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1. The value of measuring ecosystem functions in regular monitoring programs is 2 

increasingly being recognized as a potent tool for assessing river health.  We 

measured the response of ecosystem metabolism, organic matter decomposition 

and strength loss, and invertebrate community composition across a gradient of 

catchment impairment defined by upstream landuse stress in two New Zealand 

streams. This was done to determine if there were consistent responses among 

contrasting functional and structural indicators.   

2. Rates of gross primary production (GPP) and ecosystem respiration (ER) ranged 9 

from 0.1-7.0 gO2 m-2 day-1 and 0.34-16.5 gO2 m-2 day-1, respectively.  Rates of 

GPP were variable across the landuse stress gradient, whereas ER increased 

linearly with the highest rates at the most impacted sites.  P/R and Net Ecosystem 

Metabolism (NEM) indicated that sites at the low and high ends of the stress 

gradient were heterotrophic with respiration rates presumably relying on organic 

matter from upstream sources, adjacent land or point sources. Sites with moderate 

impairment were predominantly autotrophic. 

3. Declines in the tensile strength of the cotton strips showed no response across part 

of the gradient, but a strong response among the most impaired sites. The rate of 

mass loss of wooden sticks (Betula platyphylla Sukaczev) changed from a linear 

response to a U-shaped response across the impairment gradient after water 

temperature compensation, whereas leaf breakdown at a subset of sites suggested 

a linear loss in mass per degree-day. Three macroinvertebrate metrics describing 
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the composition of the invertebrate community and its sensitivity to pollution 

showed similar linear inverse responses to the landuse stress gradient.  

4. The first axis of a redundancy analysis indicated an association between landuse 3 

stress and various measures of water quality, and wooden stick mass loss, the 

invertebrate metric % EPT taxa, P/R and NEM, supporting the utility of these 

structural and functional metrics for assessing degree of landuse stress. The 

second axis was more strongly associated with catchment size, ER and GPP 

which suggests that these indicators were responding to differences in stream size.  

5. Our results suggest that non-linear responses to catchment impairment need to be 9 

considered when interpreting measurements of ecosystem function. Functional 

indicators could be useful for detecting relatively subtle changes where the slope 

of the response curve is maximized and measurements at the low and high ends of 

the impairment gradient are roughly equivalent. Such responses may be 

particularly valuable for detecting early signs of degradation at high quality sites, 

allowing management responses to be initiated before the degradation becomes 

too advanced, or for detecting initial moves away from degraded states during the 

early stages of restoration. Close links between structural and functional indices 

of river health across an impairment gradient are not necessarily expected or 

desirable if the aim is to minimize redundancy among ecological indicators. 

 

Key words: biotic indices, decomposition , ecosystem metabolism, organic matter 

, river health 
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The health or integrity of river ecosystems throughout the world continues to be 

threatened by a wide range of anthropogenic factors such as intensification of land use 

and increasing demand for fresh water. To maintain or improve river ecosystem health, 

tools for assessing the current ecological state of river ecosystems are needed so the 

extent of degradation can be determined and the success of rehabilitation efforts 

measured.  In the past, these tools have concentrated on ecosystem structure, but recently 

the value of incorporating measurements of ecosystem function into monitoring programs 

has increasingly been recognized (Bunn & Davies 2000; Gessner & Chauvet 2002; 

Carlisle & Clements 2005; Paul, Meyer & Couch 2006; Uehlinger 2006; Young, 

Matthaei & Townsend 2008).  In particular, functional indicators may have utility for 

discriminating low levels of impairment which is often problematic using conventional 

structural indicators, and may also be able to detect initial moves away from degraded 

states required to demonstrate tangible improvements in ecosystem health during the 

early stages following restoration (Palmer et al. 2005). Functional measures can also 

provide a direct measure of valuable ecosystem services, which satisfy human needs for 

economic, social and health-related benefits in addition to the inherent value of 

ecosystem health (Rapport, Costanza & McMichael 1998).  

 

There are a variety of ecosystem processes that could potentially be used as indicators of 

river ecosystem health.  These include rates of nutrient uptake (Sabater et al. 2000; Hall 

& Tank 2003), benthic microbial respiration (Niyogi, Lewis & McKnight 2001; Hill, 

Herlihy & Kaufmann 2002), denitrification (Bernhardt, Hall & Likens 2002; Udy et al. 
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2006), fine particulate organic matter export (Wallace, Grubaugh & Whiles 1996), 

organic matter retention (Speaker, Moore & Gregory 1984; Quinn, Phillips & Parkyn 

2007) and invertebrate production (Woodcock & Huryn 2007).  However, some of these 

involve large effort or sophisticated and expensive techniques. Alternatively, rates of 

organic matter decomposition and ecosystem metabolism appear particularly suited as 

indicators since they respond to a range of physical and chemical stressors (Pascoal et al. 

2003; Mulholland et al. 2001), are relatively inexpensive, and metabolism measurements 

at least are amenable to automation (Izagirre et al. 2008; Young et al. 2008).  All river 

and stream ecosystems are fuelled by a combination of terrestrially derived organic 

material and autochthonous material produced in-stream.  Thus, measurements of the rate 

of organic matter decay and ecosystem metabolism provide indications of the food-base 

of the ecosystem, and thus help determine the basis underlying its life-supporting 

capacity (Fisher & Likens 1973).   

 

An important consideration with any indicator is what the measurements mean in terms 

of ecosystem health, which requires an understanding of  how potential indicators 

respond across gradients of impairment.  A linear response is preferable so that 

ecosystem health is simply proportional to the indicator measurement.  However, linear 

responses to stressors are not expected for many ecosystem process measurements (Rama 

Rao, Singh & Mall 1979; Niyogi, Simon & Townsend 2003; Hagen, Webster & Benfield 

2006) and are not necessary for distinguishing among sites with different states of 

ecosystem health.  Nevertheless, the response does need to be predictable (Boulton 1999; 

Norris & Hawkins 2000).  In this study we measured the responses of ecosystem 
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metabolism, leaf decomposition, cotton strength loss, wood decomposition, and 

invertebrate community composition across a gradient of catchment impairment.  We 

specifically attempted to answer two questions: (i) were there consistent responses to an 

impairment gradient among contrasting functional indicators of river ecosystem health, 

and (ii) what were the links between structural and functional indicators of river 

ecosystem health? 

 

Methods 

Study Sites 

The study was conducted in two river catchments in New Zealand – the Motueka River in 

the upper South Island and the Mangaokewa Stream in the central North Island (Fig. 1).  

The Motueka River drains a catchment area of 2200 km2 and flows in a northerly 

direction for 110 km from the headwaters to the sea.  Mean annual rainfall ranges from 

<1 000 mm year-1 on the eastern side of the catchment to 3 500 mm year-1 on the western 

side.  Median discharge at the bottom of the catchment is about 47 m3 s-1 with a mean 

annual low flow of about 13 m3 s-1.  Land use is varied and includes native forest in the 

southern and western headwaters, plantation forest across much of the eastern and central 

part of the catchment, and pastoral farming and horticulture along the valley floors.  The 

Motueka catchment is geologically complex with a mix of ultramafic and sedimentary 

rock in the southeastern headwaters, a complex array of sedimentary rocks underlying the 

western tributaries, a band of granitic rock down the western centre of the catchment, and 

a large band of alluvial gravel and clay down the eastern centre of the catchment (Young 

et al. 2005).  The catchment is sparsely populated with a total population of around 12 
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000, most of whom live in the town of Motueka near the river mouth.  Ten sites 

throughout the catchment were chosen to encompass a range of catchment modification 

and were distributed over 95 km of stream length (Fig. 1).  Water quality is relatively 

good, but is closely related to the amount of agricultural development in the catchment 

(Table 1; Young et al. 2005).   

 

The Mangaokewa Stream is a tributary of the Waikato River and drains an area of 65 km2 

in the North Island (Fig. 1).  Mean annual rainfall surrounding the Mangaokewa Stream 

is about 1 450 mm year-1.  Intensive pastoral farming is the primary land use throughout 

the catchment and is the main stressor influencing Mangaokewa-1 (Table 1).  Some 

discharges associated with urbanization affect Mangaokewa-2 and Mangaokewa-3, while 

treated sewage from the small town of Te Kuiti (population 4 400) is discharged into the 

river about 500 m upstream of Mangaokewa-4, and has been associated with elevated 

levels of dissolved reactive phosphorus and ammoniacal nitrogen (Table 1).  The 

Mangaokewa Catchment is also geologically diverse with the headwaters draining 

pumice and tephra, while the middle/lower reaches pass through areas dominated by an 

array of sedimentary rock.  The sites covered a stream length of 15 km and represented a 

gradient of cumulative stress comprising rural modification and urbanization with 

associated industrial inputs such that each site on the Mangaokewa had a distinctive 

stressor profile. 

 

Catchment land use above each site was determined from the New Zealand Land Cover 

Database 2 (LCDB2, Terralink NZ Ltd).  Land cover classes from the LCDB2 were 
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condensed into %Native Forest, %Plantation Forest, %Pasture & Horticulture, and 

%Urban (Table 1).  These data were used to calculate a weighted landuse stress score 

based on the ranked significance to stream health of different landuse impacts: urban 

(weighting factor = 3) > pasture/horticulture (2) > plantation forestry (no weighting) as 

described by Collier (2008).  Scores over 200 indicate entirely developed catchments 

with a mix of urban and pastoral development, whereas scores < 100 indicate 

predominantly forested catchments. Water quality has been measured quarterly at six of 

the sites in the Motueka catchment (Wangapeka-1, Wangapeka-2, Motupiko, Motueka-1, 

Motueka-2, Motueka-3) since 2000 by the Tasman District Council as part of their 

regional water quality monitoring program (Young et al. 2005).  Similarly, Environment 

Waikato has measured water quality monthly at Mangaokewa-2 since 2002, and sporadic 

data exist for other sites along this stream (Table 1).   

 

A variety of functional and structural indicators of river ecosystem health were measured 

including ecosystem metabolism, organic matter decomposition (leaves, cotton and 

wood), and the composition of stream invertebrate communities.  These indicators are 

either considered to have potential for stream health assessments (Boulton & Quinn 2000; 

Bunn & Davies 2000; Gessner & Chauvet 2002; Fellows et al. 2006; Paul et al. 2006; 

Young et al. 2008), or are already commonly used for stream health assessments 

(Barbour et al. 1999; Boothroyd & Stark 2000).  Most indicators were measured at all 

sites, however, leaf decomposition was only measured at the Motueka sites.  All 

measurements were made during the austral summer.   
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Ecosystem metabolism 

Ecosystem metabolism, the combination of primary production and ecosystem 

respiration, was estimated using the single-station open-channel approach which requires 

measurement of the natural changes in dissolved oxygen concentration at the site over at 

least a 24-hour period (Owens 1974; Young & Huryn 1996).  Many of the sites were too 

large to feasibly use the two-station open-system approach (Marzolf, Mulholland & 

Steinman 1994; Young & Huryn 1998).  Oxygen concentration and temperature were 

recorded once every 10 minutes using a YSI 6920/6000 environmental monitoring system 

or a Hydrolab Datasonde 4.  During measurements, a sonde was deployed at each site in a 

location as close as possible to the thalweg, and was chained to the bank or other suitable 

solid substrates.  Prior to sampling, the sondes were calibrated in water-saturated air 

according to the manufacturer’s instructions.   

 

While recording oxygen concentrations, photosynthetically active radiation was measured 

every 15 seconds with a LI-COR quantum sensor and logged every 10 minutes using a 

LI-COR logger. This was done to determine the onset of darkness and daylight for 

calculation of ecosystem respiration and gross photosynthetic rate.  Loggers were placed 

at locations considered representative of the light conditions prevailing upstream of the 

sites. An estimate of the average depth of each site was calculated using at least five 

measurements of depth at each of five cross-sections spaced at regular intervals upstream 

of the sonde to cover the local variation in channel morphology.   
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Metabolism values were calculated using a spreadsheet model as follows.  Mean daily 

ecosystem respiration (ER) and the reaeration coefficient (k) were determined using the 

nighttime regression method (Owens 1974) which uses only data collected in the dark (< 

2 µmol m-2 s-1).  The rate of change of oxygen concentration over short intervals was 

regressed against the oxygen deficit to yield: 

 

                                                    dO/dt = ER + kD 

 

where dO/dt is the rate of change of oxygen concentration (g m-3 s-1), ER is the ecosystem 

respiration rate (g m-3 s-1), k is the reaeration coefficient (s-1), and D is the oxygen deficit 

(g m-3).  The slope of the regression line estimates k while the y-intercept estimates ER 

(Kosinski 1984).   

 

The reaeration coefficient and ecosystem respiration rate obtained were then used to 

determine gross photosynthetic rate over the sampling interval using: 

 

                                              GPPt = dO/dt + ER – kD 

 

where GPPt is the gross photosynthetic rate (g m-3 s-1) over time interval t.  To 

compensate for daily temperature fluctuation, ER was assumed to double with a 10°C 

increase in temperature (Phinney & McIntire 1965) while the reaeration rate was assumed 

to increase by 2.41% per degree (Kilpatrick et al. 1989).  Daily gross primary production 

(GPP, g m-3 day-1) was estimated as the integral of all temperature-corrected 
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photosynthetic rates during daylight (Wiley, Osbourne & Larimore 1990).  This analysis 

gave values of production and respiration per unit volume.  An areal estimate was 

obtained by multiplying the volume based estimates by average reach depth (m) which 

allowed comparison among sites with different depths.  The P/R ratio was calculated as 

GPP/ER, while net ecosystem metabolism (NEM) was calculated as the difference 

between GPP and ER.   

 

Organic matter decomposition 

Three different organic substrates were deployed together in run/riffle habitat near the 

centre of the channel at each site to assess decomposition rates: leaves, strips of cotton 

cloth, and wooden sticks.  Mahoe (Melicytus ramiflorus Forster) leaves were used to 

measure leaf decay because this tree species is relatively common throughout New 

Zealand and has been used in previous studies of leaf decomposition there (Linklater 

1995; Parkyn & Winterbourn 1997; Hicks & Laboyrie 1999; Quinn et al. 2000).  Mahoe 

leaf breakdown rates appear to be similar to those of fast-decaying leaf species (e.g. 

Alnus glutinosa L.) commonly used in Northern Hemisphere studies of leaf 

decomposition.  The leaves were picked from a single tree to minimize variability among 

leaves and air-dried for 2 weeks before being transferred to 5 mm mesh bags.  Each leaf 

pack contained 3-5 g of air-dried leaves and the weight of the contents of each bag was 

recorded to the nearest 0.001 g.  Five replicate leaf packs were deployed at each site in 

the Motueka River for 1 month, but no leaf packs were deployed at any of the sites in the 

Mangaokewa Stream.  Water temperature loggers were deployed at all sites so the effects 

of differences in water temperature could be compensated for in the analysis of organic 
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matter decomposition by using degree-days as well as days as measures of exposure time 

(e.g. Minshall et al. 1983).   

 

After retrieval, each leaf pack was placed in a separate plastic bag, stored on ice during 

transport and subsequently frozen until analysis.  Any sediment, algae or invertebrates 

associated with the leaf material were gently washed from the leaves and discarded.  The 

toughness of the leaves in each bag was determined using a penetrometer, which 

measures the weight required to force a blunt pin through a leaf (Young, Huryn & 

Townsend 1994).  Five toughness measurements on different leaves were recorded for 

each leaf pack.  Care was taken to ensure that the toughness measurements were not 

taken from parts of the leaf dominated by thick veins.  After toughness measurements, the 

leaf material was dried to a constant weight in a 60°C forced-draft oven for at least 3 

days.  The dried leaf material was then weighed (to the nearest 0.001 g), ashed in a 550°C 

furnace and then reweighed to determine the ash-free dry mass (AFDM).  To estimate the 

initial AFDM and toughness of leaves in each leaf pack we soaked five pre-weighed leaf 

packs for 24 hours in tap water to allow some initial leaching and then processed them in 

the same way as the other leaf packs.  The post-leaching AFDM of these packs averaged 

77% (range 76-80%) of their initial air-dry weight.  This correction factor was then 

applied to all other leaf packs and accounted for the difference between air-dry weights 

and AFDM, plus the effects of initial leaching.  Exponential decay coefficients for mass 

loss and toughness loss were determined using the equation presented in Petersen & 

Cummins (1974) using both days and degree-days as the time variables.   
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The cotton strips that we used in the Motueka River were standard Shirley Soil Burial 

Test fabric (Shirley Dyeing and Finishing Ltd, Hyde, U.K.), which is 100% combed 

cotton and has a series of coloured threads incorporated into the weave of the material so 

that strips can be frayed to a standard width (100 threads).  Unfortunately, this material is 

no longer available, so we used some similar material with the same initial tensile 

strength in the Mangaokewa Stream.  Five replicate cotton strips (4 cm wide x 10 cm 

long) were tethered at one end to anchor points (usually metal stakes) in run/riffle habitat 

at each site for 7 days. Following removal, they were stored on ice during transport and 

then subsequently frozen until analysis.  After thawing the cotton strips were gently 

washed and dried at 20°C for 24 hours in a forced-draft oven.  Threads were frayed from 

each side of the strips leaving a width of exactly 3 cm (100 threads).  The tensile strength 

of each strip was measured on a tensometer.  The initial tensile strength of the strips was 

determined using a set of control strips that were soaked in tap water for one day, and 

then frozen and processed in the same way as the other strips.  The loss of tensile strength 

was reported in terms of exponential decay coefficients in the same way as the leaf 

breakdown data.   

 

The wooden sticks that we used were birch wood (Betula platyphylla Sukaczev) coffee 

stirrer sticks (114 x 10 x 2 mm).  Each stick was labeled with a permanent marker pen 

and then a hole was drilled at one end of the stick.  The air-dried mass of each stick was 

measured (to the nearest 0.0001 g) and then five sticks were tied together, along with a 

plastic label, using nylon string.  Short lengths (1 cm) of drinking straws were used to 

keep the individual sticks separated in the groups of five sticks.  We deployed three to 
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five groups of five sticks at each site for 3 months on the same stake as the cotton strips.  

Each group of sticks was weighed down to keep the sticks submerged on the river bed.  

Following retrieval, the sticks were kept on ice and then frozen until analysis.  After 

thawing the sticks were gently washed and then dried to constant weight in a 60°C 

forced-draft oven and re-weighed.  A set of control sticks was oven-dried to determine 

the difference between air-dry weight and oven-dry weight, which averaged 90% (range 

89-90%).  This correction factor was used to estimate initial oven-dry weights for the 

sticks that were deployed.  Decay rates were reported as exponential decay coefficients in 

the same way as the leaf breakdown data.   

 

Invertebrate community composition 

The composition of the invertebrate community at each site was determined from single 

samples collected with a 0.5 mm mesh D-frame net using standard New Zealand 

invertebrate sampling protocols (Stark et al. 2001).  This level of sampling intensity is 

typical of many biomonitoring programs where the focus is on community composition, 

rather than invertebrate densities (Boothroyd & Stark 2000).  Samples were preserved in 

70% alcohol and then invertebrates were identified to the lowest possible taxonomic 

level, counted and recorded.  Three metrics were used to describe the invertebrate 

community composition: %EPT (Ephemeroptera, Plecoptera, and Trichoptera excluding 

Hydroptilidae) taxa in the samples, a biotic index that combines the presence/absence of 

particular taxa scored by their sensitivity to organic pollution (MCI, Stark 1985), and a 

semi-quantitative version of the same biotic index that gives weightings to abundance 

classes (SQMCI, Stark 1998).  
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Data analysis 

Relationships between the landuse stress score and the measured indicators were assessed 

using linear and quadratic functions.  Residuals were examined to ensure that outliers 

were not responsible for driving the relationships.  A partial F-Statistic was used to 

determine if adding a second-order term to the model significantly improved the fit to the 

observed data compared with a linear model (Quinn & Keough 2002).   

 

Redundancy analysis was also used to explore the relationships among the different 

indicators of river ecosystem health and between variables describing the impairment 

gradient (Zuur, Ieno & Smith 2007).  Because leaf mass loss was not measured at any of 

the Mangaokewa sites, leaf decay rates were not included in this analysis.  Similarly, 

because different cotton cloth was used in the Motueka and Mangaokewa rivers, cotton 

tensile strength loss rates were not included in this analysis.  In situations where several 

indicators were calculated using the same data only one indicator was chosen for this 

analysis.  For example, only the temperature-corrected wood mass loss rates were 

included in the analysis.  Therefore indicators chosen for this analysis were GPP, ER, 

P/R, NEM, temperature-corrected wood mass loss, and %EPT taxa.  Variables describing 

the gradient of impairment across the sites included: the landuse stress score, dissolved 

inorganic nitrogen (DIN), dissolved reactive phosphorus (DRP), and water clarity.  There 

was a considerable difference in the size of catchments above each site, therefore we also 

included catchment area to account for this variability. Before analysis, %EPT taxa was 
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arcsine√x transformed, whereas the landuse stress score, DIN and DRP were loge 

transformed to improve normality.   

 

Results 

Ecosystem metabolism 

Rates of GPP and ER ranged from 0.1-7.0 gO2 m-2 day-1 and 0.34-16.5 gO2 m-2 day-1, 

respectively (Fig. 2).  Rates of GPP were variable across the impairment gradient with 

relatively high rates in areas of low landuse stress, sites with some modification and also 

at the most impaired sites (Fig. 2).  Linear and quadratic relationships between the 

landuse stress score and GPP were not significant (P > 0.05).  In contrast, rates of ER 

increased across the impairment gradient (Fig. 2).  The partial F-statistic comparing 

linear and quadratic relationships indicated that the quadratic model was no better than 

the linear relationship for explaining variation in ER. 

 

Ratios of P/R ranged from 0.1 to 1.5, while rates of NEM ranged from -12.6-2.0 gO2 m-2 

day-1.  Both of these metrics indicated that sites at the low and high ends of the 

impairment gradient were heterotrophic with respiration rates presumably relying on 

organic matter sources from upstream or the surrounding catchment.  In contrast, sites in 

the middle of the impairment gradient were more indicative of autotrophic conditions 

with respiration potentially supported by autochthonous production (Fig. 2).  In both 

cases the partial F-statistic indicated that second-order relationships provided a 

significantly better fit to the observed data than linear models (P < 0.05).   
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Mass loss rates of mahoe leaves ranged from 0.04-0.07 day-1 and 0.002-0.005 degree-day-1. 

As leaf decomposition data were available only from the sites in the Motueka catchment, it 

was difficult to judge a response across the entire impairment gradient.  In the absence of 

temperature compensation, no significant relationships were evident between the landuse 

stress score and leaf mass loss or leaf toughness loss when calculated per day (Fig. 3).  

However, a linear relationship between landuse stress and leaf mass loss per degree-day 

was evident (Fig. 3), suggesting that any effect of the impairment gradient on leaf mass 

loss among the Motueka sites was masked by water temperature.  The partial F-statistic 

comparing linear and quadratic relationships indicated that the quadratic model was no 

better than the linear relationship for explaining variation in leaf mass loss per degree-day.   

 

The decline in tensile strength of the cotton strips ranged from 0.02-0.40 day-1 and 0.002-

0.020 degree-day-1 (Fig. 4).  Tensile strength loss rates were substantially higher at the 

Mangaokewa sites than the Motueka sites, perhaps suggesting a difference in decay rates 

between the Shirley Soil Burial Test fabric used at the Motueka sites and the alternative 

material used in the Mangaokewa.  Therefore, data from the two catchments was 

considered separately.  There was no significant relationship between landuse stress and 

tensile strength loss for the Motueka sites, but a significant increase in tensile strength 

loss with landuse stress within the Mangaokewa sites (Fig. 4).  Decomposition was so 

fast at the two most impaired sites in the Mangaokewa Stream that the tensile strength of 

all the cotton strips was below the detection level of the tensometer after 7 days 

deployment.   
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The rate of mass loss for wooden sticks was equivalent to zero at one site (Motueka-3), 

which was substantially different from any of the other sites and therefore removed from 

further analysis as it was assumed to reflect a period of exposure during low river flows.  

Mass loss rates of wooden sticks ranged from 0.001-0.008 day-1 and 0.00007-0.00037 

degree-day-1 (Fig. 5).  Stick mass loss per day increased across the impairment gradient, 

whereas temperature-compensated mass loss rates per degree-day showed a U-shaped 

response with lowest decay rates at intermediate levels of landuse stress (Fig. 5).  The 

partial F-statistic comparing linear and quadratic relationships indicated that the quadratic 

model was no better than the linear relationship for explaining variation in stick mass loss 

per day, however there was an indication that the quadratic relationship provided a better 

fit than the linear relationship for the data on stick mass loss per degree-day (P = 0.06).   

 

Invertebrate community composition 

All three metrics describing the composition of the invertebrate community showed a 

similar response to the impairment gradient (Fig. 6).  Sensitive high-scoring species were 

more common at sites with low landuse stress score, whereas pollution-tolerant, low-

scoring species were more common at impaired sites.  MCI and SQMCI scores greater than 

120 and 6, respectively, are considered to reflect clean water, whereas MCI and SQMCI 

scores less than 100 and 5, respectively, indicate probable moderate or severe pollution 

(Boothroyd & Stark 2000).  Scores between these extremes are considered to represent 

mild impairment.  Therefore the sites used in this study ranged from excellent to poor 

water quality.  Partial F-statistics comparing linear and quadratic relationships indicated 
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that quadratic models were no better than the linear relationships for explaining variation in 

any of the invertebrate community metrics. 

 

Relationships among indicators and environmental variables 

The first axis of a redundancy analysis explained 50.7% of the variation in the data (Fig. 

7).  Axis 1 showed a positive correlation with landuse stress score, DIN concentration, 

DRP concentration, and a negative correlation with water clarity (Fig. 7). Catchment 

location covaried with landuse modification along axis 1. The second axis explained 

18.5% of the variation in the data and was associated with catchment area and DIN 

concentration, although not significantly correlated.  For the river health indicators, 

wooden stick mass loss, %EPT taxa, P/R and NEM were correlated with the first axis 

scores, whereas ER and GPP were correlated with the second axis suggesting that GPP, 

in particular, was responding to differences in stream size among the sites (Fig. 7). The 

redundancy analysis indicated that DRP concentration, catchment area and landuse stress 

score were the most important variables explaining the observed variation in the river 

health indicators.  

 

Discussion 

Factors affecting indicator response 

Catchment location in this study co-varied with impairment, such that all highly impacted 

sites occurred in one catchment (Mangaokewa).  Therefore, we cannot rule out a potential 

effect of geographic variation of the observed responses to the landuse stress gradient.  

However, we are confident that stressors associated with land use were the principal 
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drivers of the relationships observed. This is supported for invertebrates by the findings 

of Quinn & Hickey (1990) who reported that land use was the key variable driving 

community composition in a nationwide survey of New Zealand streams, over-riding 

geographic patterns between islands or ecoregions.  Similarly, Young et al. (2005) 

considered the effects of land use and geology on water quality in the Motueka catchment 

and found that land use was the primary determinant of water quality variables that are 

likely to influence river health (e.g., nutrient concentrations, turbidity and thermal 

regime), whereas geology was primarily responsible for less influential variables such as 

conductivity and pH.  Nevertheless spatial factors, including geology and climate, may 

account for some of the variability in the response of the different indicators across the 

impairment gradient. 

 

Other factors also have the potential to alter indicator responses to the severity of 

anthropogenic stressors.  For example, ecosystem metabolism can vary seasonally or in 

response to bed-moving spates (Uehlinger 2006). The results obtained in the present 

study pertain to the austral summer which is pertinent to documenting landuse impacts in 

New Zealand because of the increased likelihood of sustained low flows, higher water 

temperatures and increased light levels leading to proliferations of plant growth.  The 

variation in stream size among sites in this study is likely to have played an important 

role in affecting rates of GPP (Fig. 7), reflecting the well-documented effects of an 

increased channel size which reduces the shading from riparian vegetation (Vannote et al. 

1980; Naiman 1983; Bott et al. 1985; Naiman et al. 1987; Minshall et al. 1992; 

McTammany et al. 2003).   
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Linear and non-linear responses 

There are a variety of reasons why non-linear responses might be expected across 

impairment gradients.  In the case of leaf and wood breakdown, the mechanism of decay 

is likely to vary substantially depending on the position of the site along the impairment 

gradient (Paul et al. 2007).  In healthy systems, leaf decay may be primarily mediated by 

the activities of shredding invertebrates (Sponseller & Benfield 2001), whereas at more 

enriched sites decay would be expected to be accelerated by increased microbial activity 

(Meyer & Johnson 1983; Young et al. 2004; Suberkropp & Chauvet 1995; Gratton & 

Suberkropp 2001; Pascoal et al. 2003, Bergfur et al. 2007).  Although leaf mass loss was 

not measured at the Mangaokewa sites, measurements at other sites in the Waikato region 

showed a positive correlation over the range 60-90% pasture in the catchment upstream 

(range of k values = 0.05-0.09 day-1 to 0.0025-0.0040 degree-day-1; authors’ unpublished 

data), suggesting that the response trajectory observed at the most impaired Motueka sites 

(see Fig. 3) would likely have continued at higher levels of landuse stress to give a U-

shaped response across the impairment gradient.  High numbers of potential shredding 

invertebrates were found in some of the sites with low levels of impairment, but there 

was no significant correlation between landuse stress score and shredder abundance in the 

Motueka streams (R. Young, unpublished data).  High densities of snails, which can rasp 

leaf surfaces and contribute to their breakdown (Collier & Winterbourn 1986), are 

thought to be responsible for the high leaf mass loss rates observed at other sites in the 

Waikato region. 
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The shape of the response to impairment will also depend on the nature of the stressors 

involved.  The non-linear response of P/R ratios, NEM and to a lesser extent GPP that we 

observed may be related to nutrients initially stimulating rates of GPP, whereas at higher 

levels of impairment the effects of decreased water clarity and sediment deposition may 

have been suppressing production as has been observed elsewhere (Wiley et al. 1990; 

Davies-Colley et al. 1992; Young & Huryn 1996), although as noted earlier GPP was 

apparently also related to stream size.  Similar stressor responses have also been observed 

for organic matter decomposition, with a stimulation of decay rates at intermediate levels 

of impairment and then a decline in decay rates when high sediment inputs bury organic 

matter (Niyogi et al. 2003; Hagen et al. 2006). Invertebrate communities also appear to 

respond positively initially to nutrient stimulation, but negatively to increased fine 

sediment leading to non-linear responses to some stress gradients (Niyogi et al. 2007).  

Documentation of a broader array of habitat variables may have helped elucidate causal 

factors behind the observed relationships, underscoring the importance of incorporating 

habitat assessments with functional measurements of ecosystem health.    

 

Implications for using measurements of ecosystem function for stream health monitoring 

Our results suggest that (i) non-linear responses to catchment impairment are likely and 

need to be considered when interpreting measurements of ecosystem function, and (ii) 

contrasting indicators can respond in quite different ways to catchment impairment.  

Effective interpretation of measurements requires a good understanding of the likely 

stressors involved, and also an understanding of the likely mechanisms underlying 

observed responses to the stressor(s).   
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For the impairment gradient identified in this study, it appeared that ER, stick mass loss 

per day, leaf mass loss per degree-day, and indices based on invertebrate community 

composition varied in a linear fashion.  Assuming this type of response is typical for a 

range of different impairment gradients, then the interpretation of the measurements is 

relatively easy with ecosystem health directly proportional to indicator measurements.  A 

reference site approach can be used to compare with the results from test sites, or 

alternatively criteria that may be applied more widely could be developed and used as has 

been done with invertebrate community composition metrics (Maxted et al. 2000; 

Gessner & Chauvet 2002; Young et al. 2008).  As we have shown, the response of the 

invertebrate metrics is often linear across impairment gradients, which perhaps explains 

the wide adoption of these metrics for river health assessment.  However, some 

invertebrate metrics can be highly variable depending of the type and intensity of the 

stress leading to “wedge-shaped” or sinusoidal relationships, reflecting variations in the 

stability and/or persistence of communities under prevailing environmental conditions 

(Niyogi et al. 2007; Collier 2008).   

 

For indicators that showed a quadratic response to the impairment gradient the 

interpretation of measurements is more difficult.  In these situations indicator 

measurements at the low and high ends of the impairment gradient were often roughly 

equivalent, while measurements at intermediate levels of impairment were substantially 

different.  This could be seen as an impediment to indicator interpretation (Hagen et al. 

2006), but in most cases differences between the extremes of impaired and unimpaired 
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are obvious and/or easy to detect using other indicators.  In these situations the most 

valuable application of using such functional indicators would be to detect relatively 

subtle changes where the slope of the response curve is steep.  For example, in the range 

from no impairment to intermediate impairment, indicator response may be proportional 

to ecosystem health and most sensitive to changes in stress intensity.  This section of the 

impairment gradient may also be one of the most important if early signs of degradation 

are detected allowing management responses to be initiated before the degradation is too 

advanced, or for detecting initial moves away from degraded states necessary to 

document the early success of restoration activities (Palmer et al. 2005).   

 

It is possible that some of the indicators responded to a threshold in the landuse stress 

gradient with little change over part of the gradient then a steep response at higher levels 

of impairment (e.g., Figs. 2, 5 & 6).  Similar threshold responses have been observed for 

invertebrate communities in relation to nutrient and land use gradients (Niyogi et al. 

2007).  This type of response might be expected in situations where a stressor moves past 

a threshold, for example increasing nutrient concentrations promoting a change in 

periphyton community composition and/or a proliferation of benthic algae that affects 

habitat quality for other organisms (Biggs 2000).  Further studies with sites distributed 

more evenly across the stress gradient may help to determine if threshold responses are 

common.  

 

Another important consideration in river ecosystem health assessment is choosing the 

indicators that are most likely to respond to the stressor(s) that are potentially affecting 
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the site of interest.  Our results indicate that stick mass loss and potentially cotton 

strength loss appear to be sensitive to enrichment, whereas GPP may be less sensitive.  

On the other hand, GPP is likely to be more sensitive to removal of riparian vegetation if 

comparisons are restricted to sites of the same size, or if differences in stream size are 

compensated for in the analysis (Bunn et al. 1999; Fellows et al. 2006).  Similarly, 

changes in bed morphology may have some impact on ecosystem metabolism or organic 

matter decomposition, but alternative indicators such as organic matter retention or 

sediment accumulation in leaf packs may be more effective indicators of the effects of 

habitat structure on ecosystem processes.  Temperature compensation of decomposition 

rates may be appropriate in some situations where natural changes are expected across an 

impairment gradient.  However, in other situations changes in the thermal regime may be 

the primary effect of the stressor and should be included in the analysis.  Moreover, it 

may also be possible to compensate for degree of shading to determine whether riparian 

influences are the main regulator of GPP or whether other factors unrelated to shading are 

suppressing productivity. 

 

Thus, the monitoring of functional indicators has the potential to provide an early 

warning on declining or improving conditions, and the possibility of linking observed 

changes to potential causal factors once relationships with environmental and habitat 

variables are more clearly understood. Although monitoring of functional indicators 

requires at least two visits to a site to deploy and retrieve instruments or substrates, and 

may require specialized equipment for measuring tensile strength, results are rapidly 

available as laboratory analyses are considerably less time-consuming than those 
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typically required for macroinvertebrate sample processing. The added costs associated 

with increased field time may be more than compensated for by the increased information 

rapidly provided at critical stages of decline or recovery.  

 

Relationships between structural and functional indices of river health 

The structure and function of river ecosystems are intricately linked (Wallace et al. 1997; 

Covich et al. 2004), but responses to impairment can potentially vary with changes to 

structure only, function only, or both structure and function (Matthews et al.1982).  Close 

linkages among structural and functional indices would be expected if there was a strong 

mechanistic link between these measures.  For example, leaf litter decay is often affected 

by the abundance and diversity of shredding invertebrates (Wallace & Webster 1996), so 

a reasonable relationship might be expected between leaf decomposition rates and indices 

describing invertebrate community structure.  However, common invertebrate-based 

indices do not necessarily focus on the presence/absence of particularly functional groups 

of invertebrates, reducing the likelihood of such linkages being detected.  Furthermore, 

many ecosystem processes are primarily controlled by microbial activity rather than 

invertebrate community composition, and therefore any direct links between ecosystem 

process measures and structural indices based on invertebrate community composition 

would be relatively unlikely.   

 

In the current study we found positive relationships between invertebrate-based indices 

and rates of NEM and P/R and negative relationships with ER, wood mass loss and leaf 

mass loss, but no relationships with the other functional indicators (Fig. 7).  Relationships 
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might be expected between structural indices and measurements of ecosystem processes 

if indices are derived from microbial community structure (Duarte et al. 2006) or are 

based on invertebrate functional traits (e.g., Dolédec et al. 2006).  Our results emphasise 

that variability in response to impairment is likely among different ecosystem processes 

so consistent relationships among structure and functional indices of river ecosystem 

health should not be expected, and indeed may not be desirable if the aim is to minimize 

redundancy among ecological indicators.   
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Table 1  Land use and water quality characteristics of the sampling sites.  DRP = dissolved reactive phosphorus. 

Site Catchment 
Area  
(km2) 

%Native 
Forest 

%Plantation 
Forest 

%Pasture 
 & 

Horticulture 

%Urban Landuse 
stress 
score 

Water 
clarity 

(m) 

DRP  
(g m-3) 

NO3-N 
(g m-3) 

NH4-N 
(g m-3) 

Rainy-1 55 96 2 2 0 6 7.5 0.010 0.015 0.009 
Rainy-2 89 87 6 7 0 20 7.0 na na na 
Motupiko 375 50 27 22 0 71 3.9 0.009 0.077 0.010 
Motueka-1 939 50 31 17 0.1 65 5.7 0.007 0.225 0.008 
Granity 26 100 0 0 0 0 na na na na 
Rolling 88 100 0 0 0 0 8.3 0.009 0.062 0.008 
Wangapeka-1 309 99 0 0.5 0 1 7.8 0.005 0.043 0.010 
Wangapeka-2 538 81 9 8 0 25 4.4 0.005 0.103 0.008 
Motueka-2 1832 61 24 13 0.1 50 4.3 0.005 0.116 0.008 
Motueka-3 2191 56 25 16 0.1 57 3.7 0.006 0.129 0.008 
Mangaokewa-1 132 20 11 69 0 149 1.2 0.020 0.150 0.016 
Mangaokewa-2 160 17 9 72 0 153 1.1 0.022 0.505 0.020 
Mangaokewa-3 168 17 9 71 2 157 1.5 0.035 0.393 0.310 
Mangaokewa-4 173 16 9 72 2 159 1.2 0.260 0.384 1.440 
Mangaokewa-5 190 15 8 74 2 162 na 0.220 na na 

na, not available 
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Figure Legends 

Fig. 1  The location of the sampling sites in the Motueka and Mangaokewa catchments.   

 

Fig. 2  Response of gross primary production (GPP), ecosystem respiration (ER), the 

ratio of P/R and net ecosystem metabolism (NEM) across the landuse stress gradient.   

 

Fig. 3  Response of mahoe leaf mass and toughness loss (±SE) across the landuse stress 

gradient.  Decay rates are reported in terms of mass loss per day and temperature-

compensated loss per degree-day. 

 

Fig. 4  Response of cotton strip tensile strength loss (±SE) across the landuse stress 

gradient.  Strength loss rates are reported in terms of mass loss per day and temperature-

compensated loss per degree-day. Differences in the initial cotton material used in the 

Motueka and Mangaokewa sites meant that analysis was conducted separately for each 

catchment.  Only the relationships in the Mangaokewa Catchment were significant. 

 

Fig. 5  Response of wooden stick mass loss (±SE) across the landuse stress gradient.  

Decay rates are reported in terms of mass loss per day and temperature-compensated loss 

per degree-day.  Data from one outlier was excluded from the analysis.  

 

Fig. 6  Response of metrics describing invertebrate community composition across the 

gradient of impairment.  The %EPT taxa metric refers to the percentage of taxa 

comprising mayflies, stoneflies and caddisflies (excluding Hydroptilidae).  The MCI and 
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SQMCI are biotic indices commonly used in New Zealand that are calculated using taxon 

sensitivity scores for presence/absence or abundance class data, respectively.   

 

Fig. 7  Redundancy analysis triplot of variables used to describe river ecosystem health 

and variables characterizing the landuse stress gradient. The location of sites in the 

ordination is also shown (exact position is at the centre of the site label).  Bold 

lines/variables indicate physicochemical explanatory variables. DIN = dissolved 

inorganic nitrogen, DRP = dissolved reactive phosphorus, %EPT = percentage of 

macroinvertebrate taxa belonging to the Ephemeroptera, Plecoptera and Trichoptera 

(excluding Hydroptilidae), ER = ecosystem respiration, GPP = gross primary production, 

LUS = Landuse stress score, NEM = net ecosystem metabolism, P/R = 

production/respiration. 
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