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ABSTRACT

Abstract

Lake Waikaremoana is a higititude, largevolume lake located within the

rugged terrain of the Urewera National Park. At the lake outflow a rapid elevation

change of nearly 45@netres in &ilometresf aci | i t ates the | akeos
intake portal for the Waikaremoana Hydro Power Schehehe time of this

study, Genesis Energgperatedhe Waikaremoana Power Schemaesponse to

a water availability model based daily lake level differencing from which daily

generation capacity is predicted, allowing strategic bidding inéo dlectricity

market. However, Wwen river flows are low this moded subject to errgras small

changes in lake levesometimescannot be determ@&u accurately beyond

background noise on daily timescales.

This projectdevelopsa method ofestimating both current day and dalyead
water availabilityof Lake Waikaremoanandependent of lake levelsing simple
hydrological models, thereby improvingoperational efficiency of the
Waikaremoana Power Schenkhe forecasting is developed specifically for the
lower inflow conditions when the lake level differencing approach is most error

prone.

It has long been recognised thatsignificant volume of Lak&Vaikaremoana
water leakghrough the ancient landslide dam which created the Ride¥ious to

this study it was cmsidered that an inaccurate estimatmfnthis leakage rate
combined with evaporative losses might contribute teether withinthe existng

water availability model A modified catchment water balance and simple
regression approach was applied to Lake Waikaremoana to estimate the lake water
loss not accounted for by recorded outflows. Estimating this unrecorded loss
translates to estimatinthe intercept of a linear regression relation, where the
assumption is made that there is a linear relatiggbetween the discharge dfet
Aniwaniwa Stream and the net lake wabalance (excluding known outflows)
under low inflow conditionsOn the bais of the confidence intervals about the
intercept, the balance term (constant background lake inflow minus leakage and

evaporative loss) is estimated to within the range of 2.89 -arti7 nis’
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suggesting that the unknown portion of leakage and evaperisses are not
significant contributors to model errofA useful consegence of the regression
wasthat regression coefficient®uld be used as means of upscaling to givet
lake storage changéor low-flow conditions. This enabledlay-aheadwater
availability forecasts to be acquirdtbm Aniwaniwa Stream dischargay-ahead
forecasts.

Two forecasting methodologies are developed to forecast the Aniwaniwa Stream
discharge: a finite mixture rainfalunoff model, and a multiple linear regression
method The ranfall-runoff model is formulated initially as manyparameter
modelwhich is then subjectedio a lassebased model simplification concurrent
with model calibration. The simplifiechodel forecasts nextay inflows by using

a weighted linear combation of hydrograph forms whiclbest matchthe
previous observed sitharges in the calibration set where the various wegagbts
linear functions of recent rdails. An auterecalibratingversion of the rainfall

runoff model was alsaeveloped wherenodel simplification and calibration is
carried out for each forecast, with the great#hg weights most likely on the

most recent discharges to allow for changing catchment conditions.

The rainfaltrunoff model was calibrated under a range of ldsssedparameter
elimination pressures to determine the number of parameters which gave the best
validation fit as quantifiedby the NaskSutcliffe fit. The highest validation fit
using the original rainfaltunoff model was 50.7%. Using the autecalibrating
rainfall-runoff modela slightly bettermaximum validation fit of (52.%) occurred

at an elimination pressure giving41lfinal parameters from an initial 300.
However, a validation fit which is monuch lower (46.%) is achieved at a higher
elimination pressgre yielding just 6final parametersdemonstratinga tradeoff
between model simplification and validation fit. As expected, the rainfabff
model was more successful at predicting low to medium flows because
forecasting focus was on the lower flowdigher discharges were consistently
underpredicted. Validation fits of the rainfallnoff model couldprobably be
improved by increasing the range of possible hydrograph forms available for

selection at the expense of model simplicity.
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The multiple regresion technique wes p pl i ed t o-dhgibe Aastwadn ea
inflows in a simpler way, in this case using just currdatly rainfall and

discharges as independent variables. The discharge forecasts derived from both
techniques are then scaled using tlgrassionequationmentioned earlieto give

net storage changsstimatesnto Lake Waikaremoana for low to medium inflows.

The regression approaclwas the more successful for overall ddyead

Aniwaniwa flow forecastsThefinal prediction for current dastorage change:

g5 =0.399(Aq) + 0.59 [1]

Where Ay is the observed daily total discharge of the Aniwaniwa Stréay-
ahead Aniwaniwa Stream forecasts can be approximated by equation [2] then

scaled to storage change using equation [1]
AQ(Next.day): 0.095(rrain) + 0.5580_(3) + 0.611 [2]

Where Tain is current day total rainfall andglis current day total discharge. This
single equation gave higher calibration fits than separate regressions based on
seasonUsing only current rainfall andurrent discharge as independent variables,
the NashSutcliffe vdidation fits were as high as %6

The linear regression approach givée mostuseful inflow estimates to Lake
Waikaremoana for the current day, based on upscaling the Aniwaniwa Stream
discharges for low to medium flows. Estimating the -dagad lake inflows is
then equated to estimating daljead Aniwaniwa discharges for conditions
outside of high flows. For this deghead forecastinghe regression technique
proved better tharthe rainfdl-runoff modes. It is thus recommended that the

multiple regression technique is applied at the Waikaremoana Power Scheme.
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CHAPTERONE INTRODUCTION

Chapter 1 - Introduction

1.1 Background

The hydropower potential of Lake Waikaremoana has been recognised since the
19" century (Natusch, 2004). In 1904 Hajted inMcPike, 1980 reportedof the
power generation opportunity that would exist at Waikaremoana skeaktdge
through is naturally formed landslidelam be controlled. An indication of the
amount of generation that could be achieved, and a layout for a goheme

was produced by Anderson in 191&éd inMcPike, 1980).

Tuai power station, the first of the threstations to be built which make up the
Waikaremoana scheme, was commissioneti9iPO with an installed¢apacity of

60 Megawatts MW). Piripaugpower station was later comraisned in 1943 with

an installedcapacity of 42MW and Kaitawa power station was corsiaiged in

1948 with an installe¢apacity of 36MW.At maximum capacitythe scheme is
capable of contributing 138MW to the national grid (ésa Energy, 2006,
Natusch, 2004). The completed sche(Regure 1)transports water from Lake
Waikaremoana via tunnels to Kaitawa Power Station befisahargingnto Lake
Kaitawa, the water then passes through Tuai Power Station and is discharged into
Lake Whakamarino. From there, water is transported to Piripaua Power Station by

tunnel and discharged into the Waikaretaheke River (Natusch, 2004).

In the 1980s a substantial restructuring of New Zealandelectricity industry

was undertakenwith generatn and transmission assets transferred to the
Electricity Corporation of New Zealand (ECNZ), whigkas createdunder the
State Owned Enterprises Act 1986. In the 1990s the ECNZ was split into four
companies, the privatised Contact Energy, and three statedoenterprises
Meridian Energy, Genesis Energgnd Mighty River Power. Genesis Energy

obtained the Waikaremoana Power Scheme as part of their portf@®0.

The Waikaremoana Power Schenme an important part of North Island

generation. The scheme provides voltage support for Gisborne and Tokomaru Bay
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Figure 1: Cross Section of Waikaremoana Power Scheme showing important features. Bottom image follows on from the right of the tdpdifiad from Natusch
(20049).
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Transpowe transmission circuits. Is alsoin the best position to provide power
to the East Cape area should it lose its connection to thenabtyrid. The
proximity of the Waikaremoana Scheme in relation to Gisborndtseisulower
transmission losses, somewhat redudimg overall national need for generation

(Genesis Energy, 2009).

A number of constraints exist in the Waikaremoana Scheme which means that
effective water management must be applied. These constraintgleina
particular,the location of the scheme in the conservatiord laf the Urewera
National Park. Alsothe small storage capacity of Lakes Kaitawa and
Whakamarino requires the three stations to be run in tandem. Armathstraint
derives fromleakage ofthe natural dam which holds back Lake Waikaremoana.
This leakagewater was originally used teupply theTuai and Piripaua power
stations prior to the commission of the Kaitawa power station. This substantial
leakage through the dam has theligbto quickly fill Lake Kaitawa, thus the
scheme must constantly be run at a minimum of 12 MW (Genesis Energy, 2006)

Thedaily operational efficiency of the Waikaremoana scheewgiiresestimation

of lake water availability for lgdro power generation oa per daybasis.At the

time of this studynet dailywater availability of Lake Waikaremoana is estimated
using a mathmatical model of net storage chang®ained fromake water level
changes. Thisnodel uses daily lake wat&vel differencing after arrectingfor

the volume gtracted for power generatiand known lake losses to estimatt
daily lake inflows.The model is used as opposed to direct measurement of river
inflows due to the impracticality of gauging the large number of small tributaries
and direct groundwater inflows with supplythe lake.The water availability
estimatds sometimes subject to ernwhen changes in lake level are smailing

rise to negativeestimateswhich may indicate errors in level differencing or
inaccurate estiation of leakageUnder low flow conditions the unknown pi@mn

of lake losses may be not insignificaetative to inflows, thus in these instances

the modeblpproximates storage change

The model includes an estimation of the leakage rate through tlieahakam

based on measurement of the discharge of the Waikaretaheke Stream at Kaitawa

3
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weir, a stream almost entirely derived from leakagel it is possible thaan
inaccurate estimatioaf leakageloss which does not pass though the veeuld
cause some of the error within the water availability mo#lislo, when there is
little change inlake level the effect of brieivater level fluctuatios which result

from waves and wind set lgecomes largeelative to lake level differences

Genesis Emgy thereforerequiredan improved water availability mod@&r low
flows to allow increased operational efficiency of the Waikaremoana hydro power
scheme as measured by income gener&@timal income generatiorequires
accurateestimates of how muchaesdtricity can be generated when bidding into the

electricity markeparticularly for low flow conditions

1.2 Objectives

The main intentionof this thesisis to create an improvedet daiy water
availability model forLake Waikaremoana to better estimatevhmuch power
can be generated from tiiéaikaremoana powesxcheme on a given dayder low

flow conditions Thiswill be achieved through threpecific objectives:

1. Create an improvedow flow model of river inflows into Lake
Waikaremoanausing two forward (nextlay) prediction approaches:
multiple regression and a lasso simplified rainrfathoff model.

2. Make a water balance based estimate leakage loss from Lake
Waikaremoanand detect any possible difference from earlier estimates.

3. Combine the results of objectives 1 and 2 to create an improved estimation

of net daily water availabilitynder low flow conditions.

1.3 Thesis Outline

This thesis is structuredtma number of chapters on different aspects of this

study.

Chapter 2 presentraverview of the Lake Waikaremoana catchment including

its location, the geomorphology, geology and climate. It presents detail on the
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origin of Lake Waikaremoana and its relevance to this study through the
formation of a landslide dam and associated rahtleakage. Chapter 2 also
describes the findings of previous studies on local catdbrhydrology and

catchment modifications for hydro power.

Chapter 3escribes the datvailable for this studfrom various sources

Chapter 4investigatedotal lakewater losses from Lake Waikaremoana through

the combined effects of evaporative loss and leakage of lake water through Lake

Wai karemoanaos natur al dam. Thi s esti m,
hydrological modebased on a modifiedatchment wadr balanceequation and

linearregression.

Chapter 5 utilises a regression relatiomleveloped as a consequenof
hydrological modelling in Gapter 4to estimatenet storage change ofake
Waikaremoana under low flow conditignbased onthe discharge of the

Aniwaniwa Stream.

Chapter 6 involves the use of twimite mixture rainfallrunoff mode$ for
forecasting future inflows of the Aniwaniwa Stream into Lake Waikaremoana
which can then be extrapolated to the wider Waikaremoana catchment using the
regression reteéon developed in Gapter 5.

Chapter 7uses a multiple regression technique to forenastday Aniwaniwa
Stream inflowsas a simple methodof inflow estimation which may be more

practical for operational use at the Waikaremoana Power Scheme.

Chapter &ompares the results from the three techniques used to deekghead
inflows of the Aniwaniwa Stream into Lake Waikaremoa@hapter 8 also
compareghe inflow estimates of the three models scaled to net storage ckange
a storage change recom orde to determine which method providésth the
most accurate ang@ractical method for operational use at the Waikaremoana

Power Scheme.

Chapter Qresentzonclusions andecommendations
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Chapter 2 - Study Area

2.1Introduction

This chapter presents an overview of previous studies and the characteristics of
the Lake Waikaremoana area. It focuses on aspedtestudy area which are
particularly relevant to hydro electric development and operation, and leakage
through thenatura dam.

Lake Waikaremoana &6t he s ea o0ibsituatedd@pKmisouth eastaot er s 6
Lake Taupoin the North Island of New Zealand among the rugged unmodified
terrain of the Urewera National Park (Urewera National Park Board, 1975). It lies

at approximatly 600m elevation above sea level amid thick temperate rainforest
(Koyama et al., 1989, Matthews, 199F)gure 3. The large surface area and high

altitude facilitates the use of Lake Waikaremo#orahydro power (Keam, 1958).
Thethreepower stationst Waikaremoanaitilise the steep fall of nearly 450 in

8 km to generate electricitwhich is distributed to the national grid for public

supply (Read, 1979).

2.2 Geomorphology

Lake Waikaremana is a drowned valley system with topography at its eastern
endconsistent with infilihg and damming by debris from a largecientiandslide
(Main, 1976) The catchment is steepijth 65% of the catchment classified as
moderately steep to steep (slopes2df -35° ) and 10% of the catchment
classified as vergteepwith slopesgreater than 35 (Newnham et al., 1998The
elevations in the Urewera National Park dypically high, with maximum
elevations up to 1300m above sea level (Matthews, 1992). There are just two

minor wetlands in th&Vaikaremoanaatchmen{Newnham et al., 1998).




o
Figure 2: Location of Lake Waikaremoana within New Zealand (a) and Northern Hawkes Bay (b). (c) shows a detailed view of Lake ViladahmreolLake

Waikaremoana catchment is outlined in red and blue where blue is the Aniwanisatsiiment(Source: InfoMap 266 New Zealand, NZMS 26%orth
Island, NZMS 260 W18 Waikaremogna
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While evidence of debris avalanches exists in the form of @rastarps, other
erosion is minimal due to the presence of dense native forest cover (Urewera
National Park Board, 1976). Sediment from debris avalanches reaches Lake
Waikaremoana during storms via the Hopuruahine and Mokau Streams whose
catchments have njoa erosion features which are not as prevalent in other, less
steep cataments (Matthews, 1992)ake Waikaremoana and Lake Whakamarino
both act as sediment trapAt Lake Whakamarino high sediment accumulation
may limit the operational flexibility and tb economics of the Waikaremaan
hydro power scheme.This occurredin 1986 when dredging of dke
Whakamarinavas required (Chester, 1986)

2.3Geology

The Urewera National Park landforms gemlogicallyyoung,but basementocks
range fromUrewera Greywacke from the Uppgurassigeriod through to tertiary
surface geologyGrindleyet al, 1960,Johnson, 1976)The park is composed af
depression named the Wairoa Basin,mountain backboneand part of the

RotoruaTauo volcanic zone (Jolson, 1976)Figure 3).

The Waikaremoana area is underlain by uplifted marine sedimentary rocks with a
stratigraphic thickness @it least 12,000 m (Grindlest al.,1960) The dominant
lithologies present are siltstone, mudstone and sandstone, where the sandstone
commonly contais calcareous bedBigure 4) The sedimentary sequence dips to

the soutkeast at angles up to 20°. Several locally significant faults with 1eash

trends similar to the major faults of the North Island are present. The steep
topography of the area isresultof its relatively recent uplift. Much of the aréa
mantled with volcanic tephra from the Taupo Volcanic Zone (Read et al., 1992).




0T

WAIROA BASIN
(Tertiary)

<3

\ To Wairoa.

Figure 3: Location of Lake Waikaremoana in relation to the physiographic units of the Wairoa Basin, mountain axis and thel Ragporivlcanic Zone. Modified from
Urewera National Park Board (1976
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Age | Thickness | Graphic Log Description
S - Siltstone and redeposited beds (N96). Onlapping
g 12 000 sandstone and mudstone (N114). Absent in south
s e Siltstone in N102 (refer to inset figure).
£ |=s - Silty mudstone, fossiliferous sandstone in north.
2 : Absent in south.
—%r 11000 &= = - Fossiliferous sandstone and conglomerate in
g4 i ey west. Silty sandstone in north.
43 - Silty mudstone and fine sandstone
Q - Silty mudstone and fine sandstone
10000 - -~ Dark silty sandstone and mudstone. Redeposited
i beds are common.
® 8000 = =] - Massive and bedded grey silty mudstone with
2 = e volcanic bands. Some redeposited beds.
© — ——_1
P e
(&) -
= 8000 =
: =
- ™~
£
7000 —————
=
6000 £—
' - Alternating redeposited sandstone and dark grey
8 argillite. Greywacke conglomerates, minor volca-
% 5000 nics. No fossils known.
=
w
3 4000
§ Note: Numbers in description refer to inset
B figure below
e |
g 3000 ]
-l
b}
3
e 2000
o
a
o
3 =
s 1000
8_ Index to descriptions. Source: Grindley, G.W. (1960}
g- Geotoglcal map of New Zealand 1:256,000 Sheet & Taupo.
Department of scientific and Industrial reasearch,
Wellington, New Zealand
g 3 I%

Figure 4: Simplified stratigraphic column of the Waikaremoaaiea(based on Grindlegt al,
1960
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2.4 Origin of Lake Waikaremoana

The origin of Lake Waikaremoana was unknown for a numbéryears,

prompting discussiom the scientific literature. Therst study of its origin was

carried out by Smith in 187@ited in Ongley, 1932)vho simply concluded that

its origin was 6not gl acial 6. (diedtner i n 187
Ongley, 1932)ound that is originwas O not glaci al and not vo
Hector(cited in Ongley, 1932¢oncluded tht the lake occupied the depression of

the downthrow side of a great fault. This was disprovedl897 when Smith

(cited in Ongley, 1932jecognised that the orig of the lake was a large slip.

Smthc omment ed t hat t his wasomientkswmnithaersd despi
origin as ¢ li anpil gl 66 nolt n sudgbsie@ thakllake s hal |
Waikaremoana had been formed by solution of rock leaving large cavities into

which the overlying rock collapsed. This suggestion was made despite never

having been to theake(cited in Ongley, 1932)Lambert challenged the idea that

the | ake or i gi nn 1928 soncluding that wasla crater iaked

formed by a 6gr e a tthatlaodslideshadcantributedttdbther st 6 and
formation of the bsin (cited inOngley, 1932).

Today it is accepted thabke Waikaremoanaas formed following a landslide
possibly triggered by a large earthquakehich blocked the flow of the
Waikaretaheke River forming a natural dam (Davies et al., 2006, Riley and Read,
1992) Figure 5. The landslidehas an area of 18km? and a volume of
approximately 2.2 10° m®, ranking it as one of the biggest landslides in the
world (Davies et al., 2006 he landslide dam is approximately 48Chick, with

an averagsurfaceslope of 6° and maximum thickness of 425m. dixtends for 8
km along théWaikaretaheke Valley (Riley and Read, 199)e landslide debris

is made up ofertiary ag@ sandstone and siltstone blocks totens ofmeters in
diameter supported by a fine grained matrix arids silt and pumice. The blocks
are randomly oriented and vary in shape (Read et al., 18R@)erous large
cavities exist between clastsigure §. The sliding surface of the blodgkthought

to be withinasandstone laygDavies et al., 2006).

12
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Gox ):QIC

Figure 5: The natural dam at Lake Waikaremoana formed by an ancient landslide showing intact
block (red), backscarp (yellow) and debris (blue). Modified from Riley and R&@@il) and
Davies et al., (2006).

While landslide lakes are generally short lived, Lake Waikaremoana is known to
be at least 2,200 years old, based on carbon dating of dead trees found within the
lake (Matthews, 1992, Natusch, 2004, Read et al., 199@y Rild Read, 1992).
However, the presence of the Waimihia Tephra on the landslide damimtis
exposed slide scarp showlsat the landslide occurred at least 3,300 years ago
(Allan et al.,2002, Sats and Selby, 1992).

In 1927 Marshall recognised that thedalde occurred in two phases. The first
phase was composed of a rock avalanche which blocked the Waikaretaheke
Valley. This was followed by a block glide which fractured as it was brought to
rest, creating pressure relg (Riley and Read, 1992). The soedistern part of the
landslide dam is formed from landslide dsband intact block forms the north
west sidelt was later suggestatiat the landslide occurred in three stages (Read,
1979).

13
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Figure 6: a) An example of the numerous cavities within the landslide debris b) example of the

large blocks which make up the landslide debris (note scale).

The first phase iglifferentiatedfrom the second by its increased lilidy which
was identified byits morphology, wider areal extent argmaller thicknesf
debris (Read, 1979).

The landslide barrier appedrsleak substantially though its upper levels. Prior to
hydro electric development the leakage rate was estimated to be as high as
12 nts™. This was reduced to approximately Ssthby upstream sealing works in
theTe Whara Whra Bayarea(Riley and Read, 1992).

2.5Climate

Lake Waikaremoana has a temperate climate with a mean annual temperature of
11°C. Summedaily maximum temperatures are approximately 25°C and winter
daily minima are approximatel§°C. The catchment is a high rainfall area, with
annual rainfall at the lake outlet excaegli2000 mmyear, tending to occuas
infrequent high intensity eventdgble ). Snowfall and ground frosts occur
regularly in winter months. The predominant strong wind direstiare from the

north and northvest sectors (Newnham et al., 1998).

14
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Table 1: Annualmean, minimum, and maximum annual rainfall in millimetres for sitegegby

Hawkes Bay Regional Council in the Waikaremoana.area

Record Mean annual Min annual Max annual

Catchment  begins rainfall (mm) rainfall (mm) rainfall (mm)

Erepeti Met 1928 1825.1 1165.3 2619.7
Aniwaniwa 1977 2232.4 1750.5 2892.7
Nga Tuhoe 1985 1683.6 1263.5 2255.0
Upper Waiau 1985 1224.4 745.5 1547.5
Bushy Knoll 1986 1447.4 785.0 2352.5
Rocky Pad 1989 2144.2 1575.2 2754.0
Mt Manuoha 1989 2879.7 2164.0 2352.5
Waimaha 2000 1215.9 948.5 1466.3

Evaporation from Lak&Vaikaremoaa has been estimated by Finklestein (1973)
who calculated open water evaporation rates for New Zealand using a modified
Penman equation. Finkelstein (1973) gives evaporation rates for a large number of
sites in New Zealand, including Onepoto, WaikaremoAh&ake Waikaremoana
evaporation was measurédectly using an electric type sunken p@rable 2).
Finkelstein (1973) found that ovehe period of a yearpan evaporation is

generally casistent with lake evaporation.

Table 22 Average monthlylake evaporation and total annual evaporation in millimetres. Modified
from Finkelstein (1973)

Average Monthly Average Monthly

Month Evaporation (mm) Month Evaporation (mm)
January 91 July 22
February 68 August 25
March 58 September 33
April 40 October 50
May 30 November 75
June 22 December 81
Total 595
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2.6 Hydrology

Lake Wai karemoana is the North I slanddéds de:¢
248 m, an average depth @8 m, and a surfacarea of 56 krfi(Riley and Read,

1992) In terms of physicaklassification he lake has been defineds warm

monomictc and oligotrophic (Main, 1976).

The Lake Waikaremoana catchment consists of a large nhumber of small streams
(approximately 114) which flow into the lake. The nature of the terrain and the
large number d streams mean that infloware impractical to masure directly.
However, a lowflow study carried out by Hawkes Bay Regional Council found
that of the largest streams in the catehm the highest lolow specific
dischargesoccurred in the Aniwaniwa and Mokamathments 9.8 lis/km? and

13.8 I/3km? respectively). Itwas thought hat the highest low flow specific
dischargesoccurred in the Aniwaniwa and Mokau catchments duehigh
baseflow produced by the fractured naturéhe surface bthe landslide which
formed Lake WaikaremoanaThe lowest specific dischargescurred where the

subsurface gplogy was hard, impermeablefracttured rock (Black, 1992).

While Lake Waikaremoanaurrentlyhasno ratural surface channel owfl/, lake
overflow occurred approximately 50% of the time prior to hydroelectric
development (Read, 1979).Has long beerecognisedhatoutflow also occurs in

the form of lake leakagirough tle natural damand exits as springs and streams
on the landlide surface. The leakage is thought to travel through cavities in the
landslide debris formed by the haphazard placementrgflamge clasts during the
lake-forming landslide event. Water passage through the natural dam has been
found to be complex andvidely dispersed. Tracer studies have produced
breakthrough curvewith long tails and lag times, suggesting that each spring
may be fed by a number of leaks with multiple and intersecting paths (McPike,
1980). Tracer testingarried out in 1931 an@l932found that the dispersion of
water from individual leaks along different fractures was considerable and

appeared to be controlled by fracture direcfi@ead, 1979)
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Riley and Read (1992) hypabised that water conduits whi@xist in open
fissures or beding planes may beonstricted attheir downstream limits by
landslide debrisand could cause higbressures to develop within or beneath the

landslide masgesulting in artesiafissurepressures.

Read et al.(1979) divided the springs in the Wailkaremm a ar ea i nto O
springs 6 rainnd@addcsprings werepfound to have up to a 5 degree
annualtemperature variation, while cold springs had a smaller temperature range,
in the order of 2 degrees (McPjkE980). Warm springs (also known as primary
springs) included all major springs located within 300 m of the lake outlet at Te
Whara Whara Bay. The water in these springs was thought to have travelled
through a zone of fissured sandstone and siltston@eralinted for >85% of the
leakage from the lake prior to sealing. The cold springs were found to be
distributed throughout the landslide area. Cold water springs were thought to be
derived from source water below thermocline within the lake, while wartarwa
springs were believed toave a source above the thermocliRead et al., 1979)
Under conditions of maximum stratification the top of the thermocline occurs at
approximately 1520 m depth (HowardVilliams et al., 1986Mylechreest1978).

Other miscaneous springs in the Waikaremoana ameduding thosdabelled

in the study by Read (1979) as O6U group .
have been affected lifie sealing of the damand are colder than both the warm

and cold springs previolys mentioned. Thus it is unlikely that Lake
Waikaremoana is their source. No evidence has been found to suggest that leakage

from Lake Waikaremoana occurs through undisturbed rock beyond the landslide

area(Figure 7)

The Kaitawa weir measures the flow thfe Waikaretaheke Stream, a stream
almost entirely derived from Lake Waikaremoana leakage via the primary and U
group springsA slight increasing trend in discharge has been recorded at the
Kaitawa weir (Figure 8). This increasing trend may be doeinaccurate weir

readings as a result of debris accumulating on the weir over time, or due to an
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Figure 7: Locations of warm springs (pink), cold springs (blue) and miscellaneous springs (purple)




