
Working Paper Series
ISSN 1177-777X

Flexible Refinement

Steve Reeves and David Streader

Working Paper: 02/2007
May 7, 2007

c©Steve Reeves and David Streader
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Flexible Refinement

Steve Reeves and David Streader

Department of Computer Science, University of Waikato, Hamilton, New Zealand
{stever,dstr}@cs.waikato.ac.nz

Abstract. To help make refinement more usable in practice we intro-
duce a general, flexible model of refinement. This is defined in terms of
what contexts an entity can appear in, and what observations can be
made of it in those contexts.
Our general model is expressed in terms of an operational semantics, and
by exploiting the well-known isomorphism between state-based relational
semantics and event-based labelled transition semantics we were able to
take particular models from both the state- and event-based literature,
reflect on them and gradually evolve our general model. We are also able
to view our general model both as a testing semantics and as a logical
theory with refinement as implication.
Our general model can used as a bridge between different particular spe-
cial models and using this bridge we compare the definition of determin-
ism found in different special models. We do this because the reduction
of nondeterminism underpins many definitions of refinement found in a
variety of special models.
To our surprise we find that the definition of determinism commonly
used in the process algebra literature to be at odds with determinism
as defined in other special models. In order to rectify this situation we
return to the intuitions expressed by Milner in CCS and by formalising
these intuitions we are able to define determinism in process algebra in
such a way that it no longer at odds with the definitions we have taken
from other special models. Using our abstract definition of determinism
we are able to construct a new model, interactive branching programs,
that is an implementable subset of process algebra.
Later in the chapter we show explicitly how five special models, taken
from the literature, are instances of our general model. This is done
simply by fixing the sets of contexts and observations involved.
Next we define vertical refinement on our general model. Vertical refine-
ment can be seen both as a generalisation of what, in the literature, has
been called action refinement or non-atomic refinement. Alternatively,
by viewing a layer as a logical theory, vertical refinement is a theory
morphism, formalised as a Galois connection.
By constructing a vertical refinement between broadcast processes and
interactive branching programs we can see how interactive branching
programs can be implemented on a platform providing broadcast com-
munication. But we have been unable to extend this theory morphism to
implement all of process algebra using broadcast communication. Upon
investigation we show the problem arises with the examples that caused
the problem with the definition of determinism on process algebra.

Finally we illustrate the usefulness of our flexible general model by for-
mally developing a single entity that contains events that use handshake
communication and events that use broadcast communication.

1 Introduction

Refinement is the stepwise process of developing a specification towards, or per-
haps into, an implementation. Each refinement step formalises a design decision
and transforms a more abstract entity into a more concrete entity. One of the
central aims of formal methods is to define refinement so that an implementation
built by formally verified refinement steps must satisfy the original specification.
Once the entity is sufficiently detailed it can be implemented with no further
design decisions.

For construction by formal refinement to be of wide use in practice there is an
obvious need for refinement to be as flexible as possible. In this spirit of flexibility,
we might, for example, express properties of event-based models of entities within
the refinement relation so as to allow development of nonterminating, interacting
systems.

In order to express concepts most conveniently we give a characterisation of
refinement at a very general level, which we discuss below, and then specialise
this general theory to several (we give five examples) particular (special) theories,
which we give later in the chapter.

Our general theory, in Section 2, centres around a parameterised definition
of refinement, which was obtained by reflecting on several particular sorts of
refinement and also on a what seems to be a “natural” notion of refinement as
presented in many places in the literature. Each of the particular models can in
turn be seen as specialisations of the general theory, and so can many others.
These various special theories come about by limiting the set of contexts and
observations considered and the instantiation of various parameters. Notable
examples of special models we deal with are: abstract data types (ADT); hand-
shake processes such as in Communicating Sequential Processes (CSP, [1]) or the
Calculus for Communicating Systems (CCS, [2]), or broadcast processes such as
in the Calculus of Broadcasting Systems (CBS, [3]); and individual operations.

Our general refinement is formalised by a simple semantic model in terms
of labelled transition systems (LTS). However, in order to combine the advan-
tages of event-based and state-based approaches we are always going to keep in
mind that there are mappings (both ways) between collections of named partial
relations, a canonical state-based operational semantics, and LTS, a canonical
event-based operational semantics. We keep this link in mind to avoid the results
being constrained to the syntax of one particular pair of state- and event-based
models.1

1See the Appendix for a summary of named partial relations and LTS definitions
and the mappings between them, which are standard and appear widely throughout
the literature. In this paper we will, it turns out, use the LTS semantics to work with,
but the reader should never lose sight of the fact that we might just as well have used

2

It is important to recall that LTS have been used to model entities with
different styles of interaction, e.g. abstract data types with singleton failure se-
mantics [4], handshake processes with failure and trace semantics [1], broadcast
semantics [3], etc. A similar situation exists in the state-based world where par-
tial relations have been given many different interpretations. In Z and B [5–7]
partial relations are interpreted as undefined outside of precondition and totally
correct, while in [4] they are interpreted as guarded outside of precondition and
totally correct, but in [8, Chapter 1-7] they are interpreted as partially correct.

The operational semantics can do this because both named partial relations
and LTS are open to many different interpretations, so we view them as giving
just part of the semantic story. As is common in both the state- and event-based
worlds, and has been done in all the examples [4, 1, 3, 5–8], different “meanings”
have been given to the operational semantics by using different definitions of
refinement to “complete” the semantics.

The main novelty in our general model is the explicit modelling of contexts.
We frequently use the notation []X for a context (depending on some parameter
X) because contexts can be pictured as, and defined by, terms with “holes”,
shown by , in. Informally speaking the context of an entity is no more than a
definition of how the surrounding world interacts with the entity. Our general
definition of refinement is thus parameterised by a set Ξ of possible contexts.
This definition of refinement is, as close as we have been able to make it, a direct
formalisation of an informal definition of refinement that appears widely in the
literature, as we shall see.

In the event-based world the number of definitions of refinement is huge, and
frequently testing semantics are used to decide which refinement is appropriate
in any particular situation (see [9, 10] for surveys of testing semantics). The point
here is that if a particular testing semantics closely formalises the interaction
you are interested in then the refinement characterised by this testing semantics
should be applied. Exactly the same can be said of our parameterised definition of
refinement, i.e. select the set of contexts that an entity will be placed in, specialise
the general definition by instantiating the context parameter accordingly and use
the resulting special refinement. We have shown in [11] that this approach gives
results that would be expected from the literature.

Let us re-cap: once you have decided on the set of contexts that your entities
can be placed in you can use this set to construct an appropriate, specialised,
definition of refinement. This definition of refinement is then used to complete
the semantics of the LTS which will model your entities.

A further benefit of having our general model is that by lifting or rephras-
ing definitions and methods from one special model into our general model we
are often subsequently able to specialise these now generalised definitions and
methods into other special models, so we get, so to speak, concept portability.

Figure Fig. 1 gives a picture of what we are about. On the left we have the
general model. On the right, by specialising the general model in two different

the relational model. We may appear biased towards the event-based view, but we are
not, in fact, since this is always immediately and trivially a state-based view too.

3

General Model of... Special Models

...Entities and
Refinement (EX,vX)

Handshake

AHS BHS CHS

vHS vHS

Broadcast

ABC BBC CBC

vBC vBC

X = BC

X = HS

Fig. 1. Overview

ways (called HS and BC, to be explained later) we get two different special models
(Handshake and Broadcast). Within each of these special models we have, as
usual, the notion, as we move in steps from left to right, of moving from more
abstract to more concrete entities (programs, processes etc.) via refinement.

As refinement is used to complete the meaning of the operational semantics
the question “Which refinement, the one in [12] or the one in [13], is correct?”
is not sensible. What it is helpful to ask is “In what situations is it safe to use
the refinement in [12] and in what situations is it safe to use the refinement in
[13]?”

What we wish to stress here is not, so much, this liberalisation, but that:

1. our semantic mapping between state-based and event-based operational se-
mantics makes available a large number of event-based definitions of refine-
ment in a large variety of state- and event-based models;

2. directly from our generalised definition of refinement between entities A and
C we will have a clear statement of the contexts in which the concrete entity
C is guaranteed to behave like the abstract entity A.

In addition to porting (transferring) ideas between special models, we are able
to compare how the same intuitive idea is formalised in distinct special models.
In particular we will compare how nondeterminism is defined in different special
models. As we will see this apparently simple idea has proven difficult to define
to everyone’s satisfaction.

In Section 6 we look at ADTs and illustrate the usefulness of our general
approach by showing, contrary to what appears in the literature, that there are
two distinct notions of ADT refinement.

In Section 7 we consider first broadcast processes and then handshake pro-
cesses (CSP/CCS). Because our definition of deterministic processes is at odds
with a definition commonly used in the literature on handshake processes we
must consider determinism in some detail. The model of handshake processes
is the only one we consider that has abstracted away the cause and response
nature of event synchronisation. Consequently, in Section 7.5, we describe inter-
active branching programs (IBP), a model that combines aspects of handshake

4

processes with the cause and response nature of event synchronisation found in
programs. IBP can be thought of as a variation of handshake processes for which
all nondeterminism can be removed from sequential entities by refinement.

In Section 8 we investigate a special model which allows us to view entities
as single operations.

All of these investigations and ideas are made possible because each of the
special models is an instance of the single general model.

By the end of Section 9 we have developed a general model and shown that
special instances of the general model give the results that we would expect from
the literature, with the exception of determinism in the model of handshake
processes (CSP/CCS). In this model our characterisation of determinism is, as
we show, a formalisation of one of Milner’s intuitions.

Before generalising even further we next introduce an additional sort of re-
finement, visibility refinement, a combination of extension refinement [14] and
behavioural sub-typing [12], that can make visible (i.e. reverse hiding and restric-
tion of various kinds) in the concrete entity events not visible in the abstract
entity.

Having visibility refinement in our general model means we can use it in any
of the “special models”, including state-based models such as Z, B, and Event B.
In Event B a very similar definition of refinement, with very few restrictions on
the introduced events, has already been defined in [13]. Our definition, or rather
the porting of a definition from [12], results in a refinement with no restrictions
at all and hence is a liberalisation of the definition in [13].

In Section 10 we generalise our general model further by introducing vertical
refinement between different special models. Viewing each model as a layer, the
lower, more detailed, layer can be seen as an implementation of the higher, more
abstract layer. As a concrete example of this we implement the IBP layer in
the broadcast layer in Section 11. What is particularly interesting about this is
that we can find no way to extend this to be able to implement handshake on
broadcast! The problem appears when considering the same processes that cause
problems with the definition of determinism.

Finally in Section 11.1 we show the usefulness of our general approach by
giving a formal development of a simple, and very natural, system that combines
both handshake and broadcast events.

2 General model of refinement

In this section we give a general definition of a standard natural notion of refine-
ment. We use three distinct systems: E, the entity being refined; X, the context
which interacts privately with E; and U, a user that observes X. All interaction
occurs at the interface between two systems. Our user U takes on the role of a
tester, so it passively observes any event in the interface between X and U.

We will use the following natural notion of refinement that appears in many
places in the literature [15, 8, 5, 16, 17, 7] and can be applied to operations, pro-
cesses, machines etc.:

5

The concrete entity C is a refinement of an abstract entity A when no
user of A could observe if they were given C in place of A.

In order to formalise this notion we must decide what the

E

X

U

Fig. 2.

user can observe, so we make some assumptions. In practice we
are interested in reasoning about and refining small modules of
a larger entity. Thus we model the entity (module) E as existing
in some context X (rest of larger whole) interacting on the set of
events Act where Act ⊆ Names (where Names is a set consisting
of all possible event names). All E’s events interact with X at the E—X interface
(see Fig. 2). So, the events in the set Names \Act are those which cannot appear
in E and which, therefore, X and U communicate with, without interfering with
communication between E and X. We model the observer as a passive user U
that is a third entity that observes or interacts with X, but cannot block the X
events.

Recall we use []X to denote the context X and Ξ to denote some set of such
contexts2.

Our natural and common notion of refinement given above will be formalised
in:

Definition 1 Let Ξ be a set of contexts with which the entities A and C can
communicate privately. Let Obs be a function defining what can be observed of
the contexts:

A v(Ξ,Obs) C , ∀ []x ∈ Ξ.Obs([C]x) ⊆ Obs([A]x)

•

The definition of refinement is one of the central parts of this paper. It
should be remembered that, as suggested by the picture Fig. 1, this definition
of refinement can, as we shall later see, be used to consider refinement for: an
individual operation; a CSP/CCS-style process with “handshake” interaction; a
CBS-style process with “broadcast” interaction; and even to ADTs with “method
calling” interaction, all by selecting specific sets of contexts.

Definition 2 Entity equality is defined as:

A =(Ξ,Obs) B , A v(Ξ,Obs) B ∧ B v(Ξ,Obs) A

2Since we often use LTS as our canonical way of viewing entities, contexts and
entities are often viewed as being composed by parallel composition. So:

[]X , ‖Act X,

where X is some LTS, which we then gather together into sets of contexts:

Ξ ⊆ {[]X | X an LTS}

6

Further, let LTS A = (NA, sA,TA), {r , t} ⊆ NA then

(r =(Ξ,Obs) t) , (NA, r ,TA) =(Ξ,Obs) (NA, t ,TA)3

•

In the rest of this work we will usually consider only total correctness (live)
semantics and hence Obs will need to return a complete trace. Thus, to reduce
the notational clutter. we will frequently write vΞ in place of v(Ξ,Trc) and =Ξ

in place of =(Ξ,Trc).

2.1 Relational semantics

It is easy to see that we can give entities in our general model a relational
semantics. We are not the first to use relations as a semantics for a diverse range
of models: indeed Hoare and He in their Unifying Theories of Programming
(UTP, [18]) do just this.

Definition 3 The relational semantics of an entity A:

JAK(Ξ,Obs) , {(x , o) | []x ∈ Ξ, o ∈ Obs([A]x)}

•

It should be noted that we use quite different relations to those in UTP, but
like UTP we have refinement as subset of the relations or implication between
the predicates that define them. Thus, like UTP, we can view each specialisation
as defining a logical theory where refinement is implication.

For any LTS A and C we have:

A v(Ξ,Obs) C⇔ JCK(Ξ,Obs) ⊆ JAK(Ξ,Obs)

It should also be noted that this relational semantics is not the trivial named
partial relation-based semantics which stands in isomorphism to the LTS pre-
sentation of an entity. That semantics (given in the Appendix in Definition 24)
does include (named) relations, but is not itself a (single) relation and is not the
whole semantic story for the entity. It is essentially just a way of viewing the
labelled transitions of an LTS as transition relations. In particular, given such
a semantics we cannot say what it represents or means (just, of course, as we
cannot when given just an LTS); we need to know the contexts and observations
possible for the entity (whether given as an LTS or via transition relations) in
order to know what it means.

The relation in Definition 3 does have exactly this information, of course, so
it is as usual the complete semantics of the entity.

3It is common in the process literature to refer to an LTS as a process and leave the
equivalence relation = to be inferred from the surrounding text. Thus for some LTS S ,
use of S is an abbreviation for the equivalence class {R | S = R}. That [E]X defined on
LTS can also be lifted to entities and contexts requires that = is congruent w.r.t. []X,
which it always will be for the models we consider.

7

3 Interface types

Interfaces can be classified in various ways. In this section we will classify them
into two types according to when interaction occurs. Later we will need to classify
them according to the type of the interaction.

We will refer to an interface as transactional if interaction (observation)
occurs at no more than two distinct points, initialisation and finalisation of the
entity. If termination is successful then there are distinct observations that could
be made at finalisation, but if termination is unsuccessful then all that can be
“observed” is that the entity fails to terminate.

An example of an entity with transactional interaction is a program that
accepts a parameter when called and returns a value when it terminates. Clearly
if the program fails to terminate no value can be returned.

In contrast we refer to an interface as interactive when interaction can occur
at many points throughout the execution. Hence with interactive interfaces ob-
servations can be made prior to termination and even prior to non-termination.

An example of an interactive entity is a coffee machine. To obtain two cups of
coffee the user first inserts a coin, then pushes the appropriate button and takes
the first cup of coffee. But if after inserting a second coin the vending machine
now fails to terminate the previously successful interactions mean that what has
been observed cannot be represented by noting nontermination alone. (We still
have our first cup of coffee!)

From Fig. 2 we can see that we have two interfaces, of yet to be determined
type. Clearly with two interfaces, each of which could be one of the two types
transactional or interactive, we have four cases to consider. In Fig. 3 we illustrate
these four cases.

I-I

E

X
U

T-T

E

X
U

T-I

E

X
U

I-T

E

X
U

Fig. 3. Interactive interfaces and transactional interfaces .

Let us recall that we are defining how U observes E, even though the obser-
vation has to be made indirectly through X. In our definition of refinement we
quantify over all X in some set of contexts Ξ. Clearly X acts as an intermediate
in this communication. The most that U can usefully observe is all that occurs
at the E–X interface hence, if we can find an X ∈ Ξ that acts as a “perfect com-
munication buffer” between the two interfaces, it is safe to view the situation as
having one interface, that between E and X, so in effect U=X (details to follow).

By assuming that the set of contexts is sufficiently large we are able to find
a context X that acts as a perfect communication buffer from the E–X interface
to the X–U interface in the first three cases. In T-T and T-I we can build an X

8

that passes any initialisation information from U to E and if E terminates then
passes its response out to U.

Now consider the I-I case. We assume the existence of events that our con-
texts Ξ may perform that do not synchronise with any event of the entity E.
Using these events we can easily construct contexts X̂ that after synchronising
with E perform a distinct special observable event â that announces to U the
fact that the a event has been performed. So we have (considering the entities
as given by LTS for the moment) that4:

if n
a−→Xm then n

a−→bXz
ba−→bXm where z is not a node in X

Such contexts are a perfect communication buffer as they have the effect of
making visible, to the user U, any event in the E–X interface.

In the I-T case X cannot be a perfect communication buffer. The problem
lies in the fact that the interactive interface E–X is able to pass information from
E to X even if E subsequently fails to terminate. But because the interface X–U
is transactional it is unable to pass this information to U. Hence no matter how
large the set of contexts there can be no perfect communication buffer for the
I-T case.

I-I

E

X = U

T-T

E

X = U

T-I

E

X = U

I-T

E

X
U

Fig. 4. With a sufficiently large set of contexts Ξ.

Later we will give more concrete examples of all four cases in Fig. 4, and in
the I-I, T-T and T-I cases (left-hand three cases of Fig. 4) we will be able to
define contexts that behave as perfect communication buffers and hence these
cases can be modelled by considering only one interface.

It is only the I-T case (right hand case in Fig. 4) that requires both interfaces
and this case occurs only in Section 6.2. Elsewhere we will show that it is safe to
consider the context as the user. But this does not mean that explicit contexts
are not useful to formalise actual interfaces of all four types. As we will see later
when we formalise interfaces with various types of interaction, we will do so by
restricting what constitutes both a valid entity and a valid context.

4 Transition—moving from general to special theories

So far we have introduced and discussed our general theory of refinement together
with a consideration of the sorts of interfaces that have to be dealt with in typical
systems. In what follows, we first have a section (which can be skipped initially

4In the relational semantics of [16, 19] they need to model the refusal of a set of
operations as observable to give liveness semantics for processes. It should be noted
that we do not need to do this because the domain of our relation is different.

9

if desired) which takes a closer look at what is meant by determinism. This crops
up in various places in the rest of the chapter and needs careful treatment, hence
its initial presentation in a section of its own.

In the three sections following the next section we look at several special
theories, i.e. specialisations of the general theory, which should be familiar as
particular systems which arise when developing software. The theme running
through these sections is that LTSs (or named partial relations) standing alone
do not tell the whole semantic story. By taking an LTS and considering what
contexts it can appear in and what observations can subsequently be made of the
LTS in those contexts we “complete” the meaning of the LTS and in particular
fix the notion of refinement for it.

5 Determinism

This section looks in some detail at particular ways that determinism has been
treated in various places. It will turn out that determinism has a crucial role
when we look at refinement of processes in later sections. Indeed, these sections,
having introduced refinement, mainly concentrate on determinism and its role.
When we consider that making progress towards more and more deterministic
processes is a large part of what refinement for processes means, this is not so
surprising. Also, because we build a general model that permits us to compare
determinism from different special points-of-view we can see determinism in a
very wide perspective.

This section, then, is necessary if we wish to give a complete picture; at the
same time, on first reading perhaps, this section can be skimmed in order to gain
some familiarity with the problems without dwelling on the technical details.

Determinacy has some very varied definitions in the literature and is particu-
larly difficult to define in a satisfactory way on process models such as CSP and
CCS where the models have abstracted away the difference between one event
ba—“pushing button a” causing another event ba—“button a is pushed”. The
definitions of determinism in CSP [20, p217] and CCS [2, p233] are dependent
on the process equality they use (which we denote by =pe) and can be stated

as: P is deterministic if x
a−→Py and x

a−→Pz imply y =pe z .

P

s ◦

e1

e2

a

b

c

nPs

◦

◦

e1

e2

a

a

b

c

Q

s ◦

◦

◦

e1

e2

a

b

c

x

y

Fig. 5. Is Q deterministic ?

Using this standard definition of determinism P and Q in Fig. 5 are deter-
ministic processes and nP is not. But, as we will discuss later, if we apply this

10

definition to broadcast processes we do not get the results we would expect, or
the definition that appears in the literature, so we must find a different definition
for our abstract model if it is going to give the desired results when instantiated
into a concrete model of broadcast processes.

In fact our definition is going to be no more than a formalisation of Milner’s
[2, p232] comments about determinism:

“Whatever its precise definition, it certainly must have a lot to do with
predictability; if we perform the same experiment twice on a determinate
system – starting each time in its initial state – then we expect to get
the same result, or behaviour, each time.”

Before we look at our formal definition let us apply Milner’s comment to Q
in Fig. 5. We assume that P ‖{a,b,c} is a valid experiment. But if we perform
this experiment twice on Q we do not necessarily get the same result, or be-
haviour, each time. Thus, following Milner’s comment, Q should not be thought
deterministic.

To formalise Milner’s comment we first define the “same behaviour” or de-
terministic behaviour. If by starting from the same state and following the same
sequence of events, the LTS in question always finishes in the same state then
we say it exhibits deterministic behaviour’.

Definition 4 Deterministic behaviour, det behΞ(A): for any LTS A = (NA, sA,TA)
with ρ any sequence of observable events and {n, r , t} ⊆ NA

5:

det behΞ(A) , n
ρ

=⇒r ∧ n
ρ

=⇒t ⇒ r =Ξ t

•

We will refer to an entity A as deterministic in Ξ if when placed in any
context []x ∈ Ξ, [A]x behaves deterministically.

Definition 5 An LTS A is deterministic in Ξ, written detΞ(A), is given by:

detΞ(A) , ∀ []x ∈ Ξ.det behΞ([A]x)

•

When the set of experiments is the set of deterministic contexts it is our
interpretation of Milner’s comment that a deterministic entity must:

behave deterministically in any deterministic context DET

When both entities and contexts are of the same kind (see Section 7) this can-
not be used as a definition (since it is “circular”), nonetheless given a set D of
deterministic systems DET is a property that can be checked:

5=⇒ is the observational semantics for A, as derived in Definition 27.

11

∀A ∈ D . ∀ x ∈ D .det behΞ([A]x) Det-Cond

Restricting the domain of the relational semantics to D , written J KD , means
that an entity E is deterministic in D if and only if JEKD is a function. We choose
to view deterministic entities as implementations. The meaning of a specification
can be given by the set of implementations that satisfy the specification and
with this interpretation it is again reasonable to view refinement as completing
a semantics for specifications (see [21] for details and discussion).

We will consider examples of determinism where E is: one, an ADT with
interaction via method calling (Section 6.2, Section 6.1); two, a process with
interaction via output enabled broadcast (Section 7.1); and three, a state-based
operation with interaction via shared memory (Section 8). In all of these three
models of interaction our definition of determinism is the same as, or differs in
uninteresting ways from, definitions of determinism found in the literature. A
difference does occur, though, when we consider process algebraic, handshake-
style interaction in Section 7.3.

6 Refinement for abstract data types

An ADT is an entity that interacts with programs. A program is a linear, un-
branching sequence of events which we can formally represent by an LTS, but for
convenience we will refer to such an LTS by the sequence of events themselves.
The LTS can always be constructed from this sequence.

Each ADT-program interaction is a call to one of the ADT operations. Clearly
an ADT-program interface is interactive. But the program-user interface could be
either interactive or transactional [22]. We will model sequential programs with
a transactional program-user interface in Section 6.2 and with an interactive
program-user interface in Section 6.1. These constitute two distinct types of
programs, transactional programs and interactive programs.

We assume the program-ADT interface to be interactive and private, i.e. it
cannot be observed by the user. We further assume that the successful termi-
nation of the program can only be achieved if the ADT operations never fail to
terminate. Thus if an ADT operation fails to terminate then the program must
also fail to terminate.

We will give ADTs an event-based LTS semantics. See Fig. 6 for examples
of the LTS semantics of two ADTs that we will use to illustrate the difference
that the program-user interface makes to refinement.

6.1 Interactive user-program interface

If the user-program interface is interactive (case I-I in Fig. 4) then there is
need for only one interface: that between the ADT and the program (user).
As the program-ADT interface is interactive the program (user) can observe
when each individual operation succeeds even if the program never terminates.
Consequently for ADT entities we restrict the contexts to programs (Names)∗

thus:

12

M1

2

3 4 5

a

a
b c

Nw

x s

y

z t r

a

a

a

b

b c

Fig. 6. M and N

Definition 6
ΞP = {[]x | x ∈ (Names)∗}

•

With an interactive program-user interface information can be passed to
the user while the program is running. Thus we allow the program to have
any number of operations in this interface and the user can be informed of
each successful operation of the ADT, even if the program subsequently fails to
terminate.

Refinement in this case can be formalised by applying Definition 1 with con-
texts ΞP and observation function Tr c, where Trc returns a set over Names∗.
See [15, 11, 4] for examples of such definitions. So, specialising our general refine-
ment in this way we have:

Definition 7

A vIp C , ∀ x ∈ (Names)∗.Trc([C]x) ⊆ Trc([A]x)

•

There are two points to make for future reference:

1. Looking at the example ADT in Fig. 6 with an interactive program-user
interface we find M cannot be refined into N as:

(a, b) 6∈ Trc([M](a,b,c)) and (a, b) ∈ Trc([N](a,b,c))

2. The deterministic contexts of an ADT are the programs (Names)∗ and hence
from DET (Section 5) an ADT is deterministic if and only if the relation
between programs and traces is a function. This is equivalent to the defini-
tion of deterministic transition diagrams or deterministic finite automata:

“no symbol can match the labels of two edges leaving one state” [23] DFA

Given that the context (a program) always decides upon a unique event
(label on an edge) to attempt, then the behaviour of the system consisting
of the program and deterministic ADT is determined.

13

6.2 Transactional user-program interface

This we described in case I-T (Fig. 4) where the program-user interface is trans-
actional. Many definitions of ADT refinement [8, 5, 7, 17, 16] are based on the
idea that observations are made only initially and, if the program terminates, at
the point of termination.

In our transactional program-user interface we restrict the events to •. We
use • to indicate that the program has started or has ended, so it appears no
more than twice.

Data refinement with a transactional program-user interface can be for-
malised by applying Definition 1 with contexts ΞP as above and observation
function Trc, but this time we note that Tr c returns sets of sequences of length
at most two (see [8, 5, 17, 16, 7] for examples of similar definitions). Two •s ap-
pear if the program starts and terminates, but one • is absent if it starts but
does not terminate.

We have:

Definition 8

A vTp C , ∀ x ∈ (•, (Act)∗, •).Trc([C]x) ⊆ Trc([A]x)

•

There are two points to be made here also:

1. With a transactional program-user interface we can show that M (Fig. 6)
can be refined into N, as we can see by constructing the relevant relations:
JMK = {((•, •), {(•, •)}), ((•, a, •), {(•, •)}), ((•, a, b, •), {(•, •), (•)}),

((•, a, b, c, •), {(•, •), (•)})} ∪
{(x , {(•)}) | ∀ x 6∈ {(•, •), (•, a, •), (•, a, b, •), (•, a, b, c, •)}}

and by inspection JMK = JNK.
Thus vTp and vIp are not the same, as can be seen from the examples in
Fig. 6, where M vTp N but not M vIp N . This was first mentioned in [22].

2. It is quite easy to see that applying Definition 5 to ADTs that can be placed
in transactional program–user interfaces picks out the same set of ADTs as
being deterministic as applying Definition 5 to ADTs that can be placed in
interactional program-user interfaces.

7 Processes

Both processes and ADTs can be given an event-based semantics, but process
and ADT refinement are not the same. Programs can be modelled by an un-
branching sequence of operation calls to an ADT and programs are the only
valid contexts for an ADT, whereas processes can be placed in branching con-
texts. Thus processes have a distinct semantics to ADTs because of the change
of contexts in which they can be placed [11].

14

We will classify processes, as appearing in the literature, into two types. The
handshake processes of CSP, CCS and ACP treat all events in the same way,
i.e. give all events the same semantics. The broadcast processes have two types
of events, the active output events that cause the passive input events. The
broadcast output event differs from all other observable events that we model in
that it is under local control, i.e. it cannot be placed in a context that blocks its
execution.

As we saw above, our definition of determinism, Definition 5, when applied
to ADT is the same as the informal DFA characterisation in Section 6.1. But
the DFA characterisation and our definition are not the same when applied to
handshake processes. It is the DFA characterisation that is equivalent to, or used
as, the definitions of deterministic handshake processes as found in [20, 1, 24, 2]
and deterministic broadcast processes as found in [25].

But as we shall show, the DFA definition does not always correspond to what
we might reasonably think to be deterministic processes.

The reader may be perplexed about the time we spend talking about de-
terminism in what follows (while the definitions of refinement are so simple).
The point is that because we build a general model that permits us to compare
determinism from different special models, we can see determinism from a very
wide perspective, which we take advantage of.

In Section 7.1 we review broadcast processes, and consider what broadcast
processes are deterministic, then in Section 7.3 we do the same for handshake
processes.

Our interactive branching programs of Section 7.5 are classified as processes
because they and their contexts can both branch. These programs/processes
can be viewed as a restricted class of handshake processes and have active and
passive events.

Since we are no longer dealing with transactional interfaces, we need make
no distinction between context and user in what follows. Further, there is no
longer any distinction between entities and contexts, in the sense that for any
context []X, X is also an entity. Both entities and contexts are simply processes.

7.1 Broadcast processes

There has long been interest in the relation between handshake- and broadcast-
style communication, but there are many variations of both styles to be consid-
ered when trying to elucidate the relationship. A comparison of the “point-to-
point” handshake communication of CCS with the multi-way broadcast of CBS
can be found in [26]. But handshake need not be point-to-point, and both CSP
and ACP allow multi-way handshake synchronisation. Handshake and broadcast
styles also differ in that broadcast has local control of output, i.e. a listener cannot
block a multi-way radio message from being broadcast nor can a receiver block
a point-to-point email message from being broadcast, whereas with handshake-
style communication all events can be blocked. The only difference between our
handshake and broadcast models will be that broadcasts cannot be blocked by
any context and both will model point-to-point communication.

15

Because broadcast interactions are fundamentally different from the other
interactions we consider we write a! for a and a? for a simply to remind the
reader how to interpret events that appear in the figures. This is particularly
helpful in Section 11 where we need to represent both broadcast and handshake
interactions in the same figure.

Even restricting communication to point-to-point there is a variety of dif-
ferent ways to formalise broadcast communication. Some models of broadcast
systems [27–30] define parallel composition in such a way that output events
cannot be blocked. The alternative approach, found in [31, 3, 32–34] and used
here, is to keep parallel composition as in Definition 28 and consider only enti-
ties, and thus contexts, that have input actions always enabled.

Definition 9

ΞBC , {[]x | x ∈ TBC}
and

TBC , {A an LTS | ∀n ∈ NA. ∀ a ∈ Act . n
a?−→}

•

We can now apply Definition 1 (our general definition of refinement), based as
it is on a widely accepted informal definition of refinement, to obtain a definition
of the refinement of processes with broadcast interaction:

Definition 10
vBC,vΞBC

•

7.2 Determinism and broadcasting

Here we turn to our theme of seeing how determinism looks in the context of of
our various refinement definitions.

We define a function MBC that turns a LTS into a broadcast process by

simply adding listening loops n
a?−→n to any n for which a? is not enabled:

MBC (A) , (NA, sA,TA ∪ {n a?−→n | ¬ n
a?−→})

It is frequently clearer to not show listening loops (see Fig. 7). Such LTSs
can be interpreted as broadcast processes by leaving listening loops implicit.

P!

s ◦

e1

e2

s

◦

◦ e2

e1

Q!a!
b!

c!

a!

a!

b!

c!

P?

s ◦

◦

◦

e1

e2

s

◦

◦ ◦

◦

e2

e1

Q?a?
b?

c?

x!

y!

a?

a?

b?

c?

x!

y!

Fig. 7. MBC (P!) =BC MBC (Q!) and MBC (P?) 6=BC MBC (Q?)

16

The effect of MBC can be best understood by considering some examples.
Consider Fig. 7. Processes MBC (P?) and MBC (Q?) are not trace equivalent, e.g.
a?b?c?y! 6∈ MBC (P?) because if MBC (P?) hears a b? event after the initial a?
event then it must output x! not y! but a?b?c?y! ∈ MBC (Q?) as the process,
on hearing a?, can make one of two moves, one of which will lead to output y!
being made. This is not the result that might be expected from the handshake
perspective where trace semantics are unable to distinguish P? and Q?.

P! can broadcast either b! or c!. As broadcast output is under local control no
other process can block either of these events. Hence it seems unavoidable that we
consider P! to be nondeterministic. Yet clearly P! and MBC (P!) are deterministic
transition systems according to the informal DFA characterisation.

Clearly there is a mismatch between our intuitions on the one hand and
the DFA characterisation on the other hand. Because of this mismatch we turn
to the DET characterisation. Unfortunately as entities and contexts are the
same type of thing DET cannot be turned into a definition (recall Section 5)
but having defined a set of deterministic broadcast processes we can check they
satisfy Det-Cond .

We define the set of deterministic broadcast processes, as in [31, 3], as pro-
cesses, ignoring listening loops (prior to applying MBC), that branch on only
input events with different names (and where Act ? is {a? | a ∈ Act}):
Definition 11 The set of deterministic broadcast processes, DBC :

DBC , {B an LTS | (n x!−→Bm ∧ n
y−→Bk) ⇒ (y = x! ∧ m = k

∨ y ∈ Act? ∧ k = n)

∨ (n
x?−→Bm ∧ n

y−→Bk
∧ n 6= m)⇒ (y ∈ Act? ∧ y 6= x?

∨ y ∈ Act? ∧ k = n)}
•

We leave for the interested reader to check that DBC satisfies Det-Cond but
draw the reader’s attention to the fact that the definition of determinism in [31,
3] is consistent with our abstract definition in Definition 5. In CBS all sequential
processes are deterministic: “Speakers in parallel are the only source of non-
determinism in CBS” [3]. An informal justification for this limitation is that
branching outputs of a sequential process could not be implemented.

7.3 Handshaking processes

Any LTS can be used as the operational semantics for a handshake process
and such processes can be placed in a context consisting of any LTS. Hence for
handshake processes the entities are:

Definition 12
ΞPA , {[]x | x ∈ TPA}

and
TPA , {A an LTS | α(A) ⊆ Act ∪ Act}

•

17

Thus, our general refinement (Definition 1) specialises, for these processes,
to little more than a rewording of must testing semantics ([35]) and, as has been
shown in [11], it is equivalent to failure refinement. We put:

Definition 13

vPA,vΞPA

•

7.4 Determinism and handshaking

Our definition of deterministic processes, just as for broadcast processes in Sec-
tion 7.1, is very different to the DFA characterisation that is found in the process
algebraic literature. We consider two simple examples of processes to investigate
this.

VM

s ◦
◦

◦
c

b1

b2

d1

d2

Rob

s ◦
◦

◦

e

e
c

b1

b2

d1

d2

Fig. 8. Are VM and Rob deterministic?

The vending machine VM in Fig. 8 starts by waiting for a coin to be inserted
(c) and then for one of two buttons to be pushed (b1 or b2) after which a drink
(d1 or d2) is dispensed and the vending machine returns to the start state. We
will show that the interpretation of Rob in Fig. 8 requires some thought.

Nondeterminism can arise naturally with concurrent processes, for example
running processes R1 , c;b1 and R2 , b2 in parallel with VM. The two processes
R1 and R2 race to push different buttons and which button is pushed is not
determined. We accept Hoare’s view [1, p81] that: “There is nothing mysterious
about this kind of nondeterminism: it arises from a deliberate decision to ignore
the factors which influence the selection”. By restricting ourselves to untimed
models of processes we view this nondeterminism as arising from a deliberate
decision to ignore time. Alternatively, nondeterminism can be viewed as partial
specification to be resolved by refinement prior to implementation.

Further, note that process algebras have chosen to ignore both time and
causality, whereas broadcast systems have chosen to ignore just time.

In CSP, CCS and ACP Rob is deterministic but exhibits nondeterministic
behaviour when interacting with VM. It is not clear from the literature whether
the nondeterminism of [Rob]VM is a natural consequence of implementable pro-
cesses or is due to partial specification and is unavoidable because the model has
abstracted away the cause; or should we expect to resolve it by further refine-
ment? Unfortunately, however, both Rob and VM are viewed as deterministic in
CSP, CCS and ACP and there neither can be refined.

18

This leads us to the obvious question: what factor is ignored in the Rob
and VM example that causes this nondeterminism to arise? It is our view that
the robot, not the vending machine, has to select what button to push and
consequently it must be the robot’s choice that has been ignored.

Note that an important point, which emerges on comparing the two examples
here, is that the nondeterminism comes from different factors being ignored.
As we said, time is ignored in the first example, giving rise to their racing.
In the second example we have ignored cause-and-effect, and this has led to
the nondeterminism there. Thus, since the reasons for the nondeterminism are
different, it would be entirely reasonable if the “solutions” in each case might be
different too. Put another way, since we can differentiate between two different
sorts of nondeterminism (by reason of the different factors ignored) then it would
not be surprising if we dealt with them in different ways too. In one case, the
race case, we might accept it and in the other, the cause-and-effect case, we
might not and seek to remove it.

Process algebras have abstracted away the cause and response nature of
event synchronisation, e.g. the robot’s “button pushing” events cause the vending
machine’s “button pushed” event to occur. This makes it hard for process algebra
to require that the robot, and not the vending machine, must make a choice as
to what button to push.

Cause and response are modelled in broadcast operations in Section 7.1 by
requiring pairs of events that synchronise to consist of one passive event and one
active event, the latter causing the former to occur. We apply this approach to
handshake processes in the next section.

Although the implementability of processes such as Rob is not discussed in
process algebras such as CSP, CCS or ACP it is well-known that such simple
processes can be coded in the occam programming language. As these concurrent
processes can be executed on a single transputer and as transputers, like other
digital computers, are finite-state deterministic machines they cannot exhibit
nondeterministic6 behaviour and consequently the occam compiler has to deter-
mine which button is pushed. This could be described as the occam compiler
refining [Rob]VM and then implementing the “deterministic process” produced by
the refinement. For this reason we view as not implementable the interpretation
of Rob given by the process algebras cited.

This is the only model in which our definition of determinism differs from
that found in the literature. This can be used to argue that there is a weakness
in our general model. But an alternative view is that because these process
models have chosen to abstract away the cause and response nature of event
synchronisation they are forced to accept that determinism is hard to define:
recall Milner’s comment that we quoted in Section 5.

6They can exhibit complex behaviour that approximates nondeterministic be-
haviour but they they are inherently deterministic.

19

7.5 Interactive branching programs, IBP

Interactive programs are different from the processes of CSP/CCS. Processes
are prepared to perform an operation from a whole set of operations, whereas
programs are only prepared to perform one specific operation. For example, a
program can perform some sequences of push and pop operations on a stack that
offers both these operations. But a process, not a program, can offer the stack
the ability to perform either push or pop and allow the stack to select which.

We have seen different styles of event interactions for both processes and
programs and now we introduce another style of interaction, IBP (interactive
branching programs) from [36], that combines process and program ideas.

It is common in the literature on handshake events ([1, 20, 2, 24]) to treat
events that synchronise in exactly the the same way, and not differentiate be-
tween the events of Rob and the events of VM. It is our intuition that the events
of a vending machine VM are passive and the events of a robot Rob are active
and cause the passive events of VM to occur, just as a program causes a method
of an ADT to be executed. We view the active events as causing the perfor-
mance of the passive events, but unlike broadcast events, and like programs and
ADT, we do not have local control of the active events. Thus we allow the active
events to be blocked by a context. The active events are written with the name
over-lined (e.g. a) and the passive events with no over-line (e.g. a).

As the active events of IBP are the calling of a method (or the causing of
a passive event) we model it as committing, i.e. once started the caller cannot
back off but is blocked if the passive event cannot be executed.

In order to formalise this we restrict the LTS that can be used to represent
IBP. These LTS require that active events must be preceded by a unique τ event
(see Fig. 9 for an example of how this looks) and after this τ event only the
single active event can be executed.

Definition 14

ΞIBP , {[]x | x ∈ TIBP}
where

TIBP , {A an LTS | n a−→Ar ∧ n
x−→At ⇒ (a = x ∧ r = t) ∧

q
y−→An

a−→A ∧ p
z−→An ⇒ (y = z = τ ∧ p = q)}

•

We put:

vIBP,vΞIBP

7.6 Determinism and IBP

We define MIBP (A) which changes an LTS’s operational semantics to be IBP
processes. The only change it makes is to active events, a.

20

Definition 15 For A an LTS (NA, sA,TA):

MIBP (A) , (NMIBP (A), sA,TMIBP (A))

where

NMIBP (A) , NA ∪ {z(n,a,m) | n a−→Am}
and

TMIBP (A) , {n a−→m | n a−→Am} ∪ {n τ−→z(n,a,m)
a−→m | n a−→Am}

•

The IBP process MIBP (Rob) (Fig. 9) is a nondeterministic specification of the
behaviour of Rob in Fig. 8 where the nondeterminism arises from not specifying
which button the robot will push.

MIBP(Rob)

s ◦ ◦

◦ ◦ ◦ e

◦ ◦ ◦ eτ
c

τ

τ

b1

b2

τ d1

τ d2

Fig. 9.

We informally define the set of deterministic IBP in the same way as the
deterministic broadcast processes in Section 7.1. The deterministic IBP are the
processes, prior to applying MIBP , that branch on only passive events with dif-
ferent names.

Definition 16 The set of deterministic IBP, DIBP :

DIBP , {P an IBP | q τ−→Pn
y−→Pr ∧ q

z−→Pm ⇒
∃ x, t .m

x−→Pt ∧ (τ = z ∧ n = m ∧ y = x ∧ r = t)

∧ n
x−→Pm ∧ n

y−→Pk ⇒
(x = y ∧ m = k) ∨ (x 6= y ∧ x ∈ Act ∧ y ∈ Act)}

•
[Rob]VM (taking Rob and VM from Fig. 8) and both [MIBP (Rob)]MIBP (VM)

and MIBP (Rob) (see Fig. 9) are nondeterministic. This is not because distinct
sequential processes are racing to perform active events but because the robot
fails to choose what active event it will perform. What is more MIBP (Rob) can be
refined into a deterministic IBP whereas no refinement of the robot was possible
using the process semantics of Fig. 8.

There are two ways to relate IBP and process algebra. Either we say that IBP
is a subset of process algebras, TIBP ⊂ TPA, or IBP can be mapped onto process
algebras by removing the τ events. With this second relation IBP refinement
extends process algebra refinement, vPA⊂vIBP.

21

We leave it for the interested reader to check that DIBP satisfies Det-Cond
but draw the reader’s attention to the fact that this definition of determinism
is consistent with our abstract definition in Definition 5. Thus IBP is a subset
of handshaking-style processes in Section 7.3 for which the cause and response
nature of event synchronisation has not been abstracted away and for which
determinism is consistent with our abstract definition.

8 Operation refinement

This final section in this sequence of special models is something of an oddity, but
is here to (strongly) make the point that an LTS standing alone can have many
different meanings, the complete meaning being given by defining the contexts
and observations one may make of the LTS (which via our general definition
means giving a definition of refinement).

We give a simple LTS, which can be given an obvious meaning (via various
completions) as an ADT or a sort of process, as we have seen in the previous
sections, but which, to make the point, we will complete in this section to form
a single operation just by giving the contexts and observations one may make of
this LTS when we wish to view it in this way.

Our entity E could be a method, procedure, function etc., its context X an
ADT and the user U a program. As the method—ADT interface is transactional
(cases T-T and T- I in Fig. 3) we can view the context and user as the same
entity with a single interface between it and the operation.

As we show, with a little rewriting and given the right sort of contexts and
observations, we can extract the more usual relational semantics of operations
for Definition 3.

Let operation E be represented by the LTS on the left-hand side of Fig. 10.

E1

2

3 4

x

y
x

COpy

s ◦ ey
y
x

...

JEK(Ξ,Obs)

y (x, y)

x (y)

JEK⊥
y x

⊥
x

⊥
Fig. 10. Entity E, COpy—a context for E, JEK(Ξ,Obs) and JEK⊥

To interpret such an LTS as an operation we use as contexts calls to the
operation, see COpy in Fig. 10 for one example such a context, one that “uses”
y and then waits for that to complete before moving to its ending state e, i.e.

from the start state s, actively set the state to some unique value ◦ via s
y−→◦

and then wait for the operation to terminate in any state, so for all z ∈ Name
we have ◦ z−→e. To complete the semantics, the observation function returns the
complete traces, Tr c .

Definition 17
ΞOp , {[]x | x ∈ TOp}

22

and
TOp , {COpz | z ∈ Names}

where
COpz , ({s, ◦, e}, {s}, {(s, z, ◦)}∪ {(◦,w, e) | w ∈ Names})

•

Another way of seeing this is to view E as having events that we view as
elements of some set State, and it maps the (initial) member of State, y, to a
(final) member of state State, x, and it does not terminate when started in x. In
this way of modelling, we can think of our entity E as an operation of an ADT
that can store information in a local variable called State. E starts in state 1
and when it synchronises with the program on event x it stores x in the State
variable, moves to state 2 and then refuses to do anything else. If it synchronises
with the program on event y it stores y in the State variable and moves to state
3. It then returns the value x to the program and terminates in state 4.

We can go further if we employ a little lateral thinking and allow ourselves
some freedom in interpretation. The “usual” relational semantics (think of a Z
operation, for example), Definition 3, is between the contexts Ξ in which the
entity finds itself, which for operations can be summarised as some “starting”
value in State (which is in turn its first event when viewed as an LTS), and what
can be observed when the entity is executed in this context is a trace consisting
of no more than two observations, the initial and final values held in State.

JEKΞOp
, {(x , o) | []x ∈ ΞOp, o ∈ Trc([E]x)} = {(COpy, (y, x)), (COpx, (x))}

All that can be observed is the trace of observations, which is a pre- state/post-
state pair when E terminates and just the pre-state when E does not terminate.
As the pre-state is known from the domain of the relation (e.g. in the first pair
in the example the COpy tells us that the pre-state is y) it need, without loss of
generality, not appear in the range, hence:

JEK ⊆ State × (State ∪ {()}) can be recorded just as {(y, x), (x, ())}

By convention () is represented by ⊥ and State∪{()} is written State⊥. Again by
convention ⊥ is added to the domain of the relation and defined in various ways
in the literature. To use ⊥ in the domain to represent not-starting we choose to
add only (⊥,⊥).

Thus from the event-based LTS model we have constructed:

JEK⊥ ⊆ State⊥ × State⊥ which can be recorded just as {(y, x), (x,⊥), (⊥,⊥)}

one of the familiar state-based, pre-post relational semantics of a single operation
E as found in the literature.

It is worth pointing out that the use of ⊥ is frequently criticised because
nontermination cannot be observed but if, as we do, you are content to allow

23

the observation of any experiment to be a complete trace then each pair in the
relation JEK⊥ is there as a direct result of an observation. If on the other hand
you reject the observation of complete traces then it is hard to see how liveness
properties could be observed.

Our definition of refinement becomes subset of the relational semantics (recall
Section 2):

A v C⇔ JCK⊥ ⊆ JAK⊥
A context is deterministic when it provides a unique start state. From DET

(Section 5) an operation E is deterministic if and only if the relation JEK is a
function. This is exactly as we would expect from the state-based literature. We
do not claim our event-based view of operations to be radically new: it just gives
us some confidence in our general model. It is little more that a restructuring
of the familiar state-based view. It is interesting, however, that ⊥ has appeared
directly from what is observable of an operation.

9 Developing the General Model of Refinement—adding
layers

We now generalise further by viewing the special models (and indeed any other
specialisation of the general model) as a layer in the larger scheme of things.

So, each special model is viewed as a layer which has a distinct set of events
that can be used to define the entities in the layer. A layer is formalised by a
set of entities (and here we use a set of LTS used to represent the entities, but
recall we could equally well chose to use a relational semantics) and a refinement
relation. It is important to recall that one, the entities in a layer can be ADTs,
processes of various kinds and even individual operations; and two, different
refinement relations can give different meanings to the same LTS.

Definition 18 A layer L is (EL,vL) where EL is a set of entities and vL⊆ EL×EL

is a refinement relation •

By considering only layers where the refinement relation is defined by Defini-
tion 1, i .e. vL,vΞL

, our layers can equally well be defined by the pair (EL, ΞL)
(with Obs being assumed to be Tr c as usual).

A triple consisting of: a set of LTSs representing entities; a set of LTSs repre-
senting contexts; and an observation function on LTSs, also defines a layer if we
can: one, lift the observation function from LTSs to entities, i.e. if AL =L BL ⇒
Trc(AL) = Trc(BL); and two, lift placing in a context from LTS to entities, i.e.
AL =L BL ⇒ ∀[]x ∈ ΞL.[AL]x =L [BL]x , as is the case for all the models we
consider.

Before going further with talking about layers, we introduce a further sort of
refinement that can be used within a layer, visibility refinement.

The alphabet of an entity A, written α(A), is the set of events that it can en-
gage in. Visibility refinement refers to extending the alphabet by making visible,
and therefore usable, events not considered, because not visible, in the original

24

abstract entity. We reverse the τ -abstraction and δ-abstraction of Definition 30
by extending refinement to introduce events in two quite separate ways [11, 37].

Firstly if δ–refinement holds, A vΞδDel C (where α(A) ∩ Del = ∅), then
it introduces events that were previously not observable and always blocked.
This would be used, for example, to refine a specification that defined successful
behaviour and assumed error events, in set Del , never occurred.

Secondly if τ–refinement holds, A vΞτHid C (where α(A)∩Hid = ∅), then it
introduces events that were previously not observable and never blocked in the
more abstract view.

Definition 19 δ–refinement and τ–refinement. For LTS A and C :
A vΞδDel C , A vΞ CδDel

A vΞτHid C , A vΞ CτHid

The sets of all τ -refinements and δ-refinements are preorders:
vΞτ,

⋃
Hid vΞτHid vΞδ,

⋃
Del vΞδDel vΞτδ,vΞτ ∪ vΞδ •

See [37] for further details of δ–refinement and τ–refinement.
Here visibility refinement and ordinary (“simple”) refinement will be grouped

together and called horizontal refinement and we will consider them as occurring
in one layer or level of abstraction, whereas vertical refinement will be refinement
between two distinct layers. It may be of conceptual help to think of a protocol
stack. Each layer possesses a distinct set of operations but nonetheless each layer
implements the layer above it.

We make our general refinement more flexible in Section 10 by giving a
general definition of vertical refinement between an abstract and a concrete
layer. Our definition of vertical refinement can be seen as a generalisation of
non-atomic refinement [38] or action refinement [39, 40] when we consider the
LTS used to represent entities. But, when we consider predicates used to define
the Ξ ×Obs relations then vertical refinement is a theory morphism similar to
those used in UTP [18, Chapter 4] but based on different theories.

Our definition is based on two semantic mappings: J Kv , that defines how
to interpret the high-level abstract entities as low-level concrete entities; and
vA, that defines how to interpret the low-level concrete entities as high-level
abstract entities. The semantic mappings are vertical refinements if and only if
any low-level refinement is interpreted as a high-level refinement and any high-
level refinement is interpreted as a low-level refinement. Mathematically our
vertical refinement is a Galois connection (or an adjunction) between the layers.

Recall our three basic types of interaction: one, method calling of programs;
two, handshake synchronisation of process algebra; and three, broadcast commu-
nication. We use vertical refinement to embed one layer in another, thus defining
how we might “implement” one style of interaction in another.

In Section 11 we construct a special(ised) vertical refinement from a specific
abstract layer to a specific concrete layer. The events in the concrete layer are
broadcast events and the events in the abstract layer are handshake events. But
with the semantic mappings we have designed we have a Galois connection only
when the handshake events are limited to the IBP entities. We have found no way

25

build a Galois connection between handshake processes and broadcast processes.
Indeed, we conjecture that this cannot be done.

Fig. 11 shows how our “single layer” general theory of Section 1 and Fig. 1
generalises further once layers (and vertical refinement) are considered. (This
diagram is meant to give an idea of the generalisation we are about to make:
the diagram is meant to be helpfully suggestive, not definitional, and its various
components will be defined shortly. The unbroken line shows the steps of a
refinement: one step in the top layer, one step of vertical refinement between
layers, and one step in the bottom layer.)

General Model of ... Specific Models in two layers IBP and BC

...Entities and
Refinement (EX,vX)

IBP

AIBP BIBP XIBP CIBP

vIBP vIBP vIBP

...Vertical vv=
Refinement (JKv , vA)

Broadcast

ABC BBC CBC

vBC vBC

v
Ib

v
Ib Ib

A

Ib
A

X = BC

X = IBP

v = Ib

Fig. 11. Big picture

10 General vertical refinement

An early phase in constructing an event-based formal model of any system is
that of deciding what constitutes an event. This requires both the set of events,
called the alphabet, to be fixed along with their type of interaction. How the
events interact can be modelled by defining the entities EL and their contexts ΞL

and applying Definition 1 to define refinement vΞL
of the entities. Thus at this

early step in the development a layer (EL,vΞL
) (or equivalently (EL, ΞL)) has

been fixed and an entity chosen to represent the specification. This specification
is then developed using the defined refinement.

It is not at all unusual to want to build a more detailed description of the
same system but based on a different set of low-level events that may interact in
a different style to the original high-level events, thus creating a more abstract,
high-level, layer and a more concrete, low-level, layer. Vertical refinement is one
way to formally relate descriptions that appear in two distinct layers at two
distinct levels of abstraction.

Within a layer all entities are built from a common alphabet or set of events.
These events are atomic viewed from within the layer, i.e. they have no internal
structure. But the vertical refinement may give the high-level events internal

26

structure by relating them to entities on the low-level layer. Such refinements
have been extensively studied under the names non-atomic refinement [38] or
action refinement [39, 40].

There are two well-known issues that are immediately apparent. Firstly, the
interleaving assumption must be avoided, and secondly: “The kind of steps one
would like to make in top-down design do not always correspond completely to
the kind of constructions allowed by action refinement.”[40, section 7].

It is well-known [40] that interleaving can be avoided. Here we will side-step
the problem by restricting our attention to vertical refinements that relate one
sequential entity to another sequential entity. We will focus our attention on the
second issue, that of defining vertical refinement so that it is more relaxed than
action refinement and reflects some steps that might appear in top-down design.

What we define is not intended to cover all situations of interest, but we
highlight a situation where our approach might be of use in top-down design.

The system may have some features modelled by high-level events in alphabet
ActH and others modelled by low-level events in alphabet ActL. First model the
features needing the high-level events. Then vertically refine this to an entity
using only low-level events. This step preserves the meaning of the specification
while embedding it in a more detailed low-level layer.

Finally, we might use τ -refinement or δ-refinement, i.e. visibility refinement,
to add additional features needing low-level events in αL.

We use a semantic mapping J Kv to embed, or interpret, high-level EH entities
as low-level entities EL. To allow for the possibility that not all the low-level
entities and contexts are in the range of J Kv we use a separate semantic mapping
vA to embed, or interpret, low-level entities as high-level entities.

PH QH vAJQHKv vA(RL)

JPHKv JQHKv RL

vH

vv

vL vL

vv

vHvH

vA vA

Fig. 12. Refinement within and between layers

In top-down development a vertical refinement vv= (J Kv , vA) may be pre-
ceded by some high-level refinement steps and may itself precede low-level refine-
ment steps (see Fig. 12, and here, to make the point we abuse notation and use
vv to emphasise the use of the refinement between layers when what actually
does the mapping is J Kv). The vertical refinement replaces a high-level entity
by a low-level entity. But this new low-level entity cannot interact with the old
high-level contexts so the contexts must also be vertically refined. As we will see
it is the application of the refinement mappings to the contexts that allows the
contexts to be sufficiently different on each layer so that the refinement on each
layer assigns a different interpretation of interaction to each layer.

27

The “mixing interaction type” situations we have described use low-level enti-
ties and contexts in the range of J Kv . Hence vJΞHKv

is an appropriate refinement.
Here we take vL to be vJΞHKv

.
We will call a pair of semantic mappings J Kv and vA a vertical refinement if
both:

1. low-level refinement can be interpreted as high-level refinement (see Fig. 12)
JPHKv vL RL ⇒ PH vH vA(RL)

2. high-level refinement can be interpreted as low-level refinement
JPHKv vL RL ⇐ PH vH vA(RL).

Definition 20 Semantic mappings J KHL
v and vAHL define a vertical refinement

vHL
v between high-level layer (EH,vH) and low-level layer (EL,vL) if they are

adjoint:
∀XH,YL.JXHKHL

v vL YL ⇔ XH vH vAHL(YL)

•
We drop the superscripts here where possible, using the context to determine H
and L.

In Section 11, we apply our general definition of vertical refinement and
define a vertical refinement from an IBP layer to a broadcast layer. But, we have
been unable to extend this vertical refinement to a high-level layer of handshake
processes, see Section 11.1, as we can “implement” only the deterministic IBPs.

10.1 Vertical refinement between LTS

We will define J Kv and vA to be mappings from LTS to LTS and will apply these
mappings to sets of events (and again we use the event label on a transition to
denote the LTS consisting of just that labelled transition). Recall that ActL and
ActH etc. are the events that entities in layers L and H, respectively, can engage
in:

Definition 21

ActL , JActHKHL
v , {a | ∃ x ∈ ActH, a ∈ α(JxKHL

v)}
vAHL(ActL) , {a | ∃ x ∈ ActL, a ∈ α(vAHL(x))}

and similarly for Act •
Consequently it is easy to see that ActH = vAHL(ActL).

The entities in any layer are represented by equivalence classes of LTS not
just a single LTS. If the equalities =H and =L are congruent w.r.t. the relevant
semantic mappings J Kv and vA then we are able to lift the semantic mapping
from the LTS to entities (equivalence classes of LTS).

Monotonicity with respect to the preorders defining an adjunction is a well-
known property of adjunctions [41, p151]. Thus as our mappings from LTS to
LTS are an adjoint (Definition 20). They are monotonic and the monotonicity
is sufficient to lift refinement defined on LTS to refinement defined on entities,
i.e. equivalence classes of LTS.

28

11 (TIBP,vIBP) vv (TBC,vBC)

In this section we will define a particular vertical refinement between high-level
IBP entities from Section 7.5 and low-level broadcast processes of Section 7.1.
We will then show that we have been unable to extend the high-level to all
handshake process of Section 7.3. The reason appears to be related to the way
handshake processes have abstracted away the cause and response nature of
event synchronisation.

We map an active high-level event such as b (see Fig. 13) into three parts.
The try event tb! is performed, subsequently either aborting (rb?) if the context
cannot interact on b, or succeeding (ab?) if the context can interact on b. The
mapping for the passive event b can be seen in right-hand side of Fig. 13.

◦x

x b 6∈ π(x)

tb?

rb!

s ◦ e

s e

tb!
ab?

rb?

b

s ◦ e

s e

tb? ab!

b

Fig. 13. Vertical refinementJ KB

Our semantic mapping J KB from a high-level layer to a low-level layer will
not only map events b and b to different processes but also add try-reject loops
tb?rb! wherever a passive event b cannot be performed (see left-hand side of
Fig. 13).

Although we see this as the natural solution, because of the addition of
the try-reject loops it is neither an action refinement nor indeed an instance of
Vertical Implementation [39].

We need some care in interpreting the events of Fig. 13. In particular both
handshake events b and b are able to be blocked but the broadcast events tb!,rb!
and ab! are not.

Definition 22 Let A be an LTS (NA, sA,TA).

JAKB , MBC (NJAKB
, sA,TJAKB

)

NJAKB
, NA ∪ {nt | t ∈ TA} ∪ {n(m,a) | m ∈ NA ∧ m

a

6−→}

TJAKB
, {s tx!−→z , z

rx?−→s , z
ax?−→t | s x−→t ∧ z = n

s
x−→t
}∪

{s tx?−→z , z
ax!−→t | s x−→t ∧ z = n

s
x−→t
}∪

{s tx?−→z , z
rx!−→s | s

x

6−→ ∧ z = n(s,x)}
•

Not all the processes (NJAKB
, sA,TJAKB

) are valid broadcast processes, i.e.
they are not all in TBC . For this reason we have applied MBC . For ease of
understanding we have not shown the events added by MBC in Fig. 13.

29

Next we define abstraction vAB . It should be noted that tx? events are re-
placed by two τ events, one each way.

Definition 23 Let A be an LTS (NA, sA,TA).

vAB (A) , (NA, sA,TvAB (A))

TvAB (A) , {s x−→t | s ax?−→t} ∪ {s x−→t | s ax!−→t}∪
{s τ−→t | s tx!−→t ∨ s

rx!−→t ∨ s
rx?−→t ∨ s

τ−→t ∨ s
tx?−→t ∨ t

tx?−→s}
•

Theorem 1 Semantic mappings vAB and J KB define a vertical refinement from
the handshake layer with v(ΞPA,Trc) to the broadcast layer with v(ΞBC,Trc).

11.1 Vertical refinement failure—and success

We take the special vertical refinement above, defining how to refine IBP into
broadcast processes, as being almost inevitably correct. But, we find that we
cannot expand IBP to all processes as defined by CSP/CCS etc. as is illustrated
by the following example7:

s ◦

◦

◦

JRobHKB

◦ e

◦ e

c

tb1!
rb1?

tb2!
rb2?

ab1?

ab2?

d1

d2

s ◦
RobH

◦

◦

e

e

c b1

b2

d1

d2

vBC

6vPA RobotH

s ◦
RobH

◦ ec b1 d1

RobotL

s ◦

◦ ◦ e

c

tb1!

rb1?

ab1? d1

Fig. 14. JRobHKB vBC RobotL but RobH 6vPA RobotH and MIBP(RobH) vIBP RobotH

JRobHKB in Fig. 14 is a nondeterministic broadcast process. In particular
which button, b1 or b2, it tries to push first is not determined. Hence when
offered both buttons by VM its behaviour is nondeterministic. Process RobotL is
a refinement of JRobHKB that will try button b1 only.

However, we can work harder to gain success with VM. The vending machine
VM in Fig. 8 is defined with handshake interactions. This can be vertically refined
into an entity with broadcast interactions, VMv in Fig. 15.

We can continue our example with VMv above to show the flexibility of our
refinement. For the vending machine VM in Fig. 8 we wish to add an error event,

7So as to keep the lower level diagrams small we have expanded only the high-level
events b1! and b2!. The expansion of the other events is obvious from Fig. 13.

30

VMv

s ◦ ◦
◦

◦

◦

◦

◦

◦
tc? ac!

tb1?

tb2?

ab1!

ab2!

td1?

td2?

ad1!

ad2!

Fig. 15. (Fig. 8) VM vv VMv

the “return of the coin”. This event is to occur if a button is pushed but the
vending machine has none of the required drink left. But since we do not wish
this error event to be blocked by a user (robot), it must be under local control.
Thus the return of the coin event is a broadcast event cr!.

By applying visibility refinement we can uncover new broadcast events. The
cr! event is an event that was never considered in the original specification (it was
never seen nor performed) consequently it must be made visible by δ-refinement
to give VMvd in Fig. 15.

VMvd

s ◦ ◦
◦

◦

◦

◦

◦

◦
tc? ac!

tb1?

tb2?

ab1!

ab2!

cr!

cr!

td1?

td2?

ad1!

ad2!

Fig. 16. (Fig. 15)VMv vBCδ{cr} VMvd

A more compact way to view this process is VMb in Fig. 17 where the original
handshake events are shown with the newly visible broadcast event cr!. We could
formalise this by defining LTS with four types of event but here we simply view
VMb as “sugar” for VMvd in Fig. 16 and leave the reader to expand the dashed
lines in Fig. 13.

Having made visible the return of coin event we now have an entity that is
nondeterministic, as you can never tell if the result of pushing a button will be
to dispense a drink or return the coin. More technically, the events cr! and td2?
both leave the same node.

We can easily refine this specification to model a vending machine which can
vend a total of two drinks only, i.e. d1 and then d2 or d2 and then d1, thus giving
Fig. 18.

31

VMds ◦
◦

◦
c

b1

b2

d1

cr!

cr!

d2

Fig. 17. VM vBCδ{cr} VMb

s ◦
◦

◦
c

b1

b2 ◦ ◦
◦

◦
c

b1
b2cr!

◦d1

d2

◦
◦

◦c
b1

b2

cr!

◦
d2

d1
◦

◦

◦
c

b1

b2

cr!

cr!

Fig. 18. VMvd vBC VM2

12 Conclusion

By making use of an explicit representation of the contexts in which entities are
placed we have been able to construct a flexible definition of refinement. Our
definition of general refinement (refinement within a layer, Definition 1 from
[11]) is parameterised on the set of contexts and the observations that can be
made.

We make use of contexts in distinct ways:

1. Since general refinement has contexts Ξ as a parameter (Definition 1), by
changing Ξ we are able to model different types of interaction [11];

2. We distinguish two sets of contexts for abstract data types, ADT: the inter-
active programs, with an interactive program-user interface; and the trans-
actional programs, with a transactional program-user interface. Each set of
contexts gives rise to a distinct refinement.

We introduce two types of visibility refinement that make refinement more
flexible by allowing new events to be added.

We define a layer as consisting of a set of entities and a refinement relation
based on the style of interaction between entities in the layer. Using this we define
vertical refinement (Section 10) between different layers where each layer may
contain different styles of event-interaction. As an example we define vertical
refinement from a “handshake layer” to a “broadcast layer”. To do this we have
been forced (at some length, and more than once) to consider what it means for
a handshake entity to be deterministic.

Finally we give a simple example using both vertical refinement and visibility
refinement to specify an entity with events with different styles of interaction.

32

Appendix

The basics of operational semantics

We are interested in modelling entities that have been considered as either state-
based or event-based. By defining mappings between the state-based operational
semantics (relation-based) and the event-based operational semantics (labelled
transition system-based) we are free to switch how we view our entities. This
correspondence rests upon the usual and simple idea that transitions can be
represented as relations (we often see this in finite-state automata accounts,
where the diagrams use transitions and the text uses transition relations, usually
denoted by the symbol δ).

We assume a universe containing a set of names Names and their “matches”
Names , {a | a ∈ Names}. Names will be used to give names to operations in a
state-based system and names to events in an event-based system. In each case
we need the matches to express the notion of “caller and called”, or “passive
and active”. Note that if a ∈ Names , then a = a ∈ Names . A special event τ is
introduced that models an event that can neither be seen nor blocked. We define
Namesτ , Names ∪Names ∪ {τ}.

First the state-based operational semantics, a relation-based semantics. In-
teracting entities can be given a state-based semantics by using named relations
(which share state and relate the state before an operation takes place to the
state after an operation takes place).

Definition 24 Let ΣA be a state space and initA a start state. Named partial
relational (NPR) semantics A is given by A , (ΣA, initA,NprA) where initA ∈ ΣA

and we have a set of named partial relations

NprA ⊆ {(o,R) | o ∈ Namesτ ∧ Ro ⊆ ΣA ×ΣA}

Let Op(A) , {o | ∃R.(o,R) ∈ NA} be the set of operation names of NPR
semantics A. •

Now the event-based operational semantics, a labelled transition system-
based semantics. Interacting entities can given an event-based semantics (by
labelling a state transition with an event) for process algebras CSP [1, 20], CCS
[2], ACP [24], for broadcast systems IOA [33], CBS [3], for abstract data types
[15] and for objects [16].

Definition 25 Let NA be a finite set of nodes and sA the start node. Labelled
transition system (LTS) A is given by A , (NA, sA,TA) where sA ∈ NA and we
have a set of transitions

TA ⊆ {(n, a,m) | n,m ∈ NA ∧ a ∈ Namesτ}

Let α(A) , {a | ∃ x , y .(x , a, y) ∈ TA} be the alphabet of the LTS A. We write

x
a−→y for (x , a, y) ∈ TA where A is obvious from context and refer to event a as

being enabled in state x . We write n
a−→ for ∃m.(n, a,m) ∈ TA. •

33

We will define a translation lts from relation-based semantics to LTS and its
inverse npr .

As we previously stated both operational semantics are open to many dif-
ferent interpretations so we view them as giving just part of the semantic story
(completed by giving contexts and observations). By defining the translation be-
tween state-based systems and event-based systems on the operational semantics
we have not restricted ourselves to a particular interpretation of the operational
semantics.

Definition 26

lts((ΣA, initA,NprA)) , (NA, sA,TA)

where NA , ΣA, sA , initA and

TA , {(x ,n, y) | (n,R) ∈ NprA ∧ (x , y) ∈ R}

Also:

npr((NA, sA,TA)) , (ΣA, initA,NprA)

where ΣA , NA, initA , sA and

NprA , {(n,R) | x n−→y ∈ TA ⇔ (x , y) ∈ R}

•

Although in the body of the chapter we define our general model on the event-
based operational semantics, the results can equally be applied to many state-
based models, such as Event B, simply by using the mappings in Definition 26
to translate the semantic models where needed.

Since we use the event-based model to do most of the work in the chapter,
we need further notational and definitional work, as follows.

As usual in the event-based world we formalise τ operations as unobservable
by defining an observational semantics possessing no τ events.

Definition 27 An observational semantics =⇒A for LTS A is given, where x ∈
Names ∪ Names, by:

n
x

=⇒Am , ∃n ′,m ′.n
τ

=⇒An ′,n ′
x−→Am ′,m ′

τ
=⇒Am

where

s
τ

=⇒At , (∀n > 0. ∃ s1, ..., sn−1.s
τ−→As1, s1

τ−→As2, . . . sn−1
τ−→At) ∨ s = t

Also

Abs(A) , (NA, sA, {n x−→m | n x
=⇒Am})

•

34

A

s ◦ e

◦ e

a c

τ

b Abs(A)

s ◦ e

◦ e

a c

ba

b

Fig. 19. Event abstraction

Our observational semantics is not the same as in CCS [2] but, like CSP,
has the advantage that it “succeeds in total concealment of internal events” [18,
p.198]. Our definition comes from [42, 43], and is very slightly different from the
operational semantics of CSP simply because they provide the intuition in the
original design whereas “the operational semantics of CSP was created to give
an alternative view to the already existing denotational models” [20, p.178]. For
a more detailed comparison and discussion of abstracting τ loops see [44].

Parallel composition is defined, as in CCS, to represent the point-to-point
private communication between concurrent entities.

Definition 28 Parallel composition of A = (NA, sA,TA) and B = (NB, sB,TB):
for S ⊆ Names, NA‖S B , NA × NB, sA‖S B = (sA, sB) and TA‖S B is defined as
follows.
Let x ∈ Namesτ :

n
x−→Al , x 6∈ S ∪ S

(n,m)
x−→A‖S B(l ,m)

n
x−→Bl , x 6∈ S ∪ S

(m,n)
x−→A‖S B(m, l)

n
a−→Al ,m

a−→Bk , a ∈ S ∪ S

(n,m)
τ−→A‖S B(l , k)

A ‖S B , (NA‖S B, sA‖S B,TA‖S B) •

A

sA

m

k

a
y

B

sB n la b

A ‖{a} B

(sB, sA) (n, sA) (l , sA)b

(sB,m) (n,m) (l ,m)

τ

b

(sB, k) (n, k) (l , k)b

y y y

Fig. 20. Example B ‖{a} A

Our parallel composition with synchronisation operator ||S enforces private
communication between its operands on all events in the synchronisation set S .
Thus any event in S that appears in one of the operands must either synchronise
with an event from the other operand or be blocked. This can be understand by
considering the example in Fig. 20.

35

To avoid confusion we assume that the event names that appear in each
parallel component are unique. Thus when we write A ‖S B we imply that
α(A) ∩ α(B) = ∅ and when we write (A ‖S B) ‖T C we imply that S ∩ T = ∅.

Definition 29 Let ρ be a sequence of events. | ρ | is the length of ρ, () the empty
sequence of events and a / ρ the sequence built by adding the event a to the front
of ρ. Write ρ0 � ρ for ρ0 a prefix of ρ. We often write a / () as (a) and a / (b)
as (a, b) and so on.

Let ∀n.n
()−→n, n

a/ρ−−→ o , ∃m.n
a−→m ∧ m

ρ−→o, n
ρ−→ , ∃m.n

ρ−→m and

∀n.n
()

=⇒n, n
a/ρ

==⇒ o , ∃m.n
a

=⇒m ∧ m
ρ

=⇒o, n
ρ

=⇒ , ∃m.n
ρ

=⇒m

The observable traces of A are: Tr(A) , {ρ | sA
ρ

=⇒}. The complete observable
traces of A are all the finite traces which take us to a state with no successor,
and all the infinite traces, i.e. traces which have prefixes of every length:

Trc(A) ,

{ρ | sA
ρ

=⇒n ∧ {a | n a
=⇒} = ∅} ∪ {ρ | sA

ρ
=⇒ ∧ ∀n. ∃ ρ0.ρ0 � ρ ∧| ρ0 |= n}

•

τ–Abstraction and δ–Abstraction

In process algebra, events can be abstracted from a process in two distinct ways.
In CCS these ways are restriction and hiding. Here we will use the ACP special
events δ and τ to define the two distinct ways δ–abstraction and τ–abstraction
to abstract events.

Definition 30 δ–abstraction and τ–abstraction. Given LTS A = (NA, sA,TA)
and Del ⊆ Names ∪ Names we have:

AδDel , (NA, sA,TAδDel
)

where, for all x ∈ Names ∪Names, TAδDel
is defined by:

n
x−→Al , x 6∈ Del

n
x−→AδDel

l

Let Hid ⊆ Names ∪Names and

AτHid , Abs(NA, sA,TAτHid
)

where for all x ∈ Names ∪ Names, TAτHid
is defined by:

n
x−→Al , x 6∈ Hid

n
x−→AτHid

l

n
x−→Al , x ∈ Hid

n
τ−→AτHid

l
•

36

References

1. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science (1985)

2. Milner, R.: Communication and Concurrency. Prentice-Hall International (1989)

3. Prasad, K.V.S.: A calculus of broadcasting systems. Science of Computer Pro-
graming 25 (1995) 285–327

4. Bolton, C., Davies, J.: A singleton failures semantics for Communicating Sequential
Processes. Formal Aspects of Computing 18 (2006) 181–210

5. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice
Hall (1996)

6. Spivey, J.M.: The Z notation: A reference manual. 2nd. edn. Prentice Hall (1992)

7. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

8. de Roever, W.P., Engelhardt, K.: Data Refinement: Model oriented proof methods
and their comparison. Cambridge Tracts in theoretical computer science 47 (1998)

9. van Glabbeek, R.J.: Linear Time-Branching Time Spectrum I. In: CONCUR ‘90
Theories of Concurrency: Unification and Extension. LNCS 458, Springer-Verlag
(1990) 278–297

10. van Glabbeek, R.J.: The Linear Time - Branching Time Spectrum II. In: Interna-
tional Conference on Concurrency Theory. (1993) 66–81

11. Reeves, S., Streader, D.: Comparison of Data and Process Refinement. In Dong,
J.S., Woodcock, J.C.P., eds.: ICFEM 2003. LNCS 2885. Springer-Verlag (2003)
266–285

12. Fischer, C., Wehrheim, H.: Behavioural subtyping relations for object-oriented
formalisms. LNCS 1816 (2000) 469–483

13. Abrial, J.R., Cansell, D., Méry, D.: Refinement and reachability in Event B. In
Treharne, H., King, S., Henson, M.C., Schneider, S., eds.: ZB05: Formal Specifi-
cation and Development in Z and B. Volume 3455 of Lecture Notes in Computer
Science., Springer (2005) 222–241

14. Brinksma, E., Scollo, G.: Formal notions of implementation and conformance in
LOTOS. Technical Report INF-86-13, Twente University of Technology, Depart-
ment of Informatics, Enschede, The Netherlands (1986)

15. Bolton, C., Davies, J.: A singleton failures semantics for Communicating Sequen-
tial Processes. Research Report PRG-RR-01-11, Oxford University Computing
Laboratory (2001)

16. Derrick, J., Boiten, E.: Relational concurrent refinement. Formal Aspects of Com-
puting 15 (2003) 182–214

17. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Ad-
vanced Applications. Formal Approaches to Computing and Information Tech-
nology. Springer (2001)

18. Hoare, C., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science (1998)

19. Dunne, S., Conroy, S.: Process refinement in B. In: ZB 2005: Formal Specification
and Development in Z and B. Volume 3455 of LNCS., Springer (2005) 45–64

20. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall International
Series in Computer Science (1997)

21. Hehner, E.C.R., Gravell, A.M.: Refinement semantics and loop rules. In: World
Congress on Formal Methods (2). (1999) 1497–1510

37

22. Reeves, S., Streader, D.: State- and Event-based refinement. Technical report,
University of Waikato (2006) Computer Science Working Paper Series 09/2006,
ISSN 1170-487X, http://www.cs.waikato.ac.nz/∼dstr.

23. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

24. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18 (1990)

25. Lynch, N., Vaandrager, F.: Forward and backward simulations, part i: Untimed
systems. Information and Computation 121(2) (1995) 214–233

26. Ene, C., Muntean, T.: Expressiveness of Point-to-Point versus Broadcast Commu-
nications. Volume LNCS 1684., Springer-Verlag (1999) FCT’99.

27. Tretmans, D.: A Formal Approach to Conformance Testing. PhD thesis, Faculteit
der Informatica (1992)

28. Prasad, K.V.S.: A calculus of value broadcasts. In: Parallel Architectures and
Languages Europe. (1993) 391–402

29. Kumar, R., Heymann, M.: Masked prioritized synchronization for interaction and
control of discrete event systems. IEEE Transactions on Automatic Control 45
(2000) 1970–1982

30. Ene, C., Muntean, T.: Testing Theories for Broadcasting Processes. (2004) Sub-
mitted for publication, http://www.esil.univ-mrs.fr/∼cene.

31. Vaandrager, F.W.: On the relationship between process algebra and input/output
automata. In: Logic in Computer Science. (1991) 387–398

32. Segala, R.: A Process Algebraic View of I/O Automata. Technical Report
MIT/LCS/TR-557, Massachusetts Institute of Technology (1992)

33. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quarterly
(1989) 2(3):219–246

34. Lynch, N., Segala, R.: A Comparison of Simulation Techniques and Algebraic Tech-
niques for Verifying Concurrent Systems. Formal Aspects of Computing Journal
7 (1995) 231–265

35. de Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34 (84)

36. Reeves, S., Streader, D.: Stepwise Refinement of Processes. Technical report,
University of Waikato (2005) Computer Science Technical Report 07/2005 ,
http://www.cs.waikato.ac.nz/∼dstr.

37. Reeves, S., Streader, D.: Liberalising event b without changing it. Technical report,
University of Waikato (2006) Computer Science Working Paper Series 07/2006,
ISSN 1170-487X, http://www.cs.waikato.ac.nz/∼dstr.

38. Derrick, J., Boiten, E.A.: Non-atomic refinement in z. In: FM ’99: Proceedings of
the Wold Congress on Formal Methods in the Development of Computing Systems-
Volume II, Springer-Verlag (1999) 1477–1496

39. Rensink, A., Gorrieri, R.: Vertical implementation. Information and Computation
170 (2001) 95–133

40. Gorrieri, R., Rensink, A.: Action refinement (2001)
41. Taylor, P.: Practical Foundations of Mathematics. Cambridge University Press

(1999) Cambridge studies in advanced mathematics 59.
42. Brinksma, E., Rensink, A., Vogler, W.: Applications of fair testing. FORTE 69

(1996) IFIP Conference Proceedings.
43. Valmari, A., Tienari, M.: Compositional Failure-based Semantics Models for Basic

LOTOS. Formal Aspects of Computing 7 (1995) 440–468
44. Reeves, S., Streader, D.: Atomic Components. In: ICTAC 2004. LNCS 3407.

Springer-Verlag (2004) 128–139

38

