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Magnetohydrodynamic (MHD) systems can be strongly nonlinear (turbulent) when their kinetic

and magnetic Reynolds numbers are high, as is the case in many astrophysical and space plasma

flows. Unfortunately these high Reynolds numbers are typically much greater than those currently

attainable in numerical simulations of MHD turbulence. A natural question to ask is how can

researchers be sure that their simulations have reproduced all of the most influential physics of the

flows and magnetic fields? In this paper, a metric is defined to indicate whether the necessary

physics of interest has been captured. It is found that current computing resources will typically not

be sufficient to achieve this minimum state metric. VC 2011 American Institute of Physics.

[doi:10.1063/1.3606473]

I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence1,2 has been

widely employed as a physical model in simulations and

modeling of space physics systems and astrophysics systems.

As is well known, the number of degrees of freedom in tur-

bulent flows can be estimated using non-dimensional param-

eters such as the Reynolds number (Re) and magnetic

Reynolds number (Rm). These can be interpreted as ratios of

the nonlinear terms to the dissipative terms in the governing

MHD equations. In space physics and astrophysics, estimates

for Re and Rm are often in excess of 105, sometimes by

many orders of magnitude. Direct numerical simulation of

such high Reynolds number systems would require resolu-

tions that are well beyond what can be achieved using cur-

rent and foreseeable supercomputers. Thus, it is highly

desirable to determine whether the computationally feasible

simulations—with much lower Re and Rm—still capture the

most important physics of the flows of interest, despite the

inevitable differences associated with the lower Reynolds

numbers. Here we employ the minimum state concept3 along

with recent results on the wavenumber locality of nonlinear

interactions in MHD turbulence4 to estimate the minimum

Reynolds numbers needed for accurate simulation of the

energy-containing range in incompressible MHD turbulence.

The equations of incompressible three-dimensional MHD

are

@u

@t
þ �r2u ¼ �u � ruþ b � rb�rp; (1)

@b

@t
þ gr2b ¼ �u � rbþ b � ru; (2)

along with the solenoidality constraints r � u ¼ 0 and

r � b ¼ 0 [e.g., 1]. Here, u is the fluid velocity, b the mag-

netic field expressed in Alfvén speed units, and p the total

pressure. Equations (1)–(2) are written so that the nonlinear

terms are isolated on the RHS, along with the pressure gradi-

ent. Note that the nonlinear terms all have the same structure,

� a � rb, where a and b can be either u or b.

We begin by discussing the basic requirement of a mini-

mum state, namely capturing the key physics of the flow of

interest. From an applications perspective the most important

group of scales is often the energy-containing range. The in-

tegrity of the evolution of modes in this range can be pro-

tected by demanding that the (direct) interactions between

them and modes in the dissipation range are weak.3 In such

situations the energy-containing and dissipation range scales

will be separated by an inertial range, through which the

energy originally resident at energy-containing scales cas-

cades to smaller scales.5 Moreover, the modes in the energy-

containing range will then interact dominantly with them-

selves and modes in the inertial range. It seems likely that

there will be critical values of Re and Rm below which this

requirement cannot be satisfied. These Reynolds numbers

define a minimum state flow (see Figure 1).

To quantify these ideas, we will extend a criterion devel-

oped for Navier–Stokes (NS) turbulence3 to the MHD case.

Specifically, a minimum state flow is defined as one for

which the (normalized) energy flux at the high-k end of the

inertial range is half that at the low-k end,3 where k ¼ jkj is

the Fourier wavenumber. The remainder of the paper pro-

vides the necessary definitions and details required to esti-

mate the Reynolds numbers for a minimum state.

II. INERTIAL RANGE BOUNDARIES

To calculate the minimum state we require estimates of

the wavenumbers which bound the kinetic and magnetic in-

ertial ranges. In particular, their scaling with Reynolds num-

ber is needed. Let ‘ denote the outer scale or correlation

length of the velocity field, and let ‘B be the equivalent quan-

tity for b. Further, let ~u and ~b be characteristic rms values for

the velocity and magnetic fields. Standard definitions of the
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(outer scale) kinetic and magnetic Reynolds numbers are

Re ¼ ~u‘=� and Rm ¼ ~u‘=g. We will also make use of an al-

ternative magnetic Reynolds number, Rm� ¼ ~B‘B=g, which

is based entirely on typical magnetic quantities.6 The Kolmo-

gorov dissipation scale for the kinetic energy is defined in

the usual way as ‘diss ¼ ð�3=�Þ1=4
, where � is the kinetic

energy dissipation rate.

For NS turbulence, Ref. 7 suggested defining the inertial

range as the set of scales which lie below the Liepmann–

Taylor scale (Ref. 8),

kLT ¼
2p
kLT

� 5 Re�1=2‘; (3)

and above the inner viscous scale (e.g., Ref. 9),

k� ¼
2p
k�
� 50‘diss � 50 Re�3=4‘: (4)

Operationally, the latter is defined as the scale where the

spectrum departs from the � �5=3 powerlaw.9–11 The

energy-containing range is thus treated as having k. kLT,

and the inertial range as k 2 ½kLT; k��. We assume that the

same boundaries hold for MHD turbulence (but see the final

section) and define the magnetic versions analogously

fLT ¼
2p
kB

LT

� 5 Rm��1=2‘B; (5)

fg ¼
2p
kg
� 50 Rm��3=4‘B: (6)

III. ENERGY FLUXES AND LOCALITY

For turbulent systems, the flux of energy in Fourier

space is a central concept, and numerous investigations of it

have been performed for both NS [e.g., Refs. 12–14] and

MHD [e.g., Refs. 4 and 15–21] systems. Each of the nonlin-

ear terms in Eqs. (1)–(2) is associated with such a flux, which

we denote herein as Pab. An important feature of the flux

functions is their scaling with wavenumber, which provides

information on the extent to which the contributing interac-

tions are local in spectral space. The different scaling proper-

ties of these fluxes will be important in determining the

minimum state Reynolds numbers.

Using direct numerical simulation databases, Domar-

adzki et al.4 calculated normalized versions of the four

energy flux functions, which they denoted as PabðkjkcÞ.
These represent the flux of energy to wavevectors with

magnitudes greater than kc, due to wavevector triads which

have at least one member with a magnitude less than k
(and normalized by the total flux through kc for the partic-

ular �a � rb term). Plotting these as a function of k=kc

reveals approximate powerlaw scaling for three of the four

normalized fluxes (see Figure 2 in Ref. 4). Here we

express their results in terms of the scale disparity
parameter,13,14,22

s ¼ maxðk; p; qÞ
minðk; p; qÞ ; (7)

where k, p, and q are the magnitudes of wavevectors making

up an interacting triad k ¼ pþ q. This re-expression is con-

venient since k=kc � 1=s and thus PabðkjkcÞ � Pabð1=sÞ.
The scale disparity parameter is a measure of the elongation

of the triads and has been used to characterize the degree of

locality of interactions [e.g., Ref. 23].

The scalings observed by Domaradzki et al.4 are

PuuðsÞ � PubðsÞ / s�2=3; (8)

and

PbbðsÞ / s�1=3: (9)

The flux Pbb is associated with removing the kinetic energy

from the velocity field. It is the least local of these three flux

functions. These numerical results are consistent with theoret-

ical predictions.21 Note that for NS turbulence, theory and

simulations13,14,24–30 suggest that PðsÞ � s�4=3, a scaling

which is considerably more local than the MHD results.

The remaining flux function, Pbu, is associated with the

process of energy transfer to the magnetic field. The same

study4 found that it was non-universal and that it did not fol-

low an s�M scaling law. It does, however, decrease faster

than Puu and Pub. While the reason for the different behav-

ior of Pbu is at present not clear, it is fortunate that the falloff

is so steep since this suggests extremely local interactions

for the term. Thus its detailed form will not affect the analy-

sis here.

IV. MINIMUM STATE

For large enough Reynolds numbers, the energy-con-

taining range of a turbulent flow will have very weak direct
interactions with the dissipation range. As noted above, the

minimum state is the lowest Reynolds number flow of this

FIG. 1. (Color online) Sketch of a kinetic energy spectrum indicating the

energy-containing, inertial, and dissipation ranges and their wavenumber

boundaries. The idea behind the minimum state is that the inertial range

should be long enough so that direct interactions between modes in the

energy-containing and dissipation ranges are energetically weak, indicated

by the dashed (green) arrow. Some “strong” interactions are indicated via

the solid (green) arrows.
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kind.3 In flows that have a shorter inertial range, there will

be significant direct interactions between the energy-contain-

ing and dissipation ranges, and the integrity of the energy-

containing range modes will not be maintained. To ensure

that strong direct couplings between these two ranges are

absent we need to quantify what ‘strong’ means in this con-

text, and then determine the length of the inertial range in a

minimum state.

Here we define the direct interactions between the

energy-containing and dissipation ranges as weak if the

energy flux at the high-k end of the inertial range (e.g., at k�)
is at most half that at the low-k end (e.g., at kLT).

From numerical simulations, the peak of a normalized

flux function, PðspÞ, can be found along with the value of s
at which it occurs, sp. Let sh be the scale disparity parameter

where the normalized flux reduces to half of its peak value,

i.e., PðshÞ ¼ 1
2
PðspÞ. The s�M scaling properties of Eqs. (8)–

(9) lead to

sh

sp
¼ 2ð1=MÞ: (10)

This ratio can be used to determine the values of k� and kg

associated with the minimum state. The underlying idea is

that Eq. (10) gives the length of the (minimum state) inertial

range, in units of the Liepmann–Taylor wavenumber. Hence,

we define kh ¼ ðsh=sPÞkLT and equate it to the high wave-

number end of the inertial range. For the momentum equa-

tion, the least local nonlinear term is Pbb, yielding sh=sp ¼ 8

and an inertial range wavenumber interval of ½kLT; 8kLT�. For

the induction equation we obtain sh=sp ¼
ffiffiffi

8
p
� 3 and an in-

ertial range of ½kB
LT; 3kB

LT�.
We are now in position to calculate the critical Reynolds

numbers for a minimum state. For the momentum equation

we use Eqs. (3) and (4) in 8kLT ¼ k� , obtaining

ReMS � 4:1� 107: (11)

Proceeding similarly for the induction equation, 3kB
LT ¼ kg

yields

Rm�MS � 8:1� 105: (12)

This is some 50 times smaller than ReMS as a consequence

of the more local nature of the nonlinear interactions in the

induction equation.

V. COMPARISON WITH FLUID TURBULENCE

It is informative to compare the above results with those

for fluid turbulence. We recall that NS turbulence is more

local than the MHD case, with PðsÞ � s�4=3 (Refs. 13, 14).

Using 23=4 � 2 in Eq. (10) gives a minimum state Reynolds

number of 1:6� 105 for NS flow,3 which is significantly

smaller than the MHD values derived above.

Our minimum state Reynolds numbers are in reasonable

accord with results from a perturbative field-theoretic

approach for the NS case (Refs. 31, 32). In those studies, the

nonlocal components of shell-to-shell energy transfers were

used to estimate that a turbulent energy flux occurs when

kmax=kmin � 216 � 104. This value is compatible with the in-

ertial range lengths we found above for the MHD energy

fluxes. It would be interesting to perform the MHD version

of the study in Ref. 31 to see how the results compare with

the ones presented herein.

Another issue is our assumption that the inertial range

boundaries carry over essentially unchanged from the NS

case to MHD. However, these bounding wavenumbers may

scale differently in the two cases. For example, the energy

spectrum has often been observed to have a bottleneck fea-

ture near the dissipation scale [e.g., Refs. 11, 33, 34], but this

appears to be more pronounced in NS turbulence than in

MHD turbulence [e.g., Refs. 35, 36]. Thus, our estimates for

k� and kg could be argued to be too small, leading to esti-

mates for the critical Reynolds numbers which are too large.

Note that for the NS case, results based on field-theoretic

approaches31 indicate that the spectral bottleneck may not

occur for inertial ranges longer than about four decades.

In order to improve understanding of the apparently dif-

ferent features of the NS and MHD bottleneck phenomena it

would of course be helpful to have results from MHD studies

with (very) large Reynolds numbers. A key element still

missing is a major MHD laboratory experiment or observa-

tional measurement, analogous to the hydrodynamic wind

tunnel results discussed in Ref. 11, for example. Recent

MHD computational results36 indicate that erroneous bottle-

neck effects can occur when the Reynolds numbers are not

large enough. Similar studies have been performed for fluid

turbulence.31,37 The wavenumber scalings for the energy

fluxes contain information about any bottlenecks present in

the energy spectra, although this may be hard to extract ex-

plicitly. Thus, in that sense the above determinations of the

minimum state Reynolds numbers already take account of

the bottleneck effects. Further consideration of this interest-

ing issue is beyond the scope of this paper.

VI. SUMMARY

We have extended the concept of a minimum state flow

to the case of MHD turbulence, which is a widely used

model in space physics and astrophysics applications. By

insisting on the integrity of the energy-containing range dy-

namics, we have determined minimum Reynolds numbers

for MHD simulations and experiments below which this con-

dition is unlikely to be satisfied. These “critical” values of

ReMS � 4:1� 107 and Rm�MS � 8:1� 105 are rather large,

as a consequence of the more nonlocal nature of the nonlin-

ear terms in the MHD equations (compared to the NS nonli-

nearity). As far as direct numerical simulations of a

minimum state flow are concerned, they are probably not

feasible with current computing resources. However, they

may become feasible within a few years.

Note that the numerical accuracy of a simulation for

given Reynolds numbers is a distinct issue, relative to the

above discussed “physical integrity” of a simulation. A

recent exploration of the accuracy requirements for 2D

MHD turbulence38 concluded that sufficient accuracy is

obtained if simulations retain wavenumbers a factor of three

greater than the (Kolmogorov) dissipation wavenumber. If a
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smaller wavenumber range was retained then the accuracy of

fourth-order (and higher-order) quantities like the kurtosis

was seriously compromised.

In closing we briefly mention some possible extensions

and complications associated with the isotropic MHD model

employed above. As is well known, the presence of an ener-

getic large-scale (e.g., mean) magnetic field (B0) induces ani-

sotropy in u and b.39–42 This anisotropy could result in

somewhat different critical Reynolds numbers, although the

qualitative results presented herein would likely still hold.

Finally, we emphasize that in actual space physics and

astrophysics systems the nature of the dissipation mecha-

nisms may be quite different from the uniform viscous and

resistive dissipation of Eqs. (1)–(2). In particular, the dissipa-

tion scales are not expected to be universal. Plasma effects,

such as damping by waves at ion and=or electron gyroradii

or inertial lengths may be important.43–46
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