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ABSTRACT 

This thesis is about soil properties and their spatial distribution on the Ruataniwha 

Plains in central Hawke’s Bay. The Ruataniwha Plains are situated between the 

Ruahine Ranges in the west, Takapau in the south and Waikpukurau in the east. 

Soil moisture deficits are common in the Ruataniwha Plains and the underlying 

aquifers are currently fully allocated for irrigation. The central Hawke’s Bay 

irrigation scheme (the scheme) has thus been proposed. The Ministry of 

Agriculture and Forestry has recently made available the ‘Irrigation Acceleration 

Fund’ to “support the potential for irrigated agriculture to contribute to sustainable 

economic growth throughout New Zealand”. The Ministry for the Environment 

has also recently published the National Policy Statement on Fresh-Water 

Management (2011), which regulates to ensure that not only are life-supporting 

capacities related to water maintained, but also to ensure that water quality is 

improved. A sufficient level of detail about the properties and spatial distribution 

of soils in the Ruataniwha Plains is therefore required to evaluate the potential 

changes in productivity, versatility and environmental impacts from the scheme. 

Although information about the spatial distribution of soils in the Ruataniwha 

Plains is available at 1:50,000, more detailed soil information not currently 

available, will be required at the feasibility, resource assessment, concept design 

and implementation stages of the scheme (1:25,000–1:5,000, respectively). 

Information about the physical, chemical and hydrological properties of the soils 

of the Ruataniwha Plains will also be required, but is currently very limited in 

availability.  

 

A land systems model has been developed. Existing information about the 

properties of the soils of the Ruataniwha Plains has been reclassified using the 

New Zealand Soil Classification and S-Map systems, thus enabling correlation to 

national datasets about soils with similar properties. Correlation to the national S-

Map database has also provided new estimates of soil properties using 

pedotransfer functions that can be rapidly updated nation-wide. By combining 

legacy soils data and that derived from the S-Map database, a n ew soils-based 

land use capability (LUC) map and associated database have been developed. The 

hainsworths
Typewritten Text
ii



LUC data can be linked to maps of any scale, provided the soil map units are 

classified using the S-Map family and sibling nomenclature. The new LUC map 

assumed that all land had been artificially drained where necessary and 

incorporated data about the spatial distribution of currently irrigated farms in the 

Ruataniwha Plains. Drainage and soil moisture deficit limitations were removed 

thus resulting in upgrades of LUC units in the relevant areas of the LUC map. The 

resultant LUC information includes estimates of productivity for each LUC unit. 

The total productivity of the soils of the Ruataniwha Plains, in the current (2011) 

scenario was calculated. A second, hypothetical, scenario was developed, where 

all soils in the Ruataniwha Plains were assumed to be irrigated, and the total 

productivity of all of the soils in the Ruataniwha Plains under this future scenario 

was compared with the current (2011) scenario, showing an increase in 

productivity. The value of this process is the demonstration of a viable method for 

comparisons of the impact of irrigation on general versatility and productivity. 

Information about soil properties derived from the reclassification of the original 

soils information into the nomenclature of the S-Map and LUC systems was used 

to evaluate the soils of the Ruataniwha Plains for their versatility for orchard 

cropping, and their suitability for the application of farm dairy effluent. 

 

A new 1:25,000 scale digital soil map of the Ruataniwha Plains was produced. 

Landforms were spatially delineated at 1:25,000 using aerial photograph 

interpretation. Flow-direction, topographic wetness index and curvature co-variate 

layers were produced from a LiDAR-based 6.25m DEM. The co-variate layers 

were reclassified into landform components within landforms within field-based 

training windows, then extrapolated across the Ruataniwha Plains using the 

1:25,000 landforms map. The training windows were also used to validate 

previously determined soil-landscape relationships. These soil-landscape 

relationships were then applied to the landform-landform component map to 

produce the final soil map. 

 

Keywords: Hawke’s Bay, land-systems model, New Zealand Soil Classification, 

S-Map, Land Use Capability, irrigation, versatility, productivity, digital soil map 
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Chapter 1: Introduction 

1.2. Background to the study 

This thesis is about soil properties and their spatial distribution on the Ruataniwha 

Plains in central Hawke’s Bay (the Ruataniwha Plains). A proposal to construct 

reservoirs on the west of the Ruataniwha Plains for the purpose of irrigation is 

being considered. Groundwater for irrigation is already fully allocated in the area 

and the water from the reservoirs is expected to allow production to be increased. 

Before the irrigation proposal can become a reality the following questions need 

to be answered: 

1. How much will productivity be able to be sustainably increased? 

2. What impact will this increase have on the environment? 

 

Soil information is fundamental to answering these questions and is thus the 

subject of this thesis. Should the proposal be successful, the process through to 

implementation is likely to involve the following stages: 

1. Selling the concept; 

2. Council decisions; 

3. Community consultation; 

4. Broad-brush SWOT analysis (Strengths, Weaknesses, Opportunities, 

Threats); 

5. Resource assessment and concept design; and 

6. Farm scale design and implementation. 
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Different levels of detail of soil information will be required for each step of the 

process including that already available (Table 1): 

 

Table 1: Required and available soil information. 

Scale Scale of Required Soil 

Information 

Soil Information Currently 

Available 

Selling the concept 
• 1:50,000 soil map 

• Broad estimate of: 

 Hydraulic properties 
 Water holding characteristics 
 Productivity 
 Propensity for leaching and 

erosion 

• 1:250,000 soil map 

• 1:50,000 soil map and bulletin 

• New Zealand Land Resource 

Inventory 

• Fundamental Soil Layer 

• Soil information correlated from 

similar soils the Heretaunga 

Plains: 

 National Soils Database 
 Soil Water Atmospheric 

Properties database 
Resource 
assessment and 
concept design 

• 1:25,000 

• Moderate level of understanding 

about the above soil properties 

N/A 

Specific design and 
implementation • 1:5,000. 

• Specific farm scale level of 

understanding about the above 

soil properties 

N/A 

 

Unlike the Heretaunga Plains to the north, where there are 1:50,000 and 1:25,000 

soil maps, in the Ruataniwha Plains the largest scale maps are 1:50,000, with an 

associated soil bulletin. The map and bulletin were both recently updated 

(Griffiths et al., 2004). The bulletin provides in-depth information about soil-

landscape relations, origin of landscapes and parent materials, and soil hydraulic 

and erosion information. There is no longer a record of the existing soil profile 

descriptions that were used to compose the 1:250,000 soil maps (Department of 

Soil and Industrial Research, 1954) or the 1:50,000 soil maps (Griffiths, 1975; 

Griffiths et al., 2001). Important institutional knowledge has been lost. 
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Information about productivity and erosion is provided by the New Zealand Land 

Resource Inventory (NZLRI) Worksheets (Noble, 1976; Stephens, 1976; Stephens 

and Redpath, 1976, 1977;  Stephens et al., 1976, 1977, 1978 ). The NZLRI 

information is summarised and augmented by t he Land Use Capability (LUC) 

classification system for Southern Hawkes Bay and Wairarapa (Noble, 1985) 

which groups the NZLRI map units into LUC suites. However, this LUC 

information does not take into account the following: 

1. The increase in productivity from farms in the area since the 

information was published; 

2. The production of the Griffiths et al. (2001) soil map; 

3. The update in the classification of land using the LUC survey method 

(Lynn et al., 2009); or 

4. The extent of irrigation in the area at this time, or the extent of the 

irrigation proposed. 

 

There are very few published soil profile descriptions or analyses that have been 

conducted within the Ruataniwha Plains (Griffiths, 1985; NSDB, 2011). Most 

information of this sort is gleaned from correlation from similar map units in 

surrounding areas. Much of the information held in this legacy data is hidden to 

most users of the information. A process of integrating this information with 

current classification systems and databases is required to maximise its value. 

 

For the irrigation proposal to proceed it will be important to produce new, detailed 

information about soil properties and soil distribution. Detailed soil information 

traditionally has a high cost. Information for the irrigation project will need to be 

produced in a fast, cost-efficient manner that can be produced in a stepwise 

fashion as f inance becomes available. The map information also needs to be 

scalable.  
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The need for soil information on t he Ruataniwha Plains has arisen at the same 

time as advances are occurring in the following areas: 

1. The New Zealand Soil Classification (NZSC) (Hewitt, 2010); 

2. Pedotransfer functions (Webb, 2003); 

3. S-Map (Lilburne, Hewitt et al., 2004; Hewitt et al. 2006); 

4. Object-based identification assessment and fuzzy logic (Schmidt and 

Hewitt, 2004); 

5. Geospatial digital soil mapping;  

6. Production of high resolution digital elevation models (DEMs) through 

LiDAR; and 

7. Soilscapes and the Global Soil Map project (Hewitt et al., 2010a; 

Hewitt et al., 2010b). 

 

Many of the above developing techniques are likely to be useful in the production 

of new soil information in the Ruataniwha Plains.  

 

Until recently the soils in the Ruataniwha Plains had been difficult for land 

managers and end users to correlate with soils beyond the region, because the 

soils are formed in such a co mplex mix of alluvial parent materials, pans and 

subtle microtopography. Conversion of the soil series of Griffiths (2004) into 

more commonly used NZSC units and S-Map siblings has not yet occurred. The 

combined use of high resolution DEMs from LiDAR with digital object-based 

identification on plains has not been trialled in New Zealand. Similarly, S-Map 

based soil maps have not previously been used to produce LUC maps and 

productivity information.  

 

1.3. Aim 

This thesis project thus aimed to optimise the value that can be gained from 

existing legacy soils data on the Ruataniwha Plains and to develop a method to 

augment that information using new techniques. Streamlined approaches to field–

based pedological analysis will be developed using a combination of land 
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systems, S-Map and geospatial GIS methodologies. The utility of existing legacy 

data will be enhanced using a combination of land systems theory, the NZSC, the 

LUC system, pedotransfer functions and S-Map. New soil maps will be produced 

using a combination of a land systems approach and delineation of landform 

elements derived from high resolution LiDAR-based DEMs.  

 

1.4. Hypothesis 

By combining a land systems approach with the digital identification of landform 

components from derivatives of 2.5 m resolution LiDAR data, a new more 

detailed soil map can be produced for the Ruataniwha Plains.  

 

1.5. Objectives and thesis structure 

The thesis was written as co nsecutive chapters, the results being integrated and 

summarised in Chapter 7. 

 

Objective 1: Present legacy land resource information about the Ruataniwha 

Plains in a land systems framework.  

 
Chapter 2: An introduction to the Ruataniwha Plains 

A land systems framework was developed for the Ruataniwha Plains. Location, 

climatic setting, landforms and soils were examined. The extent of information 

available in its existing format was examined and described. 

 

Objective 2: Enhance legacy soils information through use of the NZSC and S-

Map. Evaluate the extent of new information that these processes 

make available. 

 

Chapter 3: Categorising soils in new ways to maximise utility 

Legacy soils information was reclassified into NZSC format and entered into a 

proxy for the S-Map database. New information arising from these processes was 
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described. The extent of new information that can be made be available through 

the legacy information being reframed in S-Map format was exemplified by 

calculation of estimated total available water holding capacities using a 

pedotransfer function. 

 

Objective 3: Develop a new method to update LUC information for New 

Zealand plains using legacy soils information. Produce information 

about sustainable production under different irrigation scenarios. 

 

Chapter 4: Creating new LUC data from land systems and S-Map 

A new approach to updating LUC information plains in New Zealand, derived 

from legacy information using a combination of land systems and S-Map 

approaches was described. A description shows how this new LUC information 

has been used to provide estimates of potential levels of sustainable production in 

the Ruataniwha Plains under different irrigation scenarios.  

 

Objective 4: Evaluate the potential for land use change in the Ruataniwha Plains 

through the consideration of two high-value, water-intensive land 

uses already established in the area. Evaluate the environmental 

risks of these scenarios. 

 

Chapter 5: Assessing versatility and environmental risk 

Land versatility for orchard crops in the Ruataniwha Plains is assessed. The 

suitability of soils of the Ruataniwha Plains for the application of Farm Dairy 

Effluent (FDE) was also evaluated, along with the potential for adverse 

environmental effects two scenarios. The scenarios take into account the current 

extent of irrigation in 2011 a nd a hypothetical scenario where all of the 

Ruataniwha Plains were irrigated.  
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Objective 5: Produce more detailed soil information for the Ruataniwha Plains. 

 

Chapter 6: Combining classical and digital techniques to produce a more detailed 
soil map 

Classical and digital soil mapping techniques have been combined to produce a 

new detailed soil map of the Ruataniwha Plains. The landscape was categorised 

into different hierarchical levels, with new digital information being combined 

with existing soil-landscape relationships and field-based training windows to 

produce the final map.  

 

Chapter 7: Synthesis and summary 

The process of extraction of soil and land information from legacy data using a 

variety of classification systems in an iterative process has been summarised. The 

description of legacy information in Chapter 2 within a land systems framework 

and the reclassification into NZSC, S-Map, LUC and horticultural versatility 

systems is outlined. Finally, the production of new, more detailed soil and land 

information is summarised. Future sampling strategies have been recommended to 

produce new information in areas where it has not currently been possible.  
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Chapter 2: An introduction to the Ruataniwha Plains 

2.1. Introduction 

The Ruataniwha Plains are located immediately east of the Ruahine and Wakarara 

Ranges. The underlying geology of the area is dominated by T ertiary and 

Quaternary sediments. A thick layer of complex alluvial and aeolian deposits 

overlie these sediments, with subdued landscape features and microtopography 

delineating various combinations of soil types in the area. The nature and 

distribution of soils in the area is extraordinarily complex compared with those of 

many New Zealand landscapes. 

 

2.2. Location 

The Ruataniwha Plains in central Hawke’s Bay abut the eastern flanks of the 

Ruahine and Wakarara ranges and are situated approximately 7 k m west of the 

towns of Waikpukurau and Waipawa (shown in Figure 1 be low). The area 

encompassed by the Ruataniwha Plains stretches from villages of Takapau in the 

south to Tikokino in the north, being around 35 km southwest of Hastings and 70 

km northeast of Palmerston North. The village of Ongaonga (NZTM 1891825E, 

5576775N) is approximately in the centre of the Ruataniwha Plains.  

 
Figure 1: Location of the Ruataniwha Plains 

Accurate to 

1:50,000 

N 
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2.3. Climate 

The Ruataniwha Plains are known for their early growing season, common soil 

moisture deficits and the unpredictable timing of those deficits.  

 

The long-term average annual rainfall ranges from 800–1,200 mm/yr in the east 

and is greater than 1,200 mm/yr towards the Ruahine and Wakarara ranges in the 

west (Griffiths, 1985). However, the variability in annual rainfall is high.  

 

Windspeed is low to moderate to the east and higher closer to the ranges.  

 

2.4. Geological history of the Ruataniwha Plains 

The Ruataniwha Plains are located in an area of compression atop the zone where 

the Pacific Plate subducts west under the Indo-Australian plate. The Ruataniwha 

Plains are surrounded by north-north-easterly trending faults and folds that date 

back to early Tertiary times (Kingma, 1962). Kingma (1962) stated that the rocks 

underlying the Ruataniwha Plains date to late Miocene times, when massive 

calcareous siltstones and sandstones were laid down in a marine environment. The 

sediments that formed these rocks are thought to have come from the south, prior 

to the formation of the Ruahine Range. At this time, land to the east emerged from 

the sea, and stayed above sea level to the present day. 

 

During the early Pliocene, the Ruahine and Wakarara horsts were uplifted to the 

west of what is now the Ruataniwha Plains. At the same time the Ruataniwha 

sedimentary basin was formed. A long, narrow seaway existed between Wairarapa 

and Hawke Bay. At first calcareous siltstone and sandstone was deposited, but as 

the sea shallowed, the Te Aute limestone formation was formed.  

 

The deposition of various marine sediments including sands, silts and thin layers 

of limestone continued into the early Pleistocene (c. 2.58 million calendar (cal.) 

years before present (B.P.), to eventually be replaced by deposition of a mixture 

of near shore and terrestrial gravels, sands and silts, with sporadic bands of 

pumice. While much of this material still underlies the Ruataniwha Plains, closer 

to the ranges in the west these sediments have been uplifted and form deeply 
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incised high terraces and foothills. The gravels in these sediments are highly 

weathered (Kingma, 1962).  

 

As the glaciations of the Quaternary progressed, loess and tephra were blown 

about and deposited. When the Last Glaciation finished, large fans of gravel 

formed where the rivers and streams came out of the ranges. Subsequent erosion 

and redeposition formed the extensive aggradational terraces that are found in the 

landscape of the Ruataniwha Plains today (Griffiths, 2004). These are the so-

called ‘red metals’, namely the Takapau-age sediments.  

 

Since their formation, the aggradational terraces of the Ruataniwha Plains have 

been affected by tectonsim. Closer to the Ruahine ranges in the west there has 

been a high rate of uplift and the aggradational terraces are significantly more 

physiographically differentiated than in the east where the terraces have been 

downthrown relative to the uplift of the limestone ridge between Ruataniwha and 

Waipukurau.  

 

Two other periods of erosion and deposition occurred between the Takapau 

sediments being deposited and the low terraces being formed: Tikokino (pre-

Waimihia tephra) and Ruataniwha (post-Waimihia tephra) sediments. The 

Waimihia Tephra is aged c. 3.2 cal. ka. Lastly, recent alluvial terraces and 

floodplains have been formed, predominantly in the low-lying area where the 

rivers and streams all join to pass through a narrow gap in the hills to 

Waipukurau. These terraces include Hastings (non-flooded and rarely flooded 

terraces) and Flaxmere-age sediments (frequently flooded). 

 

2.5. Groundwater 

Underlying the Ruataniwha Plains is a significant and valuable groundwater 

resource. The aquifer is recharged in the higher land to the west, closer to the 

Ruahine and Wakarara ranges, and then migrates eastwards. The geological 

structure separating the Ruataniwha Plains from the land around Waipawa and 

Waipukurau also prevents groundwater from migrating any further east. The 

groundwater becomes artesian approximately in a line that runs north to south 
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through Ongaonga and Tikokino. This resource is currently fully allocated for 

irrigation purposes.  

 

2.6. Landforms and parent materials 

Development of a modified land systems approach 
Land systems methodology provides a fast, cost-efficient way of soil mapping. It 

involves putting a number of soil-landscape models into a structured format based 

on easily recognisable features in the landscape (Hill, 1999). The method allows 

for soil maps to be produced at different scales and different levels of integrity 

while preserving the institutional knowledge about how the maps were originally 

produced. This process allows: 

1. Maps to be modified in the future if new concepts or data become 

available; 

2. Different scales of mapping in different land systems; 

3. The opportunity to constrain and highlight issues that require further 

investigation; and 

4. To produce a fit-for-purpose map (Hill, 1999). 

 

The land systems approach is similar to the LUC survey method. Both approaches 

are designed to be fast and to collect information about a range of environmental 

factors, not just soil (Gibbons and Downs, 1964; Lynn et al., 2009). The 

approaches then diverge, the land systems methodology following a landform-

based cascade (Tonkin, 1994) and the LUC survey method focussing on 

arrangement of land based on its capacity for sustainable production (Lynn et al., 

2009). 

 

The land of the Ruataniwha Plains historically has been categorised by 

geomorphology (Griffiths, 1985, 2004; Noble, 1985; Griffiths et al., 2001) and by 

parent material. The Griffith’s approach to categorisation by l and systems 

incorporated both hierarchical stratification of land into landscapes and landform 

elements. The prediction of soil distribution was based on soil-landscape models 

that took into account landscapes and landform elements. The resultant soil 
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information contains a wealth of information about fundamental soil 

characteristics, but no versatility assessment or land use capability assessment has 

been carried out using this information. The Noble (1985) approach aggregated 

some land types from different land systems and landforms together, thus blurring 

the characteristics and landscape position of some soils. The LUC approach is 

important as a versatility index, providing information about constraints to 

cropping, pastoral and forestry uses, along with information about productivity. 

This approach can be used to demonstrate the potential changes in versatility and 

production that are likely to occur as a result of further irrigation on the 

Ruataniwha Plains. 

 

The geomorphic hierarchy used in this project is based on a combination of 

methods presented by L ynn and Basher (1994), Hill (1999), Noble (1985) and 

Milne et al. (1995). The land systems model used in this project is a synthetic 

model which links soil-landscape modelling with LUC classification of land. In 

this case the LUC suites for the Ruataniwha Plains have been adjusted to be 

equivalent to land systems (geomorphically constrained), rather than continuing to 

be determined by parent material. To reflect this linkage, the land systems in this 

project have been called LUC suites. 

 

The geomorphic units used in this study are ordered from largest to smallest as 

shown in Table 2 – a synthesis of concepts from Lynn and Basher (1994), Milne 

et al. (1995) and Hill (1999). Landscapes are at the top of the hierarchy 

(recognisable at c. 1:250,000 scale), followed by LUC suites, landforms, landform 

components through to landform elements (recognisable at c. 1:3,125–12,500 

scale). Minimal relief and DEM constraints inhibit the identification of every 

landform element within land components in the study area. However, the main 

land components of interest (bars, plains, planar slopes, channels and hollows) are 

represented by singular landform elements. This means that landform elements 

are be recognisable at 1:12,500 scale on the intermediate and low terraces in the 

study area.  

  

12



Table 2: The geomorphic hierarchy of the Ruataniwha Plains 

Term Definition Geomorphic units Scale 
Landscape Geomorphic zone, 

macrorelief unit • Low terraces 

• Intermediate 

terraces 

• High terraces 

c. 1:250,000 
 

LUC Suite Recurring pattern of 
topography containing 
similar groups of 
landforms 

• Floodplains and 

terraces 

• Older terraces 

without pans 

• Older terraces with 

pans 

c. 1:50,000 

Landform Individual  
physiographic unit 
with uniform shape 
and range of landform 
components/elements. 
Recurring range of 
age and parent 
material 

• Low terrace, rarely 

flooded 

• Intermediate 

terrace, 

unweathered gravels 

• Intermediate 

terrace, red gravels, 

low net leaching 

c. 1:25,000 

Land component 
 

Microtopographic 
units with similar 
curvature 

• Bar 

• Channel 

• Plain 

• Backplain 

c. 1:12,500 

Landform element Form elements that 
make up land 
components 

• Ridge 

• Peak 

• Plain 

• Planar slope 

• Channel 

• Hollow 

c. 1:3,125–1:12,500 

 

The use of a land systems approach involves the incorporation of a geomorphic 

hierarchy with soil-landscape models. The soil landscape models used in this 

project originate from Griffiths (2004) and Griffiths et al. (2001). Most of these 

are cerebral models, although many of the soils of the low terraces landscape have 

correlatives in Griffiths (2001) which provides a range of diagrammatic models. 
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In this project all of Griffith’s models have been drawn on to produce synthetic 

models, linking concepts from S-Map and LUC survey methods. The question of 

what level of the geomorphic hierarchy of this project is most appropriate for the 

application of soil landscape models is driven by: 

1. The level of uniformity of soils of the higher levels; and  

2. The constraints of using topography to identify soils. 

 
Landforms and parent materials of the Ruataniwha Plains 

The Ruataniwha Plains are composed of low and intermediate terraces and high 

terraces/foothills, as shown in Figure 2, Table 3 and Appendix 1. 
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Figure 2: Distribution of LUC suites on the Ruataniwha Plains

15



 
 

Table 3: Proposed geomorphic hierarchy 

Landscape LUC suite (Land system) Landform Land component  

Low terraces 
  
  
  
  
  
  
  

Floodplains and terraces. Present to c. 1.9 cal. ka 
(Suite 1) 
  
  
  
  
  
  
  

Floodplain (LT 1) 
  
  

Backplain 
Bar 
Channel 

Rarely flooded (LT 2) 
  
  
  

Backplain 
Bar 
Channel 
Hollow 

Non flooded (LT 3) Bar 
Intermediate terraces Ruataniwha alluvium from Mesozoic origins, c. 1.9–3.5 cal. ka 

(Suite 2) 
Alluvium (RT) Bar 

Channel 
Terrace tread 

    
    
  Tikokino alluvium from Castlecliffian origins, c. 3.5–6 cal. ka 

(Suite 3) 
Alluvial fan (TF) Hollow 

  Alluvium and gravels (TT) 
  
  
  

Channel 
Hollow 
Bar 
Terrace tread 

  
  
  
  Takapau alluvium from tephra and loess, c. 6–10 cal. ka 

(Suite 4) 
Low leaching on Red Metal (TkL) Channel 

    Hollow 
  Moderate leaching on Red Metal (TkM) Bar 
    Terrace tread 
  High leaching on Red Metal (TkH) Bar 
    Terrace tread 
High terraces or foothills Suite 5 Not investigated Not Investigated 
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High terraces and foothills 

The landscape of the high terraces and foothills contains highly dissected terraces, 

eroded hillsides and sediment-filled gully bottoms. Broad ridges and terrace 

remnants tend to contain mainly loess with a thin layer of tephras in the topsoil. 

Hillslopes and terrace risers contain patches of moderately deep loess over 

Castlecliffian sediments. Gully bottoms contain a mixture of redeposited tephra, 

loess and Castlecliffian sediments. 

 

The landforms of the high terraces landscape have been aggregated one LUC 

suite, Suite 5. This suite has not been evaluated further. The land in this land 

system was considered either too high for irrigation, generally moist year round or 

too steep for sustainable intensive land use under irrigation. 

 

Intermediate terraces 

The landscape of the intermediate terraces contains suites 4, 3 and 2. 

 

The TkH and TkM landforms are both part of Suite 4. Suite 4 is widespread over 

the Ruataniwha Plains. The TkH and TkM landforms both contain appreciable 

quantities of allophanic soil materials close to the soil surface, although the 

former contains more and in places to a greater depth. The soil parent materials on 

the TkH landform are similar to those on the TkM landform. The TkH landforms 

tend to have a higher elevation and are exposed to an orographic effect from the 

Ruahine and Wakarara ranges.  

 

The TkM landform has variable microtopography but is dominated by a uniform 

cover of tephric alluvium. Some areas are dominated by an extensive planar 

surface, interspersed with a few wide channels. Other areas contain distinctive bar 

and channel microtopography typical of fluvial environments.  

 

The TkL landform occurs within depressions and channels in the TkM landform. 

These landforms are separated by physiographic position of land components and 
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soil type only (Griffiths, 2004). The parent materials of TkL landforms are 

composed of tephric alluvium overlying loessial alluvium (Griffiths, 2004). 

 

Suite 3 i s composed of the landforms TT and TF. These landforms exist where 

material that has been eroded out of the Castlecliffian sediments from Suite 6 and 

has been washed down channels and as f ans obscuring parts of the surface of 

Suite 5 (Griffiths, 2004).  

 

The RT landform within Suite 2 also comprises the product of weathered material 

that has washed down into a range of channels and basins atop suites 3 a nd 4 

within Suite 5. All of the soils in this landform contain cemented pans, mostly in 

the middle to lower part of the soil profile, in keeping with the layered nature of 

the resultant profile. 

 

Low terraces 

This low terraces landscape can be correlated with equivalent landscapes in  

Heretaunga Plains (Griffiths, 2001) and the Manawatu (Cowie, 1978). Both 

reports by Cowie (1978) and Griffiths (2001) contain comprehensive 

diagrammatic soil-landscape models describing the relationships between soils 

and their landscape. This landscape can therefore be mapped with confidence.  

 

2.7. Soils 

The Ruataniwha Plains are composed of a complex array of soils from alluvial 

and aeolian-alluvial environments. The nature and distribution of these soils 

relates mainly to physiographic position, lithology, climate and time, in keeping 

with the soil–forming factors of Jenny (1941). 

 

By their very nature the predominantly alluvial origin of the soils of the 

Ruataniwha Plains vary significantly both temporally and spatially. In this 

location this complexity has been compounded. The multiplicities of phases of 

erosion and deposition have occurred on t he western flank of the Ruataniwha 

Plains. Secondly, the Ruataniwha Plains have been uplifted in the west (Kingma, 
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1962), leading to contrasting landscapes in the west but very subtle changes in 

relief in the east, especially near the convergence of the Waipawa and Tukituki 

Rivers near Waipukurau. 

 

Soil-landscape relationships presented in Griffiths et al. (2001), Griffiths (2001) 

and Griffiths (2004) are shown in Table 6. These relationships are linked to higher 

orders of the geomorphic hierarchy via the landform codes used in previous 

sections. 

 

Distribution and properties of soils of the intermediate terraces 
The soils and landforms of the intermediate terraces are all located on or within 

Suite 4. This landform contains a thin but ubiquitous layer of finer material over 

weathered aggradational gravels. The depth to these gravels varies across the 

suite, soils being predominantly moderately deep with some shallow areas. The 

shallow areas sometimes occur atop bars where bar and channel microtopography 

is pronounced. Overall, the shallow areas on this suite are too complex to predict 

by microtopograhy. 

 

The soils on Suite 4 can be divided broadly into soils with limited (TkL) and non-

limited permeability and drainage (TkM and TkH). Soils on the TkL landform are 

derived from fluvially reworked loess. Soils on the TkM and TkH landforms are 

derived from fluvially reworked tephra over reworked loess. 

 

Matamau and Poporangi soils occur within the TkL landform. They have a slow 

permeability and imperfect and poor drainage, respectively. These soils occur 

within channels and depressions within Suite 4 (Griffiths et al., 2001; Griffiths, 

2004).  

 

Poporangi and Matamau soils exist in a climate with 800–1200 mm of rainfall per 

year, that is variable both across seasons and years. Pronounced dry conditions 

with high winds and evapotranspiration are common. Both of these soils are 

derived from reworked tephric alluvium over quartzofeldspathic alluvial loess. In 

places the underlying loess is assumed to have been slowly permeable prior to soil 
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development. Griffiths (2004) suggests that where the loess was more permeable, 

fragipans formed in the subsoil, forming the Matamau soils. Where the parent 

material was slowly permeable, the silica that leached out of the developing soil 

during weathering was held in the soil pores. Once started this process became 

cumulative, with the majority of soil pores eventually becoming blocked, forming 

the silica-rich duripan that characterises these soils today (Parfitt et al., 1984, 

1985, 1986; Hammond et al., 1996; Hammond, 1997).  

 

Matamau and Poporangi soils have brown-grey, strongly developed, coarse, 

blocky-structured topsoils and pale brown to grey, dense, coarsely to grossly 

prismatic structured subsoils. Matamau and Poporangi soils have a silt to sandy 

loam texture.  

 

The fragipan in the Matamau soil and the duripan in the Poporangi soil are both 

slowly permeable layers that water perches above during wet periods. In the 

Matamau soil the fragipan causes imperfect to poor drainage and in the Poporangi 

soil the duripan causes poor drainage. During dry periods the fragipan of the 

Matamau soil will shrink and fissures will open up, increasing the risk of bypass 

flow. If these soils are irrigated into these dry periods, the fragipans do not shrink 

and bypass flow is not increased (McLeod, 2011). In contrast, it is hypothesised 

that the silica-rich duripans do not shrink during dry periods, ensuring that bypass 

flow does not increase during these times. 

 

The soils of the TkM landform developed in the same climatic conditions as the 

soils of the TkL landform. Takapau soils (TkM landform) and Kopua soils (TkH 

landform) are derived from 35–45 cm of reworked tephric loess overlying gravel. 

The permeability of these parent materials has been high enough to allow silica in 

soil solution (from weathering) to move through the soil and out through the 

gravels beneath the soil profile (Parfitt et al., 1984, 1985, 1986; Griffiths, 2004).  

 

The TkM and TkL landforms are situated in the same climatic regime, the only 

observable difference in soil formation being physiographic position within Suite 

4 and parent material. The Kopua soils from the TkH landform also occur within 

Suite 4, with equivalent physiographic position and parent materials to those of 
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Takapau soils. However, Kopua soils have climatic conditions slightly more 

inclined to leaching and the development of greater amounts of allophanic soil 

materials.  

 

The unimpeded leaching of the parent materials of the Takapau and Kopua soils 

(TkM and TkH, respectively) has led to the formation of allophanic soil materials 

(Parfitt, 1986; Griffiths, 2004). This has led to a low bulk density, dark reddish-

brown, apedal earthy (crumb) topsoil, with a strongly developed, moderate-to-

coarse, prismatic breaking to polyhedral, orange-brown subsoil. Takapau and 

Kopua soils have a silt loam to sandy loam texture. Takapau soils do not contain 

any slowly permeable layers and are moderately permeable over rapidly 

permeable gravels (Griffiths, 2004; National Soils Database, 2011).  

 

The patterns of soils found on Suite 4 are similar to those present on moderate to 

high terraces near Levin, Kiwitea, Marton, Fordell and Westmere. In these 

localities, the soils are mapped as soil complexes where, at a cer tain scale, the 

pattern of soil types within map units of the minimum map unit area is not 

discernable. Senerath et al. (2010) showed that in such soil complexes, the pattern 

of soil types changes significantly at different scales Griffiths (2004). The cerebral 

model of the soil-landscape relationship of Takapau and Poporangi soils may thus 

be oversimplified. 

 

The Takapau soil contains less allophanic soil material than the Kopua soil. This 

difference could be because a thinner layer of tephras was present in the soil 

parent materials in the Takapau soil (Parfitt, 1986). Another possible explanation 

is that the soils were more consistently moist, leading to more frequent periods 

when weathering/leaching and desilication (essential for the formation of 

aluminium-rich allophane) is possible (Churchman and Lowe, 2011).  

 

Suite 3 alluvium is composed of reworked loess and Castlecliffian sediments from 

erosion of the high terraces of the Ruataniwha Plains. Like the soils of Suite 4, 

these soils can be separate into poorly drained, slowly permeable soils and well 

drained, permeable soils. Unlike the majority of soils on Suite 4 (with the 

exception of some of the Poporangi soils), the soils on Suite 3 are predominantly 
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located in the east of the Ruataniwha Plains, where the slowly permeable soil 

layers often form the confining layer for the artesian groundwater below. 

 

Okawa, Taniwha and Mangatewai soils are all developed in channels and 

depressions within Suite 4 on top of Poporangi soils. They contain duripans from 

the buried Poporangi soils within the lower part of their profiles. Like Poporangi 

soils these soils are slowly permeable, with water perching on top of the duripan 

that has produced reduced horizons. These soils are differentiated based on parent 

material origin, and the presence or absence of clay pans (argillic horizons). 

 

Okawa soils are formed from the products of alluvial fans which contain loess 

washed down off the hillslopes of the high terraces and foothills. These soils are 

poorly drained and slowly permeable, wet in winter and dry in summer. Okawa 

soils have a silt loam texture and medium sized well-developed, blocky structure 

in the grey-brown topsoil and upper subsoil. In the dense, grey lower subsoil there 

is a reductimorphic horizon above the duripan.  

 

Taniwha soils are located in similar physiographic positions as the Okawa soil, 

but contain a more diverse range of parent materials and textures. Instead of being 

derived from loess on hillslopes, this alluvium is derived from the Castlecliffian 

sediments underneath the old loess covering of the high terraces and foothills 

(Griffiths, 2004). The alluvium contains sands, silts, clays and gravels. Taniwha 

soils have an argillic horizon and a duripan and have very dense subsoils in 

general.  

 

Taniwha soils have silty and clayey textures within their profile. They are poorly 

drained and slowly permeable. The soil has a dark grey-brown top with a gleyed 

upper subsoil that is strongly developed, with medium to coarse block and 

polyhedral shaped aggregates. Below this exists an argillic horizon and a duripan. 

The intervening horizons, where they occur, are apedal, firm to very firm and 

massive.  

 

Mangatewai soils are derived from similar parent materials to those of Taniwha 

soils. They have a san dy loam texture. Mangatewai soils have moderately to 
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strongly developed fine to medium blocky and polyhedral, grey-brown topsoil. 

This overlies 15–25cm of pale brown, medium prism breaking to blocky 

structured B horizon, also with a sandy loam texture. The duripan is present 

anywhere from 60–100 cm from the soil surface, and can be above or within the 

underlying stony layer. These soils have no a rgillic horizon, are poorly drained, 

with a reductimorphic layer above the slowly permeable duripan.  

 

The well drained component of Suite 3, Tikokino soils, is also composed of 

alluvium derived from the Castlecliffian sediments in the high terraces and 

foothills. These brown coloured soils are contain moderate to strongly developed 

medium nutty structure. Gravels range from 30–60 cm depth. The soils typically 

have silt loam over sandy loam, sandy loam over silt loam or silt loam over clay 

textural combinations (Griffiths, 2004).  

 

Microtopographic relief tends to be more accentuated on the Tikokino-age 

landforms, but it is difficult to predict an individual soil which will occur in the 

low lying areas and in the higher land because of the number of different possible 

soil types. 

 

Suite 2 is located within the depressions and channels of Suite 4. The c. 1.9–3.5 

cal. ka alluvium derived from Mesozoic greywacke overlies soils from Suite 3 and 

Suite 4. The Upokororo, Ruataniwha and Willowbrook soils all contain duripans. 

The soils have been named Upokororo soil (bars), Ruataniwha soil (terrace tread) 

and Willowbrook soil (channels) depending on the depth of the pan. Because of 

the perched nature of the soils and the subtle microrelief on this landform, soils 

and their drainage are difficult to define through toposequences.  

 

Griffiths (2004) explained that Upokororo soils have dark brown, medium 

polyhedral structured, sandy loam topsoils with moderately developed brown 

sandy loam or silty loam subsoils. The soils are deep, with no pa ns within the 

control depth of 100 cm, although in some locations there can be up to two buried 

topsoils in the soil profile.  
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There is a duripan in the Upokororo soil profile, however, located at greater than 

120 cm below the soil surface (Griffiths, 2004). This technically makes this soil 

moderately permeable and well drained, although the pan will still exert some 

impact on the soil profile within the control depth of 100 cm depth. It also ensures 

that there is a barrier between the soil surface and the underlying groundwater. In 

the Ruataniwha soil the duripan is within the control depth, at greater than 90 cm 

from the soil surface, making it slowly permeable. Upokororo and Ruataniwha 

soils are imperfectly drained. The Willowbrook soil contains a duripan at c. 100 

cm. This soil is poorly drained and slowly permeable (Griffiths, 2004).  

 

Ruataniwha soils are imperfectly to moderately well drained and slowly 

permeable. They have well structured, dark brown, medium polyhedral structured 

sandy loam topsoil with a moderately developed brown sandy loam or silt loam 

subsoil. The lower subsoil contains redox colours related to a slight amount of 

perching of drainage water above the slowly permeable duripan found at around 

90 cm depth in the soil profile. Ruataniwha soils are moderately deep. 

 

Willowbrook soils are poorly drained and slowly permeable. They have deep, 

well structured, dark brown topsoils, with moderately developed gleyed upper 

subsoils with many ochreous and grey mottles. A more reduced horizon is located 

at 80–90 cm below the soil surface, above the slowly permeable duripan. 

Willowbrook soils are moderately deep.  

 

Rotoatara soils are very poorly drained Organic soils on peat soil. Where the soil 

has not been drained, the water table is permanently close to the soil surface. 

Roadside and air photo based assessments, in combination with evaluation of the 

river environment classification polyline GIS layer, show that most of the 

Rotoatara soil in the Ruataniwha Plains has been drained to some extent. Where 

these soils have been partially or fully drained, the mineralised portion of the soil 

profile is moderately permeable. These soils have no slowly permeable layer 

between the soil surface and the water table below. 
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The distribution of soils of the low terraces 
Soils on the low terraces (Suite 1) of the Ruataniwha Plains are differentiated by 

toposequence but not degree of development.  

 

The Argyll soils occupy the highest of the levees on the low terraces. Because 

they do not flood they have been classified as existing on a separate landform (LT 

3). However the Argyll soil is very shallow and very stony, with little more than a 

10–15 cm sandy loamy or loamy sandy textured topsoil over gravels. Argyll soils 

are well to excessively well drained and rapidly permeable, with no slowly 

permeable layer between the soil surface and the underlying water table. They 

have a 15–25 cm-thick dark reddish brown sandy loamy to loamy sandy topsoil 

that is very weakly developed. The little structure that is present in the topsoil is 

very fine and apedal earthy (crumb) shaped. It has a sandy loam texture (Griffiths, 

2004). It is likely that this material can become quite hydrophobic, because of its 

physiographic position, and soil properties. Below the topsoil is a ubiquitous, 

extremely stony horizon, interspersed with a sandy or loamy sandy matrix.  

 

On LT 2, a rarely flooded landform, Twyford, Hastings, Kaiapo and Poukawa 

soils are found. With the exception of the Poukawa soil which is on peat, all of the 

mineral soils have topsoil that is at least 10 cm thick which has weakly to 

moderately developed structure. These soils, ranging from Twyford through to 

Poukawa, are defined within LT 2 by physiographic position and soil drainage. 

Disregarding the effect of artificial irrigation, groundwater is located 

progressively closer to the soil surface from high to low physiographic position. 

 

With the occasional exception of the Poukawa soil, all of these soils are 

moderately permeable over rapidly permeable gravels. No slowly permeable layer 

between the soil surface and the underlying groundwater. 

 

The soils of LT 2 can be described in a toposequence as shown in Figure 3 below 

(Griffiths, 2001), but their conceptual genesis is best described by t he simplest 

model in fluvial geomorphology. 
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Figure 3: Soil-landscape model of LT 2 (courtesy of Hawke’s Bay Regional Council) 

 

Closer to the past or present channels of waterways on these landforms, levees 

and point bars contain sediments that are deeper and coarser textured. The soil on 

this land component tends to be well or moderately well drained with a sandy 

loamy texture, possibly containing gravels. In this case the soils located in these 

positions are Twyford soils.  

 

With increasing distance from the channels, the height of the land surface relative 

to the local water table decreases. In the Heretaunga Plains, Griffiths (2001) 

included the Karamu soil in this component of the landscape, which is moderately 

well drained and present on the upper backplain.  

 

In the Ruataniwha Plains, Griffiths (2004) did not include the Karamu soil and the 

model jumps directly from the Twyford soil to the Hastings soil. The Hastings soil 

is located on the lower backplain and has imperfect to poor drainage. Below the 

backplain, poorly drained back basins with water tables close to the surface and 

heavier soil textures exist. The Kaiapo soil and the Poukawa (Organic Soils) are 

located on these land components.  

 

Two-dimensional toposequences can explain the conceptual basis of the 

combinations of microrelief, parent materials and soils present on alluvial 

surfaces, but such toposequences only explain spatial variability. Over time, 

waterways move. The meandering waterways of Suite 1 floodplains and terraces 

have moved laterally and downstream over time, creating complex, interweaving 

patterns of channels, levees, back plains and back basins. 

 

Twyford soils are well drained and moderately permeable. They have a 15–25 cm-

thick, dark brown moderately well developed topsoil consisting of fine to medium 

polyhedral structure and a sandy loam texture. The soil has a coloured Bw 

26



horizon. Although the upper subsoil is apedal and single grained, it has a yellow-

brown colour. This is mostly a deep, stoneless soil, although in some places it is 

shallow with rounded river pebbles within 45 cm of the surface.  

 

Hastings soils are well drained and moderately permeable. They have a 1 5–25 

cm-thick, dark-brown topsoil, containing moderately well developed blocky 

structure and a silt loam texture. The upper subsoil contains weakly to moderately 

developed medium prismatic breaking to fine blocky structure, again a silt loam 

texture. This is a deep, stoneless soil.  

 

Kaiapo soils are poorly drained and moderately permeable (Griffiths, 2004; 

National Soils Database, 2011). They have a 15–25 cm-thick grey-brown topsoil, 

containing moderately well developed blocky structure and a silt loam texture. 

The upper subsoil contains weakly to moderately developed medium prismatic 

breaking to fine blocky structure, with a silt loam texture.  

 

Poukawa soils are very poorly drained Organic Soils. Where the soil has not been 

drained, the water table is permanently close to the soil surface. Where these soils 

have been partially or fully drained, the mineralised portion of the soil profile is 

moderately permeable. Where the organic material has mineralised it has excellent 

fine to medium nutty soil structure and a peaty loam texture. Where these soils are 

mineralised, they are prone to becoming hydrophobic during extended dry 

periods.  

 

The youngest and least developed soils are located on LT 1 that is frequently 

flooded, or would be if stopbanks were not present (LT 1). The Omarunui, 

Flaxmere, Tukituki and Irongate soils inhabit this landform.  

 

The Omarunui soils consist of deep alluvial fines containing little or no topsoil. 

Flaxmere soils are similar, being shallow to moderately deep and imperfectly 

drained with a thin, weakly developed topsoil and a sandy or sandy loam texture 

over stones. 

 

27



Tukituki soils of the LT 1 l andform are found in active floodplains and low 

terraces that would be frequently floodable were it not for the presence of 

stopbanks. Tukituki soils exhibit no soil development. The soil profile is made up 

of a highly variable set of lenticular shaped alluvial lenses. Each horizon contains 

a different combination of pebbles, proportions of pebbles to matrix, and different 

matrix textures (sandy loam, loamy sand and sand). The stones are loosely 

packed.  

 

Irongate soils are poorly drained and silty over stones.  

 

Soil-water assessment and monitoring information 
As part of the 1980-1989 soil-water assessment and monitoring programme 

(SWAMP) led by Jim Watt, the physical properties of a number of soils in the 

Heretaunga Plains were measured and recorded. This included information about 

saturated hydraulic conductivity and available water holding capacities of soils. 

The SWAMP data was assembled and made accessible for use through Watt 

(1998). This information is fundamental to the understanding of water retention in 

and movement through some of the most important soils in the “food-basket” of 

the Heretaunga Plains. Although not comprehensive, the information provides 

insight into environmental issues such as the extent to which wastewater or farm 

dairy effluent can be treated by soils before leaching occurs, and productivity 

issues such as which soils are the most costly to irrigate. 

 

The PAW, PRAW and saturated hydraulic conductivity values of a Poporangi 

sandy loam soil were recorded at two sites in the vicinity of NZMS 260 V21 

28269 61666 (SWAMP 80-82[5]). PAW and PRAW measurements were recorded 

to a depth of 43 and 74 cm, respectively. The PAW measurements for the two pits 

analysed at the site were 73mm (moderate) and 120 mm (moderately high), 

respectively. The PRAW measurements were 43 mm (moderate) and 62 m m 

(moderate), respectively. A saturated hydraulic conductivity value of 72 ± 36 

mm/hr (moderate permeability) was measured in the Ap horizon of the Poporangi 

sandy loam soil. This measurement was obtained using the double-ring 
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infiltrometer method, with rings of 229 a nd 99 m m and nine replicates, 

respectively. 

 

SWAMP measurements of PAW, PRAW and saturated hydraulic conductivity of 

Takapau sandy loam soil at two sites near NZMS 260 V 21 29293 61663 w ere 

recorded (SWAMP 80-82[1]). Available water capacity measurements were 

recorded to a depth of 105 cm, but in this case the depth of interest is 100 cm, and 

the results have been adjusted accordingly. The PAW measurements for the two 

pits analysed at the site were 169 mm (high) and 168 mm (high), respectively. The 

PRAW measurements were 94 mm (moderately high) and 96 m m (moderately 

high), respectively. The saturated hydraulic conductivities of the two sample sites 

were 34 mm/hr (moderate permeability) and 108 mm/hr (moderate permeability), 

respectively. Although it is not unusual for a wide variation between saturated 

hydraulic conductivity measurements, this disparity does appear unusual given the 

number of replicate measurements from each site (nine).  

 

SWAMP measurements of saturated hydraulic conductivity of the shallow 

Takapau soil on gr avels were recorded at one site at NZMS 260 V 21 2830775 

6167865 (SWAMP 80-82[2]). The saturated hydraulic conductivity was 144 ± 36 

mm/hr (rapid permeability).  

 

SWAMP measurements of PAW, PRAW and saturated hydraulic conductivity of 

the Twyford coarse loamy (over sandy) over fine silty soil were recorded in 

SWAMP 80-82[8]). Available water capacity measurements were recorded to a 

depth of 140 cm, but in this case the depth of interest is 100 cm, and the results 

have been adjusted accordingly. PAW and PRAW were 360 mm (very high) and 

90 mm (moderately high), respectively. The saturated hydraulic conductivities in 

the Ap, A and 2Bw(g) were 130 mm/hr (rapid permeability), 72 mm/hr 

(moderately rapid permeability), and 79 mm/hr (moderately rapid permeability), 

respectively. 

 

SWAMP measurements of PAW, PRAW and saturated hydraulic conductivity of 

the Twyford loamy silt over sand were recorded in SWAMP 80-82[9]). Available 

water capacity measurements were recorded to a depth of 123 cm, but in this case 
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the depth of interest is 100 cm, and the results have been adjusted accordingly. 

PAW and PRAW were 317 mm (very high), and 119 m m (high), respectively. 

The saturated hydraulic conductivities in the Ap and A were 29 mm/hr (moderate 

permeability), and 22 mm/hr (moderate permeability), respectively.  

 

SWAMP measurements of PAW, PRAW and saturated hydraulic conductivity of 

the Twyford silt loam soil were recorded in SWAMP 80-82[10]). Available water 

capacity measurements were recorded to a depth of 140 cm, but in this case the 

depth of interest is 100 cm, and the results have been adjusted accordingly. PAW 

and PRAW were 208 mm (high), and 78 m m (moderately high), respectively. 

Saturated hydraulic conductivity values for three sample sites in the Ap of the 

Twyford silt loam soil were 180 ± 72 mm/hr (rapid permeability), 36 ± 18 mm/hr 

(moderate permeability), and 22 ± 14 mm/hr (moderate permeability), 

respectively. There were seven replicates at each site. 

 

Saturated hydraulic conductivity of the Hastings silt loam soil was recorded in 

(SWAMP 80-82[13]). The saturated hydraulic conductivities of the two sample 

sites were 72 ± 36 mm/hr (moderately rapid permeability), and 24 ± 2 mm/hr 

(moderate permeability), respectively. The number of replicates at each site is 

unknown. 

 

SWAMP measurements of PAW, PRAW and saturated hydraulic conductivity of 

the Kaiapo silt loam soil were made at NZMS 260 V 21 2838895 6170426 

(SWAMP 80-82[14]). Available water capacity measurements were recorded to a 

depth of 113 cm, but in this case the depth of interest is 100 cm, and the results 

have been adjusted accordingly. The PAW and PRAW measurements were 188 

mm (high), and 40 mm (low), respectively. The saturated hydraulic conductivities 

of the two sample sites were 72 ± 36 mm/hr (moderately rapid), and 30 ± 15 

mm/hr (moderate permeability), respectively. There were eight replicates at each 

site. 
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2.8. Conclusion 

Chapter 2 has introduced the natural resources and environmental setting of the 

soils in the Ruataniwha Plains. The landscape in the Ruataniwha Plains has been 

separated into a geomorphic hierarchy, related to existing soil-landscape 

relationships. Landscapes are composed of landforms, which are in turn made up 

of landform components and ultimately landform elements. Existing soils and 

map information has been provided, demonstrating what information can be 

readily described from this source of information. 

 

The resultant information from Chapter 2 provides the basis for reclassifications 

that occur in the next chapter, thereby ultimately assisting in the assessment of the 

relationship between the soils of the Ruataniwha Plains to production and the 

environment in Chapters 4, 5 and 7.  
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Chapter 3: Categorising soils in new ways to maximise utility 

3.1. Introduction 

Legacy soils information contains an extraordinary amount of latent information 

that cannot readily be accessed by most users. This information can be 

significantly enhanced through the reclassification, using the NZSC and S-Map. 

These methods are used to output added value soil information. The strengths and 

weaknesses of these approaches are evaluated. 

 

3.2. Background 

Current spatial information about soils in the Ruataniwha is of district scale in the 

maps provided by G riffiths (1977) at 1:63,360 scale and at 1:50,000 scale 

(Griffiths et al. 2001). This information is considerably more detailed than the 

next best alternative: the Fundamental Soil Layers (FSL) (Wilde et al., 2000), 

ultimately based on 1: 253,440-scale soil information from the Department of 

Scientific and Industrial Research (1954).  

 

Griffiths, (1977, 2004) and Griffiths et al. (2001) provided valuable insights into 

the distribution and properties of soils in the Ruataniwha Plains, but can be 

confusing. Although the map units may have been produced with deference to the 

soil survey method outlined in Taylor and Pohlen, (1970), the soil information is 

not presented using nationally recognised standard classification systems and is 

not correlated with soils beyond the Hawke’s Bay. Information about map unit 

variability in Griffiths (1977, 2004) and Griffiths et al. (2001) and Griffiths, 2004) 

is limited to the identification of simple and complex soils units. The simple soil 

units have an 85% probability of containing the labelled soil type. The soil 

complexes containing two or three soil units have no associated probabilities of 

occurrences. However in Griffiths et al. (2001), soil complexes are associated 

with soil-landscape models but as described in Chapter 2, in many cases these are 

difficult to distinguish from one another physiographically.  
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No confidence or reliability information was provided by (Griffiths, 1977, 2004; 

or Griffiths et al. 2001). There is no way of knowing how many soil observations 

were actually made within each of the soil map units, and what the extent of 

assignment uncertainty there was. There is negligible information derived from 

direct soil measurement about chemistry or soil hydraulic properties available for 

any soil types within the Ruataniwha Plains.  

 

Although the information about the properties of soils of the Ruataniwha Plains is 

limited, and complicated, the information can be simplified and reclassified. Some 

degree of useful variability, confidence and reliability data can be deduced or 

inferred by experienced pedologists. Once in S-Map, legacy soils information can 

be correlated and estimates of soil properties that were previously unavailable can 

be produced. 

 

3.3. Aims 

1. Reclassify Griffith’s soil series using the NZSC; 

2. Input legacy information into S-Map format; and  

3. Present and evaluate the soil property information that the NZSC and 

S-Map systems provide.  

 

3.4. Methods 

The NZSC System 
The NZSC and associated soilform classification system frame information in a 

hierarchical manner. The characteristics of individual soil horizons within a so il 

profile are evaluated and provide the basis for differentiation of soils into the 

NZSC soil hierarchy, using a key and various standardised diagnostic horizons 

(Hewitt, 2010; Clayden and Webb, 1994). The uppermost category of the NZSC 

soils hierarchy is the soil order. Soils are categorised into orders such as 

Allophanic, Gley or Recent soils on the basis of the presence or absence of 

diagnostic horizons or feature. Increasingly more specific soil features are 

identified down through the the group and subgroup levels of the hierarchy. An 

example of a common soil group is the Perch-Gley group of the Pallic Soil order. 
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Subgroup characteristics often describe the drainage of the soil e.g. a Mottled 

Orthic Brown Soil, which is imperfectly drained. 

 

The soilform level, the fourth category of the NZSC (Clayden and Webb, 1994) 

provides information about soil depth, parent material, rock type and soil 

permeability. It does provide information about how to assess permeability using 

a singleton blade and a penetrometer, but this test produces variable outputs, 

depending on soil moisture status at the time of testing.  

 
Conversion from series and phases into NZSC 

The series and phases of the Ruataniwha Plains were created with a focus on soil 

formation. Reclassification of the data using the NZSC takes the focus away from 

the hypotheses regarding soil genesis and focuses on observation and recording of 

the observable characteristics of soils. These characteristics include the presence 

of allophanic or reductimorphic material, colour, structure, slowly permeable 

layers, pans composed of different substances, and the nature and distribution of 

pebbles in the profile. In this case, soil series and phases of the Ruataniwha Plains 

are reclassified into the NZSC to the soilform level using Clayden and Webb 

(1994) and Hewitt (2010). Results are presented in Tables 4 and 5. In this case 

there was a big focus on determining the extent of weathering on the soils of Suite 

1, and a focus on comparing and contrasting the properties of the poorly drained 

soils of suites 2, 3 and 4, were emphasised here. 

 

The S-Map system 
In addition to spatial information, the S-Map system consists of a ser ies of 

electronic pages of base information that can be utilised to produce purpose-built 

fact sheets for farmers, council staff, fertiliser consultants and other users of soil 

information. As well as providing a certain minimum amount of base information, 

pedotransfer functions provide additional specific information about the soils of 

interest. Both the base soils information and the pedotransfer functions can be 

updated at any time and will automatically cause the soil fact sheets to be updated 

too (Lilburne et al., 2004). The S-Map system and the National Soils Database are 

linked to each other, providing the ability to find more information out about 
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particular families and siblings. However, one traditional soil series can contain 

many S-Map families and siblings, meaning that the National Soils Database 

information is applicable to a much more limited range of soils than previously 

assumed by many users. 

 

Metadata about the level of certainty or confidence about particular map units is 

recorded and can be provided on the fact sheets if required. Next best alternatives 

for map unit classifications are also provided. These features allows for the 

quality of all explicit and implicit information from legacy and new soil 

information to be transparent, to enable more appropriate use of the data and 

highlight the need for further collection of soil information in the future. 

 

Entering Plains soil data into the S-Map system 
Existing Plains soil data were loaded into a proxy of the S-Map system following 

the guidelines of Lilburne et al. (2011). It is standard practice to enter soils data 

into a proxy of the database (a series of worksheets in a Mi crosoft Excel 

document) prior to entering it in to the actual S-Map database. This provides an 

opportunity for the information to be subjected to peer reviews and other quality 

assurance procedures first.  

 

The first step in entering soils information into the S-Map system is to enter all 

the original soil series and phases into the soil type worksheet (Appendix 3). 

Information about NZSC classifications, parent material origin, soil depth, topsoil 

stoniness and drainage is entered. Up to six horizon norms are recorded in code 

form. These are called functional horizons (Table 4), and are pivotal to the use of 

associated pedotransfer functions and the reassignment of district-specific soil 

series and phases into nationally correlated siblings and families.  
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Table 4: Example of functional horizon codes and definitions (Lilburne et al, 2011) 

Functional 

horizon code 

Description 

tzAw Sandy topsoil with weak consistence, derived from pumiceous tephra 
zVLc Very stony loamy pumiceous subsoil with compact consistence 
bSLw Stony and loamy subsoil with weak consistence, derived from basic tephra 
bLFs Loamy subsoil with fine structure and slightly firm consistence, derived from 

basic tephra 

 

A separate worksheet is filled in simultaneously by the pedologist. This allows for 

the recording of any next best options where there is confusion over the 

assignment of legacy information to S-Map categories (Appendix 4). The soil 

series and phase information entered on this page is temporarily retained and is 

used as the common link to information on the base properties worksheet.  

 

On another worksheet the properties of the original soil series and phases are 

recorded in a standardised format. The information is separated into two broad 

categories: properties of the soil profile associated with that series and phase 

combination; and properties of individual functional horizons with that series and 

phase combination (Appendix 5).  

 

The soil profile properties recorded are: 

• Soil depth; 

• Potential rooting depth; 

• Root barrier; 

• Salinity; and 

• Depth to slowly permeable layer. 

 

  

36



The functional horizon properties are: 

• Thickness; 

• Stoniness; and 

• Proportions of sand, clay and organic matter. 

 

The base properties from the legacy soil data are recorded with associated 

metadata. Instead of parameters for individual soil properties being provided as 

averages, S-Map provides the opportunity to select from a range of probability 

distribution functions (pdf) and requires the user to enter the parameters of that 

pdf. The type of probability function used depends on the amount of information 

that is available from the legacy data. In many cases, such as in this project, it is 

necessary to use a u niform pdf, where the pedologist enters the maximum and 

minimum of a range for each criterion. For example instead of saying that the 2nd 

horizon in the Takapau soil (39) is 20 cm thick, it is possible to use the Griffiths 

(2004) information about variability of horizon thickness to note that could range 

from 10 cm to 30 c m thick. The use of the pdf also decreases the risk of the 

information users assuming unrealistically that all soil with a described parameter 

will fit the norm purported for the parameter. 

 

At this point, the information on the soil type and base properties pages is sorted, 

filtered and aggregated into S-Map families and siblings, based on the criteria 

outlined in Lilburne et al. (2011) and summarised in Table 5. S-Map families 

replace the NZSC soilform category (Clayden and Webb, 1994). Additionally, 

soil siblings are now encompassed within a fifth NZSC category (Webb and 

Lilburne, 2011).  
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Table 5: Parameters for characterising families and siblings (after Lilburne et al., 2011) 

Family (Mineral soils) Family (Organic soils) Sibling 

Soil profile material and 
substrate 

Soil profile material and the nature 
of any lithic or paralithic contact 

Soil depth 

Parent rock Type of underlying rock if present Topsoil stoniness 
Dominant texture Permeability of slowest horizon Texture profile 
Permeability of slowest 
horizon 

 Natural soil drainage 
Functional horizons 

 

Using the available legacy information, every map unit is assigned up to six soil 

siblings and their expected proportions within the map unit. For example, where 

map units containing only one soil series are present on the Griffiths et al. (2001) 

map, this implies that no less than 85% of the map unit will contain that soil 

series. However, the phases (e.g. the texture or depth to stones) may vary in a 

manner as explained in Griffiths (2004). These possible variations can now be 

recorded as other siblings that could be present within the map unit. The other 

15% of the map unit is not known, but its properties or distribution in the map unit 

may be important.  

 

In S-Map when legacy information containing a soil-complex is used to populate 

a map unit, all the possible soil siblings that could occur within the map unit can 

be listed. The method used in this project is based on soil-landscape relationships 

and geomorphic hierarchy. There are many soil complexes on suites 4, 3 a nd 2 

where this aspect of S-Map is beneficial. It would be easy to arbitrarily enter the 

dominant soil within each map unit from Griffiths et al. (2001), thus 

oversimplifying the situation and losing data that could be potentially useful when 

further, more detailed fieldwork on one or more of those suites is undertaken.  

 

Another important part of the S-Map map units worksheet is the map unit 

confidence and map unit uncertainty information. As the pedologist is entering the 

legacy data, valuable metadata about map unit variability (map unit confidence) 

and map unit uncertainty (the quality of the information in the map unit) are 

recorded.  
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3.5. Results and discussion 

Additional soil information about legacy soils provided by the NZSC 
The NZSC has emphasised similarities/differences between the natural drainage, 

soil development, organic matter level, and anion retention capacity of soils. The 

next step in the NZSC hierarchy has highlighted on the presence of pans and 

perch-gley features. Thirdly, the presence of gravels, soil depth and soil 

permeability have been considered. 

 

The results of the reclassification of Griffiths (2004) soil information into NZSC 

classes are shown in Tables 6 and 7 a nd Appendices 1 and 2. Table 6 a nd 

Appendix 1 show the relationship of the NZSC classes to the geomorphic 

hierarchy developed for the Ruataniwha Plains. For reasons of space, the NZSC 

codes have been used in the table. Table 7 provides examples of the definition of 

the NZSC codes that can be found in Hewitt (2010). All codes have been fully 

translated in Appendix 2.  

 

Because of the change from a genetic system of soil classification to an 

observational system, when soil series/phase combinations are converted into 

NZSC and soilform format, the distribution of soil types appears to change. With 

this change, soils with similar and contrasting properties are emphasised and soil 

map unit patterns change significantly (see Figures 4 and 5). Soil properties on the 

intermediate terraces landscape appear to be much less diverse than they first 

appear using this classification system (twelve series, six NZSC Classes). The 

level of soil diversity on the low terraces landscape has a similar level of diversity 

in both classification systems (nine series, seven NZSC Classes). 

 

Figure 4: A comparison of the number 
of soil units using the soil series and 
NZSC systems 

0 

5 

10 

15 

Intermediate 
terraces 

Low terraces 

Number of 
soil units 
(series) 

Number of 
soil units 
(NZSC) 

39



 

Figure 5: Comparison of soil patterns using series and NZSC systems 
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Table 6: Soils (series and NZSC) and the geomorphic hierarchy 

Landform Land 

component 

Series NZSC 

Floodplain (LT 1) Backplain Flaxmere RFM; Mg; S/K; r 

RFM; Mg; L/K; m/r 

RFM; Mr (Hs); S/K; r 

RFM; Mr (Hs); L/K; m/r 

Bar Omarunui WF; Ms; L/K; m 

WF; Md; L; m/s 

Channel Irongate GRT; Mg; L/K; m 

GRT; Mg; Z/K; m 

GRT; Mr (Hs); L/K; m 

GRT; Mr (Hs); S/K; m 

Channel Tukituki WF; Mr (Hs); S/K; r 

WF; Mr (Hs); S; r 

WF; Mr (Hs); S; r 

Rarely flooded (LT 2) Backplain Hastings GOT: Md; Z; m 

GOT: Md; Z/S; m/r 

GOT: Mr (Hs); L/K; m 

Bar Twyford RFW; Ms; Z/K; m 

RFM; Md; Z; m/s 

RFW; Ms; L/S; m 

RFM; Md; L/S; m/s 

RFW; Mr (Hs); L/K; m 

Channel Kaiapo GOT: Md; Z/S; m 

Hollow Poukawa OMM; So (Hu); Z/Tl; m/s 

Non flooded (LT 3) Bar Argyll ROW; Mr (Hs); S/K; r 

ROW; Mr (Hs); S/K; r 

Alluvium (RT) Bar Upokororo PUT; Md; L/S; m/s 

Channel Ruataniwha PUM; Md; L/S; m/s 

Terrace tread Willowbrook PPU; Md; L/S; m/s 
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Alluvium and gravels (TT) Channel Mangatewai PPU; Md; L; m/s 
PPU; Mg; L/K; m/s 

Hollow Tikokino BOT; Ms; Z/K; m 
BOT; Ms; Z/K; m 

Bar Tikokino BOT; Mr (Hs); L/K; m 
BOT; Mr (Hs); Z/K; m 

Hollow Tikokino BOT; Mr (Hs); L/K; m 
Terrace tread Tikokino BOT; Ms; Z/K; m 

BOT; Ms; Z/K; m 
BOT; Mg; Z/C; m/s 
BOT; Mr (Hs); L/K; m 
BOT; Mr (Hs); Z/K; m 

Hollow Taniwha PUJ; Ms; Z/C; s 
Hollow Rotoatara OMM; Sd (Hu); Tl; s 
Terrace tread Horoeka PUM; Ms; Z/C; m/s 

Alluvial fan (TF) Hollow Okawa PUJ; Md; Z; m/s 
PUJ; Mr (Hs); L/K; m/s 
PUJ; Mr (Hs); L/K; m/s 

Low leaching on Red Metal 
(TkL) 

Channel Poporangi PPU; Md; L; m/s 
PPU; Mr (Hs); L/K; m/s 

Hollow Poporangi PPU; Md; L; m/s 
PPU; Mr (Hs); L/K; m/s 

Moderate leaching on Red Metal 
(TkM) 

Bar Takapau BLT;Mg;L/K;m/r 
BLT; Mr (Hs); L/K; m/r 

Terrace tread Takapau BLT; Mt (An); L/K; m/r 
High leaching on Red Metal 
(TkH) 

Bar Kopua LOT; Mt (An); Z/K; m 

Terrace tread Kopua LOT; Mt (An); Z/K; m 
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Table 7: Example of reclassification of Griffith’s (2004) soil series into NZSC 

Series Example of NZSC 

code 

Description of NZSC code 

Flaxmere RFM; Mr (Hs); L/K; m/r Shallow, stony imperfectly drained alluvial soil. 
Minimal soil development. 

Omarunui WF; Ms; L/K; m Moderately deep alluvial soil with stones. Negligible 
soil development. 

Irongate GRT; Mr (Hs); L/K; m Shallow, stony, poorly drained alluvial soil. Minimal 
soil development. 

Tukituki WF; Mr; S/K; r Very shallow, stony alluvial soil. Negligible soil 
development. 

Hastings GOT: Md; Z/S; m/r Deep, poorly drained alluvial soil. Moderately 
developed. 

Twyford RFW; Ms; Z/K; m Moderately deep, well drained alluvial soil with 
stones. Moderately developed. 

Kaiapo GOT: Md; Z/S; m Deep, poorly drained alluvial soil. Moderately 
developed. 

Poukawa OMM; So (Hu); Z/Tl; m/s Deep, very poorly drained peat. 

Argyll ROW; Mr (Hs); S/K; r Very shallow, well drained, stony alluvial soil. 
Moderately developed. 

Upokororo PUT; Md; L/S; m Deep, moderately well drained soil on duripan at 120 
cm below the soil surface.  

Ruataniwha PUM; Md; L/S; m/s Same as description for Upokororo series. 

Willowbrook PPU; Md; L/S; m/s Deep, poorly drained, grey, firm soil with silica pan. 

Mangatewai PPU; Md; L; m/s Moderately deep, poorly drained, well structured. 

Tikokino BOT; Mg; Z/C; m/s Moderately deep, well drained, brown, well 
structured soil on stones.  

Taniwha PUJ; Ms; Z/C; s Deep, poorly drained pale coloured, highly dense soil 
with a clay pan over a silica pan and stones. 

Rotoatara OMM; Sd (Hu); Tl; s Deep, very poorly drained peat. 

Horoeka PUM; Ms; Z/C; m/s Deep, poorly drained pale coloured, highly dense soil 
with silica pan and stones. 
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Okawa PUJ; Md; Z; m/s Deep, poorly drained pale coloured, highly dense soil 
with a clay pan over a silica pan. 

Poporangi PPU; Md; L; m/s Deep, poorly drained pale coloured, highly dense soil 
with silica pan. 

Takapau BLT; Mg; L/K; m/r Moderately deep, well drained soil on stones. Topsoil 
strongly adsorbs anions. Low bulk density.  

Kopua LOT; Mr (Hs); Z/K; m Shallow, well drained soil on stones. Strongly 
adsorbs anions. Low bulk density. 

 

Four groups of mineral soils exist on the intermediate terraces:  

Allophanic and Allophanic Brown soils 

Kopua soils 

Takapau soils 

Duric Perched Gley, Argillic Duric and Mottled Duric Pallic soils 

Poporangi soils 

Okawa soils 

Taniwha soils 

Mangatewai soils 

Ruataniwha and Willowbrook soils 

Brown soils 

Tikokino soils 

Upokororo soils 

 

On the low terraces landscape two groups of mineral soils exist 

Recent and Raw soils 

Argyll soils 

Twyford soils 

Tukituki soils 

Gley soils 

Kaiapo soils 

Irongate soils 
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Results from the process of adding soil information into S-Map 
When entering legacy information into the soil type worksheet, a number of 

ambiguities were noted. This information would normally be discarded when the 

legacy information was interpreted. By recording a description of the uncertainties 

surrounding the assignment of legacy information to the NZSC and functional 

horizons, it can enhance the quality of the resulting data. In the soil type page, the 

Hastings soil has been classified as a poorly drained Typic Orthic Gley Soil. In 

both Griffiths (2001) and Griffiths (2004) there is ambiguity as to whether it is 

just poorly drained or whether it straddles the boundary between poorly drained 

and imperfectly drained. If it is imperfectly drained, it would most likely be 

classified a Mottled Fluvial Recent soil. This classification has at times been an 

important factor in planning decisions regarding the subdivision of high value 

land in the Hastings District. 

 

In Griffith’s (2004) individual soil profile descriptions, the presence of a 

cemented pan or a pan is noted in most of the poorly drained soils on t he 

intermediate terraces landscape (with the exception of the Matamau and Rotoatara 

soils). The descriptions of soil genesis in Griffiths (2004), further confirm the 

likelihood that Griffiths believed all of these pans to be silica-rich duripans. 

However, the NZSC does provide the option of a Cemented Perch-Gley Pallic 

Soil, which does not contain a duripan. This option has been included on t he 

assignment uncertainties page. 

 

The Upokororo soil contains a cemented pan at 120 c m below the soil surface. 

This pan is well below the 100 cm control depth, so the soil has been classified as 

a Typic Duric Pallic Soil. However, because the duripan is so far below the 

control depth of the soil, the soil could technically be classified as either an 

Immature Pallic or Orthic Brown Soil. 

 

Differentiation of soil families in S-Map involves, amongst other factors 

classification of profile parent material class, rock class (fines), parent material 

origin, and permeability. Part of differentiating soil siblings involves assigning 

functional horizons to soil types.  
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On the Ruataniwha Plains, Suite 4 contains a combination of parent materials, of 

varying depths, over gravels. Tephra and loess have been redeposited by fluvial 

and aeolian mechanisms. Technically, the profile material class of soils on Suite 4 

is either going to be Mg or Mr, depending on t he depth of gravels in the soil 

profile and the proportion of redeposited loess in the fines above the gravels. 

Where the Mg-code soil profile material class is used, the rock class (fines) is not 

used in the differentiation of soil family. Also, the classes Mg and Mr do not 

emphasise the tephric influence on t he Takapau soil. The recommended 

alternative is Mt.  

 

The Takapau soils technically key out as Hs in the rock class (fines) field, because 

of the quartzofeldspathic origins of the loess, therefore becoming part of the 

acidic rocks family group. However, the soils are known to also contain a mixture 

of andesitic, and vitric tephric material, classifying into ‘basic’ (in S-Map this 

category includes andesitic material) and acidic rocks, respectively. The next best 

alternative should be An, An/Hs, An+Hs, Rh/Hs or Rh+Hs. The An or Rh 

component of the rock class (fines) field influences the family the soil is 

correlated with, rather than the loessial component. An/Hs is preferred because 

mention of a rhyolitic influence could imply the possible presence of Pumice 

Soils. It is important to minimise the potential for further ambiguity. Although it 

is likely that the tephra of TkM and TkH is in fact mixed with loess, perhaps with 

a layer of predominantly loess in the channels in TkL, by using the An/Hs class 

rather than An+Hs, consistence is maintained with the proposed theory of soil 

genesis in the Ruataniwha Plains (Griffiths, 2004). 

 

The assignment of Fl to the parent material origin field in soils of Suite 4 

emphasises the influence of fluvial redeposition of the tephric and loessial parent 

material on S-Map families. There is no parent material origin class for sediments 

other than loess redeposited by wind or a mixture of aeolian and fluvial 

mechanisms. Alternative classifications to the Fl class are Tp for tephra and Lo 

for loess, although they represent the mode of deposition of the original parent 

materials, rather than the most recent mode of redeposition.  
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Soil permeability is also a factor used to identify S-Map soil families. For soils of 

the intermediate terraces landscape on the Ruataniwha Plains, this characteristic is 

a successful way of differentiating the 2 major groups of soils: wet soils with pans 

and dry soils with or without tephra. 

 

The main characteristics that can reliably be used to differentiate between S-Map 

siblings on the Ruataniwha Plains using legacy data are soil depth, drainage and 

functional horizons.  

 

These complicated sets of NZSC and S-Map classification issues are not restricted 

to the Ruataniwha Plains. Similar mixtures of parent material origins and 

deposition mechanisms occur on intermediate and high terraces in the 

Horowhenua, Manawatu, Rangitikei and Wanganui districts (Campbell, 1977, 

1979; Senerath and Palmer, 2005). Therefore these issues are likely to be well 

represented in the nationally-based S-Map database, also providing valuable 

metadata to pedologists working with the information in the future. 

 

Table 8 shows examples of some S-Map families and siblings that Plains soils 

information correlates to or has been reclassified. Examples of the type of 

information that can be derived from S-Map are also shown. The expanded 

version of this table, including all soils of the Ruataniwha Plains, is provided in 

Appendix 6. 

 

Some of the pedotransfer functions used in the S-Map system have weaknesses, 

e.g. plant-available water holding capacity requires site-specific information about 

carbon content to be accurate. However, S-Map is set up t o allow components 

such as pedotransfer functions to be updated.  

 

Drought risk estimates are based on soil properties without consideration of long 

term climatic conditions. They are an indication of relative drought risk as 

compared between soils only. 

 

CEC estimates have been made by consideration of soil organic matter levels, 

clay content and CEC, as S-Map does not provide this information.  
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Table 8: Examples of S-Map families, siblings and selected derived soil properties 

Series NZSC code S-Map  

code 

Structural 

vulnerability 

Drought 

risk 

Total available water 

holding capacity (mm) 

Plant available water 

holding capacity (mm) 

Anion sorption 

capacity (%) 

Flaxmere. RFM; Mr (Hs); L/K; m/r Pare_6.1 High (0.69) Moderate Moderate (101) Moderate (70) Medium (33) 

Tukituki. WF; Mr; S/K; r Ashb_37.1 Not calculated High Low (41) Low (27) Very low (3) 

Hastings. GOT: Md; Z/S; m/r Opaki_26.1 Moderate (0.60) Low Moderate to high (139) Moderate to high (88) Medium (38) 

Argyll. ROW; Mr (Hs); S/K; r Rang_43.1 Very high (0.75) High Low (37) Low (28) Low (19) 

Poporangi. PPU; Md; L; m/s Ruat_7.1      
Takapau. BLT; Mg; L/K; m/r Tarar_6.1 Very low (0.37) Moderate Moderate (119) Moderate to high (77) High (66) 
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The following sections describe a selected set of outputs from S-Map for each of 

the soil series in the Ruataniwha Plains, with reference to Appendices 5 and 6. 

The following information is based on pe dotransfer functions and estimates. 

Although it can provide a useful guide to the base properties of a soil, it cannot 

replace in-field soil assessments.  

 

S-Map derived information about soils of the intermediate terraces 
The poor drainage and silt loam nature of the Ruat_7.1 soils lead to them being 

very highly vulnerable to topsoil structural degradation. These soils are 

moderately vulnerable to drought because of their shallow to moderate depth. 

Poporangi soils have moderate to low (71 mm) PAW and moderate (51 mm) 

PRAW capacities. In keeping with their classification as Pallic Soils, these soils 

are estimated to have a low (22 %) ASC. Given the topsoil carbon contents, 

horizon textures and depths, it is estimated that the CEC of the Ruat_7.1 soil is 

moderate to high.  

 

The topsoils of both Otor_51.1 and Tarar_6.1 soils have a v ery low risk of 

structural degradation (0.29 and 0.37, respectively), because they are well drained 

and contain allophanic soil material. The moderately deep phases of the Otor_51.1 

and Tarar_6.1 soils soils are both estimated to have a low risk of drought. This is 

because the soils contain 7.5–13.0 and 5.5–11.0 % carbon, respectively, having 

loamy textures and excellent soil structure, leading to a high proportion of 

mesopores in the soil. Moderately deep phases of the Otor_51.1 and Tarar_6.1 

soils soils have moderate (119 mm) and moderate to high (148 mm) PAW 

capacities, respectively. They also have and moderate to high PRAW capacities 

(estimated at 97 mm and 77 mm, respectively). In comparison, the Bushg_14.1 

soil has a moderate PAW (98 mm) and a moderate PRAW (estimated at 68 mm).  

 

The Otor_51.1 and Tarar_6.1 soils have a high ASC (estimated at 83 and 66 %, 

respectively). The ASC estimate for Takapau soils seems too low, given the 

degree to which the allophanic materials in the topsoil of the Tarar_6.1 soil 

influence soil consistence and structure (greasy, non sticky and slightly plastic 

with low bulk density, very fine apedal earthy polyhedral structure). Given the 
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topsoil carbon contents, horizon textures and depths, it is estimated that CEC of 

the Otor_51.1 and Tarar_6.1 soils is moderate to high. 

 

The topsoils of the Jord_4.1 soil is very highly (0.72) vulnerable to degradation, 

respectively. The Ruat_5.1 soils have a very high (0.72) risk of topsoil structural 

break-down. This risk is likely to be related to the poorly drained nature of the 

soils combined with their high bulk density (Hewitt, 2010) and only an estimated 

3.5–5.5 % carbon in the topsoil. Low ASCs (22 %) imply an absence of 

ferrihydridrites or allophanic soil materials, which would assist in soil structural 

development.  

 

Given the topsoil carbon contents, horizon textures and depths of the Jord_4.1, 

and Mair_25.1 soils, it is estimated that the CEC of the Otor_51.1 and Tarar_6.1 

soils is low to moderate. The Jord_4.1 and Ruat_5.1 soils have a moderate to low 

drought risk, because they have moderate to high PRAW capacities (73 and 78 

mm, respectively). These soils also have moderate to low (85 mm) and moderate 

(116 mm) PAW capacities, respectively. The Okawa_1.1, Mair_25.1, and 

Mang_2.1 soils have PRAW capacities of 85 mm (moderate to high), 45 mm 

(low), and 93 mm (moderate), respectively. The same soils have moderate (108 

mm), moderate to low (72 mm), and moderate (93 mm) PAW capacities. 

 

Where the Orono_83.1, Orono_84.1, Mand_22.1 and Mand_25.1 soils contain silt 

loam textured topsoils with an estimated 3–6.5 % carbon have, the soils are at 

moderate (0.59) risk of structural degradation. Where a sandy loamy texture 

dominates, with the same estimated carbon content, the risk of degradation is high 

(0.63). The Orono_83.1, Orono_84.1, Mand_22.1 and Mand_25.1 soils are all 

estimated to have a moderate risk of drought. With the exception of Mand_25.1, 

which has a moderate PRAW capacity (60 mm), the other phases of this soil have 

moderate to high PRAW capacities and moderate PAW capacities, ranging from 

99–117 mm. The Mand_25.1 soil is estimated to have a moderate PRAW capacity 

(60 mm) and a moderate to low (82 mm) PAW capacity. The Orono_83.1, 

Orono_84.1, Mand_22.1 and Mand_25.1 soils are estimated to have medium ASC 

levels (36 %), in accordance with the brunified nature of the Orthic Brown Soils.  
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Upok_1.1 and Popor_5.1 soils are classified under the NZSC in a similar fashion 

to the Ruat_4.1 and Mair_25.1 soils. All of these soils contain only 3.5–5.5 % 

carbon in their topsoils, have low ASCs (22 %) and contain a duripan. They are 

also likely to have low to moderate CECs. The relative youth of the soils probably 

leads to the low estimates of topsoil carbon. The halloysitic mineralogy and youth 

of these Pallic soils is in accordance with the estimated low ASCs. Given the 

topsoil carbon contents, horizon textures and depths of the Jord_4.1, and 

Mair_25.1 soils, it is estimated that CEC of the Tikokino soils is low to moderate. 

 

The Upok_1.1, Popor_5.1 and Ruat_4.1 soils are moderately deep to deep and 

consist predominantly of silt loam materials and therefore exhibit moderate or 

higher PRAWs, respectively, and low or moderate vulnerability to drought. The 

deep phases of the Upok_1.1 and Popor_5.1 soils both have PRAW capacities of 

high (103 mm) and high (95 mm). Estimated PAW capacities are high (179 and 

168 mm). The risk of drought decreases as the depth of the duripan increases. The 

moderately deep phases of the Upok_1.1 and Ruat_4.1 soils have moderate to 

high (89–97 mm) PRAW capacities.  

 

Moderately deep Popor_3.1 soils have high (156–169 mm) PAW capacities. 

Ruat_4.1 soils are estimated to have a moderate to high (146 mm) PAW capacity. 

This difference is because of a variation subsoil textural variations in the different 

soil series. Such variation is not necessarily typical, because the characteristics of 

the Ruat_4.1 soil profile are based on a low number of observations.  

 

The shallow Mang_2.1 soil has a moderate PRAW (59 mm). The shallow 

Mang_2.1 soil is at moderate risk of drought. This soil has a moderate PAW (93 

mm). 

 

The Kaip_6.1 Organic soil has low (0.47) structural vulnerability and low drought 

vulnerability, as a result of an estimated 20–40 % carbon content. The soil is 

estimated to have both high (200 mm) PAW and (150 mm) PRAW capacities. An 

ASC of 37% (medium) has been estimated for this soil. This ASC value is 

dependent not only on the very poor drainage of the soil, but also on the acidity of 

the soil and the frequency of accessions of tephra received by the soil over time 
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(Parfitt, 1986). The CEC of the Kaip_6.1 soil is high because o its high carbon 

content. 

 

S-Map derived information about soils of the low terraces 
The shallow and very shallow Rang_35.2 and Rang_43.1 soils have topsoils 

containing an estimated 2.5–5.0 % carbon, with a very high (0.75) risk of 

structural degradation. Rang_35.2 and Rang_43.1 soils have low (44 and 37 mm) 

PAW and low PRAW capacities (33 and 28 mm), respectively. Rang_35.2 and 

Rang_43.1 soils are Recent Soils with low anion retention capacity (19 %). Given 

the low carbon content and texture of this soil, CEC is estimated to be low. 

 

The Waim_4.1, Waim_40.5, Waim_40.2, Waim_40.4, and Raka_16.1 soils have a 

high (0.67) risk of structural degradation and 2.5–5 % carbon. The Opaki_26.1, 

and Will_6.1 soils have a moderate to high (0.60–0.64) risk of structural 

degradation and 4–9 % carbon. The Flax_69.1 soil have a moderate (0.60) risk of 

structural degradation, and 4–9 % carbon. The percentage of carbon in the 

Utuh_21 soil is unknown, but Organic Soils typically have carbon contents 

ranging between 20−40%. Waim_4.1, Waim_40.5, Waim_40.2, and Waim_40.4 

soils have PAW capacities ranging from moderate (114 mm) to moderate to high 

(144 mm) and PRAW capacities ranging from moderate (73 mm) to high (103 

mm). These values depend on depth to gravels and combinations of soil textures 

down the soil profile. Age equivalent but poorly drained shallow, moderately deep 

and deep Opaki_26.1, and Will_6.1 soils have moderate (118 mm), moderate to 

high (139 mm) and high (160 mm) PAW capacities. The shallow, moderately 

deep and deep soils also have moderate (74 mm) and moderate to high (88 and 93 

mm) PRAW capacities.  

 

The Flax_69.1 soil in S-Map has been correlated to a typical profile from the 

National Soils Database, described in the Heretaunga Plains (SB 09756). This 

typical profile is described as having a number of firm layers within the subsoil of 

the profile. Consequently, Flax_69.1 soil is deep with a low (45 mm) estimated 

PRAW capacity because of the presence of a number of firm horizons through the 

profile. It is expected that if a version of the Flax_69.1 soil more typical of the 
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Kaiapo soil observated in field-work undertaken for this thesis was entered into S-

Map, the PAW and PRAW would be similar to those for the Opaki_26.1 soil. 

 

The Utuh_21 soil is estimated to have both moderately high PAW and PRAW 

capacities of c. 200 mm, and 150 mm, respectively, because of its high carbon 

content. This soil contains an anoxic barrier to root growth that is generally found 

between 30 and 45 cm below the soil surface.  

 

Well drained Waim_4.1, Waim_40.5, Waim_40.2, Waim_40.4, and Raka_16.1 

soils are estimated to have low ASCs of 19 %, compared with those of the 

Opaki_26.1, and Will_6.1 soils and the Flax_69.1 soil (moderate, 38 % ). This 

seems counterintuitive because as the soils are of an equivalent age, but the well 

drained, slightly brunified _4.1, Waim_40.5, Waim_40.2, Waim_40.4, and 

Raka_16.1 soils have lower ASCs than poorly drained soils with reduced 

horizons. Given the low carbon contents and textures of the _4.1, Waim_40.5, 

Waim_40.2, Waim_40.4, and Raka_16.1 soils, and Opaki_26.1, and Will_6.1 

soils, CEC is estimated to be low. Although the carbon content in the topsoil of 

the Flax_69.1 soil is low, CEC is estimated to be low to moderate because it 

contains more clay than the Opaki_26.1, and Will_6.1 soils, and Waim_4.1, 

Waim_40.5, Waim_40.2, Waim_40.4, and Raka_16.1 soils. An ASC of 37% 

(medium) has been estimated for the Flax_69.1 soil. Like the Kaip_6.1 soil, this 

ASC value is dependent not only on the very poor drainage of the soil but also on 

the acidity of the soil and the frequency of accessions of tephra received by the 

soil over time (Parfitt, 1986). Given the high carbon content and texture of this 

soil, cation exchange capacity is estimated to be high. 

 

The Hind_25.1, Hind_26.1 and Pare_6.1 soils, the Matpi_28.1 and Tekk_6.1 soils, 

the Ruam_14.1 and Ruam_16.1 soils, and the Ashb_37.1 and Ashb_38.1 soils are 

all no m ore than a few hundred years old. The Ashb_37.1, Ashb_38.1, and 

Matpi_28.1 and Tekk_6.1 soils show distinct topsoils. The carbon content of the 

topsoils of the Ashb_37.1 and Ashb_38.1 soil is estimated to be 2.5–5.0 %. The 

carbon content of the topsoils of the Matpi_28.1 and Tekk_6.1 soil is estimated to 

be 3.5–8.0 %. Estimated proportions of topsoil carbon were not available for the 

Ruam_14.1, Ruam_16.1, Ashb_37.1, and Ashb_38.1 soils, respectively. The 
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Flaxmere soils contain deep, moderately deep and shallow phases. In S-Map these 

are now reclassified as Hind_25.1, Hind_26.1 and Pare_6.1 soils, respectively. 

These have PAWs of 178 mm (high), 162 mm (high) and 101 mm (moderate), and 

PRAWs of 108 mm (high), 102 mm (high) and 70 mm (moderate), respectively. 

Consequently, the risk of drought on Hind_25.1 and Hind_26.1 soils is low, and 

moderate on Pare_6.1 soils. 

 

Like Hind_25.1, Hind_26.1 and Pare_6.1 soils, Ruam_16.1 soils are deep and 

Ruam_14.1 soils are moderately deep. Ruam_16.1 and Ruam 14.1 soils have high 

PAW capacities (163 and 152 mm, respectively) and moderate to high PRAW 

capacities (99 and 91 mm, respectively. The risk of drought on Ruam_16.1 and 

Ruam_14.1 soils is low.  

 

Moderately deep Matpi_28.1 soils and shallow Tekk_6.1 soils have PAWs of 114 

mm (moderate) and 48 mm (low), and PRAWs of 68 mm (moderate), and 33 mm 

(low), respectively. Consequently the risk of drought on Matpi_28.1 and Tekk_6.1 

soils is moderate and high, respectively.  

 

Shallow Ashb_37.1 or very shallow Ashb_38.1 soils contain highly variable 

horizons which are very stony, but often contain small amounts of fine sand or 

silt. Although the low PAW and PRAW values for this soil will vary, they will be 

somewhere in the order of 41 mm and 27 mm, respectively. 

 

Hind_25.1, Hind_26.1, and Pare_6.1 soils, and Matpi_28.1 and Tekk_6.1 soils are 

estimated to have moderate CEC values because of the presence of soil carbon in 

the upper profile and the texture of the soils. The Hind_25.1, Hind_26.1, and 

Pare_6.1 soils have a moderate ASC estimate of 33%. The Matpi_28.1 and 

Tekk_6.1 soils have a moderate ASC estimate of 35%. These values seem too 

high for the relative youth of the soils. There has been minimal time for the 

formation and dispersion of iron oxides through the soil profile in the upper 

horizons of the Hind_25.1, Hind_26.1, and Pare_6.1 soils and the reducing 

conditions in the Matpi_28.1 and Tekk_6.1 soils prevent this process because of 

the dissolution and translocation of iron out of the soil profile.  
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Ruam_14.1, Ruam_16.1, Ashb_37.1, and Ashb_38.1 soils contain negligible soil 

carbon and very little, if any, clay in their profiles. Therefore, CEC values are 

estimated to be very low. Likewise the soils have very low ASC values (both 3 

%). 

 

3.6. Conclusions 

Through the process of reclassifying legacy soils data into NZSC and entering it 

into the S-Map system, soil information became more easily comparable with that 

for soils from other areas. Soil families and siblings were generated along with 

other and information. The outputs from these processes have been provided and 

described. The reliability and uncertainty of the input and output information have 

been evaluated. 

 

The resultant information from the methods used in this chapter will provide the 

basis for the assessments about the relationship between the soils of the 

Ruataniwha Plains to production and the environment in Chapters 4 and 5. 
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Chapter 4: Creating new LUC data from land systems and S-Map 

4.1. Introduction 

A process is developed to create a new LUC map for the Ruataniwha Plains. This 

process incorporates the concept of land systems and soils information arranged in 

S-Map format. Using this new LUC information, levels of potential production 

under different irrigation scenarios are assessed. 

 

4.2. Background 

Updating the NZLRI and LUC information using soil information 
For many years there has been a schism between the NZLRI information derived 

from the LUC method (Soil Conservation and Rivers Control Council, 1974) and 

that derived from the soil survey method of Taylor and Pohlen (1970). There are 

strengths and weakness to both approaches. The NZLRI dataset is the only dataset 

at moderate scale (original 1:63,360, now 1:50,000), relating to land and soil at 

the national extent whereas the maps and soil information generated by traditional 

soil survey techniques are at small scale (c. 1:250,000) or patchy at a larger scale.  

 

The LUC approach has until recently been more effective than conventional soil 

mapping in hill country. The method is faster and more fit-for-purpose where 

erosion control is concerned. Conventional soil maps are considered to be more 

important on more productive flat land, where there can be less of a reliance on 

relationships between lithology and topography to map soil units. The LUC 

system does have the advantage of providing a well-known system of classifying 

the versatility of land, and evaluating relative productivity between blocks. Lynn 

et al. (2009) provides the potential for updating the LUC map information on flat 

land, where more detailed soils-related information is available.  

 

In many places in New Zealand, the only soil information available comes from 

the Fundamental Soils Layers (FSL) (Wilde et al. 2000), derived from the national 

NZLRI dataset (Newsome, 1992), at 1:63,360 scale. The soils component of 

NZLRI data for the Ruataniwha Plains area relies on the 1:253,440 scale soil 
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information from the Department of Scientific and Industrial Research (DSIR) 

(1954), (Noble, 1985). 

 

The nationwide NZLRI dataset was derived from various soil maps, predating c. 

1979. Because of the difference in mapping methods of Taylor and Pohlen (1970) 

and the LUC method (Soil Conservation and Rivers Control Council, 1974), 

more-detailed soil map units were simplified (Lilburne et al. 2004). In much of 

New Zealand where information was not available, the NZLRI was populated 

from 1:253,440 scale soil map information from the General Soil Survey of New 

Zealand (DSIR, 1954). In the Ruataniwha Plains, the DSIR (1954) information 

was bolstered by the 1:253,440 scale soil map of Mid-Hawke’s Bay, Pohlen et al. 

(1947). Information from the 1:63,360 scale soil map of Griffiths (1977) was not 

utilised in the NZLRI maps of the Ruataniwha Plains (Noble, 1976; Stephens, 

1976; Stephens and Redpath, 1976, 1977; Stephens et al., 1976, 197 7, 1978;), 

information from the Griffiths (1977). There is thus a need to update the soil 

component of the NZLRI maps and LUC information where they pertain to 

potentially irrigable parts of the Ruataniwha Plains. A ten year old 1:50,000 soil 

map exists that could help with this process (Griffith et al., 2001). 

 

The need for production information 
The proposal to invest in substantial infrastructure to allow irrigation to be 

increased in the Ruataniwha Plains must be balanced with the extent of extra 

predicted production and the extent of potential environmental problems that may 

arise. LUC information is useful for this purpose became it includes information 

about the relative productivity of each LUC map unit, and can be modified to 

account for the beneficial impact of irrigation on the land.  

 

4.3. Aim 

The main aim of this work is to produce a new LUC map based on a geomorphic 

hierarchy that is linked to soil mapping methods and in particular S-Map. As well, 

I provide an example of the value of this approach, and to demonstrate how with 
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further research and development, LUC maps should be able to be updated 

automatically. 

 

4.4. Method 

To produce a new LUC map for the Ruataniwha Plains, the land systems concept 

and S-Map are used together. 

 

The original LUC units of the Ruataniwha Plains were summarised by Noble 

(1985) into LUC suites based predominantly on parent material and climate. 

Because many of the different landforms of the Ruataniwha Plains are underlain 

by parent materials deposited by similar mechanisms, this classification process 

has led to complicated cross-landform aggregations of ‘alluvium and peat’, 

‘gravels’ and ‘tephra and loess’. This complexity has resulted in the soil 

properties described in the original LUC units being ambiguous and 

compromised. It is important therefore that there is more of a focus on soils when 

updating or renewing LUC units in this area. 

 

New LUC units have been produced in this thesis by including LUC suites within 

a geomorphic hierarchy (Chapter 2) and using the classified and derived soil 

property information arising from Chapter 3. A new LUC map and legend has 

thus been produced, providing information about general versatility, extent of 

dominant limitations, relative productivity and the risk of erosion. The LUC units 

have been created by going back to first principles using Lynn et al. (2009). Soil 

properties and land and climate characteristics were grouped by do minant 

limitation. By assessing the overall severity of each of the LUC subclasses, the 

LUC class and subclass were deduced for each unique combination of 

contributing factors. These new LUC class-subclass combinations were correlated 

to existing LUC units where possible. In a limited number of cases, new LUC 

units were created.  

 

The resultant LUC units were then correlated with those of the soil map of 

Griffiths et al. (2001) so that a new 1:50,000 LUC map was able to be produced 

on GIS. Should a more detailed map land systems map using the same 
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geomorphic hierarchy and linkage to S-Map be produced, more detailed LUC 

maps could correspondingly be produced. 

 

By using the S-Map database to provide the required soil information for this 

LUC map update, and making the LUC map units equivalent to the Griffiths et al. 

(2001) soil map, information about variability, confidence and reliability 

information are available for these maps via S-Map. Such information has not 

previously been available from NZLRI maps (Lilburne et al. 2004). 

 

Assessing LUC in a currently irrigated scenario 
A GIS map layer of farms where irrigation was currently occurring in 1990, 1996, 

2001, and 2008 on the Ruataniwha Plains (Hedley and Aussiel, 2011) was added 

to the GIS map layer containing the new 1:50,000 scale LUC map. Where 

irrigation was then undertaken, the new LUC classes and subclasses of the 

relevant map units were upgraded to reflect the elimination of a ‘removable 

limitation’ (Lynn et al., 2009). In some cases this meant a change in the way the 

LUC class-subclass combinations were correlated to LUC units, i.e. the LUC class 

was changed from Class 4 to Class 3. 

 

Assessing LUC in a hypothetical future irrigation scenario 
In the second irrigation scenario, it was assumed that the all of the low and 

intermediate terraces were irrigated. Although not all of this land is likely to be 

irrigated under the proposed scheme, the scenario presented an example of the 

potential of this method in determining overall difference in versatility and 

productivity because of irrigation. 

 

The LUC class-subclass combinations of all map units were then updated to take 

into account the extent of irrigation. In some cases this meant a change in the way 

the LUC class-subclass combinations were correlated to LUC units. New LUC 

suites are based on a  geomorphic hierarchy (described in Chapter 2). The new 

LUC suites are used in combination with Lynn et al. (2009) and existing 

information about NZLRI, LUC and soils to produce new LUC map unit 

polygons, populated with new LUC information.  
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Evaluating productivity in the 2 different irrigation scenarios 
Data associated with the LUC maps from current and hypothetical future 

irrigation scenarios were used to calculate production in terms of mass of dry 

matter per hectare and land carrying capacities (LCCs) which are measured in 

stock units per hectare (su/ha). A stock unit is a measurement of how many 

animals the feed produced from a unit of land can support through a standard 

year. One stock unit is equivalent to the amount of feed required by one standard 

550 kg ewe that produces one lamb over one year (Trafford and Trafford, 2011). 

LCC is how many stock units any given piece of land is estimated to support. 

 

For every LUC unit, Noble (1985) provided an associated set of LCCs. These 

rates (su/ha) were produced by MAF farm advisors and LUC/NZLRI experts from 

the Ministry of Works/Water and Soil Conservation Authority. They were broad 

estimates made at the time of publication of documents such as Noble (1985), 

designed to provide comparisons of the relative productivity of different LUC 

units. The estimates also provide sustainable limits to production. “Present 

farmer”, “top farmer” and “potential production” fields are recorded in Noble 

(1985). Present farmer is essentially the measure of the average production of 

farmers on a given LUC unit in 1985. Top farmer is the measure of the top level 

of production on a particular LUC unit in 1985. Potential production is essentially 

the maximum level of production that a given LUC unit is capable of sustaining 

long term, if all removable limitations are eliminated. 

 

More than 25 years on from the time that this information was published, farm 

systems have changed significantly. While many hill country of droughty sheep 

farms are still producing at around the top farmer level, productive flats tend to be 

fertilised, drained, and irrigated with supplements provided where necessary. 

These farming systems (dairy, arable and horticultural) tend to be operating at or 

above the limits for sustainable production of their land. 

 

The new LUC units produced in this chapter have been correlated with LUC units 

in Noble (1985) where possible. In these cases estimates of stocking rates have 

been provided from tables in Noble (1985). Some LUC units have not been 

correlated to those of Noble (1985) units. In these cases it has been necessary to 
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assign new stocking rate estimates through consideration of the basic elements of 

the new LUC unit, the dominant limitations and the extent to which it compares 

with similar LUC units (Harmsworth, 2011). However, just because a certain 

portion of land can have a certain stocking rate, not all the feed produced can be 

eaten. A range of factors, such as suboptimal grazing pressure and pasture quality, 

can cause variations in pasture utilisation. Average pasture utilisation rates on 

medium hill country range from 0.65–0.75 %. On well developed, productive, flat 

land utilisation could be as high as 80–90 % (Trafford and Trafford, 2011). All 

stock unit calculations in this chapter were based on potential stocking rates and 

pasture utilisation rates of 85 %. To establish the stocking rate (su/ha) that a 

particular LUC unit will produce in a year, the following formula was applied: 

 

𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 𝐿𝐶𝐶 (𝑠𝑢) 𝑥 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑥 𝑎𝑟𝑒𝑎 (ℎ𝑎)   (1) 

 

The total number of stock units (su) within a defined aggregate of LUC units was 

defined by the following formula: 

 

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘 𝑢𝑛𝑖𝑡𝑠 = ∑ (𝐿𝐶𝐶 (𝑠𝑢) 𝑥 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑥 𝑎𝑟𝑒𝑎 (ℎ𝑎))𝑛
𝑖   (2) 

 

The following formula calculates the amount of dry matter per unit area (kg 

DM/ha) within a defined aggregate of LUC units: 

 

𝐷𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 = ∑ ((𝐿𝐶𝐶 (𝑠𝑢) 𝑥 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛) 𝑥 550 (𝑘𝑔) 𝑥 𝑎𝑟𝑒𝑎 (ℎ𝑎))𝑛
𝑖  (3) 

 

Equations 2 and 3 were applied to the attribute table associated with the new LUC 

units layer within the GIS to produce estimates of total potential stock units and 

total utilisable dry matter per hectare. The same process was run for both the 

currently irrigated and hypothetical future irrigation scenarios.  

 

Production in terms of kilograms of dry matter per hectare can also be converted 

into the number of cows per hectare, or the amount of milk solids produced. 

Unlike with sheep there is a wide range of breeds of cow, with a wide diversity of 

weights and milk solids (MS) production. In this case one standard cow was 

assumed to be equivalent to 8 su/ha, producing 325 kg MS/ha/yr.  
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The current and future results for each of the LUC units on the Ruataniwha Plains, 

respectively, were summed and the difference between the two results is 

calculated. It must be stressed that this final part of the productivity analysis is not 

what the LUC productivity indices were originally designed to be used for 

(Harmsworth, 2011). The LCC values are relative, and any summary results 

should not be considered absolute. However, the results of this calculation provide 

a means to approximate the relative difference in productivity between the future 

scenario, with extensive irrigation, and the current scenario. With extreme caution 

this yield gap can be quantified in dollar terms, to aide in a cost benefit analysis 

regarding the relative value of investing in the proposed Plains irrigation scheme. 

 

4.5. Results and discussion 

Recreating LUC units from first principles 
Many regional councils (Horizons, Taranaki, Greater Wellington and Hawke’s 

Bay) produce paddock-scale NZLRI and LUC maps for hill country farm plans. 

Land attributes observed in the field (primarily rock, slope and erosion) are 

correlated to existing 1:50,000 or 1:63,360 maps units and LUC suites from 

associated bulletins. 

 

This project has used a different method than that commonly used for the 

production of NZLRI/LUC information for hill country farm plans. This new 

method is useful for producing LUC maps both at 1:50,000 and at more detailed 

scales. The key differences are that on the Ruataniwha Plains, soils information 

becomes the dominating NZLRI factor in the determination of LUC and more 

soils information is available in this instance due to reclassification of legacy soils 

data.  

 

In accordance with Lynn et al. (2009), the severity of the limitations have been 

determined (erodibility, wetness, soil and climate) for every S-Map sibling in the 

proxy S-Map database. In many cases t he information required to assess the 

extent of each limitation needed to be assimilated from a range of base factors. 
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Table 9 shows the information which was required to determine each of the LUC 

subclasses. 
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Table 9: The information which was required to determine each of the LUC subclasses 

Erodibility limitation (e) Wetness limitation (w) Soil limitation (s) Climate limitation (c) 
Slope Rock Soil Weather Natural drainage Ease of drainage Risk of flooding or 

inundation 
Stone distribution and 
size 

Texture and pans Climate 

Slope LiDAR Soilform 

• Parent 

material 

class 

NZSC Order NZSC Windspeed Noble 
(1985) 

Depth to 
hydromorphic 
features 

NZSC Ease of 
artificial 
drainage 

Webb and 
Wilson 
(1994) 

Frequency Cowie 
(1977) 

Topsoil 
stoniness 

S-Map Texture NZSC Rainfall Noble 
(1985) 

Slope DEM   Group NZSC   Depth to 
hydromorphic 
features 

S-Map   Frequency Griffiths 
(2001) 

Texture NZSC Pan 
depth 

S-Map Soil moisture 
deficit 

Noble 
(1985) 

    Soilform 

• Parent material 

class 

• Particle size 

class 

• Permeability 

NZSC   Depth to water 
table 

NZSC   Frequency Griffiths 
(2004) 

PAW class Webb and 
Wilson 
(1994) 

Pan 
depth 

NZSC Windspeed Noble 
(1985) 

Soilform 

• Permeability 

S-
Map 

  Depth to water 
table 

S-Map   Frequency Wilde and 
Palmer 
(2004) 

PAW class Watt 
(1998) 

    

        Ponding S-Map PAW class S-Map     

Ponding Webb and 
Wilson 
(1994) 

Stone 
depth 

S-Map 
 

    

Ponding Watt (1998)       

Ponding Wilde and 
Palmer 
(2004) 
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The final LUC classes and subclasses were then established by determining the 

most limiting factors. For example, the shallow Takapau soil has limitations of 3e, 

1w, 4s and 3c. The most limiting factor in this case i s 4s, which becomes the 

subclass. In a second example, the shallow Poporangi soil has limitations of 1e, 

4w, 4s and 3c. In this case the dominant limitation is 4w, because limitations are 

preferentially ranked: e > w > s > c (Lynn et al., 2009).  

 

At this point LUC subclasses were transformed into LUC units through 

correlation with existing LUC units and their corresponding productivity 

information, as identified in Noble (1985) (Table 10). Figure 6 shows a 

comparison of the new LUC units to the LUC units from Noble (1985). 

65



 
Figure 6: Comparison between new LUC units (2011) and those of Noble (1985) 
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Table 10: S-Map families and siblings classified into NZSC, correlated with unimproved LUC units and production information (Noble, 1985) 

S-Map family and 
sibling codes 

NZSC Code e w s c LUC 
subclass  
not 
irrigated 

LUC 
unit  
not 
irrigated 

LCC 
present 
average  
(su/ha) 

LCC 
top 
farmer 
c. 1980  
(su/ha) 

LCC 
sustainable 
limit  
(su/ha) 

Hind_25.1 RFM;Mg;S/K;r 2 3 3 2 3w 3w1 12 15 27 
Ruam_14.1 WF;Ms;L/K;m 1 2 2 2 2w 2w1 12 21 29 
Ruam_16.1 WF;Md;L;m/s 1 2 2 2 2w 2w1 12 21 29 
Waim_40.4 RFW;Ms;Z/K;m 1 1 2 2 2s 2s1 12 18 27 
Waim_40.2 RFM;Md;Z;m/s 1 2 2 2 2w 2w1 12 21 29 
Waim_40.4 RFW;Ms;L/S;m 1 1 2 2 2s 2s1 12 18 27 
Waim_40.2 RFM;Md;L/S;m/s 1 2 2 2 2w 2w1 12 21 29 
Opaki_26.1 GOT:Md;Z;m 1 4 1 2 4w 4w1 9 15 17 
Flax_69.1 GOT:Md;Z;m 1 4 1 2 4w 4w1 9 15 17 
Matpi_28.1 GRT;Mg;L/K;m 1 4 2 2 4w 4w1 9 15 17 
Jord_4.1 PUJ;Md;Z;m/s 1 4 3 3 4w 4w1 9 15 17 
Ruat_7.1 PPU;Md;L;m/s 1 4 3 3 4w 4w1 9 15 17 
Tarar_6.1 BLT;Mr(Hs);L/K;m/r 3 1 4 3 4s 4s1 5 10 15 
Otor_51.1 LOT;Mt(An);L/K;m/r 4 1 3 4 4e 4e2 14 19 27 
Ashb_37.1 WF;Mr(Hs);S/K;r 3 2 6 2 6s 6s4 4 5 15 
Rang_43.1 RFT;Mr(Hs);S;r 3 1 6 2 6s 6s4 4 5 15 
Upok_1.1 PUT;Md;L;m/s 1 2 2 3 3c 3c2 13 19 27 
Popor_5.1 PUM;Md;L/S;m/s 3 2 2 3 3e 3e1 14 19 27 
Ruat_4.1 PPU;Md;L/S;m/s 1 4 2 3 4w 4w1 9 15 17 
Kaip_6.1 OMM;Sd(Hu);Tp;m/s 1 5 1 3 5w 5w1 7 14 15 
Utuh_21 OMM;So(Hu);Z/Tl;m/s 1 5 1 2 5w 5w1 7 14 15 
Ruat_5.1 PPU;Md;L;m/s 2 4 2 3 4w 4w1 9 15 17 
Orono_83.1 BOT;Ms;Z/K;m 2 1 3 3 3s 3s2 12 17 25 
Mair_25.1 PUJ;Ms;Z/C;m/s 3 4 3 3 4w 4w1 9 15 17 
Mair_27.1 PUM;Ms;Z/C;s 3 3 2 3 3e 3e2 13 16 23 
Will_6.1 GOT:Mr(Hs);L/K;m 1 4 3 2 4w 4w1 9 15 17 
Tekk_6.1 GRT;Mr(Hs);L/K;m 1 4 3 2 4w 4w1 9 15 17 
Okawa_1.1 PUJ;Mr(Hs);L/K;m/s 1 4 5 3 5s 5s2 4 7 15 
Pare_6.1 RFM;Mr(Hs);L/K;m/r 2 3 4 2 4s 4s1 5 10 15 
Mangt_3.1 PPU;Mr (Hs);Z;m/s 1 4 4 3 4w 4w1 9 15 17 
Bushg_14.1 BLT;Mr(Hs);L/K;m/r 3 1 4 3 4s 4s1 5 10 15 
Ashb_38.1 WF;Mr(Hs);S/K;r 3 2 5 2 5s 5s3 4 7 15 
Raka_16.1 RFW;Mr(Hs);L/K;m 1 1 3 2 3s 3s2 12 17 25 
Mang_2.1 PPU;Mg;L;m/s 1 4 3 3 4w 4w1 9 15 17 
Orono_84.1 BOT;Mg;Z/K;m 3 1 3 3 3e 3e1 14 19 27 
Mand_22.1 BOT;Mg;Z/C;m/s 2 1 3 3 3s 3s2 14 16 23 
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Table 10 shows that deep, loamy Fluvial Recent and Fluvial Raw soils (stoneless 

or with stones) are classified as 2s and 2w LUC subclasses, respectively. 

Moderately deep, loamy Mottled Fluvial Recent Soil is slightly less versatile, with 

wetness being the dominant limitation (3w). The dominant limitation in shallow 

Mottled Fluvial Recent Soils is subclass 4s. Where Fluvial Recent and Fluvial 

Raw soils are not only shallow but also have a sandy texture group, they are 

classified as 5s and 6s, respectively. Shallow to deep, loamy Brown Soil on the 

Ruataniwha Plains is categorised as LUC subclass 3w, whereas shallow Typic 

Allophanic Brown and Typic Orthic Allophanic soils are of the 4s subclass. Due 

to their poorly drained nature, most Pallic and Gley soils on the Ruataniwha 

Plains are classed as 4w land, but some key into the 3w subclass. Very poorly 

drained Organic Soil is considered to have a similar versatility to shallow, sandy 

Fluvial Raw Soil, but with the wetness limitation being dominant (subclass 5w). 

 

In most cases t he correlation process was straight-forward, however some new 

subclasses were created for which there was no pre-existing LUC unit. In these 

cases, new units were formed and the associated productivity values were 

interpolated from the closest correlatives to the LUC subclasses. Additionally, in 

some instances and although correlation was not complex, productivity values 

needed to be modified. Table 11 outlines how these issues were addressed. The 

LCC of LUC units 2w1, 3w1, 4w1 and 5s2 were increased by 1 su/ha each, 

because the units described in Noble (1985) had more limitations than the new 

units, although the overall versatility and dominant limitations were the same. The 

closest existing units to the new 3c2 and 4e2 units were 2c1 and 3e1, respectively. 

The new 5w1 unit was defined as being the median of the existing 4w1 and 6w1 

units.  
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Table 11: Factors controlling the assignment of unit numbers and productivity values to 
unirrigated and undrained LUC subclasses 

LUC unit 
(not 
irrigated) 

Revised LUC unit from 
Noble (1985) that most 
closely correlates with 
revised units (this study) 
(higher versatility) 

Revised LUC unit from 
Noble (1985) that most 
closely correlates with 
revised units (this study) 
(lower versatility) 

Productivity 
adjustments to LUC 
units due to local 
warmer climatic 
conditions 

2w1     Add 1 su/ha 
3w1     Add 1 su/ha 
3c2 2c1     
4e2 3e1     
4w1     Add 1 su/ha 
5w1 4w1 6w1   
5s2     Add 1 su / ha 

 

Evaluation of the effect of removable limitations, particularly irrigation, 
over a greater area of the Ruataniwha Plains 

The new LUC units of the Ruataniwha Plains were produced assuming that none 

of the original limitations of this land had been artificially modified or removed. 

However, in the Ruataniwha Plains extensive drainage systems have been in place 

for many years, and more recently many large centre pivot and travelling 

irrigators have been installed in the area. More irrigation is proposed. Using the 

procedure outlined in Lynn et al. (2009), the LUC units have been modified to 

take into into account an approximation of the current set of limitations and LUC-

based versatility on the Ruataniwha Plains, and a hypothetical future scenario, 

where it is assumed that all flat land is being irrigated.  

 

In the current scenario it has been assumed that all land requiring drainage has 

been drained, with varying degrees of success (see the ease of drainage index in 

Table 12. Additionally, an assumption has been made that all of farms identified 

by Hedley and Ausseil (2011) are currently irrigated. 
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Table 12: Example of the ‘ease of drainage’ 

S-Map sibling code LUC unit from Noble  
(1985) that most  
closely correlates  
with revised units  
(this study) 

Ease of drainage* 

Hind_25.1 3w1 1 

Ruam_16.1 2w1 3 

Waim_40.2 2s1 3 

Opaki_26.1 4w1 3 

Tarar_6.1 4s1 3 

Otor_51.1 4e2 3 

Ashb_37.1 6s4 1 

Upok_1.1 3c2 4 

Popor_5.1 3e1 4 

Kaip_6.1 5w1 4 

Orono_83.1 3s2 4 

Mair_27.1 3e2 4 

Okawa_1.1 5s1 3 

Mand_25.1 3s1 3 

* Based on Webb and Wilson (1994) 

 

The future scenario will never be achieved in reality, but running the scenario has 

provided insight into how differences in production from different irrigation 

scenarios can be evaluated. Figures 8 a nd 9 ( Appendices 8 and 9) depict the 

nature and spatial distribution of the newly produced LUC units, in the current 

and future scenarios, respectively. The productivity of the LUC units in the 

current and future scenarios is portrayed for visual comparison in Figure 9 and 

Appendix 10. The change in LUC versatility depicted in map form in Figure 10 

(Appendix 11). Table 13 outlines the new ‘irrigated and drained’ LUC units.  
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Table 13: New LUC units updated to account for drainage and irrigation 

S-Map 
family and 
sibling 

e w s C LUC subclass 
(irrigated) 

LUC unit 
(irrigated) 

LCC present 
average (su/ha) 

LCC top farmer 
c. 1980 (su/ha) 

Potential 
production 
(su/ha) 

Hind_25.1 2 1 2 2 2e 2e1 12 18 27 
Ruam_16.1 1 1 2 2 2s 2s1 12 18 27 
Ruam_14.1 1 2 1 2 2w 2w1 12 20 28 
Waim_40.2 1 1 2 2 2s 2s1 14 19 27 
Waim_40.4 1 1 2 2 2s 2s1 12 17 25 
Opaki_26.1 1 3 1 2 3w 3w1 12 14 26 
Flax_69.1 1 3 1 2 3w 3w1 12 14 26 
Matpi_28.1 1 3 2 2 3w 3w1 12 14 26 
Jord_4.1 1 3 2 3 3w 3w2 13 16 25 
Ruat_7.1 1 3 1 3 3w 3w2 13 16 25 
Tarar_6.1 2 1 2 3 3c 2c1 13 19 27 
Otot_51.1 2 1 2 4 4c 2c1 13 19 27 
Ashb_37.1 3 1 3 2 3e 3e1 12 17 25 
Rang_43.1 3 1 3 2 3e 3e1 12 17 25 
Upok_1.1 1 2 1 3 3c 3c2 14 19 27 
Popor_5.1 3 2 2 3 3e 3e1 12 17 25 
Ruat_4.1 1 3 2 3 3w 3w2 13 16 25 
Kaip_6.1 1 4 1 3 4w 4w1 9 15 17 
Utuh_21 1 4 1 2 4w 4w1 9 15 17 
Ruat_5.1 2 3 1 3 3w 3w2 13 16 25 
Orono_83.1 2 1 2 3 3c 3c2 14 19 27 
Mair_25.1 3 3 2 3 3e 3e2 13 16 23 
Mair_27.1 3 2 2 3 3e 3e2 13 16 23 
Will_6.1 1 2 2 2 2s 2s1 12 17 25 
Tekk_6.1 1 2 2 2 2s 2s1 12 17 25 
Okawa_1.1 1 3 3 3 3w 3w2 13 16 25 
Pare_6.1 2 1 2 2 2e 2e1 12 17 25 
Mangt_3.1 1 3 2 3 3w 3w2 13 16 25 
Bushg_14.1 2 1 2 3 3c 3c2 14 15 27 
Ashb_38.1 3 1 2 2 3e 3e1 12 17 25 
Rang_35.2 3 1 3 2 3e 3e1 12 17 25 
Raka_16.1 1 2 2 2 2w 2w1 12 20 28 
Mang_2.1 1 3 2 3 3w 3w2 13 16 25 
Orono_84.1 2 1 2 3 3c 3c2 14 16 25 
Mand_22.1 2 1 2 3 3c 3c2 14 16 25 
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Figure 7: LUC units of the Ruataniwha Plains, current scenario (2011) 
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Figure 8: LUC units of the Ruataniwha Plains (2011), hypothetical future scenario 
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Figure 9: Comparison of current (2011) and hypothetical future productivity on the Ruataniwha Plains 
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Figure 10: The change induced by irrigation on the Ruataniwha Plains (from current to 
hypothetical future scenarios) 
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Figures 8–10 and Table 14 provide a comparison of the differences in LUC unit 

versatility and the change in LUC map unit area in the current versus hypothetical 

future scenarios. 

 

 

Figure 11: Graphical representation of the change in LUC units from the current (2011) 
scenario and the hypothetical future scenario 

 

Table 14: Quantitative comparison of the change in LUC units from the current (2011) 
scenario and the hypothetical future scenario 

LUC units Area of current (2011) 
LUC units (ha) 

Area of hypothetical 
future LUC units (ha) 

2w1 316 316 
2s1 374 241 
2c1   132 
3e1 11,441 12,541 
3w1 463 1,111 
3s1 2,478 2,478 
3s2 612 612 
3c1   66 
4w1 13,928 13,928 
4s1 1,743   
5w1 140 140 
5s2 1,494 5,569 
6s4 4,147   
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There is a shift from lower versatility to higher versatility in some LUC units. 

Around 1,743 ha of 4s1 land in the current scenario changed into 3e1 land. 643 ha 

of 4s1 land were transformed into 3w1 land; 5 ha of 5s3 land became 3w1 land 

(upgraded two LUC classes); and 4,147 ha of 6s4 land changed into 5s3 land. This 

simulation shows that as the extent of irrigation on the Ruataniwha Plains 

increases, and the the soil moisture deficit component of the soil limitation in 

LUC units is removed, then some soil limitations are lessened in some LUC units 

leading to increases in overall versatility and productivity.  

 

LUC units of the Ruataniwha Plains within a geomorphic hierarchy 
The new LUC units of the Ruataniwha Plains, and some of their key 

distinguishing characteristics have been summarised within the framework of the 

geomorphic hierarchy in Table 15. The expanded version is located in Appendix 

12.  
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Table 15: New LUC units in the geomorphic hierarchy of the Ruataniwha Plains 

Landscape LUC suite Landform LUC (not irrigated) LUC (irrigated) 

Low terraces 
  
  
  
  
  
  
  
  
  
  
  

Floodplains and terraces. Present to c. 1.9 cal. ka (Suite 1) 
  
  
  
  
  
  
  
  
  
  
  

Floodplain (LT 1) 
  
  
  
  
  

2w1 2s1 
3w1 2w1 
4w1 2e1 
4s1 2s1 
5s2 3e1 
6s4 3w1 

Rarely flooded (LT 2) 
  
  
  
  

2w1 2w1 
2s1 2s1 
3s2 3w1 
4w1 4w1 
5w1   

Non flooded (LT 3) 6s4 3e1 
Intermediate terraces 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Ruataniwha alluvium from Mesozoic origins. c. 1.9–3.5 cal. ka (Suite 2) Alluvium (RT)  
  

3e1 3e1 
3c1 3c1 
4w1 3w2 

Tikokino alluvium from Castlecliffian origins. c. 3.5–6 cal. ka (Suite 3) Alluvium and gravels (TT) 3e1 3c1 

3e2 3e2 
3s1 3w2 
3s2 4w1 
4w1   
5w1   

Alluvial fan (TF) 4w1 3w2 
5s2 3e2 

Takapau alluvium from tephra and loess. c. 6–10 cal. ka (Suite 4) Low leaching on Red Metal (TkL) 4w1 3w2 

Moderate leaching on Red Metal 
(TkM) 

4s1 2c1 

    3c1 
High leaching on Red Metal (TkH) 4e2 4c1 

Incised terraces or foothills Suite 5       
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Quantification of productivity changes due to increased irrigated area 
The relative difference in production (yield gap) caused by artificial drainage and 

irrigation in the Ruataniwha Plains, using the LCC values associated with each 

new LUC unit in Tables 10 and 13 is summarised in Table 16 below. Production 

is expressed as LCC, kilograms of DM, numbers of cows and kilograms of MS. 

Using this method, it is predicted that if all land in the Ruataniwha Plains except 

for floodplains within riparian margins, and the incised terraces and foothills of 

Suite 5, were irrigated and farmed at its sustainable limit, there could be an overall 

increase in production of 25 %. In reaching this increase, it is assumed that in the 

current scenario LUC units are not already artificially drained, and the result is 

based on relative rather than absolute production values. This yield-gap 

calculation is only a guide, it is not intended that it be used for detailed planning. 
 

Table 16: Summary the results of a yield gap analysis for the Ruataniwha Plains based on 
the newly-calculated LUC units 

 Productivity Expression Current Future Yield gap Percent 
increase 
(%) 

Total LCC (su) 611,444 767,311 155,868 25 
Average LCC (su/ha) 16.6 20.8 4.2 
Total production of dry matter (Kg 
DM/yr) 

336,294,063 422,021,320 85,727,256 

Total dairy cow equivalents 76430.5 95,913.9 19,483.5 
Average number of cows/ha 2.1 2.6 0.5 
Total production of milk solids (Kg 
MS/yr) 

24,839,902 31,172,029 6,332,127 

 

4.6. Conclusions 

In Chapter 4 the process of creating new LUC map units has been described. 

Using the geomorphic hierarchy developed for the Ruataniwha Plains in Chapter 

2, LUC map units were based on polygons from soil maps rather than the existing 

LUC map. This relationship is effective because LUC in plains environments is 

mainly dictated by soil type. It also allows quick updating when new soil maps are 

produced. LUC units and associated production information have been developed 

for a current land-use scenario and a hypothetical future scenario where all land in 

LUC suites 1–4 is irrigated. The potential difference in productivity and land 

versatility between the future and current scenarios has been evaluated, with 

several LUC units becoming more versatile with land improvements, and the 
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potential for up to a 25 % gain in production, assuming that in the ‘current’ 

scenario that land has not already been drained.  
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Chapter 5: Assessing versatility and environmental risk 

5.1. Introduction 

The versatility for horticultural cropping and the environmental risks associated 

with such land use in the Ruataniwha Plains have been evaluated. A basic soil 

suitability study of land-based application of farm dairy effluent (FDE) has also 

been carried out. 

 

5.2. Background 

For the proposal to invest in the infrastructure to irrigate significant parts of the 

Ruataniwha Plains, other soil-related factors need to be taken into account. 

Productivity, the potential for land use change and environmental risks associated 

with such change need to be taken into consideration. Productivity and versatility 

in a general sense have been evaluated in Chapter 4, but in Chapter 5 two of the 

high-value land uses (which tend to require irrigation in the Hawke’s Bay 

environment), have been examined: versatility for orchard crops and the 

application of FDE in dairy farming.  

 

The Ministry of Agriculture and Forestry has recently made available the 

‘Irrigation Acceleration Fund’, to “support the potential for irrigated agriculture to 

contribute to sustainable economic growth throughout New Zealand”. The 

Ministry for the Environment has also recently published the National Policy 

Statement on Fresh-Water Management (2011), which regulates to ensure that not 

only are life-supporting capacities related to water maintained, but also to ensure 

that water quality is improved. For this reason, the potential for leaching, erosion 

and the degradation of soil structure on the Ruataniwha Plains have also been 

(qualitatively) evaluated. 
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5.3. Aim 

The aim is to evaluate the potential for land use change on the Ruataniwha Plains 

when irrigated, focussing on two high-value land uses already established in the 

area. I also consider the current and potential risk of environmental impacts 

associated with these land uses. 

 

5.4. Method 

Land versatility for horticultural orchard crop production, including land 
qualities regarding the risk of leaching 

The versatility of land of the Ruataniwha Plains for horticultural orchard crop 

production and the risk of leaching and soil structure degradation were evaluated 

using the Webb and Wilson (1994) method.  

 

Ten subclasses have been grouped into three types of land quality units, which 

together form each land versatility unit. In this thesis, wetness and aeration, risk of 

waterlogging and soil water deficit subclasses are land qualities within the root 

zone. Slope and stoniness are land qualities related to management. Erosion risk 

and potential for leaching are land qualities related to environmental hazards. The 

determination of each land quality was based on a group of contributing factors. 

Many of the required inputs to carry out Webb and Wilson’s (1994) evaluation of 

land versatility have been provided by the outputs from Chapters 3 and 4.  

Land qualities within the root zone 

Wetness and aeration classes were assessed through use of information about soil 

drainage, depth to hydromorphic features and water table depths, from the inputs 

for the LUC data from Chapter 4. Using the permeability and depth to slow layer 

information, from the S-Map worksheets (Chapter 3), permeability class was 

determined. Permeability class and permeability values were combined to provide 

estimates of short-term waterlogging in <50 mm, 50–100 mm and >100 mm 24-

hour rainfall events.  

 

The risk of soil water deficit in the soils of the Ruataniwha Plains was rated by 

combining PAW (from S-Map outputs, Chapter 4) and average annual water 
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deficit (YWD) classes based on an arbitrary PAW of 160 mm. The soils of the 

Ruataniwha Plains are all considered to be part of the 100–200 mm YWD class, 

based on Griffiths (1982), but when irrigated this deficit is assumed to be 

nullified. 

 

Land qualities related to management 

Slope was determined by a  6.25 m  resolution DEM. For the purposes of this 

thesis, only the land < 5° formed part of the area of interest. Almost all land in the 

area of interest has a slope of < 3°. 

 

Soil constraints are related to the percent volume of stones within the top 45 cm of 

the soil profile, combined with the predominant stone size. Field observations 

showed that stones in the area of interest in the Ruataniwha Plains were < 10 cm 

wide at their intermediate axis. Using a combination of information about 

thickness and stoniness from the S-Map worksheets, the Webb and Wilson (1994) 

stoniness class was assessed. 

 

Land qualities related to environmental hazards 

The assessment of the risk of erosion (under vegetative cover) was based on the 

outputs for the erosion limitation component of the LUC legends (Chapter 4). 

Erosion risk on land that has not been irrigated land was compared with erosion 

risk on irrigated land. Both sheet erosion and wind erosion were taken into 

account. 

 

The risk of leaching was calculated by c ombining the estimate of PAW, noted 

above with an estimate of CEC (Chapter 3). These values were then used in 

context with a soil-water surplus class of < 100 mm, based on an arbitrary PAW 

of 160 mm (Griffiths, 1982). Irrigation was not considered likely to cause the soil-

water surplus class to increase, because modern irrigation technology (e.g. GPS-

controlled variable rate irrigators), and regulatory guidelines (National Policy 

Statement on Fresh-Water Management, 2011), ensure that irrigated water is not 
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allowed to create surpluses. Therefore the potential for leaching losses under 

irrigation remains equivalent to that of a non-irrigated regime. 

 

The land qualities are integrated and reclassified as land versatility in Table 17.  
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Table 17: Table used for matching land qualities to versatility ratings, adapted from Webb and Wilson (1994)* 

 Land qualities within the root zone Land qualities related to root 
management 

Land qualities related to environmental 
hazards 

Subclass 
subscript 

a w d t s e l 

Versatility 
class 

Minimum profile 
aeration capacity 

Maximum 
waterlogging 
conditions 

Maximum soil 
water deficit (mm) 

Maximum slope 
angle (°) 

Maximum soil 
constraints 

Maximum 
potential erosion 
risk 

Maximum potential 
leaching losses 

1 Very good Very low 100 5 Slight Slight Slight 
2 Good Low 200 7 Moderate   
3 Moderate Moderate  11 Severe Moderate Moderate 
4  High 300    Severe 
5 Limited Very high 400   Severe Very severe 
6 Poor  >400     
 
* Maximum root penetrability, salinity, trafficability and flood-risk constraints have not been assessed due to a lack of relevant input data 
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Determining the parameters for the application and storage requirements 
for FDE 

The suitability of soils on the Ruataniwha Plains for the land-based disposal of 

FDE has been assessed using the Dairy NZ (2011) guide, modified from 

Houlbrooke and Monaghan (2009), and shown as Table 19 below.  

 

This is a simplified categorisation system designed to be used by a wide range of 

people from farmers to consultants. The aim of the system is to minimise 

contaminant loss to waterways and groundwater, via overland flow and bypass 

flow. The categories in the system dictate the application depth (mm) of FDE that 

can be applied to land in the FDE block on the farm, and the base information 

required to calculate the volume of the required FDE storage pond on the farm.  

 

Table 18: DairyNZ (2011) table for the calculation of FDE application depth and FDE pond 
storage requirements 

Soil and 
landscape 
feature 

A B C D E 
Artificial 
drainage or 
coarse soil 
structure 

Impeded 
drainage or 
low 
infiltration 
rate 

Sloping 
land (>7°) 
and hump 
and hollow 

Well drained 
flat land 
(<7°) 

Other well 
drained but 
very stony* 
flat land 
(<7°) 

Application 
depth of FDE 
to land (mm) 

< Soil water 
deficit 

< Soil water 
deficit 

< Soil water 
deficit 

< 50 % of 
PAW 

≤10 mm & < 
50 % of 
PAW** 

Storage 
requirement 

Apply FDE 
only when 
soil water 
deficit exists 

Apply FDE 
only when soil 
water deficit 
exists 

Apply FDE 
only when 
soil water 
deficit 
exists 

Do not apply 
FDE within 
24 hours of 
soil saturation 

Do not apply 
FDE within 
24 hours of 
soil saturation 

 
* Very stony = soils with >35% stone content in the top 20 cm of the soil 
** PAW in the upper 30 cm of the soil 
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5.5. Results and discussion 

Land versatility for horticultural orchard crop production, including land 
qualities regarding the risk of leaching 

Land qualities of Webb and Wilson (1994) within the root zone evaluated in this 

project include wetness, aeration and maximum soil water deficit (mm). Land 

quality classes relating to wetness and aeration in the Ruataniwha Plains are 

defined in Table 19 and Appendix 13. 

 

Table 19: Wetness and aeration of soils of the Ruataniwha Plains 

S-Map 
family and 
sibling code 

Drainage Depth to 
mottling or 
reduced 
horizon 

Water table 
depth 

Soil 
wetness 

Profile 
aeration 
capacity 

Waim_40.2 Well >90 Water table deep 
down 

Nil Excellent 

Waim_40.4 Well >90 Water table deep 
down 

Nil Excellent 

Tarar_6.1 Well >90 Water table deep 
down 

Nil Excellent 

Otot_51.1 Well >90 Water table deep 
down 

Nil Excellent 

Rang_43.1 Well >90 Water table deep 
down 

Nil Excellent 

Orono_83.1 Well >90 Water table deep 
down 

Nil Excellent 

Bushg_14.1 Well >90 Water table deep 
down 

Nil Excellent 

Rang_35.2 Well >90 Water table deep 
down 

Nil Excellent 

Raka_16.1 Well >90 Water table deep 
down 

Nil Excellent 

Orono_84.1 Well >90 Water table deep 
down 

Nil Excellent 

Mand_22.1 Well >90 Water table deep 
down 

Nil Excellent 

Ruam_16.1 Moderatel
y well 

45-90 Water table deep 
down 

Very low Good 

Hind_25.1 Imperfect, 
rising WT 

30-45 Seasonally high 
water table 

Moderate Limited 

Ruam_16.1 Imperfect, 
rising WT 

45-90 Seasonally high 
water table 

Moderate Limited 

Waim_40.2 Imperfect, 
mottled 

45-90 Seasonally high 
water table 

Moderate Limited 

Waim_40.4 Imperfect, 
rising WT 

45-90 Seasonally high 
water table 

Moderate Limited 

Ashb_37.1 Imperfect, 
rising WT 

45-90 Seasonally high 
water table 

Moderate Limited 

Upok_1.1 Imperfect, 
rising WT 

>90 Seasonally high 
water table 

Moderate Limited 

Popor_5.1 Imperfect, 
rising WT 

45-90 Seasonally high 
water table 

Moderate Limited 
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Mair_27.1 Imperfect, 
rising WT 

30-45 Seasonally high 
water table 

Moderate Limited 

Pare_6.1 Imperfect, 
rising WT 

30-45 Seasonally high 
water table 

Moderate Limited 

Ashb_38.1 Imperfect, 
rising WT 

45-90 Seasonally high 
water table 

Moderate Limited 

Opaki_26.1 Poor <30 Seasonally high 
water table 

High Poor 

Flax_69.1 Poor <30 Seasonally high 
water table 

High Poor 

Matpi_28.1 Poor <30 Seasonally high 
water table 

High Poor 

Jord_4.1 Poor <30 Seasonally high 
water table 

High Poor 

Ruat_7.1 Poor <30 Seasonally high 
water table 

High Poor 

Ruat_4.1 Poor <30 Seasonally high 
water table 

High Poor 

Ruat_5.1 Poor <30 Seasonally high 
water table 

High Poor 

Mair_25.1 Poor <30 Seasonally high 
water table 

High Poor 

Will_6.1 Poor <30 Seasonally high 
water table 

High Poor 

Tekk_6.1 Poor <30 Seasonally high 
water table 

High Poor 

Okawa_1.1 Poor <30 Seasonally high 
water table 

High Poor 

Ruat_8.1 Poor <30 Seasonally high 
water table 

High Poor 

Mang_2.1 Poor <30 Seasonally high 
water table 

High Poor 

Kaip_6.1 Very poor <30 High water table, 
limited standing 
water 

Very high Very poor 

Utuh_21 Very poor <30 High water table, 
limited standing 
water 

Very high Very poor 

 

Well drained soils such as the Tarar_6.1, Bushg_14.1, Rang_35.2 and Rang_43.1 

soils have negligible wetness and excellent aeration. Imperfectly drained soils 

such as t he Ashb_37.1, Ashb_38.1, Popor_3.1 and Popor_5.1 soils have a 

moderate wetness limitation and limited profile aeration capacity. Poorly drained 

Gley and Perch-Gley soils have a high wetness limitation and poor aeration, with 

the Organic Soils being the most limited by wetness and aeration (very high and 

very poor, respectively). 

 

Land quality classes relating to soil moisture deficit in the Ruataniwha Plains are 

defined in Table 20 and Appendix 14. 
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Table 20: Assessment of average annual soil water deficit class, based on a PAW of 160 mm 

S-Map family 
and sibling code 

Estimated PAW 
capacity (mm) 

Estimated PAW class Average annual water 
deficit class based on PAW 
of 160 mm 

Ashb_37.1 13 Very low High 
Rang_43.1 9 Very low High 
Ashb_37.1 21 Very low High 
Rang_35.2 22 Very low High 
Jord_4.1 67 Moderate to low Moderate 
Ruat_7.1 76 Moderate to low Moderate 
Tekk_6.1 48  Low  Moderate 
Okawa_1.1 63 Moderate to low Moderate 
Pare_6.1 86 Moderate to low Moderate 
Mangt_3.1 84 Moderate to low Moderate 
Busg_14.1 89 Moderate to low Moderate 
Mand_25.1 84 Moderate to low Moderate 
Hind_25.1 162 High  Low 
Ruam_16.1 152 High  Low 
Waim_40.2 114 Moderate  Low 
Waim_40.2 144 Moderate to high  Low 
Opaki_26.1 139 Moderate to high  Low 
Flax_69.1 215 High Low 
Matpi_28.1 114 Moderate  Low 
Tarar_6.1 107 Moderate Low 
Otor_51.1 148 Moderate to high  Low 
Upok_1.1 179 High  Low 
Popor_5.1 168  High  Low 
Ruat_4.1 134 Moderate to high Low 
Kaip_6.1 200 High  Low 
Utuh_21 200 High  Low 
Ruat_5.1 124 Moderate to high Low 
Orono_83.1 116 Moderate Low 
Mair_25.1 125 Moderate to High Low 
Mair_27.1 166 High Low 
Will_6.1 118 Moderate  Low 
Pare_6.1 117 Moderate Low 
Raka_16.1 115 Moderate  Low 
Mang_2.1 93 Moderate  Low 
Orono_84.1 95 Moderate Low 
Mand_22.1 97 Moderate Very low 

 

Maximum soil water deficit rankings were high in stony, very shallow to shallow 

soils such as the Ashb_37.1 and Rang_43.1 soils. Most moderately deep soils (and 
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some shallow soils) on stones were rated as having a m oderate soil moisture 

deficit, whereas the deep soils had a moderate to high or high PAW class and a 

low soil moisture deficit. 

 

Land qualities related to management include slope, soil (stoniness) and 

trafficability constraints. All slopes in the area of interest in this thesis are less 

than 5°. F rom Table 21 be low it can be determined that most soils on t he 

Ruataniwha Plains are ranked as having minimal management constraints from 

stoniness. Shallow Tekk_6.1 and Will_6.1 soils have moderate constraints and 

Ashb_38.1, Rang_43.1, Rang_35.2, Mand_22.1 and Mand_25.1 soils have severe 

constraints, from stoniness.  

 

Table 21: Rating of management constraints from stoniness of upper 0.45 m of the soil 
profile 

S-Map family and  
sibling code 

Stoniness 
 

Ashb_37.1 Severe 
Rang_43.1 Severe 
Mand_22.1 Severe 
Will_6.1 Moderate 
Tekk_6.1 Moderate 
All other soils Minimal 

 

Land qualities related to environmental hazards include maximum potential 

erosion risk and maximum potential leaching losses. Because the area of interest 

in the Ruataniwha Plains is essentially flat, the only potential types of erosion that 

could occur are wind erosion and sheet erosion. The risk of sheet erosion 

increases with slope and the absence of short, continuous vegetation. The 

potential impact of sheet erosion is the loss of productive soil and sedimentation 

of waterways (if the eroded area is near a waterway). Historically, wind erosion 

was a significant problem on t he Ruataniwha Plains. Webb and Wilson (1994) 

determined maximum potential erosion risk by using the NZLRI worksheets. In 

this thesis, potential erosion risk values are informed by the new NZLRI and LUC 

information produced in Chapter 3. Different magnitudes of erosion are estimated 

for map units that are non-irrigated and irrigated, because of the potential impact 

of irrigation on the stability and mobility of soil aggregates. 

90



Land quality classes relating to maximum potential losses from leaching in the 

Ruataniwha Plains are defined in Table 22 below. 

 

Table 22: Estimated maximum potential leaching losses land in the Ruataniwha Plains 

S-Map 
family and 
sibling code 

PAW capacity (mm) Estimated  
PAW class 

CEC 
estimate 

Soil 
water 
surplu
s mm 
based 
on 
PAW 
of 160 
mm 

Estimated 
maximum 
leaching 
losses 

Hind_25.1 152 High  <6 <100 Minimal 
Ruam_14.1 114  Moderate  >12 <100 Minimal 
Waim_40.2 144  Moderate to 

high  
>12 <100 Minimal 

Waim_40.4 139  Moderate to 
high  

>12 <100 Minimal 

Opaki_26.1 114  Moderate  >12 <100 Minimal 
Flax_69.1 148  Moderate to 

high  
>12 <100 Minimal 

Matpi_28.1 166  High >12 <100 Minimal 
Bushg_14.1 63  Moderate to 

low 
6-12 <100 Minimal 

Raka_16.1 89  Moderate to 
low 

>12 <100 Minimal 

Mang_2.1 89  Moderate to 
low 

>12 <100 Minimal 

Tarar_6.1 107 Moderate >12 <100 Minimal 
Otor_51.1 116  Moderate >12 <100 Minimal 
Upok_1.1 117  Moderate >12 <100 Minimal 
Popor_5.1 117  Moderate >12 <100 Minimal 
Ruat_4.1 95  Moderate >12 <100 Minimal 
Kaip_6.1 95  Moderate >12 <100 Minimal 
Utuh_21 97  Moderate 6-12 <100 Minimal 
Ruat_5.1 97  Moderate >12 <100 Minimal 
Orono_83.1 97  Moderate >12 <100 Minimal 
Mair_25.1 125  Moderate to 

high 
>12 <100 Minimal 

Mair_27.1 115  Moderate  >12 <100 Minimal 
Will_6.1 93  Moderate  >12 <100 Minimal 
Okawa_1.1 76  Moderate to 

low 
>12 <100 Slight 

Tekk_6.1 67  Moderate to 
low 

>12 <100 Moderate 

Jord_4.1 166  High >12 <100 Moderate 
Ruat_7.1 48  Low  >12 <100 Moderate 
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Pare_6.1 76  Moderate to 
low 

<6 <100 Moderate 

Mangt_3.1 76  Moderate to 
low 

>12 <100 Moderate 

Ashb_37.1 116  Moderate <6 <100 Severe 
Rang_43.1 116  Moderate <6 <100 Severe 
Ashb_38.1 84  Moderate to 

low 
<6 <100 Very 

severe 
Rang_35.2 89  Moderate to 

low 
<6 <100 Very 

severe 

 

The estimates of maximum potential leaching losses provided above are 

underpinned by estimates of CEC. Because of the strong relationship between soil 

organic matter, a dynamic soil property affected by l and management practices, 

and CEC, it is impractical to provide CEC estimates on the Ruataniwha Plains by 

direct measurement. Instead a b road estimate of CEC has been made, based on 

clay content, soil order (degree of topsoil development) and depth of topsoil. 

 

Most soils in the Ruataniwha Plains were estimated to have minimal maximum 

potential leaching losses because they have a low estimated soil water surplus. 

Soils with pans close to the surface, such as the Jord_4.1 and Ruat_7.1 soils, have 

a slight to moderate risk of leaching loss, whereas shallow to very shallow soils 

on gravels (e.g. Rang_43.1 and Ashb_38.1 soils) have a severe to very severe risk. 

 

The final determination of land versatility for orchard crop production is 

summarised in Table 23 and expanded upon in Appendix 15. Figures 12 and 13 

depict versatility for orchard crop production in the current and hypothetical 

future scenarios, respectively (Appendices 16 and 17). 
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Table 23: Versatility ratings for proxy soil siblings 

S-Map family 
and sibling 
code 

Current 
versatility 

Versatility 
after irrigation 

Orono_83.1 3e 3e 
Tarar_6.1 3a 3ae 
Otor_51.1 3a 3ae 
Pare_6.1 3adl 3able 
Hind_25.1 3aw 3aw 
Ruam_14.1 3w 3w 
Waim_40.2 3w 3w 
Waim_40.4 3w 3w 
Raka_16.1 3w 3w 
Orono_84.1 3w 3we 
Bushg_14.1 3wd 3we 
Mand_22.1 3ws 3wse 
Opaki_26.1 4a 4a 
Flax_69.1 4a 4a 
Matpi_28.1 4a 4a 
Jord_4.1 4a 4a 
Ruat_7.1 4a 4a 
Upok_1.1 4a 4a 
Popor_5.1 4a 5e 
Ruat_4.1 4a 4a 
Mair_25.1 4a 5e 
Mair_27.1 4a 5e 
Will_6.1 4a 4a 
Tekk_6.1 4a 4a 
Okawa_1.1 4a 5e 
Ruat_8.1 4a 4ab 
Mang_2.1 4a 4a 
Ashb_37.1 4dsl 5e 
Rang_43.1 4dsl 5e 
Kaip_6.1 5a 5a 
Utuh_21 5a 5a 
Ruat_5.1 5a 5a 
Ashb_38.1 5dl 5le 
Rang_35.2 5dl 5le 

93



 
Figure 12: Versatility of land in the Ruataniwha Plains for orchard crops, current (2011) 
scenario 
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Figure 13: Land versatility for orchard crop production, hypothetical future scenario 

 

The land of the Ruataniwha Plains ranges from moderate versatility (Class 3) to 

low versatility (Class 5). No land in the plains is considered more than moderately 

versatile. The risk of waterlogging under high intensity rainfall events is 
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determined to be limiting, even in well drained soils such as t he Tarar_6.1 and 

Otor_51.1 soils. 

 

Gley and Perch-Gley soils (e.g. the Matpi_28.1 and Ruat_7.1 soils, respectively) 

are dominated by t heir lack of aeration and are ranked as 4a land. Very poorly 

drained Organic Soils (e.g. the Kaip_6.1 soils) are categorised as 5a land. 

 

Shallow to very shallow soil on stones is categorised as 5dl land, at high risk of 

soil moisture deficit and severe to very severe risk of leaching losses (e.g. 

Rang_43.1 and Ashb_37.1 soils). 

 

There are no cases where irrigation has been considered to improve land 

versatility because of infiltration or drainage constraints in the soil. In some cases, 

the risk of sheet erosion is predicted to increase under irrigation, therefore 

downgrading versatility from Class 4 to 5.  

 

Determining the parameters for the application and storage requirements 
for FDE 

It the proposed irrigation scheme for the Ruataniwha Plains is undertaken, dairy 

farming is likely to become increasingly common in the area. An essential part of 

dairy farming is the application of FDE, to remove waste from the cowsheds and 

provide an important source of nutrients to the farming system. It is important to 

minimise the risk of phosphorus and bacteria loss to waterways via overland flow, 

and nitrogen and potassium loss to groundwater via leaching. The inherent 

characteristics and distribution of individual soils within FDE blocks need to be 

taken into consideration when designing FDE systems. Houlbrooke and 

Monaghan (2009) and Dairy NZ (2011) have provided a method for evaluation of 

soil and land evaluation for it suitability for the application of FDE, and have 

provided recommendations for the irrigation and pond storage regimes that should 

be used for each of these soil and land categories. The system has been developed 

to enable users from a wide range of backgrounds to utilise it. Table 24 provides 

an example of the soil categories and recommended irrigation regimes applicable 

to soils of the Ruataniwha Plains. The complete list is provided in Appendix 18. 
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Table 24: Example of soil categories and recommended irrigation schemes and pond storage design for management of FDE (Houlbrooke and Monaghan, 2009; Dairy NZ, 2011) 

S-Map 
family and 
sibling 
codes 

Slope Bar and channel 
mictopography or 
in channels 

Permeability Natural 
drainage 

Ease of drainage 
(Webb and Wilson, 
1994) 

Likelihood 
of drainage 

Topsoil stoniness 
based on Table 21. 

FDE design 
standards 
(2011) soil 
category 

Application 
depth of FDE 
to land (mm) 

Pond storage 
requirement 

Hind_25.1 <7° Yes Rapid Imperfectly 
drained 

Very good Unlikely Stoneless B Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Waim_40.2 <7° Yes Moderate Well drained Moderate Likely Stoneless A Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Opaki_26.1 <7° Yes Moderate Poorly 
drained 

Moderate Likely Stoneless A Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Jord_4.1 <7° Yes Moderate over 
slow 

Poorly 
drained 

Poor Unlikely Slightly stony B Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Ruat_7.1 <7° Yes Moderate over 
slow 

Poorly 
drained 

Poor Unlikely Slightly stony B Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Tarar_6.1 <7° No Moderate over 
rapid 

Well drained Moderate Likely Slightly stony A Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Ashb_37.1 <7° Yes Rapid Imperfectly 
drained 

Very good Unlikely Stoneless B Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Rang_43.1 <7° Yes Rapid Well drained Very good Unlikely Stoneless C Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Utuh_21 <7° Yes Moderate over 
slow 

Very poorly 
drained 

Poor Likely Stoneless A Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Ruat_5.1 <7° Yes Moderate over 
slow 

Poorly 
drained 

Poor Unlikely Stoneless B Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Mangt_3.1 <7° Yes Rapid Imperfectly 
drained 

Poor Unlikely Stoneless B Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

Bushg_14.1 <7° No Moderate over 
rapid 

Well drained Moderate Likely Stoneless A Less than soil 
water deficit 

Apply FDE only when soil 
water deficit exists 

 

97



Although the soils of Ruataniwha Plains are diverse, using the Dairy NZ (2011) 

method these soils have been reclassified into 3 soil categories, A, B and C. Soil 

category A is artificially drained or a coarse structured soil. Category B relates to 

soils with impeded drainage or low infiltration rates, and soil category C is 

sloping land (>7°) or hump and hollow drained land. Microtopography is not 

normally considered unless hump and hollow drainage is present, but however 

where bar and channel microtopography exists, it is likely that there will be a 

similar risk.  

 

The resultant recommendations are for deficit irrigation on all soil categories, but 

the FDE application rate and the pond s torage requirements are dictated by t he 

PAW capacity in the top 30 cm of the soil. PAW in the top 30 cm of soil is largely 

driven by s oil organic matter content, which varies from farm to farm under 

different land management regimes, therefore no site specific recommendations of 

FDE application depths are made here. 

 

5.6. Conclusions 

In this chapter the land of the Ruataniwha Plains has been evaluated for its 

versatility for orchard crop production, including the risk of leaching losses, and 

for its suitability for application of FDE. Land versatility for orchard crop 

production ranges from moderate (Class 3, minimal constraints except for 

waterlogging during heavy rain) to low (Classes 4 a nd 5, poor  drainage or 

shallow, stony soils). Potential losses due to leaching are based on estimates of 

CEC, but only shallow, stony soils and soils with pans near the surface have 

moderate or greater risk of leaching. It is recommended that FDE application be 

undertaken through a deficit irrigation system, based on the PAW of the top 30 

cm of the soils in each FDE block.  
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Chapter Six: Combining classical and digital techniques to produce a 

1:25,000 scale soil map 

 

6.1. Introduction 

Through the use of a combination of classical and digital techniques, a new 

1:25,000 scale soil map has been produced. Landforms and landform components 

within the landscapes of the Ruataniwha Plains were differentiated, and existing 

knowledge about soil-landscape relationships was incorporated to produce the 

final map.  

  

6.2. Background 

A soil map of larger scale than the currently available 1:50,000 scale soil map is 

required to assist in the final planning stages of the Mid-Hawke’s Bay proposed 

irrigation scheme. A combination of LiDAR data and a conceptual understanding 

of how soils vary across the landscape provide the basis for digital soil mapping.  

 

Conventional soil mapping methods 
Conventional soil mapping involves a desktop interrogation of imagery of the 

land surface (e.g. aerial photos), reconnaissance field work, then intensive field 

work, the density of observations being directly proportionate to the required scale 

of the soil map. Classical soil-landscape modelling and automated object-based 

identification processes involve the differentiation of landscapes into their 

morphological components, undertaking sample-based fieldwork (e.g. transects or 

windows), producing soil-landscape models and ultimately producing a soil map. 

Digital soil mapping and geospatial modelling involve the collection, cleaning, 

collation and derivation of a range of high-precision datasets, and then the 

combination of these data with field observations and interpolation to produce 

models.  

 

Conventional soil maps tend to be expensive, inconsistent and inflexible. The 

number of observations required to effectively delineate map units and provide 
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information about intra-unit soil variability at a given scale, especially detailed 

scales, is very labour intensive. Because conventional soil maps are labour 

intensive they take a considerable amount of time or human resources to produce 

and hence are expensive. Conventional map therefore differ in the portrayal of 

map unit shape, size and contents. 

 

Soil-landscape models and object-based identification programs are very cost-

efficient on hill and steeplands but of limited value on flat land, where the main 

drivers of soil formation include factors such as drainage, permeability and parent 

materials as well as subtle differences relating to microtopography (Jenny, 1941).  

 

Digital soil mapping 
Digital soil mapping and geospatial modelling are terms which encompass a wide 

range of technology now available to pedologists, GIS experts and statisticians. 

Substantial amounts of high resolution data about the vegetative cover, the land 

surface and the underlying soil can now be collected without digging a pit. Large 

amounts of data exist, but these are of little use without an understanding of the 

drivers behind the spatial distribution of soil, derived from pedological field-work.  

 

Aerial photography and satellite imagery 
Aerial photography and satellite imagery have historically provided the base 

information upon w hich soil maps are drawn. Traditionally (and often in the 

present-day), geomorphic hierarchies are delineated and depicted using these 

media. When collected over time, aerial photography and satellite imagery 

provide an insight into the subtle microtopography of the land surface, such as 

that of the Ruataniwha Plains. As soil moisture contents wane during dry periods, 

contrasting patterns of light and dark or grey, brown and green become evident. 

These patterns can be matched to the presence of bars, channels and hollows in 

the landscape and often provide the most detailed portrayal of land components 

available. However, without significant investment in digital object-based 

identification technology the visible land components cannot be automatically 

detected by a GIS system. 
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LiDAR and digital elevation models 
Landscape delineation and soil-mapping supported by high-resolution DEMs and 

GIS-based spatial analysis can be used to provide a r ange of covariate layers 

which are useful in assisting the pedologist to better understand the relationship 

between the spatial distribution of soils and the environment in which they are 

located. High-resolution DEMs can be produced from high resolution LiDAR 

data, which are available in the Ruataniwha Plains. There are different types of 

DEMs produced through a variety of interpolation techniques, such as the inverse-

distance weighting method. LiDAR information is only as good as the methods 

used to collect and post-process it. LiDAR acquisition has been limited in New 

Zealand because it has been expensive to collect. The method of collection of 

LiDAR data must be tailored to the desired end-use of the data. It is important that 

data acquisition occurs at the correct time of year to limit the impact of crop 

cover, and the swaths must be close enough together to ensure that DEMs of the 

desired resolution can be produced. It is important that the raw data-cloud 

generated by the LiDAR data acquisition process is provided to the client along 

with any post-processed data. This provision allows the data to be post-processed 

in different ways for different purposes.  

 

In this instance, LiDAR-based data acquisition occurred when the ground surface 

was obscured by crops, such as p rocess peas, and the distance between swaths 

was unfortunately too wide to ensure that a sufficient density of points were 

collected from the ground surface in these areas. Also, because the data were 

already post-processed and the raw data were not available, it was not possible to 

determine whether ground-return points had been lost when the first-return points 

were removed. An opportunity to provide an enhanced DEM from the same initial 

dataset was therefore lost. 
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Existing knowledge of soil-landform relationships 
Soil-landform relationships have been identified for every soil in the Ruataniwha 

Plains in Griffiths et al. (2001). Currently the information exists as a series of soil 

complexes within map units (documented in earlier chapters). 

 

6.3. Aim 

Data derived from the high resolution LiDAR-based DEM will enable high-

resolution definition of landform components within landforms which, coupled 

with pedological knowledge of soil-landform relationships, will allow for the 

creation of a high-resolution soil map of the Ruataniwha Plains. 

 

6.4. Method 

LiDAR data and the derived DEM 
A DEM was generated from the available LiDAR data. The most detailed DEM 

that could be could be generated from such data had a 6.25 m resolution. It was 

produced using the inverse-distance weighting interpolation technique. Although 

a more detailed DEM could be produced, there was a lot of “noise” in a l ot of 

places, due to features such as small (unrepresentative) humps and hollows, the 

wheel tracks of centre-pivot irrigators, crop cover, fences, drainage ditches and 

roads. Because the objective of this thesis was to produce a soil map of as much 

of the Ruataniwha Plains as possible, then the 6.25 m resolution DEM provided a 

balance between capturing the maximum possible detail, about land components, 

and the “noisy” nature of the data.  

 

Creation of co-variate layers for the delineation of landform components 
Raster layers were derived from the 6.25 m DEM using algorithms from the open 

source GRASS geographic information system using similar techniques to those 

available in Spatial Analyst in ArcGIS. The co-variates were flow accumulation, 

curvature, flow direction and topographic wetness index. Each of these layers 

provides a different perspective on the characteristics of the Ruataniwha Plains. 

The flow accumulation map can determine the volume of water moving into 

channels on the land surface but excluding other factors such as 
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evapotranspiration and water loss due to aquifer recharge. Although this map 

defined the larger channels in the landscape, it did not effectively delineate the bar 

and channel microtopography present on the Ruataniwha Plains that this thesis 

sought to indentify. However, when classified correctly, curvature, flow direction 

and topographic wetness (TWI) maps did effectively delineate bars, terrace treads 

and backplains or channels or both. These layers are called co-variate layers 

because they are data-rich layers that enhance a soil map, but are informed by, and 

dependent, on pedological understanding of the area to be mapped. 

 

Production of the 1:25,000 scale landform map 
To produce the more detailed soil map (Appendix 19), landforms were manually 

digitised at 1:25,000 scale. The resultant map units, while primarily considered 

landform units, were tagged with soil information from the 1:50,000 scale map of 

Griffiths et al. (2001). Where landforms could not be differentiated using imagery 

alone, data from Griffiths et al. (2001) were used to support the delineation of 

units.  

 

Terrace edges, risers, large scale mass-movement, terraces of different heights 

(especially terraces of Suite 1) were identified and a 1:25,000 scale landform map 

was produced, augmented by soil information from Griffiths et al. (2001).  

 

Landscapes, LUC suites and landforms that were not of interest in this thesis that 

were delineated were eliminated from further consideration during the mapping 

process. Such features included incised high terraces, foothills, non-farmable 

floodplains, a large earthflow, and a variety of terrace risers.  

 

Windows-based field sampling 
A series of windows were established on a range of typical landforms across the 

Ruataniwha Plains. Windows 1, 4,  5, 6, 7, 9 and 10 w ere established with the 

intention of evaluating the soils and associated soil-landform component 

relationships within landforms. Windows 2, 8 a nd 11 w ere located across map 

unit boundaries of Griffiths et al. (2001) to evaluate how the TkL, TF and RT 

landforms interrelate. Within the windows a series of observations about soil 
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characteristics and soil-landform relationships were recorded. The aim was to 

sample in a grid fashion, with two grids, each with nine samples, starting from a 

common sample point. Because of practical issues, including restrictions around 

accessing neighbouring properties (e.g. windows 1, 6 a nd 7), and a desire to 

sample within a cer tain landform (e.g. windows 10 a nd 11) in some locations, 

only the smaller grid format has been used, and, in the case of windows 10 and 3, 

the grids have been sampled in rectangular and rhomboid fashions, respectively. 

In all cases, the samples in the more detailed “grids” have been taken at 

approximately 50 m apart, and in the less detailed grids, 250 m apart. All 

locations were recorded using a GPS device. The resultant maps of the sample 

windows have a v ariety of shapes because in some windows it was possible to 

extrapolate further from the observation points than in others.  

 

At each sample site within a window, a soil pit or auger hole was dug to a depth 

of 90 cm, or if to less than 90 cm, to a depth at least 10 cm below a very stony or 

extremely stony horizon. The soil was described at each site using the S-Map and 

NZSC systems, and landform information was recorded. Additionally, the slope 

of the land surrounding the sample site and the landform component within which 

it was located, were recorded. Using a combination of high resolution Kiwi-Image 

satellite imagery and the sample sites, a soil-landform component map was 

produced for each window. These maps are depicted in Appendices 22−43 at 

1:8,000 scale for practical reasons, but they are accurate to 1:5,000 scale.  

 

Training and reclassifying co-variate layers, and extrapolation within 
1:25,000 landform map units to produce landform-component maps 

The field-derived landform components from within the 1:5,000 scale sample 

windows were used to reclassify and standardise the information contained within 

the co-variate layers. The covariates were each divided into three similar 

categories. The curvature and TWI layers were reclassified into bar, backplain or 

terrace tread and channel categories. The flow direction layer was reclassified into 

terrace tread or bar, backplain and channel categories. The reclassified maps were 

compared with the field based maps in Appendices 22−43. The results for window 

5 are shown in Figures 14 and 15. 
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Figure 14: Soil-landform components map from field observation (left) and a reclassified topographic wetness index map (right) 
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Figure 15: Soil-landform components map from curvature (left) and a topographic wetness index map (right) 
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Statistical determination of the relationships between the co-variate layers 
and the field-based soil-landform component map 

The landform components within each landform, as identified in the 1:5,000 

training windows, were re-classed into numerical classes and converted to a 

6.25m raster. The way the information was masked meant that information from 

all of the sample windows was assessed together, although the landforms and 

landform components were grouped using the stratified approach of the 

geomorphic hierarchy described in Chapter 2. As a result, every 6.25 m pixel 

within the original 1:5,000 soil-landform polygons was labelled, sometimes with a 

complex of soils and landform components. The combinations present in the 

complexes of the field-based map were purposely retained to allow for future 

delineation of the individual components within the units using the co-variate 

layers. The resulting number of pixels from each landform, landform-component 

combination within the field-based map was graphed against the proportions of 

landform components delineated by the co-variate layers (first delineated by the 

landforms from the field-based 1:5,000 map). Two sets of graphs were produced 

to show the relative proportionality between each of the landforms from the 

1:5,000 soil-landform map, and to demonstrate the extent to which the co-variate 

layers approximated the field-based landform components. Because of the 

categorical nature of this data, no statistical correlation or statistical strength of 

relationship calculations were attempted. 

 

Extrapolation of co-variate data to provide landform components maps 
throughout the Ruataniwha Plains 

The co-variate layer proven to have most closely approximated the 1:5,000 field-

based landform components map in the above analysis has been extrapolated 

throughout the equivalent landform on the 1:25,000 landform map. The latter was 

prepared through a similar process of reclassification while retaining complexes, 

and conversion to raster format. The resultant landform, landform-component 

map was significantly more detailed than the 1:25,000 scale landform map.  
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Reclassification of the new landform, landform-component map into a 
new, detailed digital soil map of the Ruataniwha Plains 

The new 1:12,500 scale landform-landform components map was reclassified 

using existing soil-landscape relationships, from Griffiths et al. (2001) and 

Griffiths (2004) to produce a 1:12,500 digital soil map.  

 

6.5. Results and discussion 

LiDAR-based DEM 
The 6.25 m resolution of the DEM derived from the available LiDAR data is level 

of resolution was selected because it represented the best balance possible 

between too much noise (e.g. fencelines, crops and irrigator wheel tracks), and 

insufficient data to derive co-variate layers capable of effectively delineating 

landform components. The resulting compromise has resulted in some parts of the 

DEM containing noise. Examples of these problem areas are shown in Figure 16. 

 

Creation of co-variate layers for the delineation of landform components 
As discussed earlier in the method, curvature, TWI and flow direction co-variate 

layers were produced and judged useful for the purpose of delineating landform 

components from within the landforms of the Ruataniwha Plains. Figure 17 shows 

an example of the unprocessed curvature and TWI maps derived from the 6.25 m 

DEM. 
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Figure 16: Examples of interpolation errors in the production of the 6.25 m DEM 
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Figure 17: Excerpts from the unprocessed TWI and curvature co-variate layers as derived from the DEM 
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Production of the 1:25,000 scale landform map 
The 1:25,000 landform map digitised from ortho-rectified aerial photographs and 

satellite images is shown in Appendices 19 and 20, with an example of the map 

provided by Figure 18. The digitising process allowed for the delineation of most 

LT 1 and LT 3 landforms in addition to separating out many of the major (TkL) 

channels running through the TkM landform. It was possible to delineate areas of 

bar and channel microtopography within the TkM landform from other areas 

within the landform that were more uniform. These observations were supported 

by the 1:50,000 soil map. Terrace risers, escarpments, an earthflow, active 

floodplains and stopbanks were all able to be precisely differentiated from other 

landforms on the map, although the area estimated to be occupied by terrace risers 

exceed that which occurs in the real world. In many cases it was possible to 

separate TT landforms from landforms of Suite 4 and Suite 1, either because of a 

distinct change in terrace because of a change in the pattern of microtopography.  

 

TkM and TkH landforms could not be separated from each other without the 

assistance of the 1:50,000 soil map. There were a number of locations where TkM 

and TkL soils could not be separated from one another with the same degree of 

certainty as the delineation of other features on the map. These landforms were 

separated from one another by a  combination of delineating between dark and 

light areas and use of the 1:50,000 soil map. In a small number of cases, the 

landforms were left in a complex. TF landforms could not be separated from TkL 

landforms, or RT landforms, without assistance from the 1:50,000 soil map.  

 

When the co-variate layers were produced, the 1:25,000 scale landforms map was 

laid over the curvature map. This showed a v ery close match between the two 

representations of landforms, as can be seen in Figure 18. In particular, TkL 

landforms were strikingly contrasted against the TkM landforms and differences 

in drainage pattern often also closely matched those of the 1:25,000 landforms 

map, helping to spatially differentiate between TF, TT and RT units and to 

differentiate them from other landforms on the intermediate terraces of the 

Ruataniwha Plains. 
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Figure 18: 1:25,000 scale landforms map units matched with underlying curvature map 
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Windows-based field sampling 
The location of the sample windows and the landforms within them are depicted 

in Figure 19.  

 

 

Figure 19: Sample windows and the observed landforms in the Ruataniwha Plains 
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Certain windows were originally selected for studying the relationships between 

land components and landforms (and associated soil relationships) within 

individual landforms. Other windows were selected primarily to investigate the 

variability and predictability soils at the boundaries of TkL, TF and RT landforms. 

A study of soil variability at different scales, using the different sampling 

densities of the two grids, was also planned. Ultimately, the most useful way to 

use the information collected was to consider it a ll together. This approach 

provided more representation of soils and landform components within identified 

landform units (identified by the 1:5,000 scale mapping of the windows).  

 

In all, 207 soil samples (Appendix 20) and associated observations of landform 

and landform components (Appendix 21) were made in November to December 

of 2010, from 11 windows. All landforms of interest in this thesis except TkH 

were sampled and mapped to some extent during this process.  

 

Windows 1 and 4 were dominantly composed of terrace tread landform 

components within a TkM landform. In the east of window 3 there were bars and 

channels present, and in the north of the window, the terrace dropped away to the 

LT 2 landform below. In a similar manner, the terrace tread component of the RT 

landform, interspersed with channels from the LT 2 landform, gradually gave way 

to channels and hollows of the LT 2 landform in the south of the window. 

 

Windows 2 and 11, a nd also the northern half of window 3, demonstrate the 

difficulty of visually discerning TkL and TF landforms and TF, TT and RT 

landforms from one another.  

 

Window 5 and the southern half of window 3 were located on a combination of 

LT 2 and LT 1 landforms. The two landforms were clearly distinguishable from 

each another. In window 5 and in window 9, t he LT 2 l andforms exhibited the 

typical toposequence from levees to backplains to channels. Closer to the existing 

stream, the LT 1 landform was located on a l ower terrace that contained more 

pronounced bar and channel microtopography and very shallow soils. The active 

floodplain was traversed and sampled within this sample window. In window 3, a 

pronounced and very wet back-hollow existed, slightly below the current height of 
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the rapidly aggrading riverbed. A repeated succession of bar and channel 

components dominated the LT 1 landform in window 7, which was mapped as an 

LT 3 equivalent in the 1:50,000 soil map. The equivalent to the LT 1 landform 

was mapped close by. The contrast in precision of the 1:5,000 and 1:50,000 maps 

highlights the limitations of scale and the importance of interpreting maps 

correctly. Window 10 was deliberately sampled in a rectangular fashion to ensure 

a sufficient number of points were collected from the LT 3 landform. On both 

sides of the bar in LT 3, ba ckplains in the LT 2 l andform were present. 

Waim_40.2 soils were found only on the LT 2 landform in window 6. 

 

The training, extrapolation and reclassification of co-variate layers to 
produce the new soil map 

The production of the new soil map for the Ruataniwha Plains involves 

correlation of the co-variate layers to the field-based landform, landform-

component maps in the sample windows, and their subsequent reclassification and 

extrapolation (upscaling) to the wider landscape of the Ruataniwha Plains. Using 

the sample windows, all three co-variate layers were successfully categorised into 

three similar classes, which corresponded well to features observed in the natural 

landscape. The curvature and TWI co-variates were reclassified into bar, 

backplain or terrace tread and channel landform components. The flow-direction 

co-variate was reclassified into bar or terrace tread, backplain or terrace tread and 

channel landform components.  

 

The landform and landform-component field in the 1:5,000 field-based landform-

landform components map shapefile were reclassified into numbers. A number 

was allocated to every unique map unit, including map units containing 

complexes of landforms and/or landform components. The 1:5,000 field-based 

landform-landform components map (all 11 w indows together) were converted 

into a raster image. Each landform that occurred within those sample windows 

was turned into a “mask” that was used to separate the raster data from the sample 

windows by landform.  
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For each of the landforms and landform complexes present within the sample 

windows, the number of pixels corresponding to the actual or inferred landform 

components was extracted and recorded. This process was repeated for all four 

raster layers, the field-based map and the three covariates. Tables 25–33 and 

figures 20–37 provide the results from this process, landform by landform. 

Table 25: Proportions of landform components within LT 1 

Landform 
(LF) 

Map type Landform 
component (LFC) 

Number of 
pixels 

Proportion of 
LFC within an 
LF (%) 

LT 1 Field validated map Bar 5975 34.0 
Terrace 2464 14.0 
Backplain 496 2.8 
Channel 8643 49.2 

TWI Channel 8054 45.5 
Backplain or terrace 7623 43.1 
Bar 2012 11.4 

Curvature Bar 4368 24.7 
Backplain or terrace 9549 54.0 
Channel 3772 21.3 

Flow direction Terrace or bar 4141 23.4 
Backplain 8109 45.8 
Channel 5439 30.7 
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Figure 20: Number of pixels in each landform component within LT 1 

 

 

Figure 21: Proportions of landform components within LT 1 
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Table 26: Proportions of landform components within LT 2 

Landform 
(LF) 

Map type Landform 
component (LFC) 

Number of 
pixels 

Proportion of 
LFC within an 
LF (%) 

LT 2 Field validated map Bar 5910 18.1 
Terrace 72 0.2 
Backplain 13965 42.9 
Channel 12642 38.8 

TWI Channel 7073 20.5 
Backplain or terrace 20624 59.8 
Bar 6763 19.6 

Curvature Bar 4883 14.2 
Backplain or terrace 22117 64.2 
Channel 7460 21.6 

Flow direction Terrace or bar 8613 30.0 
Backplain 20138 70.0 

 

 

Figure 22: Number of pixels in each landform component within LT 2 
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Figure 23: Proportions of landform components within LT 2 

 

Table 27: Proportions of landform components within LT 3 

Landform 
(LF) 

Map type Landform 
component (LFC) 

Number of 
pixels 

Proportion of 
LFC within an 
LF (%) 

LT 3 Field validated map Bar 8430 76.7 
Terrace 0 0.0 
Backplain 44 0.4 

TWI Channel 2513 22.9 
Backplain or terrace 5611 64.7 
Bar 1144 13.2 

Curvature Bar 1914 22.1 
Channel 1380 14.3 

Flow direction Terrace or bar 2496 25.9 
Backplain 5766 59.8 
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Figure 24: Number of pixels in each landform component within LT 3 

 

 

Figure 25: Proportions of landform components within LT 3 
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Table 28: Proportions of landform components within RT 

Landform 
(LF) 

Map type Landform 
component (LFC) 

Number of 
pixels 

Proportion of 
LFC within an 
LF (%) 

RT Field validated map Bar 10482 37.1 
Terrace 15767 55.8 
Backplain 7 0.0 
Channel 2015 7.1 

TWI Channel 6895 18.6 
Backplain or terrace 22890 61.8 
Bar 7283 19.6 

Curvature Bar 4923 13.3 
Backplain or terrace 24648 66.6 
Channel 7415 20.0 

Flow direction Terrace or bar 9730 26.2 
Backplain 20958 56.5 
Channel 6380 17.2 

 

 

Figure 26: Number of pixels in each landform component within RT 
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Figure 27: Proportions of landform components within RT 

 

Table 29: Proportions of landform components within TF 

Landform 
(LF) 

Map type Landform 
component 
(LFC) 

Number of 
pixels 

Proportion of LFC 
within an LF (%) 

TF Field validated 
map 

Bar 9 0.4 
Terrace 1106 48.4 
Backplain 0 0.0 
Channel 1171 51.2 

TWI Channel 1953 22.4 
Backplain or 
terrace 

5939 68.2 

Bar 821 9.4 
Curvature Bar 1159 13.3 

Backplain or 
terrace 

6344 72.8 

Channel 1210 13.9 
Flow direction Terrace or bar 1489 17.1 

Backplain 4751 54.5 
Channel 2473 28.4 
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Figure 28: Number of pixels in each landform component within TF 

 

 

Figure 29: Proportions of landform components within TF 
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Table 30: Proportions of landform components within TT 

Landform 
(LF) 

Map type Landform 
component 
(LFC) 

Number of 
pixels 

Proportion of LFC 
within an LF (%) 

TT Field validated 
map 

Bar 17 0.2 
Terrace 10 0.1 
Backplain 0 0.0 
Channel 7077 99.6 

TWI Channel 3166 32.1 
Backplain or 
terrace 

5489 55.6 

Bar 1223 12.4 
Curvature Bar 2054 20.8 

Backplain or 
terrace 

6079 61.5 

Channel 1745 17.7 
Flow direction Terrace or bar 2618 26.5 

Backplain 4914 49.7 
Channel 2346 23.7 

 

 

Figure 30: Number of pixels in each landform component within TT 
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Figure 31: Proportions of landform components within TT 

 

Table 31: Proportions of landform components within TkL 

Landform 
(LF) 

Map type Landform 
component 
(LFC) 

Number of 
pixels 

Proportion of LFC 
within an LF (%) 

TkL Field validated 
map 

Bar 0 0.0 
Terrace 4455 38.0 
Backplain 0 0.0 
Channel 7284 62.0 

TWI Channel 1680 13.2 
Backplain or 
terrace 

8872 69.9 

Bar 2149 16.9 
Curvature Bar 858 6.8 

Backplain or 
terrace 

9206 72.5 

Channel 2637 20.8 
Flow direction Terrace or bar 1550 12.2 

Backplain 8363 65.8 
Channel 2788 22.0 
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Figure 32: Number of pixels in each landform component within TkL 

 

 

Figure 33: Proportions of landform components within TkL 
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Table 32: Proportions of landform components within TkM 

Landform 
(LF) 

Map type Landform 
component 
(LFC) 

Number of 
pixels 

Proportion of LFC 
within an LF (%) 

TkM Field validated 
map 

Bar 2352 30.0 
Terrace 3920 50.0 
Backplain 0 0.0 
Channel 1568 20.0 

TWI Channel 1726 19.8 
Backplain or 
terrace 

5172 59.3 

Bar 1827 20.9 
Curvature Bar 1092 12.5 

Backplain or 
terrace 

5532 63.4 

Channel 2101 24.1 
Flow direction Terrace or bar 898 10.3 

Backplain 4203 48.2 
Channel 3624 41.5 

 

 

Figure 34: Number of pixels in each landform component within TkM 

  

0 

5000 

10000 

15000 

20000 

25000 

N
um

be
r 

of
 6

.2
5 

m
 p

ix
el

s 

Landform component 

Field validated map 

Curvature 

Flow direction 

Topographic wetness index 

Mapping method 

127



 

Figure 35: Proportions of landform components within TkM 

 

Table 33: Proportions of landform components within TkM + TT 

Landform 
(LF) 

Map type Landform 
component 
(LFC) 

Number of 
pixels 

Proportion of LFC 
within an LF (%) 

TkM + TT Field validated 
map 

Bar 535 59.4 
Terrace 9 1.0 
Backplain 0 0.0 
Channel 357 39.6 

TWI Channel 132 14.7 
Backplain or 
terrace 

537 59.6 

Bar 232 25.7 
Curvature Bar 90 10.0 

Backplain or 
terrace 

583 64.7 

Channel 228 25.3 
Flow direction Terrace or bar 152 16.9 

Backplain 566 62.8 
Channel 183 20.3 
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Figure 36: Number of pixels in each landform component within TkM + TT 

 

 

Figure 37: Proportions of landform components within TkM + TT 
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Inspection of Appendices 22−43 demonstrated that all of the reclassified co-

variate maps strongly correlate to the field-based maps in the training windows, in 

terms both of map unit boundaries and the contents of map units. The spatial 

delineation of individual landform components within landform component 

complexes (in the field-based map) strongly correlated with field-based 

observations. The landform components mapped by t he co-variates layers were 

too complicated to map in the field or in combination with available imagery.  

 

Approximately 17,600 pixels (69 ha) of the LT 1 landform were mapped within 

the sample windows. The landform was well represented overall. The curvature 

and flow direction maps most closely approximated the proportion of the bar 

landform component observed and mapped in the windows. Observed channels 

were also effectively delineated on the maps. Overall, the flow direction map most 

closely correlated with the observed proportions of landform components. The 

flow direction co-variate map will effectively depict the spatial distribution of 

bars, backplains and channels within LT 1 when extrapolated beyond the training 

windows.  

 

Approximately 33,600 pixels (131 ha) of the LT 2 landform were mapped within 

the sample windows. The landform was well represented overall. The bars 

observed in the sample windows were closely approximated by a ll three co-

variates, with backplains being over-estimated by 15 –20 % and channels being 

correspondingly underestimated by a  similar proportion. Although this landform 

was arbitrarily categorised into bars, backplains and channels, the backplain is 

composed of upper, middle and lower sections. The co-variate layers appeared to 

be delineating lower backplains from channels. The topographic wetness index 

map will effectively depict the spatial distribution of bars, backplains and 

channels within LT 2 when extrapolated beyond the training windows. 

 

Approximately 9,100 pixels (36 ha) of the LT 3 landform were mapped within the 

sample windows. The landform was well represented overall when taking into 

consideration the relatively small area of the Ruataniwha Plains within which this 

landform has been mapped (at 1:25,000 and 1:50,000 scales, respectively). The 

co-variate maps for this landform failed to identify that this landform represents 
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only the bar landform component. The fine resolution of the covariate layers 

identified minor, irrelevant variations in the bar landform component.  

 

Approximately 28,300 pixels (111 ha) of the RT landform were mapped within 

the sample windows, a high level of representation. However, no clear soil-

landform component relationships were available from the literature or from 

observations within the sample windows, and therefore all soil types identified as 

potentially able to occur within the RT this landform by Griffiths et al. (2001) and 

Griffiths (2004) have been added into a soil complex. This complex is a variation 

to the 1:50,000 soil map, which spatially delineates these soil units. However, the 

soil descriptions contained within Griffiths (2004), and field observations, 

demonstrate that these soils do vary in close proximity, with no obvi ous 

corresponding contrast in micro-topography. 

 

Only c. 2,300 pixels (9 ha) of the sample windows exhibited the TF landform. 

There is no need to differentiate between different units within this landform, 

therefore 100 % of the landform was mapped as being within the channel 

landform component.  

 

Approximately 7,100 pixels (28 ha) of the TT landform were mapped within the 

window 10. Given that this landform occupies a moderate proportion of the 

intermediate terraces of the Ruataniwha Plains, this landform has been moderately 

under-represented by the observations and mapping within the sample windows. 

Despite this, when the co-variate layers were considered together, the tread of 

terraces and channels were the landform components most commonly identified, 

matching observations made in window 10. L ike the RT landform, there are 

several soils predicted to be present on the TT terrace tread landform component. 

The only documented and observed soil-landform component relationship evident 

was that between the TT-channel landform component and the Mair_25.1 soil. 

Therefore, only the TT-channel landform component has been distinguished from 

the rest of the landform components identified within this landform by t he 

preferred co-variate layer. The flow direction co-variate layer most closely 

matched the proportions of the observed landform components within the TT 
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landform, and was therefore used for extrapolation beyond the boundaries of the 

sample window for the TT landform.  

 

The TkM and TkL landforms are separate entities within a common LUC suite. 

Griffiths et al. (2001), Griffiths (2004) and field observations demonstrate that the 

TkL landform is associated with channels and no ot her landform components, 

whereas TkM landform contains both bars and terrace treads. In the sample 

windows, the TkL landform was represented by approximately 11,700 pixels (46 

ha), and the TkM landform was represented by approximately 7,840 pixels (31 

ha). Although the presence of the TkL and TkM landforms is possible to identify 

in the field, they are difficult to spatially delineate at 1:5,000 scale. The co-variate 

layers differentiate between the two landforms and their associate landform 

components with ease. The TkL landform was most effectively spatially 

delineated from the TkM landform by t he topographic wetness index covariate 

layer. The bars and terrace treads of the TkM landform were best differentiated 

using the flow direction map. Where backplains were identified by t he flow 

direction map, these were considered to be the tread of terraces on t he TkM 

landform.  

 

The TkM and TT complex represented a small portion of the Ruataniwha Plains 

and was only represented in the training windows by a pproximately 900 pi xels 

(3.5 ha). However, the treads of terraces or backplains, and channels have been 

identified by the co-variate layers. This combination matched the relationship 

outlined in Griffiths et al. (2001). The TkM landform was located on the treads of 

terraces or backplains, and the TT landform was located in the channels. 

 

The reclassed co-variate layers that best represented each landform were 

extrapolated across the entirety of each respective landform within the 

Ruataniwha Plains, using the 1:25,000 soil map. The resultant maps were 

combinded to produce a landform, landform-component map (6.25 m resolution). 

 

The landform, landform-component map was reclassified to represent S-Map soil 

families and siblings. The result from this process is a 1:25,000 scale soil map 
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where almost all soil types are fully differentiated from one another 

physiographically (Appendices 44 and 45).  

 

Although this map is a si gnificant advance, there are areas which are of poor 

quality due to the noise artefacts arising from the difficulty of interpolating the 

DEM. This noise has flowed through to the digital soil map. This noise could not 

be filtered out without losing the definition (albeit imperfect) of the landform 

components in these areas, which was important as the objective of this thesis was 

to produce a digital soil map, for visual interpretation. If the raster layers of the 

map were to be utilised for mathematical calculations, the noisy areas of the map 

would need to be excluded. The errors are highlighted on the final soil map 

(Appendices 44 and 45), emphasising the areas where map users need to be 

cautious about the integrity of the map. Additionally, at the stage of completion of 

this thesis there has been limited field validation of this map other than the initial 

training of the co-variate layers.  

 

This map demonstrates that it is possible to produce a new, considerably more 

detailed soil map of a relatively flat set of landscapes, such as at the Ruataniwha 

Plains. 

 

6.6. Conclusions 

Classical and digital soil mapping techniques have been combined to produce a 

new 1:25,000 scale soil map. The landscape was delineated using a land systems 

approach. Landform components (e.g. bars and channels) were mapped using 

digital map layers and field-based training windows. Existing soil-landform 

relationships were then incorporated with the land components to produce the 

final soil map. 
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Chapter Seven: Synthesis and summary 

7.1. Introduction 

In this chapter, the results from chapters 1–6 have been reviewed and integrated.  

7.2. Background 

At the time of undertaking this thesis project (2011), more detailed soil 

information about the Ruataniwha Plains was needed to assist in the planning and 

design of the proposed Central Hawke’s Bay irrigation scheme. This soil 

information was necessary to assist in optimising the use of irrigation water and 

productivity on t he Ruataniwha Plains, while minimising adverse impacts on 

water quality.  

 

The majority of the existing soil information was containined in Griffiths et al. 

(2001), a 1:50,000 scale soil map and the associated bulletin (Griffiths, 2004). The 

map contained a numerous soil complexes. Many soil series and phases described 

in Griffiths (2004) were difficult to distinguish from one another, and contained 

ambiguous information about soil properties therein. However, useful information 

about soil-landform relationships existed in Griffiths et al. (2001) and Griffiths 

(2004). 

 

Field observations revealed that the almost flat landscape in the Ruatanihwa 

Plains contained large areas of bar and channel microtopography on several 

terraces/floodplains. Coupled with this, high-resolution LiDAR data was available 

for the area and emergent technologies capable of spatially delineating landform 

elements in New Zealand hill country had become established (Hewitt and 

Lilburne, 2004).  

 

It was hypothesised that a more detailed soil map could be produced by using a 

land systems approach to identify different land units that occurred at different 

resolutions, combined with the use of a landform components map derived from 

LiDAR information. I anticipated that it would be possible to spatially delineate 

landform components in the relatively flat land of the Ruataniwha Plains because 
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the LiDAR data was of a much higher resolution (2.5 m) than the 15 m DEM that 

was available for the mapping of landform elements in New Zealand hill country 

nationwide. 

  

7.3. Discussion and results 

Evaluation of available legacy data and adding value using modern, 
national soil and land versatility classification systems 

The extent of currently available soils information was reviewed in Chapter 1. To 

assist in the conceptual understanding of the spatial distribution and levels of 

topographic detail in the Ruataniwha Plains, a l and systems approach was 

introduced, with the production of a hierarchy of geomorphic units for the area. 

The properties, spatial distribution and relationships of soil to members of the 

geomorphic hierarchy, according to legacy soils information, were explored in 

Chapter 2.  

 

In Chapter 3, the traditional soil series and phases of the Ruataniwha Plains were 

reclassied into the NZSC, thereby simplifying the available information. The new 

NZSC information, combined with other information about the properties of the 

soils and the predicted and inferred contents of soil map units was entered into the 

S-Map system. The process of entering legacy data into the S-Map system was 

discussed and evaluated.  

 

The value of entering the legacy data was demonstrated in Chapter 4, the 

information was combined with the land systems approach to produce a new LUC 

legend for the Ruataniwha Plains. The LUC legend was transformed into a 

1:50,000 scale LUC map using the map units of the 1:50,000 scale soil map of the 

Ruataniwha Plains (Griffiths et al., 2001). Because the new LUC legend was 

linked to soil units, the legend can be applied to more detailed soil maps of the 

Ruataniwha Plains. The LUC map provided a classification of the general 

versatility of the soils of the Ruataniwha Plains for arable and pastoral land uses, 

in addition to identification of the dominant limitations of each soil for such uses. 

An estimate of the productivity of each of the newly classified LUC units was 

made through the correlation of the LCC of the new LUC units with legacy LUC 

units. The resultant LUC map of the Ruataniwha Plains (this thesis) took into 
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account the effect, on LUC class and LCC, of artificially removing the naturally 

occurring water deficit limitations of the LUC units through irrigation occurring 

in the area at that time. A second, hypothetical, scenario demonstrated the 

potential changes to LUC-based versatility and LCC resulting from irrigation of 

the entire Ruataniwha Plains. The new LUC map of the Ruataniwha Plains 

represents not only an update to the LUC information in the area, but a new 

method for creating LUC maps from legacy soil maps and S-Map on flat (0-3° 

land). This method could be applied on flat land anywhere in New Zealand where 

a legacy soil map or S-Map information is available. The overall productive yield 

of the Ruataniwha Plains was estimated for both current useage (in 2011), and 

hypothetical future scenarios using the new LUC information. These yields were 

compared with each other. Within the constraints of the 1:50,000 scale LUC 

information and the assumptions used in constructing the hypothetical future 

scenario, it was estimated that irrigation of the entire Ruataniwha Plains could 

result in an increase of sustainable production of up to 25 %.  

 

The more specific assessment of versatility of the soils of the Ruataniwha Plains 

for orchard cropping was demonstrated in Chapter 5. Results showed that 

naturally droughty soils would become more versatile with irrigation and that 

leaching would increase on highly permeable soils with low clay or organic matter 

levels. The suitability for the application of FDE according to 2011 D airy NZ 

guidelines was also evaluated. The soils of the Ruataniwha Plains were reclassed 

into the 2011 Dairy NZ soil categories, and for all soils the recommendation was 

to impement a deficit irrigation scheme, dependant on the available water holding 

capacity of each soil. This information provides new data applicable to farmers 

and growers in the Ruataniwha Plains area which is timely for those planning take 

advantage of the proposed irrigation scheme if it is implemented. 

 

The results of the reclassification of Griffiths (2004) soil series in chapters 3–5 are 

summarised in Table 34. 
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Table 34: Summary of the results of reclassification of Griffiths (2004) soil series from Chapters 3–5 

Landform Land component Series New Zealand Soil 
Classification 

S-Map family 
and sibling 

LUC 
(2011) 

LUC 
(irrigated 
and 
drained) 

Versatility 
for 
orchard 
crops 
(2011) 

Versatility 
for 
orchard 
crops 
(irrigated 
and 
drained) 

Soil 
category for 
FDE 
management 
 

LT 1 Backplain Flaxmere RFM;Mg;S/K;r Hind_26.1 4s1 2e1  3aw 3aw B 
RFM;Mg;L/K;m/r Hind_26.1 4s1 2e1  3aw 3aw B  
RFM;Mr(Hs);S/K;r Pare_6.1 4s1 2e1  3adl  3ale B  
RFM;Mr(Hs);L/K;m/r Pare_6.1 4s1 2e1  3adl  3ale B  

Bar Omarunui WF;Ms;L/K;m Ruam_16.1 2w1 2s1 3w 3w C  
WF;Md;L;m/s Ruam_16.1 2w1 2w1 3w 3w C  

Channel Irongate GRT;Mg;L/K;m Matpi_28.1 4w1 3w1  4a 4a A  
GRT;Mg;Z/K;m Matpi_28.1 4w1 3w1  4a 4a A  
GRT;Mr(Hs);L/K;m Tekk_6.1 4w1  2s1  4a 4a A  
GRT;Mr(Hs);S/K;m Tekk_6.1 4w1  2s1  4a 4a A  

Channel Tukituki WF;Mr(Hs);S/K;r Ashb_37.1 6s4  3e1  5dl 5le B  
WF;Mr(Hs);S;r Ashb_38.1 6s4  3e1  4dsl  5e B  

LT 2 Backplain Hastings GOT:Md;Z;m Opaki_26.1 4w1 3w1  4a  4a A  
GOT:Md;Z/S;m/r Opaki_26.1 4w1 3w1  4a  4a A  
GOT:Mr(Hs);L/K;m Will_6.1 4w1  2s1  4a  4a A  

LT 2 Bar Twyford RFW;Ms;Z/K;m Waim_40.4 2s1 2s1 3w  3w B  
RFM;Md;Z;m/s Waim_40.2 2w1 2w1 4a 4a A  
RFW;Ms;L/S;m Waim_40.4 2s1 2s1 3w  3w B  
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LT 2 Bar Twyford RFM;Md;L/S;m/s Waim_4.1 2w1 2w1 4a  4a A  
RFW;Mr(Hs);L/K;m Raka_16.1 3s2 2w1  3w 3w B  

Channel Kaiapo GOT:Md;Z/S;m Flax_69.1 4w1 3w1  4a  4a A  
Hollow Poukawa OMM;So(Hu);Z/Tl;m/s Poukawa 5w1 4w1  5a  5a A  

LT 3 Bar Argyll ROW;Mr(Hs);S/K;r Rang_43.1 6s4 3e1  4dsl  5e C  
ROW;Mr(Hs);S/K;r Rang_35.2 6s4 3e1  5dl  5le B  

RT Bar Upokororo PUM;Md;L/S;m/s Upok_1.1 3c2 3c2 4a  4a B  
Channel Ruataniwha PUM;Md;L/S;m/s Popor_5.1 3e1 3e1 4a 5e B  
Terrace tread Willowbrook PPU;Md;L/S;m/s Ruat_4.1 4w1 3w2  4a  4a B  

TT Channel Mangatewai PPU;Md;L;m/s Ruat_5.1 4w1 3w2  5a  5a B  
PPU;Mg;L/K;m/s Mang_2.1 4w1 3w2  4a  4a B  

Hollow Tikokino BOT;Ms;Z/K;m Orono_83.1 3s2 3c2  3e  3e C  
BOT;Ms;Z/K;m Orono_83.1 3s2 3c2  3e 3e C  

Bar Tikokino BOT;Mr(Hs);L/K;m Mand_22.1 3s1 3c2 3ws  3wse A  
BOT;Mr(Hs);Z/K;m Mand_22.1 3s1 3c2 3ws  3wse A  

Hollow Tikokino BOT;Mr(Hs);L/K;m Mand_22.1 3s1 3c2 3ws  3wse A  
Terrace tread Tikokino BOT;Ms;Z/K;m Orono_83.1 3s2 3c2  3e 3e C  

BOT;Ms;Z/K;m Orono_83.1 3s2 3c2  3e 3e C  
BOT;Mg;Z/C;m/s Orono_84.1 3e1 3c2 3w  3we C  
BOT;Mr(Hs);L/K;m Mand_22.1 3s2 3c2  3ws  3wse A  
BOT;Mr(Hs);Z/K;m Mand_22.1 3s2 3c2  3ws  3wse A  

TT Hollow Taniwha PPU;Ms;Z/C;s Mair_25.1 4w1 3e2  4a  5e B  
Hollow Rotoatara OMM;Sd(Hu);Tl;s Kaip_6.1 5w1 4w1  5a  5a B  

TF Hollow Okawa PPU;Md;Z;m/s Jord_4.1 4w1 3w2  4a  4a B  
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TF Hollow Okawa PPU;Mr(Hs);L/K;m/s Okawa_1.1 5s2 3w2  4a  4a A  
PPU;Mr(Hs);L/K;m/s Okawa_1.1 5s3 3e2  4a 5e A  

TkL Channel Poporangi PPU;Md;L;m/s Ruat_7.1 4w1 3w2  4a  4a B  
PPU;Mr(Hs);L/K;m/s Ruat_8.1 4w1 3w2  4a  4a B  

Hollow Poporangi PPU;Md;L;m/s Ruat_7.1 4w1 3w2  4a  4a B  
PPU;Mr(Hs);L/K;m/s Ruat_8.1 4w1 3w2  4a  4a B  

TkM Bar Takapau BLT;Mg;L/K;m/r Tarar_6.1 4s1 2c1  3w  3we A  
BLT;Mr(Hs);L/K;m/r Bush_14.1 4s1 3c2  3wd  3we A  

Terrace tread Takapau BLT;Mg;L/K;m/r Tarar_6.1 4s1 2c1  3w  3we A  
TkH Bar Kopua LOT;Mr(Hs);Z/K;m Otor_51.1 4e2 2c1 3wd  3we A  

Terrace tread Kopua LOT;Mr(Hs);Z/K;m Otor_51.1 4e2 2c1 3w  3we A  
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Production of a new more detailed 1:25,000 soil map 
In Chapter 6, a process for producing a new 1:25,000 scale soil map has been 

outlined. A new 1:25,000 soil map has been produced.  

 

Using a combination of classical interpretation of aerial photography and satellite 

imagery, a 1:25,000 landforms map was produced initially. A combination of 

1:5,000 field-based observations in training windows and information from legacy 

information provided data about relationships between soils and landform 

omponents within landforms. Co-variate maps (such as a  flow direction map) 

were derived from a 6.25 m LiDAR-based DEM. These maps were used to 

confirm the accuracy of the landforms map (visual comparison), and as a means 

of extrapolating relationships between soils and landform components throughout 

the landforms of the Ruataniwha Plains (Table 35). A soil map at 1:25,000 scale 

was produced as a result of this process, although it needs field validation as a 

whole (Appendices 44 and 45). Some parts of the map (Windows 1–11) have 

already been field validated (see Chapter 6). A comparison of excerpts from the 

1:50,000 scale soil map (Griffiths et al., 2001) and the new 1:25,000 soil map is 

provided in Figure 38.  

 

Table 35: Summary of mapping methods used for each landform before aggregration into 
the final soil map of the Ruataniwha Plains 

Landfrom Component Preferred co-variate layer Components 
delineated? 

LT 1 Bars and channels Flow direction Yes 
LT 2 Bars, backplains, and 

channels 
Topographic wetness index Yes 

LT 3 Whole unit Digitised landform map Used landform map 
RT Whole unit Digitised landform map Complex created 
TF Bars and channels Flow direction Yes  
TT Bars, terrace treads, 

and channels 
Flow direction Complex created, 

except for the channel 
component 

TT + TkL Bars and channels Flow direction Yes 
TkL + TkM Channels and bars Flow direction Yes 
TkM + TT Terrace treads and 

channels 
Flow direction Yes 

TkM Bars and terrace 
treads 

Flow direction Yes 

TkH Terrace treads Digitised landform map NA 
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Figure 38: Example of the new and existing soil maps of the Ruataniwha Plains 
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7.4. Recommendations 

The new soil map should be thoroughly field-validated, and where necessary 

improved, especially where errors in the interpolation of the LiDAR-based DEM 

have occurred.  

 

TT and RT landforms should be studied in more depth to attempt to discern 

relationships between the soils known to be present within these landforms and 

available co-variate layers. 

 

7.5. Opportunities for future research 

1. The new soil map could be reclassified to produce new LUC maps, and 

maps for versatility for orchard cropping. Once field validation of the 

new soil map has occurred, it can be used to evaluate the impact of 

different irrigation scenarios (where irrigation occurs), on t he 

versatility and productivity of the soils of the Ruataniwha Plains. 

2. To enhance irrigation efficiency and to minimise nutrient leaching, 

more research into the precise spatial distribution, macroporosity, 

saturated and unsaturated hydraulic conductivity needs to be 

undertaken on the soils of the TT and RT landforms. 

3. When planning to design specific on-farm irrigation systems (water, 

FDE or other wastewater), high definition soil moisture storage 

capacity maps should be produced, using, for example, 

electromagnetic induction or ground penetrating radar technology, or 

both.  

 

7.6. Main conclusions 

This thesis demonstrated the extent of information that was able to be gained from 

a standard soil map, in this case the 1:50,000 scale map of Griffiths et al. (2001), 

especially when re-entered into the S-Map system. Techniques to produce new 

LUC maps from soil maps and thus produce new estimates of relative 

producitivity of LUC units were demonstrated. Additionally outlined was the 

process of altering LUC versatility, LUC units and associated productivity 

142



information due to the removal of limitations through artificial irrigation and 

drainage. It was demonstrated, using a 1:50,000 map, that productivity could be 

increased by up to 25 % should the remaining unirrigated areas of the Ruataniwha 

Plains be irrigated. The versatility of the soils of the Ruataniwha Plains for 

orchard cropping, in the current 2011 scenario, and a hypothetical future scenario 

where the entire Ruataniwha Plains were irrigated, has been investigated. The 

soils and landforms of the Ruataniwha Plains have been classified into the soil 

categories of Dairy NZ (2011), emphasising the requirement for deficit irrigation 

of FDE on the soils of the Ruataniwha Plains. A new, S-Map-based 1:25,000 

digital soil map of the Ruataniwha Plains has been produced using a combination 

of knowledge about soil-landscape relationships, and data derived from LiDAR. 

 

7.7. Closing statement 

The production of the new 1:25,000 soil map, and the associated mechanism of 

producing new LUC and production information, provides highly detailed 

information for the Ruataniwha Plains community. When the soil map is field 

validated, and reclassified into an LUC map, the information will be highly 

beneficial in the development of the proposed Mid-Hawke’s Bay irrigation 

scheme. Additionally, the new soil and LUC information will aide in the planning 

for land-based treatment of FDE, industrial and municipal wastewater, farm, 

catchment, and aquifer-focussed nutrient management in the Ruataniwha Plains. 

At a national level, the method used to produce new LUC maps from soil maps 

can be applied to similar environments, river terraces and outwash gravels, around 

the country, thus significantly enhancing the value of LUC information on flat to 

undulating land. 
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Appendix 1: Soil-landform relationships and classification of Griffiths (2004) soil series and phases into NZSC code 

Landform Land Component Series Drainage Phase Permeability NZSC 

Floodplain (LT 1). Backplain Flaxmere Imperfectly drained Loamy sand over stones Rapid RFM; Mg; S/K; r 

Imperfectly drained Sandy loam over stones Moderate over rapid RFM; Mg; L/K; m/r 

Imperfectly drained Shallow loamy sand over stones Rapid RFM; Mr (Hs); S/K; r 

Imperfectly drained Shallow sandy loam over stones Moderate over rapid RFM; Mr (Hs); L/K; m/r 

Bar Omarunui Well drained Sandy loam over stones Moderate WF; Ms; L/K; m 

Well drained Sandy loam Moderate over slow WF; Md; L; m/s 

Channel Irongate Poorly drained Sandy loam over stones Moderate GRT; Mg; L/K; m 

Poorly drained Silt loam over stones Moderate GRT; Mg; Z/K; m 

Poorly drained Shallow sandy loam over stones Moderate GRT; Mr (Hs); L/K; m 

Poorly drained Shallow silt loam over stones Moderate GRT; Mr (Hs); S/K; m 

Channel Tukituki Well drained Very shallow loamy sand over stones Rapid WF; Mf; S/K; r 

Well drained Shallow loamy sand over stones Rapid WF; Mr (Hs); S; r 

Well drained Shallow loamy sand over stones Rapid WF; Mr (Hs); S; r 

Rarely flooded (LT 2). Backplain Hastings Poorly drained Silt loam Moderate GOT: Md; Z; m 

Poorly drained Silt loam over loamy sand Moderate over rapid GOT: Md; Z/S; m/r 

Poorly drained Shallow sandy loam over stones Moderate GOT: Mr (Hs); L/K; m 

Bar Twyford Well drained Silt loam over stones Moderate RFW; Ms; Z/K; m 

Imperfectly drained Silt loam Moderate over slow RFM; Md; Z; m/s 

Well drained Sandy loam over loamy sand Moderate RFW; Ms; L/S; m 

Imperfectly drained Sandy loam over loamy sand Moderate over slow RFM; Md; L/S; m/s 

Well drained Shallow silt loam over stones Moderate RFW; Mr (Hs); L/K; m 

Channel Kaiapo Poorly drained Silt loam over loamy sand Moderate GOT: Md; Z/S; m 

Hollow Poukawa Very poorly drained Silt over loamy peat Moderate over slow OMM; So (Hu); Z/Tl; m/s 

Non flooded (LT 3). Bar Argyll Well drained Very shallow loamy sand over stones Rapid ROW; Mf (Hs); S/K; r 

Well drained Shallow loamy sand over stones Rapid ROW; Mf (Hs); S/K; r 

Alluvium (RT). Bar Upokororo Well drained Sandy loam over loamy sand Moderate. BOT; Md; L/S; m 

Channel Ruataniwha Poorly drained Sandy loam over loamy sand Moderate over slow PUM; Md; L/S; m/s 

Terrace tread. Willowbrook Poorly drained Sandy loam over loamy sand Moderate over slow PPU; Md; L/S; m/s 
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Landform Land Component Series Drainage Phase Permeability NZSC 

Alluvium and gravels (TT). Channel Mangatewai Poorly drained Sandy loam Moderate over slow PPU; Md; L; m/s 
Poorly drained Shallow sandy loam over stones Moderate over slow PPU; Mg; L/K; m/s 

Hollow Tikokino Well drained Silt loam over stones Moderate BOT; Ms; Z/K; m 
Well drained Silt loam over stones Moderate BOT; Ms; Z/K; m 

Bar Tikokino Well drained Moderately deep sandy loam over stones Moderate BOT; Mr (Hs); L/K; m 
Well drained Moderately deep sandy loam over stones Moderate BOT; Mr (Hs); Z/K; m 

Hollow Tikokino Well drained Moderately deep sandy loam over stones Moderate BOT; Mr (Hs); L/K; m 
Terrace tread. Tikokino Well drained Silt loam over stones Moderate BOT; Ms; Z/K; m 

Well drained Silt loam over stones Moderate BOT; Ms; Z/K; m 
Well drained Shallow silt loam over loamy clay Moderate over slow BOT; Mg; Z/C; m/s 
Well drained Moderately deep sandy loam over stones Moderate BOT; Mr (Hs); L/K; m 
Well drained Moderately deep sandy loam over stones Moderate BOT; Mr (Hs); Z/K; m 

Hollow Taniwha Poorly drained Silt loam over loamy clay Slow PPU; Ms; Z/C; s 
Hollow Rotoatara Very poorly drained Peaty loam Slow OMM; Sd (Hu); Tl; s 
Terrace tread. Horoeka Poorly drained Silt loam over loamy clay Moderate over slow PUM; Ms; Z/C; m/s 

Alluvial fan (TF). Hollow Okawa Poorly drained Silt loam Moderate over slow PPU; Md; Z; m/s 
Poorly drained Shallow sandy loam over stones Moderate over slow PPU; Mr (Hs); L/K; m/s 
Poorly drained Shallow sandy loam over stones Moderate over slow PPU; Mr (Hs); L/K; m/s 

Low leaching on Red Metal 
(TkL). 

Channel Poporangi Poorly drained Sandy loam Moderate over slow PPU; Md; L; m/s 
Poorly drained Silt loam over stones Moderate over slow PPU; Mr (Hs); L/K; m/s 

Hollow Poporangi Poorly drained Sandy loam Moderate over slow PPU; Md; L; m/s 
Poorly drained Silt loam Moderate over slow PPU; Mr (Hs); L/K; m/s 

Moderate leaching on Red Metal 
(TkM). 

Bar Takapau Well drained Sandy loam Moderate over rapid BLT; Mg; L/K; m/r 
Well drained Sandy loam over stones Moderate over rapid BLT; Mr (Hs); L/K; m/r 

Terrace tread. Takapau Well drained Sandy loam Moderate over rapid BLT; Mg; L/K; m/r 
High leaching on Red Metal 
(TkH). 

Bar Kopua Well drained Silt loam Moderate LOT; Mr (Hs); Z/K; m 
Terrace tread. Kopua Well Drained. Silt loam Moderate LOT; Mr (Hs); Z/K; m 
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Appendix 2: NZSC code of Griffiths (2004) soil series expanded 

Series NZSC Order Group  Subgroup Parent material and depth Rock Class Particle size Permeability 

Flaxmere RFM; Mg; S/K; r Recent Fluvial Mottled On stones between 45–60cm depth  Sandy over skeletal Rapid 

RFM; Mg; L/K; m/r Recent Fluvial Mottled On stones between 45–60cm depth  Loamy over skeletal Moderate over rapid 

RFM; Mr (Hs); S/K; r Recent Fluvial Mottled Shallow, rounded stones Hard sandstone Sandy over skeletal Rapid 

RFM; Mr (Hs); L/K; m/r Recent Fluvial Mottled Shallow, rounded stones Hard sandstone Loamy over skeletal Rapid 

Omarunui WF; Ms; L/K; m Raw Fluvial  Soils with stones  Loamy over skeletal Moderate 

WF; Md; L; m/s Raw Fluvial  Stoneless, deep  Loamy Moderate over slow 

Irongate GRT; Mg; L/K; m Gley Recent Typic Soil with stones  Loamy over skeletal Moderate 

GRT; Mg; Z/K; m Gley Recent Typic On stones between 45–60cm depth  Silty over skeletal Moderate 

GRT; Mr (Hs); L/K; m Gley Recent Typic Shallow, rounded stones Hard sandstone Loamy over skeletal Moderate 

GRT; Mr (Hs); S/K; m Gley Recent Typic Shallow, rounded stones Hard sandstone Sandy over skeletal Moderate 

Tukituki WF; Mf; S/K; r Raw Fluvial  Very shallow, fragic  Sandy over skeletal Rapid 

WF; Mr (Hs); S; r Raw Fluvial  Shallow, rounded stones Hard sandstone Sandy Rapid 

Hastings GOT: Md; Z; m Gley Orthic Typic Stoneless, deep  Silty Moderate 

GOT: Md; Z/S; m/r Gley Orthic Typic Stoneless, deep  Silty over sandy Moderate over rapid 

GOT: Mr (Hs); L/K; m Gley Orthic Typic Shallow, rounded stones Hard sandstone Loamy over skeletal Moderate 

Twyford RFW; Ms; Z/K; m Recent Fluvial Weathered Soils with stones  Silty over sandy Moderate 

RFM; Md; Z; m/s Recent Fluvial Mottled Stoneless, deep  Silty Moderate over slow 

RFW; Ms; L/S; m Recent Fluvial Mottled Soils with stones  Loamy over sandy Moderate 

RFM; Md; L/S; m/s Recent Fluvial Mottled Stoneless, deep  Loamy over sandy Moderate over slow 

RFW; Mr (Hs); L/K; m Recent Fluvial Weathered Shallow, rounded stones Hard sandstone Loamy over skeletal Moderate 

Kaiapo GOT: Md; Z/S; m Gley Orthic Typic Stoneless, deep  Silty over sandy Moderate 

Poukawa OMM; So (Hu); Z/Tl; m/s Organic Mesic Mellow Layered Humic Silty over loamy peaty Moderate over slow 

Argyll ROW; Mf (Hs); S/K; r Recent Orthic Weathered Very shallow, fragic Hard sandstone Sandy over skeletal Rapid 

Upokororo PUT; Md; L/S; m Pallic Duric Typic Stoneless, deep  Loamy over sandy Moderate 

Ruataniwha PUM; Md; L/S; m/s Pallic Duric Mottled Stoneless, deep  Loamy over sandy Moderate over slow 

Willowbrook PPU; Md; L/S; m/s Pallic Perch-gley Duric Stoneless, deep  Loamy over sandy Moderate over slow 
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Series NZSC Order Group Subgroup Parent material and depth Rock Class Particle size Permeability 

Mangatewai PPU; Md; L; m/s Pallic Perch-gley Duric Stoneless, deep  Loamy Moderate over slow 
PPU; Mg; L/K; m/s Pallic Perch-gley Duric On stones between 45–60cm depth  Loamy over skeletal Moderate over slow 

Tikokino BOT; Ms; Z/K; m Brown Orthic Typic Soils with stones  Silty over skeletal Moderate 
BOT; Mr (Hs); L/K; m Brown Orthic Typic Shallow, rounded stones Hard sandstone Loamy over skeletal Moderate 
BOT; Mr (Hs); Z/K; m Brown Orthic Typic Shallow, rounded stones Hard sandstone Silty over skeletal Moderate 
BOT; Ms; Z/K; m Brown Orthic Typic Soils with stones  Silty over skeletal Moderate 
BOT; Mg; Z/C; m/s Brown Orthic Typic On stones between 45–60cm depth  Silt over clay Moderate over slow 

Taniwha PPU; Ms; Z/C; s Pallic Perch-gley Duric Soils with stones  Silt over clay Slow 
Rotoatara OMM; Sd (Hu); Tl; s Organic Mesic Mellow Deep Humic Loamy peat Slow 
Horoeka PUM; Ms; Z/C; m/s Pallic Duric Mottled Soils with stones  Silt over clay Moderate over slow 
Okawa PPU; Md; Z; m/s Pallic Perch-gley Duric Stoneless, deep  Silty Moderate over slow 

PPU; Mr (Hs); L/K; m/s Pallic Perch-gley Duric Shallow, rounded stones Hard sandstone Loamy over skeletal Moderate over slow 
Poporangi PPU; Md; L; m/s Pallic Perch-gley Duric Shallow, rounded stones Hard sandstone Loamy Moderate over slow 

PPU; Mr (Hs); L/K; m/s Pallic Perch-gley Duric Shallow, rounded stones Hard sandstone Loamy over skeletal Moderate over slow 
Takapau BLT; Mg; L/K; m/r Brown Allophanic Typic On stones between 45–60cm depth  Loamy over skeletal Moderate over rapid 

BLT; Mr (Hs); L/K; m/r Brown Allophanic Typic Shallow, rounded stones Hard sandstone Loamy over skeletal Moderate over rapid 
Kopua LOT; Mr (Hs); Z/K; m Allophanic Orthic Typic Shallow, rounded stones Hard sandstone Silty over skeletal Moderate 
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Appendix 3: Soil type for the soil map units of the Ruataniwha Plains, S-Map inputs 

Series S-Map 
family and 
sibling 

Order 
Group 
Subgroup 

Parent 
material 

Rock 
class 
(1 m) 

Parent 
material 
origin 

Texture 
group 
(60 cm) 

Permeability Depth 
class 

Topsoil 
stoniness 

Textural 
group 

Drainage 
class 

FH1 FH2 FH3 FH4 FH5 FH6 

Flaxmere Hind_25.1 R F M Mg Hs Fl s/k r md 1 s/k ig tAl Al VAl       
Flaxmere Hind_26.1 R F M Mg Hs Fl l/k r md 1 l/k ig tLw Lw VAl       
Flaxmere Pare_6.1 R F M Mr Hs Fl s/k r s 2 s/k ig tAl Al VAl       
Flaxmere Pare_6.1 R F M Mr Hs Fl l/k r s 2 l/k ig tLw Lw VAl       
Omarunui Ruam_14.1 W F   Ms Hs Fl l/k m md 1 l/k mw tLw Lw VLl       
Omarunui Ruam_16.1 W F   Md na Fl l m/s d 1 l ig tLw Lw Lw Lw     
Twyford Waim_40.4 R F W Ms Hs Fl z/k m md 1 z/k w tLw Lw Lw VLl     
Twyford Waim_40.2 R F M Md na Fl z m/s d 1 z im tLw Lw Lw Lw     
Twyford Waim_40.4 R F W Ms Hs Fl l/s m md 1 l/s w tLw Lw Al VLl     
Twyford Waim_4.1 R F M Md na Fl l/s m/s d 1 l/s ig tLw Lw Al Lw     
Twyford Raka_16.1 R F W Mr Hs Fl l/k m s 1 l/k w tLw Lw VLl       
Hastings Opaki_26.1 G O T Md na Fl z m d 1 z p tLw Lw Lw       
Hastings Opaki_26.1 G O T Md na Fl z/s m/r d 1 z/s p tLw Lw Al       
Hastings Will_6.1 G O T Mr Hs Fl l m d 1 z p tLw Lw VLl       
Kaiapo Flax_69.1 G O T Md na Fl z m d 1 z p tLw Lw Lw       
Irongate Matpi_28.1 G R T Mg Hs Fl l/k m md 1 l/k p tLw Lw VLl       
Irongate Matpi_28.1 G R T Mg Hs Fl z/k m md 1 z/k p tLw Lw VLl       
Irongate Tekk_6.1 G R T Mr Hs Fl l/k m s 1 l/k p tLw Lw VLl       
Irongate Tekk_6.1 G R T Mr Hs Fl z/k r s 1 z/k p tLw Lw VLl       
Okawa Jord_4.1 P P U Md na Fl z m/s md 1 z p tLw Lw Lw Q     
Okawa Okawa_1.1 P P U Mr Hs Fl l/k m/s s 1 l/k p tLw Lw Lw XL     
Okawa Okawa_1.1                   2     tSLw SLw SLw XL     
Poporangi Ruat_7.1 P P U Md na Fl l m/s s 1 l p tLw Lw Lw Q     
Poporangi Ruat_7.1 P P U Md na Fl z m/s s 1 z p tLw Lw Lw Q     
Poporangi Mangt_3.1 P P U Mr Hs Fl l/k m/s s 1 l/k p tLw Lw Lw XL Q XL 
Takapau Tarar_6.1 B L T Mr Hs Fl l/k m/r s 2 l/k w tLw Lw Lw XL     
Takapau Bushg_14.1 B L T Mr Hs Fl l/k m/r s 2 l/k w tSLw SLw SLw XL     
Kopua Otor_51.1 L O T Mr Hs Fl z/k m s 1 z/k w tLw Lw XL       
Tukituki Ashb_37.1 W F   Mf Hs Fl s/k r vs 2 s/k ig SAl Xx         
Tukituki Ashb_38.1 W F   Mr Hs Fl s/k r vs 2 s/k ig SAl Xx         
Tukituki Ashb_38.1 W F   Mr Hs Fl s/k r s 2 s/k ig SAl Xx         
Argyll Rang_43.1 R O W Mf Hs Fl s/k r vs 2 s/k w SAl Xx         
Upokororo Upok_1.1 P U T Md na Fl l/s m md 1 l/s ig tLw Lw Al Lw Lw   
Ruataniwha Popor_5.1 P U M Md na Fl l/s m/s md 1 l/s ig tLw Lw Al Lw Q XL 
Willowbrook Ruat_4.1 P P U Md na Fl l/s m/s md 1 l/s p tLw Lw Al Lw Q XL 
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Rotoatara Kaip_6.1 O M M Sd na Pt Tp s d 1 Tp vp tOh Oh         
Poukawa Utuh_21 O M M So na Pt z/tl m/s d 1 z/tl vp Lw Of         
Mangatewai Ruat_5.1 P P U Md na Fl l m/s md 1 l p tLw Lw Lw Lw Q   
Mangatewai Mang_2.1 P P U Mg Hs Fl l/k m/s md 1 l/k p tLw Lw Lw VLl Q   
Tikokino Orono_83.1 B O T Ms Hs Fl z/k m md 1 z/k w tLw Lw XL       
Tikokino Orono_83.1 B O T Ms Hs Fl l/k m md 1 l/k w tLw Lw XL       
Tikokino Orono_84.1 B O T Mg Hs Fl z/c m s 1 z/c w tLw Lw YFw XL     
Tikokino Mand_22.1 B O T Mg na Fl l/k m md 1 l/k w tLw Lw XL       
Tikokino Mand_25.1 B O T Mg na Fl z/k m md 2 z/k w tSLw SLw XL       
Taniwha Mair_25.1 P P U Ms Hs Fl z/c s md 1 z/c p tLw Lw YC SLw Q   
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Appendix 4: S-Map worksheet outlining uncertainty over assignment of classification of soils of the Ruataniwha Plains

NZSC 
Order

NZSC 
Group

NZSC 
Subgroup

NZSC 

Uncertaint Uncertaint Uncertaint Alternativ Uncertaint Alternative Uncertaint Alternative Uncertaint Alternative Uncertaint Alternative Uncertaint Alternativ Uncertaint Alternativ Uncertaint Alternativ Uncertaint Alternativ Uncertaint Alternativ Uncertaint Alternativ Uncertaint Alternativ Uncertaint Alternativ Uncertaint Alternativ Uncertaint Alternativ
Hind_25.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Hind_26.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Pare_6.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Ruam_16.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Ruam_14.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Waim_40.2 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Waim_40.5 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Raka_16.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Opaki_26.1 3 3 3 RFM 1 na 1 na 1 na 1 na 1 na 1 na 1 na 3 im 1 na 1 na 1 na 1 na 1 na 1 na
Will_6.1 3 3 3 RFM 1 na 1 na 1 na 1 na 1 na 1 na 1 na 3 im 1 na 1 na 1 na 1 na 1 na 1 na
Flax_69.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Matpi_28.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Tekk_6.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Jord_4.1 1 1 3 PPC 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Okawa_1.1 1 1 3 PPC 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Ruat_7.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Mangt_3.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na na na 1 na 1 na 1 na
Tarar_6.1 1 1 1 na 3 Mt 1 na 1 na 1 na 1 na 1 na 1 na 1 na 3 tbLw 3 na bLw na 1 na 1 na 1 na
Bushg_14.1 1 1 1 na 3 Mt 1 na 1 na 1 na 1 na 1 na 1 na 1 na 3 tbSLw 3 na bSLw na 1 na 1 na 1 na
Otor_51.1 1 1 1 na 3 Mt 1 na 1 na 1 na 1 na 1 na 1 na 1 na 3 tbLw 3 na bLw na 1 na 1 na 1 na
Ashb_37.1 1 1 1 na 3 Mr 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Ashb_38.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Rang_43.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Upok_1.1 3 3 3 PPU 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Popor_5.1 1 3 3 PPC 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Ruat_4.1 1 1 3 PPC 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Kaip_6.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Utah_21.1 1 1 1 na 1 na 1 na 1 na 4 m,s 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Ruat_5.1 1 1 3 PPC 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 3 XL
Mang_2.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 3 XL
Orono_83.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Orono_84.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Mand_22.1 1 1 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na
Mair_25.1 1 1 3 PPC 1 na 1 na 1 na 2 m/s 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na

FH4 FH5 FH6Topsoil stoniness class Texture class Drainage class FH1 FH2 FH3Soil depth classS-Map code Parent material Rock class Texture group Permeability
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Appendix 6: Griffith’s map units and the characteristics of S-Map families and siblings 

 

Series S-Map 
Code 

Structural 
Vulnerability 

Drought Risk Total Available 
Water Holding 
Capacity (mm) 

Plant Available 
Water Holding 
Capacity (mm) 

Anion Sorption 
Capacity (%) 

Flaxmere (2, deep) Hind_25.1 High (0.69) Low High (162) High (102) Medium (33) 

Flaxmere (2, 
moderately. deep) 

Hind_26.1 High (0.69) Low High (178) High (108) Medium (33) 

Flaxmere (2g) Pare_6.1 High (0.69) Moderate Moderate (101) Moderate (70) Medium (33) 

Omarunui (4, deep) Ruam_16.1 Not calculated Low High (163) Moderate to high 
(99) 

Very low (3) 

Omarunui (4, 
moderately deep) 

Ruam_14.1 Not calculated Low High (152) Moderate to high 
(91) 

Very low (3) 

Irongate (21) Matpi_28.1 High (0.65) Moderate Moderate (114) Moderate (68) Medium (35) 

Irongate (21g) Tekk_6.1 High (0.70) High Low (48) Low (33) Medium (35) 

Tukituki (56) Ashb_37.1 Not calculated High Low (41) Low (27) Very low (3) 

Tukituki (56a) Ashb_38.1 Not calculated High Low (46) Low (31) Very low (3) 

Hastings (14) Opaki_26.1 Moderate (0.60) Low Moderate to high 
(139) 

Moderate to high 
(88) 

Medium (38) 

Hastings (14g) Will_6.1 High (0.64) Moderate Moderate (118) Moderate (74) Medium (38) 

Twyford (5, silty) Waim_40.2 High (0.68) Moderate Moderate (114) Moderate to high 
(79) 

Low (19) 

Twyford (6, with 
stones) 

Waim_40.4 High (0.63) Low Moderate to high 
(144) 

High (103) Low (19) 

Twyford (z/s/k, 
moderately deep) 

Waim_4.1 High (0.68) Low Moderate to high 
(134) 

Moderate to high 
(89) 

Low (19) 

Twyford (6, 
moderately deep) 

Waim_40.5 High (0.63) Moderate Moderate (113) Moderate to high 
(83) 

Low (19) 

Twyford (6g, 
shallow) 

Raka_16.1 High (0.67) Moderate Moderate (115) Moderate (73) Low (19) 

Kaiapo (19) Flax_69.1 Moderate (0.60) Moderate Moderate to low 
(70) 

Low (45) Medium (38) 

Poukawa (68) Utuh_21 Low (0.48) Low Very high (317) High (112) High (62) 

Argyll (58) Rang_43.1 Very high (0.75) High Low (37) Low (28) Low (19) 

Argyll (58a) Rang_35.2 Very high (0.75) High Low (44) Low (33) Low (19) 
Upokororo (59) Upok_1.1 High (0.63) Low High (179) High (103) Low (22) 

Ruataniwha (60, 
deep) 

Popor_5.1 High (0.69) Low High (168) Moderate to high 
(95) 

Low (22) 

Ruataniwha (60, 
moderately deep) 

Popor_3.1 High (0.69) Low High (156) Moderate to high 
(89) 

Low (22) 

Willowbrook (64) Ruat_4.1 Very high (0.72) Low Moderate to high 
(146) 

Moderate to high 
(94) 

Low (22) 

Mangatewai (73) Ruat_5.1 Very high (0.72) Moderate Moderate (116) Moderate to high 
(78) 

Low (22) 

Mangatewai (73g) Mang_2.1 Very high (0.72) Moderate Moderate (93) Moderate (59) Low (22) 
Tikokino (74) Orono_83.1 Moderate (0.59) Moderate Moderate (117) Moderate to high 

(80) 
Medium (36) 

Tikokino (74f) Orono_84.1 High (0.63) Moderate Moderate (99) Moderate to high 
(64) 

Medium (36) 

Tikokino (74g) Mand_22.1 Moderate (0.59) Moderate Moderate (109) Moderate to high 
(76) 

Medium (36) 

Tikokino (74g) Mand_25.1 Moderate (0.59) Moderate Moderate to low 
(82) 

Moderate (60) Medium (36) 

Taniwha (75) Mair_25.1 High (0.70) Moderate Moderate to low 
(72) 

Low (45) Low (22) 

Rotoatara (67) Kaip_6.1 Low (0.47) Low High (200) High (150) Medium (37) 
Horoeka (76) Mair_27.1 Very high (0.72) Low Moderate to high 

(133) 
Moderate to high 
(85) 

Low (22) 

Okawa (29) Jord_2.1 Very high (0.72) Moderate Moderate (108) Moderate to high 
(85) 

Low (22) 

Poporangi (32) Ruat_7.1 Very high (0.71) Low Moderate to high 
(133) 

Moderate to high 
(80) 

Low (22) 

Takapau (39) Tarar_6.1 Very low (0.37) Moderate Moderate (119) Moderate to high 
(77) 

High (66) 

Kopua (40) Otor_51.1 Very low (0.29) Low Moderate to high 
(148) 

Moderate to high 
(97) 

High (83) 
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Appendix 7: LUC extended legend - soils of the Ruataniwha Plains

Landscape LUC suite Landform Slope (°) Windspeed Degree of topsoil 
development

Texture Wind erosion 
risk

Surface 
erosion risk

Depth to hydomorphic 
feature (cm)

Depth to water table (cm) Permeability Topsoil stoniness Depth to 
pan (cm)

Depth to 
stones (cm)

LUC (Current, 
2011, scenario)

LUC (All irrigated)

Low l/k Negligible 45-90 NA m Stoneless >90 >90 2w1 2s1
Low l/k Moderate 45-90 NA m Stoneless >90 45-90 2w1 2s1
Low l Negligible Slight 45-90 Seasonally high water table m/s Stoneless >90 >90 2w1 2w1
Low l Negligible Slight 45-90 Seasonally high water table m/s Stoneless >90 45-90 2w1 2w1
Moderate s/k Negligible Slight 30-45 Seasonally high water table r Stoneless >90 45-90 3w1 2e1
Moderate s/k Negligible Slight 30-45 Seasonally high water table r Stoneless >90 45-90 3w1 2e1
Moderate l/k Negligible Slight 30-45 Seasonally high water table r Stoneless >90 45-90 3w1 2e1
Moderate l/k Negligible Slight 30-45 Seasonally high water table r Stoneless >90 45-90 3w1 2e1
Moderate s/k Negligible Slight 30-45 Seasonally high water table r Slightly gravelly >90 20-45 4s1 2e1
Moderate s/k Negligible Slight 30-45 Seasonally high water table r Slightly gravelly >90 20-45 4s1 2e1
Moderate l/k Negligible Slight 30-45 Seasonally high water table r Slightly gravelly >90 20-45 4s1 2e1
Moderate l/k Negligible 30-45 Seasonally high water table r Slightly gravelly >90 20-45 4s1 2s1
Moderate l/k Negligible <30 Seasonally high water table m Stoneless >90 45-90 4w1 3w1
Moderate l/k Negligible <30 Seasonally high water table m Stoneless >90 45-90 4w1 3w1
Moderate z/k Negligible <30 Seasonally high water table m Stoneless >90 45-90 4w1 3w1
Moderate z/k Negligible <30 Seasonally high water table m Stoneless >90 45-90 4w1 3w1
Moderate l/k Negligible <30 Seasonally high water table m Stoneless >90 20-45 4w1 2s1
Moderate l/k Negligible <30 Seasonally high water table m Stoneless >90 20-45 4w1 2s1
Moderate s/k Negligible <30 Seasonally high water table r Stoneless >90 20-45 4w1 2s1
Moderate s/k Negligible <30 Seasonally high water table r Stoneless >90 20-45 4w1 2s1
Low s/k Moderate Slight 45-90 Seasonally high water table r Slightly gravelly >90 20-45 5s2 3e1
Low s/k Moderate Slight 45-90 Seasonally high water table r Slightly gravelly >90 20-45 5s2 3e1
Low s/k Moderate Slight 45-90 Seasonally high water table r Slightly gravelly >90 20-45 5s2 3e1
Low s/k Moderate Slight 45-90 Seasonally high water table r Slightly gravelly >90 20-45 5s2 3e1
Low s/k Moderate Slight 45-90 Seasonally high water table r Slightly gravelly >90 <20 6s4 3e1
Low s/k Moderate Slight 45-90 Seasonally high water table r Slightly gravelly >90 <20 6s4 3e1
Moderate z Negligible Slight 45-90 Seasonally high water table m/s Stoneless >90 >90 2w1 2w1
Moderate z Negligible Slight 45-90 Seasonally high water table m/s Stoneless >90 45-90 2w1 2w1
Moderate l/s Negligible Slight 45-90 Seasonally high water table m/s Stoneless >90 >90 2w1 2w1
Moderate l/s Negligible Slight 45-90 Seasonally high water table m/s Stoneless >90 45-90 2w1 2w1
Moderate z/k Negligible >90 NA m Stoneless >90 >90 2s1 2s1
Moderate z/k Negligible >90 NA m Stoneless >90 45-90 2s1 2s1
Moderate l/s Negligible >90 NA m Stoneless >90 >90 2s1 2s1
Moderate l/s Negligible >90 NA m Stoneless >90 45-90 2s1 2s1
Moderate l/k Negligible >90 NA m Stoneless >90 20-45 3s2 2w1
Moderate l/k Negligible >90 NA m Stoneless >90 20-45 3s2 2w1
High z Negligible <30 Seasonally high water table m Stoneless >90 >90 4w1 3w1
High z Negligible <30 Seasonally high water table m Stoneless >90 >90 4w1 3w1
High z/s Negligible <30 Seasonally high water table m/r Stoneless >90 >90 4w1 3w1
High z/s Negligible <30 Seasonally high water table m/r Stoneless >90 20-45 4w1 3w1
High z Negligible <30 Seasonally high water table m Stoneless >90 >90 4w1 3w1
High z Negligible <30 Seasonally high water table m Stoneless >90 >90 4w1 3w1
High l Negligible <30 Seasonally high water table m Stoneless >90 20-45 4w1 2s1
High l Negligible <30 Seasonally high water table m Stoneless >90 20-45 4w1 2s1
High z/tl Negligible <30 High water table, limited standing water m/s Stoneless >90 >90 5w1 4w1
High z/tl Negligible <30 High water table, limited standing water m/s Stoneless >90 >90 5w1 4w1
Moderate s/k Moderate >90 NA r Slightly gravelly >90 <20 6s4 3e1
Moderate s/k Moderate >90 NA r Slightly gravelly >90 <20 6s4 3e1
High l/s Moderate Slight 45-90 Seasonally high water table m/s Stoneless 45-90 45-90 3e1 3e1
High l/s Negligible Slight >90 Seasonally high water table m/s Stoneless >90 >90 3c1 3c1
High l/s Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High z/c Negligible >90 NA m Stoneless >90 45-90 3e1 3c1
High z/c Moderate >90 NA m Stoneless >90 45-90 3e1 3c1
High z/c Moderate Slight 30-45 Seasonally high water table m/s Stoneless >90 >90 3e2 3e2
High z/c Moderate Slight 30-45 Seasonally high water table m/s Stoneless >90 >90 3e2 3e2
High z/c Moderate Slight 30-45 Seasonally high water table m/s Stoneless >90 >90 3e2 3e2
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Moderate Slight >90 NA m Slightly gravelly >90 20-45 3s1 3c1
High z/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High z/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High z/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High z/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High z/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High z/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 45-90 3s2 3c1
High z/c Moderate >90 NA m Stoneless >90 45-90 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s2 3c1
High l/k Slight >90 NA m Stoneless >90 20-45 3s2 3c1
High l Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High l Moderate Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High l Slight Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High z/c Moderate Slight <30 Seasonally high water table s Stoneless 45-90 45-90 4w1 3e2
High z/c Moderate Slight <30 Seasonally high water table s Stoneless 45-90 45-90 4w1 3e2
High z/c Moderate Slight <30 Seasonally high water table s Stoneless 45-90 45-90 4w1 3e2
High l/k Negligible <30 Seasonally high water table m/s Stoneless >90 45-90 4w1 3w2
High l/k Negligible <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High l/k Negligible <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High Tp Negligible <30 High water table, limited standing water s Stoneless >90 >90 5w1 4w1
High Tp Negligible <30 High water table, limited standing water s Stoneless >90 >90 5w1 4w1
High Tp Negligible <30 High water table, limited standing water s Stoneless >90 >90 5w1 4w1
High z Negligible Slight <30 Seasonally high water table m/s Stoneless 20-45 20-45 4w1 3w2
High l/k Negligible Slight <30 Seasonally high water table m/s Stoneless 20-45 20-45 5s2 3w2
High Moderate <30 Seasonally high water table Slightly gravelly 20-45 20-45 5s2 3e2
High l Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 >90 4w1 3w2
High l Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High l Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High l Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High l Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High l Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High z Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 >90 4w1 3w2
High z Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High z Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High z Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High z Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High z Negligible Slight <30 Seasonally high water table m/s Stoneless 45-90 45-90 4w1 3w2
High l/k Negligible Slight <30 Seasonally high water table m/s Stoneless >90 20-45 4w1 3w2
High l/k Negligible Slight <30 Seasonally high water table m/s Stoneless 20-45 20-45 4w1 3w2
High l/k Negligible Slight <30 Seasonally high water table m/s Stoneless 20-45 20-45 4w1 3w2
High l/k Negligible Slight <30 Seasonally high water table m/s Stoneless 20-45 20-45 4w1 3w2
High l/k Negligible Slight <30 Seasonally high water table m/s Stoneless 20-45 20-45 4w1 3w2
High l/k Negligible Slight <30 Seasonally high water table m/s Stoneless 20-45 20-45 4w1 3w2
High l/k Moderate >90 NA m/r Slightly gravelly >90 20-45 4s1 2c1
High l/k Moderate >90 NA m/r Slightly gravelly >90 20-45 4s1 2c1
High l/k Moderate Slight >90 NA m/r Slightly gravelly >90 20-45 4s1 3c1
High l/k Moderate Slight >90 NA m/r Slightly gravelly >90 20-45 4s1 3c1
High z/k Severe >90 NA m Stoneless >90 20-45 4e2 4c1
High z/k Severe >90 NA m Stoneless >90 20-45 4e2 4c1

Incised terraces or foothills Suite 5 Not investigated 16-35

0-3 Low

LT 3 0-3 Low

Intermediate terraces Suite 2 RT 0-3 Moderate

Suite 3 TT 0-3 Moderate

Low terraces Suite 1 LT 1 0-3 Low

LT 2

Suite 4 TkL 0-3 Moderate

TkM 0-3 Moderate

TkH 0-3 Moderate

TF 0-3 Moderate
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Appendix 13: Wetness and aeration of the soils of the Ruataniwha Plains

S-Map code Drainage Depth to mottling or 
reduced horizon (cm)

Water table depth (cm) Soil wetness Profile 
aeration 
capacity

Hind_25.1 Imperfect, gley 30-45 Seasonally high water table Moderate Limited
Ruam_16.1 Moderately well 45-90 NA Very low Good
Ruam_14.1 Imperfect, gley 45-90 Seasonally high water table Moderate Limited
Waim_40.2 Well >90 NA Nil Excellent
Waim_40.4 Well >90 NA Nil Excellent
Opaki_26.1 Poor <30 Seasonally high water table High Poor
Flax_69.1 Poor <30 Seasonally high water table High Poor
Matpi_28.1 Poor <30 Seasonally high water table High Poor
Jord_4.1 Poor <30 Seasonally high water table High Poor
Ruat_7.1 Poor <30 Seasonally high water table High Poor
Tarar_6.1 Well >90 NA Nil Excellent
Otor_51.1 Well >90 NA Nil Excellent
Ashb_37.1 Imperfect, gley 45-90 Seasonally high water table Moderate Limited
Rang_43.1 Well >90 NA Nil Excellent
Upok_1.1 Imperfect, gley >90 Seasonally high water table Moderate Limited
Popor_5.1 Imperfect, gley 45-90 Seasonally high water table Moderate Limited
Ruat_4.1 Poor <30 Seasonally high water table High Poor
Kaip_6.1 Very poor <30 High water table, limited standing water Very high Very poor
Utah_21.1 Very poor <30 High water table, limited standing water Very high Very poor
Ruat_5.1 Poor <30 Seasonally high water table High Poor
Orono_83.1 Well >90 NA Nil Excellent
Mand_25.1 Poor <30 Seasonally high water table High Poor
Will_6.1 Poor <30 Seasonally high water table High Poor
Tekk_6.1 Poor <30 Seasonally high water table High Poor
Okawa_1.1 Poor <30 Seasonally high water table High Poor
Pare_6.1 Imperfect, gley 30-45 Seasonally high water table Moderate Limited
Mangt_3.1 Poor <30 Seasonally high water table High Poor
Bushg_14.1 Well >90 NA Nil Excellent
Ashb_38.1 Imperfect, gley 45-90 Seasonally high water table Moderate Limited
Rang_35.2 Well >90 NA Nil Excellent
Raka_16.1 Well >90 NA Nil Excellent
Mang_2.1 Poor <30 Seasonally high water table High Poor
Orono_84.1 Well >90 NA Nil Excellent
Mand_25.1 Well >90 NA Nil Excellent
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Appendix 14: Estimated average annual soil water deficit class, based on a PAW of 160 mm

S-Map code Estimated PAW capacity (mm) Estimated PAW class Average Annual Water Deficit Class based on PAW = 160 mm
Hind_25.1 162 High Low
Ruam_16.1 152 High Low
Waim_40.2 114 Moderate Low
Waim_40.4 144 Moderate to high Low
Opaki_26.1 139 Moderate to high Low
Flax_69.1 215 High Low
Matpi_28.1 114 Moderate Low
Jord_4.1 67 Moderate to Low Moderate
Ruat_7.1 76 Moderate to Low Moderate
Tarar_6.1 107 Moderate Low
Otor_51.1 148 Moderate to high Low
Ashb_37.1 13.2 Very Low High
Rang_43.1 9 Very Low High
Upok_1.1 179 High Low
Popor_5.1 168 High Low
Ruat_4.1 134 Moderate to High Low
Kaip_6.1 200 High Low
Utah_21.1 200 High Low
Ruat_5.1 124 Moderate to High Low
Orono_83.1 116 Moderate Low
Mand_25.1 125 Moderate to High Low
Will_6.1 118 Moderate Low
Tekk_6.1 48 Low Moderate
Okawa_1.1 63 Moderate to Low Moderate
Pare_6.1 86 Moderate to Low Moderate
Mangt_3.1 84 Moderate to Low Moderate
Bushg_14.1 89 Moderate to Low Moderate
Ashb_38.1 21 Very Low High
Rang_35.2 22 Very Low High
Raka_16.1 115 Moderate Low
Mang_2.1 93 Moderate Low
Orono_84.1 95 Moderate Low
Mand_25.1 97 Moderate Very low
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Appendix 15: Versatility of the land in the Ruataniwha Plains for orchard crop production, including the risk of leaching losses 
S-Map family 
and sibling code 

Profile Aeration 
Capacity 

Risk of 
waterlogging 
(high rainfall 
intensity) 

Average Annual Water 
Deficit Class Based On 
PAW = 160 mm (mm) 

Max slope Management 
Constraints 
From Stoniness 

Trafficability Erosion (no 
irrigation) 

Erosion 
(irrigated) 

Estimated maximum 
potential leaching losses 

Versatility 
(non 
irrigated) 

Versatility 
(irrigated) 

Hind_25.1 Limited Very low Low 3 Minimal Moderate Moderate Moderate Minimal 3aw 3aw 
Hind_26.1 Limited Very low Low 3 Minimal Moderate Moderate Moderate Minimal 3aw 3aw 
Ruam_14.1 Limited No value Low 3 Minimal Moderate Slight Slight Minimal 4a 4a 
Waim_40.2 Excellent Moderate Low 3 Minimal Slight Slight Slight Minimal 3w 3w 
Waim_40.4 Excellent Moderate Low 3 Minimal Slight Slight Slight Minimal 3w 3w 
Opaki_26.1 Poor Moderate Low 3 Minimal Severe Slight Slight Minimal 4a 4a 
Flax_69.1 Poor Moderate Low 3 Minimal Severe Slight Slight Minimal 4a 4a 
Matpi_28.1 Poor Moderate Low 3 Minimal Severe Slight Slight Minimal 4a 4a 
Jord_4.1 Poor No value Moderate 3 Minimal Severe Slight Slight Moderate 4a 4a 
Ruat_7.1 Poor No value Moderate 3 Minimal Severe Slight Slight Moderate 4a 4a 
Tarar_6.1 Excellent Moderate Low 3 Minimal Minimal Severe Moderate Minimal 3w 3we 
Otor_51.1 Excellent Moderate Low 3 Minimal Minimal Very severe Moderate Minimal 3w 3we 
Ashb_37.1 Limited Very low High 3 Severe Moderate Severe Severe Severe 4dsl 5e 
Rang_43.1 Excellent Very low High 3 Severe Slight Severe Severe Severe 4dsl 5e 
Upok_1.1 Limited No value Low 3 Minimal Moderate Slight Slight Minimal 4a 4a 
Popor_5.1 Limited No value Low 3 Minimal Moderate Severe Severe Minimal 4a 5e 
Ruat_4.1 Poor No value Low 3 Minimal Severe Slight Slight Minimal 4a 4a 
Kaip_6.1 Very poor No value Low 3 Minimal Very severe Slight Slight Minimal 5a 5a 
Utah_21 Very poor No value Low 3 Minimal Very severe Slight Slight Minimal 5a 5a 
Ruat_5.1 Poor No value Low 3 Minimal Severe Moderate Moderate Minimal 5a 5a 
Orono_83.1 Excellent No value Low 3 Minimal Minimal Moderate Moderate Minimal 3e 3e 
Mair_25.1 Poor No value Low 3 Minimal Severe Severe Severe Minimal 4a 5e 
Mair_27.1 Limited No value Low 3 Minimal Moderate Severe Severe Minimal 4a 5e 
Will_6.1 Poor Moderate Low 3 Moderate Severe Slight Slight Minimal 4a 4a 
Tekk_6.1 Poor Moderate Moderate 3 Moderate Severe Slight Slight Moderate 4a 4a 
Okawa_1.1 Poor No value Moderate 3 Minimal Severe Slight Slight Slight 4a 4a 
Pare_6.1 Limited Very low Moderate 3 Minimal Moderate Moderate Moderate Moderate 3adl 3ale 
Mangt_3.1 Poor No value Moderate 3 Minimal Severe Slight Slight Moderate 4a 4a 
Bushg_14.1 Excellent Moderate Moderate 3 Minimal Minimal Severe Moderate Minimal 3wd 3we 
Ashb_38.1 Limited Very low High 3 Minimal Moderate Severe Severe Very severe 5dl 5le 
Raka_16.1 Excellent Moderate Low 3 Minimal Slight Slight Slight Minimal 3w 3w 
Mang_2.1 Poor No value Low 3 Minimal Severe Slight Slight Minimal 4a 4a 
Orono_84.1 Excellent Moderate Low 3 Minimal Minimal Severe Moderate Minimal 3w 3we 
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Appendix 18: Soil categories, recommended irrigation regimes and pond storage requirements for FDE 

management 
S-Map 
family and 
sibling code 

Slope Bar and 
channel 
mictopography 
or in channels 

Permeability Natural 
drainage 

Ease of 
drainage 
(Webb 
and 
Wilson, 
1994) 

Likelihood 
of 
drainage 

Topsoil 
stoniness 

FDE 
design 
standards 
(2011) soil 
category 

Application 
depth of 
FDE to land 
(mm) 

Pond storage 
requirement 

Hind_25.1 <7° Yes Rapid Imperfectly 
drained 

Very good Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Hind_26.1 <7° Yes Rapid Imperfectly 
drained 

Very good Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Ruam_16.1 <7° Yes Moderate Moderately 
well 
drained 

Moderate Unlikely Stoneless C Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Ruam_14.1 <7° Yes Moderate 
over rapid 

Imperfectly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Waim_40.2 <7° Yes Moderate Well 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Waim_40.4 <7° Yes Moderate Well 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Opaki_26.1 <7° Yes Moderate Poorly 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Flax_69.1 <7° Yes Moderate Poorly 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Matpi_28.1 <7° Yes Moderate Poorly 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Jord_4.1 <7° Yes Moderate 
over slow 

Poorly 
drained 

Poor Unlikely Slightly 
stony 

B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Ruat_7.1 <7° Yes Moderate 
over slow 

Poorly 
drained 

Poor Unlikely Slightly 
stony 

B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Tarar_6.1 <7° No Moderate 
over rapid 

Well 
drained 

Moderate Likely Slightly 
stony 

A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Otor_51.1 <7° No Moderate Well 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Ashb_37.1 <7° Yes Rapid Imperfectly 
drained 

Very good Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Rang_43.1 <7° Yes Rapid Well 
drained 

Very good Unlikely Stoneless C Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Upok_1.1 <7° Yes Moderate 
over slow 

Imperfectly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Popor_3.1 <7° Yes Moderate 
over slow 

Imperfectly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Ruat_4.1 <7° Yes Moderate 
over slow 

Poorly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 
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Kaip_6.1 <7° Yes Slow Imperfectly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Utuh_21 <7° Yes Moderate 
over slow 

Very 
poorly 
drained 

Poor Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Ruat_5.1 <7° Yes Moderate 
over slow 

Poorly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Orono_83.1 <7° Yes Moderate Well 
drained 

Poor Unlikely Slightly 
stony 

C Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Mair_25.1 <7° Yes Slow Well 
drained 

Poor Unlikely Slightly 
stony 

B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Mair_27.1 <7° Yes Moderate 
over slow 

Poorly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Will_6.1 <7° Yes Moderate Poorly 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Tekk_6.1 <7° Yes Moderate Poorly 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Okawa_1.1 <7° Yes Rapid Poorly 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Pare_6.1 <7° Yes Rapid Imperfectly 
drained 

Very good Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Mangt_3.1 <7° Yes Rapid Imperfectly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Ruat_8.1 <7° No Moderate 
over rapid 

Well 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Ashb_38.1 <7° Yes Rapid Imperfectly 
drained 

Very good Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Rang_35.2 <7° Yes Rapid Imperfectly 
drained 

Very good Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Raka_16.1 <7° Yes Moderate Well 
drained 

Moderate Likely Slightly 
stony 

A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Mang_2.1 <7° Yes Moderate 
over slow 

Poorly 
drained 

Poor Unlikely Stoneless B Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Orono_84.1 <7° Yes Moderate 
over rapid 

Poorly 
drained 

Moderate Likely Slightly 
stony 

A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Mand_22.1 <7° Yes Moderate Well 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 

Mand_25.1 <7° Yes Moderate Well 
drained 

Moderate Likely Stoneless A Less than 
soil water 
deficit 

Apply FDE 
only when 
soil water 
deficit exists 
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Appendix 21: Soils and landforms at samples sites in the Ruataniwha Plains

Sample number NZTM easting NZTM northing LUC suite Landform S-Map code
001 1888204.985 5568326.819 Suite 1 LT 1 Matpi_28.1
002 1888252.73 5568309.332 Suite 1 LT 1 Matpi 28.1
003 1888299.817 5568292.537 Suite 1 LT 1 Matpi 28.1
004 1888319.578 5568340.042 Suite 1 LT 2 Waim_40.2
005 1888268.641 5568354.537 Suite 1 LT 2 Waim 40.2
006 1888223.888 5568367.463 Suite 1 LT 2 Opaki 26.1
007 1888241.05 5568411.841 Suite 1 LT 2 Waim_40.2
008 1888293.634 5568400.175 Suite 1 LT 2 Waim 40.2
009 1888338.738 5568387.458 Suite 1 LT 2 Waim 40.5
010 1888451.763 5568307.455 Suite 1 LT 2 Waim_40.5
011 1888285.691 5568556.133 Suite 1 LT 2 Raka 16.1
012 1888459.459 5568555.436 Suite 1 LT 2 Raka 16.1
013 1888404.793 5568852.813 Suite 1 LT 2 Raka_16.1
015 1888304.067 5568846.848 Suite 1 LT 2 Raka 16.1
016 1887982.946 5568437.074 Suite 1 LT 1 Matpi 28.1
017 1888065.397 5568730.699 Suite 1 LT 1 Ashb_37.1
018 1888041.219 5568968.546 Suite 1 LT 2 Waim 40.2
019 1888346.876 5567745.064 Suite 4 TkM Tarar 6.1
020 1888255.638 5567788.217 Suite 4 TkM Tarar_6.1
021 1888302.05 5567764.998 Suite 4 TkM Tarar 6.1
022 1888324.232 5567810.965 Suite 4 TkM Tarar 6.1
023 1888376.378 5567796.869 Suite 4 TkM Tarar_6.1
024 1888277.471 5567831.751 Suite 4 TkM Tarar 6.1
025 1888344.076 5567856.132 Suite 4 TkM Tarar_6.1
026 1888393.647 5567841.799 Suite 4 TkM Tarar_6.1
027 1888296.25 5567871.399 Suite 4 TkM Tarar 6.1
030 1888421.937 5567983.375 Suite 4 TkM Tarar_6.1
032 1888108.344 5567819.038 Suite 4 TkM Tarar_6.1
034 1888182.535 5568057.161 Suite 4 TkM Tarar 6.1
035 1888255.804 5568295.651 Suite 4 TkM Tarar_6.1
036 1888255.049 5568278.002 Suite 4 TkM Tarar_6.1
037 1888483.098 5568206.868 Suite 4 TkM Tarar_6.1
038 1888593.263 5567675.343 Suite 4 TkM Tarar_6.1
040 1888740.337 5568152.298 Suite 4 TkM Tarar_6.1
041 1888664.091 5567905.585 Suite 4 TkM Tarar_6.1
042 1889002.12 5566813.586 Suite 1 LT 2 Waim_40.5
043 1889076.514 5567051.917 Suite 3 TT Mair_25.1
044 1889149.793 5567290.067 Suite 3 TkL Ruat_8.1
045 1889247.576 5566868.625 Suite 1 LT 2 Raka_16.1
046 1889490.924 5566924.293 Suite 1 LT 1 Matpi_28.1
047 1889321.726 5567107.075 Suite 3 TT Mair_25.1
048 1889395.013 5567345.223 Suite 4 TkL Ruat_7.1
049 1889566.119 5567163.035 Suite 4 TkL Ruat_7.1
051 1889650.763 5567422.986 Suite 3 TT Mair_25.1
052 1889003.336 5566865.797 Suite 1 LT 2 Waim_40.5
053 1889002.174 5566916.208 Suite 1 LT 2 Raka_16.1
054 1889051.759 5566922.661 Suite 1 LT 2 Flax_69.1
055 1889100.47 5566928.591 Suite 1 LT 2 Raka_16.1
056 1889102.262 5566879.046 Suite 1 LT 2 Flax_69.1
057 1889107.031 5566829.054 Suite 1 LT 2 Flax_69.1
058 1889053.437 5566822.865 Suite 1 LT 2 Raka_16.1
059 1889052.036 5566873.729 Suite 1 LT 2 Flax_69.1
060 1885417.916 5567380.738 Suite 4 TkL Ruat_8.1
065 1885467.47 5567372.867 Suite 4 TkL Ruat_8.1
067 1885517.716 5567365.09 Suite 4 TkL Ruat_8.1
068 1885665.439 5567341.303 Suite 4 TkL Ruat_8.1
070 1885419.203 5567431.05 Suite 4 TkL Ruat_7.1
071 1885421.062 5567480.566 Suite 3 TT Mair_25.1
072 1885469.338 5567422.607 Suite 4 TkL Ruat_8.1
073 1885471.218 5567472.681 Suite 4 TkL Ruat_7.1
074 1885519.584 5567414.83 Suite 4 TkL Ruat_7.1
075 1885521.473 5567465.119 Suite 3 TT Mair_25.1
076 1885760.303 5567571.887 Suite 4 TkL Ruat_8.1
077 1885854.348 5567803.275 Suite 4 TkL Ruat_8.1
079 1886011.361 5567562.446 Suite 1 LT 2 Flax_69.1
081 1885510.189 5567581.284 Suite 4 TkL Ruat_7.1
082 1885519.557 5567830.756 Suite 4 TkL Ruat_7.1
083 1886001.984 5567313.198 Suite 1 LT 1 Ashb_37.1
084 1886105.407 5567793.832 Suite 4 TkL Ruat_7.1
085 1883641.24 5566577.821 Suite 4 TkM Tarar_6.1
086 1883684.726 5566565.528 Suite 4 TkM Tarar_6.1
087 1883736.122 5566552.045 Suite 4 TkM Tarar_6.1
088 1883724.581 5566510.895 Suite 4 TkM Tarar_6.1
089 1883677.646 5566513.318 Suite 4 TkM Tarar_6.1
090 1883631.242 5566525.384 Suite 4 TkM Tarar_6.1
091 1883621.462 5566476.276 Suite 4 TkM Tarar_6.1
092 1883667.976 5566464.867 Suite 4 TkM Tarar 6.1
093 1883717.638 5566453.126 Suite 4 TkM Tarar_6.1
094 1898137.506 5572570.195 Suite 1 LT 3 Rang_43.1
095 1898091.18 5572563.117 Suite 1 LT 3 Rang 43.1
096 1898042.274 5572551.349 Suite 1 LT 3 Rang_43.1
097 1898027.457 5572590.291 Suite 1 LT 3 Rang_43.1
098 1898075.226 5572610.222 Suite 1 LT 3 Rang 43.1
099 1898121.661 5572626.858 Suite 1 LT 3 Rang_43.1
100 1898150.133 5572521.104 Suite 1 LT 3 Rang_43.1
101 1898105.677 5572511.4 Suite 1 LT 3 Rang 43.1
102 1898056.941 5572503.959 Suite 1 LT 3 Rang_43.1
104 1898192.01 5572294.407 Suite 1 LT 3 Rang_43.1
105 1898002.181 5572747.181 Suite 1 LT 3 Rang 43.1
107 1898300.622 5572558.914 Suite 1 LT 2 Opaki_26.1
108 1898437.473 5572349.175 Suite 1 LT 2 Opaki_26.1
110 1898533.243 5571934.439 Suite 1 LT 3 Rang 43.1
111 1898598.003 5572162.858 Suite 1 LT 2 Opaki_26.1
113 1898158.273 5573050.413 Suite 1 LT 3 Rang_43.1
114 1898135.147 5572826.932 Suite 1 LT 3 Rang 43.1
115 1898114.758 5572231.938 Suite 1 LT 2 Opaki_26.1
116 1898155.049 5572259.719 Suite 1 LT 2 Waim_40.5
117 1898130.258 5572302.053 Suite 1 LT 2 Waim 40.5
118 1898085.178 5572278.579 Suite 1 LT 2 Opaki_26.1
119 1898064.029 5572321.991 Suite 1 LT 2 Opaki_26.1
120 1898106.09 5572347.141 Suite 1 LT 2 Opaki 26.1
121 1898149.295 5572372.916 Suite 1 LT 2 Waim_40.5
123 1898192.756 5572287.266 Suite 1 LT 2 Waim_40.5
124 1898049.114 5572492.037 Suite 1 LT 2 Opaki 26.1
125 1897906.6 5572697.432 Suite 1 LT 2 Waim_40.5
126 1897985.964 5572144.689 Suite 1 LT 2 Flax_69.1
127 1897781.162 5572002.366 Suite 4 TkL Ruat 7.1
128 1897842.509 5572349.897 Suite 1 LT 2 Flax_69.1
129 1897699.888 5572554.63 Suite 1 LT 2 Flax_69.1
130 1897637.705 5572207.569 Suite 1 LT 2 Waim 40.5
131 1897495.095 5572412.624 Suite 1 LT 2 Waim_40.5
132 1897751.399 5571959.053 Suite 4 TkL Ruat_7.1
133 1897739.349 5572025.13 Suite 4 TkL Ruat 7.1
134 1897695.054 5572050.098 Suite 4 TkL Ruat_7.1
135 1897716.444 5571979.984 Suite 4 TkL Ruat_7.1
136 1897675.726 5572006.712 Suite 4 TkL Ruat 7.1
137 1897653.377 5571964.778 Suite 4 TkL Ruat_7.1
138 1897687.357 5571936.533 Suite 4 TkL Ruat_7.1
139 1897720.095 5571913.574 Suite 4 TkL Ruat 7.1
141 1897796.949 5571102.059 Suite 1 LT 1 Matpi_28.1
142 1897904.432 5571327.366 Suite 4 TkL Ruat_7.1
144 1897571.09 5571208.308 Suite 1 LT 2 Kaip 6.1
145 1897344.79 5571314.446 Suite 1 LT 2 Flax_69.1
146 1897678.145 5571433.849 Suite 4 TkL Ruat_7.1
147 1897785.223 5571659.835 Suite 1 LT 2 Kaip 6.1
148 1897451.848 5571540.213 Suite 1 LT 2 Flax_69.1
149 1897558.911 5571765.979 Suite 1 LT 2 Kaip_6.1
150 1897826.318 5571141.948 Suite 1 LT 2 Flax 69.1
151 1897852.772 5571190.394 Suite 1 LT 2 Flax_69.1
152 1897901.345 5571174.261 Suite 1 LT 2 Flax_69.1
153 1897801.311 5571191.736 Suite 1 LT 2 Flax 69.1
154 1897783.909 5571153.729 Suite 1 LT 2 Flax_69.1
155 1897768.07 5571109.862 Suite 1 LT 2 Flax_69.1
156 1897846.471 5571081.779 Suite 1 LT 2 Flax 69.1
157 1897865.012 5571124.868 Suite 1 LT 1 Matpi_28.1
158 1898081.404 5571548.274 Suite 4 TkL Ruat_7.1
159 1894413.021 5573850.133 Suite 1 LT 3 Rang 43.1
160 1894369.378 5573914.756 Suite 1 LT 3 Rang_43.1
161 1894286.889 5573921.942 Suite 1 LT 2 Waim_40.2
162 1894331.723 5573879.407 Suite 1 LT 3 Rang 43.1
163 1894371.397 5573834.061 Suite 1 LT 3 Rang 43.1
164 1894316.528 5573814.056 Suite 1 LT 2 Waim_40.2
165 1894296.035 5573848.539 Suite 1 LT 2 Waim 40.2
166 1894270.064 5573887.567 Suite 1 LT 2 Waim_40.2
167 1894248.048 5573822.815 Suite 1 LT 3 Rang_43.1
168 1894274.935 5573789.866 Suite 1 LT 2 Waim 40.2
169 1894887.766 5572599.553 Suite 1 LT 1 Tekk_6.1
170 1894853.574 5572562.964 Suite 1 LT 1 Tekk_6.1
171 1894890.424 5572524.62 Suite 1 LT 1 Ashb 37.1
172 1894923.985 5572489.517 Suite 1 LT 1 Ashb_37.1
173 1894957.819 5572527.789 Suite 1 LT 1 Tekk_6.1
174 1894989.01 5572557.607 Suite 1 LT 1 Tekk 6.1
175 1894952.432 5572596.49 Suite 1 LT 1 Ashb_37.1
176 1894923.31 5572628.979 Suite 1 LT 1 Ashb_37.1
177 1894925.111 5572562.859 Suite 1 LT 1 Tekk 6.1
178 1894855.336 5572486.947 Suite 1 LT 1 Tekk_6.1
179 1894902.184 5572450.221 Suite 1 LT 1 Tekk_6.1
180 1894828.646 5572531.458 Suite 1 LT 1 Tekk 6.1
181 1899108.731 5583184.571 Suite 3 TT Orono_83.1
182 1899359.748 5583175.291 Suite 2 RT Popor_5.1
183 1899610.391 5583165.243 Suite 2 RT Ruat 4.1
184 1899183.745 5583423.811 Suite 2 RT Ruat_4.1
185 1899257.417 5583661.333 Suite 1 LT 2 Opaki_26.1
186 1899435.351 5583413.956 Suite 2 RT Ruat 4.1
187 1899509.044 5583651.811 Suite 2 RT Ruat_4.1
188 1899685.037 5583403.282 Suite 2 RT Ruat_4.1
189 1899758.759 5583641.684 Suite 2 RT Ruat 4.1
190 1899119.157 5583227.744 Suite 2 RT Popor_5.1
191 1899130.455 5583282.012 Suite 2 RT Popor_5.1
192 1899180.54 5583274.049 Suite 2 RT Popor 5.1
193 1899168.874 5583221.24 Suite 3 TT Orono_83.1
194 1899155.463 5583174.288 Suite 3 TT Orono_83.1
195 1899204.401 5583169.921 Suite 2 RT Popor 5.1
196 1899218.262 5583219.53 Suite 2 RT Popor_5.1
197 1899231.994 5583268.25 Suite 2 RT Popor_5.1
198 1899860.103 5583155.447 Suite 1 LT 3 Rang 43.1
199 1899935.731 5583394.332 Suite 1 LT 2 Waim_40.5
200 1900009.426 5583631.847 Suite 2 RT Ruat_4.1
202 1899834.291 5583880.35 Suite 1 LT 2 Waim 40.5
203 1899583.625 5583890.404 Suite 1 LT 2 Flax_69.1
204 1899332.08 5583900.036 Suite 2 RT Ruat_4.1
207 1899121.525 5583938.524 Suite 3 TT Mair 25.1
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