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Abstract 

The phenolic compounds of honey have been known to pose significantly 

antioxidant activity, including iron-binding and free radical scavenging activity. 

Manuka honey has been widely used in wound treatment and the antioxidant 

activity of manuka honey is important in that. However, the antioxidant activity of 

phenolic compounds of manuka honey has been studied in a few of cases. The aim 

of this study was to identify the molecular structure of phenolic compounds of 

manuka honey mainly responsible for each type of antioxidant activity (iron-

binding and free radical scavenging activity). The measurement of iron-binding 

type of activity was based on the inhibition of the Fenton reaction using the β-

carotene-linoleic acid model system and the measurement of free radical 

scavenging activity was based on ABTS system. 

     

The phenolic extracts of manuka honey obtained off XAD column was run 

through Sephadex G-25 column. The elution was pooled to form fractions for 

assaying of antioxidant activity, so that the fractions with highest antioxidant 

activity can be detected. The fractions with highest antioxidant activity, including 

iron-binding and free radical scavenging activity, were re-run through Sephadex 

G-25 again, and the resulting fractions were assayed. After repeating fourth 

running through Sephadex G-25 column, 5 pools with highest antioxidant activity 

were obtained. The elution volumes of these 5 pools were mainly from 105.6 – 

115.2 ml, indicating that this volume range had most of the antioxidant activity for 

phenolic extracts of manuka honey.  
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Five pools were further separated by Superdex Peptide column on the FPLC 

system. The results showed that each pool was separated to have several main 

peaks. Each peak obtained from chromatography of all five pools was taken for 

activity assay. The peak with highest iron-binding activity was selected for 

structure identification by UV and mass spectra methods. The conclusion was 

made that the phenolic compound responsible for iron-binding type of antioxidant 

activity could be the molecule with molecular weight of 458.  
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Chapter 1: Introduction and Literature Review 

 

This chapter aims to introduce the research area of this thesis, outlining the 

traditional and more recent therapeutic properties of honey and demonstrating 

honey’s antibacterial and antioxidant activity.  It finally describes the purpose of 

this study.  

 

1.1 Honey: an ancient medicine  

 

1.1.1 Chemical composition of honey 

Honey is a natural product produced from the nectar and exudation of plants by 

the honeybees, Apis mellifera (Alvarez-Suarez et al., 2010). The natural honey has 

been reported to contain about 200 substances, which consist of not only highly 

concentrated solution of sugars, but also the complex mixture of other saccharides, 

amino acids, peptides, enzymes, proteins, organic acids, polyphenols, carotenoid-

like substances, vitamins, and minerals (Gheldof etal., 2002; Sato & Miyata, 2000; 

White, 1975).  

 

Sugars are the main constituents of honey, comprising about 95% of its dry weight 

(Alvarez-Suarez et al., 2010). While glucose and fructose are the dominant 

constituents, about 25 different sugars have been detected (Doner, 1977; Siddiqui, 

1970). The view by White (1975) has demonstrated that proteins in honey are 

mainly enzymes. Honey contains roughly 0.5% proteins (Alvarez-Suarez et al., 

2010) and the protein contents in some honeys can be over 1 000 µg/g (Azeredo et 
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al., 2003). Main enzymes include diastase, invertase, glucose oxidase and catalase. 

Although the content of amino acids in honey is relatively small, it has been found 

that almost all of physiologically essential amino acids are present in honey (Cotte 

et al., 2004; Hermosín et al., 2003). The primary amino acid is proline, 

contributing 50-85% of the total amino acids (Hermosín et al., 2003).  The level of 

organic acids in honey is relatively low and about 18 organic acids have been 

detected (Nanda et al., 2003). Most of the acidity present in honey is added by 

honeybees (Echigo & Takenaka, 1974). Gluconic acid, the predominant honey 

organic acid, is the product of glucose oxidation, presenting at 50-fold higher 

levels than other acids (Cherchi et al., 1994). Investigations have shown that a 

wide range of trace elements are present in honey, including Al, Ba, Bi, Co, Cr, 

Mo, Ni, Pb, Sn, Ti, as well as minerals (Ca, Cu, Fe, K, Na, Mg, Mn, Zn) (Conti, 

2000; Stocker et al., 2005), among them, the main mineral element is potassium 

while copper presents lowest amount (Nada et al., 2003). Vitamins such as 

thiamin (B1), riboflavin (B2), pyridoxine (B6), and ascorbic acid (C) have also 

been reported but their amount is very small in honey (Ball, 2007; Nada et al., 

2003). When honey is treated with mild heat or prolonged storage, a 

compositional change can occur due to caramelization of the carbohydrates, the 

Maillard reaction, and decomposition of fructose in the acid medium of honey 

(Villamiel et al., 2001). 

 

Phytochemicals are chemical substances naturally occurring in plants and many of 

them are now recognized to have health-promoting activity (Apostolidis et al., 

2006; Liu, 2003; Liu, 2004; Sun et al., 2002; Vattem et al., 2005). Phenolic 

substances are the largest group of phytochemicals (King & Young, 1999). The 
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plants containing phytochemicals might be used as a supply of the bees; thereby 

bioactive compounds can be transferred to honey. Studies have shown that honey 

contains great variation in contents of different phytochemicals according to floral 

sources and climatic conditions, which contribute to different characteristic colors, 

flavors, aromas, and bioactivities (Abu-Tarboush et al., 1993; Molan, 1996). As 

herbal medicines are derived from different plants, which can produce different 

therapeutic properties (Villegas et al., 1997), some honey derived from these 

specific plants may provide added value for health promotion. Honey produced by 

bees fed herbal extracts has shown greater antioxidant activity than normal honey 

(Rosenblat et al., 1997). 

 

1.1.2 Antibacterial activity 

Honey has a long history of use as an effective medicine since ancient civilization 

for a wide range of disease conditions (Molan, 2001). The physiological property 

of honey has been attributed to production of hydrogen peroxide formed by the 

enzyme glucose oxidase; antioxidant content, low pH value; osmotic action, and a 

variety of enzymes (Molan, 2009). 

 

One of the intrinsic features of honey is its antimicrobial property, which allows 

honey to be stored for a long period without becoming spoiled (Al-Mamary et al., 

2002). The antibacterial mechanisms of honey are associated with its high 

osmolarity, acidity, production of hydrogen peroxide, and non-peroxide 

antibacterial components such as flavonoids, lysozyme, and the phenolic acids 

(Molan, 1992; Postmes et al., 1993; Sonwdon & Cliver, 1996; Wahdan, 1998; 

Willix et al., 1992). Hydrogen peroxide in honey is produced by glucose oxidase 
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secreted from the hypopharyngeal glands of bees (Molan, 2009). The level of 

hydrogen peroxide is proportional to relative levels of glucose oxidase and 

catalase originating from pollen (Weston, 2000). However, not all honey has the 

same therapeutic effect due to large variation in its antibacterial activity (Molan, 

2001). The variable antibacterial activity among honey depends on its floral 

source (Allen et al., 1991). 

 

A study by Wahdan (1998) has shown that with 21 types of bacteria, including 

Escherichia coli, Klebsiella sp, Pseudomonas sp, Staphylococcus sp, and two 

types of fungi in vitro, honey neutralized more pathogens than sugar control, and 

undiluted honey completely inhibited the growth of all 21 bacteria. The MIC 

(minimum inhibition concentration) of honey was found to be from 1.8% to 

10.8% (V/V) (Molan, 2001). Although both Gram-positive and -negative bacterial 

strains are sensitive to honey, some Gram-negative bacteria (Salmonella dublin 

and Shigella dysenteriae) being more susceptible than gram-positive strains 

(Bacillus cereus, Staphylococcus aureus) (Bogdanov, 1984). 

 

1.1.3 Anti-inflammatory activity 

The anti-inflammation properties of honey have been known well (Molan, 2001). 

Honey has been found to have the involvement of scavenging activity of reactive 

oxygen species responsible for induction of inflammation (Greten et al., 2004). 

When honey is applied to wounds, it effectively reduces the inflammation 

(Burlando, 1978; Subrahmanyam, 1998), as well as reducing oedema around 

wounds (Dumronglert, 1983; Efem, 1988; Efem, 1993) and exudation from 

wounds (Burlando, 1978; Efem, 1988; Efem, 1993; Hejase et al., 1996). Honey 
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has also been observed to relieve the pain that is a feature of inflammation 

(Burlando, 1978; Keast-Butler, 1980; Subrahmanyam, 1993). The studies of 

healing animal tissues have indicated that the leucocyte numbers associated with 

inflammation have been less when the wounds have been treated with honey 

(Subrahmanyam, 1998). Similar results observed in animal study models have 

confirmed that the anti-inflammation action of honey cannot be due to removal of 

bacteria alone (Oryan, 1998; Postmes, 1997). Furthermore, honey has been shown 

to decrease the stiffness of inflamed wrist joints of guinea pigs (Church, 1954).  

 

One of the anti-inflammatory effects of honey can be attributed to its antibacterial 

activity since components of the bacterial cell wall are potent stimulators of the 

inflammatory response (Molan, 2009). The presence of slough in wounds also acts 

as an inflammatory stimulus, and slough removal by honey application to wounds 

has shown to help decrease inflammation (Efem, 1988).  

 

1.1.4 Use for wound healing 

A review of honey’s use in wound care by Molan (2006) has provided 

overwhelming evidence that honey is a credible wound treatment option. With 

regards to wound treatment by honey application, the osmotic action of honey can 

induce outflow of lymph, which is able to promote extra oxygenation and provide 

improved supply of nutrients on the wound surface, as well as to flush away 

proteases that may inhibit the repair process (Molan, 2009). Moreover, honey’s 

osmotic action can create a moist environment that is required for the fibroblasts 

to contract and pull the margins of the wound together (Molan, 2001). The acidic 

pH of honey also adds the value to aid wound healing since it can facilitate to 
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release the oxygen carried by haemoglobin (Molan, 2009). It has been noted that 

acidification of wounds can improve the speed of the healing process (Kaufman, 

1985; Leveen, 1973).  

 

A number of studies have firmly reinforced that honey is an effective medicinal 

treatment for burns and infected wounds (Molan, 2001; Subrahmanyam, 1996) 

and it is more effective as a dressing than many other present alternatives 

(Vermeulen et al., 2005).  

 

1.1.5 Importance of anti-inflammatory activity in wound healing 

The anti-inflammatory action of honey is potentially very important for 

therapeutic application, as the inflammation can cause major consequences. 

During the course of inflammation, some mediators called prostaglandins 

produced by the leucocytes to regulate the activity of surrounding cells can cause 

the painful symptoms of inflammation, and others can cause blood vessels to 

dilate and the capillary walls to open up (Molan, 2001).  Plasma flows out to 

cause swelling and to increase the diffusion distance from the capillaries to the 

cells (Molan, 2001). The opening up of capillaries can cause exudation of serum. 

If it is prolonged, it would lead to malnutrition (Molan, 2001). The most harmful 

consequence of inflammation is the production of reactive oxygen species in the 

tissue. These reactive oxygen species (free radicals) can be very damaging as they 

are very reactive and are able to break down the proteins, lipids, and nuclei acids 

(Flohe et al., 1985, Molan, 2001). The continued production of free radicals can 

lead to localized erosion of body tissue. The free radicals are also involved in 

stimulating the activity of fibroblasts, which is the basis of repair process (Molan, 
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2009). The fibroblasts are responsible for synthesis of collagen fibers and other 

connective tissue components, if inflammation is continued, the over-stimulation 

can lead to fibrosis and excessive production of collagen fibres (Molan, 2001; 

Murrell et al., 1990). Thus, there are significant benefits for therapeutic use of 

anti-inflammatory substances. However, pharmaceutical anti-inflammatory 

medicines have serious limitations: corticosteroids suppress tissue growth and the 

immune system (Bucknall, 1984), and the non-corticosteroids are harmful to cells 

(Brooks, 1985). Honey has been confirmed to possess anti-inflammatory activity 

without adverse side effects (Molan, 2001). 

 

1.1.6 Antioxidant activity in decreasing inflammation 

Inflammation is part of the non-specific immune reaction occurring in response to 

any type injury in body (Ferrero-Miliani et al., 2006). A mild short-lived 

inflammation is essentially required to initiate the healing process, but when the 

inflammation becomes prolonged, it can slow or prevent the healing (Molan, 

2009). Once inflammatory stimulus is extended, the superoxide and hydrogen 

peroxide are continuously generated as they act to recruit more neutrophils (Flohé 

et al., 1985，Klyubin, 1996). Hydrogen peroxide activates more neutrophils via 

the activation of the nuclear transcription factor NF-kB to produce specific 

cytokines which amplify the inflammatory response by activating leukocytes, and 

activated neutrophils in turn generate more hydrogen peroxide, which sets up a 

vicious cycle; hydrogen peroxide from other sources can also trigger this cycle 

(Baeuerle et al., 1996; Molan, 2009). It has been found that the oxidative species 

produced from hydrogen peroxide, instead of hydrogen peroxide, are responsible 

for activating NF-kB, and antioxidants prevent this activation (Grimble, 1994).  
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The ability of honey to neutralize free radicals has been demonstrated (van den 

Berg, 2008). A clinical trial of honey dressing on burns has indicated that the way 

in which honey initiates healing in burns is the control of free radicals by the 

antioxidant activity of honey (Subrahmanyam, 2003). This antioxidant activity 

may be partly responsible for the anti-inflammatory action of honey, as oxygen 

free radicals are involved in various aspects of inflammation. Even if the honey 

antioxidants do not directly suppress the inflammation, it can at least reduce the 

amount of damage caused from ROS by scavenging free radicals (Molan, 2001). 

 

In addition to removing free radicals via scavenging, honey has the potential of 

inhibiting generation of free radicals formed from hydrogen peroxide in the first 

place through a different mechanism of antioxidants (Molan, 2001). While the 

superoxide produced in inflammation is relatively unreactive and easily to be 

converted into less reactive hydrogen peroxide, the generation of peroxide radicals 

from hydrogen peroxide catalyzed by metal ions, such as iron and copper, can be 

extremely damaging (Cross et al., 1987). Antioxidant, however, like flavonoids or 

some polyphenols, are able to sequester these metal irons in a non-catalytic form 

(Halliwell & Cross, 1994). Although it is important that antioxidants neutralize 

free radicals when the inflammation has been established, inhibition of the 

formation of hydroxide radicals would greatly help break the inflammatory 

vicious cycle. 
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1.1.7 Antioxidant activity of honey  

Honey contains a significantly high level of antioxidants, both enzymatic and non-

enzymatic, including catalase, phenolic acids, flavonoids, carotenoids, organic 

acids, ascorbic acid, amino acids, proteins and Maillard reaction products (Aljadi 

& Kamaruddin, 2004; Al-Mamary et al., 2002; Frankel, 1998; Gheldof & 

Engeseth, 2002; Gheldof et al., 2002; Nasuti, et al., 2006; Schramm et al., 2003; 

Vela, 2007).  

 

Phenolic compounds commonly found in honey include phenolic acids, 

flavonoids and polyphenols. Honey phenolic acids can be protocatequic acid, p-

hydroxibenzonic acid, caffeic acid, chlorogenic acid, vanillic acid, p-coumaric 

acid, benzoic acid, ellagic acid, cinnamic acid (Estevinho et al., 2008), and 

flavonoids in honey consist of naringenin, kaempferol, apigenin, pinocembrin, 

chrysin, galangin, luteolin etc (Beretta et al., 2005; Estevinho et al., 2008). The 

large and complex flavonoids greatly contribute to honey color, flavor, anti-fungal, 

and antibacterial activity (Movileanu et al., 2000).  

 

The antioxidant capacity of different honeys depends on the floral sources used by 

bees to collect nectar, seasonal and environmental factors, as well as processing 

ways (Al-Mamary et al., 2002; Gheldof & Engeseth, 2002). Although the total 

antioxidant activity of honey is the combination of a wide range of active 

substances, the content of phenolic compounds can significantly reflect the total 

antioxidant activity of honey to some extent (Beretta et al., 2005). However, the 

level of phenolic compounds present in honey is not always positively 

proportional to its antioxidant activity (Al-Mamary et al., 2002; Küçük et al., 
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2007). The explanation for this activity may be due to the presence of variable 

types of polyphenols, thereby providing variable scavenging activity (Kücük et al., 

2007). Darker honey is likely to have a higher antioxidant contents than light-

colored honeys (Estevinho et al., 2008; Gheldof et al., 2002). As well, the 

antioxidant content is higher in honey with higher water content (Frankel et al., 

1998). 

 

In humans, after honey is consumed, an increase in plasma antioxidants has been 

reported, and the antioxidants give protection in the bloodstream and within cells 

(Schramm et al., 2003), demonstrating that the bioavailability and bioactivity of 

honey gives a high efficiency antioxidant transfer from honey to plasma. 

 

1.1.8 Manuka honey 

Manuka honey is a unifloral honey derived from the native manuka tree of New 

Zealand, Leptospermum scoparium (Weston et al., 1999). Manuka honey has been 

recognized to exhibit exceptionally high antibacterial activity (Allen et al., 1991; 

Russel et al., 1990), including the antibacterial property against Helicobacter 

pylori causing stomach and duodenal cancers (Somal et al., 1994). It is now most 

widely used in wound healing. A study by Allen et al., (1991) comparing the 

antibacterial activity of honey from different floral sources indicated that some 

manuka honeys and viper bugloss honeys can still retain antibacterial activity 

when tested in the presence of catalase, suggesting the presence of non-peroxide 

activity. Some works have identified methylglyoxal (MGO) as the component 

principally responsible for this non-peroxide activity (Adams et al., 2008; Mavric 

et al., 2008). However, not all manuka honeys possess this non-peroxide 
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antibacterial activity: this bioactivity present in manuka honey is only from 

specific localities (Molan, 1995). 

 

Besides the well-known antibacterial activity, manuka honey has shown 

significant antioxidant activity. The study by Inoue et al., (2005) revealed that a 

distinctively high level of antioxidant, methyl syringate, posed a specific 

scavenging activity for superoxide anion radicals, based on DPPH (1, 1-diphenyl-

2-picrylhydrazyl) radical scavenging systems. The methyl syringate is not only 

able to neutralize superoxide radicals, but also to bind iron so that the formation 

of extremely damaging hydroxide radicals generated from hydrogen peroxide is 

prevented (Brangoulo and Molan, 2010). 
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1.2 Free radicals 

Chemically, a free radical is any atom such as oxygen or nitrogen with at least one 

unpaired electron present, and is able to exist independently (Karlsson, 1997). 

Free radicals can easily be formed in three ways: 1) by the homolytic cleavage of 

a covalent bond, generally incurring by high energy input; 2) by the loss of a 

single electron from a normal molecule; 3) by addition of a single electron to a 

normal molecule (Cheeseman & Slater, 1993). These free radicals that are highly 

reactive molecules can be extremely damaging to the lipids, proteins and cellular 

DNA (Cochrane, 1991), which may lead to many biological complications, 

including carcinogenesis, mutagenesis, aging, and atherosclerosis (Halliwell & 

Gutteridge, 1989). 

 

The oxygen-derived free radical is an important group formed during metabolism. 

One of these reactions found in biological pathways is the respiratory burst 

process, which result in free radical products termed reactive oxygen species 

(ROS) (Halliwell & Guteridge, 1999; Winrow et al., 1993). Examples of ROS 

include superoxide, hydroxyl radicals, and non-oxygen free radical hypochlorites 

(Conner & Grisham, 1996).  

 

Investigations have suggested that ROS are involved in mediating of certain types 

of inflammatory tissue injury and the most likely sources of these oxidizing agents 

are produced via phagocytic leukocytes (Conner & Grisham, 1996). Activation of 

phagocytes via interaction of certain pro-inflammatory mediators or bacterial 

components with specific membrane receptors of leucocytes triggers the assembly 

of the multicomponent flavoprotein NADPH oxidase which catalyzes the 



 26 

production of superoxide anion radicals (Conner & Grisham, 1996; Klebanoff, 

1992). Superoxide will rapidly and spontaneously/enzymatically dismutase to 

produce hydrogen peroxide and other free radicals (Halliwell et al., 2000).  

 

Besides being produced from superoxide, hydrogen peroxide can also be 

generated by other oxidase enzymes, such as glycollate and monoamine oxidase, 

or by the peroxisomal pathway that is for β-oxidation of fatty acids (Chance et al., 

1979; Halliwell & Gutteridge, 1999). The production of hydrogen peroxide in 

human plasma was found to have involvement of an enzyme activity named 

xanthine oxidase (Lacy et al., 1998); the level of xanthine oxidase has been 

founded to increase as a result of tissue injury (Friedl et al., 1990). 

 

The main danger of hydrogen peroxide comes from its conversion to reactive 

hydroxyl radicals (•OH),  

                                                     H2O2 → 2• OH    

either by exposure to UV light (Ueda et al., 1996) or by interaction with some 

transition metal ions: Ti(III), Cu(II), Fe(II), or Co(II) in vitro (Halliwell & 

Gutteridge, 1999), and it seems the most important ion among them is iron 

(Halliwell & Gutteridge, 1990; 1999). Iron exists in two oxidation states: ferrous 

and ferric ions. The very important reaction of hydrogen peroxide with Fe(II) is 

the Fenton reaction: 

                                       Fe
2+

 + H2O2 → Fe
3+ 

+ •OH + OH
- 

Additional superoxide can also be generated by the reaction of Fe(III) with H2O2 

(Halliwell & Gutteridge, 1986): 

                                      Fe
3+

 + H2O2 → Fe
2+

 + 2H
+
 + O2·

-
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This reaction recycles the Fe(III) to the Fe(II) form, which can create more 

hydroxyl radicals from hydrogen peroxide. The hydroxyl radical, an extremely 

reactive species, has a short-term life as it immediately reacts with the nearest 

molecules non-specifically at diffusion-limited rates of reaction (~10
-7

 – 10
-10 

mol/l/s) (Conner & Grisham, 1996; Schreck et al., 1991). Hydroxyl radicals have 

been found to peroxidize lipids, oxidize proteins, and enhance DNA scission 

(Grisham, 1992). Chelating agents may inactivate metal ions; thereby potentially 

inhibiting the metal-dependent processes. 
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1.3 Antioxidants 

 

1.3.1 Introduction to antioxidants 

The name antioxidant is applied to any substance that significantly delays or 

prevents oxidation of an oxidizable substrate when present in low concentration, 

including every type of molecules found in vivo (Halliwell & Gutteridge, 1990). 

Natural antioxidants can be phenolic compounds (tocopherol, flavonoids, and 

phenolic acids), nitrogen compounds (alkaloids, chlorophyl substances, amino 

acids/peptides, and amines), carotenoid derivatives, and ascorbic acid (Hall & 

Cuppet, 1997; Hudson, 1990; Larson, 1988). Activity of antioxidants is tightly 

associated with a variety of biological effects, including anti-inflammatory, 

antibacterial, anti-allergic, anti-thrombotic, and vasodilatory actions (Cook & 

Sammon, 1996). 

 

1.3.2 Classification of phenolic compounds 

While there are various types of antioxidants present in honey, this review only 

focuses on phenolic compounds. Phenolic compounds or polyphenols are one of 

the most important groups originating from plants as secondary products (Bravo, 

1998). The most important classes of polyphenols are flavonoids and phenolic 

acids, with more than 5000 compounds already demonstrated (Bravo, 1998). They 

have been regarded to have effective antioxidant and radical scavenging activities 

(Takahama, 1998), based on acting in different mechanisms, such as free radical 

scavenging, hydrogen-donating, metal ion chelating. 
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Flavonoids are compounds of low molecular weight that commonly occur bound 

to sugar molecules and they can be categorized as flavonols (the most widely 

distributed flavonoids, including quercetin, kaempferol, and myricetin), 

flavanones, flavones, anthocyanidins and isoflavones (genistein and daidzein) 

(King & Young, 1999). The basic structure of flavonoids is demonstrated in 

Figure 1.1.  

 

 

Figure 1.1 Generic structure of flavonoids (Brovo, 1998) 

 

Flavonoids can act as antioxidants in various ways, including direct trapping of 

reactive oxygen species, inhibition of enzymes responsible for superoxide anions 

formation, chelation of transition metals involved in the processes of free radical 

formation, and prevention of the peroxidation process (Rice-Evans et al., 1996). 

 

Phenolic acids include hydroxybenzoic (the 2 major acids: ellagic and gallic acids) 

and hydroxycinnamic acids (King & Young, 1999). The hydroxybenzoic acids are 

mainly found in berries and nuts (Maas et al., 1991). The hydroxycinnamic acids 

consist of mainly coumaric, caffeic and ferulic acid, which are rarely found in the 

free form (D’Archivio et al., 2007). Caffeic acid is the most abundant phenolic 

acid, representing between 75% and 100% of the total hydroxycinnamic acids 
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contents in most fruits while ferulic acid is the most abundant phenolic acid found 

in cereal grains (D’Archivio et al., 2007). 

 

Tannins are high molecular weight polyphenols, which can either bind and 

precipitate or shrink proteins and other organic molecules including amino acids 

and alkaloids (King and Young, 1999). They are usually divided into two groups: 

condensed and hydrolysable substances; condensed tannins usually accumulating 

in outer layers of plants are polymers of catechins or epicatechins and 

hydrolysable tannins are polymers of gallic or ellagic acids (King and Young, 

1999). 

 

1.3.3 Antioxidant nature of phenolic compounds 

Different phenolic compounds such as phenolic acids, phenolic diterpenes, and 

flavonoids have different antioxidative effects (Mayer et al., 1998; Pietta et al., 

1998; Shahidi et al., 1992; Vinson et al., 1995). The study by Singleton and Rossi 

(1965) has indicated that some phenolic compounds may react faster than others 

under the same conditions.  

 

For monomeric phenolics, the antioxidant property is dependent on extended 

conjugation, arrangement of phenolic substituents as well as their numbers, and 

molecular weight (Hagerman et al., 1998). The flavonoids with the most hydroxyl 

groups can be most easily oxidized (Hondnick et al., 1988). The effectiveness of 

phenols to scavenge peroxyl radicals is due to their molecule structures containing 

an aromatic ring with hydroxyl groups and association with the activity of 

reducing and chelating ferrous ion that acts to catalyze lipid peroxidation (Al-
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Mamary et al., 2002; Arouma, 1994; Halliwell, 1990). The differences in 

antioxidant activity are closely related to structural dissimilarities (mainly the 

degree of hydroxylation and methylation of the compounds) (Mayer et al., 1998).  
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1.4 Objectives of the present project 

Previous studies have shown that honey contains significant level of antioxidants, 

thereby exhibiting specific antioxidant activity. Manuka honey has been widely 

used in wound treatment due to its superior antibacterial property and antioxidant 

activity is important in that. However, there are few studies on reporting 

antioxidant activity of phenolic components of manuka honey and the 

contributions of different phenolic components to the iron-binding and free radical 

scavenging antioxidant activity. The aim of this study was to extract the phenolic 

compounds from manuka honey and to identify the molecular structures of 

phenolic compounds responsible for each type of antioxidant activity (iron-

binding and free radical scavenging activity). The work will be performed by 

separating the components using column chromatography to obtain different 

fractions, assaying these fractions for both types of the iron-binding and free 

radical scavenging antioxidant activity, and then identifying the molecular 

structures responsible for each type of antioxidant activity after purifying them.   
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Chapter 2 Materials and Methods 

 

This chapter outlines the general materials and methods used throughout this 

study. The honey selection, chemicals used, chemical solution, and experimental 

procedures are given in detail.  

 

2.1 Materials 

 

2.1.1 Chemicals  

All reagents used in this study were analytical grade. Distilled water was used for 

common chemical solution preparation and double deionized water was used for 

FPLC system. 

 

ABTS (2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)                                                                                

                                                              Sigma Aldrich (St Louis, MO, USA)  

Acetonitrile                                           Ajax Finechem Pty Ltd              

β-Carotene                                            Sigma Aldrich (St Louis, MO, USA) 

Chloroform                                           BDH Chemicals Ltd (Poole, England) 

95% Ethanol                                         Ajax Finechem Pty Ltd                           

Ferrozine
® 

(3-(2-pyridyl)-5,6-diphenyl-1,2,4-tri-azine-4’,4”-disulfonicacid sodium 

salt)                                                       Sigma Aldrich (St Louis, MO, USA) 

Ferrous chloride                                    BDH Chemicals Ltd (Poole, England) 

HCl (hydrochloric acid)                        Univar, AR 

Linoleic acid                                         Sigma Aldrich (St Louis, MO, USA) 
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Methanol                                                Scharlab S.L Spain              

Potassium chloride                                 BDH Chemicals Ltd., AR 

Potassium di-hydrogen phosphate         BDH Chemicals Ltd. (Poole, England) 

Potassium hydroxide                              BDH Chemicals Ltd. (Poole, England) 

Potassium Persulfate                              BDH Chemicals Ltd. (Poole, England) 

Sodium acetate                                       May & Baker, AR 

Sodium chloride                                     BDH Chemicals Ltd. (Poole, England) 

Sodium formate                                      Scharlab S.L Spain 

Sodium hydrogen carbonate                   Prolabo, AR 

NaOH (sodium hydroxide)                     Scharlab, Reagent grade 

Trifluoroacetic acid                                May & Baker, AR 

Trolox
® 

(6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid) 

     
                                                            Aldrich Chemical Company              

Tween-40 (Polyoxyethylenesorbitan monopalmitate)                                                 

                                                               Sigma Aldrich (St Louis, MO, USA) 

 

2.1.2 Buffers and Solutions 

 

ABTS stock solution (7 mmol/l) 

The stock ABTS solution was prepared by dissolving 38 mg of ABTS powder in 

10 ml of Milli Q water. ABTS
·+

 cation radical was produced by adding 6.5 mg of 

potassium persulfate to have the final concentration of 2.45 mmol/l, and the 

mixture was allowed to react for 12-16 hours in the dark. 

  

β-Carotene emulsion 



 35 

1 ml of β-carotene solution at 4 mg/ml in chloroform was added to the mixture of 

100 mg Tween-40 and 10 mg linoleic acid in a 50 ml round bottom flask. The 

chloroform was evaporated at 40 
o
C with a rotary evaporator for 10 minutes. Then 

25 ml of deionized water was added to form an emulsion, while stirring. The 

emulsion was completely dissolved off the sides of the round bottom flask.  

 

Blank emulsion was also prepared as above; the 1 ml of β-carotene solution in 

chloroform was replaced with 1 ml chloroform for blank emulsion solution.  

 

0.25 mmol/l Ferrous chloride solution  

The stock ferrous chloride solution (1 mmol/l) was prepared by dissolving 12.6 

mg of ferrous chloride in small amount of deionized water, and making up to 100 

ml with deionized water. The 0.25 mmol/l ferrous chloride solution was prepared 

by diluting the stock solution (1 mmol/l) 1:3 in deionized water. 

 

Ferrozine® standard solution (1.5 mmol/l) 

The 7.5 mmol/l Ferrozine® stock solution was prepared by dissolving 37 mg of 

Ferrozine® with deionized water, and making the final volume of 10 ml. 

Ferrozine® standard solution (1.5 mmol/l) was prepared by diluting the stock 

solution (7.5 mmol/l) 1:4 in deionized water. 

 

0.01 mmol/l Hydrochloric acid  

About 0.86 ml of the concentrated hydrochloric acid (36%) was diluted to 100 ml 

deionized water. 

 



 36 

1.2 mmol/l Hydrochloric acid  

About 10.2 ml of the concentrated hydrochloric acid (36%) was diluted to 100 ml 

deionized water. 

 

10 mol/l Sodium hydroxide 

40 g of sodium hydroxide pellets were dissolved in distilled water, and diluted to 

100 ml. 

 

Trolox
®
 standard solution (0.2 mmol/l) 

The Trolox
®
 standard solution was prepared by diluting 2.0 mmol/l stock Trolox

® 

solution 1:9 with 95% ethanol. A 2.0 mmol/l stock Trolox
®
 solution was made by 

dissolving 25.0 mg of Trolox
®
 in 95% ethanol to make a volume of 50 ml. 

 

2.1.3 Laboratory instruments 

AKTA FPLC system (GE Healthcare)                 

BIO-RAD Model550 microplate reader    

Condensers 

Eppendorf centrifuge                                           

Eppendorf  pipettes 

Fluostar Optima (BMG Labtechnologies GmbH, Germany)  

FPLC system (Pharmacia, Sweden) 

Mass spectrophotometer (Bruker Daltonics' micrOTOF™)  

Magnetic stirrer                                                    

pH Meter         

Rotary evaporator 
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Vortex device 

Water-bath 
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2.2 Methods 

 

2.2.1 Honey samples 

The honey used for this study was a composite prepared by pooling 20 different 

batches of monofloral manuka honeys. It had a non-peroxide antibacterial activity 

rating of 14 (tested by Honey Research Unit). The manuka honey was provided by 

Honey Research Unit of The University of Waikato, Hamilton, New Zealand. The 

composite sample was labeled and stored at 4
 
°C until analytical processing.  

 

2.2.2 Extraction of phenolic compounds from manuka honey 

The procedures for extraction of honey phenolic compounds were performed as 

described by Weston et al., 1999. XAD-2 resin (54 g, about 100 ml) was soaked 

with a mixture of water and methanol (100 : 100 ml) in a 500 ml beaker overnight. 

The mixture was decanted and the resin was washed with water and then packed 

into a column (2 x 25 cm). The column was washed with 1 liter water.  

 

Precisely 100.00 g of honey sample was dissolved in 500 ml 0.01 mol/l HCl. The 

dissolved sample solution was filtered through glass filter paper and then added 

slowly to pass through the column, followed by 50 ml 0.01 mol/l HCl for eluting 

sugars and polar compounds, and then 150 ml of deionized water was run through 

the column. The phenolic compounds adsorbed to the XAD resin column were 

extracted with 150 ml of methanol. The methanol extract was rotary-evaporated to 

dryness under vacuum at 40
 
°C. The resulting residue was weighed and dissolved 

in methanol at a known concentration (40 mg/ml).  
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2.2.3 Antioxidant activity using the β-carotene-linoleic acid model system 

The β-carotene linoleic acid system used to assay the iron-binding antioxidant 

activity of sample was performed by the method described by Brangoulo & Molan 

(2010). The assay is based on the mechanism of bleaching of β-carotene that is a 

free radial-mediated event resulting from the free radicals formed from the 

oxidation of the linoleic acid. During this assay, β-carotene is undergoing a rapid 

discoloration in the absence of an antioxidant. The linoleic free radicals quickly 

attack the highly unsaturated β-carotene molecules. The loss of characteristic 

orange color due to double bonds’ oxidation can be monitored 

spectrophotometrically. 

 

The absorbance measurements for antioxidant activity were carried out with a 

Fluostar optima microtitre plate with one injection system (BMG Labtechnologies 

GmbH, Offenburg, Germany). The protocol for the assay on the plate reader 

software was created and used to analyze the plate.  Ferrozine® was used as a 

standard. The results were expressed as Ferrozine
®
 equivalent mmol/l of sample.  

 

The setting up of the 96-well flat-bottomed microtitre plate was shown below 

(Table 2.1): the plate was loaded with 30 µl of ferrous chloride solution (0.25 

mmol/l) in each well. Then 30 µl of deionized water was added to wells (A1, A2, 

A3, A4) as control solution; Next, 30 µl of Ferrozine® standard solution (1.5 

mmol/l) was added to B1, B2, B3, and B4. For solutions of honey or fractions, 30 

µl of sample solution was added to C1, C2, C3 and C4 and corresponding wells in 
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the following rows. Lastly, 150 µl of blank emulsion solution was added to A1 – 

H1, A5 – H5, and A9 – H9 to serve as blanks (Column1, 5, 9). 

 

Table 2.1 Setting up of microtitre plate for measuring antioxidant activity 

using the β-carotene-linoleic acid system. 

        1   2   3   4  5  6  7  8  9 10 11 12 

A 

B 

C 

D 

E 

F 

G 

H 

B Control B Sample 7 B Sample 15 

L Ferrozine®1.5mM L Sample 8 L Sample 16 

A Sample 1 A Sample 9 A Sample 17 

N Sample 2 N Sample 10 N Sample 18 

K Sample 3 K Sample 11 K Sample 19 

 Sample 4  Sample 12  Sample 20 

 Sample 5  Sample 13  Sample 21 

 Sample 6  Sample 14  Sample 22 

  

The filled plate was transferred to the plate reader. The pump of the plate reader 

was cleaned first with deionized water, and then loaded with β-carotene emulsion 

solution. The absorbance at 450 nm was measured for 10 minutes after injecting 

150 µl of β-carotene emulsion solution into each sample well. The initial 

measurement at time t=0 was made immediately after the injection. The plate was 

set up in shake mode after the injection and before each cycle. All determinations 

were made in triplicate. The assay was performed at 37 °C.  

 

The damage (%) or bleaching of β-carotene was calculated as: 
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Damage % = 100 x [1-(At/A0)]; where At and A0 were respectively the 

absorbance at determined time t=10 minutes and time t=0 minute.  

 

The protective effects of samples were evaluated as: 

Protective effect %= 100 x [(DC-DS)/DC]; where DC and DS were respectively 

the damage obtained in the control and sample. 

 

The protective effect of Ferrozine
®
 standard solution was plotted against its 

concentration. The protective effect of samples was converted into Ferrozine
®
 

equivalent in mmol/l of sample from the equation. The dilution factor of samples 

was taken into calculation.  

 

2.2.4 Free radical scavenging capacity using ABTS assay  

ABTS (2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) is often used to 

measure the antioxidant capacity of foods in agricultural and food industry. The 

ABTS assays used in this studyas were carried out as described by Brangoulo and 

Molan (2010). During the assay, ABTS is converted into its radical cation by 

addition of sodium persulfate. The resulting blue color ABTS cation is reactive 

toward most of antioxidants including phenolic compounds. When it reacts with 

phenolics, ABTS radical cation is converted to colorless neutral form, which can 

be monitored spectrophotometrically. 

 

The free radical scavenging antioxidant activity of samples was carried out by 

assaying ABTS cation radical decolonization in a microplate reader, with software 

that allowed end-point and kinetic measurements to be recorded. Trolox® was 
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used as a standard and the results were expressed as Trolox
®
 equivalent mmol/l of 

sample. For the antioxidant activity evaluation, the stock ABTS·+ solution (7 

mmol/l) was diluted with deionized water to obtain the absorbance in the range of 

2.0-2.4 OD (optical density) at 655 nm. To adjust the absorbance, 15 µl stock 

ABTS solution was added to 85 µl deionized water, and a further 100 µl deionized 

water was added to make the final dilution for absorbance reading. When the 

ABTS was required for the assay, 10 ml of working ABTS radical cation solution 

was prepared by converting 15 µl to 1.5 ml and 8.5 µl to 8.5 ml.  

 

A standard Trolox
®
 solution was prepared at 0.2 mmol/l in 95% ethanol. The 

samples were diluted to an appropriate degree so that the decrease in absorbance 

values due to scavenging was in the linear response range of the decolorizing of 

the radical solution. 

 

To prepare the 96-well flat-bottomed microtitre plate, each column of microtitre 

plate (eight replicates) was filled with blank, Trolox
®
 standard or sample solutions 

at a volume of 100 µl as shown in Table 2.2. After all wells were filled, an initial 

reading was taken to obtain the absorbance due to color variation of samples, 

which was termed ‘Blank’ in the calculations. The Endpoint Protocol was used to 

take the readings: Absorbance =655 nm, Filter = 405 nm; Shaking time = 9 sec 

prior to reading. 

 

 

 

 



 43 

Table 2.2 Setting up of microtitre plate for measuring free radical scavenging 

activity using the ABTS system. 

         1  2  3  4  5  6  7  8  9 10 11 12 

A 

B 

C 

D 

E 

F 

G 

H 

B T S          

L R A          

A O M          

N L P          

K O L          

 X E          

  1 2 3 4 5 6 7 8 9 10 

            

 

Then 100 µl of ABTS·+ solution was added to every well on the plate using a 

multi-channel pipettor in a stepwise manner column by column from left to right 

side in a 10 second interval. The entire filling of micro plate was 110 seconds and 

another 10 seconds normally to set the filled plate into the plate reader; the plate 

reader took 35 seconds to read a plate, based on the BIO-RAD Model 550 

microplate reader. The time taken to fill the plate and to start the second reading 

termed ‘Endpoint’ was recorded. The total time spent from 0 second when filling 

the first column to completing the reading of ‘Endpoint’ was used for Trolox® 

equivalent antioxidant activity calculation. The Endpoint Protocol was also 

employed to take these readings. Immediately, the third reading was taken using 

Kinetic Protocol to obtain absorbance readings. This was the rate of the ongoing 

reaction and the negative velocity was obtained as the absorbance obtained was 
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continuing to decrease.   Kinetic Protocol: Abs = 655 nm; No shaking time; 5 

readings to be taken at 25 second intervals;   Negative velocity to be calculated. 

 

Thus, three sets of data were obtained and saved as ‘Blank’, ‘Endpoint’, and 

‘Velocity report’. To determine the Trolox® equivalent values of samples, the 

calculations were based on the data obtained during running of the assay, which 

were: average ‘Blank” value for each column; average ‘Endpoint’ value of each 

column; average velocity of each column. 

Step 1: Determining true zero-time endpoint:  

‘True Endpoint’ = Average ‘Endpoint’ + [(average velocity) x (Time for slow 

reaction)]; 

Step 2: Determining the difference in OD between sample at ‘Endpoint’ and 

sample ‘Blank’, that is, the amount of color due to ABTS remaining after 

scavenging:  

Color due to ABTS remaining = ‘True Endpoint’ – OD of sample ‘Blank”; 

Step 3: Scavenging capacity of samples or Trolox
®

  standard:  

Scavenging = (OD of ABTS at start) – (OD of ABTS at ‘True Endpoint’) 

Step 4: Determination of Trolox® equivalent values: calculated by proportion 

with reference of the scavenging activity of samples to that of Trolox
®
 standard 

solution 

 Trolox® equivalent values = [(Scavenging at ‘True Endpoint’ by sample)/ 

(Scavenging by Trolox
®
 standard)] x (Trolox

®
 concentration) x dilution factor  

 

The final concentration of Trolox
®
 in the reaction mixture was 0.1 mmol/l. The 

final concentration of sample solution was depending on its dilution factor.  
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2.3 Statistical analysis 

All analyses were performed in triplicate. The chromatograms obtained were 

processed by CorelDRAW X4 software and the data obtained were processed by 

GraphPad Prism5 software. The results are expressed as mean ± SEM (standard 

error of the mean). The chromatogram shown was from a single experiment, 

representing 3 same experiments. 
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Chapter 3 Separation of Phenolic Compounds Based on 

Column Chromatography  

  

The aim of this chapter was to compare the antioxidant activity of fractions of 

phenolic extracts obtained in Section 2.2.2 using Superose 12 column with two 

eluent systems: 10% methanol and 30% acetonitrile (ACN) with HCl, pH = 2.0. 

After the eluent system of 30% ACN with HCl was confirmed to be suitable for 

phenolic compound separation, the phenolic extracts were fractionated using 

Sephadex G-25 column. The resulting fractions were subject to assaying of 

antioxidant activity so that the fractions with highest antioxidant activity can be 

further separated and purified. 

 

3.1 Comparison of antioxidant capacity of phenolic compounds 

separated using Superose 12 with two eluent systems 

 

3.1.1 Chromatography 

Superose 12 HR 10/30 is a prepacked column with narrow sized Superose, which 

is designed for high performance gel filtration of biomolecules, proteins, and 

peptides. Superose is a cross-linked, agarose-based medium that has enabled high 

flow rates at low back-pressures. The Superose 12 to be used has a bed volume of 

appropriately 24 ml, and it has the optimal separation range from 1 000 to 300 000 

in molecular weight, based on size exclusion. 
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Honey has been known to contain various phenolic profiles, particularly including 

tannins, flavonoids, and flavones. It is preferable to run the phenolic compounds 

with acidic eluent as some of flavonoids and tannins can autoxidize under the 

effect of alkali (Bandyukova & Zemtsova, 1970).  

 

(A) Method 

The Superose 12 column was connected to the AKTA FPLC system and the 

phenolic extract samples were injected to run through the Superose 12 column 

with two different eluent systems: 10% methanol, and 30% ACN with HCl. The 

equilibration was carried out first with 5 volumes of eluent at the flow rate of 0.8 

ml/min before sample injection.  

 

The experimental protocol was performed as below: Sample injection: 500 µl 

diluted phenolic extract (4 mg/ml); Eluent: 10% methanol; 30% ACN with HCl; 

Monitoring: 260 nm; Flow rate: 0.8 ml/ ml; Fraction collector: 1.6 ml per tube. 

 

(B) Results 

FPLC chromatogram of phenolic extracts of manuka honey, eluted with 10% 

methanol, indicated that there were several peaks obtained (Figure 3.1). The 

chromatogram of phenolic extracts eluted with 30% ACN with HCl is shown in 

Figure 3.2, indicating that several peaks were also obtained. 
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Figure 3.1 Chromatogram of phenolic compounds of manuka honey on 

Superose 12 column eluted with 10% methanol. Tube numbers are listed on X-

axis. Dotted lines mark the groups of tubes pooled for each fraction (F1—F5). 

 



 49 

 

Figure 3.2 Chromatogram of phenolic compounds of manuka honey on 

Superose 12 column eluted with 30% ACN with HCl. Tube numbers are listed 

on X-axis. Dotted lines mark the groups of tubes pooled for each fraction (F1—

F7). 

 

3.1.2 Assaying of antioxidant activity of fractions obtained from phenolic 

compounds  

To assay the antioxidant capacities of fractions obtained from the phenolic 

extracts by chromatography on Superose 12, the tubes containing each fraction 

were pooled as shown in Figures 3.1 and 3.2. Due to the use of highly 

concentrated phenolic compounds and complexity of phenolic profiles, both the 
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chromatograms did not show the clear and distinct separation. However, the 

chromatogram with 10% methanol (Figure 3.1) displayed that there was 5 main 

fractions obtained, and the chromatography with 30% ACN with HCl (Figure 3.2) 

indicated 7 major fractions present.  

 

The 5 fractions obtained from 10% methanol eluent system were concentrated to 

0.5 ml using rotary evaporator at 40 °C. The 7 fractions obtained from 30% ACN 

with HCl were adjusted pH to 7.0 by adding adequate amount of 1 mol/l NaOH, 

followed by using rotary evaporator at 40
 
°C to dryness and then dissolved in 0.5 

ml water. The assay of the antioxidant activity of phenolic extracts obtained off 

XAD column was also performed for comparison. The results for iron-binding 

activity based on inhibition of Fenton reaction using the β-carotene-linoleic model 

system are expressed as Ferrozine® equivalent (in mmol/l). The results for free 

radical scavenging activity measured on the ABTS system are expressed as 

Trolox® equivalent (in mmol/l). The results for both types of antioxidant activity 

are shown in Figure 3.3. 
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Volume (ml)

A
c
ti

vi
ty

(m
m

o
l/

l)

0.0

0.2

0.4

0.6

0.8

10% Methanol

 3.2   6.4   9.6  12.8 16.0 19.2  22.4 25.6 28.8  32.0 35.2 38.4 41.6 44.8 48.0 51.2 54.4 57.6

(A) Inhibition od Fenton reaction

F1

F2

F3

F4

F5

 

      
Volume (ml)

A
c
ti

vi
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Figure 3.3 Antioxidant capacities of fractions of phenolic extracts obtained by 

chromatography on Superose 12 column. Activity in (A) represents Ferrozine® 

equivalent in mmol/l and activity in (B) represents Trolox® equivalent in mmol/l. 

Values are expressed as mean ± SEM (n = 3). 
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3.1.3 Discussion 

The phenolic extracts were obtained off XAD column by the method described in 

Section 2.2.2. The extraction was performed in triplicate. The resulting residues 

were weighed and did not differ more than 5% (261 mg, 258 mg, and 264 mg). 

The average residue of phenolic compounds of manuka honey samples was 261 

mg per 100 g honey sample. The phenolic extracts were dissolved in methanol at 

a known concentration of 40 mg/ml. 

 

The phenolic extracts (40 mg/ml) had 2.48 mmol/l Ferrozine® equivalent activity 

and 260 mmol/l Trolox® equivalent activity. The total fractions separated with 

10% methanol had 2.17 mmol/l of Ferrozine® equivalent activity, compared with 

30% ACN with HCl, 2.12 mmol/l, and had 239.5 mmol/l of Trolox® equivalent 

activity, compared with 30% ACN with HCl, 233.6 mmol/l. The total antioxidant 

activity, including iron-binding and free radical scavenging activity, showed 

acceptable recovery rates: the lowest recovery rate of 85.5% for Ferrozine® 

equivalent activity obtained with 30% ACN with HCl and the highest recovery 

rate of 92.1% for Trolox® equivalent activity obtained with 10% methanol. The 

recovery rate was calculated by adding the activity value of each pooled fraction 

as the pooled fraction assayed was concentrated to have the same volume as the 

sample loaded on the column. 

 

The point of trying 30% ACN with HCl as the eluent was to see if this 

disaggregating solvent would decrease the size of the large (early-eluting) 

components seen in Figure 3.1, as these components could have been polyphenols 

bound to proteins. In Figure 3.1, the molecular weight of the peak at 9.6 ml in F1 
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was estimated at greater than 12 400 and the peak at 20.8 ml in F2 was around the 

range of 1 355 [the estimation of molecular weight was based on Superose 12 HR 

10/30 Instructions, Pharmacia Biotech: Cytochrome C (molecular weight = 12 

400) was eluted at 16 ml and Vitamin B12 (molecular weight = 1 355) was eluted 

at 20 ml]. F1 showed some antioxidant activity and F2 showed the highest activity 

for both types of antioxidant property among 5 fractions. The chromatogram 

obtained with 30% ACN with HCl (Figure 3.2) showed better separation than the 

eluent with 10% methanol. In Figure 3.2, both peaks at 18.4 ml (in F1) and 21.6 

ml (in F2) showed estimated molecular weight range of less than 12 400 and 

around 1 355. With 30% ACN with HCl system, F1 showed some antioxidant 

activity and F2 showed the highest activity among 7 fractions.   

 

 It was concluded that the acid eluent system did not change the total antioxidant 

capacity of phenolic compounds and it seemed there had been some dissociation 

of aggregated antioxidant. It is feasible to apply the phenolic extract to acid eluent 

system for further separation, and thus obtain the better resolution of peaks which 

this gave. 
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3.2 Separation of phenolic compounds selected using Sephadex G-

25 

 

3.2.1 Chromatography 

Sephadex has been found to pose a capacity of adsorbing aromatic compounds, 

especially phenols, and flavonoids and tannins were also found able to be 

adsorbed by Sephadex (Bandyukova & Zemtsova, 1970). Somers (1966) 

successfully used G-25 type Sephadex to isolate fractions containing tannins. At 

present Sephadex has been widely applied to separate various polyphenolic 

compounds. 

 

(A)Method 

The Sephadex G-25 column was made by filling a 3 x 24.8 cm column with 

Sephadex G-25 to have a bed volume of appropriately 175 ml. The column was 

initially washed with water and equilibrated with 400 ml 30% ACN with HCl. 

Then 10 ml of phenolic extract from the XAD column (Section 2.2.2) in 30% 

ACN with HCl was loaded on the column. A further 250 ml of 30% ACN with 

HCl was applied to run through the column at a flow rate of 1.6 ml/min. The 

elution was monitored spectrophotometrically at 260 nm and collected into tubes. 

The fraction collector was programmed to be 2.5 minutes per tube. The tubes of 

collected eluate were pooled into fractions, which were subject to assaying both 

types of antioxidant activity. 
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(B) Results 

Due to the high concentration of phenolic extract sample used, the elution profile 

from column chromatogram on Sephadex G-25 (Figure 3.4) was above the range 

of detector absorbance, so individual peaks were not seen.  

 

 

Figure 3.4 Chromatogram of phenolic compounds of manuka honey on 

Sephadex G-25 column eluted with 30% ACN with HCl. Tube numbers are 

listed on X-axis. Dotted lines mark the groups of tubes pooled for each fraction 

(F1—F10). 
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In gel filtration through Sephadex, the solute molecules greater than the pores of 

Sephadex granules in dimension should not be retained by the gel and the small 

molecules should be penetrated into pores and retained by the gel. Consequently, 

large molecules or phenolic compounds bound to proteins should go through the 

column directly and small molecules be eluted. The first 15 tubes were pooled 

together as fraction1 (F1). The rest of tubes were divided evenly as every 5 tubes 

were pooled to form a fraction. Thus 10 fractions were obtained, among these 

fractions; the first fraction was 60 ml and each of the other fractions was 20 ml. 

 

3.2.2 Assaying of antioxidant activity of fractions obtained from Sephadex G-

25 

The pH of the fraction was adjusted to 7.0. The adjusted fractions were then dried 

using a rotary evaporator at 40
 
°C and dissolved in 10 ml deionized water. 

Samples of each 10 ml fraction solution were taken for both types of antioxidant 

activity assays. Where any sample solution was required to be diluted for assays 

the dilution factors were taken for activity calculation. The results for antioxidant 

activity are listed in Figure 3.5.  
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Figure 3.5 Antioxidant capacities of the phenolic extracts and its fractions 

obtained by chromatography on Sephadex G-25 column. Activity in (A) 

represents Ferrozine® equivalent in mmol/l and activity in (B) represents Trolox® 

equivalent in mmol/l. P.E = phenolic extracts loaded on the column; T.Fs = total 

activity of fractions. Values are expressed as mean ± SEM (n = 3). 
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3.2.3 Discussion 

According to the data presented in Figure 3.5, the total fractions separated from 

G-25 had 2.45 mmol/l of Ferozine® equivalent activity and 255.6 mmol/l of 

Trolox® equivalent activity, which was 98.3 % and 98.80 % recovery of the 

original activity, respectively. The both types of antioxidant activity were mainly 

attributed to fraction 4, which was eluted from 100 to 120 ml. This fraction 4 was 

then taken for sequent separation using G-25 again. The fraction 4 was subject to 

dryness using a rotary evaporator at 40 °C and then concentrated to 2.5 ml 30% 

ACN with HCl. The resulting solution was labeled F.A for convenience.  
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3.3 Re-chromatography of fraction 4 on Sephadex G-25 

 

3.3.1 Chromatography 

(A) Method 

The fractionation of F.A using column G-25 was carried out as before (Section 

3.2.1 A). 2.5 ml of F.A was loaded on the column. The flow rate remained at 1.6 

ml/min and the elution was monitored spectrophotometrically at 260 nm. 

However, the fraction collector was changed to 2 minutes per tube, that is, each 

tube contained 3.2 ml of eluate. This was so as to have eluted peaks in more tubes, 

which was able to help divide fraction accurately.  

 

(B) Results 

The elution profile from Sephadex G-25 column chromatography is shown in 

Figure 3.6. Due to the high concentration of the material in F.A loaded on the 

column, the absorbance reading was over the detector range. The tubes collected 

were pooled into 6 fractions as shown in Figure 3.6.  
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Figure 3.6 Chromatogram of F.A of phenolic compounds on Sephadex G-25 

column eluted with 30% ACN with HCl. Tube numbers are listed on X-axis. 

Dotted lines mark the groups of tubes pooled for each fraction (F1—F6). 

 

3.3.2 Assaying of antioxidant activity of fractions obtained from F.A  

All of the fractions obtained by pooling were adjusted pH to 7.0 with NaOH first, 

then dried using a rotary evaporator at 40 °C, and dissolved in 5 ml water. Both 

types of antioxidant activity were assayed and the results are shown in Figure 3.7. 
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Figure 3.7 Antioxidant capacities of F.A of phenolic compounds obtained by 

chromatography on Sephadex G-25 column. Activity in (A) represents 

Ferrozine® equivalent in mmol/l and activity in (B) represents Trolox® 

equivalent in mmol/l. T.Fs = total activity of fractions. Values are expressed as 

mean ± SEM (n = 3). 
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3.3.3 Discussion 

The total 6 fractions separated from G-25 showed 99.5% recovery rate for 

Ferrozine® equivalent activity and 99.8% recovery rate for Trolox® equivalent 

activity. However, as can be seen, there was large SEM obtained in the iron-

binding assay, this high recovery rate of Ferrozine® equivalent activity might not 

be very accurate, but the main Trolox® equivalent activity of the F.A was 

recovered.  

 

Comparing the antioxidant activity of the 6 fractions obtained, the main 

antioxidant activity was greatly attributed to fraction 4 (tubes 35 to 39), which 

was eluted from 108.8 to 124.8 ml. The fraction 4 showed 54.9% recovery rate for 

Ferrozine® equivalent activity and 43.7% recovery rate for Trolox® equivalent.  

 

Fraction 4 was then taken for re-chromatography on Sephadex G-25 column again. 

As the phenolic compounds are relatively small molecules, compared to other 

main substances in honey, it would be also valuable to take fraction 5 (tubes 40 to 

44) for further investigation. 
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3.4 Repeated re-chromatography of fraction 4 and 5 on Sephadex 

G-25  

 

3.4.1 Chromatography 

(A) Method 

Both fractions 4 and 5 were dried using a rotary evaporator at 40
o
C and then 

dissolved in 2.5 ml of 30% ACN with HCl. The resulting solution from fraction 4 

was labeled F.B4 and the resulting solution from fraction 5 was labeled F.B5 for 

convenience. The chromatography of F.B4 and F.B5 was carried out using 

Sephadex G-25 as previously (Section 3.3.1 A). 2.5 ml of the sample was loaded 

on the column at a flow rate of 1.6 ml/min, and the elution was monitored 

spectrophotometrically at 260 nm. The elution was collected as 3.2 ml per tube 

and the tubes of eluate were pooled into fractions. 

 

(B) Results 

Due to the high concentration of the material in F.B4, the elution profile from 

column chromatography on Sephadex G-25 was above the detector range of 

absorbance, so individual peaks were not seen. The fractions obtained were 

pooled into 6 fractions as shown in Figure 3.8. 
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Figure 3.8 Chromatogram of F.B4 of phenolic compounds on Sephadex G-25 

column eluted with 30% ACN with HCl. Tube bumbers are listed on X-axis. 

Dotted lines mark the groups of tubes for each fraction (F1—F6). 
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Figure 3.9 Chromatogram of F.B5 of phenolic compounds on Sephadex G-25 

column eluted with 30% ACN with HCl. Tube numbers are listed on X-axis. 

Dotted lines mark the fraction to be taken for further investigation. 

 

The elution profile of F.B5 from column chromatography on Sephadex G-25 

(Figure 3.9) showed a major peak obtained. As fractions with higher absorbance 

had been found to have higher antioxidant activity in the preceding 

chromatograms, the tubes from 34 to 38 were taken for assaying of antioxidant 

activity and for further investigation using Superdex Peptide. 
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3.4.2 Assaying of antioxidant activity of fractions obtained from F.B4 and 

F.B5  

To assay the antioxidant activity, the fractions pooled from F.B4 were adjusted pH 

to 7.0 first, dried using a rotary evaporator at 40 
o
C, and then dissolved in 2.5 ml 

water.  The fraction obtained from pooling tubes 34 to 38 of F.B5 was evaporated 

and re-dissolved in 2.5 ml water after pH adjustment to 7.0. The results obtained 

from F.B4 are shown in Figure 3.10 and the results obtained from F.B5 are shown 

in Figure 3.11. .  
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Figure 3.10 Antioxidant capacities of fractions from F.B4 obtained by 

chromatography on Sephadex G-25 column. Activity in (A) represents 

Ferrozine® equivalent in mmol/l and activity in (B) represents Trolox® 

equivalent in mmol/l. T.Fs = total activity of fractions. Values are expressed as 

mean ± SEM (n = 3).  
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Figure 3.11 Antioxidant capacity of the fraction (tubes 34–38) from F.B5 

obtained by chromatography on Sephadex G-25 column. Activity for 

inhibition of the Fenton reaction represents Ferrozine® equivalent in µmol/l and 

for free radical scavenging activity represents Trolox® equivalent in mmol/l. 

Values are expressed as mean ± SEM (n = 3). 

 

3.4.3 Discussion 

The 6 fractions obtained from F.B4 had the total of 99.2% recovery rate for 

Ferrozine® equivalent activity and 94.9% recovery rate for Trolox® equivalent 

activity. However, there was large SEMs obtained in assay for iron-binding type 

of activity of 6 fractions, the total recovery rate might not be accurate. 

 

Comparing the activity of the fractions obtained from F.B4, both types of 

antioxidant activity were mainly retained in fraction 3 (tubes 30 to 34) and 4 

(tubes 35 to 39) from F.B4, which were eluted from 92.8 to 124.8 ml. In order to 
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find out the phenolic compound responsible for highest antioxidant activity 

including the iron-binding and free radical scavenging activity, fraction 3 and 4 

from F.B4 were taken for sequent separation using G-25 sephadex again.  

 

The fraction pooled from tubes 34 to 38 of F.B5 showed the 74.6% recovery rate 

F.B5 for Ferrozine® equivalent activity and 80.3% for Trolox® equivalent activity.  
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3.5 Chromatography of selected fractions on Sephadex G-25 

(fourth)  

 

3.5.1 Chromatography 

(A) Method 

Each of fractions 3 and 4 from F.B4 was dried using a rotary evaporator at 40
o
C 

and then dissolved in 2.5 ml of 30% ACN with HCl. The resulting solution from 

fraction 3 was labeled F.C and the resulting solution obtained from fraction 4 was 

labeled F.D for convenience. The combined solution from F.B5 was similarly 

dried and re-dissolved in 2.5 ml 30% ACN with HCl. This resulting solution was 

labeled as Pool 5 and was stored frozen in the dark for future separation with 

Superdex Peptide. 

 

The re-chromatography of separation of F.C and F.D using Sephadex G-25 

column was performed as before (Section 3.3.1 A). The flow rate remained at 1.6 

ml/min and the elution was monitored spectrophotometrically at 260 nm. The 

elution was collected as 3.2 ml per tube.  

 

(B) Results 

A total 50 tubes was obtained for F.C and F.D each. The chromatography results 

are shown in Figure 3.12 for F.C and Figure 3.13 for F.D.  
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Figure 3.12 Chromatogram of F.C obtained with Sephadex G-25 column. 

Tube numbers are listed on X-axis. Dotted lines mark the groups of fractions to be 

taken for further investigation. 

 

Due to the high concentration of F.C, the absorbance reading was over the 

detector range. The F.C showed highest absorbance range from tubes 32 to 35, 

which were eluted from 99.2 to 112 ml. This volume range was  matching the 

main antioxidant activity retained in elution from about 100 to 120 ml in the 

preceding chromatograms. The tubes 32 and 33 were pooled together for assaying 
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of antioxidant activity as well as for further separation, similarly, the tubes 34 and 

35.  

 

 

Figure 3.13 Chromatogram of F.D obtained with Sephadex G-25 column. 

Tube numbers are listed on X-axis. Dotted lines mark the groups of fractions to be 

taken for further investigation. 

 

Due to the high concentration of F.D, the absorbance reading was over the 

detector range. The F.D showed highest absorbance range from tubes 32 to 36, 

which were eluted from 99.2 to 115.2 ml. This volume range was  matching the 

main antioxidant activity retained in elution from about 100 to 120 ml in the 
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preceding chromatograms. The tubes 32 and 33 were pooled together; similarly, 

the tubes 34, 35 and 36 were pooled together for activity assaying and further 

separation.  

 

3.5.2 Assaying of antioxidant activity of fractions obtained from F.C and F.D  

Both the pools made from tubes 32 and 33 of F.C and from tubes 34 and 35 of F.C 

were 6.4 ml. The pool from tubes 32 and 33 of F.D was 6.4 ml, and the pool made 

from tubes 34, 35, and 36 of F.D was 9.6 ml. Because their volumes were 

relatively small, it became difficult to adjust pH for assaying of antioxidant 

activity, and these pools were present in acid form, the antioxidant function could 

be affected by the state of ionization of phenolic and carboxylic groups.  

 

Thus, it was necessary to check if the low pH value altered the antioxidant activity. 

The way to do this would be pooling small samples of the various fraction pools, 

and diluting them as much as the activity can be still measured. Besides, a sample 

for assaying activity in the acidic form was also prepared for comparison before 

neutralization. In this way, a large enough volume can be obtained for pH 

adjustment to 7.0. The results of the antioxidant activity of the combined solutions 

in acid form and pH 7.0 are showed in Figure 3.14. 
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Figure 3.14 Antioxidant capacities of the fractions obtained from F.C and 

F.D in acid and neutralized form. F.C1= tubes 32 and 33 of F.C; F.C2 = tubes 

33 and 34 of F.C; F.D1 = tubes 32 and 33 of F.D and F.D2 = tubes of 34, 35 and 

36. Activity in (A) represents Ferrozine® equivalent in mmol/l; Activity in (B) 

represents Trolox® equivalent in mmol/l. Values are expressed as mean ± SEM (n 

= 3). 
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3.5.3 Discussion 

It seemed that the low pH value did not alter the antioxidant activity of fractions 

selected. Since the fractions to be taken were in small volumes in sequent 

experiments, the assaying of antioxidant activity was performed in acid form 

without pH adjustment.  

 

The 4 pools obtained from F.C and F.D showed significant iron-binding and free 

radical scavenging types of antioxidant activity. Comparing the antioxidant 

activity of F.C, the tubes 34 and 35 in 105.6 – 112 ml had the highest activity; 

similarly, the tubes 34, 35, 36 of F.D in 105.6 – 115.2 ml had the highest activity, 

indicating that the elution from 105.6 to 115.2 ml had a lot of antioxidant activity. 

The next step was necessary to establish a method that was to separate the 

compounds responsible for each type of antioxidant activity. 
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3.6 Separation of phenolic compounds using Superdex Peptide 

 

3.6.1 Chromatography 

Superdex Peptide HR 10/30 is a pre-packed column for size exclusion 

chromatography of peptides and other small biomolecules. It is made of the 

covalent bonding of dextran to highly crossed-linked porous agarose beads. It has 

a separation range of 100 to 7 000 in molecular weight. The column has an 

internal diameter of 10 mm and about 30 cm in length, which gives a bed volume 

of appropriately 24 ml. 

 

(A) Method 

The 4 pools obtained from F.C and F.D in Section 3.5.1 were concentrated to 1/10 

of their original volume using a rotary evaporator at 40
 
°C to dryness then re-

dissolved in 30% ACN with HCl. The resulting pool from tubes 32, 33 of F.C was 

labeled as Pool 1, and the pool from tubes 34, 35 of F.C was labeled as Pool 2. 

The pool from tubes 32, 33 of F.D was labeled as Pool 3, and the pool from tubes 

34, 35, 36 was labeled as Pool 4. The pool from F.B5 obtained in Section 3.4.1 

was labeled as Pool 5. These five pools were subject to running through Superdex 

Peptide HR 10/30. 

 

First, the column connected to the AKTA FPLC system was equilibrated with 30% 

ACN with HCl for 5 column volumes of solvent at a flow rate of 0.6 ml/min. The 

experiment protocol was then set up as below: Sample injection: 100 µl; Eluent: 

30% ACN with HCl; Spectrometer: 220, 260, and 280 nm simultaneously; Flow 

rate: 0.6 ml/ ml; Fraction collector: 0.6 ml per tube. 



 78 

 

(B) Results 

The results from FPLC chromatogram for each pool on Superdex Peptide are 

shown in Figures 3.15 – 3.19. For each pool, there clearly were several peaks 

obtained, showing that successful separation was achieved.  

 

 

Figure 3.15 FPLC chromatogram of Pool 1 on Superdex Peptide column. 

Tube numbers are listed on X-axis. Dotted lines mark the tubes selected for each 

fraction (F1—F6). 
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Figure 3.16 FPLC chromatogram of Pool 2 on Superdex Peptide column. 

Tube numbers are listed on X-axis. Dotted lines mark the tubes selected for each 

fraction (F1—F7). 
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Figure 3.17 FPLC chromatogram of Pool 3 on Superdex Peptide column. 

Tube numbers are listed on X-axis. Dotted lines mark the tubes selected for each 

fraction (F1—F6). 
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Figure 3.18 FPLC chromatogram of Pool 4 on Superdex Peptide column. 

Tube numbers are listed on X-axis. Dotted lines mark the tubes selected for each 

fraction (F1—F6). 
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Figure 3.19 FPLC chromatogram of Pool 5 on Superdex Peptide column. 

Tube numbers are listed on X-axis. Dotted lines mark the tubes selected for each 

fraction (F1—F7). 
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3.6.2 Assaying of antioxidant activity of fractions of the five pools obtained 

from chromatography on Superdex Peptide 

Each peak obtained from chromatography of all five pools was taken for activity 

assay. The tube corresponded to the highest absorbance in each peak was taken, as 

shown in Figures 3.15 – 3.19. Where any elution of central peak spanned the two 

tubes, both tubes were pooled together.  

 

The contents of the tubes taken from the peaks from the 5 pools were concentrated 

to 0.5 ml and assayed directly without pH adjustment. The results of the 

antioxidant activity of fractions of the 5 pools are expressed in Figures 3.20 and 

3.21. Ferrozine® equivalent activity for all pools was expressed in µmol/ml due to 

the iron-binging activity getting smaller and smaller. Tube numbers are used in 

figures in order to compare the activity of each pool easily. The activity of the 

peak assayed by taking two tubes is expressed as tube number & tube number 

with double bars. The recovery rate of antioxidant activity of the pools loaded on 

the column and the total of fractions is also listed in Table 3.1.  
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Figure 3.20 Inhibtion of Fenton reactions of the fractions obtained from the 5 

pools on Superdex Peptide. The activity represents Ferrozine® equivalent in 

µmol/l. 
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Figure 3.21 Free radical scavenging activity of the fractions obtained from 

the 5 pools on Superdex Peptide. The activity represents Trolox® equivalent in 

mmol/l. 
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Table 3.1 Comparison of antioxidant capacities of the 5 pools loaded and the 

fractions separated on Superdex Peptide. Inhibition of the Fenton reaction is 

expressed as Ferrozine® equivalent in µmol/l and free radical scavenging activity 

is expressed as Trolox® equivalent in mmol/l. Values are expressed as mean ± 

SEM (n = 3). 

 

Pool 

Number 

Ferrozine® equivalent (µmol/l) Trolox® equivalent (mmol/l) 

Activity 

of pool 

loaded 

Total 

activity of 

fractions   

Recovery 

rate (%) 

Activity 

of pool 

loaded 

Total 

activity 

of 

fractions 

Recovery 

rate (%) 

1 62.0 ± 0.01 58.0± 2.68 93.5 10.0±0.38 8.9 ±0.17 89.0 

2 244 ± 0.01 194.9±0.01 79.9 12.8±0.78 11.5±0.06 89.8 

3 63.0 ±0.005 58 ± 4.2 92.1 6.54±0.03 5.8 ±0.06 88.7 

4 43.0±0.004 38.2 ± 2.23 88.8 6.28±0.02 6.0 ±0.20 95.5 

5 97.0 ± 5.17 82.2 ± 2.78 84.7 18.4±0.69 17.3±0.28 94.0 
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3.6.3 Discussion 

Separations of the pools containing the phenolic compounds by FPLC 

chromatograms and subsequent assay of antioxidant activity of the fractions 

obtained have indicated that all of the pools had similar, but quantitatively 

different phenolic profiles. 

 

The phenolic compounds responsible for free radical scavenging activity in five 

pools fractionated were distributed in different tubes, mainly in tubes 28, 29, 30, 

32 and 33, indicating that several phenolic components were the potential to serve 

as antioxidants responsible for free radical scavenging.  

 

The iron-binding type of antioxidant activity in Pool 1 when fractionated was 

mainly distributed in tube 28 and 38 and the other pools (Pool 2, 3, 4, and 5) when 

fractionated had this type of antioxidant activity mainly in tube 38. In particular, 

pool 2 presented a clear separation for an unknown phenolic profile, and this 

separated fraction was dominantly responsible for the iron-binding type of 

antioxidant activity. The reference elution volume of glycyl – glycyl - glycine with 

a molecular weight of 189 was at 18 ml (Superdex Peptide Instructions, 

Pharmacia Biotech). The fraction 5 in Pool 2 was eluted at 22.8 ml, suggesting 

that it was eluted later than it was expected for its molecular size. This can happen 

with gel permeation chromatography media because substances can bind to the 

gel polymer, rather like in RPC. This happens particularly with media for 

separating a low molecular weight range, as there is a lot of polymer to get small 

pore sizes in the gel.  
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The purpose of this study was to characterize the antioxidant components from 

phenolic extracts of manuka honey. Due to the importance of the property of 

preventing free radical formation by antioxidants, and because of time constraint, 

only fraction 5 (tube 38) of Pool 2, representing the highest iron-binding 

antioxidant activity in pools, was considered for structure identification. 
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Chapter 4 Identification of the Phenolic Compounds 

Responsible for Iron-binding Type of Antioxidant Activity 

 

The aim of this chapter was to identify by UV and mass spectra methods the 

structure of the major antioxidant compound obtained in Section 3.6.1.   

 

4.1 Identification of the phenolic compounds by UV spectrum 

 

4.1.1 Method 

The comparison of UV spectra of flavonoids in methanol and in the presence of a 

number of spectral shift reagents is always useful to provide information on their 

structures (Markham & Mabry, 1975). The spectra comparison method has been 

used for examining the UV spectra in methanol or methanol + aluminium chloride 

+ HCl for more than 140 flavonoids (Voirin, 1983). 

 

As the sample, fraction 5 (in tube 38) of Pool 2 obtained on Superdex Peptide, had 

relatively small amount at unknown concentration, it became difficult to add the 

adequate amount of reagents: aluminium chloride and HCl. For this reason the UV 

absorption spectrum was found without the addition of spectral shift agents. The 

sample was dried using a rotary evaporator and directly dissolved in 1 ml of 

methanol. The resulting sample was scanned from the wavelength of 200 to 600 

nm.  



 90 

4.1.2 Results 

The result of UV spectrum is shown in Figure 4.1. Three main peaks were present: 

the first peak was at 304 nm; the second peak was at 325 nm, and the third one 

was at 351 nm.  

 

 

Figure 4.1 Spectrum of the fraction 5 (in tube 38) of Pool 2 obtained by 

chromatography on Superdex Peptide at wavelength ranged from 200 to 600 

nm. 

 



 91 

4.1.3 Discussion 

Because phenolic compounds show chemical complexities and similarities, the 

isolation and identification have been challenging. For flavonoids, they make their 

UV spectra very characteristic, which has two main absorption bands observed: 

Band I (300 – 380 nm) is due to absorption of ring B and Band II (240 – 280 nm) 

is due to absorption of ring A (Stafilov et al., 2010). The UV spectrum of the 

sample exhibited no absorption in the region of 240 – 280 nm, which suggested 

that it was unlikely to be a flavonoid.  
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4.2 Identification of the phenolic compounds by mass 

spectrometry 

 

4.2.1 Method 

A mass spectrophotometer is usually applied to convert the individual molecules 

to ions so that the individual molecules can be moved and manipulated by 

external electric and magnetic fields, which enables the ions detected 

electronically. The mass spectrum is normally presented as a vertical bar graph. 

The resulting data are stored and analyzed for characterization of the individual 

molecules. The ion formation and manipulation are conducted in a vacuum, as the 

ions are very reactive and short-lived.  

 

The sample, fraction 5 (in tube 38) of pool 2 obtained from chromatography on 

Superdex Peptide in Section 3.6.1, was identified as characteristic mass fragment 

ions using Bruker Daltonics' micrOTOF™ spectrophotometer in positive 

ionization mode. The standard settings were used and sodium formate was used as 

the calibration standard. The sample dissolved in methanol was infused via 

syringe pump at 180 ml/hour.  

 

The system parameters were listed below: 

Source type: ESI;       Ion Polarity: Positive;        Set Corrector Fill: 47 V 

Scan begin: 200 m/z;    Set Capillary Exit: 100.0 V;    Set Pulsar Pull: 398 V 

Scan end: 1200 m/z;     Set Hexapole RF: 400.0 V;     Set Pulsar push: 398 V 

Set Skimmer 1: 33.3 V;   Set Hexapole 1: 25.0 V;       Set Reflector: 1300 V 

Set Flight Tube: 9000 V;                           Set Detector TOF: 1976 V. 
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4.2.2 Results 

The sample was ionized by electron bombarding to present its spectrum (Figure 

4.2). 

 

 

Figure 4.2 Positive ion spectrum of the fraction 5 (in tube 38) of Pool 2 

obtained by chromatography on Superdex Peptide. 
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4.2.3 Discussion 

It was detected that the difference between the peaks at m/z 803, 625 and 447 was 

178 in Figure 4.2. Sakushima et al. (1988) studied the positive and negative ion 

mass spectra of flavonoid glycosides, and their results showed that the positive 

ion spectrum of flavonol 3,7-O-diglucosides exhibited fragment ions due to the 

loss of the terminal sugar of glycosides. The structure they had of m/z 611 

(molecular weight 610 + H
+
) got broken by the loss of a glucose ring side of the 

linking oxygen to m/z 449. The part that broken off had a molecular weight of 163, 

but the m/z decreased by only 162 (611 – 449 = 162). There was also a peak at 

m/z 443 present, and this was expected to be from the break occurring on the 

other side of the linking oxygen of glucose, which gave the broken part with a 

molecular weight of 179, decreasing the m/z by 178. 

 

In this study, the largest molecule detected was m/z 803. The loss of a 178 

fragment would take the 803 peak down to m/z 625 (803 – 178 = 625), and the 

loss of another 178 fragment would taok it down to m/z 447 (625 – 178= 447). 

Given the findings of Sakushima et al. (1988) mentioned above, this 178 fragment 

could be a sugar molecule. If the two 178 fragments were sugars, the smallest 

fragment after breaking off these two sugar units would be 446 + H
+ 

or 424 + Na
+
. 

As the original substance before sugars added would have had at least two 

hydroxyl groups to which the sugar units attached, it should have the molecular 

weight of 446 plus the addition of two oxygen atoms (molecular weight. 32), 

which was 478, or 424 + 32 = 456.  

 



 95 

By looking up all types of structures for phenolics, it seemed that only flavonoids 

would match the molecular weight and types of fragments. However, this outcome 

was contrasy to the conclusion reached in Section 4.1. In order to confirm that the 

fragment with molecular weight of 179 that broke off were sugars or some other 

components attached by an ester linkage, the fraction obtained from 

chromatography on Superdex Peptide was hydrolyzed by refluxing in acid, and 

then fractionated using a RPC (reversed phase column) on the FPLC system. 
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4.3 Hydrolysis of the phenolic compounds for FPLC analysis 

 

4.3.1 Hydrolysis 

The hydrolysis of the sample was carried out as described by Nuutila et al. (2002). 

Briefly, 1 ml of the sample was hydrolyzed by refluxing at 80 °C for 2 hours in 

1.2 mol/l HCl in 50% aqueous methanol. Then the hydrolyzed sample was 

concentrated to 500 µl by rotary evaporator at 40 °C and then centrifuged for 5 

minutes at RPC 5000.  

 

4.3.2 Chromatography 

The hydrolysate was analyzed using a Source 15RP Column connected to the 

FPLC system at room temperature. The Source15 RPC (3 ml) is a polymeric, 

reversed phase chromatography medium based on rigid, mono-disperse 

polystyrene/divinylbenzene.  

 

The running program was as follows: 

Sample injection: 200 µl; Eluent: methanol; H2O with 300 µl/l trifluoroacetic 

acid; Monitoring: 280 nm; Flow rate: 1.3 ml/min; Fraction collector: 1.3 ml 

per tube.  

 

From time 0 to 20 minutes, the sample was run at 20-60% gradient of methanol in 

water with 300 µl/l trifluoroacetic acid. After 20 minutes, the system remained 

running with 60% methanol in water with 300 µl/l trifluoroacetic acid till the end. 

Once each run was done, the column was washed with 100% methanol for 2 
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minutes, then returned to 20% methanol and re-equilibrated for next analysis. The 

results from FPLC are shown in Figure 4.3. A total of 58 tubes were obtained. 

 

 

Figure 4.3 FPLC chromatogram of the hydrolyzed sample on Source 15RPC. 

Tube numbers are listed on X-axis. Dotted lines mark the tubes pooled for each 

fraction (A, B, and C). 
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4.3.3 Discussion 

There were three main peaks obtained with the column. As the study by Nuutila et 

al. (2002) stated that the hydrolyzed standard mixture of flavonoids and phenolic 

acids from onion and spinach was completely detected with clear peaks at 280 nm, 

only the three main peaks obtained by hydrolysis were taken for mass spectra 

identification. Thus, each peak was pooled as shown in Figure 4.3 and the 

resulting pools were dried using a rotary evaporator at 40 °C
 
, then re-dissolved in 

0.5 ml methanol, which were named A, B and C for convenience. However, 

sugars or isoprenoids released by hydrolysis would not have been detected by 

absorbance at 280 nm. 
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4.4 Mass spectrometry of the components obtained from 

hydrolysis 

 

4.4.1 Method 

The MS identification of the components released by hydrolysis was performed as 

previously (Section 4.2.1.).  

 

4.4.2 Results 

The mass spectra for A, B and C are showed in Figures 4.4. 
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Figure 4.4 Positive ion spectra of A, B and C from hydrolysis of the fraction 5 

(in tube 38) of Pool 2 on Superdex Peptide.  
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4.4.3 Discussion 

Fraction B in Figure 4.4 had the peak at m/z 803 (same peak as in Figure 4.2), 

and B and C both had peaks greater than m/z 800, it demonstrated that B and C 

were molecules that did not hydrolyze. The mass spectra of B and C also showed 

that was possibly fragmentation of these, or possibly contained components 

released by hydrolysis. 

 

The peak at m/z 447 obtained in the first mass spectra run was possibly the same 

fragment as the peak at m/z 425 in B and C obtained after hydrolysis, the 447 

peak being with a Na
+
 added on, but the 425 peak in B and C with an H

+
 added on.  

 

Fraction A was probably the component of the molecule that was released by 

hydrolysis. The two 178 fragments broken off to get the 625 and 447 peaks in the 

original mass spectra run (Figure 4.2) would not have been detected in the FPLC 

monitoring at 280 nm if they were sugar molecules or might be other non-

phenolic molecules. These two fragments would be eluted between the fractions 

collected. 

 

The difference in m/z between 459 in A and 425 in B and C would be because 

when hydrolysis occurred (rather than fragmentation in MS) the elements of water 

would have been added on. When the two 178 components were released they 

were replaced each with OH (2 x 17), adding 34 to 425 to give 459. As the charge 

in m/z 459 was due to addition of H
+
, the molecular weight of the non-sugar 

component would be 458. The phenolic compound responsible for iron-binding 

type of antioxidant activity could be the molecule with molecular weight of 458.   
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There was another consideration, A was much more polar than B and C, as it was 

eluted early in the gradiect of methanol. Removal of sugars would make 

molecules less polar), so the fragments of mass 178 were probably not sugars. 

Another possibility was compound prenylation (de Freitas & Mateus, 2001). If the 

fragments removed were prenyl groups, it would be a flavonoid. Tannins if 

hydrolyzed would release phenolic compounds which would have been detected 

in UV monitoring of reverse phased FPLC system of the hydrolysate.  Similarly, 

if the components of mass 458 were esterified with a phenolic acid (Hong et al., 

2001), then the fragment of mass 178 removed by hydrolysis would have been 

detected in the monitoring on the RPC FPLC system.  
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4.5 Summary and future work 

 

4.5.1 Summary 

This study examined the antioxidant activity of phenolic extracts from manuka 

honey and separated the phenolic compounds mainly responsible for antioxidant 

activity. The results have shown that manuka honey had antioxidant activity of 

both the iron-binding and free radical scavenging types of activity. The phenolic 

extracts from manuka honey partially contributed to the total antioxidant activity 

of manuka honey.  

 

A separated unknown phenolic compound was significantly responsible for the 

iron-binding antioxidant activity measured by the β-carotene-linoleic acid system. 

This compound was taken for molecular identification. The other phenolic 

components of manuka honey were responsible for most of free radical 

scavenging activity. The identification of the phenolic compound selected by UV 

and mass spectra methods suggested that it could be the molecule with molecular 

weight of 458.  

 

4.5.2 Recommendation for future work 

In order to accurately identify the molecular structure of the phenolic compound 

obtained on Superdex Peptide, the work that should have been done included:  

(1) Run the fraction obtained from Superdex Peptide on Source15 RPC before 

hydrolysis, this was important to see if there was more than one substance 

present. Some of the components in the peaks after hydrolysis may have been 

extra substances in the peak from Superdex Peptide; 
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(2) Collect all components from hydrolysis (including those not absorbing UV) to 

characterise these by finding out their absorption spectrum as well as their 

molecular weight on MS; 

 

(3) Test any component of the hydrolysate of molecular weight 180 with 

colorimetric reagents that detect sugars, and if found to be a sugar then use an 

enzymic glucose test to find if the sugar is glucose; 

 

(4) If it is not glucose but is a sugar, then run FPLC to identify which sugar it is; 

 

(5) If it is not a sugar then run GC-MS (gas chromatography-mass spectrometry), 

as a volatile derivative if necessary, to find what it is;  

 

(6) Find the UV absorption spectrum of the peak from Superdex Peptide, and of 

the components from hydrolysis, with and without aluminium and other additives, 

to see if the compound has a spectrum matching that of other known polyphenols;  

 

(7) Prepare a larger quantity of the peak samples from Superdex Peptide, followed 

by RPC if RPC shows more than one substance present, so that NMR (nuclear 

magnetic resonance) spectroscopy can be run on the purified antioxidant so its 

structure can be identified. 
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