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Abstract 

 

Lake Waikaremoana is a high-altitude, large-volume lake located within the 

rugged terrain of the Urewera National Park. At the lake outflow a rapid elevation 

change of nearly 450 metres in 8 kilometres facilitates the lakeôs use as the upper 

intake portal for the Waikaremoana Hydro Power Scheme. At the time of this 

study, Genesis Energy operated the Waikaremoana Power Scheme in response to 

a water availability model based on daily lake level differencing from which daily 

generation capacity is predicted, allowing strategic bidding into the electricity 

market. However, when river flows are low this model is subject to error, as small 

changes in lake level sometimes cannot be determined accurately beyond 

background noise on daily timescales.  

This project develops a method of estimating both current day and day-ahead 

water availability of Lake Waikaremoana, independent of lake levels using simple 

hydrological models, thereby improving operational efficiency of the 

Waikaremoana Power Scheme. The forecasting is developed specifically for the 

lower inflow conditions when the lake level differencing approach is most error 

prone. 

It has long been recognised that a significant volume of Lake Waikaremoana 

water leaks through the ancient landslide dam which created the lake. Previous to 

this study, it was considered that an inaccurate estimation of this leakage rate 

combined with evaporative losses might contribute to the error within the existing 

water availability model. A modified catchment water balance and simple 

regression approach was applied to Lake Waikaremoana to estimate the lake water 

loss not accounted for by recorded outflows. Estimating this unrecorded loss 

translates to estimating the intercept of a linear regression relation, where the 

assumption is made that there is a linear relationship between the discharge of the 

Aniwaniwa Stream and the net lake water balance (excluding known outflows) 

under low inflow conditions. On the basis of the confidence intervals about the 

intercept, the balance term (constant background lake inflow minus leakage and 

evaporative loss) is estimated to within the range of 2.89 and -1.17 m
3
s

-1
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suggesting that the unknown portion of leakage and evaporative losses are not 

significant contributors to model error. A useful consequence of the regression 

was that regression coefficients could be used as a means of upscaling to give net 

lake storage change for low-flow conditions. This enabled day-ahead water 

availability forecasts to be acquired from Aniwaniwa Stream discharge day-ahead 

forecasts. 

Two forecasting methodologies are developed to forecast the Aniwaniwa Stream 

discharge: a finite mixture rainfall-runoff model, and a multiple linear regression 

method. The rainfall-runoff model is formulated initially as a many-parameter 

model which is then subjected to a lasso-based model simplification concurrent 

with model calibration. The simplified model forecasts next-day inflows by using 

a weighted linear combination of hydrograph forms which best match the 

previous observed discharges in the calibration set where the various weights are 

linear functions of recent rainfalls. An auto-recalibrating version of the rainfall-

runoff model was also developed where model simplification and calibration is 

carried out for each forecast, with the greatest fitting weights most likely on the 

most recent discharges to allow for changing catchment conditions.  

The rainfall-runoff model was calibrated under a range of lasso-based parameter 

elimination pressures to determine the number of parameters which gave the best 

validation fit as quantified by the Nash-Sutcliffe fit. The highest validation fit 

using the original rainfall-runoff model was 50.7%. Using the auto-recalibrating 

rainfall-runoff model a slightly better maximum validation fit of (52.3%) occurred 

at an elimination pressure giving 14 final parameters from an initial 300. 

However, a validation fit which is not much lower (46.8%) is achieved at a higher 

elimination pressure yielding just 6 final parameters, demonstrating a trade-off 

between model simplification and validation fit. As expected, the rainfall-runoff 

model was more successful at predicting low to medium flows because 

forecasting focus was on the lower flows. Higher discharges were consistently 

under-predicted. Validation fits of the rainfall-runoff model could probably be 

improved by increasing the range of possible hydrograph forms available for 

selection at the expense of model simplicity. 
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The multiple regression technique was applied to forecast ónext-dayô Aniwaniwa 

inflows in a simpler way, in this case using just current daily rainfall and 

discharges as independent variables. The discharge forecasts derived from both 

techniques are then scaled using the regression equation mentioned earlier to give 

net storage change estimates into Lake Waikaremoana for low to medium inflows. 

The regression approach was the more successful for overall day-ahead 

Aniwaniwa flow forecasts. The final prediction for current day storage change is: 

ȹS = 0.399(AQ) + 0.59      [1] 

Where AQ is the observed daily total discharge of the Aniwaniwa Stream. Day-

ahead Aniwaniwa Stream forecasts can be approximated by equation [2] then 

scaled to storage change using equation [1] 

  AQ(Next-day) = 0.095(Train) + 0.558(TQ) + 0.611   [2] 

Where Train is current day total rainfall and TQ is current day total discharge. This 

single equation gave higher calibration fits than separate regressions based on 

season. Using only current rainfall and current discharge as independent variables, 

the Nash-Sutcliffe validation fits were as high as 66%.  

The linear regression approach gives the most useful inflow estimates to Lake 

Waikaremoana for the current day, based on upscaling the Aniwaniwa Stream 

discharges for low to medium flows. Estimating the day-ahead lake inflows is 

then equated to estimating day-ahead Aniwaniwa discharges for conditions 

outside of high flows. For this day-ahead forecasting the regression technique 

proved better than the rainfall -runoff models. It is thus recommended that the 

multiple regression technique is applied at the Waikaremoana Power Scheme. 
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Chapter 1 - Introduction  

 

1.1 Background 

The hydro power potential of Lake Waikaremoana has been recognised since the 

19
th
 century (Natusch, 2004). In 1904 Hay (cited in McPike, 1980) reported of the 

power generation opportunity that would exist at Waikaremoana should leakage 

through its naturally formed landslide dam be controlled. An indication of the 

amount of generation that could be achieved, and a layout for a power scheme, 

was produced by Anderson in 1916 (cited in McPike, 1980).  

Tuai power station, the first of the three stations to be built which make up the 

Waikaremoana scheme, was commissioned in 1929 with an installed capacity of 

60 Megawatts (MW). Piripaua power station was later commissioned in 1943 with 

an installed capacity of 42MW and Kaitawa power station was commissioned in 

1948 with an installed capacity of 36MW. At maximum capacity the scheme is 

capable of contributing 138MW to the national grid (Genesis Energy, 2006, 

Natusch, 2004). The completed scheme (Figure 1) transports water from Lake 

Waikaremoana via tunnels to Kaitawa Power Station before discharging into Lake 

Kaitawa, the water then passes through Tuai Power Station and is discharged into 

Lake Whakamarino. From there, water is transported to Piripaua Power Station by 

tunnel and discharged into the Waikaretaheke River (Natusch, 2004). 

In the 1980s a substantial restructuring of the New Zealand electricity industry 

was undertaken, with generation and transmission assets transferred to the 

Electricity Corporation of New Zealand (ECNZ), which was created under the 

State Owned Enterprises Act 1986. In the 1990s the ECNZ was split into four 

companies, the privatised Contact Energy, and three state owned enterprises: 

Meridian Energy, Genesis Energy, and Mighty River Power. Genesis Energy 

obtained the Waikaremoana Power Scheme as part of their portfolio in 2000. 

The Waikaremoana Power Scheme is an important part of North Island 

generation. The scheme provides voltage support for Gisborne and Tokomaru Bay 
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Figure 1: Cross Section of Waikaremoana Power Scheme showing important features. Bottom image follows on from the right of the top image. Modified from Natusch, 

(2004). 
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Transpower transmission circuits. It is also in the best position to provide power 

to the East Cape area should it lose its connection to the national grid. The 

proximity of the Waikaremoana Scheme in relation to Gisborne results in lower 

transmission losses, somewhat reducing the overall national need for generation 

(Genesis Energy, 2009). 

A number of constraints exist in the Waikaremoana Scheme which means that 

effective water management must be applied. These constraints include in 

particular, the location of the scheme in the conservation land of the Urewera 

National Park. Also the small storage capacity of Lakes Kaitawa and 

Whakamarino requires the three stations to be run in tandem. Another constraint 

derives from leakage of the natural dam which holds back Lake Waikaremoana. 

This leakage water was originally used to supply the Tuai and Piripaua power 

stations prior to the commission of the Kaitawa power station. This substantial 

leakage through the dam has the ability to quickly fill Lake Kaitawa, thus the 

scheme must constantly be run at a minimum of 12 MW (Genesis Energy, 2006). 

The daily operational efficiency of the Waikaremoana scheme requires estimation 

of lake water availability for hydro power generation on a per day basis. At the 

time of this study, net daily water availability of Lake Waikaremoana is estimated 

using a mathematical model of net storage change obtained from lake water level 

changes. This model uses daily lake water level differencing after correcting for 

the volume extracted for power generation and known lake losses to estimate net 

daily lake inflows. The model is used as opposed to direct measurement of river 

inflows due to the impracticality of gauging the large number of small tributaries 

and direct groundwater inflows which supply the lake. The water availability 

estimate is sometimes subject to error when changes in lake level are small, giving 

rise to negative estimates which may indicate errors in level differencing or 

inaccurate estimation of leakage. Under low flow conditions the unknown portion 

of lake losses may be not insignificant relative to inflows, thus in these instances 

the model approximates storage change. 

The model includes an estimation of the leakage rate through the natural dam 

based on measurement of the discharge of the Waikaretaheke Stream at Kaitawa 
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weir, a stream almost entirely derived from leakage and it is possible that an 

inaccurate estimation of leakage loss which does not pass though the weir could 

cause some of the error within the water availability model. Also, when there is 

little change in lake level the effect of brief water level fluctuations which result 

from waves and wind set up becomes large relative to lake level differences.  

Genesis Energy therefore required an improved water availability model for low 

flows to allow increased operational efficiency of the Waikaremoana hydro power 

scheme as measured by income generated. Optimal income generation requires 

accurate estimates of how much electricity can be generated when bidding into the 

electricity market particularly for low flow conditions.  

 

1.2 Objectives 

The main intention of this thesis is to create an improved net daily water 

availability model for Lake Waikaremoana to better estimate how much power 

can be generated from the Waikaremoana power scheme on a given day under low 

flow conditions. This will be achieved through three specific objectives: 

1. Create an improved low flow model of river inflows into Lake 

Waikaremoana using two forward (next-day) prediction approaches: 

multiple regression and a lasso simplified rainfall-runoff model. 

2. Make a water balance based estimate of leakage loss from Lake 

Waikaremoana and detect any possible difference from earlier estimates. 

3. Combine the results of objectives 1 and 2 to create an improved estimation 

of net daily water availability under low flow conditions. 

 

1.3 Thesis Outline 

This thesis is structured into a number of chapters on different aspects of this 

study. 

 

Chapter 2 presents an overview of the Lake Waikaremoana catchment including 

its location, the geomorphology, geology and climate. It presents detail on the 
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origin of Lake Waikaremoana and its relevance to this study through the 

formation of a landslide dam and associated natural leakage. Chapter 2 also 

describes the findings of previous studies on local catchment hydrology and 

catchment modifications for hydro power. 

 

Chapter 3 describes the data available for this study from various sources. 

 

Chapter 4 investigates total lake water losses from Lake Waikaremoana through 

the combined effects of evaporative loss and leakage of lake water through Lake 

Waikaremoanaôs natural dam. This estimation is derived from a simple 

hydrological model based on a modified catchment water balance equation and 

linear regression. 

 

Chapter 5 utilises a regression relation developed as a consequence of 

hydrological modelling in Chapter 4 to estimate net storage change of Lake 

Waikaremoana under low flow conditions, based on the discharge of the 

Aniwaniwa Stream. 

 

Chapter 6 involves the use of two finite mixture rainfall-runoff models for 

forecasting future inflows of the Aniwaniwa Stream into Lake Waikaremoana, 

which can then be extrapolated to the wider Waikaremoana catchment using the 

regression relation developed in Chapter 5.  

Chapter 7 uses a multiple regression technique to forecast next-day Aniwaniwa 

Stream inflows as a simple method of inflow estimation, which may be more 

practical for operational use at the Waikaremoana Power Scheme. 

Chapter 8 compares the results from the three techniques used to model day-ahead 

inflows of the Aniwaniwa Stream into Lake Waikaremoana. Chapter 8 also 

compares the inflow estimates of the three models scaled to net storage change  to 

a storage change record in order to determine which method provides both the 

most accurate and practical method for operational use at the Waikaremoana 

Power Scheme.  

Chapter 9 presents conclusions and recommendations.
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Chapter 2 - Study Area 

2.1 Introduction  

This chapter presents an overview of previous studies and the characteristics of 

the Lake Waikaremoana area. It focuses on aspects of the study area which are 

particularly relevant to hydro electric development and operation, and leakage 

through the natural dam. 

Lake Waikaremoana, óthe sea of rippling watersô is situated 80 km south east of 

Lake Taupo in the North Island of New Zealand among the rugged unmodified 

terrain of the Urewera National Park (Urewera National Park Board, 1975). It lies 

at approximately 600m elevation above sea level amid thick temperate rainforest 

(Koyama et al., 1989, Matthews, 1992) (Figure 2). The large surface area and high 

altitude facilitates the use of Lake Waikaremoana for hydro power (Keam, 1958). 

The three power stations at Waikaremoana utilise the steep fall of nearly 450 m in 

8 km to generate electricity which is distributed to the national grid for public 

supply (Read, 1979). 

2.2 Geomorphology 

Lake Waikaremoana is a drowned valley system with topography at its eastern 

end consistent with infilling and damming by debris from a large ancient landslide 

(Main, 1976). The catchment is steep, with 65% of the catchment classified as 

moderately steep to steep (slopes of 21° -35° ) and 10% of the catchment 

classified as very steep with slopes greater than 35°  (Newnham et al., 1998). The 

elevations in the Urewera National Park are typically high, with maximum 

elevations up to 1300m above sea level (Matthews, 1992). There are just two 

minor wetlands in the Waikaremoana catchment (Newnham et al., 1998). 
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Figure 2: Location of Lake Waikaremoana within New Zealand (a) and Northern Hawkes Bay (b). (c) shows a detailed view of Lake Waikaremoana where Lake 

Waikaremoana catchment is outlined in red and blue where blue is the Aniwaniwa sub-catchment. (Source: InfoMap 266 New Zealand, NZMS 265-1 North 

Island, NZMS 260 W18 Waikaremoana).

(b) 

(c) 

(a) 
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While evidence of debris avalanches exists in the form of erosion scarps, other 

erosion is minimal due to the presence of dense native forest cover (Urewera 

National Park Board, 1976). Sediment from debris avalanches reaches Lake 

Waikaremoana during storms via the Hopuruahine and Mokau Streams whose 

catchments have major erosion features which are not as prevalent in other, less 

steep catchments (Matthews, 1992). Lake Waikaremoana and Lake Whakamarino 

both act as sediment traps. At Lake Whakamarino high sediment accumulation 

may limit the operational flexibility and the economics of the Waikaremoana 

hydro power scheme. This occurred in 1986 when dredging of Lake 

Whakamarino was required (Chester, 1986).  

2.3 Geology 

The Urewera National Park landforms are geologically young, but basement rocks 

range from Urewera Greywacke from the Upper Jurassic period through to tertiary 

surface geology (Grindley et al., 1960, Johnson, 1976). The park is composed of a 

depression named the Wairoa Basin, a mountain backbone, and part of the 

Rotorua-Taupo volcanic zone (Johnson, 1976) (Figure 3). 

The Waikaremoana area is underlain by uplifted marine sedimentary rocks with a 

stratigraphic thickness of at least 12,000 m (Grindley et al., 1960). The dominant 

lithologies present are siltstone, mudstone and sandstone, where the sandstone 

commonly contains calcareous beds (Figure 4). The sedimentary sequence dips to 

the south-east at angles up to 20°. Several locally significant faults with north-east 

trends similar to the major faults of the North Island are present. The steep 

topography of the area is a result of its relatively recent uplift. Much of the area is 

mantled with volcanic tephra from the Taupo Volcanic Zone (Read et al., 1992). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Location of Lake Waikaremoana in relation to the physiographic units of the Wairoa Basin, mountain axis and the Rotorua-Taupo Volcanic Zone. Modified from 

Urewera National Park Board (1976).
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Figure 4: Simplified stratigraphic column of the Waikaremoana area (based on Grindley et al., 

1960) 
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2.4 Origin of Lake Waikaremoana 

The origin of Lake Waikaremoana was unknown for a number of years, 

prompting discussion in the scientific literature. The first study of its origin was 

carried out by Smith in 1876 (cited in Ongley, 1932) who simply concluded that 

its origin was ónot glacialô. Later in 1876 Cox of the Geological Survey (cited in 

Ongley, 1932) found that its origin was ónot glacial and not volcanicô. In 1892 

Hector (cited in Ongley, 1932) concluded that the lake occupied the depression of 

the downthrow side of a great fault. This was disproved in 1897 when Smith 

(cited in Ongley, 1932) recognised that the origin of the lake was a large slip. 

Smith commented that this was óobviousô despite his earlier comments on the 

origin as simply ónot glacialô. In 1912 Marshall suggested that Lake 

Waikaremoana had been formed by solution of rock leaving large cavities into 

which the overlying rock collapsed. This suggestion was made despite never 

having been to the lake (cited in Ongley, 1932). Lambert challenged the idea that 

the lake origin was ónot volcanicô in 1925 concluding that it was a crater lake 

formed by a ógreat volcanic outburstô and that landslides had contributed to the 

formation of the basin (cited in Ongley, 1932). 

Today it is accepted that Lake Waikaremoana was formed following a landslide, 

possibly triggered by a large earthquake, which blocked the flow of the 

Waikaretaheke River forming a natural dam (Davies et al., 2006, Riley and Read, 

1992) (Figure 5). The landslide has an area of 18 km
2
 and a volume of 

approximately 2.2  10
9
 m

3
, ranking it as one of the biggest landslides in the 

world (Davies et al., 2006). The landslide dam is approximately 400 m thick, with 

an average surface slope of 6° and a maximum thickness of 425m. It extends for 8 

km along the Waikaretaheke Valley (Riley and Read, 1992). The landslide debris 

is made up of tertiary age sandstone and siltstone blocks up to tens of meters in 

diameter supported by a fine grained matrix of sand, silt and pumice. The blocks 

are randomly oriented and vary in shape (Read et al., 1992). Numerous large 

cavities exist between clasts (Figure 6). The sliding surface of the block is thought 

to be within a sandstone layer (Davies et al., 2006).  
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Figure 5: The natural dam at Lake Waikaremoana formed by an ancient landslide showing intact 

block (red), backscarp (yellow) and debris (blue). Modified from Riley and Read (1991) and 

Davies et al., (2006).  

While landslide lakes are generally short lived, Lake Waikaremoana is known to 

be at least 2,200 years old, based on carbon dating of dead trees found within the 

lake (Matthews, 1992, Natusch, 2004, Read et al., 1992, Riley and Read, 1992). 

However, the presence of the Waimihia Tephra on the landslide debris and 

exposed slide scarp shows that the landslide occurred at least 3,300 years ago 

(Allan et al.,2002, Soons and Selby, 1992). 

In 1927 Marshall recognised that the landslide occurred in two phases. The first 

phase was composed of a rock avalanche which blocked the Waikaretaheke 

Valley. This was followed by a block glide which fractured as it was brought to 

rest, creating pressure ridges (Riley and Read, 1992). The south eastern part of the 

landslide dam is formed from landslide debris and intact block forms the north 

west side. It was later suggested that the landslide occurred in three stages (Read, 

1979).  

Backscarp 

Intact Block 

Landslide debris 
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Figure 6: a) An example of the numerous cavities within the landslide debris b) example of the 

large blocks which make up the landslide debris (note scale). 

The first phase is differentiated from the second by its increased mobility which 

was identified by its morphology, wider areal extent and smaller thickness of 

debris (Read, 1979). 

The landslide barrier appears to leak substantially though its upper levels. Prior to 

hydro electric development the leakage rate was estimated to be as high as           

12 m
3
s

-1
. This was reduced to approximately 5 m

3
s

-1
 by upstream sealing works in 

the Te Whara Whara Bay area (Riley and Read, 1992). 

 

2.5 Climate 

Lake Waikaremoana has a temperate climate with a mean annual temperature of 

11°C. Summer daily maximum temperatures are approximately 25°C and winter 

daily minima are approximately-5°C. The catchment is a high rainfall area, with 

annual rainfall at the lake outlet exceeding 2000 mm/year, tending to occur as 

infrequent high intensity events (Table 1). Snowfall and ground frosts occur 

regularly in winter months. The predominant strong wind directions are from the 

north and north west sectors (Newnham et al., 1998). 

aa))  bb))  
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Table 1: Annual mean, minimum, and maximum annual rainfall in millimetres for sites gauged by 

Hawkes Bay Regional Council in the Waikaremoana area. 

Catchment 

Record 

begins 

Mean annual 

rainfall (mm)  

Min annual 

rainfall (mm)  

Max annual 

rainfall (mm)  

Erepeti Met 1928 1825.1 1165.3 2619.7 

Aniwaniwa 1977 2232.4 1750.5 2892.7 

Nga Tuhoe 1985 1683.6 1263.5 2255.0 

Upper Waiau 1985 1224.4 745.5 1547.5 

Bushy Knoll 1986 1447.4 785.0 2352.5 

Rocky Pad 1989 2144.2 1575.2 2754.0 

Mt Manuoha 1989 2879.7 2164.0 2352.5 

Waimaha 2000 1215.9 948.5 1466.3 

 

Evaporation from Lake Waikaremoana has been estimated by Finklestein (1973) 

who calculated open water evaporation rates for New Zealand using a modified 

Penman equation. Finkelstein (1973) gives evaporation rates for a large number of 

sites in New Zealand, including Onepoto, Waikaremoana. At Lake Waikaremoana 

evaporation was measured directly using an electric type sunken pan (Table 2). 

Finkelstein (1973) found that over the period of a year, pan evaporation is 

generally consistent with lake evaporation. 

Table 2: Average monthly lake evaporation and total annual evaporation in millimetres. Modified 

from Finkelstein (1973). 

Month 

Average Monthly 

Evaporation (mm) Month 

Average Monthly 

Evaporation (mm) 

January 91 July 22 

February 68 August 25 

March 58 September 33 

April  40 October 50 

May 30 November 75 

June 22 December 81 

Total 
 

 595 
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2.6 Hydrology 

Lake Waikaremoana is the North Islandôs deepest lake with a maximum depth of 

248 m, an average depth of 93 m, and a surface area of 56 km
2
 (Riley and Read, 

1992). In terms of physical classification the lake has been defined as warm 

monomictic and oligotrophic (Main, 1976).  

The Lake Waikaremoana catchment consists of a large number of small streams 

(approximately 114) which flow into the lake. The nature of the terrain and the 

large number of streams mean that inflows are impractical to measure directly. 

However, a low-flow study carried out by Hawkes Bay Regional Council found 

that of the largest streams in the catchment, the highest low-flow specific 

discharges occurred in the Aniwaniwa and Mokau catchments (9.8 l/s/km
2
 and 

13.8 l/s/km
2
 respectively). It was thought that the highest low flow specific 

discharges occurred in the Aniwaniwa and Mokau catchments due to high 

baseflow produced by the fractured nature of the surface of the landslide which 

formed Lake Waikaremoana. The lowest specific discharges occurred where the 

subsurface geology was hard, impermeable unfractured rock (Black, 1992). 

While Lake Waikaremoana currently has no natural surface channel outflow, lake 

overflow occurred approximately 50% of the time prior to hydroelectric 

development (Read, 1979). It has long been recognised that outflow also occurs in 

the form of lake leakage through the natural dam, and exits as springs and streams 

on the landslide surface. The leakage is thought to travel through cavities in the 

landslide debris formed by the haphazard placement of very large clasts during the 

lake-forming landslide event. Water passage through the natural dam has been 

found to be complex and widely dispersed. Tracer studies have produced 

breakthrough curves with long tails and lag times, suggesting that each spring 

may be fed by a number of leaks with multiple and intersecting paths (McPike, 

1980). Tracer testing carried out in 1931 and 1932 found that the dispersion of 

water from individual leaks along different fractures was considerable and 

appeared to be controlled by fracture direction (Read, 1979). 
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Riley and Read (1992) hypothesised that water conduits which exist in open 

fissures or bedding planes may be constricted at their downstream limits by 

landslide debris and could cause high pressures to develop within or beneath the 

landslide mass, resulting in artesian fissure pressures.  

Read et al., (1979) divided the springs in the Waikaremoana area into ówarm 

springsô and ócold springsô. Warm springs were found to have up to a 5 degree 

annual temperature variation, while cold springs had a smaller temperature range, 

in the order of 2 degrees (McPike, 1980). Warm springs (also known as primary 

springs) included all major springs located within 300 m of the lake outlet at Te 

Whara Whara Bay. The water in these springs was thought to have travelled 

through a zone of fissured sandstone and siltstone and accounted for >85% of the 

leakage from the lake prior to sealing. The cold springs were found to be 

distributed throughout the landslide area. Cold water springs were thought to be 

derived from source water below thermocline within the lake, while warm water 

springs were believed to have a source above the thermocline (Read et al., 1979). 

Under conditions of maximum stratification the top of the thermocline occurs at 

approximately 15-20 m depth (Howard-Williams et al., 1986, Mylechreest, 1978).  

Other miscellaneous springs in the Waikaremoana area, including those labelled 

in the study by Read (1979) as óU group and associated springsô are not thought to 

have been affected by the sealing of the dam, and are colder than both the warm 

and cold springs previously mentioned. Thus it is unlikely that Lake 

Waikaremoana is their source. No evidence has been found to suggest that leakage 

from Lake Waikaremoana occurs through undisturbed rock beyond the landslide 

area (Figure 7).  

The Kaitawa weir measures the flow of the Waikaretaheke Stream, a stream 

almost entirely derived from Lake Waikaremoana leakage via the primary and U 

group springs. A slight increasing trend in discharge has been recorded at the 

Kaitawa weir (Figure 8). This increasing trend may be due  to inaccurate weir 

readings as a result of debris accumulating on the weir over time, or due to an  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Locations of warm springs (pink), cold springs (blue) and miscellaneous springs (purple). 
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