibres are 

negatively charged due to the presence of carboxyl and hydroxyl groups as 

mentioned in 3.3.2.1 [152]. In the case of washed fibre, these groups are covered by 

lignin, present in the primary wall of the fibre shown in Figure 4.2a, where a resinous 

second phase can be seen on the fibre surface, while the surfaces of bleached fibre 

which appear more smooth (see Figure 4.2b). This could explain the lower 
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magnitude of zeta potential found for washed fibre (ζplateau=-12) compared to 

bleached fibre (ζplateau=-16) [156].  
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Figure 4. 1: Zeta potential of washed and bleached fibre. 

 

(a) Washed fibre (b) Bleached fibre 

Figure 4. 2: SEM of pre-washed and bleached fibre surfaces. 

Typical DTA and TGA traces for fibres are shown in Figures 4.3 and 4.4. Two main 

stages of decomposition were observed for all fibres, starting with dehydration 

combined with emission of volatile components at a temperature of about 260oC, 

followed by a rapid weight loss due to oxidative decomposition corresponding to 

formation of char as the temperature increased (see Figure 4.3) [157]. Kinetic 
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parameters for the various stages of thermal degradation were determined from the 

TGA graphs using the following equation, given by Broido [158]: 
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(4.1) 

where y is the fraction of nonvolatilized material not yet decomposed, Tmax is the 

temperature of maximum reaction rate, β is the heating rate, Z is the frequency 

factor, and Ea is the activation energy. Initially plots of lnln(1/y) versus 1/T for 

various stages of decomposition were drawn, such as in Figure 4.5 and generally 

found to be linear, suggesting good agreement with the Broido equation. The 

activation energies, Ea, determined from the slopes of these plots are given in Table 

4.2. Both Ea and Tmax generally increased for pre-washed through to bleached fibre. 

The positions of weight loss on the TGA traces shifted to higher temperatures (see 

Figure 4.4) for increased processing stages from pre-washed to bleached fibre, 

suggesting increased thermal stability, which can be supported by the increased Ea 

and Tmax (see Table 4.2). This increase in thermal stability could be due to the 

decreased lignin and hemicellulose content. 
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Figure 4. 3: DTA curves of pre-washed, washed and bleached fibre. 
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Figure 4. 4: TGA curves of pre-washed, washed and bleached fibre. 
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Figure 4. 5: lnln(1/y) versus 1/T for 1st decomposition stage of bleached fibre. 

Table 4. 2: Thermal properties of pre-washed, washed and bleached fibre: 

Fibre type Stages Temp range 
(oC) 

Tmax (oC) Residue 
(%) 

Activation 
energy Ea 
(kJ/mol) 

1st 285-376 311 40 Pre-washed 2nd 411-446 436 6.61 67 
1st 275-385 343 79 Washed 2nd 413-477 427 2.36 98 
1st 308-405 354 91 Bleached 2nd 446-480 462 1.82 125 
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It is also noted that the higher the amounts of lignin in the fibre the higher the residue 

obtained after TGA analysis (see Table 4.2), which could be due to the lignin 

component contributing to char formation such that a charred layer helps to insulate 

against further thermal degradation [159].  

4.3.2  Characterisation of Composites 

For easy processing 40 wt% fibre was selected for the production of composites to 

evaluate the effects of accelerated weathering and 3 wt% MAPP was used as it was 

found to be optimum (see section 3.3.2). Properties of composites are presented in 

Table 4.3. A significant increase of TS was found for bleached compared to pre-

washed fibre composites respectively from 31 MPa to 41 MPa. FS increased, but 

very little change in YM was noted for pre-washed through to bleached fibre 

composites.  

Table 4. 3: Properties of pre-washed, washed and bleached fibre composites: 

Fibre type TS 
(MPa) 

YM 
(MPa) 

FS 
(%) 

Vicker’s 
hardness 
number 

Impact 
strength 
(kJ/m2) 

Melt flow 
index 

(g/10 min) 

IDSC 

Pre-
washed 31 4584 0.7 8.7 3.9 2.20 36.9 

Washed 39 4500 1.6 8.2 5.6 1.10 37.2 
Bleached 41 4450 2.1 7.7 6.1 0.90 42.8 

Hardness was found to decrease from 8.7 Vicker’s hardness number to 7.7 Vicker’s 

hardness number and impact strength increased from 3.9 kJ/m2 to 6.1 kJ/m2 for pre-

washed through to bleached fibre composites. Melt flow index was found to decrease 

for pre-washed through to bleached fibre composites. For the pure PP, melt flow 

index was found to be 29.40 g /10 min, while pre-washed fibre composites showed a 

melt flow index of 2.20 g/10 min and bleached fibre composites showed 0.90 g/10 

min.  
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The increase in TS with an increase degree of fibre processing could be due 

to the removal of hemicellulose and lignin which have less contribution to TS than 

cellulose [137]. Also, lignin appears to hinder the efficiency of stress transfer 

between PP and fibre [160] which may result in poor interfacial bonding between the 

fibre and the matrix as supported by Figure 4.6a, where a lot of fibre pull out was 

observed from the fracture surface of pre-washed fibre composites compared to 

better interfacial bonding of bleached fibre composites (see Figure 4.6b). Removal of 

bulky groups of lignin may increase the FS and impact strength, and decrease 

hardness of bleached fibre composites. 

The crystallinity of PP in composites was determined from the DSC analysis 

using the relation [161]: 

W
X

H
HIityCrystallin

m
DSC

100,%
∆
∆

=  (4.2) 

where ∆H and ∆Hm are the heat of fusion of PP and 100% crystalline PP 

respectively, and W is the fraction of PP in composites. Taking ∆Hm=148 J/g for PP 

[162], the crystallinity of PP in composites was calculated and is presented in Table 

4.3. 

(a) Pre-washed (b) Bleached 

Figure 4. 6: SEM of pre-washed and bleached fibre composites fracture surfaces. 
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The crystallinity index for PP in pre-washed fibre composites was 36.9%, increased 

to 42.8% for bleached fibre composites (see Table 4.3), which may be due to the 

removal of amorphous lignin from the fibre. The increase in composite crystallinity 

was also supported by XRD (see Figure 4.7). This increase in crystallinity may be 

another reason for the increase in TS for bleached fibre composites.  
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Figure 4. 7: XRD traces of pre-washed and bleached fibre composites showing higher 

intensity for bleached fibre composites. 
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Figure 4. 8: TGA curves of pre-washed and bleached fibre composites. 



 74

TGA traces of composites are presented in Figure 4.8. Pre-washed fibre composites 

started to decompose earlier than bleached fibre composites, but this trend changed at 

higher temperature (with the pre-washed fibre composites leaving a greater of 

residue). For pre-washed fibre composites 13.8% was residue remained and for 

bleached fibre composites 1.55% residue was left. This may be due to pre-washed 

fibre containing higher amounts of residual lignin which contributes to char 

formation, and a charred layer helping to insulate against further thermal degradation 

of the sample [159].  

4.3.3  Effects of Weathering 

The surface texture of samples exposed to the accelerated weathering environment 

slightly deteriorated, in the form of colour fading and deposition of white powdery 

material on the surface (see Figure 4.9). Progressive weight gain during weathering 

is presented in Figure 4.10. For PP, there was no significant change in weight during 

weathering. The weight of pre-washed fibre composites decreased considerably with 

exposure time, however, washed and bleached fibre composites showed an increase 

in weight. The change of weight is likely to be due to effects of leaching of lignin 

from the samples and absorption of water during the water spray and condensation 

cycle. For pre-washed fibre composites, the former mechanism appears to be 

predominant, but for washed and bleached fibre composites, the latter appears to be 

predominant.  
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Unweathered 150 hours 
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1000 hours 
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Figure 4. 9: Visual change during weathering of composites consisting bleached, 

washed and pre-washed fibre, denoted by its kappa number respectively 1, 17 and 27. 
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Figure 4. 10: Weight gain of composites during weathering. 

 

Loss of lignin from composites can be supported by Figure 4.9 where pre-washed 

fibre composites changed their colour after 150 hours weathering from blackish 

brown to light brown and finally after 1000 hours to a yellow colour, which is likely 

to be due to the breakdown of lignin to water soluble products [163,164]. 

The change in mechanical properties due to weathering for different periods 

of time is presented in Figures 4.11-4.16. Very little change in TS and YM was 

found for PP, but both TS and YM decreased for composites with increasing duration 

of irradiation (see Figures 4.11 and 4.12). The highest reduction was found for pre-
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washed fibre composites. TS and YM of pre-washed fibre composites reduced 

respectively from 31 MPa and 4584 MPa before weathering to 19 MPa and 1197 

MPa after 1000 hours weathering. 
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Figure 4. 11: Tensile strength of composites and PP versus weathering time. 

 

FS (see Figure 4.13) was found to increase with increasing irradiation time for pre-

washed and washed fibre composites, but was found to decrease for bleached fibre 

composites. A dramatic reduction of FS was found for PP (see Figure 4.14), reducing 

from 128% for 150 hours weathering to 2.5% for 1000 hours weathering. 
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Figure 4. 12: Young’s modulus of composites and PP versus weathering time. 
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Figure 4. 13: Failure strain of composites versus weathering time. 

Impact strength (see Figure 4.15) was found to increase slightly with increasing 

irradiation time for pre-washed and washed fibre composites, but was found to 

decrease for bleached fibre composites. A dramatic reduction of impact strength was 

found for PP, from 10.5 kJ/m2 for virgin PP to 3.3 kJ/m2 for the PP after 1000 hours 

weathering. It is interesting to note that FS and impact strength of composites are less 

affected than PP alone during weathering (see Figures 4.13-4.15). 
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Figure 4. 14: Failure strain of PP versus weathering time. 
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Figure 4. 15: Impact strength of composites and PP versus weathering time. 

Hardness was generally found to decrease for PP and all of the composites. Among 

them, pre-washed fibre composites showed the greatest reduction of hardness, with 

most of the reduction happening within 200 hours of weathering (see Figure 4.16). 
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Figure 4. 16: Vicker’s hardness of composites and PP versus weathering time. 

The reduction of TS and YM found during weathering could be due to chain scission 

and degradation occurring to PP molecules [53]. The degree of crystallinity of virgin 

PP is 38.8% (Table 4.4). Therefore, a large fraction of the material is in the non-
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crystalline state, which favours the permeability of oxygen and the photo-oxidation 

process which takes place mainly in these amorphous regions [165,166,167]. Since 

the glass transition temperature of PP (-10oC) [ 168 ] is below the exposure 

temperature (50oC), the freed segments in the amorphous region have sufficient 

mobility to rearrange into a crystalline phase, resulting in higher crystallinity after 

weathering [169] during exposure leading to shrinkage of the degraded material. In 

thick samples, the changes take place only near the moulded surfaces (where 

chemical degradation occurs), and as the interior remains unchanged, the tendency of 

surface contraction ultimately leads to the formation of surface cracks as can be seen 

in Figure 4.17 [170]. 

(a) Unweathered (b) 1000 hours weathered 

Figure 4. 17: Micrographs of PP surfaces before and after weathering. 

The other reason for reduction of TS and YM of composites could be due to the 

breakdown of lignin to water soluble products [139,140]. A high content of water 

soluble substances leached from the composites during water spray and condensation 

leding to the initiation of debonding between the fibre and the matrix [171] and 

ultimately resulting in fibre pull out (see Figure 4.18). 
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(a) Pre-washed (b) Bleached 

Figure 4. 18: Composites fracture surfaces after weathering showing higher degree of 

pull out for pre-washed fibre composites. 

The reduction of FS and impact strength of PP (Figures 4.14 and 4.15) could be due 

to the formation of surface cracks, as shown in Figure 4.17, and chain break down of 

PP. The increase in FS and impact strength for pre-washed and washed fibre 

composites during weathering could be due to the removal of lignin resulting in 

leaching of the debonded fibre and giving a porous structure. As the porosity 

increases, water molecules can become trapped inside the composite structure, which 

may act as a plasticizer resulting in an increase of FS and impact strength [53]. The 

reduction of FS and impact strength for bleached fibre composites could be due to 

less fibre pull out and chain scission of PP leading to more brittle behaviour.  

 
Table 4. 4: Crystallinity of PP alone samples and  PP in composites before and after  

weathering: 

 Before weathering After 1000 hours weathering 
Sample Tm (oC) IDSC  Tm (oC) IDSC  

PP 169.2 38.8  163.7 40.9 
Pre-washed 168.2 36.9  167.0 29.0 

Washed 169.6 37.2  168.4 34.6 
Bleached 170.5 42.8  169.3 41.1 
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The crystallinity calculated (using equation 4.2) from DSC analysis was found to 

increase from 38.8% for virgin PP to 40.9% for 1000 hours weathered PP. However, 

for the PP in composites, the crystallinity decreased after weathering (see Table 4.4). 

This observation was supported by XRD (see Figures 4.19-4.21), where a higher 

intensity was found for PP after weathering, as opposed to the composites where a 

decrease in intensity with weathering was found. 
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Figure 4. 19: XRD traces of PP before and after weathering. 
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Figure 4. 20: XRD traces of pre-washed fibre composites. 
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Figure 4. 21: XRD traces of bleached fibre composites. 

TGA traces of PP are presented in Figure 4.22, where, it may be seen that the TGA 

traces shifted to lower temperatures with increasing weathering time. The decrease in 

thermal stability when weathering time was increased could be due to reduction of 

molecular weight. TGA traces of composites also shifted to lower temperature after 

1000 hours weathering (see Figures 4.23 and 4.24) as observed for PP. 
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Figure 4. 22: TGA traces for PP before and after weathering. 

For pre-washed fibre composites the amount of residue left after TGA was found to 

be much less than with the unweathered composites (see Figure 4.23), with 13.8% 

for unweathered composites and 4.6% residue after 1000 hours weathering. This 
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appeared to be due to the removal of residual lignin which contributes to char 

formation [154]. The decrease in thermal stability of composites during weathering 

could be due to the PP chain scission and degradation of both the fibre and the fibre 

matrix interfacial bonding as supported by Figure 4.18. 
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Figure 4. 23: TGA traces for pre-washed fibre composites before and after weathering. 
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Figure 4. 24: TGA traces for bleached fibre composites before and after weathering. 

After weathering, the crystalline melting temperature (Tm) was found to decrease for 

PP and all composites (see Table 4.5). Virgin PP showed a Tm of 169.2oC and after 

1000 hours weathering it was 163.7oC (see Figure 4.25). The reduction of Tm for all 

composites due to weathering was approximately 1oC. The reduction of Tm could be 

due to the break down of polymer chains and a reduction of molecular weight [53], 
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which may be less for PP in composites than PP alone, as supported by Tm (see Table 

4.5). 
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Figure 4. 25: DSC curves of PP before and after weathering. 

 

Table 4. 5: Crystallinity of PP alone samples and  PP in composites before and 
after weathering: 

 
 

 

 

 

 

 

 

 

 Before weathering After 1000 hours weathering 

Sample Tm (oC) IDSC  Tm (oC) IDSC 

PP 169.2 38.8  163.7 40.9 

Pre-washed 168.2 36.9  167.0 29.0 

Washed 169.6 37.2  168.4 34.6 
Bleached 170.5 42.8  169.3 41.1 



 85

CHAPTER-FIVE 
 

FIBRE PRE-TREATMENT AND HYGROTHERMAL AGEING 
OF WOOD FIBRE (KRAFT) REINFORCED PP 

COMPOSITES 
 

5.1    Introduction 
In this chapter, the effects of fibre beating and hygrothermal ageing on bleached 

Kraft wood fibre reinforced PP composites were investigated. Initially, coupling 

agent content in composites was optimised. Coupling agent contents of 1, 2, 3, 4, 5, 7 

and 10 wt% were used in composites. A 30-50 wt% fibre was loaded in composites. 

To investigate the effects of fibre length, fibre fractions of different length 

distribution were separated using a pressure screen. Fibre pre-treatment by 

mechanical beating was used to improve the interfacial bonding. Hygrothermal 

ageing on composites was carried out by immersing specimens in distilled water at 

30, 50 and 70°C over an 8-month period. Fibre pre-treatment was assessed by zeta 

potential, freeness testing and SEM. Composites were characterised using tensile 

testing, impact testing, melt flow index, SEM and TGA. 

5.2     Experimental  
5.2.1  Materials 
 Radiata pine (Pinus Radiata) bleached wood fibre (Kraft) was supplied by Tasman 

Pulp & Paper Co Ltd, New Zealand. The average fibre length was 2.36 mm. The 

matrix PP and coupling agent MAPP used in this study were the same as mentioned 

in 3.2.1.  

5.2.2  Methods 
Fibre beating: Fibre was beaten using a Sprout-Waldron disc refiner with a specific 

edge load of 0.89 Ws/m for 10 minutes. The refiner was operated at 1450 rpm so that 
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the disc peripheral velocity was in the range of 20-25 m/s. The plates used were 

Papro R³ plates, with a cutting length of 223 m/rev. Refined pulps were removed at 

regular intervals. 

Freeness testing: Freeness testing was carried out according to the AS/NZS 

1301.206: Methods of Test for Pulp and Paper-Freeness of Pulp using a Freeness 

tester.  

Fibre separation: Fibre was separated into long and short fibre fractions using a 

Beloit MR8 Pressure Screen with 1 mm holes (a standard fractionation basket used 

for obtaining different paper grades). The pulp was split into a long fibre fraction and 

a short fibre fraction. This process was repeated for half an hour for the long fibre 

fraction in order to increase the average fibre length.  

Composite fabrication: Composites were fabricated using extrusion followed by 

injection moulding as described in chapter 3.2.2. 

Water absorption: Water absorption studies were performed following the ASTM 

D 570-98: Standard Test Method for Water Absorption of Plastics. Six specimens of 

tensile and bending from every batch were submerged in distilled water at 30, 50 and 

70oC. The specimens were removed from the water after certain periods of time, 

weighed in a high precision balance to find the amount of water taken up and then 

resubmerged in water.  

Composite characterisation: Composites were characterised using tensile testing, 

impact testing, melt flow index, SEM and TGA (methods described in 3.2.2).  
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5.3     Results and Discussion 
 
5.3.1  Effects of MAPP  

No significant effect on TS and YM was found for MAPP addition to PP alone (see 

Figure 5.1 and 5.2). For composites without the use of coupling agent, the TS 

decreased from 25 MPa for pure PP to 23 MPa for composites (see Figure 5.1). This 

suggests that the interfacial bond between the fibre and the matrix is poor. This can 

be supported by SEM (see Figure 5.3a), where fibre pull-out and debonding 

predominate at the fracture surface. Using MAPP of 1 wt% in the composites, the TS 

increased to 37 MPa from 23 MPa. Both the TS and YM increased with increasing 

MAPP content in composites up to 4 wt% (see Figure 5.1 and 5.2), which appeared 

to be due to better interfacial bonding between the fibre and the matrix (see Figure 

5.3b). 
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Figure  5. 1: Tensile strength versus coupling agent concentration in composites (40 
wt% fibre). 



 88

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 7 10

MAPP content (wt%)

Y
ou

ng
's

 m
od

ul
us

composite
PP

 

Figure  5. 2: Young’s modulus versus coupling agent concentration in composites (40 
wt% fibre). 

 

(a) Without MAPP (a) With  4 wt% MAPP 

Figure  5. 3: SEM of composites (40 wt% fibre) fracture surfaces with and without 

MAPP. 

A slight reduction of TS and YM was observed for 5 wt% MAPP and the extent of 

reduction of TS and YM increased for 7 and 10 wt% MAPP. The reduction of TS 

and YM at higher MAPP content has been attributed to self-entanglement among the 

compatibilizer chains rather than with the polymer matrix, thus resulting in slippage 

[172,173]. As there was very little difference on TS and YM for 3-5 wt% MAPP 

content in composites, it was considered that any concentration within this range 

could be used to achieve the most favourable mechanical properties. For the rest of 

this study 4 wt% MAPP was used in composites.  
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5.3.2  Effects of Fibre Content 

The TS increased from 39 MPa for 30 wt% fibre composites to 41 MPa for 40 wt% 

fibre composites, but was found to decrease down to 38 MPa for 50 wt% fibre 

composites (see Table 5.1).  

Table  5. 1: Properties of composites containing 4% MAPP with different fibre content:  

Fibre 
content 
(wt%) 

MAPP 
content 
(wt%) 

TS 
(MPa) 

YM 
(MPa) 

FS (%) Impact 
strength 
(kJ/m2) 

Melt flow 
index  

(g/10min) 
30 4 39±0.94 3616±208 2.48±0.8 7.5 2.80 
40 4 41±1.43 4553±500 1.99±0.5 6.2 0.90 
50 4 38±1.50 4888±555 1.06±0.5 4.1 0.14 

 

This is in contradiction to Rule of Mixtures type models, where increasing the fibre 

content would be expected to increase TS [ 174 ]. Departure from this trend is 

considered likely to be due to the limited dispersion of fibre in composites at higher 

fibre content, due to the increase of viscosity as indicated by the reduction of melt 

flow index (see Table 5.1). As expected, the YM was found to increase with 

increasing fibre content, due to the high modulus of the fibre. FS and impact strength 

decreased with the increase in fibre content, due to the brittle nature of fibre relative 

to PP.  

DTA and TGA traces are shown in Figure 5.4 and 5.5. Three stages of 

decomposition were observed for all composites, such as for the 30 wt% fibre 

composites shown in Fig. 5.4. As the temperature increased, dehydration and 

decomposition of volatile components was observed at about 260oC, followed by 

rapid weight loss for oxidative decomposition, and finally slow decomposition 

corresponding to the formation of char [175]. 
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Figure  5. 4: TDA traces of 30 wt% fibre content composites with 4 wt% MAPP. 

Activation energies for the various stages of thermal degradation were determined 

from the TGA graphs using the Broido equation (Equation 4.1) following the 

methods described in 4.3.1. The results are presented in Table 5.2.  
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Figure  5. 5: TGA traces of composites with different fibre content (with 4 wt% 

MAPP). 

Both Ea and Tmax decreased with increased fibre volume fraction in composites. The 

positions of weight loss on the TGA trace shifted to lower temperatures (see Figure 

5.5) with increased fibre volume fraction, suggesting decreased thermal stability, can 
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be supported by decreased activation energies with increase fibre volume fraction in 

composites (see Table 5.2).  

Table 5. 2: Thermal properties of composites: 

Fibre 
content 
(wt%) 

MAPP 
content 
(wt%) 

Stage Temperature 
range (o C) 

Tmax (oC) Activation 
energy 

(kJ/mol) 
1st 215-352 291 89 
2nd 352-422 387 67 30 4 
3rd 422-491 456 84 
1st 221-343 282 80 
2nd 343-413 370 61 40 4 
3rd 413-491 455 83 
1st 215-310 264 78 
2nd 310-413 342 60 50 4 
3rd 413-477 448 83 

 
5.3.3  Effects of Fibre Length 

TS and YM decreased with decreasing fibre length in composites (see Table 5.3), 

which could be due to a decrease in the reinforcing efficiency with decreasing fibre 

length [176]. Impact strength was found to decrease with decrease in fibre length, 

may be due to less stress transfer for short fibre. On the other hand, FS increased 

with decreasing fibre length, which could be due to the fibre shorter than the critical 

fibre length, would easily debond from the matrix inducing an increase in FS.  

Table  5. 3: Properties of composites containing 40 wt% fibre (of different fibre length) 
and 4 wt% MAPP: 

Fibre length 
(mm) 

TS (MPa) YM (MPa) FS (%) Impact strength 
(kJ/m2) 

3.07 43±1.4 4600±460 1.91±0.6 6.5 
2.36 41±1.4 4553±500 1.99±0.5 6.2 
0.95 37±1.2 3879±340 2.47±0.5 5.6 

 
5.3.4 Effects of Fibre Beating 

With increasing beating time, fibre length and fibre freeness decreased (see Figure 

5.6 and 5.7). External fibrillation occurred resulting from partial or total removal of 

the primary wall [25] (see Figure 5.8).  
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Figure 5. 6: Fibre length versus beating time of beaten and unbeaten fibre. 

0
100
200
300
400
500
600
700
800

Control 1.5 4 5.5 6.5 7.5 8

Beating time (minutes)

Fr
ee

ne
ss

 (m
Ls

)

 

Figure  5. 7: Fibre freeness versus beating time of beaten and unbeaten fibre. 

The surface charges of beaten and unbeaten fibre were measured using the streaming 

potential method over a range of pH values. Natural cellulose fibres are negatively 

charged as described in 3.3.2.1. The magnitude of negative zeta potential increased 

with increasing beating time (see Figure 5.9), which could be due to an increased 

specific surface area of the fibre after beating [25,177]. The ζplateau value for unbeaten 

fibre was -16 while the value was -20 for fibre beaten for 8 minutes.  
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(a) Control (b) 5.5 mins beaten (c) 8 mins beaten 

Figure 5. 8: SEM of beaten and unbeaten fibre surfaces. 
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Figure  5. 9: Zeta potential versus pH of beaten and unbeaten fibres. 

 

The properties of composites prepared with beaten fibre are presented in Figure 5.10 

and 5.11. TS increased up to 45 MPa with increase in beating time up to 5.5 minutes, 

which could be due to the improvement of interfacial bonding between the fibre and 

the matrix resulting from the formation of micro fibrils and increased surface area, 

then decreased upon further beating, could be due to the fibre damage and reduction 

of fibre length [25]. YM was found to decrease with increasing beating time (see 

Figure 5.11), which may be due to the reduction of fibre length as observed in 

section 5.3.3. 
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Figure  5. 10: Tensile strength of composites (40 wt% fibre and 4 wt% MAPP) versus 

fibre beating time. 
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Figure  5. 11: Young’s modulus of composites (40 wt% fibre and 4 wt% MAPP) versus 

fibre beating time. 

5.3.5  Effects of Hygrothermal Ageing 

Hygrothermal ageing was carried out for four batches of composites (30, 40, 50 wt% 

fibre content with MAPP and 40 wt% fibre content without MAPP). The exposure of 

the samples to hygrothermal environments resulted in slight deteriorations of the 

surface texture, in the form of colour fading. Fibre became discernible from the 

matrix, where 30 wt% fibre composites with 4 wt% MAPP was found to be least 
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affected and 40% fibre composites without MAPP was most affected (see Figure 

5.12).  

Hygrothermal ageing also resulted in increased sample thickness (see Figure 5.13). 

Degree of swelling increased with increased temperature and fibre content in 

composites. The composites without coupling agent showed swelling to a level 

almost twice that of composites with coupling agent.  

 

  
(a) Composites of 30% fibre with 
4% MAPP (unaged) 

(b) Composites of 40% fibre 
without MAPP (unaged).  

(a) Composites of 30% fibre with 
4% MAPP (aged) 

(b) Composites of 40% fibre 
without MAPP (aged) 

Figure  5. 12: Least and most affected composite surfaces after ageing at 70oC 

compared to unaged surface. 
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Figure  5. 13: Thickness swelling of composites after hygrothermal ageing. 

Moisture absorption increased with increasing time for all composites until saturation 

at about 5 months (see Figure 5.14 and 5.15). As PP did not show any significant 

weight gain during this period, it seems likely that moisture only penetrated 

composites through the fibre and fibre matrix interface. The composites without 

coupling agent reached the saturation point more quickly than the composites with 

coupling agent. With increasing temperature, the rate of moisture absorption 

increased and the saturation point was reached quickly. Composites containing a 

higher amount of fibre showed higher rates of water absorption.  

The diffusion coefficient calculated from the plot of Mt versus the square root 

of time (t) using Equation 2.9 (see section 2.9.1) is presented in Table 5.4. The 

equilibrium moisture content and the diffusion coefficient increased with increasing 

fibre content in composites as well as with increasing temperature.  
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Figure  5. 14: Soaking time versus moisture content of 40 wt% fibre composites with 4 

wt% MAPP (dotted line) and without MAPP (solid line) at 30, 50 and 70oC. 
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Figure  5. 15: Soaking time versus moisture content of 30 wt% fibre (dotted line) and 

50 wt% fibre composites (solid line) (containing 4 wt% MAPP) at 30, 50 and 70oC. 

As the fibre volume fraction increased, it would become more likely to have 

networked fibre which would serve as passages for water molecules to travel through 

the lattice from one side to another [178], resulting in increased diffusion coefficients 

and equilibrium moisture contents with increased fibre contents. Higher equilibrium 

moisture contents and diffusion coefficients for composites without coupling agent 

could be due to poor interfacial bonding, evident from SEM (see Figure 5.3).  
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Table 5. 4: Composites equilibrium moisture contents and diffusion coefficients: 

Equilibrium moisture content (%), 
Diffusion coefficient (m2/s) 

Fibre 
content 
(wt%) 

MAPP 
content 
(wt%) 30oC 50oC 70oC 

30 4 4.60, 
- 

6.75, 
1.68x10-13 

6.77, 
5.08x10-13 

40 0 10.41, 
2.92x10-13 

10.25, 
5.68x10-13 

10.05, 
8.77x10-13 

40 4 7.21, 
- 

8.95, 
2.43x10-13 

8.40, 
6.24x10-13 

50 4 9.50, 
1.80x10-13 

10.47, 
3.23x10-13 

9.65, 
10.60x10-13 

 

TS and YM were found to decrease after hygrothermal ageing for all composites, and 

the extent of reduction was found to be higher for higher fibre content composites 

and for higher immersion temperatures (see Figure 5.16 and 5.17).  
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Figure 5. 16: Tensile strength of composites before and after hygrothermal ageing at 

different temperatures. 

The reduction of TS and YM may be due to the degradation of fibre and /or the fibre 

matrix interface. SEM micrographs clearly showed the loss of adhesion between the 

fibre and matrix, characterised by the apparition of voids and fibre pull out (see 

Figure 5.18), where the most severely damaged composite fracture surfaces are 

presented. Degradation of the fibres by the water absorption can be seen and the 
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microfibrils can be clearly observed (Figure 5.18) compared to virgin fibre (Figure 

5.8a).  
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Figure 5. 17: Young’s modulus of composites before and after hygrothermal ageing at 

different temperatures. 

 

 

(a) Composites of 50% fibre with 
4% MAPP 

(b) Composites of 40% fibre 
without MAPP.  

Figure 5. 18: Most affected composites fracture surfaces after hygrothermal ageing (at 

70 oC). 

The FS and impact strength were found to increase after hygothermal ageing for all 

composites (Figure 5.19 and 5.20), which may be due to water molecules acting as a 

plasticizer in the composite material [53]. However, the increment was found to be 

the highest for 30oC immersion. For increasing immersion temperature, both the FS 

and impact strength were generally found to decrease, which could be due to the 
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increase in degradation of the fibre and /or fibre matrix interface at higher 

temperature. 
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Figure 5. 19: Failure strain of composites before and after hygrothermal ageing at 

different temperatures. 
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Figure 5. 20: Impact strength of composites before and after hygrothermal ageing at 

different temperatures. 
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CHAPTER –SIX 
 

EFFECTS OF RECYCLING ON WOOD FIBRE (KRAFT) 
REINFORCED PP COMPOSITES 

 
6.1  Introduction 
This chapter describes the effects of recycling on the physical and mechanical 

properties of composites based on Kraft fibre reinforced PP composites. Composites, 

containing either 40 wt% or 50 wt% fibre, were recycled up to eight times. 

Composites were characterised using tensile testing, four point bend testing, impact 

testing, hardness testing, melt flow index, density measurement, digital microscopy, 

SEM, TGA, DSC and XRD. Change in fibre length during reprocessing was 

correlated with some empirical equations. Hygrothermal ageing behaviour of 

recycled composites was also investigated by immersing specimens in distilled water 

at 50°C over a 9 month period. Changes in physical and mechanical properties due to 

aging were correlated with number of times the materials were recycled. 

6. 2  Experimental 
 
6.2.1  Materials 
Radiata pine (Pinus Radiata) bleached wood fibre (Kraft) was supplied by Tasman 

Pulp & Paper Co Ltd, New Zealand. The average fibre length was 2.36 mm. The 

matrix PP and coupling agent MAPP used in this study were the same as mentioned 

in 3.2.1. 

6.2.2  Methods 

Composite fabrication: Composites were fabricated with 40 wt% or 50 wt% fibre 

with 4 wt% MAPP and PP using a TSE-16-TC twin-screw extruder with a 15.6 mm 

screw blade diameter at 180oC (maintaining 5 different temperature zones 100, 130, 
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160, 180 and 175oC from feed zone to exit die) and a screw speed setting of 100 rpm. 

Prior to extrusion, wood fibre, PP and coupling agent were dried in an oven at 80oC 

for a minimum of 48 hours. Following extrusion, the material was pelletised into 

lengths of less than 5 mm and injection moulded into specimens for tensile and 4-

point bend testing using a BOY 15-S injection moulder. Specimens for tensile, 4-

point bend testing and impact testing were randomly selected from approximately 

one hundred and fifty of each type to evaluate the mechanical properties. Impact test 

specimens were produced from standard 4-point bend test samples by polishing to 

give a suitable sample width. The remaining specimens were granulated and 

injection moulded. Again, specimens were randomly selected from these recycled 

materials for physical and mechanical property evaluation. The procedure of 

injection moulding and granulation was repeated a total of eight times.  

Composite characterisation: Composites were characterised using tensile testing, 

four point bend testing, impact testing, hardness testing, melt flow index, density 

measurement, SEM, TGA, DSC and XRD (methods described in 3.2.2). In addition, 

digital microscopy was used to analyse the fibre distribution in composites. 

Digital microscopy: Following mounting, grinding and polishing, the fibre 

distribution and alignment of the fibre in the composites was observed using an 

Olympus B X 60 microscope.  

Extraction of fibre from composites: Fibre was extracted from composites by 

dissolving the matrix in hot xylene at 110oC, followed by soxhlet extraction in 

xylene for 72 hours. 

Fibre length measurement: The length and fibre distribution of virgin and extracted 

fibre from the composites was measured using a Kajaani FS-200 electronic 
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sequential fibre analyzer. Fibre counts of about 15,000-20,000 were used to 

determine the fibre length distribution. 

Water absorption: Water absorption studies were performed at 50oC following the 

ASTM D 570-98: Standard Test Method for Water Absorption of Plastics (methods 

described in 5.2.2).  

6.3  Results and discussion 
 
6.3.1  Effects of Recycling on Mechanical Properties  

Very little change on TS and YM was found for PP during recycling (see Figure 6.1 

and 6.2). The TS and YM of the 40 wt% fibre composites decreased with increased 

number of times the materials were recycled in a linear fashion (see Figure 6.1 and 

6.2). The virgin composites showed an average TS of 41 MPa and YM of 4553 MPa 

which reduced after being recycled 8 times to 31 MPa and 3800 MPa respectively. 
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Figure 6. 1: Tensile strength of virgin and recycled composites (40 wt% fibre) and PP. 
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Figure 6. 2: Young’s modulus of virgin and recycled composites (40 wt% fibre) and PP. 

 

TS and YM for the 50 wt% fibre composites are presented in Figure 6.3 and 6.4. 

Based on a Rule of Mixtures type model (see equation 2.1-2.4) the increase in fibre 

content in composites would be expected to increase the TS and YM.  
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Figure 6. 3: Tensile strength of virgin and recycled composites (50 wt% fibre). 
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Figure 6. 4: Young’s modulus of virgin and recycled composites (50 wt% fibre). 

However, TS was initially lower for 50 wt% fibre than for 40 wt% fibre content 

composites (see Figure 6.1 and 6.3) which is likely to be due to the limited dispersion 

of fibre in composites at higher fibre content due to the increase in viscosity as 

indicated by the reduction of melt flow index (see Table 6.1).  

Table 6. 1: Melt flow index of composites and PP: 

Type Melt flow index (g/10 min) 

PP 29.40 

Composite with 40 wt% fibre 0.90 

Composite with 50 wt% fibre 0.14 

However, TS of 50 wt% fibre composites increased with increased number of times 

the materials were recycled up to 2 times from 37 MPa for virgin composites to 42 

MPa for the composites recycled 2 times (see Figure 6.3), which was considered to 

be due to improved fibre dispersion, but then decreased with further recycling and 

overall 11% reduction of TS was found for the composites after recycled 8 times, 

compared to the virgin composites. As expected by the Rule of mixtures, YM was 

higher for 50 wt% fibre content than 40 wt% fibre content composites (see Figure 6.2 
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and 6.4) and also increased with increased number of times the materials were 

recycled up to 2 times, and then decreased upon further recycling. During recycling, 

the occurrence of improvement of fibre dispersion and fibre damage occur 

simultaneously, but at lower levels of recycling the former seems to be predominant, 

although at higher levels of recycling the latter appears to have an overriding 

influence.  

The trend for TS of the 40 wt% composites versus the number of times the 

materials were recycled (see Figure 6.1) was found to be closely represented by the 

empirical equation: 

aNN += 0σσ  (6.1)

where σN is the tensile strength of the composites recycled N times and a is the slope 

of the TS versus number of times recycled graph. A 25% reduction in TS and 16% 

reduction in YM was observed for the composites after they were recycled 8 times 

(see Figure 6.5). 
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Figure 6. 5: Reduction in TS and YM of composites during recycling (40 wt% fibre). 
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FS of PP was found to be greater than 500% (the maximum range of the tensile 

tester), but was found to be reduced drastically by the addition of fibre to about 2% 

for 40% fibre composites and 1.3% for 50 wt% fibre composites (see Figure 6.6 and 

6.7). The FS of both 40 wt% and 50 wt% fibre composites increased exponentially 

with increased number of times the materials were recycled. 
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Figure 6. 6: Failure strain of virgin and recycled composites (40 wt% fibre). 
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Figure 6. 7:  Failure strain of virgin and recycled composites (50 wt% fibre). 
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Flexural tests, impact tests and hardness tests were also carried out for 40 wt% fibre 

composites. Flexural strength and flexural modulus were found to decrease with 

increased number of times the materials were recycled (see Figure 6.8 and 6.9). 
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Figure 6. 8: Flexural strength of virgin and recycled composites (40 wt% fibre). 
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Figure 6. 9: Flexural modulus of virgin and recycled composites (40 wt% fibre). 

The virgin 40 wt% fibre composites showed an average flexural strength and flexural 

modulus of 57 MPa and 7200 MPa respectively, which reduced after being recycled 

8 times to 40 MPa and 5700 MPa respectively (see Figure 6.8 and 6.9). Impact 
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strength was also found to decrease for both PP and composites containing 40 wt% 

fibre during recycling from 10.5 kJ/m2 and 6.2 kJ/m2 respectively for virgin PP and 

composites to 6.2 kJ/m2 and 3.2 kJ/m2 respectively after the materials were recycled 

8 times (see Figure 6.10). The hardness of the composites increased with recycling 

(see Figure 6.11). 
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Figure  6. 10: Impact strength of virgin and recycled composites and PP (40 wt% fibre). 
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Figure  6. 11: Vicker’s hardness of virgin and recycled composites (40 wt% fibre). 
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One of the reasons for the changes in mechanical properties is likely to be due to the 

fact that reprocessing incurred some fibre damage. The average fibre length was 

found to decrease from 2.36 mm for virgin fibre to 0.37 mm for the fibre extracted 

from the 40 wt% fibre composites recycled 8 times (see Figure 6.12). In addition, the 

amount of fibre fines (fibre length less than 0.20 mm) was found to increase (see 

Figure 6.13) and the length distribution of fibres became narrower and reduced to 

shorter fibre lengths (see Figure 6.14 a-d) with increased number of times the 

materials were recycled. The shorter fibre lengths and the increased fines percentage 

with recycling were also observable by light microscopy (see Figure 6.15). This 

would be expected to reduce reinforcing efficiency leading to the observed reduction 

in TS, YM, flexural strength and flexural modulus [179].  
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Figure  6. 12: Weighted average fibre length of virgin fibre and the fibre extracted 

from composites. 
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Figure  6. 13: Fines (fibre length less than 0.20 mm) in the virgin fibre and the fibre 

extracted from composites. 
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Figure  6. 14: Fibre length distribution of virgin fibre and the fibre extracted from 

composites. 
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(a) virgin composite (b) 8 times recycled composite 

Figure  6. 15: Micrographs of composites surface showing fibre distribution in 

composites. 

The increase in FS was likely to be due to less constraint from shorter fibre and the 

reduction of micro voids as evaluated by the increased density of composites (see 

Figure 6.16). The reduction of impact strength could be due to the reduction of 

molecular weight of PP during recycling. The increase in hardness may have resulted 

from the reduction of micro voids and the increase in composite density with 

increased recycling. 
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Figure  6. 16: Density of virgin and recycled composites. 
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The change in average fibre length can be correlated with the number of times the 

composite materials were recycled by the following empirical equation: 

bN
N ell −= 0  (6.2) 

where lN is the average fibre length at any recycled composites, l0 is the length of 

virgin fibre, and b is the slope of fibre length versus number of times recycled graph. 

Rearranging Equation 6.2 to give: 

bN
l
l

N

=






 0ln  
(6.3)

and combining with Equation 6.1 gives TS as a function of the ratio of the original 

fibre length to the reduced length that has occurred with recycling as follows:  









+=

N
N l

l
b
a 0

0 lnσσ  
(6.4)

The theoretical TS calculated by using Equation 6.4 is compared with experimental 

values in Figure 6.17 and shows good agreement.  
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Figure  6. 17: Theoretical and experimental value of TS (Verification of Equation 6.4) 

for mixture of virgin and recycled composites. 
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6.3.2  Effects of Recycling on Thermal Stability and Crystallinity  

The DSC curves for PP and 40 wt% fibre composites are shown in Figure 6.18 and 

6.19 suggesting the reduction of melting temperature (Tm) with recycling. The 

percentage crystallinity of virgin and recycled PP and that of the PP in the 

composites was calculated using Equation 4.2 (see section 4.3.2) and is presented in 

Table 6.2. The crystallinity of PP only samples and PP in the composites increased 

with increased number of times the materials were recycled (see Table 6.2) which is 

likely to be as a result of molecular weight reduction [ 180 ]. The increase in 

crystallinity was also supported by the XRD traces (see Figure 6.20 and 6.21).  
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Figure 6: 18 DSC curves of virgin and recycled PP. 
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Figure 6. 19: DSC curves of virgin and recycled 40 wt% fibre composites. 

The Tm for PP alone showed very little change during recycling (see Table 6.2). The 

Tm for PP in virgin composites was found to increase slightly from 169.2oC for 

virgin PP to 170.5 oC for PP in the virgin composites, which is likely to be due to the 

fibres acting as nucleating sites and increasing the crystallinity [181], however, the 

Tm for PP in composites decreased slightly with increased number of times the 

materials were recycled which could be due to the reduction of molecular weight 

[180]. 

Table 6. 2: Melting point and crystallinity of PP only samples and the PP in composites: 
 

Sample Melting Point Tm (oC) IDSC 

Virgin PP 169.2 38.8 
4 times recycled PP 168.8 39.0 
8 times recycled PP 168.7 40.1 
Virgin composite 170.5 43.7 

4 times recycled composite 167.7 44.9 
8 times recycled composite 167.0 45.2 
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Figure 6. 20: XRD traces of virgin and recycled PP showing higher intensity for 

recycled PP. 
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Figure 6. 21:  XRD traces of virgin and recycled 40 wt% fibre composites showing 

higher intensity for recycled composites. 

 
Typical DTA and TGA traces for virgin PP as well as recycled PP and the 

composites are shown in Figures 6.22-6.25. Three stages of decomposition were 

observed for all composites and PP samples (see Figure 6.22 and 6.23), starting with 

dehydration and decomposition of volatile components at around 260oC, followed by 

rapid weight loss for oxidative decomposition and finally slow decomposition 

corresponding to formation of char as the temperature increased [182]. Activation 
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energies for the various stages of thermal degradation were determined from the 

TGA graphs using the Broido equation (Equation 4.1), following method described 

in 4.3.1 and are presented in Table 6.3. Tmax and Ea for PP and composites were 

generally found to increase with increased number of times the materials were 

recycled. The positions of weight loss on the TGA traces both for PP and composites 

shifted to higher temperatures with increased number of times the materials were 

recycled (see Figure 6.24 and 6.25) suggesting increased thermal stability. The 

increase in thermal stability is likely to be due to the increase in crystallinity of PP 

[183] resulting from molecular weight reduction [180] and better interfacial bonding 

during recycling, supported by observations of fracture surfaces (see Figure 6.26).  
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Figure 6. 22: DTA traces for virgin and recycled PP. 
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Figure 6. 23: DTA traces for virgin and recycled 40 wt% fibre composites. 
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Figure 6. 24: TGA curves of virgin and recycled PP. 
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Figure 6. 25: TGA curves of virgin and recycled 40 wt% fibre composites. 
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Virgin 4 times recycled 8 times recycled 

Figure 6. 26: SEM of composite fracture surface showing less pull out at higher number 

of times the materials were recycled. 

 

Table 6. 3: Thermal properties of PP and composites:   

Sample Stage Wt. loss 
(%) 

Temp. 
range (o C) 

Tmax (oC) Activation 
energy Ea 
(kJ/mol) 

1st 26 224-320 293 104 
2nd 70 320-445 375 78 

Virgin PP 

3rd 3 445-534 504 43 
1st 18 224-328 285 115 
2nd 79 320-445 390 84 

8 times 
recycled PP 

3rd 2 445-534 506 50 
1st 61 226-351 285 85 
2nd 31 351-436 371 68 

Virgin 
composite  

3rd 7 436-508 455 60 
1st 30 230-340 289 87 
2nd 52 340-447 412 71 

8 times 
recycled 

composite 3rd 15 470-512 470 81 
 
6.4.3  Mixing  Virgin and Recycled Composites 

The TS of composites prepared with the mixture of 50 wt% virgin and 50 wt% (2-8 

times) recycled composites are shown in Figure 6.27, and it can be seen that TS 

decreased from 41 MPa for virgin composites to 37.5 MPa for 50 wt% virgin + 50 

wt% 8 times recycled composites. TS of the mixture are expected to follow the Rule 

of Mixtures equation (Equation 2.1 in section 2.5.6) rewritten for more clarity as 

follows: 
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( )NNmix χσχσσ += 00  (6.5)

where σo and σN are the TS of virgin and recycled composites, χ0 and χN are the 

volume fraction of virgin and recycled composites, and N is the number of times the 

materials were recycled. Good agreement with the Rule of Mixtures equation was 

obtained (see Figure 6.27). 
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Figure 6. 27: Tensile strength of composites produced from the mixture of virgin and 

recycled composites (40 wt% fibre) 

 
6.4.4  Hygrothermal Ageing of Recycled Composites 

The exposure of the samples to hygrothermal ageing resulted in slight deterioration 

of the surface texture in the form of colour fading.  Fibre also became discernible 

from the matrix as compared to unaged composites (see Figure 6.28). However, after 

aging, less fibre can be seen from the composites surface recycled 8 times than that 

from the virgin composites surface, which could be due to the better interfacial 

bonding between fibre and matrix as observed in Figure 6.26.  
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(a) Unaged virgin (b) Unaged 8 times recycled 

(c) Aged virgin (d) Aged 8 times recycled 

Figure 6. 28: SEM of virgin and recycled composites surface before and after 

hygrothermal ageing. 
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Figure 6. 29: Moisture content versus soaking time of virgin and recycled composites 

and PP. 
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Figure 6. 30: Moisture content versus square root of time of virgin and recycled 

composites and PP. 

 

Moisture absorption increased with increasing time for all composites until 

saturation at about 5 months (see Figure 6.29). As no significant weight gain was 

found for PP during this period, it seems likely that moisture only penetrated into the 

composites through the fibre and fibre matrix interface. The diffusion coefficient of 

moisture absorption was calculated using Equation 2.9 (see section 2.9.1) from the 

plot of Mt versus the square root of time (t) (see Figure 6.30). Both the equilibrium 

moisture content and diffusion coefficient decreased with increased number of times 

the materials were recycled (see Table 6.4).  

Table 6. 4: Equilibrium moisture content and diffusion coefficient of virgin and 

recycled composites: 

Number of times recycled Equilibrium moisture 
content M∞(%) 

Diffusion coefficient D 
(m2/s) 

Virgin composite 9.42 2.54x10-13 

2 times recycled composite 8.46 1.53x10-13 
4 times recycled composite 7.93 1.19x10-13 
6 times recycled composite 7.75 1.10x10-13 
8 times recycled composite 6.41 1.01x10-13 
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Equilibrium moisture content and diffusion coefficient decreased respectively from 

9.42% and 2.54x10-13 m2/s for virgin composites to 6.41% and 1.01x10-13 m2/s for 

composites recycled 8 times. The decrease in moisture content and diffusion 

coefficient with increased number of times the materials were recycled can be 

explained by a number of effects. As the fibre length decreased with increased 

number of times the materials were recycled, it would have been more difficult to 

form finite clusters which serve as passages for water molecules to travel through the 

lattice from one side to another [184].  Also, reduction of micro voids as evaluated 

by the increased density of composites would be expected to result in a decrease in 

moisture content and diffusion coefficient with increased recycling. In addition, 

recycling increased the crystallinity of PP and improved the interfacial bonding 

between the fibre and the matrix, as supported by SEM (see Figure 6.26), which 

would also be expected to reduce the moisture absorption. 
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Figure 6. 31: Thickness swelling of virgin and recycled composites after hygrothermal 

ageing. 
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Thickness swelling was found for virgin and recycled composites after hygrothermal 

ageing (see Figure 6.31) the extent of which was found to decrease with recycling, 

such that after ageing, the virgin composites showed an increase in swelling by 3.7% 

which reduced down to 2.2% for composites recycled 8 times. This again could be 

due to the reduction of micro voids and better interfacial bonding with an increased 

number of times the materials were recycled.   
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Figure 6. 32: Tensile strength of virgin and recycled composites before and after 

hygrothermal ageing. 
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Figure 6. 33: Young’s modulus of virgin and recycled composites before and after 

hygrothermal ageing. 
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Figure 6. 34: Reduction in TS and YM of virgin and recycled composites after 

hygrothermal ageing. 

TS and YM decreased after hygrothermal ageing for all composites (see Figure 6.32 

and 6.33). The percentage reduction in TS and YM due to ageing is presented in 

Figure 6.34, and it can be seen that the extent of reduction in properties decreased 

with increased number of times the materials were recycled.  

(a) Unaged (b) Aged 

Figure 6. 35: SEM of virgin composites fracture surface before and after hygrothermal 

ageing. 
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(a) Unaged (b) Aged 

Figure 6. 36: SEM of fibre surface before and after hygrothermal ageing. 

 

After ageing, reductions in TS of 33% and YM of 40% were found for virgin 

composites compared to reductions for both TS and YM of 27% for composites 

recycled 8 times. This may be due to the equilibrium moisture content decreasing 

with increased number of times the materials were recycled, and therefore having 

less effect on behaviour. SEM of aged composites fracture surfaces clearly showed 

the loss of adhesion between fibre and matrix, characterised by the apparition of 

voids and fibre pull out (see Figure 6.35b) compared to better bonding for the 

composites fracture surface before ageing (see Figure 6.36a). Degradation of the 

fibres by water absorption can be seen, the fibres appear seriously degraded and the 

microfibrils can be clearly observed as compared to virgin fibre (see Figure 6.36). 

FS and impact strength were found to increase for hygrothermal ageing (see 

Figure 6.37 and 6.38) which may be because water molecules act as a plasticizer in 

the composite material [53]. However, the extent of increase in FS and impact 

strength was generally found to decrease with increased number of times the 

materials were recycled which could be due to the reduction of equilibrium moisture 
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content. Hardness was found to decrease for hygrothermal ageing (see Figure 6.39) 

expected to be due to swelling of composites by hygrothermal ageing. 
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Figure 6. 37: Failure strain of virgin and recycled composites before and after 

hygrothermal ageing. 
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Figure 6. 38: Impact strength of virgin and recycled composites before and after 

hygrothermal ageing. 
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Figure 6. 39: Hardness of virgin and recycled composites before and after 

hygrothermal ageing. 

 

TGA curves for virgin and recycled composites are presented in Figure 6.40 and 

6.41. The positions of weight loss on the TGA trace shifted to lower temperatures 

after hygrothermal ageing both for virgin and recycled composites suggesting 

decreased thermal stability. The decrease in thermal stability could be due to the 

degradation of fibre and fibre matrix interfacial bonding (see Figure 6.35). 
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Figure  6. 40: TGA traces of virgin composites before and after hygrothermal ageing. 
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Figure  6. 41: TGA traces of composites recycled 8 times before and after hygrothermal 

ageing. 

The DSC curves of virgin composites before and after ageing are presented in Figure 

6.42 showing the reduction of Tm after hygrothermal ageing. The Tm and crystallinity 

of PP in virgin and recycled composites before and after hygrothermal ageing are 

presented in Table 6.5.  

 
Table  6. 5: Melting point and crystallinity of PP in composites before and after 
hygrothermal ageing: 
 

Before ageing After ageing Number of times recycled 
Tm (oC) IDSC Tm (oC) IDSC 

Virgin composite 170.5 43.7 166.1 32.8 
2 times recycled composite 168.8 44.4 166.3 33.2 
4 times recycled composite 168.2 44.9 166.6 38.1 
6 times recycled composite 168.1 44.9 166.2 39.7 
8 times recycled composite 167.7 45.2 165.5 40.7 

 
Both Tm and crystallinity of PP in virgin and recycled composites were found to 

decrease after ageing. The Tm for virgin composites reduced from 170.5oC for 

unaged composites to 166.1oC after ageing, and that for composites recycled 8 times 

reduced to 165.5oC after ageing from 167.7oC.   
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Figure  6. 42: DSC curve of virgin composites before and after hygrothermal ageing. 

A reduction of crystallinity by 25% for virgin composites and that of 10% for 

composites recycled 8 times was found after hygrothermal ageing (see Table 6.5). 

This was also supported by XRD traces, where lower intensity was found for aged 

composites (see Figure 6.43 and 6.44) indicating lower crystallinity. The reduction of 

crystallinity and Tm could be due to the loss of structural integrity and debonding of 

the fibre from the matrix, resulting from the development of shear stress at the 

interface due to absorbed moisture [185]. Also, long term immersion of composites 

at a high temperature (50oC) could reduce the molecular weight, resulting in a 

reduction of Tm. 
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Figure  6. 43: XRD traces of virgin composites before and after hygrothermal ageing. 
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Figure  6. 44: XRD traces of composites recycled 8 times before and after hygrothermal 

ageing. 
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CHAPTER-SEVEN 
 

SUMMARY AND CONCLUSIONS 
 

A major challenge for thermoplastic matrix composites is the inherent poor adhesion 

between the hydrophilic fibre and the hydrophobic matrix. Coupling agents in wood 

fibre/polypropylene composites play an important role in improving the 

compatibility and adhesion between the polar wood fibre and non polar 

polypropylene matrix. For both MDF and Kraft fibre composites, TS and YM were 

found to increase with coupling agent. Composites with fibre content up to 60 wt% 

for MDF and 50 wt% for Kraft was successfully produced. Optimum mechanical 

properties were obtained at a content of 50 wt% fibre with 3 wt% MAPP for MDF 

fibre and 40 wt% fibre with 4 wt% MAPP for Kraft fibre. An increase of more than 

80% for TS and 250% for YM was obtained by using 3 wt% MAPP and 50 wt% 

MDF fibre, compared to the unreinforced matrix. With Kraft fibre, a 65% increase in 

TS and 225% in YM was achieved with 40 wt% fibre and 4 wt% MAPP. It appeared 

that the reduction of TS at higher fibre content was due to an increase in melt 

viscosity resulting in limited fibre dispersion in composites. 

Fibre pre-treatment increased the fibre surface charge, but damaged the fibre 

and decreased its crystallinity. Both TS and YM of wood fibre decreased respectively 

from 300 MPa and 32 GPa for virgin fibre to 220 MPa and 24 GPa after alkali 

treatment (with 10% NaOH). Composites with alkali treated fibres showed a 

reduction in TS, but showed an increase in YM. This suggests the potential to use a 

mild alkali treatment to improve the fibre surface for better interfacial bonding in 

composites whilst retaining the fibre strength.  
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Higher amounts of residual lignin and hemicellulose led to lower TS, FS and 

impact strength, although little change in YM was found for decreased hemicellulose 

and residual lignin content in composites. Removal of residual lignin and 

hemicellulose increased thermal stability of composites. Crystallinity of PP in 

composites was found to increase for decreased residual lignin and hemicellulose 

content. When composites were subjected to accelerated weathering, TS and YM 

were found to decrease and the extent of reduction was found to be higher for higher 

residual lignin composites. The reduction of mechanical properties was found to be 

due to degradation of lignin and PP chain scission as evaluated by increase in 

crystallinity of PP after weathering. Thermal stability of composites was found to 

decrease with weathering. 

TS, YM and impact strength were found to decrease and FS increased with 

decreasing fibre length. Fibre pre-treatment by beating increased the TS of 

composites from 41 MPa for unbeaten fibre composites to 45 MPa for 5.5 min beaten 

fibre, and on further beating, TS was found to decrease. YM decreased with 

increasing beating time.  

During hygrothermal aging, equilibrium moisture content and diffusion 

coefficient increased with increased fibre content in composites as well as with 

increased immersion temperature. Composites without coupling agent showed higher 

water uptake and diffusion coefficient than that of with coupling agent. TS and YM 

were found to decrease for hygrothermal ageing due to fibre damage and damage of 

fibre matrix interface bonding. After ageing, FS and impact strength were found to 

increase suspected to be due to the plasticizing effect of water.   

Composite recycling was carried out 8 times by repeated pelletising and 

injection moulding. For 40 wt% fibre reinforced composites after being recycled 8 
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times, a 25% reduction in TS and only 16% reduction in YM was found suggesting 

great potential for recycled composites. Also for these composites, impact strength, 

flexural strength and flexural modulus were found to decrease with increased number 

of times the materials were recycled. Recycling of 50 wt% fibre composites brought 

about an increase in both TS and YM from 37 MPa and 4830 MPa respectively for 

virgin composites to 42 MPa and 6421 MPa for composites recycled 2 times, due to 

improved fibre dispersion followed by decreases in TS and YM upon further 

recycling. The reduction of TS, YM, flexural strength and flexural modulus was 

considered to be due to fibre damage that occurred during reprocessing as evaluated 

by the associated reduction of the average fibre length from 2.36 mm for virgin fibre 

to 0.37 mm for the fibre extracted from the composites recycled 8 times. The FS was 

found to increase with increased recycling due to shorter fibre and reduction of void 

content as evaluated by the increase in composites density. The thermal stability was 

found to increase with increased recycling due to the improvement of interfacial 

bonding and increased crystallinity of PP resulting from the reduction of molecular 

weight. TS of composites made with mixtures of virgin and recycled material were in 

close agreement with the Rule of Mixtures. During hygrothermal ageing, the 

equilibrium moisture content and diffusion coefficient was found to decrease with 

increased number of times the materials were recycled. After aging, a 33% reduction 

of TS and 40% reduction of YM was found for virgin composites, and 27% reduction 

of both TS and YM was found for composites recycled 8 times.  
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CHAPTER-EIGHT 
 

RECOMMENDATIONS AND FUTURE WORKS 
 

Wood-plastic composites are gaining growing acceptance for structural 

applications. For these applications, extrusion and injection moulding is the 

preferred method of production. Although hot press is commonly used for the 

production of long fibre composites, to retain the fibre length it can be used for 

wood fibre composites. Commingling can also be used for the production of 

wood fibre composites. 

Better interfacial bonding between the fibre and the matrix is needed to get better 

mechanical properties of composites; addition of coupling agents is one of the 

most effective methods for wood fibre reinforced thermoplastic composites. 

However, optimum amount of coupling agents provide the highest mechanical 

properties. The bonding mechanism was not clearly understood; more chemical 

analysis (e.g. FTIR) is required to understand the bonding mechanism between 

the fibre and the matrix. 

Mild alkali treatment is recommended to be an effective method of surface 

treatment for improving interfacial bonding as well as reducing lignin content, 

however additives (Na2SO3, Na2CO3, and NH4OH) may increase the efficiency.  

As low lignin composites provided better mechanical properties and better 

stability under weathering, for long term it is better to make composites with low 

lignin content. However, it would be useful to have comparative data of natural 

weathering with accelerated weathering, although it would be a long term 

research plan. Photo-degradation of composites is a complex process; more 
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chemical analysis (e.g. FTIR) may be useful for better understanding the 

mechanism of composite degradation.  

Recycling of composites subjected to actual weathering would give better 

understanding of the real-world performance.  

Advanced modelling is needed for a better understanding of how the properties 

of composites change with different fibre contents. However, most of the existing 

models use some fitting parameter. “Modified Rule of Mixture” model can be 

used in this context, which consists both fibre orientation and fibre length 

efficiency factor (as a factor for stress transfer between the fibre and the matrix).  

Although it is a difficult task to determine the interfacial shear strength between 

wood fibre and PP, but, it would be useful to obtain better model.  

As conventional methods (extrusion and injection moulding) were used for the 

production of virgin and recycled composites, this methods and formulation can 

be useful for mass production, although, it is better to go for pilot production 

before going for mass production. 
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