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ABSTRACT

Context. Particle transport in many astrophysical problems can be described either by the Fokker–Planck equation or by an equivalent
system of stochastic differential equations.
Aims. It is shown that the latter method can be applied to the problem of defining the size of the cosmic-ray galactic halo.
Methods. Analytical expressions for the leading moments of the pitch-angle distribution of relativistic particles are determined.
Particle scattering and escape are analyzed in terms of the moments.
Results. In the case of an anisotropic distribution, the first moment leads to an expression for the halo size, identified with the
particle escape from the region of strong scattering. Previous studies are generalized by analyzing the case of a strictly isotropic initial
distribution. A new expression for the variance of the distribution is derived, which illustrates the anisotropization of the distribution.
Conclusions. Stochastic calculus tools allow one to analyze physically motivated forms for the scattering rate, so that a detailed
realistic model can be developed.
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1. Introduction

Knowledge of evolving nonthermal particle distributions, result-
ing from particle interaction with a background plasma, is im-
portant in a variety of astrophysical applications. A well-known
example is provided by modeling accelerated electrons in the
flaring solar corona, which undergo Coulomb collisions and gen-
erate hard X-ray emission in flares (e.g., Leach & Petrosian
1981; MacKinnon 1991). Particle interaction with turbulent
magnetic fields has been repeatedly studied in the context of
cosmic-ray transport (e.g., Earl 1974; Toptygin 1985; Hein &
Spanier 2008). Of particular interest is the relationship between
the angular distribution of relativistic galactic cosmic rays and
the formation of a galactic cosmic-ray halo. This halo is typically
defined as a region surrounding the galactic disk, in which the
cosmic-ray density significantly exceeds that in the intergalactic
medium (e.g., Ginzburg & Ptuskin 1976; Dogiel et al. 1993). In
all these cases, scattering strongly influences the evolving parti-
cle distributions, yet accurate description of scattering represents
a significant mathematical difficulty because scattering leads to
stochastic effects in particle orbits.

Mean-scattering approximation neglects dispersion in the
particle distribution and leads to a relationship between the av-
erage pitch angle and kinetic energy of a particle (e.g., Craig
et al. 1985). Defining the mean rates of change of these quanti-
ties, however, is not always straightforward (e.g., MacKinnon
1988; Conway et al. 1998). In any case, to go beyond the
mean-scattering approximation and explore the spread around
the mean values, the distribution function must be determined by
solving the Fokker–Planck equation. This is typically done us-
ing numerical methods. Although analytical solutions can help
in developing a better understanding of the problem, usually

they can be found only in two limiting cases. A series expan-
sion in terms of Legendre polynomials for the cosine of the
pitch angle (or expressions obtained by perturbation techniques)
can provide a reasonable level of accuracy if the distribution
function is quasi-isotropic (e.g., Earl 1974; MacKinnon 1991).
Approximate analytical expressions can also be derived in the
opposite limit of strongly anisotropic (runaway) particle distri-
butions (e.g., Leach & Petrosian 1981).

A new approach to the problem of nonthermal particle trans-
port, described by the linearized Fokker–Planck equation, had
been suggested by Conway et al. (1998). The idea is to avoid
solving the equation for the distribution function explicitly.
Instead, analytical expressions for the moments of the distri-
bution function are determined from an equivalent system of
stochastic differential equations. Features of the particle trans-
port are then analyzed in terms of the moments. The approach
has been used to provide analytical description of collisionally
evolving energetic electrons in solar flares, including systemat-
ical derivation of the mean-scattering approximation and appli-
cation of the second-order moments to interpret radiation from
flare loop-top hard X-ray sources (Conway et al. 1998; Conway
2000).

The purpose of this note is to point out that Conway et al.’s
approach can help in developing some insight into how the size
of the galactic cosmic-ray halo is related to properties of evolv-
ing anisotropic particle distributions in a scattering medium.

2. Fokker–Planck and Ito equations

The galactic cosmic-ray halo (e.g., Bulanov et al. 1976; Stecker
& Jones 1977) can be defined as a region where the cosmic-ray

Article published by EDP Sciences

http://dx.doi.org/10.1051/0004-6361:200810857
http://www.aanda.org
http://www.edpsciences.org


130 Y. E. Litvinenko: Estimating the size of the cosmic-ray halo (RN)

particles remain effectively confined because of their scatter-
ing in turbulent magnetic fields (Dogiel et al. 1993, 1994). The
size of the region follows from the solution of the correspond-
ing kinetic equation, which shows the transition from a diffusive
regime to a runaway behavior. The transition identifies the halo
size. Other models typically introduce the halo phenomenolog-
ically and focus instead on describing the diffusive propagation
of cosmic-ray particles in galaxies (e.g., Lerche & Schlickeiser
1982).

Following Dogiel et al. (1993), consider the propagation of
energetic particles in a galaxy. Assuming typical length scales
to be greater than those of the particle sources, the axisymmet-
ric particle distribution function f (r, μ, v, t) is described by the
following kinetic equation:

∂ f
∂t
+ μv
∂ f
∂r
+ v

1 − μ2

r
∂ f
∂μ
= ν
∂

∂μ

[
(1 − μ2)

∂ f
∂μ

]
+ q. (1)

Here t is time, r is the length of the radius vector, v is the par-
ticle speed, and μ = cos θ is the cosine of the pitch angle. Here
and in what follows, the relativistic case is considered, v = c, so
that the solution to the kinetic equation depends on the total par-
ticle energy E as a parameter. The cosmic-ray interaction with
magnetic field fluctuations is described by the scattering term on
the righthand side of the equation. The spatial dependence of the
scattering frequency ν(E, r) is motivated by the decrease of the
magnetic energy density with distance from the galactic center:

ν(E, r) = (r/r0)−bν0(E). (2)

where ν0(E) ∼ E−a. For the case of a localized point-like
cosmic-ray source, the particle source function is given by q =
q(E)δ(r).

Instead of solving the kinetic equation by determining ap-
proximate solutions in the diffusion and runaway regions and
matching them in a transition region (Dogiel et al. 1993), note
that the equation can be recast in the following form:
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where r > 0 and g = r2 f . Using the Ito stochastic calculus, the
equation in this form can be shown to be equivalent to a system
of stochastic ordinary differential equations. Application of the
standard theory (e.g., Gardiner 1985; MacKinnon & Craig 1991)
leads to the following system:

dr = cμdt, (4)
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where dW represents the Wiener process with the zero mean
and the variance equal to t. While this is a standard definition
(Gardiner 1985), note for clarity that MacKinnon & Craig (1991)
and Conway et al. (1998) adopted a different definition of W, in
which the variance is given by 2t.

Because only one of the two equations above contains a
noise term, they can be easily combined into the following equa-
tion:
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This stochastic differential equation leads to ordinary differential
equations for the moments of the particle distribution and thus
provides the basis for the analysis that follows.

3. Moments of the particle distribution

Consider first the limiting case of a strongly anisotropic distribu-
tion, so that μ � 1 is the main region of interest. Averaging the
exact Eq. (6) gives the following equation for the first moment
of the angular distribution:

d
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c
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. (7)

In the limit η = 1 − μ→ 0, the equation takes a simpler form:

− d
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The solution is given by
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Clearly b > 1 provides a sufficient condition for an anisotropic
distribution formation. Now the condition 〈η(rh)〉 � 1 gives
the cosmic-ray halo size rh, identified with the particle escape
region:
(
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(
rh

r0
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. (10)

This estimate generalizes Eq. (12) in Dogiel et al. (1993). In par-
ticular, their Eq. (12) does not contain the first term on the right-
hand side, which can describe the effect of adiabatic focusing
in the presence of a large-scale regular magnetic field. Notably,
Dogiel et al.’s analysis implies a different numerical factor in the
expression for 〈η〉 because a factor of 2 is missing and the term
−2νη∂ f /∂η is neglected on the righthand side of their Eq. (14).
Thus the present analysis appears to be not only somewhat sim-
pler but also more accurate.

The stochastic differential Eq. (6) retains the full informa-
tion about the evolution of the particle distribution function. The
key point is that equations describing distribution moments of
any order can be easily written down using the Ito formula (e.g.,
Mikosch 1998). This allows one to analyze the problem in both
diffusion and runaway regions in a straightforward manner. For
example, the equation for the second moment is obtained by us-
ing Eq. (6) in the Ito formula for dμ2 = 2μdμ + (dμ)2 and aver-
aging:
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Combining the exact Eqs. (7) and (11) gives
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Now suppose that the initial distribution is isotropic, 〈μ〉0 = 0
at r = r0. Since d〈μ2〉/dr > 0, the dispersion of the distribution
will inevitably increase. Assuming that 〈μ〉 � 0 for r sufficiently
close to r0, the equation above can be solved to give a completely
new result for the dispersion:
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The approximate expression for 〈μ2〉 breaks down for sufficiently
large r where 〈μ〉 is no longer negligible. The expression for 〈μ2〉
shows that even a strictly isotropic distribution at r = r0 even-
tually becomes localized at μ � 1. The localization corresponds
to the cosmic-ray escape from the strong-scattering region and
thus justifies the previous treatment in the limit μ→ 1.

4. Discussion

The Fokker-Planck equation that emerges in many astrophysi-
cal problems is well known to be formally equivalent to a sys-
tem of stochastic differential equations. The stochastic system
can be used to derive analytical expressions for the moments of
the particle distribution, which yield significant information on
the evolution of the distribution. The usefulness of this approach
had been illustrated by its application to the transport of acceler-
ated electrons in flaring loops in the solar corona (Conway et al.
1998).

The main aim of this note was to demonstrate that the sig-
nificant potential of Conway et al.’s approach is by no means
limited to description of fast electrons in solar flares. It is shown
here how the method can be used to calculate the size of the
galactic cosmic-ray halo, defined by the efficiency of the escape
of relativistic particles in a scattering medium. As a practical
matter, once the stochastic equations are written down, the tech-
nique involves averaging and solving ordinary differential equa-
tions. This should be contrasted with the traditional approach
(Dogiel et al. 1993) that generally involves solving partial differ-
ential equations. A simpler technique reduces both the need for
lengthy calculations and the potential for error.

As shown above, angular distribution moments can be
systematically determined from the averaged stochastic differ-
ential equations in both the diffusion and runaway regions of the

particle distribution. In principle the stochastic equations contain
all the information about the distribution function and the mo-
ments can be used to construct the complete solution. The key
advantage of the present method is that the first few moments
of the distribution, which are relatively simple in form, directly
lead to an expression for the halo size as a function of the particle
energy and the scattering rate. Thus the low-order moments pro-
vide a simpler direct way of addressing the particular question
of the halo size definition.

Note for clarity that the solution based on the first few mo-
ments cannot be useful for certain types of distribution. As
pointed out by the referee, an obvious example would be a
power-law distribution ∼(μ − μ0)−α. It is unlikely, however, that
this would significantly limit the usefulness of the approach
in general, because such singular angular distributions of ac-
celerated particles are unlikely to be generated by any of the
standard particle acceleration mechanisms in astrophysics (e.g.,
Schlickeiser 2002, and references therein).

It is straighforward to generalize the method to incorporate
additional effects, so that a detailed physical model can be even-
tually developed. For instance, no additional difficulty arises
when regular energy losses are taken into consideration in the
kinetic equation for the cosmic-ray particles. Other physically
motivated forms for the scattering rate dependencies on the par-
ticle energy and position can also be analyzed.
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