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A B S T R A C T

This thesis describes how to compute the fast Fourier transform (FFT) of

a power-of-two length signal on single-instruction, multiple-data (SIMD)

microprocessors faster than or very close to the speed of state of the

art libraries such as FFTW (“Fastest Fourier Transform in the West”),

SPIRAL and Intel Integrated Performance Primitives (IPP).

The conjugate-pair algorithm has advantages in terms of memory

bandwidth, and three implementations of this algorithm, which incor-

porate latency and spatial locality optimizations, are automatically vec-

torized at the algorithm level of abstraction. Performance results on 2-

way, 4-way and 8-way SIMD machines show that the performance scales

much better than FFTW or SPIRAL.

The implementations presented in this thesis are compiled into a high-

performance FFT library called SFFT (“Streaming Fast Fourier Trans-

form”), and benchmarked against FFTW, SPIRAL, Intel IPP and Apple

Accelerate on sixteen x86 machines and two ARM NEON machines, and

shown to be, in many cases, faster than these state of the art libraries, but

without having to perform extensive machine specific calibration, thus

demonstrating that there are good heuristics for predicting the perfor-

mance of the FFT on SIMD microprocessors (i.e., the need for empirical

optimization may be overstated).
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Part I

S TAT E O F T H E A RT





1
I N T R O D U C T I O N

“...the manner in which the author arrives at these equations
is not exempt of difficulties and...his analysis to integrate
them still leaves something to be desired on the score of gen-
erality and even rigour.”

— Peer review committee on Fourier’s 1807 paper [12]

In 1990, it was estimated that Cray Research’s installed base of approx-

imately 200 machines spent 40% of all central processing unit (CPU)

cycles computing the fast Fourier transform (FFT) [45]. With each ma-

chine worth about USD$25 million, the performance of the FFT was of

prime importance.

Today, use of the FFT is even more pervasive, and it is counted among

the 10 algorithms that have had the greatest influence on the develop-

ment and practice of science and engineering in the 20
th century [20].

Huge numbers of mobile smartphones, tablets and PCs [58, 26], most of

which are equipped with single instruction, multiple data (SIMD) [24,

27] microprocessors, compute the FFT on a large scale for a plethora of

sound, video and image processing applications. In the space of a few

years, mobile applications have become a part of many people’s every-

day lives [36].

This thesis shows that the key to optimizing the performance of the

split-radix FFT algorithms on SIMD microprocessors is latency and spa-

tial locality optimizations, and in some cases, a variant of the split-radix

3
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FFT called the conjugate-pair algorithm [37, 48, 53, 68]. It is also shown

that extensive machine specific calibration may be superfluous.

1.1 hypotheses

FFTW [34, 35, 46], SPIRAL [32, 66, 67] and UHFFT [4, 6, 3, 61, 60] are

state of the art FFT libraries that employ automatic empirical optimiza-

tion. SPIRAL automatically performs machine-specific optimizations at

compile time, and FFTW and UHFFT automatically adapt to a machine

at run-time. Aside from the use of automatic optimization, a common de-

nominator among these libraries is the use of large straight line blocks

of code and optimized memory locality.

The hypotheses outlined below test whether good heuristics and model-

based optimization can be used in the place of automatic empirical opti-

mization.

Hypothesis 1: Accessing memory in sequential “streams” is critical for best

performance

Large FFTs exhibit poor temporal locality, and when computing these

transforms on microprocessor based systems that feature a cache, best

performance is typically achieved when “streaming” sequential data

through the CPU. Hypothesis 1 is tested in Chapter 3 with replicated

coefficient lookup tables that trade-off increased memory size for bet-

ter spatial locality, and in Chapter 5 by topologically sorting a directed

acyclic graph (DAG) of sub-transforms to again improve spatial locality.
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Hypothesis 2: The conjugate-pair algorithm is faster than the ordinary split-

radix algorithm

Hypothesis 2 is based on the idea that memory bandwidth is a bottle-

neck, and on the fact that the conjugate-pair algorithm requires only

half the number of twiddle factor loads. This hypothesis is tested in Sec-

tion 7.6, where a highly optimized implementation of the conjugate-pair

algorithm is benchmarked against an equally highly optimized imple-

mentation of the ordinary split-radix algorithm.

Hypothesis 3: The performance of an FFT can be predicted based on characteris-

tics of the underlying machine and the compiler

Exploratory experiments suggest that good results can be obtained with-

out empirical techniques, and that certain parameters can be predicted

based on the characteristics of the underlying machine and the compiler

used. Hypothesis 3 is tested in Chapter 7 by building a model that pre-

dicts performance, and by benchmarking FFTW against an implementa-

tion that does not require extensive calibration, on 18 different machines.

1.2 scope

In investigating the hypotheses, the scope of this work has been limited

in several ways:

1. It is limited to single-threaded complex 1D FFTs, because multi-

dimensional, multi-threaded or multi-processor FFTs (or any com-

bination thereof) are ultimately decomposed into 1D components
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running on a single core, and all other things being equal, it is the

performance of these 1D components running on a single micro-

processor core that determines the overall performance of a given

multi-threaded implementation;

2. It is limited to transforms that operate on vectors of length 2m

where m ∈ N0, because these are the easiest to compute on ma-

chines, and consequently the most often used by applications. This

excludes the prime-factor algorithm [64, 74], and the Radar [71]

and Bluestein [11, 64, 70] algorithms for prime sizes;

3. It is limited to the split-radix [22, 23, 56, 75, 78] and conjugate-

pair [37, 48, 53, 68] algorithms. The Winograd algorithm [21, 23, 40,

76] is excluded because of its low performance on systems where

multiplication costs about the same as addition;

4. It is limited to out-of-place transforms, because they are generally

faster than in-place transforms, except at the boundaries of the

cache [5];

5. The benchmark experiments are limited to the Intel x86 and ARM

machines, because it is estimated that 92% of the microprocessors

in the rapidly expanding mobile market are ARM devices [26],

while Intel’s share of the worldwide PC and mobile PC micro-

processors markets is estimated to be 79.3% and 84.4%, respec-

tively [58].

1.3 contributions

The contributions of this work are summarized as follows:
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1. Three methods of computing the conjugate-pair algorithm on SIMD

microprocessors are described in Chapter 5;

2. The source code for the high-performance SIMD FFT library devel-

oped in this thesis is publicly available under a permissive open

source licence at https://github.com/anthonix/sfft.

1.4 organization

This work is divided into two parts. The first part, Chapters 1 – 4, encom-

passes the relevant background, while the second part, Chapters 5 – 8,

is concerned with contributions that challenge the state of the art.

A brief overview of the contents of each chapter:

2. Algorithms provides an overview of FFT algorithms from the math-

ematical perspective;

3. Implementation details complements the mathematical perspective

of the previous chapter with a more focused view of the low level

details that are relevant to efficient implementation on SIMD mi-

croprocessors;

4. Existing libraries reviews existing state of the art libraries, with ref-

erence to algorithms and implementation details of the previous

chapters;

5. A high-performance FFT library describes SFFT, a library for SIMD

microprocessors that is, in many cases, faster than the state of the

art FFT libraries reviewed in Chapter 4;

https://github.com/anthonix/sfft
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6. Benchmark methods describes the benchmarking methods used to

evaluate performance and accuracy of various FFT implementa-

tions throughout this work;

7. Results and discussion presents the results of benchmarks on 18 dif-

ferent machines, as well as the results of model-based optimization

experiments, with reference to earlier chapters and other related

work;

8. Conclusions and future work concludes the work with a review of

the hypotheses, a summary of the contributions, and some idea for

directions that future work might take.



2
A L G O R I T H M S

“...we want good algorithms in some loosely defined aesthetic
sense. One criterion ... is the length of time taken to perform
the algorithm ... Other criteria are adaptability of the algo-
rithm to computers, its simplicity and elegance, etc”

— Donald E. Knuth [50]

Efficient computation of the FFT requires an understanding of the com-

putation at every level of abstraction, from the high-level algorithmic

view down to the low-level details of the target machine (or failing

that, a lot of time to code all known FFT algorithms and exhaustively

search the configuration space). This chapter provides an overview of

FFTs from the mathematical perspective.

Fast Fourier transform algorithms are derived from the discrete Fourier

transform (DFT), which is formally defined as [13]:

Xk =

N−1∑
n=0

ωnkN xn (1)

where k = 0, . . . ,N− 1 and ωN is the primitive root-of-unity, defined as

e−2π
√
−1/N (often referred to as a “twiddle factor” in the context of fast

Fourier transforms). Xk and xn are sequences of complex numbers, Xk

being the outputs in the frequency domain, and xn being the inputs in

the time or space domain.

A source of mild confusion in the FFT literature is the sign of the

twiddle factor [57]; the definition in Equation 1 is considered to be the

9
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engineers view of the discrete Fourier transform, where the goal is to

compute the coefficients of a discrete Fourier series. Mathematicians, on

the other hand, typically view the DFT as a method of evaluating a

polynomial at the powers of a primitive root of unity, and thus consider

Equation 1 to be an inverse DFT [57]. Cooley and Tukey [16], Fiduc-

cia [25] and Bernstein [9] are notable examples of those who adopt the

mathematicians convention. This work adopts the engineer’s view of a

DFT, and thus the inverse discrete Fourier transform (IDFT) is defined

by the following equation:

xn =
1

N

N−1∑
k=0

ω−nk
N Xk (2)

where n = 0, . . . ,N− 1. It should be noted that in some implementations,

such as FFTW and the implementation presented in this thesis, the IDFT

is actually non-normalised for reasons of efficiency; i.e., ifft(fft(x)) =

Nx, thus avoiding division of each of the samples in time by N [34].

2.1 cooley-tukey

In 1965 James Cooley and John Tukey published a description of an eco-

nomical algorithm for computing the DFT that became known as the

Cooley-Tukey FFT, or simply the FFT due to its overwhelming popu-

larity [16]. A later investigation by Heideman, Johnson and Burrus [41]

revealed that the algorithm had actually been discovered several times in

various forms prior to Cooley and Tukey, most notably by Gauss some-

time around 1805 [14].

The algorithm recursively divides a transform of size N = N1N2 into

smaller DFTs of size N1 and N2 (where N is highly composite), reduc-
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ing the time complexity from O(n2) to O(n logn) by exploiting common

factors.

As the algorithm recursively divides a DFT, eitherN1 orN2 is typically

a small factor, and is known as the radix. Small N1 characterizes the

algorithm as being decimation in time (DIT), otherwise the algorithm is

decimation in frequency (DIF). If the radix changes between stages, then

the algorithm is referred to as ‘mixed-radix’.

For example, a radix-2 decimation-in-time algorithm decomposes Equa-

tion 1 into a sum over the even indices (n = 2n2) and a sum over the

odd indices (n = 2n2 + 1):

Xk =

N/2−1∑
n2=0

ω
(2n2)k
N x2n2 +

N/2−1∑
n2=0

ω
(2n2+1)k
N x2n2+1 (3)

The trigonometric coefficient in the second sum can be expanded to

ω
2n2k
N ωkN, and the term now common to both sums is simplified using

the identity ωmnkN = ωnkN/m. Because one of the trigonometric coefficients

in the second sum is constant with respect to the index variable, it may

be factored out to obtain:

Xk =

N/2−1∑
n2=0

ω
n2k
N/2

x2n2 +ω
k
N

N/2−1∑
n2=0

ω
n2k
N/2

x2n2+1 (4)

where the two sums are now DFTs of the even indexed terms (x2n2) and

the odd indexed terms (x2n2+1), which are combined with twiddle factor

ωkN.

In order to compute the transform more efficiently, the Cooley-Tukey

algorithm divides Xk into two halves, and exploits the periodicity of

sub-transforms and symmetries in the trigonometric coefficients. Firstly,
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Equation 4 is rewritten as two halves with Ek substituted for the even

sub-transform, and Ok substituted for the odd sub-transform:

Xk = Ek +ω
k
NOk

Xk+N/2 = Ek+N/2 +ω
k+N/2
N Ok+N/2

(5)

where k = 0, . . . ,N/2 − 1. Because of the periodicity property of the

outputs of a DFT, Ek = Ek+N/2 and Ok = Ok+N/2, Equation 5 simplifies

thus:

Xk = Ek +ω
k
NOk

Xk+N/2 = Ek +ω
k+N/2
N Ok

(6)

And finally, by exploiting symmetries in the complex exponential func-

tion, namely that ωk+N/2N = −ωkN, the radix-2 DIT FFT can be expressed

as:

Xk = Ek +ω
k
NOk

Xk+N/2 = Ek −ω
k
NOk

(7)

which makes it clear that each pair of outputs share common computa-

tion, approximately halving the number of arithmetic operations when

compared to the DFT. But since the even and odd terms in Equation 7

are themselves DFTs that can be computed with the FFT, the savings

compound with each stage of recursion. The total number of real arith-

metic operations required to compute the radix-2 FFT can be expressed

with the following recurrence relation:

T(n) =

 2T(n/2) + 5n− 6 for n > 2

0 for n = 1

(8)
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which is in Θ(n logn).

2.2 split-radix

In 1968 a derivitive of the Cooley-Tukey algorithm broke the record for

the lowest number of arithmetic operations for computing the DFT [23,

56, 75]. The algorithm was initially discovered by Yavne [78], but was

not widely cited until 1984 when it was rediscovered by Duhamel and

Hollman [22] and became known as the split-radix algorithm.

The split-radix algorithm improves the arithmetic complexity of the

Cooley-Tukey algorithm by further decomposing the odd parts into odd-

odd and odd-even parts, while the even parts are left alone because

they have no multiplicative factor. More formally, Equation 1 can be re-

written as three sums:

Xk =

N/2−1∑
n2=0

ω
2n2k
N x2n2 +

N/4−1∑
n4=0

ω
(4n4+1)k
N x4n4+1

+

N/4−1∑
n4=0

ω
(4n4+3)k
N x4n4+3 (9)

where n = 4n4 = 2n2. As with the Cooley-Tukey radix-2 example in

Section 2.1, the trigonometric coefficients are expanded and simplified,

and the terms constant with respect to the index variables factored out:
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Xk =

N/2−1∑
n2=0

ω
n2k
N/2

x2n2 +ω
k
N

N/4−1∑
n4=0

ω
n4k
N/4

x4n4+1

+ω3kN

N/4−1∑
n4=0

ω
n4k
N/4

x4n4+3 (10)

By substituting the even sum with Uk (where k = 0, . . . ,N/2− 1) and

the odd sums with Zk and Z ′k (where k = 0, . . . ,N/4− 1), Equation 10 is

simplified:

Xk = Uk +ω
k
NZk +ω

3k
N Z

′
k (11)

Computation can be factored out of Equation 11 by again exploiting

periodicity in the sub-transforms and symmetries in the twiddle factors.

Equation 11 is first expressed as an equation of four parts:

Xk = Uk +ω
k
NZk +ω

3k
N Z

′
k

Xk+N/2 = Uk+N/2 +ω
k+N/2
N Zk+N/2 +ω

3(k+N/2)
N Z ′k+N/2

Xk+N/4 = Uk+N/4 +ω
k+N/4
N Zk+N/4 +ω

3(k+N/4)
N Z ′k+N/4

Xk+3N/4 = Uk+3N/4 +ω
k+3N/4
N Zk+3N/4 +ω

3(k+3N/4)
N Z ′k+3N/4

(12)
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where k = 0, . . . ,N/4−1. The periodicity properties of the sub-transforms

can be expressed with the relationships Uk = Uk+N/2, Zk = Zk+N/4 and

Z ′k = Z
′
k+N/4. These are used to simplify Equation 12 thus:

Xk = Uk +ω
k
NZk +ω

3k
N Z

′
k

Xk+N/2 = Uk +ω
k+N/2
N Zk +ω

3(k+N/2)
N Z ′k

Xk+N/4 = Uk+N/4 +ω
k+N/4
N Zk +ω

3(k+N/4)
N Z ′k

Xk+3N/4 = Uk+N/4 +ω
k+3N/4
N Zk +ω

3(k+3N/4)
N Z ′k

(13)

Symmetries in the complex exponential function are again used to

expose common computation among each part of the equation; hence

Xk = Uk + (ωkNZk +ω
3k
N Z

′
k)

Xk+N/2 = Uk − (ωkNZk +ω
3k
N Z

′
k)

Xk+N/4 = Uk+N/4 − i(ω
k
NZk −ω

3k
N Z

′
k)

Xk+3N/4 = Uk+N/4 + i(ω
k
NZk −ω

3k
N Z

′
k)

(14)

which, when recursively applied to the sub-transforms, results in the

following recurrence relation for real arithmetic operations:

T(n) =

 T(n/2) + 2T(n/4) + 6n− 4 for n > 2

0 for n = 1

(15)

The exact solution T(n) = 4n log2 n− 6n+ 8 for n > 2 was the best

arithmetic complexity of all known FFT algorithms for over 30 years,

until Van Buskirk was able to break the record in 2004 [55], as described

in Section 2.3.

Van Buskirk’s arithmetic complexity breakthrough was based on a

variant of the split-radix algorithm known as the “conjugate-pair” al-
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gorithm [48] or the “−1 exponent” split-radix algorithm [9, 57]. In 1989

the conjugate-pair algorithm was published with the claim that it had

broken the record set by Yavne in 1968 for the lowest number of arith-

metic operations for computing the DFT [48]. Unfortunately the reduc-

tion in the number of arithmetic operations was due to an error in the

author’s analysis, and the algorithm was subsequently proven to have

an arithmetic count equal to the original split-radix algorithm [37, 68, 53].

Despite initial claims about the arithmetic savings being discredited,

the conjugate-pair algorithm has been used to reduce twiddle factor

loads in software implementations of the FFT and fast Hartley trans-

form (FHT) [48], and the algorithm was also recently used as the basis

for an algorithm that does reduce the arithmetic operation count, as de-

scribed in Section 2.3.

The difference between the conjugate-pair algorithm and the split-

radix algorithm is in the decomposition of odd elements. In the stan-

dard split-radix algorithm, the odd elements are decomposed into two

parts: x4n4+1 and x4n4+3 (see Equation 10), while in the conjugate-pair

algorithm, the last sub-sequence is cyclically shifted by −4, where nega-

tive indices wrap around (i.e., x−1 = xN−1). The result of this cyclic shift

is that twiddle factors are now conjugate pairs. Formally, the conjugate-

pair algorithm is defined as:

Xk =

N/2−1∑
n2=0

ω
n2k
N/2

x2n2 +ω
k
N

N/4−1∑
n4=0

ω
n4k
N/4

x4n4+1

+ω−k
N

N/4−1∑
n4=0

ω
n4k
N/4

x4n4−1 (16)
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As with the ordinary split-radix algorithm, a DIT decomposition of

the conjugate-pair algorithm can be expressed as a system of equations:

Xk = Uk + (ωkNZk +ω
−k
N Z

′
k)

Xk+N/2 = Uk − (ωkNZk +ω
−k
N Z

′
k)

Xk+N/4 = Uk+N/4 − i(ω
k
NZk −ω

−k
N Z

′
k)

Xk+3N/4 = Uk+N/4 + i(ω
k
NZk −ω

−k
N Z

′
k)

(17)

where k = 0, . . . ,N/4− 1. As can be seen, the trigonometric coefficients

are conjugates – a feature that can be exploited to reduce twiddle factor

loads.

2.3 tangent

In 2004, some thirty years after Yavne set the record for the lowest

arithmetic operation count, Van Buskirk posted software to Usenet that

had asymptotically reduced the arithmetic operation count by about 6%.

Three papers were subsequently published [55, 9, 47] with differing ex-

planations on how to achieve the lowest arithmetic operation count ini-

tially demonstrated by Van Buskirk.

Although all three papers describe algorithms that achieve the lowest

arithmetic operation count in the same way, and thus can be considered

to be different views of the same algorithm, all three papers refer to

the algorithms by different names. Lundy and Van Buskirk [55] refer

to their algorithm as “scaled odd tail FFT”, Bernstein [9] describes an

algorithm named “tangent FFT”, while Johnson and Frigo [47] refer to

the algorithm by various names. Many works have cited Johnson and

Frigo for the algorithm [15]. Of these names, “tangent FFT” is used in
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this work because it is the most descriptive; scaling the twiddle factors

into tangent form was the linchpin of Van Buskirk’s breakthrough in

arithmetic complexity.

Bernstein expresses a DIF decomposition of the tangent FFT in a very

concise but somewhat obscure polynomial form that was first practised

by Fiduccia [25]. In order to be consistent with earlier sections, a DIT de-

composition of the tangent FFT using linear functions will be described

in this section.1 While the polynomial form is more elegant and concise,

expressing the FFT in terms of linear functions has the advantage of

mapping to software or hardware more directly.

The key to the tangent FFT is Van Buskirk’s observation that if the

trigonometric constantωkN = cos θ+ i sin θ is factored as (1+ i tan θ) cos θ

or (cot θ+ i) sin θ, the multiplication by cos θ or sin θ can sometimes be

absorbed elsewhere in the computation, assuming the constants are pre-

computed, and the remaining multiplication by constants of the form

±(1 + i tan θ) or ±(cot θ + i) now only costs four floating point opera-

tions instead of six, assuming the usual scheme of complex multiplica-

tion using four multiply and two add operations.

Firstly, consider the conjugate-pair FFT being recursively scaled by a

wavelet sN,k:

Xk
sN,k

= Uk

(
sN/2,k

sN,k

)
+ωkN

(
sN/4,k

sN,k

)
Zk +ω

−k
N

(
sN/4,k

sN,k

)
Z ′k (18)

for k = 0, . . . ,N/4− 1, and where Uk is evaluated with Xk/sN/2,k, and Zk

and Z ′k are evaluated with Xk/sN/4,k.

1 Although derived differently, the underlying structure presented here is identical to
the network transpose of Bernstein’s tangent FFT. In contrast to Johnson and Frigo’s
algorithm of four sub-transforms, the view presented here uses only one sub-transform
and a scaled split-radix transform.



2.3 tangent 19

The wavelet is crafted such that it is periodic in k (i.e., sN,k = sN,k+N/4)

andωkN(sN/4,k/sN,k) is of the form±(1+ i tan θ) or±(cot θ+ i). Bernstein

defines the wavelet as [9]:

sN,k =
∏
`>0

max
{∣∣∣∣cos

(
4`2πk

N

)∣∣∣∣ , ∣∣∣∣sin
(
4`2πk

N

)∣∣∣∣} (19)

Multiplying Zk and Z ′k by the scaled constants saves a total of four

floating point operations, while scaling Uk costs four operations, result-

ing in no gain or loss. But the cost of scaling the result back to Xk is about

2N real operations. In order to realize a reduction in the number of float-

ing point operations, the split-radix FFT is decomposed further, so that

the extra operations can be absorbed into constants in the sub-transform.

Starting with the unscaled split-radix FFT (see Equation 9), the sum over

the x2n2 terms is itself decomposed with a split-radix decomposition into

x4n4 , x8n8+2 and x8n8+6, resulting in a DFT of five sums:

Xk =

N/4−1∑
n4=0

ω
4n4k
N x4n4

+

N/8−1∑
n8=0

ω
(8n8+2)k
N x8n8+2 +

N/8−1∑
n8=0

ω
(8n8+6)k
N x8n8+6

+

N/4−1∑
n4=0

ω
(4n4+1)k
N x4n4+1 +

N/4−1∑
n4=0

ω
(4n4+3)k
N x4n4+3 (20)
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where n = 4n4 = 8n8. As with earlier decompositions, invariants are

factored out to obtain:

Xk =

N/4−1∑
n4=0

ω
4n4k
N x4n4

+ ω2kN

N/8−1∑
n8=0

ω
n8k
N/8

x8n8+2 +ω
6k
N

N/8−1∑
n8=0

ω
n8k
N/8

x8n8+6

+ ωkN

N/4−1∑
n4=0

ω
n4k
N/4

x4n4+1 +ω
3k
N

N/4−1∑
n4=0

ω
n4k
N/4

x4n4+3 (21)

Following from the conjugate-pair split-radix algorithm, x8n8+6 is shifted

cyclically by −8 and x4n4+3 is shifted cyclically by −4 to obtain:

Xk =

N/4−1∑
n4=0

ω
4n4k
N x4n4

+ ω2kN

N/8−1∑
n8=0

ω
n8k
N/8

x8n8+2 +ω
−2k
N

N/8−1∑
n8=0

ω
n8k
N/8

x8n8−2

+ ωkN

N/4−1∑
n4=0

ω
n4k
N/4

x4n4+1 +ω
−k
N

N/4−1∑
n4=0

ω
n4k
N/4

x4n4−1 (22)

where x−n = xN−n. Note that the sums over x8n8+2 and x8n8−2 are mul-

tiplied by constants that are now conjugate pairs, as are the sums over

x4n4+1 and x4n4−1.

The sum over x4n4 is now substituted with Uk (where k = 0, . . . ,N/4−

1), while the sums over x8n8+2 and x8nn−2 are respectively substituted

with Yk and Y ′k (where k = 0, . . . ,N/8− 1) and the sums over x4n4+1 and
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x4n4−1 respectively substituted with Zk and Z ′k (where k = 0, . . . ,N/4−

1), simplifying Equation 22 thus:

Xk = Uk +ω
2k
N Yk +ω

−2k
N Y ′k +ω

k
NZk +ω

−k
N Z

′
k (23)

As with earlier examples, computation is factored out of Equation 23

by exploiting periodicity in the sub-transforms and symmetries in the

twiddle factors. Equation 23 is first expressed as a parametric equation

of eight parts:

Xk+pN = Uk+pN

+ ω
2(k+pN)
N Yk+pN +ω

−2(k+pN)
N Y ′k+pN

+ ω
k+pN
N Zk+pN +ω

−(k+pN)
N Z ′k+pN

(24)

where k = 0, . . . ,N/8 − 1 and ∀p ∈
{
0, 12 , 14 , 34 , 18 , 38 , 58 , 78

}
. By exploiting

periodicity in the sub-transforms:

Uk = Uk+N/4

Yk = Yk+N/8

Y ′k = Y ′k+N/8

Zk = Zk+N/4

Z ′k = Z ′k+N/4

(25)
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and the following symmetries in the twiddle factors:

ω2k
N = ω

2(k+N/2)
N = −ω

2(k+N/4)
N = −ω

2(k+3N/4)
N

= −iω
2(k+N/8)
N = iω

2(k+3N/8)
N = −iω

2(k+5N/8)
N

= iω
2(k+7N/8)
N

ω−2k
N = ω

−2(k+N/2)
N = −ω

−2(k+N/4)
N = −ω

−2(k+3N/4)
N

= iω
−2(k+N/8)
N = −iω

−2(k+3N/8)
N = iω

−2(k+5N/8)
N

= −iω
−2(k+7N/8)
N

ωk
N = −ω

k+N/2
N = −iω

k+N/4
N = iω

k+3N/4
N

ω−k
N = −ω

−(k+N/2)
N = iω

−(k+N/4)
N = −iω

−(k+3N/4)
N

ω
k+N/8
N = −iω

k+3N/8
N = −ω

k+5N/8
N = iω

k+7N/8
N

ω
−(k+N/8)
N = iω

−(k+3N/8)
N = −ω

−(k+5N/8)
N = −iω

−(k+7N/8)
N

(26)

Equation 24 is rewritten thus:

Xk = Uk + (ω2k
N Yk +ω−2k

N Y ′
k) + (ωk

NZk +ω−k
N Z ′

k)

Xk+N/2 = Uk + (ω2k
N Yk +ω−2k

N Y ′
k) − (ωk

NZk +ω−k
N Z ′

k)

Xk+N/4 = Uk − (ω2k
N Yk +ω−2k

N Y ′
k) − i(ω

k
NZk −ω−k

N Z ′
k)

Xk+3N/4 = Uk − (ω2k
N Yk +ω−2k

N Y ′
k) + i(ω

k
NZk −ω−k

N Z ′
k)

Xk+N/8 = Uk+N/8 − i(ω
2k
N Yk −ω−2k

N Y ′
k)

+(ω
k+N/8
N Zk+N/8 +ω

−(k+N/8)
N Z ′

k+N/8)

Xk+3N/8 = Uk+N/8 + i(ω
2k
N Yk −ω−2k

N Y ′
k)

−i(ω
k+N/8
N Zk+N/8 −ω

−(k+N/8)
N Z ′

k+N/8)

Xk+5N/8 = Uk+N/8 − i(ω
2k
N Yk −ω−2k

N Y ′
k)

−(ω
k+N/8
N Zk+N/8 +ω

−(k+N/8)
N Z ′

k+N/8)

Xk+7N/8 = Uk+N/8 + i(ω
2k
N Yk −ω−2k

N Y ′
k)

+i(ω
k+N/8
N Zk+N/8 −ω

−(k+N/8)
N Z ′

k+N/8)

(27)
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By applying terms with the appropriate scaling, viz. αN,k = sN/4,k/sN,k,

βN,k = sN/8,k/sN/2,k, γN,k = sN/4,k+N/8/sN,k+N/8, δN,k = sN/2,k/sN,k and

εN,k = sN/2,k+N/8/sN,k+N/8, Equation 27 now becomes:

Xk/sN,k = UkαN,k + (βN,kω
2k
N Yk +βN,kω

−2k
N Y ′k)δN,k

+(αN,kω
k
NZk +αN,kω

−k
N Z

′
k)

Xk+N/2/sN,k = UkαN,k + (βN,kω
2k
N Yk +βN,kω

−2k
N Y ′k)δN,k

−(αN,kω
k
NZk +αN,kω

−k
N Z

′
k)

Xk+N/4/sN,k = UkαN,k − (βN,kω
2k
N Yk +βN,kω

−2k
N Y ′k)δN,k

−i(αN,kω
k
NZk −αN,kω

−k
N Z

′
k)

Xk+3N/4/sN,k = UkαN,k − (βN,kω
2k
N Yk +βN,kω

−2k
N Y ′k)δN,k

+i(αN,kω
k
NZk −αN,kω

−k
N Z

′
k)

Xk+N/8/sN,k = Uk+N/8γN,k − i(βN,kω
2k
N Yk −βN,kω

−2k
N Y ′k)εN,k

+(γN,kω
k+N/8
N Zk+N/8 + γN,kω

−(k+N/8)
N Z ′k+N/8)

Xk+3N/8/sN,k = Uk+N/8γN,k + i(βN,kω
2k
N Yk −βN,kω

−2k
N Y ′k)εN,k

−i(γN,kω
k+N/8
N Zk+N/8 − γN,kω

−(k+N/8)
N Z ′k+N/8)

Xk+5N/8/sN,k = Uk+N/8γN,k − i(βN,kω
2k
N Yk −βN,kω

−2k
N Y ′k)εN,k

−(γN,kω
k+N/8
N Zk+N/8 + γN,kω

−(k+N/8)
N Z ′k+N/8)

Xk+7N/8/sN,k = Uk+N/8γN,k + i(βN,kω
2k
N Yk −βN,kω

−2k
N Y ′k)εN,k

+i(γN,kω
k+N/8
N Zk+N/8 − γN,kω

−(k+N/8)
N Z ′k+N/8)

(28)

Assuming that the scaling factors are absorbed into precomputed twid-

dle factors where possible (e.g., αN,kω
k
N is a single precomputed con-

stant), computing Equation 28 requires about (68/8)N real operations, in

contrast to (72/8)N operations for Equation 27. Further assuming that

operations are skipped in the cases where precomputed constants are

of the form ±1 or ±i, a further 28 real operations are saved in Equa-
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tion 28. Thus the arithmetic cost of Equation 28 can be expressed with

the following recurrence relation:

T(n) =



3T(n/4) + 2T(n/8) + max{n− 12, 0}+ 7.5n− 16 for n > 8

16 for n = 4

4 for n = 2

0 for n = 1

(29)

Bernstein gives the exact solution of Equation 29 as [9]:

T(n) = (34/9)n log2 n− (142/27)n

−(2/9)(−1)log2 n log2 n+ (7/27)(−1)log2 n + 7

(30)

for n > 2.

Equation 28 is scaled by sN,k, but if the application is convolution in

frequency, the scaling could be absorbed into the filter, and the cost of

scaling the results back to Xk avoided. Otherwise, a split-radix FFT can

be used to change basis, absorbing the scaling into the twiddle factors

of the x4n4+1 and x4n4−1 terms:

Xk = Uk + (sN,kω
k
NZk + sN,kω

−k
N Z

′
k)

Xk+N/2 = Uk − (sN,kω
k
NZk + sN,kω

−k
N Z

′
k)

Xk+N/4 = Uk+N/4 − i(sN,kω
k
NZk − sN,kω

−k
N Z

′
k)

Xk+3N/4 = Uk+N/4 + i(sN,kω
k
NZk − sN,kω

−k
N Z

′
k)

(31)

where Zk and Z ′k are now recursively computed with the tangent FFT

of Equation 28, and the Uk terms are themselves computed with Equa-
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tion 31. The arithmetic cost of computing the tangent FFT in the tradi-

tional basis is thus expressed:

T ′(n) =


T ′(n/2) + 2T(n/4) + 3n+ max{3n− 16, 0} for n > 4

4 for n = 2

0 for n = 1

(32)

giving rise to Van Buskirk’s exact operation count of [55]:

T ′(n) = (34/9)n log2 n− (124/27)n− 2 log2 n

−(2/9)(−1)log2 n log2 n+ (16/27)(−1)log2 n + 8

(33)

for n > 2.





3
I M P L E M E N TAT I O N D E TA I L S

“Anyone can build a fast CPU. The trick is to build a fast
system.”

— Seymour Cray

This Chapter complements the mathematical perspective of Chapter 2

with a more focused view of the low level details that are relevant to ef-

ficient implementation on SIMD microprocessors. These techniques are

widely practised by today’s state of the art implementations, and form

the basis for more advanced techniques presented in later chapters.

3.1 simple programs

The FFT equations of Chapter 2 can be succinctly expressed as micropro-

cessor programs that are depth first recursive. For example, Equation 7

divides a size N transform into two size N/2 transforms, which in turn

are divided into size N/4 transforms. This recursion continues until the

base case of two size 1 transforms is reached, where the two smaller sub-

transforms are then combined into a size 2 sub-transform, and then two

completed size 2 transforms are combined into a size 4 transform, and

so on, until the size N transform is complete.

Computing the FFT with such a depth first traversal has an impor-

tant advantage in terms of memory locality: at any point during the

traversal, the two completed sub-transforms that compose a larger sub-

27
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Algorithm 1 ditfft2N(xn)

Require: An array of complex numbers xn=0,...,N−1 where N = 2m and
m ∈N0.

Ensure: Xk=0,...,N−1 = the DFT of xn=0,...,N−1.

1: if N = 1 then
2: return x0
3: else
4: Ek2=0,...,N/2−1 ← ditfft2N/2(x2n2)
5: Ok2=0,...,N/2−1 ← ditfft2N/2(x2n2+1)
6: for k = 0 to N/2− 1 do
7: Xk ← Ek +ω

k
NOk

8: Xk+N/2 ← Ek −ω
k
NOk

9: end for
10: return Xk
11: end if

transform will still be in the closest level of the memory hierarchy in

which they fit (see, i.a., [73] and [46]). In contrast, a breadth first traver-

sal of a sufficiently large transform could force data out of cache during

every pass (ibid.).

Many implementations of the FFT require a bit-reversal permutation

of either the input or the output data, but a depth first recursive al-

gorithm implicitly performs the permutation during recursion. The bit-

reversal permutation is an expensive computation, and despite being

the subject of hundreds of research papers over the years, it can easily

account for a large fraction of the FFTs runtime – more so for conjugate-

pair algorithms with their “twisted” bit-reversal permutation. Such per-

mutations will be encountered in later sections, but for the mean time

it should be noted that the algorithms in this chapter do not require

bit-reversal permutations – the input and output are in natural order.
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implementation machine runtime

Danielson-Lanczos, 1942 [18] Human 140 minutes
Cooley-Tukey, 1965 [16] IBM 7094 ∼ 10.5 ms

Listing 20, 2011 Macbook Air 4,2 ∼ 440 µs

Table 1: Performance of simple radix-2 FFT (see Listing 20) from a historical
perspective, for size 64 real FFT

3.1.1 Radix-2

A recursive depth first implementation of the Cooley-Tukey radix-2 dec-

imation in time FFT is described with pseudocode in Algorithm 1, and

an implementation coded in C with only the most basic optimization –

avoiding multiply operations where ω0N is unity in the first iteration of

the loop – is included in Appendix A (Listing 20). Even when compiled

with a state-of-the-art auto-vectorizing compiler,1 the code achieves poor

performance on modern microprocessors, and is useful only as a base-

line reference.2

However it is worth noting that when considered from a historical

perspective, the performance does seem impressive – as shown in Ta-

ble 1. The runtimes in Table 1 are approximate; the Cooley-Tukey fig-

ure is roughly extrapolated from the floating point operations per sec-

ond (FLOPS) count of a size 2048 complex transform given in their 1965

paper [16]; and the speed of the reference implementation is derived

from the runtime of a size 64 complex FFT (again, based on the FLOPS

count). Furthermore, the precision differs between the results; Danielson

and Lanczos computed the DFT to 3–5 significant figures (possibly with

the aid of slide rules or adding machines), while the other results were

1 Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version
12.1.0.038 Build 20110811.

2 Chapter 6 contains a full account of the benchmark methods.
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computed with the host machines’ implementation of single precision

floating point arithmetic.

The runtime performance of the FFT has improved by about seven

orders of magnitude in 70 years, and this can largely be attributed to

the computing machines of the day being generally faster. The following

sections and chapters will show that the performance can be further

improved by over two orders of magnitude if the algorithm is enhanced

with optimizations that are amenable to the underlying machine.

3.1.2 Split-radix

Algorithm 2 splitfftN(xn)

Require: An array of complex numbers xn=0,...,N−1 where N = 2m and
m ∈N0.

Ensure: Xk=0,...,N−1 = the DFT of xn=0,...,N−1.

1: if N = 1 then
2: return x0
3: else if N = 2 then
4: X0 ← x0 + x1
5: X1 ← x0 − x1
6: return Xk
7: else
8: Uk2=0,...,N/2−1 ← splitfftN/2(x2n2)
9: Zk4=0,...,N/4−1 ← splitfftN/4(x4n4+1)

10: Z ′k4=0,...,N/4−1 ← splitfftN/4(x4n4+3)

11: for k = 0 to N/4− 1 do
12: Xk ← Uk + (ωkNZk +ω

3k
N Z

′
k)

13: Xk+N/2 ← Uk − (ωkNZk +ω
3k
N Z

′
k)

14: Xk+N/4 ← Uk+N/4 − i(ω
k
NZk −ω

3k
N Z

′
k)

15: Xk+3N/4 ← Uk+N/4 + i(ω
k
NZk −ω

3k
N Z

′
k)

16: end for
17: return Xk
18: end if

As was the case with the radix-2 FFT in the previous section, the

split-radix FFT neatly maps from the system of linear functions given
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in Equation 14 to the pseudocode of Algorithm 2, and then to the C

implementation included in Appendix A (Listing 21).

Algorithm 2 explicitly handles the base case for N = 2, to accommo-

date not only size 2 transforms, but also size 4 and size 8 transforms

(and all larger transforms that are ultimately composed of these smaller

transforms). A size 4 transform is divided into two size 1 sub-transforms

and one size 2 transform, which cannot be further divided by the split-

radix algorithm, and so it must be handled as a base case. Likewise

with the size 8 transform that divides into one size 4 sub-transform and

two size 2 sub-transforms: the size 2 sub-transforms cannot be further

decomposed with the split-radix algorithm.

Also note that two twiddle factors, viz. ωkN and ω3Nk, are required

for the split-radix decomposition; this is an advantage compared to the

radix-2 decomposition which would require four twiddle factors for the

same size 4 transform.

3.1.3 Conjugate-pair

From a pseudocode perspective, there is little difference between the

ordinary split-radix algorithm and the conjugate-pair algorithm (see Al-

gorithm 3). In line 10, the x4n4+3 terms have been shifted cyclically by

−4 to x4n4−1, and in lines 12-15, the coefficient of Z ′k has been shifted

cyclically from ω3kN to ω−k
N .

The source code (see Listing 22) has a few subtle differences that are

not revealed in the pseudocode. The pseudocode in Algorithm 3 requires

an array of complex numbers xn for input, but the code in Listing 22

requires a reference to an array of complex numbers with a stride3 – this

3 A stride of n would indicate that only every nth term is being referred to.
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Algorithm 3 conjfftN(xn)

Require: An array of complex numbers xn=0,...,N−1 where N = 2m and
m ∈N0.

Ensure: Xk=0,...,N−1 = the DFT of xn=0,...,N−1.

1: if N = 1 then
2: return x0
3: else if N = 2 then
4: X0 ← x0 + x1
5: X1 ← x0 − x1
6: return Xk
7: else
8: Uk2=0,...,N/2−1 ← conjfftN/2(x2n2)
9: Zk4=0,...,N/4−1 ← conjfftN/4(x4n4+1)

10: Z ′k4=0,...,N/4−1 ← conjfftN/4(x4n4−1)

11: for k = 0 to N/4− 1 do
12: Xk ← Uk + (ωkNZk +ω

−k
N Z

′
k)

13: Xk+N/2 ← Uk − (ωkNZk +ω
−k
N Z

′
k)

14: Xk+N/4 ← Uk+N/4 − i(ω
k
NZk −ω

−k
N Z

′
k)

15: Xk+3N/4 ← Uk+N/4 + i(ω
k
NZk −ω

−k
N Z

′
k)

16: end for
17: return Xk
18: end if

avoids copying xn into three separate arrays, viz. x2n2 , x4n4+1 and x4n4−1,

with every invocation of Algorithm 3. The subtle complication arises due

to the cyclic shifting of the x4n4−1 term; the negative shifting results in

pointers that reference data before the start of the array. Rather than

immediately wrapping the references around to end of the array such

that they always point to valid data, the recursion proceeds until the

base cases are reached before any adjustment is performed. Once at the

leaves of the recursion, any pointers that reference data lying before the

start of the input array are incremented by N elements,4 so as to point

to the correct data.

4 In this case, N refers to the size of the outer most transform rather than the size of the
sub-transform.
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Algorithm 4 tangentfft4N(xn)

Require: An array of complex numbers xn=0,...,N−1 where N = 2m and
m ∈N0.

Ensure: Xk=0,...,N−1 = the DFT of xn=0,...,N−1.

1: if N = 1 then
2: return x0
3: else if N = 2 then
4: X0 ← x0 + x1
5: X1 ← x0 − x1
6: return Xk
7: else
8: Uk2=0,...,N/2−1 ← tangentfft4N/2(x2n2)
9: Zk4=0,...,N/4−1 ← tangentfft8N/4(x4n4+1)

10: Z ′k4=0,...,N/4−1 ← tangentfft8N/4(x4n4−1)

11: for k = 0 to N/4− 1 do
12: Xk ← Uk + (ωkNsN/4,kZk +ω

−k
N sN/4,kZ

′
k)

13: Xk+N/2 ← Uk − (ωkNsN/4,kZk +ω
−k
N sN/4,kZ

′
k)

14: Xk+N/4 ← Uk+N/4 − i(ω
k
NsN/4,kZk −ω

−k
N sN/4,kZ

′
k)

15: Xk+3N/4 ← Uk+N/4 + i(ω
k
NsN/4,kZk −ω

−k
N sN/4,kZ

′
k)

16: end for
17: return Xk
18: end if

3.1.4 Tangent

The tangent FFT is divided into two functions, described with pseu-

docode in Algorithm 4 and Algorithm 5. If the tangent FFT is computed

prior to convolution in the frequency domain, the convolution kernel

can absorb the final scaling and only Algorithm 5 is required. Otherwise

Algorithm 4 is used as a wrapper around Algorithm 5 to perform the

rescaling, and the result Xk is in the correct basis.

Algorithm 4 is similar to Algorithm 3, except that Zk and Z ′k are com-

puted with Algorithm 5, and thus scaled by 1/sN/4,k. Because Zk and Z ′k

are respectively multiplied by the coefficients ωkN and ω−k
N , the results

are scaled into the correct basis by absorbing sN/4,k into the coefficients.
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Algorithm 5 tangentfft8N(xn)

Require: An array of complex numbers xn=0,...,N−1 where N = 2m and
m ∈N0.

Ensure: Xk=0,...,N−1 = DFT(xn=0,...,N−1)/sN,k.

1: if N = 1 then
2: return x0
3: else if N = 2 then
4: X0 ← x0 + x1
5: X1 ← x0 − x1
6: return Xk
7: else if N = 4 then
8: Tk2=0,1 ← tangentfft82(x2n2)
9: T ′k2=0,1 ← tangentfft82(x2n2+1)

10: X0 ← T0 + T
′
0

11: X2 ← T0 − T
′
0

12: X1 ← T1 + T
′
1

13: X3 ← T1 − T
′
1

14: return Xk
15: else
16: Uk4=0,...,N/4−1 ← tangentfft8N/4(x4n4)
17: Yk8=0,...,N/8−1 ← tangentfft8N/8(x8n8+2)
18: Y ′k8=0,...,N/8−1 ← tangentfft8N/8(x8n8−2)

19: Zk4=0,...,N/4−1 ← tangentfft8N/4(x4n4+1)
20: Z ′k4=0,...,N/4−1 ← tangentfft8N/4(x4n4−1)

21: for k = 0 to N/8− 1 do
22: αN,k ← sN/4,k/sN,k
23: βN,k ← sN/8,k/sN/2,k
24: γN,k ← sN/4,k+N/8/sN,k+N/8
25: δN,k ← sN/2,k/sN,k
26: εN,k ← sN/2,k+N/8/sN,k+N/8

27: Ω0 ← ωkN ∗αN,k

28: Ω1 ← ω
k+N/8
N ∗ γN,k

29: Ω2 ← ω2kN ∗βN,k
30: T0 ← (Ω2Yk +Ω2Yk) ∗ δN,k
31: T1 ← i(Ω2Yk −Ω2Yk) ∗ εN,k
32: Xk ← Uk ∗αN,k + T0 + (Ω0Zk +Ω0Z

′
k)

33: Xk+N/2 ← Uk ∗αN,k + T0 − (Ω0Zk +Ω0Z
′
k)

34: Xk+N/4 ← Uk ∗αN,k − T0 − i(Ω0Zk −Ω0Z
′
k)

35: Xk+3N/4 ← Uk ∗αN,k − T0 + i(Ω0Zk −Ω0Z
′
k)

36: Xk+N/8 ← Uk+N/8 ∗ γN,k − T1 + (Ω1Zk+N/8 +Ω0Z
′
k+N/8)

37: Xk+3N/8 ← Uk+N/8 ∗ γN,k + T1 − i(Ω1Zk+N/8 −Ω0Z
′
k+N/8)

38: Xk+5N/8 ← Uk+N/8 ∗ γN,k − T1 − (Ω1Zk+N/8 +Ω0Z
′
k+N/8)

39: Xk+7N/8 ← Uk+N/8 ∗ γN,k + T1 + i(Ω1Zk+N/8 −Ω0Z
′
k+N/8)

40: end for
41: return Xk
42: end if
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Figure 1: Speed of simple FFT implementations

Algorithm 5 is almost a 1:1 mapping of Equation 28, except that the

base cases of N = 1, 2, 4 are handled explicitly. In Algorithm 5, the case

of N = 4 is handled with two size 2 base cases, which are combined into

a size 4 FFT.

3.1.5 Putting it all together

The simple implementations covered in this section were benchmarked

for sizes of transforms 22 through to 218 running on a Macbook Air 4,2

and the results are plotted in Figure 1. The speed of each transform is

measured in Cooley-Tukey gigaflops (CTGs), where a higher measure-

ment indicates a faster transform.5

It can be seen from Figure 1 that although the conjugate-pair and split-

radix algorithms have exactly the same floating point operation (FLOP)

5 CTGs are an inverse time measurement. See Chapter 6 for a full explanation of the
benchmarking methods.
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count, the conjugate-pair algorithm is substantially faster. The difference

in speed can be attributed to the fact that the conjugate-pair algorithm

requires only one twiddle factor per size 4 sub-transform, whereas the

ordinary split-radix algorithm requires two.

Though the tangent FFT requires the same number of twiddle factors

but uses fewer FLOPs compared to the conjugate-pair algorithm, its per-

formance is worse than the radix-2 FFT for most sizes of transform, and

this can be attributed to the cost of computing the scaling factors.

A simple analysis with a profiling tool reveals that each implemen-

tations’ runtime is dominated by the time taken to compute the coeffi-

cients. Even in the case of the conjugate-pair algorithm, over 55% of the

runtime is spent calculating the complex exponential function. Eliminat-

ing this performance bottleneck is the topic of the next section.

3.2 precomputed coefficients

The speed of Algorithms 1 – 5 may be dramatically improved if the

coefficients are precomputed and stored in a lookup table (LUT).

When computing an FFT of sizeN, Algorithm 1 requiresN/2 different

twiddle factors that correspond toN/2 samples of a half rotation around

the complex plane. Rather than storing N/2 complex numbers, the sym-

metries of the sine and cosine waves that compose ωkN may be exploited

to reduce the storage to N/4 real numbers – a 75% reduction in mem-

ory – by storing only one quadrant of a sine or cosine wave from which

the real and imaginary parts of any twiddle factor can be constructed.

Such a scheme has advantages in hardware implementations where LUT

memory is a costly resource [65], but for modern microprocessor imple-



3.2 precomputed coefficients 37

mentations of the FFT, it is more advantageous to have a less complex

indexing scheme and better memory locality, rather than a smaller LUT.

As already mentioned, each transform of sizeN that is computed with

Algorithm 1 requires N/2 twiddle factors from ω0N through to ωN/2N , but

the two sub-transforms of Algorithm 1 require twiddle factors ranging

from ω0N/2 through to ωN/4
N/2

. The twiddle factors of the sub-transforms

can be obtained by downsampling the parent transform’s twiddle factors

by a factor of 2, and because the downsampling factors are all powers

of 2, simple shift operations can be used to index any twiddle factor

anywhere in the transform from one LUT.

Appendix B contains listings of source code that augment each of the

simple implementations from the previous section with LUTs of precom-

puted coefficients. The modifications are fairly minor: each implementa-

tion now has an initialization function that populates the LUT/LUTs

based on the size of the transform to be computed, and each transform

function now has a parameter of log2(stride), so as to economically in-

dex the twiddle factors with little computation.

As Figure 2 shows, the speedup resulting from the precomputed twid-

dle LUT is dramatic – sometimes more than a factor of 6 (cf. Figure 1).

Interestingly, the ordinary split-radix algorithm is now faster than the

conjugate-pair algorithm, and inspection of the compiler output shows

that this is due to the more complicated addressing scheme at the leaves

of the computation, and because the compiler lacks good heuristics for

complex multiplication by a conjugate. The performance of the tangent

FFT is hampered by the same problem, yet the tangent FFT has better

performance, which can be attributed to the tangent FFT having larger

straight line blocks of code at the leaves of the computation (the tangent
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Figure 2: Speed of FFTs with precomputed coefficients

FFT has leaves of size 4, while the split-radix and conjugate-pair FFTs

have leaves of size 2).

3.3 single instruction, multiple data

The performance of the programs in the previous section may be further

improved by explicitly describing the computation with SIMD intrinsics.

Auto-vectorizing compilers, such as the Intel C compiler used to compile

the previous examples, can extract some data-level parallelism and gen-

erate SIMD code from a scalar description of a computation, but better

results can be obtained when using vector intrinsics to explicitly specify

the parallel computation.

Intrinsics are an alternative to inline assembly code when the compiler

fails to meet performance constraints. In most cases an intrinsic function

directly maps to a single instruction on the underlying machine, and
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so intrinsics provide many of the advantages of inline assembler code.

But in contrast to inline assembler code, the compiler uses its detailed

knowledge of the intrinsic semantics to provide better optimizations and

handle tasks such as register allocation.

Almost all desktop and handheld machines now have processors that

implement some sort of SIMD extension to the instruction set. All ma-

jor Intel processors since the Pentium III have implemented streaming

SIMD extensions (SSE), an extension to the x86 architecture that intro-

duced 4-way single precision floating point computation with a new

register file consisting of eight 128-bit SIMD registers – known as XMM

registers. The AMD64 architecture doubled the number of XMM reg-

isters to 16, and Intel followed by implementing 16 XMM registers in

the Intel 64 architecture. SSE has since been expanded with support for

other data types and new instructions with the introduction of SSE2,

SSE3, SSSE3 and SSE4. Most notably, SSE2 introduced support for dou-

ble precision floating point arithmetic and thus Intel’s first attempt at

SIMD extensions, multimedia extensions (MMX), was effectively depre-

cated. Intel’s recent introduction of the sandybridge micro-architecture

heralded the first implementation of advanced vector extensions (AVX)

– a major upgrade to SSE that doubled the size of XMM registers to 256

bits (and renamed them YMM registers), enabling 8-way single precision

and 4-way double precision floating point arithmetic.

Another notable example of SIMD extensions implemented in com-

modity microprocessors is the NEON extension to the ARMv7 architec-

ture. The Cortex family of processors that implement ARMv7 are widely

used in mobile, handheld and tablet computing devices such as the iPad,

iPhone and Canon PowerShot A470, and the NEON extensions provide
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these embedded devices with the performance required for processing

audio and video codecs as well as graphics and gaming workloads.

Compared to SSE and AVX, NEON has some subtle differences that

can greatly improve performance if used properly. First, it has dual

length SIMD vectors that are aliased over the same registers; a pair of 64-

bit registers refers to the lower and upper half of one 128-bit register – in

contrast, the AVX extension increases the size of SSE registers to 256-bit,

but the SSE registers are only aliased over the lower half of the AVX regis-

ters. Second, NEON can interleave and de-interleave data during vector

load or store operations, for up to four vectors of four elements inter-

leaved together. In the context of FFTs, the interleaving/de-interleaving

instructions can be used to reduce or eliminate vector permutations or

shuffles.

3.3.1 Split format vs. interleaved format

In the previous examples, the data was stored in interleaved format (i.e.,

the real and imaginary parts composing each element of complex data

are stored adjacently in memory), but operating on the data in split

format (i.e., the real parts of each element are stored in one contiguous

array, while the imaginary parts of each element are stored contiguously

in another array) can simplify the computation when using SIMD. The

case of complex multiplication illustrates this point.

3.3.1.1 Interleaved format complex multiplication

The function in Listing 1 takes complex data in two 4-way single pre-

cision SSE registers (a and b) and performs complex multiplication, re-

turning the result in a single precision SSE register. The SSE intrinsic
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Listing 1: SSE multiplication with interleaved complex data

1 static inline __m128 MUL_INTERLEAVED(__m128 a, __m128 b) {
2

__m128 re, im;
3 re = _mm_shuffle_ps(a,a,_MM_SHUFFLE(2,2,0,0));
4 re = _mm_mul_ps(re, b);
5 im = _mm_shuffle_ps(a,a,_MM_SHUFFLE(3,3,1,1));
6 b = _mm_shuffle_ps(b,b,_MM_SHUFFLE(2,3,0,1));
7 im = _mm_mul_ps(im, b);
8 im = _mm_xor_ps(im, _mm_set_ps(0.0f, -0.0f, 0.0f, -0.0f));
9 return _mm_add_ps(re, im);

10 } �
functions are prefixed with ‘_mm_’, and the SSE data type corresponding

to a single 128-bit single precision register is ‘__m128’.

When operating with interleaved data, each SSE register contains two

complex numbers. Two shuffle operations at lines 3 and 5 are used to

replicate the real and imaginary parts (respectively) of the two complex

numbers in input a. At line 4, the real and imaginary parts of the two

complex numbers in b are each multiplied with the real parts of the

complex numbers in a. A third shuffle is used to swap the real and

imaginary parts of the complex numbers in b, before being multiplied

with the imaginary parts of the complex numbers in a – and the exclusive

or operation at line 8 is used to selectively negate the sign of the real

parts in this result. Finally, the two intermediate results stored in the re

and im registers are added. In total, seven SSE instructions are used to

multiply two pairs of single precision complex numbers.

3.3.1.2 Split format complex multiplication

The function in Listing 2 takes complex data in two structs of SSE regis-

ters, performs the complex multiplication of each element of the vectors,

and returns the result in a struct of SSE registers. Each struct is com-

posed of a register containing the real parts of four complex numbers,
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Listing 2: SSE multiplication with split complex data

1 typedef struct _reg_t {
2

__m128 re, im;
3 } reg_t;
4

5 static inline reg_t MUL_SPLIT(reg_t a, reg_t b) {
6 reg_t r;
7 r.re = _mm_sub_ps(_mm_mul_ps(a.re,b.re),_mm_mul_ps(a.im,b.im));
8 r.im = _mm_add_ps(_mm_mul_ps(a.re,b.im),_mm_mul_ps(a.im,b.re));
9 return r;

10 } �
and another register containing the imaginary parts – so the function

in Listing 2 is effectively operating on vectors twice as long as the func-

tion in Listing 1. The benefit of operating in split format is obvious: the

shuffle operations that were required in Listing 1 are avoided because

the real and imaginary parts can be implicitly swapped at the instruc-

tion level, rather than by awkwardly manipulating SIMD registers at the

data level of abstraction. Thus, Listing 2 computes complex multiplica-

tion for vectors twice as long while using one less SSE instruction – not

to mention other advantages such as reducing chains of dependent in-

structions. The only disadvantage to the split format approach is that

twice as many registers are needed to compute a given operation – this

might preclude the use of a larger radix or force register paging for some

kernels of computation.

3.3.1.3 Fast interleaved format complex multiplication

Listing 3 is fast method of interleaved complex multiplication that may

be used in situations where one of the operands can be unpacked prior

to multiplication – in such cases the instruction count is reduced from

7 instructions to 4 instructions (cf. Listing 1). This method of complex

multiplication lends itself especially well to the conjugate-pair algorithm



3.3 single instruction, multiple data 43

Listing 3: SSE multiplication with partially unpacked interleaved data

1 static inline __m128
2 MUL_UNPACKED_INTERLEAVED(__m128 re, __m128 im, __m128 b) {
3 re = _mm_mul_ps(re, b);
4 im = _mm_mul_ps(im, b);
5 im = _mm_shuffle_ps(im,im,_MM_SHUFFLE(2,3,0,1));
6 return _mm_add_ps(re, im);
7 } �

where the same twiddle factor is used twice – by doubling the size of the

twiddle factor LUT, the multiplication instruction count is reduced from

14 instructions to 8 instructions. Furthermore, large chains of dependent

instructions are reduced, and in practice the actual performance gain

can be quite impressive.

Operand a in Listing 1 has been replaced with two operands in List-

ing 3: re and im – these operands have been unpacked, as was done in

lines 3 and 5 of Listing 1. Furthermore, line 8 of Listing 1 is also avoided

by performing the selective negation during unpacking.

3.3.2 Vectorized loops

The performance of the FFTs in the previous sections can be increased

by explicitly vectorizing the loops. The Macbook Air 4,2 used to compile

and run the previous examples has a central processing unit that imple-

ments SSE and AVX, but for the purposes of simplicity, SSE intrinsics are

used in the following examples. The loop of the radix-2 implementation

is used as an example in Listing 4.

Each iteration of the loop in Listing 4 accesses two elements of com-

plex data in the array out, and one complex element from the twiddle

factor LUT. Over multiple iterations of the loop, out is accessed contigu-

ously in two places, but the LUT is accessed with a non-unit stride in
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Listing 4: Inner loop of radix-2 FFT

1 for(k=0;k<N/2;k++) {
2 data_t Ek = out[k];
3 data_t Ok = out[(k+N/2)];
4 data_t w = LUT[k<<log2stride];
5 out[k] = Ek + w * Ok;
6 out[(k+N/2) ] = Ek - w * Ok;
7 } �

Listing 5: Vectorized inner loop of radix-2 FFT

1 for(k=0;k<N/2;k+=4) {
2

__m128 Ok_re = _mm_load_ps((float *)&out[k+N/2]);
3

__m128 Ok_im = _mm_load_ps((float *)&out[k+N/2+2]);
4

__m128 w_re = _mm_load_ps((float *)&LUT[log2stride][k]);
5

__m128 w_im = _mm_load_ps((float *)&LUT[log2stride][k+2]);
6

__m128 Ek_re = _mm_load_ps((float *)&out[k]);
7

__m128 Ek_im = _mm_load_ps((float *)&out[k+2]);
8

__m128 wOk_re =
9

_mm_sub_ps(_mm_mul_ps(Ok_re,w_re),_mm_mul_ps(Ok_im,w_im));
10

__m128 wOk_im =
11

_mm_add_ps(_mm_mul_ps(Ok_re,w_im),_mm_mul_ps(Ok_im,w_re));
12

_mm_store_ps((float *)(out+k), _mm_add_ps(Ek_re, wOk_re));
13

_mm_store_ps((float *)(out+k+2), _mm_add_ps(Ek_im, wOk_im));
14

_mm_store_ps((float *)(out+k+N/2), _mm_sub_ps(Ek_re, wOk_re));
15

_mm_store_ps((float *)(out+k+N/2+2), _mm_sub_ps(Ek_im, wOk_im));
16 } �

all sub-transforms except the outer transform. Some vector machines can

perform what are known as vector scatter or gather memory operations –

where a vector gather could be used in this case to gather elements from

the LUT that are separated by a stride. But SSE only supports contigu-

ous or streaming access to memory. Thus, to efficiently compute multiple

iterations of the loop in parallel, the twiddle factor LUT is replaced with

an array of LUTs – each corresponding to a sub-transform of a partic-

ular size. In this way, all memory accesses for the parallelized loop are

contiguous and no memory bandwidth is wasted.

Listing 5 computes the loop of Listing 4 using split format data and a

vector length of four (i.e., it computes four iterations at once). Note that
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the vector load and store operations used in Listing 5 require that the

memory accesses are 16-byte aligned – this is a fairly standard proviso

for vector memory operations, and use of the correct memory alignment

attributes and/or memory allocation routines ensures that memory is

always correctly aligned.

Some FFT libraries require the input to be in split format (i.e., the real

parts of each element are stored in one contiguous array, while the imag-

inary parts are stored contiguously in another array) for the purposes of

simplifying the computation, but this conflicts with many other libraries

and use cases of the FFT – for example, Apple’s vDSP library operates in

split format, but many examples require the use of un-zip/zip functions

on the input/output data (see Usage Case 2: Fast Fourier Transforms in

[42]). A compromise is to convert interleaved format data to split format

on the first pass of the FFT, computing most of the FFT with split format

sub-transforms, and converting the data back to interleaved format as it

is processed on the last pass.

Appendix C contains listings of FFTs with vectorized loops. The input

and output of the FFTs is in interleaved format, but the computation

of the inner loops is performed on split format data. At the leaves of

the transform there are no loops, so the computation falls back to scalar

arithmetic.

Figure 3 summarizes the performance of the listings in Appendix C.

Interestingly, the radix-2 FFT is faster than both the conjugate-pair and

ordinary split-radix algorithms until size 4096 transforms, and this is

due to the conjugate-pair and split-radix algorithms being more compli-

cated at the leaves of the computation. The radix-2 algorithm only has

to deal with one size of sub-transform at the leaves, but the split-radix

algorithms have to handle special cases for two sizes, and furthermore,
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Figure 3: Speed of FFTs with vectorized loops

a larger proportion of the computation takes place at the leaves with the

split-radix algorithms. The conjugate-pair algorithm is again slower than

the ordinary split-radix algorithm, which can (again) be attributed to the

compiler’s relatively degenerate code output when computing complex

multiplication with a conjugate.

Overall, performance improves with the use of explicit vector paral-

lelism, but still falls short of the state of the art. The next section charac-

terizes the remaining performance bottlenecks.

3.4 the performance bottleneck

The memory access patterns of an FFT are the biggest obstacle to per-

formance on modern microprocessors. To illustrate this point, Figure 4

visualizes the memory accesses of each straight line block of code in a
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Figure 4: Memory access pattern of straight line blocks of code in a size 64

radix-2 FFT

size 64 radix-2 DIT FFT (the source code of which is provided in Ap-

pendix C, Listing 28).

The vertical axis of Figure 4 is memory. Because the diagram depicts

a size 64 transform there are 64 rows, each corresponding to a complex

word in memory. Because the transform is out-of-place, there are input

and output arrays for the data. The input array contains the data “in

time”, while the output array contains the result “in frequency”. Rather

than show 128 rows – 64 for the input and 64 for the output – the input

array’s address space has been aliased over the output array’s address

space, where the orange code indicates an access to the input array and

the green and blue codes for accesses to the output array.

Each column along the horizontal axis represents the memory accesses

sampled at each kernel (i.e., butterfly) of the computation, which are all

straight line blocks of code. The first column shows two orange and one
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blue memory operations, and these correspond to a radix-2 computation

at the leaves reading two elements from the input data, and writing two

elements into the output array. The second column shows a similar radix-

2 computation at the leaves: two elements of data are read from the input

at addresses 18 and 48, the size 2 DFT computed, and the results written

to the output array at addresses 2 and 3.

There are columns that do not indicate accesses to the input array, and

these are the blocks that are not at the leaves of the computation. They

load data from some locations in the output, performing the computa-

tion, and store the data back to the same locations in the output array.

There are two problems that Figure 4 illustrates. The first is that the

accesses to the input array – the samples “in time" – are indeed very

decimated, as might be expected with a decimation in time algorithm.

Second, it can be observed that the leaves of the computation are rather

inefficient, because there are large numbers of straight line blocks of

code performing scalar memory accesses, and no loops of more than a

few iterations (i.e., the leaves of the computation are not taking advan-

tage of the machine’s SIMD capability).

Figure 3 in the previous section showed that the vectorized radix-2

FFT was faster than the split-radix algorithms up to size 4096 transforms;

a comparison between Figure 4 and Figure 5 helps explain this phe-

nomenon. The split-radix algorithm spends more time computing the

leaves of the computation (blue), so despite the split-radix algorithms

being more efficient in the inner loops of SIMD computation, the perfor-

mance has been held back by higher proportion of very small straight

line blocks of code (corresponding to sub-transforms smaller than size

4) performing scalar memory accesses at the leaves of the computation.
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Figure 5: Memory access pattern of straight line blocks of code in a size 64

split-radix FFT

Because the addresses of memory operations at the leaves are a func-

tion of variables passed on the stack, it is very difficult for a hardware

prefetch unit to keep these leaves supplied with data, and thus memory

latency becomes an issue. In later chapters, it is shown that increasing

the size of the base cases at the leaves improves performance.





4
E X I S T I N G L I B R A R I E S

“... My unscheduled code, 86 lines long, did a size-256
single-precision transform in about 35000 Pentium cycles,
faster than FFTW. A few days later, after some casual in-
struction scheduling, I had the time down to about 24000
Pentium cycles."

— Daniel Bernstein on the first release of djbfft [10]

Owing to the importance of efficiently computing FFTs in signal process-

ing and other areas, there have been many implementations for micro-

processors; FFTW’s benchmark software, for example, includes a collec-

tion of 25 different FFT implementations. However, of the many imple-

mentations, only a few have competed with the state of the art over the

last fifteen years. Since its first release in 1997, FFTW has risen to become

one of the most well known fast Fourier transform libraries. Other li-

braries reviewed in this chapter are SPIRAL, UHFFT, djbfft, Apple vDSP,

MatrixFFT, and Intel IPP.

4.1 the “fastest fourier transform in the west” (fftw)

FFTW [34, 35, 47] is an implementation of the DFT that attempts to au-

tomatically adapt to the hardware in order to maximise performance,

and its development in 1997 was predicated on the idea that it had be-

51
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come too complicated to optimize the performance of the fast Fourier

transform for modern microprocessors.

The latest release of FFTW, version 3.3, generates a library of over

150 “codelets” at compile time. The codelets are fragments of machine-

independent straight-line code derived from DFT algorithms, including

the Cooley-Tukey [16] algorithm and its derivatives the split-radix [22,

78], conjugate-pair [47, 48] and mixed-radix algorithms. Radar [71] and

Bluestein [11, 64, 70] algorithms are used for sizes that are prime, and the

prime-factor algorithm [64, 74] for sizes that are factored by co-primes.

At runtime, a plan for a specific problem, e.g., 1024 point 1D forward

double precision out-of-place DFT, is generated by searching the huge

space of possible codelet configurations for the best solution.

The codelet generator operates in four phases: creation, simplifica-

tion, scheduling, and unparsing (code generation). During creation, the

codelet generator produces a representation of the computation in the

form of a DAG. The DAG is expressed in terms of complex numbers [46],

and can be viewed as a linear network [17]. In the simplification stage, al-

gebraic transformations and common subexpression elimination rewrit-

ing rules [72] are applied to each node of the DAG, which is then topo-

logically sorted to produce a schedule. In a 2008 paper [46], Johnson

and Frigo contend that “the compiler needs help with such long blocks

of code", and an earlier paper from 1999 [34] is cited to support the hy-

pothesis that compilers are not capable of efficiently allocating registers

and scheduling code for hard-coded blocks of about size 64, which com-

pares an earlier version of FFTW compiled with an older compiler1 to an

FFT from Sun’s Performance Library. There is no mention of re-testing

the aforementioned hypothesis with more advanced compilers.

1 Sun WorkShop Compilers 4.2 30 Oct 1996 C 4.2
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FFTW has several modes available for searching the configuration

space of codelets. In “patient” mode, FFTW uses dynamic programming

to evaluate the runtime of almost all combinations of possible plans.

As the runtime of many sub-problems is repeatedly evaluated while

searching the configuration space, the results of locally optimized sub-

problems are cached, reducing runtime of the planner while producing

results very close to that of an exhaustive search.

In “estimate” mode, FFTW minimizes a heuristic cost that is a function

of a particular configuration’s count of floating point operations and ex-

traneous memory operations (for buffering and transposes). Compared

to patient mode, the runtime of the planner is reduced by several orders

of magnitude, at the expense of runtime performance while executing

the plan. For executing plans of 1D complex transforms on a PowerPC

G5, the median and peak difference in runtime performance between

patient and estimate modes was 20% and 72%, respectively. This result

is used by Frigo and Johnson to support the hypothesis that there is

no longer any correlation between operation counts and runtime perfor-

mance on modern machines [35].

Frigo and Johnson discuss a small number of planner solutions in their

2005 paper on the design of FFTW3 [35], and conclude that “we do not

really understand the planner’s choices because we cannot predict what

plans will be produced. Indeed, this is the whole point of implementing

a planner.” They do not mention the use of more rigorous methods, such

as machine learning, for the purposes of predicting performance.

FFTW supports computation of complex DFTs with SIMD extensions

by means of two-way parallel computation of real DFTs [46]. The Vi-

enna MAP vectorizer [31, 51, 52] has also been coupled with FFTW to

produce a high-performance FFT library for the IBM Blue Gene/L super-
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computer [62] that is up to 80% faster than the best-performing scalar

FFT codes generated by FFTW [54].

4.2 daniel bernstein’s fft (djbfft)

In 1997, Daniel Bernstein noticed that it was not difficult to write code

that out-performed FFTW [10]. He had written 86 lines of unscheduled

code that computed a size 256 single precision transform in about 35000

Pentium cycles – faster than FFTW. After spending a few more days

doing “some casual instruction scheduling,” he could compute the same

transform with about 24000 Pentium cycles (ibid.).

These performance results directly contradicted the assumption that

predicated FFTW: that it was too hard to predict the performance of FFT

code on modern microprocessors. Development of djbfft continued until

1999, and it had succeeded in becoming the fastest library for computing

FFTs on most Pentium and SPARC machines.

Bernstein’s FFT is notable for having been the first publicly available

library to exploit the advantages of the conjugate-pair or “-1 exponent”

algorithm. After Bernstein demonstrated the advantages of the algo-

rithm in djbfft, Frigo and Johnson followed with an implementation in

FFTW [47].

4.3 spiral

SPIRAL [32, 66, 67] attempts to automatically optimize code for signal

processing functions such as the discrete Fourier transform. SPIRAL’s

goal is to automatically optimize signal processing functions at the push

of a button, with results that are as good as hand-optimized codes.
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In contrast to FFTW, SPIRAL’s optimization is performed at compile

time, and thus the generated code is less portable. Another point of

difference is in the search methods: while FFTW uses dynamic program-

ming, SPIRAL uses a wide range of techniques that include machine

learning [67, 66].

Franchetti and Puschel argue that vectorization is best performed at

the algorithm level of abstraction by manipulating Kronecker product

expressions through mathematical identities [29], and this is the basis

for a rewriting system [33] that vectorizes for short vector machines [28,

30, 51].

In [33], SPIRAL is slower than FFTW 3.1 for 2-way double-precision

power of two transforms, but SPIRAL is fastest for 4-way single-precision

power of two transforms where 16 6 n 6 128. SPIRAL generates code

that is characterized by large basic blocks and single-threaded perfor-

mance does not scale beyond sizes of about 4096 points. Indeed, source

code is only publicly available for sizes 2 through to 8192 points [2].

4.4 uhfft

UHFFT [4, 6, 3, 61, 60], like FFTW, generates a library of codelets which

are assembled into transforms by a planner. The planner uses dynamic

programming to search an exponential space of possible algorithms, fac-

tors and schedules, relying on codelet timings to predict transform exe-

cution times [3].

UHFFT uses the mixed-radix and split-radix [22, 78] algorithms for

power of two sizes, the prime-factor algorithm [64, 74] for sizes that are

factored by co-primes, and the Radar [71] algorithm for sizes that are

prime.
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UHFFT generates a schedule from a DAG which has been topologi-

cally sorted, mainly to optimize memory reuse distance [3]. The sched-

ule is then unparsed to C code.

Scalar results on Itanium2 and Opteron show that UHFFT’s dynamic

programming approach can choose a plan having performance within

10% of the actual optimal plan. For power of two sizes, UHFFT’s perfor-

mance was typically worse than FFTW or Intel MKL, while UHFFT was

faster than FFTW for prime-factor and prime sizes (ibid.).

4.5 intel integrated performance primitives (ipp)

Of the closed source FFT implementations, the integrated performance

primitives (IPP) library [44] provides the best results for most sizes of

DFT on machines with Intel processors. IPP includes a number of differ-

ent FFT implementations that appear to be hand optimized for different

machine configurations, and in contrast to FFTW, IPP deterministically

chooses the best code to run based on the capabilities of the machine and

the operating system (OS) – achieving results that are typically superior

to FFTW.

Because IPP is closed source, there is no publicly available information

regarding the algorithms and techniques used.

4.6 apple vdsp

The Apple Accelerate libraries contain a wide range of computation-

ally intensive functions that have been optimized for vector computation

on PowerPC, x86 and ARM architectures. Within the Accelerate library,
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vDSP is a collection of digital signal processor (DSP) functions that in-

cludes the FFT.

The vDSP implementation of the FFT is distinctive among the other

libraries reviewed in this chapter in that it only operates on data that

is stored in split format (where the real and imaginary parts of com-

plex numbers are stored in separate arrays). However, many applica-

tions have data that is already in interleaved format (where the real and

imaginary part of each complex number are stored adjacent in memory),

or require data in interleaved format, and so vDSP provides un-zip/zip

functions for converting data to/from split format.

The Apple vDSP library is notable for having very good FFT perfor-

mance on ARM NEON devices, while its x86 performance is average

(comparable with FFTW “estimate” mode performance).

As with IPP, vDSP is only distributed in binary form and thus little

can be said about the algorithms and techniques employed.

4.7 matrixfft

MatrixFFT is a library for efficiently computing large transforms of more

than 218 points on Apple hardware, with sustained processing rates re-

portedly being as high as 40 CTGs for very large single precision trans-

forms. Large scale FFTs have been used in areas such as image process-

ing (with images of over 109 pixels) and experimental mathematics (for

extreme-precision computation of π).

MatrixFFT uses the four-step algorithm to decompose a transform

into smaller sub-transforms that fit in the cache [8], and computes the

smaller sub-transforms with Apple vDSP. Interestingly, MatrixFFT has

better performance – in many cases – while using interleaved format to



58 existing libraries

store the data, even though the interleaved format must be converted to

split format before using vDSP [69].

MatrixFFT includes a calibration utility that evaluates the various im-

plementation parameters for each size of transform on a given machine,

which can then be used to re-compile the library so that it achieves best

performance on that particular machine.

MatrixFFT is freely available and distributed in source code form by

Apple [43].
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S F F T: A H I G H - P E R F O R M A N C E F F T L I B R A RY

“It’s time to nut up, or shut up.”

— Woody Harrelson in Zombieland (2009 film)

This chapter describes SFFT: a high-performance FFT library for SIMD

microprocessors that is, in many cases, faster than the state of the art

FFT libraries reviewed in Chapter 4.

Chapter 3 described some simple implementations of the FFT and con-

cluded with an analysis of the performance bottlenecks. The implemen-

tations presented in this chapter are designed to improve spatial locality,

and utilize larger straight line blocks of code at the leaves, correspond-

ing to sub-transforms of sizes 8 through to 64, in order to reduce latency

and stack overheads.

In distinct contrast to the simple FFT programs of Chapter 3, this chap-

ter employs meta-programming. Rather than describe FFT programs, we

describe programs that statically elaborate the FFT into a DAG of nodes

representing the computation, apply some optimizing transformations

to the graph, and then generate code. Many other auto-vectorization

techniques, such as those employed by SPIRAL, operate at the instruc-

tion level [54], but the techniques presented in this chapter vectorize

blocks of computation at the algorithm level of abstraction, thus enabling

some of the algorithms structure to be utilized.

Three types of implementation are described in this chapter, and the

performance of each depends on the parameters of the transform to be

61
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computed and the characteristics of the underlying machine. For a given

machine and FFT to be computed (which has parameters such as length

and precision), the fastest configuration is selected from among a small

set of up to eight possible FFT configurations – a much smaller space

compared to FFTW’s exhaustive search of all possible FFTs. The fastest

configuration is easily selected by timing each of the possible options,

but it is shown in Chapter 7 that it is also possible to use machine learn-

ing to build a classifier that will predict the fastest based on attributes

such as the size of the cache.

SFFT comprises three types of conjugate-pair implementation, which

are:

1. Fully hard-coded FFTs;

2. Four-step FFTs with hard-coded sub-transforms;

3. FFTs with hard-coded leaves.

5.1 fully hard-coded

Statically elaborating a DAG that represents a depth-first recursive FFT

is much like computing a depth-first recursive FFT: instead of perform-

ing computation at the leaves of the recursion and where smaller DFTs

are combined into one, a node representing the computation is appended

to the end of a list, and the list of nodes, i.e., a topological ordering of

the DAG, is later translated into a program that can be compiled and

executed.

Emitting code with a vector length of 1 (i.e., scalar code or vector code

where only one complex element fits in a vector register) is relatively

simple and is described in Section 5.1.1. For vector lengths above 1, vec-
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torizing the topological ordering of nodes poses some subtle challenges,

and these details are described in Section 5.1.2. The fully hard-coded

FFTs described in this section are generally only practical for smaller

sizes of transforms, typically where N 6 128, however these techniques

are expanded in later sections to scale the performance to larger sizes.

5.1.1 Vector length 1

A vector length (VL) of 1 implies that the computation is essentially

scalar, and only one complex element can fit in a vector register. An

example of such a scenario is when using interleaved double-precision

floating-point arithmetic on an SSE2 machine: one 128-bit XMM register

is used to store two 64-bit floats that represent the real and imaginary

parts of a complex number.

When VL = 1, the process of generating a program for a hard-coded

FFT is as follows:

1. Elaborate a topological ordering of nodes, where each node rep-

resents either a computation at the leaves of the transform, or a

computation in the body of the transform (i.e., where smaller sub-

transforms are combined into a larger transform);

2. Write the program header to output, including a list of variables

that correspond to registers used by the nodes;

3. Traverse the list of nodes in order, and for each node, emit a state-

ment that performs the computation represented by the given node.

If a node is the last node to use a variable, a statement storing the

variable to its corresponding location in memory is also emitted;

4. Write the program footer to output.
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Listing 6: Elaborate function for hard-coded conjugate-pair FFT

1 void
2 CSplitRadix::elaborate(int N, int ioffset, int offset, int stride) {
3 if(N > 4) {
4 elaborate(N/2, ioffset, offset, stride+1);
5 if(N/4 >= 4) {
6 elaborate(N/4, ioffset+(1<<stride), offset+(N/2), stride+2);
7 elaborate(N/4, ioffset-(1<<stride), offset+(3*N/4), stride+2);
8 }else{
9 CNodeLoad *n = new CNodeLoad(this, 4, ioffset, stride, 0);

10 ns.push_back(assign_leaf_registers(n));
11 }
12 for(int k=0;k<N/4;k++) {
13 CNodeBfly *n = new CNodeBfly(this, 4, k, stride);
14 ns.push_back(assign_body_registers(n,k,N);
15 }
16 }else if(N==4) {
17 CNodeLoad *n = new CNodeLoad(this, 4, ioffset, stride, 1);
18 ns.push_back(assign_leaf_registers(n));
19 }else if(N==2) {
20 CNodeLoad *n = new CNodeLoad(this, 2, ioffset, stride, 1);
21 ns.push_back(assign_leaf_registers(n));
22 }
23 } �

5.1.1.1 Elaborate

Listing 6 is a function, written in C++, that performs the first task in

the process. As mentioned earlier, elaborating a topological ordering of

nodes with a depth-first recursive structure is much like actually com-

puting an FFT with a depth-first recursive program (cf. Listing 26 in

Appendix B). Table 2 lists the nodes contained in the list ‘ns’ after elabo-

rating a size-8 transform by invoking elaborate(8, 0, 0, 0).

A transform is divided into sub-transforms with recursive calls at lines

4, 6 and 7, until the base cases of size 2 or size 4 are reached at the leaves

of the elaboration. As well as the size-2 and size-4 base cases, which are

handled at lines 20-21 and 17-18 (respectively), there is a special case

where two size-2 base cases are handled in parallel at lines 9-10. This

special case of handling two size-2 base cases as a larger size-4 node
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type size addresses registers twiddle

CNodeLoad 4 {0,4,2,6} {0,1,2,3}
CNodeLoad 2(x2) {1,5,7,3} {4,5,6,7}
CNodeBfly 4 {0,2,4,6} ω08
CNodeBfly 4 {1,3,5,7} ω18

Table 2: VL-1 size-8 conjugate-pair transform nodes

ensures that larger transforms are composed of nodes that are homoge-

neous in size – this is of little utility when emitting VL = 1 code, but it

is exploited in Section 5.1.2 where the topological ordering of nodes is

vectorized. The second row of Table 2 is just such a special case, since

two size-2 leaf nodes are being computed, and thus the size is listed as

2(x2).

The elaborate function modifies the class member variable ‘ns’ at

lines 10, 14, 18 and 21, where it appends a new node to the back of the

list. After the function returns, the ns list represents a topological order-

ing of the computation with CNodeLoad and CNodeBfly nodes. The nodes

of type CNodeLoad represent leaf computations: these computations load

elements from the input array and perform a small amount of leaf com-

putation, leaving the result in a set of registers. The CNodeBfly nodes

represent computations in the body of the transform: these use a twid-

dle factor to perform a butterfly computation on a vector of registers,

leaving the result in the same registers.

The constructor for a CNodeLoad object computes input array addresses

for the load operations using the input array offset (ioffset), the input

array stride, the size of the node (the nodes instantiated at lines 9 and

17 are size-4, and the node instantiated at line 20 is size-2) and a final

parameter that is non-zero if the node is a single node (the nodes instan-
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tiated at lines 17 and 20 are single nodes, while the node instantiated at

line 9 is composed of two size-2 nodes).

As the newly instantiated CNodeLoad objects are appended to the back

of ns at lines 10, 14 and 21, the assign_leaf_registers function assigns

registers to the outputs of each instance. Registers are identified with in-

tegers beginning at zero, and when each register is created it is assigned

an identifier from an auto-incrementing counter (Rcounter). This function

also maintains a map of registers to node pointers, referred to as rmap,

where the node for a given register is the last node to reference that

register.

The constructor for a CNodeBfly object uses k and stride to compute

a twiddle factor for the new instance of a butterfly computation node.

When the new instance of CNodeBfly is appended to the end of ns at

line 14, the assign_body_registers function assigns registers Ri to a

node of size Nnode with the following logic:

Ri = Rcounter −N+ k+ i× N
4

(34)

where i = 0, . . . ,Nnode − 1 and Rcounter is the auto-incrementing register

counter. The assign_body_registers functions also updates the map of

registers to node pointers by setting rmap[Ri] to point to the new instance

of CNodeBfly.

5.1.1.2 Emitting code

Given a list of nodes, it is a simple process to emit C code that can be

compiled to actually compute the transform.

The example in Listing 7 would be emitted from the list of four nodes

in Table 2. Lines 1–4 are emitted from a function that generates a header,
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Listing 7: Hard-coded VL-1 size-8 FFT

1 void sfft_dcf8_hc(sfft_plan_t *p, const void *vin, void *vout) {
2 const SFFT_D *in = vin;
3 SFFT_D *out = vout;
4 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7;
5

6 L_4(in+0,in+8,in+4,in+12,&r0,&r1,&r2,&r3);
7 L_2(in+2,in+10,in+14,in+6,&r4,&r5,&r6,&r7);
8 K_0(&r0,&r2,&r4,&r6);
9 S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);

10 K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);
11 S_4(r1,r3,r5,r7,out+2,out+6,out+10,out+14);
12

13 } �
and line 13 is emitted from a function that generates a footer. Lines 6–11

are generated based on the list of nodes.

Listing 7 contains references to several types, functions and macros

that use upper-case identifiers – these are primitive functions or types

that have been predefined as inline functions or macros. A benefit of us-

ing primitives in this way is that the details specific to numerical repre-

sentation and the underlying machine have been abstracted away; thus,

the same function can be compiled for a variety of types and machines

by simply including a different header file with different primitives. List-

ing 7, for example, could be compiled for double-precision arithmetic

on an SSE2 machine by including sse_double.h, or it could be compiled

with much slower scalar arithmetic by including scalar.h. The same

code can even be used, without modification, to compute forward and

backwards transforms, by using C preprocessor directives to condition-

ally alter the macros.

In order to accommodate mixed numerical representations, the signa-

ture of the outermost function references data with void pointers. In the

case of the double-precision example in Listing 7, SFFT_D would be de-
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fined to be double in the appropriate header file, and the void pointers

are then cast to SFFT_D pointers.

The size-8 transform in Table 2 uses 8 registers, and thus a declaration

of 8 registers of type SFFT_R has been emitted at line 4 in Listing 7. In

the case of double-precision arithmetic on a SSE2 machine, SFFT_R is

defined as __m128d in sse_double.h.

The first two rows of Table 2 correspond to lines 6 and 7 of Listing 7,

respectively. The L_4 primitive is used to compute the size-4 leaf node

in the first row of the table. The second row is a load/leaf node of size

2(x2), indicating two size-2 nodes in parallel, which is computed with

the L_2 primitive. The input addresses in the table are the addresses of

complex words, while the addresses in the generated code refer to the

real and imaginary parts of a complex word, and thus the addresses

from Table 2 are multiplied by a factor of 2 to obtain the addresses in

Listing 7.

The final two CNodeBfly nodes of Table 2 correspond to the K_0 and

K_N sub-transform (a.k.a. butterfly) primitives at lines 8 and 10, respec-

tively. Because the node in the third row of Table 2 has a twiddle factor of

ω08 (i.e., unity), the computation requires no multiplication, and the K_0

primitive is used for this special case. The K_N primitive at line 10 does

require a twiddle factor, which is passed to K_N as two vector literals

that represent the twiddle factor in unpacked form.1 Section 3.3.1.3 de-

scribes how interleaved complex multiplication is faster if one operand

is pre-unpacked.

After each node is processed, the registers that have been used by it

are checked in a map (rmap) that maps each register to the last node to

have used that register. If the current node is the last node to have used

1 For the purposes of brevity, the precision has been truncated to only a few decimal
places.
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a register, the register is stored to memory. In the case of the transform

in Listing 7, four registers are stored with an instance of the S_4 prim-

itive at lines 9 and 11. In contrast to the load operations at the leaves,

which are decimated-in-time and thus effectively pseudo-random mem-

ory accesses, the store operations are to linear regions of memory, the

addresses of which can be determined from each register’s integer iden-

tifier. The store address offset for data in register Ri is simply i× 2×VL.

5.1.2 Other vector lengths

If VL > 1, the list of nodes that results from the elaborate function in

Listing 6 is vectorized. Broadly speaking, CNodeLoad objects that operate

on adjacent memory locations are collected together and computed in

parallel. After each such computation, each position in a vector register

contains an element that belongs to a different node. Transposes are

then used to transform sets of vector registers such that each register

contains elements from one node. Finally, the CNodeBfly objects can be

easily computed in parallel, as they were with VL-1 because the elements

in each vector register correspond to one node.

5.1.2.1 Overview

Table 3 lists the nodes that represent a VL-1 size-16 transform. A VL of

2 implies that each vector register contains 2 complex words, and load

operations on each of the 4 addresses in the first row of Table 3 will also

load the complex words in the adjacent memory locations. Note that the

complex words that would be incidentally loaded in the upper half of

the VL-2 registers are the complex words that the third CNodeLoad object
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type size addresses registers twiddle

CNodeLoad 4 {0,8,4,12} {0,1,2,3}
CNodeLoad 2(x2) {2,10,14,6} {4,5,6,7}
CNodeBfly 4 {0,2,4,6} ω016
CNodeBfly 4 {1,3,5,7} ω216
CNodeLoad 4 {1,9,5,13} {8,9,10,11}
CNodeLoad 4 {15,7,3,11} {12,13,14,15}
CNodeBfly 4 {0,4,8,12} ω016
CNodeBfly 4 {1,5,9,13} ω116
CNodeBfly 4 {2,6,10,14} ω216
CNodeBfly 4 {3,7,11,15} ω316

Table 3: VL-1 size-16 conjugate-pair transform nodes

type sizes addresses registers twiddles

Load {4,4} {{0,1},{8,9},{4,5},{12,13}} {{0,1},{2,3},{8,9},{10,11}}
Load {2(x2),4} {{2,3},{10,11},{14,15},{6,7}} {{4,5},{6,7},{14,15},{12,13}}
Bfly {4,4} {{0,1},{2,3},{4,5},{6,7}} {ω0

16,ω2
16}

Bfly {4,4} {{0,1},{4,5},{8,9},{12,13}} {ω0
16,ω1

16}
Bfly {4,4} {{2,3},{6,7},{10,11},{14,15}} {ω2

16,ω3
16}

Table 4: VL-2 size-16 conjugate-pair transform nodes

at row 5 would have loaded. This is exploited to load and compute the

first and third CNodeLoad objects in parallel.

The second CNodeLoad object computes two size-2 leaf transforms in

parallel, while the last CNodeLoad object computes a size-4 leaf transform.

Because the size-4 transform is composed of two size-2 transforms, and

memory addresses of the fourth CNodeLoad are adjacent (although per-

muted), some of the computation can be computed in parallel.

If the CNodeLoad objects at rows 1 and 5 are computed in parallel, the

output will be four VL-2 registers: {{0,8}, {1,9}, {2,10}, {3,11}} – i.e., the first

register contains what would have been register 0 in the lower half, and

what would have been register 8 in the top half etc. Similarly, computing

rows 2 and 6 in parallel would yield four VL-2 registers: {{4,14}, {5,15},
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{6,12}, {7,13}} – note the permutation of the upper halves in this case.

These registers are transposed to {{0,1}, {2,3}, {8,9}, {10,11}} and {{4,5},

{6,7}, {14,15}, {12,13}}, as in row 1 and 2 of Table 4.

With the transposed VL-2 registers, it is now possible to compute

CNodeBfly nodes in parallel. For example, rows 2 and 3 of Table 3 can be

computed in parallel on four VL-2 registers represented by {{0,1}, {2,3},

{4,5}, {6,7}}, as in row 3 of Table 4.

5.1.2.2 Implementation

Listing 9 is a C++ implementation of the vectorize_loads function. This

function modifies a topological ordering of nodes (the class member

variable ns) and uses two other functions: find_parallel_loads, which

searches forward from the current node to find another CNodeLoad that

shares adjacent memory addresses; and merge_loads(a,b), which adds

the addresses, registers and type of b to a. Type introspection is used at

lines 7 and 36 (and in other Listings), to differentiate between the two

types of object.

Listing 8 is a C++ implementation of the vectorize_ks function. For

each CNodeBfly node, the function searches forward for another CNodeBfly

that does not have a register dependence. Once found, the registers of

the latter node are added to the former node, and the latter node erased.

Finally, at line 19, the registers of the vectorized CNodeBfly node are

merged using a perfect shuffle, which is then recursively applied on

each half of the list. The effect is a merge that works for any power of 2

vector length.

If vectorize_loads and vectorize_ks are invoked with VL = 2 on

the topological ordering of nodes in Table 3, the result is the vectorized

node list shown in Table 4. As in Section 5.1.1.2, emitting code is a fairly
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Listing 8: Body node vectorization

1 void CSplitRadix::vectorize_ks() {
2 vector<CNodeHardCoded *>::iterator i;
3 for(i=ns.begin(); i != ns.end();++i) {
4 if(!(*i)->type().compare(‘‘blockbfly ’ ’)) {
5 vector<CNodeHardCoded *>::iterator j = i+1, pj = i;
6 int count = 1;
7 while(j != ns.end() && count < VL) {
8 if(!(*j)->type().compare(‘‘blockbfly ’ ’)
9 && !register_dependence(*i, *j)) {

10 (*i)->rs.insert(
11 (*i)->rs.end(), (*j)->rs.begin(), (*j)->rs.end());
12 ns.erase(j);
13 count++;
14 j = pj+1;
15 }else {
16 pj = j; ++j;
17 }
18 }
19 (*i)->merge_rs();
20 }
21 }
22 } �

simple process, and Listing 10 is the code emitted from the node list in

Table 4. There are only a few differences to note about the emitted code

when VL > 1.

1. The register identifiers in line 4 of Listing 10 consist of a list of

two integers delimited with an underscore. The integers listed in

each register’s name are the VL-1 registers that were subsumed to

create the larger register (cf. VL-1 code in Listing 7);

2. The leaf primitives (lines 6 and 7 in Listing 10) have a list of un-

derscore delimited integers in the name, where each integer corre-

sponds to the type of sub-transform to be computed on that po-

sition in the vector registers. For example, the L_4_4 primitive is

named to indicate a size-4 leaf operation on the lower and upper

halves of the vector registers, while the L_2_4 primitive performs
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Listing 9: Leaf node vectorization

1 CNodeLoad *
2 CSplitRadix::find_parallel_load(vector<CNodeHardCoded*>::iterator i){
3 CNodeLoad *b = (CNodeLoad *)(*i);
4 for(int k=0;k<((N>2)?4:2);k++) {
5 vector<CNodeHardCoded *>::iterator j = i+1;
6 while(j != ns.end()) {
7 if(!(*j)->type().compare(‘‘blockload ’ ’)) {
8 CNodeLoad *b2 = (CNodeLoad *)(*j);
9 if(b2->iaddrs[k] > b->iaddrs[0] &&

10 b2->iaddrs[k] < b->iaddrs[0]+VL) {
11 ns.erase(j);
12 return b2;
13 }
14 ++j;
15 }
16 }
17 }
18 return NULL;
19 }
20 void CSplitRadix::merge_loads(CNodeLoad *b1, CNodeLoad *b2) {
21 for(int i=0;i<b1->size;i++) {
22 for(int j=0;j<b2->iaddrs.size();j++) {
23 if(b2->iaddrs[j] > b1->iaddrs[i] &&
24 b2->iaddrs[j] < b1->iaddrs[i]+VL) {
25 b1->iaddrs.push_back(b2->iaddrs[j]);
26 b1->rs.push_back(b2->rs[j]);
27 if(rmap[b2->rs[j]] == b2) rmap[b2->rs[j]] = b1;
28 }
29 }
30 }
31 b1->types.push_back(b2->types[0]);
32 }
33 void CSplitRadix::vectorize_loads() {
34 vector<CNodeHardCoded *>::iterator i;
35 for(i=ns.begin(); i != ns.end();++i) {
36 if(!(*i)->type().compare(‘‘blockload ’ ’)) {
37 while(CNodeLoad *b2 = find_parallel_load(i))
38 merge_loads((CNodeLoad *)(*i), b2);
39 }
40 }
41 } �
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Listing 10: Hard-coded VL-2 size-16 FFT

1 void sfft_fcf16_hc(sfft_plan_t *p, const void *vin, void *vout) {
2 const SFFT_D *in = vin;
3 SFFT_D *out = vout;
4 SFFT_R r0_1,r2_3,r4_5,r6_7,r8_9,r10_11,r12_13,r14_15;
5

6 L_4_4(in+0,in+16,in+8,in+24,&r0_1,&r2_3,&r8_9,&r10_11);
7 L_2_4(in+4,in+20,in+28,in+12,&r4_5,&r6_7,&r14_15,&r12_13);
8 K_N(VLIT4(0.7071,0.7071,1,1),
9 VLIT4(0.7071,-0.7071,0,-0),

10 &r0_1,&r2_3,&r4_5,&r6_7);
11 K_N(VLIT4(0.9239,0.9239,1,1),
12 VLIT4(0.3827,-0.3827,0,-0),
13 &r0_1,&r4_5,&r8_9,&r12_13);
14 S_4(r0_1,r4_5,r8_9,r12_13,out+0,out+8,out+16,out+24);
15 K_N(VLIT4(0.3827,0.3827,0.7071,0.7071),
16 VLIT4(0.9239,-0.9239,0.7071,-0.7071),
17 &r2_3,&r6_7,&r10_11,&r14_15);
18 S_4(r2_3,r6_7,r10_11,r14_15,out+4,out+12,out+20,out+28);
19 } �

two size-2 leaf operations on the lower half of the registers and a

size-4 leaf operation on the upper halves;

3. The body node primitives (K_N) and store primitives (S_4) are un-

changed because they perform the same operation on each element

of the vector registers. This is as a result of the register transposes

that were previously performed on the outputs of the leaf primi-

tives.

5.1.2.3 Scalability

So far, hard-coded transforms of vector length 1 and 2 have been pre-

sented. On Intel machines, VL-1 can be used to compute double-precision

transforms with SSE2, while VL-2 can be used to compute double-precision

transforms with AVX and single-precision transforms with SSE. The method

of vectorization presented in this chapter scales above VL-2, and has
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been successfully used to compute VL-4 single-precision transforms with

AVX.

The leaf primitives were coded by hand in all cases; VL-1 required L_2

and L_4, while VL-2 required L_2_2, L_2_4, L_4_2 and L_4_4. In the case

of VL-4, not all permutations of possible leaf primitive were required –

only 11 out of 16 were needed for the transforms that were generated.

It is an easy exercise to code the leaf primitives for VL 6 4 by hand, but

for future machines that might feature vector lengths larger than 4, the

leaf primitives could be automatically generated (in fact, Section 5.3.5 is

concerned with automatic generation of leaf sub-transforms at another

level of scale).

5.1.2.4 Constraints

For a transform of size N and leaf node size of S (S = 4 in the examples

in this chapter), the following constraint must be satisfied:

N/VL > S (35)

If this constraint is not satisfied, the size of either VL or S must be

reduced. In practice, VL and S are small relative to the size of most

transforms, and thus these corner cases typically only occur for very

small sized transforms. Such an example is a size-2 transform when

VL = 2 and S = 4, where in this case the transform is too small to be

computed with SIMD operations and should be computed with scalar

arithmetic instead.
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(a) Single-precision, SSE (VL-2)
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(c) Single-precision, AVX (VL-4)
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Figure 7: Performance of hard-coded FFTs on a Macbook Air 4,2.

5.1.3 Performance

Figure 7 shows the results of a benchmark for transforms of size 4

through to 1024 running on a Macbook Air 4,2. The speed of FFTW 3.3

running in estimate and patient modes is also shown for comparison.

FFTW running in patient mode evaluates a huge configuration space

of parameters, while the hard-coded FFT required no calibration.

A variety of vector lengths are represented, and the hard-coded FFTs

have good performance while N/VL 6 128. After this point, perfor-

mance drops off and other techniques should be used. The following
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sections use the hard-coded FFT as a foundation for scaling to larger

sizes of transforms.

5.2 hard-coded four-step

This section presents an implementation of the four-step algorithm [8]

that leverages hard-coded sub-transforms to compute larger transforms.

The implementation uses an implicit memory transpose (along with vec-

tor register transposes) and scales particularly well with VL. In contrast

to the fully hard-coded implementation in the previous section, the four-

step implementation requires no new leaf primitives as VL increases, i.e.,

the code is much the same when VL > 1 as it is when VL = 1.

5.2.1 The four-step algorithm

A transform of size N is decomposed into a two-dimensional array of

size n1 × n2 where N = n1n2. Selecting n1 = n2 =
√
N (or close) often

obtains the best performance results [8]. When either of the factors is

larger than the other, it is the larger of the two factors that will determine

performance, because the larger factor effectively brings the memory

wall closer. The four steps of the algorithm are:

1. Compute n1 FFTs of length n2 along the columns of the array;

2. Multiply each element of the array with ωijN, where i and j are the

array coordinates;

3. Transpose the array;

4. Compute n2 FFTs of length n1 along the columns of the array.
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For this out-of-place implementation, steps 2 and 3 are performed as

part of step 1. Step 1 reads data from the input array and computes the

FFTs, but before storing the data in the final pass, it is multiplied by the

twiddle factors from step 2. After this, the data is stored to rows in the

output array, and thus the transpose of step 3 is performed implicitly.

Step 4 is then computed as usual: FFTs are computed along the columns

of the output array.

This method of computing the four-step algorithm in two steps re-

quires only minor modifications in order to support multiple vector

lengths: with VL > 1, multiple columns are read and computed in paral-

lel without modification of the code, but before storing multiple columns

of data to rows, a register transpose is required.

5.2.2 Vector length 1

When VL = 1, three hard-coded FFTs are elaborated.

1. FFT of length n2 with stride n1 × 2 for the first column of step 1;

2. FFT of length n2 with stride n1× 2 and twiddle multiplications on

outputs – for all other columns of step 1;

3. FFT of length n1 with stride n2 × 2 for columns in step 4.

In order to generate the code for the four-step sub-transforms, some

minor modifications are made to the fully hard-coded code generator

that was presented in the previous section.

The first FFT is used to handle the first column of step 1, where there

are no twiddle factor multiplications because one of the array coordi-

nates for step 2 is zero, and thus ω0N is unity. This FFT may be elabo-

rated as in Section 5.1.1 with the addition of a stride factor for the input
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address calculation. The second FFT is elaborated as per the first FFT,

but with the addition of twiddle factor multiplications on each register

prior to the store operations. The third FFT is elaborated as per the first

FFT, but with strided input and output addresses.

5.2.2.1 Example

Listing 11 is a VL-1 size-64 hard-coded four-step FFT. Before it can be

used, an initialization procedure (not shown) allocates and populates

the LUT at line 1 with the twiddle factors that are required for the step

2 multiplications. Line 44 shows the main function that executes the

first sub-transform on the first column (line 49), and the second sub-

transform on all remaining columns (line 50). Finally, the sub-transforms

corresponding to step 4 of the four-step algorithm are executed on all

columns in line 51.

The twiddle factor multiplication that corresponds to step 2 of the

four-step algorithm takes place in lines 21-23 and lines 26-29. The first

register is not multiplied with a twiddle factor because the first row of

twiddle factors are ω0N (i.e., unity). The other registers are multiplied

with two registers loaded from the LUT, which are the unpacked real

and imaginary parts (see Section 3.3.1.3 for details about unpacked com-

plex multiplication).

5.2.3 Other vector lengths

For VL > 1, the FFTs along the columns are computed in parallel. Thus,

in step 1, n1/VL FFTs are computed along the columns of the array with

stride = 2 × VL, and in step 4, n2/VL FFTs are computed along the

columns with stride = 2×VL.



80 sfft : a high-performance fft library

Listing 11: Hard-coded four-step VL-1 size-64 FFT

1 const SFFT_D __attribute__ ((aligned(32))) *LUT;
2 const SFFT_D *pLUT;
3 void sfft_dcf64_fs_x1_0(sfft_plan_t *p, const void *vin, void *vout){
4 const SFFT_D *in = vin;
5 SFFT_D *out = vout;
6 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7;
7 L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);
8 L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);
9 K_0(&r0,&r2,&r4,&r6);

10 S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);
11 K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);
12 S_4(r1,r3,r5,r7,out+2,out+6,out+10,out+14);
13 }
14 void sfft_dcf64_fs_x1_n(sfft_plan_t *p, const void *vin, void *vout){
15 const SFFT_D *in = vin;
16 SFFT_D *out = vout;
17 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7;
18 L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);
19 L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);
20 K_0(&r0,&r2,&r4,&r6);
21 r2 = MUL(r2,LOAD(pLUT+4),LOAD(pLUT+6));
22 r4 = MUL(r4,LOAD(pLUT+12),LOAD(pLUT+14));
23 r6 = MUL(r6,LOAD(pLUT+20),LOAD(pLUT+22));
24 S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);
25 K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);
26 r1 = MUL(r1,LOAD(pLUT+0),LOAD(pLUT+2));
27 r3 = MUL(r3,LOAD(pLUT+8),LOAD(pLUT+10));
28 r5 = MUL(r5,LOAD(pLUT+16),LOAD(pLUT+18));
29 r7 = MUL(r7,LOAD(pLUT+24),LOAD(pLUT+26));
30 S_4(r1,r3,r5,r7,out+2,out+6,out+10,out+14);
31 pLUT += 28;
32 }
33 void sfft_dcf64_fs_x2(sfft_plan_t *p, const void *vin, void *vout){
34 const SFFT_D *in = vin;
35 SFFT_D *out = vout;
36 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7;
37 L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);
38 L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);
39 K_0(&r0,&r2,&r4,&r6);
40 S_4(r0,r2,r4,r6,out+0,out+32,out+64,out+96);
41 K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);
42 S_4(r1,r3,r5,r7,out+16,out+48,out+80,out+112);
43 }
44 void sfft_dcf64_fs(sfft_plan_t *p, const void *vin, void *vout) {
45 const SFFT_D *in = vin;
46 SFFT_D *out = vout;
47 pLUT = LUT;
48 int i;
49 sfft_dcf64_fs_x1_0(p, in, out);
50 for(i=1;i<8;i++) sfft_dcf64_fs_x1_n(p, in+(i*2), out+(i*16));
51 for(i=0;i<8;i++) sfft_dcf64_fs_x2(p, out+(i*2), out+(i*2));
52 } �
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Listing 12: Hard-coded four-step VL-2 size-64 FFT

1 const SFFT_D __attribute__ ((aligned(32))) *LUT;
2 const SFFT_D *pLUT;
3 void sfft_fcf64_fs_x1(sfft_plan_t *p, const void *vin, void *vout) {
4 const SFFT_D *in = vin;
5 SFFT_D *out = vout;
6 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7;
7 L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);
8 L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);
9 K_0(&r0,&r2,&r4,&r6);

10 K_N(VLIT4(0.7071,0.7071,0.7071,0.7071),
11 VLIT4(0.7071,-0.7071,0.7071,-0.7071),&r1,&r3,&r5,&r7);
12 r1 = MUL(r1,LOAD(pLUT+0),LOAD(pLUT+4));
13 TX2(r0,r1);
14 r2 = MUL(r2,LOAD(pLUT+8),LOAD(pLUT+12));
15 r3 = MUL(r3,LOAD(pLUT+16),LOAD(pLUT+20));
16 TX2(r2,r3);
17 r4 = MUL(r4,LOAD(pLUT+24),LOAD(pLUT+28));
18 r5 = MUL(r5,LOAD(pLUT+32),LOAD(pLUT+36));
19 TX2(r4,r5);
20 r6 = MUL(r6,LOAD(pLUT+40),LOAD(pLUT+44));
21 r7 = MUL(r7,LOAD(pLUT+48),LOAD(pLUT+52));
22 TX2(r6,r7);
23 S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);
24 S_4(r1,r3,r5,r7,out+16,out+20,out+24,out+28);
25 pLUT += 56;
26 }
27 void sfft_fcf64_fs_x2(sfft_plan_t *p, const void *vin, void *vout) {
28 const SFFT_D *in = vin;
29 SFFT_D *out = vout;
30 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7;
31 L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);
32 L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);
33 K_0(&r0,&r2,&r4,&r6);
34 K_N(VLIT4(0.7071,0.7071,0.7071,0.7071),
35 VLIT4(0.7071,-0.7071,0.7071,-0.7071),&r1,&r3,&r5,&r7);
36 S_4(r0,r2,r4,r6,out+0,out+32,out+64,out+96);
37 S_4(r1,r3,r5,r7,out+16,out+48,out+80,out+112);
38 }
39 void sfft_fcf64_fs(sfft_plan_t *p, const void *vin, void *vout) {
40 const SFFT_D *in = vin;
41 SFFT_D *out = vout;
42 pLUT = LUT;
43 int i;
44 for(i=0;i<4;i++) sfft_fcf64_fs_x1(p, in+(i*4), out+(i*32));
45 for(i=0;i<4;i++) sfft_fcf64_fs_x2(p, out+(i*4), out+(i*4));
46 } �
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An implication of computing the first column in parallel with other

columns is that the first column is now multiplied by unity twiddle

factors, and thus only two sub-transforms are used instead of three.

The only other difference when VL > 1 is that the registers need to

be transposed before storing columns to rows (the implicit transpose

that corresponds to step 3). To accomplish this when generating code,

n = VL store operations are latched before the transpose and store code

is emitted.

5.2.3.1 Example

Listing 12 implements a VL-2 size-64 hard-coded four-step FFT. The

main function (line 39) computes 8 FFTs along the columns for step 1

at line 44, and 8 FFTs along the columns for step 4 at line 45. There are

only 4 iterations of the loop in each case because two sub-transforms are

computed in parallel with each invocation of the sub-transform function.

In the function corresponding to the sub-transforms of step 1 (line 3),

two store operations are latched (lines 23 and 24) before emitting code,

which includes the preceding transposes (the TX2 operations) and twid-

dle factor multiplications (lines 13–22).

5.2.4 Performance

Figure 9 shows the results of a benchmark for transforms of size 16

through to 8192 running on a Macbook Air 4,2. The speed of FFTW 3.3

running in estimate and patient modes is also shown for contrast.

The results show that the performance of the four-step algorithm im-

proves as the length of the vector increases, but, as was the case with
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1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Sp

ee
d

(G
FL

O
PS

)

Size

(d) Double-precision, AVX (VL-2)

Figure 9: Performance of hard-coded four-step FFTs on a Macbook Air 4,2.

the hard-coded FFTs in Section 5.1, the performance of the hard-coded

four-step FFTs is limited to a certain range of transform size.

5.3 hard-coded leaves

The performance of the fully hard-coded transforms presented in Sec-

tion 5.1 only scales while N/VL 6 128. This section presents techniques

that are similar to those found in the fully hard-coded transforms, but

applied at another level of scale in order to scale performance to larger

sizes.
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5.3.1 Vector length 1

The fully hard-coded transforms in Section 5.1 used two primitives at the

leaves: a size-4 sub-transform (L_4) and a double size-2 sub-transform

(L_2). These sub-transforms loaded four elements of data from the input

array, performed a small amount of computation, and stored the four

results to the output array.

Performance is scaled to larger transforms by using larger sub-transforms

at the leaves of the computation. These are automatically generated us-

ing fully hard-coded transforms, and thus the size of the leaf computa-

tions is easily parametrized, which is just as well, because the optimal

leaf size is dependent on the size of the transform, the compiler, and the

target machine.

The process of elaborating a topological ordering of nodes represent-

ing a hard-coded leaf transform of size N with leaf sub-transforms of

size Nleaf is as follows:

1. Elaborate a size Nleaf sub-transform;

2. Elaborate a two size Nleaf/2 sub-transforms as one sub-transform;

3. Elaborate the main transform using the sub-transforms from steps

1 and 2 as the leaves of the computation.

The node lists for steps 1 and 2 are elaborated using the fully hard-

coded elaborate function from Listing 6, but because the leaf sub-transform

in step 2 is actually two sub-transforms of size Nleaf/2, the elaborate

function is invoked twice with different offset parameters:

1. elaborate(Nleaf/2, 0, 0, 1);

2. elaborate(Nleaf/2, −1, Nleaf/2, 1);



5.3 hard-coded leaves 85

The code corresponding to steps 1 and 2 is emitted slightly differently

than was the case with the fully hard-coded transforms. Instead of hard

coding the input array indices, the indices are themselves loaded from

an array that is precomputed when the transform is initialized.

The node list corresponding to the main transform in step 3 is elabo-

rated as in the function in Listing 6, but with some minor change. First,

the recursion terminates with leaf nodes of size Nleaf. Second, because

the loops in the body of the sub-transform will be at least 2×Nleaf iter-

ations, the loop for the body sub-transforms (line 12 of Listing 6) is not

statically unrolled. Instead only one node is added to the list of nodes,

and the loop is computed dynamically.

5.3.1.1 Example

Listing 13 is a size-64 hard-coded leaf transform with size-16 leaves. The

first function (lines 1–17) is a size-16 leaf sub-transform, while the second

(lines 18–32) consists of two size-8 leaf sub-transforms in parallel. The

main function (lines 36–46) invokes four leaf sub-transforms (lines 40,

41, 43 and 44), and two loops of body sub-transforms (lines 42 and 45).

The first parameter to the leaf functions (see lines 1 and 18) is a pointer

into an array of precomputed indices for the input data array. At lines 41

and 43–44, the array is incremented before subsequent calls to the leaf

functions, and at line 39 the pointer is reset to the base of the array so

that the transform can be used repeatedly.

The function used for the body sub-transforms (lines 33–35) is a wrap-

per for a primitive that computes a radix-2/4 butterfly. The last parame-

ter to this function is a pointer to a precomputed LUT of twiddle factors

for a sub-transform of size N (the second parameter).
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Listing 13: Hard-coded VL-1 size-64 FFT with size-16 leaves

1 void sfft_dcf64_hcl16_4_e(offset_t *is,const SFFT_D *in,SFFT_D *out){
2 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15;
3 L_4(in+is[0],in+is[1],in+is[2],in+is[3],&r0,&r1,&r2,&r3);
4 L_2(in+is[4],in+is[5],in+is[6],in+is[7],&r4,&r5,&r6,&r7);
5 K_0(&r0,&r2,&r4,&r6);
6 K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);
7 L_4(in+is[8],in+is[9],in+is[10],in+is[11],&r8,&r9,&r10,&r11);
8 L_4(in+is[12],in+is[13],in+is[14],in+is[15],&r12,&r13,&r14,&r15);
9 K_0(&r0,&r4,&r8,&r12);

10 S_4(r0,r4,r8,r12,out+0,out+8,out+16,out+24);
11 K_N(VLIT2(0.9239,0.9239),VLIT2(0.3827,-0.3827),&r1,&r5,&r9,&r13);
12 S_4(r1,r5,r9,r13,out+2,out+10,out+18,out+26);
13 K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r2,&r6,&r10,&r14);
14 S_4(r2,r6,r10,r14,out+4,out+12,out+20,out+28);
15 K_N(VLIT2(0.3827,0.3827),VLIT2(0.9239,-0.9239),&r3,&r7,&r11,&r15);
16 S_4(r3,r7,r11,r15,out+6,out+14,out+22,out+30);
17 }
18 void sfft_dcf64_hcl16_4_o(offset_t *is,const SFFT_D *in,SFFT_D *out){
19 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15;
20 L_4(in+is[0],in+is[1],in+is[2],in+is[3],&r0,&r1,&r2,&r3);
21 L_2(in+is[4],in+is[5],in+is[6],in+is[7],&r4,&r5,&r6,&r7);
22 K_0(&r0,&r2,&r4,&r6);
23 S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);
24 K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);
25 S_4(r1,r3,r5,r7,out+2,out+6,out+10,out+14);
26 L_4(in+is[8],in+is[9],in+is[10],in+is[11],&r8,&r9,&r10,&r11);
27 L_2(in+is[12],in+is[13],in+is[14],in+is[15],&r12,&r13,&r14,&r15);
28 K_0(&r8,&r10,&r12,&r14);
29 S_4(r8,r10,r12,r14,out+16,out+20,out+24,out+28);
30 K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r9,&r11,&r13,&r15);
31 S_4(r9,r11,r13,r15,out+18,out+22,out+26,out+30);
32 }
33 void sfft_dcf64_hcl16_4_X_4(SFFT_D *data, int N, SFFT_D *LUT){
34 X_4(data, N, LUT);
35 }
36 void sfft_dcf64_hcl16_4(sfft_plan_t *p, const void *vin, void *vout){
37 const SFFT_D *in = vin;
38 SFFT_D *out = vout;
39 p->is = p->is_base;
40 sfft_dcf64_hcl16_4_e(p->is,in,out+0);
41 p->is += 16; sfft_dcf64_hcl16_4_o(p->is,in,out+32);
42 sfft_dcf64_hcl16_4_X_4(out+0,32,p->ws[0]);
43 p->is += 16; sfft_dcf64_hcl16_4_e(p->is,in,out+64);
44 p->is += 16; sfft_dcf64_hcl16_4_e(p->is,in,out+96);
45 sfft_dcf64_hcl16_4_X_4(out+0,64,p->ws[1]);
46 } �
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size input array addresses

16 {0, 64, 32, 96, 16, 80, 112, 48, 8, 72, 40, 104, 120, 56, 24, 88}
8(x2) {4, 68, 36, 100, 20, 84, 116, 52, 124, 60, 28, 92, 12, 76, 108, 44}

16 {2, 66, 34, 98, 18, 82, 114, 50, 10, 74, 42, 106, 122, 58, 26, 90}
16 {126, 62, 30, 94, 14, 78, 110, 46, 6, 70, 38, 102, 118, 54, 22, 86}
16 {1, 65, 33, 97, 17, 81, 113, 49, 9, 73, 41, 105, 121, 57, 25, 89}

8(x2) {5, 69, 37, 101, 21, 85, 117, 53, 125, 61, 29, 93, 13, 77, 109, 45}
16 {127, 63, 31, 95, 15, 79, 111, 47, 7, 71, 39, 103, 119, 55, 23, 87}

8(x2) {3, 67, 35, 99, 19, 83, 115, 51, 123, 59, 27, 91, 11, 75, 107, 43}

Table 5: Size-16 leaf nodes in VL-1 size-128 hard-coded leaf FFT

size input array addresses

16 {0, 64, 32, 96, 16, 80, 112, 48, 8, 72, 40, 104, 120, 56, 24, 88}
16 {1, 65, 33, 97, 17, 81, 113, 49, 9, 73, 41, 105, 121, 57, 25, 89}
16 {2, 66, 34, 98, 18, 82, 114, 50, 10, 74, 42, 106, 122, 58, 26, 90}

8(x2) {3, 67, 35, 99, 19, 83, 115, 51, 123, 59, 27, 91, 11, 75, 107, 43}
8(x2) {4, 68, 36, 100, 20, 84, 116, 52, 124, 60, 28, 92, 12, 76, 108, 44}
8(x2) {5, 69, 37, 101, 21, 85, 117, 53, 125, 61, 29, 93, 13, 77, 109, 45}

16 {126, 62, 30, 94, 14, 78, 110, 46, 6, 70, 38, 102, 118, 54, 22, 86}
16 {127, 63, 31, 95, 15, 79, 111, 47, 7, 71, 39, 103, 119, 55, 23, 87}

Table 6: Sorted size-16 leaf nodes in VL-1 size-128 hard-coded leaf FFT

5.3.2 Improving memory locality in the leaves

Table 5 lists the addresses of data loaded by each of the size-16 leaf nodes

in a size-128 transform. It is difficult to improve the locality of accesses

within a leaf sub-transform (doing so would require the use of expensive

transposes), but the order of the leaf sub-transforms can be changed to

yield better locality between sub-transforms.

Table 6 is the list of nodes from Table 5 after the rows have been sorted

according to the minimum address in each row. There are now three dis-

tinct groups in the list: the first three sub-transforms of size-16, the sec-
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ond three sub-transforms of 2x size-8, and the final two sub-transforms

of size-16. The memory accesses are now linear between consecutive sub-

transforms, though the second and third groups operate on a permuted

ordering of the addresses.

The pattern exhibited by Table 6 can be exploited to access the data

stored in the input array with better locality, as Figures 10 and 11 show.

Figure 10 depicts the memory access pattern of an FFT with size-16

hard-coded leaves, while Figure 11 depicts the same FFT with sorted

hard-coded leaves.

To compute the FFT with sorted leaves, the leaf sub-transforms and

the body sub-transforms are split into two separate lists, and the en-

tire list of leaf sub-transforms is computed before any of the body sub-

transforms. There is, however, a cost associated with this re-arrangement:

each leaf sub-transform’s offset into the output array is not easy to com-

pute because the offsets are now essentially decimated-in-frequency, and

thus they are now pre-computed. Overall, the trade-off is justified be-

cause the output memory accesses within each leaf sub-transform are

still linear.

The leaf transforms can be computed in three loops. The first and

third loops compute size-Nleaf sub-transforms, while the second loop

computes size-Nleaf/2 sub-transforms. The size of the three loops i0, i1

and i2 are:

i0 =
⌊

N
3×Nleaf

⌋
+ 1 (36)

i1 =

⌊
N

3×Nleaf

⌋
+

⌊(
N

Nleaf
mod 3

)
× 1
2

⌋
(37)
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Figure 10: Memory access pattern of the straight line blocks of code in a VL-1
size-128 hard-coded leaf FFT
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and

i2 =

⌊
N

3×Nleaf

⌋
(38)

The transform can now be elaborated without leaf nodes, and the code

for the three loops emitted in the place of calls to individual leaf sub-

transforms.

5.3.2.1 Example

Listing 14 is the main function for the FFT that corresponds to the

leaf node list in Table 6. The first and third loops invoke size-16 sub-

transforms at lines 8 and 16, and the second loop invokes 2x size-8

sub-transforms at line 12. Following the leaf sub-transforms, the body

sub-transforms are called at lines 19-23.

5.3.2.2 Scalability

In terms of code size, computing the leaf sub-transforms with three

loops is economical. As the size of the transform grows, the code size

attributed to the leaf sub-transforms remains constant. However, as the

size of the transform begins to grow large (e.g., > 65, 536), the instruc-

tions required for the body sub-transform calls (lines 19-23 in Listing 14)

begins to dominate the overall program size. Section 5.3.4 describes a

method for compressing the code size of the body sub-transform calls

while maintaining performance.

Because the input array references between consecutive leaves are now

linear, and like types of leaf sub-transforms are grouped together, it is

now possible to compute several leaf sub-transforms in parallel, which

is fully described in Section 5.3.5.
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Listing 14: Hard-coded VL-1 size-128 FFT with size-16 leaves (sub-transforms
omitted)

1 void sfft_dcf128_shl16_4(sfft_plan_t *p,const void *vin,void *vout){
2 const SFFT_D *in = vin;
3 SFFT_D *out = vout;
4 offset_t *is = p->is_base;
5 offset_t *offsets = p->offsets_base;
6 int i;
7 for(i=3;i>0;--i) {
8 sfft_dcf128_shl16_4_e(is, in, out+offsets[0]);
9 is += 16; offsets += 1;

10 }
11 for(i=3;i>0;--i) {
12 sfft_dcf128_shl16_4_o(is, in, out+offsets[0]);
13 is += 16; offsets += 1;
14 }
15 for(i=2;i>0;--i) {
16 sfft_dcf128_shl16_4_e(is, in, out+offsets[0]);
17 is += 16; offsets += 1;
18 }
19 sfft_dcf128_shl16_4_X_4(out+0, 32, p->ws[0]);
20 sfft_dcf128_shl16_4_X_4(out+0, 64, p->ws[1]);
21 sfft_dcf128_shl16_4_X_4(out+128, 32, p->ws[0]);
22 sfft_dcf128_shl16_4_X_4(out+192, 32, p->ws[0]);
23 sfft_dcf128_shl16_4_X_4(out+0, 128, p->ws[2]);
24 } �

5.3.3 Body sub-transform radix

The radix of the body sub-transforms can be increased in order to re-

duce the number of passes over the data and make better use of the

cache. In practice, the body sub-transform radix is limited by the asso-

ciativity of the cache as the size of the transform increases. If the radix

is greater than the associativity of the nearest level of cache in which a

sub-transform cannot fit, there will be cache misses for every iteration of

the sub-transform’s loop, resulting in severely degraded performance.

All Intel SIMD microprocessors since the Netburst micro-architecture

have had at least 8-way associativity in all levels of cache, and thus in-
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creasing the radix from 4 to 8 is a sensible decision when targeting Intel

machines.

Just as the split-radix 2/4 algorithm requires two different types of leaf

sub-transforms, a split-radix 2/8 algorithm would require three, which

increases the complexity of statically elaborating and generating code.

There is an alternative that does not require implementing three types

of leaf sub-transform: where a size-N body sub-transform divides into

a size N/2 body sub-transform and two size N/4 sub-transforms, the

size N and size N/2 sub-transforms may be collected together and com-

puted as a size-8 sub-transform. Thus the transform is computed with

two types of leaf sub-transform and two types of body sub-transform,

instead of three types of leaf sub-transform and one type of body sub-

transform, as with the standard split-radix 2/8 algorithm.

For the size-128 tranform in Listing 14, either the sub-transform at

line 19 can be subsumed into the sub-transform at line 20, or the sub-

transform at line 20 can be subsumed into the sub-transform at line

23 – but not both. The latter choice is better because it involves larger

transforms.

The code in Listing 15 iterates in reverse over a list of sub-transforms

and doubles the radix of the body sub-transforms. Because the list may

include multiple types, type introspection at lines 6 and 20 filters out all

types that are not body sub-transforms. For each body sub-transform,

the increase_body_radix function searches upwards through the list for

a subsumable body sub-transform (using find_subsumable_sub_transform)

and if a match is found, the smaller sub-transform is removed from the

list, and the size of the larger sub-transform is doubled.

Figure 12 depicts the memory access patterns of a size-128 transform

where the outermost body sub-transform has subsumed a smaller sub-
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Listing 15: Doubling the radix of body sub-transforms

1 CBody *CHardCodedLeaf::find_subsumable_sub_transform(
2 vector<CNode *>::reverse_iterator i) {
3 CBody *first = (CBody *)(*i); i++;
4 while(i != bs.rend()) {
5 if(!((*i)->type().compare("body"))) {
6 CBody *second = (CBody *)(*i);
7 if(first->N == second->N*2 && first->offset == second->offset){
8 bs.erase((++i).base());
9 return second;

10 }
11 }
12 ++i;
13 }
14 return NULL;
15 }
16 void CHardCodedLeaf::increase_body_radix(void) {
17 vector<CNode *>::reverse_iterator ri;
18 for(ri=bs.rbegin(); ri!=bs.rend(); ++ri) {
19 if(!((*ri)->type().compare("body"))) {
20 CBody *n1 = (CBody *)(*ri);
21 CBody *n2 = find_subsumable_sub_transform(ri);
22 if(n2) n1->size *= 2;
23 }
24 }
25 } �

transform to become a size-8 sub-transform. The columns from 33 on-

wards show the sub-transform accessing eight elements in the output

data array (cf. Figure 11, which shows the memory access patterns of the

same transform prior to doubling the radix of the outer sub-transform).

5.3.4 Optimizing the hierarchical structure

The largest transform that has been considered so far is size-128. As

it stands, the hard-coded leaf approach begins to generate code of un-

wieldy proportions as the size of the transform tends towards tens of

thousands or hundreds of thousands of points. This is due to the lists of
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statically elaborated body sub-transform calls, e.g., a size-262,144 trans-

form contains a lengthy list of 7279 such calls.

While long lists of statically elaborated calls are one extreme, the other

is to compute the body sub-transforms with a recursive program. The

former option degrades performance for larger transforms, while the

latter option curbs performance for smaller transforms. A compromise

is to somehow compress blocks of statically elaborated sub-transform

calls.

The approach presented here extracts the hierarchical structure from

the sequence of body sub-transforms and emits a set of functions that

are neither too small (as in the case of a recursive program) nor too

large (as is the case with full static elaboration). This is accomplished by

adapting the Sequitur algorithm [63], which builds a grammar of rules

from a sequence of symbols, and enforces two basic constraints:

1. no pair of adjacent symbols (referred to as a digram) appears more

than once in the grammar;

2. every rule is used more than once.

The resulting grammar is an efficient hierarchical representation of

the original sequence. Additional constraints can be imposed to limit

the maximum or minimum size of each rule, which enable the size of

the resulting functions to be tuned to be not too small and not too large.

To build the grammar, each body sub-transform is represented by a

symbol consisting of the size and offset of the sub-transform. The radix

is discarded, because it can be inferred from the size. Here are several

other details relevant to this particular application of Sequitur:

• A digram of two sub-transforms is deemed to match another di-

gram when the size of each sub-transform matches the size of the
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other digram’s respective sub-transform and the relative offsets be-

tween sub-transforms within each digram match;

• Sub-transform offsets are maintained to be always relative to the

base of the containing rule – when a rule is constructed, the offsets

of the symbols within that rule are adjusted to be relative to the

base of the new rule, and when a rule is subsumed (due to viola-

tion of constraint 2: every rule must be used more than once), the

offsets are recomputed to be relative to the subsuming rule.

5.3.4.1 Example

A size-8192 hard-coded leaf FFT requires 229 calls to radix-2/4 and size-

8 body sub-transforms. After optimizing the sequence of calls with Se-

quitur, the compact set of functions shown in Listing 16 replaces a se-

quence of 229 calls.

Compared to the full list of statically elaborated calls, the optimized

set of functions requires less code space while achieving better perfor-

mance; and compared to a recursive program, the optimized set of func-

tion calls is faster (due to lower call and stack overhead) while trading

off an acceptably small amount of code space.

5.3.4.2 Scalability

The technique presented in this section has been verified for transforms

ranging in size from 26 through to 225 (32 mega) points. The technique

works well up until sizes of about 218 points, but for larger transforms

the elaboration and compile times begin to exceed 1 second or so, and

the code size again begins to grow large. For transforms larger than 218

points, a recursive program can be used until leaves of size 218 points are

reached, at which point the technique presented in this section is used.
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Listing 16: Optimized body sub-transforms for size-8192 FFT

1 void sfft_dcf8192_shl16_8_4(sfft_plan_t *p, SFFT_D *out) {
2 X_4(out+0, 32, p->ws[0]);
3 X_4(out+128, 32, p->ws[0]);
4 X_4(out+192, 32, p->ws[0]);
5 X_8(out+0, 128, p->ws[2]);
6 }
7 void sfft_dcf8192_shl16_8_5(sfft_plan_t *p, SFFT_D *out) {
8 X_8(out+0, 64, p->ws[1]);
9 X_8(out+128, 64, p->ws[1]);

10 }
11 void sfft_dcf8192_shl16_8_9(sfft_plan_t *p, SFFT_D *out) {
12 X_8(out+0, 64, p->ws[1]);
13 X_4(out+128, 32, p->ws[0]);
14 X_4(out+192, 32, p->ws[0]);
15 sfft_dcf8192_shl16_8_5(p, out+256);
16 X_8(out+0, 256, p->ws[3]);
17 }
18 void sfft_dcf8192_shl16_8_13(sfft_plan_t *p, SFFT_D *out) {
19 sfft_dcf8192_shl16_8_4(p, out+0);
20 sfft_dcf8192_shl16_8_5(p, out+256);
21 sfft_dcf8192_shl16_8_4(p, out+512);
22 sfft_dcf8192_shl16_8_4(p, out+768);
23 X_8(out+0, 512, p->ws[4]);
24 }
25 void sfft_dcf8192_shl16_8_14(sfft_plan_t *p, SFFT_D *out) {
26 sfft_dcf8192_shl16_8_9(p, out+0);
27 sfft_dcf8192_shl16_8_9(p, out+512);
28 }
29 void sfft_dcf8192_shl16_8_18(sfft_plan_t *p, SFFT_D *out) {
30 sfft_dcf8192_shl16_8_9(p, out+0);
31 sfft_dcf8192_shl16_8_4(p, out+512);
32 sfft_dcf8192_shl16_8_4(p, out+768);
33 sfft_dcf8192_shl16_8_14(p, out+1024);
34 X_8(out+0, 1024, p->ws[5]);
35 }
36 void sfft_dcf8192_shl16_8_22(sfft_plan_t *p, SFFT_D *out) {
37 sfft_dcf8192_shl16_8_13(p, out+0);
38 sfft_dcf8192_shl16_8_14(p, out+1024);
39 sfft_dcf8192_shl16_8_13(p, out+2048);
40 sfft_dcf8192_shl16_8_13(p, out+3072);
41 X_8(out+0, 2048, p->ws[6]);
42 }
43 void sfft_dcf8192_shl16_8_1(sfft_plan_t *p, SFFT_D *out) {
44 sfft_dcf8192_shl16_8_22(p, out+0);
45 sfft_dcf8192_shl16_8_18(p, out+4096);
46 sfft_dcf8192_shl16_8_18(p, out+6144);
47 sfft_dcf8192_shl16_8_22(p, out+8192);
48 sfft_dcf8192_shl16_8_22(p, out+12288);
49 X_8(out+0, 8192, p->ws[8]);
50 } �
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size input array addresses

16 {0, 64, 32, 96, 16, 80, 112, 48, 8, 72, 40, 104, 120, 56, 24, 88}
16 {1, 65, 33, 97, 17, 81, 113, 49, 9, 73, 41, 105, 121, 57, 25, 89}

16 {2, 66, 34, 98, 18, 82, 114, 50, 10, 74, 42, 106, 122, 58, 26, 90}
8(x2) {3, 67, 35, 99, 19, 83, 115, 51, 123, 59, 27, 91, 11, 75, 107, 43}

8(x2) {4, 68, 36, 100, 20, 84, 116, 52, 124, 60, 28, 92, 12, 76, 108, 44}
8(x2) {5, 69, 37, 101, 21, 85, 117, 53, 125, 61, 29, 93, 13, 77, 109, 45}

16 {126, 62, 30, 94, 14, 78, 110, 46, 6, 70, 38, 102, 118, 54, 22, 86}
16 {127, 63, 31, 95, 15, 79, 111, 47, 7, 71, 39, 103, 119, 55, 23, 87}

Table 7: Sorted size-16 leaf nodes in size-128 hard-coded leaf FFT, grouped for
VL-2

5.3.5 Other vector lengths

The method of vectorizing the hard-coded leaf FFT is similar to that of

the hard-coded FFT in Section 5.1.2; the only difference here is the level

of scale.

The hard-coded FFT was vectorized by collecting together primitive

leaf operations that loaded data from adjacent memory locations. The

hard-coded leaf FFT has already been sorted such that consecutive leaf

sub-transforms load data from adjacent memory locations (see Section

5.3.2), so the task is easier in this case – at least in one respect.

Table 7 shows the sorted size-16 leaf sub-transforms for a size-128

transform with the rows divided into VL-2 groups. Because each group

of two leaf sub-transforms loads data from adjacent memory locations,

the group of sub-transforms can be loaded in parallel with vector mem-

ory operations, and all (or some) of the computation done in parallel.

The first, third and fourth groups in Table 7 contain leaf nodes of the

same size/type; these are the easiest vector leaf sub-transforms to com-

pute, as described in Section 5.3.5.1. The second group of rows con-
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Listing 17: Homogeneous size-16 leaf sub-transform for VL-2 size-128 hard-
coded leaf FFT

1 void
2 sfft_fcf128_shl16_8_ee(offset_t *is,const SFFT_D *in,SFFT_D *out){
3 SFFT_R r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15;
4 L_4(in+is[0],in+is[1],in+is[2],in+is[3],&r0,&r1,&r2,&r3);
5 L_2(in+is[4],in+is[5],in+is[6],in+is[7],&r4,&r5,&r6,&r7);
6 K_0(&r0,&r2,&r4,&r6);
7 K_N(VLIT4(0.7071,0.7071,0.7071,0.7071),
8 VLIT4(0.7071,-0.7071,0.7071,-0.7071),
9 &r1,&r3,&r5,&r7);

10 L_4(in+is[8],in+is[9],in+is[10],in+is[11],&r8,&r9,&r10,&r11);
11 L_4(in+is[12],in+is[13],in+is[14],in+is[15],&r12,&r13,&r14,&r15);
12 K_0(&r0,&r4,&r8,&r12);
13 K_N(VLIT4(0.9239,0.9239,0.9239,0.9239),
14 VLIT4(0.3827,-0.3827,0.3827,-0.3827),
15 &r1,&r5,&r9,&r13);
16 TX2(&r0,&r1); TX2(&r4,&r5); TX2(&r8,&r9); TX2(&r12,&r13);
17 S_4(r0,r4,r8,r12,out0+0,out0+8,out0+16,out0+24);
18 S_4(r1,r5,r9,r13,out1+0,out1+8,out1+16,out1+24);
19 K_N(VLIT4(0.7071,0.7071,0.7071,0.7071),
20 VLIT4(0.7071,-0.7071,0.7071,-0.7071),
21 &r2,&r6,&r10,&r14);
22 K_N(VLIT4(0.3827,0.3827,0.3827,0.3827),
23 VLIT4(0.9239,-0.9239,0.9239,-0.9239),
24 &r3,&r7,&r11,&r15);
25 TX2(&r2,&r3); TX2(&r6,&r7); TX2(&r10,&r11); TX2(&r14,&r15);
26 S_4(r2,r6,r10,r14,out0+4,out0+12,out0+20,out0+28);
27 S_4(r3,r7,r11,r15,out1+4,out1+12,out1+20,out1+28);
28 } �

tains leaf sub-transforms of differing size/type, and computing these

sub-transforms is covered separately in Section 5.3.5.2.

5.3.5.1 Homogeneous leaf sub-transform vectors

The vector leaf sub-transforms of a single size/type are handled in the

same way as a VL-1 sub-transform, with one difference: the vector reg-

isters must be transposed before the data is stored to memory in the

output array. In the example shown in Listing 17, the transposes take

place at lines 16 and 25.
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Listing 18: Heterogeneous size-16 leaf sub-transform for VL-2 size-128 hard-
coded leaf FFT

1 void
2 sfft_fcf128_shl16_8_eo(offset_t *is,const SFFT_D *in,SFFT_D *out){
3 SFFT_R r0_1,r2_3,r4_5,r6_7,r8_9,r10_11,r12_13,r14_15,
4 r16_17,r18_19,r20_21,r22_23,r24_25,r26_27,r28_29,r30_31;
5 L_4_4(in+is[0],in+is[1],in+is[2],in+is[3],
6 &r0_1,&r2_3,&r16_17,&r18_19);
7 L_2_2(in+is[4],in+is[5],in+is[6],in+is[7],
8 &r4_5,&r6_7,&r20_21,&r22_23);
9 K_N(VLIT4(0.7071,0.7071,1,1),VLIT4(0.7071,-0.7071,0,-0),

10 &r0_1,&r2_3,&r4_5,&r6_7);
11 L_4_2(in+is[8],in+is[9],in+is[10],in+is[11],
12 &r8_9,&r10_11,&r28_29,&r30_31);
13 L_4_4(in+is[12],in+is[13],in+is[14],in+is[15],
14 &r12_13,&r14_15,&r24_25,&r26_27);
15 K_N(VLIT4(0.9239,0.9239,1,1),VLIT4(0.3827,-0.3827,0,-0),
16 &r0_1,&r4_5,&r8_9,&r12_13);
17 S_4(r0_1,r4_5,r8_9,r12_13,out0+0,out0+8,out0+16,out0+24);
18 K_N(VLIT4(0.3827,0.3827,0.7071,0.7071),
19 VLIT4(0.9239,-0.9239,0.7071,-0.7071),
20 &r2_3,&r6_7,&r10_11,&r14_15);
21 S_4(r2_3,r6_7,r10_11,r14_15,out0+4,out0+12,out0+20,out0+28);
22 K_N(VLIT4(0.7071,0.7071,1,1),VLIT4(0.7071,-0.7071,0,-0),
23 &r16_17,&r18_19,&r20_21,&r22_23);
24 S_4(r16_17,r18_19,r20_21,r22_23,out1+0,out1+4,out1+8,out1+12);
25 K_N(VLIT4(0.7071,0.7071,1,1),VLIT4(0.7071,-0.7071,0,-0),
26 &r24_25,&r26_27,&r28_29,&r30_31);
27 S_4(r24_25,r26_27,r28_29,r30_31,out1+16,out1+20,out1+24,out1+28);
28 } �

Prior to the store operations, each position of the vector register (each

position being a whole complex word) contains an element belonging to

each of the leaf sub-transforms composing the vectorized sub-transform.

Because each leaf sub-transform is stored sequentially to different loca-

tions in memory with aligned vector store operations, sets of registers

are transposed such that each vector register contains elements from

only one leaf sub-transform.
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5.3.5.2 Heterogeneous leaf sub-transform vectors

In the case of a vector comprising heterogeneous leaf sub-transforms, the

data is transposed into separate sub-transforms following the primitive

leaf operations. The remainder of the computation is carried out sepa-

rately for each leaf sub-transform in the vector, and no further transposes

are required.

When elaborating and generating code for VL-2 transforms, there are

only two heterogeneous leaf sub-transforms that might be required, but

for other vector lengths the combinations are more complex. During the

elaboration process, each unique combination that is encountered in the

sorted list of leaf sub-transforms is elaborated into a function with re-

peated calls to the elaborate function, as was done in Section 5.3.1 in

order to elaborate a sub-transform composed of two size Nleaf/2 sub-

transforms.

Listing 18 is an example of a heterogeneous size-16 VL-2 leaf sub-

transform, where one size-16 leaf sub-transform is loaded into the lower

halves of the vector registers, and the data from another leaf sub-transform

composed of two size-8 sub-transforms is loaded into the upper halves.

The primitive leaf operations at lines 5, 7, 11 and 13 transpose each sub-

transform’s data into separate vector registers, and the remainder of the

computation is performed on each sub-transform separately. The size-16

sub-transform is stored to sequential locations in memory at lines 17 and

21, while the sub-transform composed of two size-8 leaf sub-transforms

is stored to memory at lines 24 and 27.
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5.3.6 Streaming stores

Some machines support streaming store or non-temporal store instruc-

tions; these instructions are used to store data to locations that do not

have temporal locality, and thus the cache can be bypassed. The hard-

coded leaf FFT described in the previous sections splits the computa-

tion into a pass of leaf sub-transforms and several passes of body sub-

transforms. For large transforms where the size of the data exceeds the

outermost level of cache, the non-temporal store instructions can be used

in the leaf sub-transforms to bypass the cache when storing data to the

output array; this can greatly improve performance by keeping other

data in cache. The Intel SSE and AVX vector extensions both support

streaming stores.

5.3.7 Performance

Figure 14 shows the results of a benchmark for transforms of size 256

through to 262,144 running on a Macbook Air 4,2. The speed of FFTW 3.3

running in estimate and patient modes is also shown for comparison.

For each size of transform, precision and vector length (i.e., either

SSE or AVX), several configurations of hard-coded leaf FFT were gener-

ated: three configurations of leaf size (16, 32 and 64), and if the trans-

form was larger than 32,768, an additional transform with size-16 leaves

and streaming store instructions was also generated. Before running the

benchmark, the library was calibrated and the fastest configuration se-

lected (details of the calibration are described in section 5.4.1.3).

For most sizes of transform, precision and vector length, SFFT is faster

than FFTW running in patient mode. For the transforms with memory
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Figure 14: Performance of hard-coded leaf FFTs on a Macbook Air 4,2.

requirements that are approximately at the limits of the cache, FFTW

running in patient mode is sometimes marginally faster than SFFT. Once

the transforms exceed the size of the cache, SFFT is again the fastest.

It is important to note that FFTW running in patient mode evaluates

a huge configuration space of parameters (and thus takes a long time

to calibrate), while SFFT has, in this case, only evaluated either three or

four configurations per transform.
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5.4 in practice

SFFT is not itself an FFT library; the name refers to the elaboration pro-

gram that reads a configuration file and generates the code for an FFT

library. The code for the FFT library is then built as any other library

would be.

5.4.1 Organization

As well as the generated code, there is infrastructure code which is com-

mon to all libraries generated by SFFT. This can be broadly categorized

into three parts: initialization, dispatch and calibration.

5.4.1.1 Initialization

Before an application can compute an FFT with SFFT, it must initial-

ize a plan for the specific size, precision and direction of FFT. The li-

brary may have several FFTs and configurations that can compute the

requested FFT, and it chooses the fastest option by timing each of the

candidate configurations, which is at most 8 for any size of transform –

a very small space compared to FFTW’s exhaustive search of all possible

FFT algorithms and configurations. Chapter 7 describes an alternative

to calibration, where machine learning is used with data collected from

benchmarks to build a model that predicts performance.

After determining which implementation and parameters will be used,

the initialization code allocates memory and populates any lookup ta-

bles that may be required. Before returning the plan to the application, a

function pointer in the plan is updated to point to the FFT that has just

been initialized.
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5.4.1.2 Dispatch

Applications do not invoke any of the FFTs within SFFT directly. Rather

they invoke a dispatch function on an initialized plan, which in turn

transfers control to the correct FFT code within SFFT. The use of a dis-

patch function is purely a matter of convenience, so that users only need

to deal with a few simple functions.

5.4.1.3 Calibration

SFFT contains calibration code to measure the performance of the possi-

ble configurations of FFT on the target machine, which is at most 8 for

each size of transform. Following calibration, the timing data is written

to a file, which is then used by SFFT to select the fastest possible FFT for

a given problem running on that machine.

5.4.2 Usage

SFFT is used much like other FFT libraries:

1. A plan for an FFT is initialized;

2. Using the plan, an FFT is computed (this step may be repeated

many times);

3. The plan is destroyed.

The plan is initialized for a given size, precision and direction of trans-

form, and may then be executed any number of times on any data. Any

number of plans can be simultaneously created and used.

In Listing 19, a size-1024 transform is computed on double-precision

data with AVX enabled. In lines 2-4, the input and output arrays are
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Listing 19: SFFT example usage

1 int n = 1024;
2 double complex __attribute__ ((aligned(32))) *input, *output;
3 input = _mm_malloc(n * sizeof(double complex), 32);
4 output = _mm_malloc(n * sizeof(double complex), 32);
5

6 for(i=0;i<n;i++) input[i] = i;
7

8 sfft_plan_t *p = sfft_init(i, SFFT_FORWARD|SFFT_DOUBLE|SFFT_AVX);
9

10 if(p) {
11

12 sfft_execute(p, input, output);
13 for(i=0;i<n;i++)
14 printf("%d %f %f\n", i, creal(output[i]), cimag(output[i]));
15 sfft_free(p);
16

17 }else{
18 printf("Plan unsupported\n");
19 } �

allocated with 32 byte alignment, as is required for aligned AVX memory

operations. The plan is initialized at line 8, used to compute an FFT at

line 12 (provided the requested plan is supported), and finally freed at

line 20.

5.4.3 Other optimizations

In addition to generating a general-purpose library that can be calibrated

for a machine and application at runtime, there are several situations

where the SFFT library can be specially optimized:

1. If the machine and application are fixed, a one time calibration can

be performed and an optimized library containing only the fastest

transforms specific to the application and machine is generated;
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2. If the application is fixed, an optimized library containing only the

transforms specific to the application is generated (and the library

is calibrated the first time it is used on each machine);

3. If the machine is fixed, an optimized library containing only the

transforms specific to the machine is generated (and an application

can use any transform without calibration).



6
B E N C H M A R K M E T H O D S

“If one takes care of the means, the end will take care of
itself.”

— Gandhi

This chapter describes the benchmarking methods used to evaluate the

performance and accuracy of various FFT implementations throughout

this thesis.

The two architectures of interest are the Intel x86 architecture and

the ARM architecture. A comprehensive set of results collected from a

wide range of machines implementing these architectures is presented

in Chapter 7, but throughout the rest of the thesis, benchmarks are per-

formed on an Apple Macbook Air 4,2; a widely available and currently

state-of-the-art machine that is equipped with an Intel Core i5-2557M.

Table 8 summarizes the specifications of the machine.

For the x86 benchmarks, an existing framework called BenchFFT [1]

was used. For the ARM benchmarks, which were performed on iOS de-

vices, there was no existing FFT benchmark software, and so an applica-

tion was written for this purpose, which is described in Section 6.2.

6.1 x86 architecture

The x86 benchmarks were performed with BenchFFT, a collection of FFT

libraries and benchmarking software assembled by Frigo and Johnson,

109
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macbook air 4 ,2

CPU Dual-core Intel Core i5 (i5-2557M)
CPU clock 1.7 GHz (turbo to 2.7GHz with one core)
L1 cache 32KB I-cache & 32KB D-cache
L2 cache 256KB
L3 cache 3MB shared
Memory 4 GB of 1333 MHz DDR3 SDRAM
OS OS X 10.7.2
SIMD extensions SSE and AVX

Table 8: Specifications of the primary test machine

the authors of FFTW [1]. The benchmarks in BenchFFT use timing and

calibration code from lmbench, a performance analysis tool written by

Larry McVoy and Carl Staelin [59].

6.1.1 Timing

BenchFFT measures the initialization time and runtime of an FFT sepa-

rately. The initialization time is measured only once, and thus outliers

due to effects from external factors such as OS scheduling are occasion-

ally observed. Routines from lmbench are then used to calibrate the mini-

mum number of FFT iterations required for accurate measurement using

the gettimeofday function. Finally, the time taken to run the minimum

number of iterations is measured eight times, from which the minimum

time divided by the number of iterations is used, in order to factor out

effects from external factors.

The minimum time for a transform is then used to determine a scaled

inverse time measurement, sometimes known as CTGs. CTGs are de-

fined as:

CTGs =
5N log2(N)

109t
(39)
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for complex transforms and

CTGs =
2.5N log2(N)

109t
(40)

for real transforms, where t is the time taken to run one transform (in

seconds). Unless the Cooley-Tukey radix-2 algorithm is used, a measure-

ment expressed in CTGs is not an actual FLOP count – it is a rough

measure of an algorithm’s efficiency relative to the radix-2 algorithm

and the clock speed of the machine.

When a transform has several variants (such as direction or radix),

BenchFFT reports the speed of the FFT as being the fastest of the possible

options.

6.1.2 Accuracy

To measure the accuracy of a transform, BenchFFT compares an FFT

with an arbitrary-precision FFT computed on the same inputs, and re-

ports the relative root-mean-square (RMS) error. The inputs are pseudo-

random in the range [0.5, 0.5) and the arbitrary-precision FFT has over

40 decimal places of accuracy.

When a transform has several variants (such as direction or radix),

BenchFFT reports the accuracy as being worst of the results.

6.1.3 Compiling

Except where otherwise noted, Intel C compiler (ICC) version 12.1.0 for

OS X was used to compile 64-bit code. For OS X builds, the compiler

flags used were “-O3”, while “-O3 -msse2” (or equivalent) was used for
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Linux builds. In the cases where the FFT uses AVX, the code is compiled

with “-xAVX” or “-mavx” (depending on compiler).

Some libraries included in the BenchFFT software have their own com-

pilation scripts which override the defaults, and in the case of commer-

cial libraries (such as Intel IPP and Apple vDSP), the compiler flags are

of little consequence because the libraries are distributed in binary form.

6.1.4 Data format

FFT libraries use interleaved format and/or complex format to store the

data. In the case of interleaved format, the real and imaginary parts of

complex numbers are stored adjacently in memory, while in the case of

split format, the real and imaginary parts are stored in separate arrays.

The majority of FFT libraries use interleaved format to store data. In

the case where the library supports interleaved or split format, BenchFFT

uses interleaved format. However there are a few libraries that only sup-

port split format, and in theses cases it should be noted the results are

not strictly comparable (Apple vDSP is one such case).

6.2 arm architecture

There was no existing FFT benchmarking software for iOS on ARM de-

vices, and so a benchmarking tool was written. The tool runs the bench-

marking in a thread of normal priority.



6.2 arm architecture 113

6.2.1 Compiling

The code was compiled with Apple clang compiler 3.0 for ARMv7 tar-

gets running iOS 5.0. The compiler flags used were “-O3 -mfpu=neon”.

6.2.2 Timing

The Apple A4 and A5 system on chips (SoCs) are built around the ARM

Cortex-A8 and Cortex-A9 cores, which have hardware cycle counters

that can be used for precise timing. The cycle counter control registers

can only be accessed in kernel mode, and so the high resolution timer

available through the mach_absolute_time function was used instead.

For a given size of transform, a calibration routine determines the

number of iterations that must be run such that the total runtime is

approximately one second. After calibration, each FFT to be evaluated is

run for the pre-determined number of iterations – this loop is run eight

times, and the fastest time divided by the number of iterations is taken

to be the FFTs runtime. By running each FFT for approximately one

second, and repeating the measurement eight times to find the best time,

the effects from external factors such as OS scheduling are minimized.

As with BenchFFT, the time is expressed in CTGs.
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R E S U LT S A N D D I S C U S S I O N

“There is no data that can be displayed in a pie chart, that
cannot be displayed BETTER in some other type of chart.”

— John Tukey

In order to test the hypotheses set out in Chapter 1, SFFT was bench-

marked alongside FFTW and other libraries on a wide range of ma-

chines, as per the methods set out in Chapter 6. The majority of the data

was collected on Linux machines populated with SSE capable Intel mi-

croprocessors, with some additional data collected on small set of AVX

and ARM NEON machines. The results are divided into three sections:

speed, accuracy and setup time, with an additional section detailing a

model that predicts SFFT’s performance for different configurations. Fi-

nally, the chapter concludes by relating the results to other work.

Table 9 presents a summary of the Linux machines that were used to

run benchmarks. The majority of the machines were functioning as ei-

ther lab workstations or servers in a University environment. The bench-

marks took approximately 12 hours to run, and while efforts were made

to reduce each machine’s load to a minimum, there were still transient

system processes, such as log rotations and backups during the night

that have introduced noise into the results.

For the Linux benchmarks, both 32-bit and 64-bit statically-linked bi-

naries for SFFT, FFTW 3.3 and SPIRAL were compiled with icc 12.0.5,

gcc 4.4.5 and clang 1.1. For the OS X benchmarks, 32-bit and 64-bit bi-

naries for SFFT, FFTW 3.3 and SPIRAL were compiled with icc 12.1.0,

115
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modelstring l1d l2 l3

Intel(R) Pentium(R) 4 CPU 2.80GHz 16 512 -
Intel(R) Pentium(R) D CPU 3.00GHz 16 1024 -
Intel(R) Pentium(R) M processor 1000MHz 32 1024 -
Intel(R) Xeon(TM) CPU 2.40GHz 16 2048 -
Intel(R) Xeon(R) CPU E5335 @ 2.00GHz 32 4096 -
Intel(R) Xeon(R) CPU X5355 @ 2.66GHz 32 8192 -
Intel(R) Xeon(R) CPU E5430 @ 2.66GHz 32 6144 -
Intel(R) Xeon(R) CPU X5560 @ 2.80GHz 32 256 8192

Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz 32 4096 -
Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 32 4096 -
Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz 32 4096 -
Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz 32 6144 -
Intel(R) Core(TM)2 Duo CPU P8600 @ 2.40GHz 32 3072 -
Intel(R) Core(TM) i5 CPU 660 @ 3.33GHz 32 256 4096

Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 32 256 8192

Table 9: Linux benchmark machines, listed with the size of each level of cache
(in kilobytes)
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Figure 15: Performance comparison between SFFT and FFTW 3.3 in estimate
mode on SSE machines

llvm-gcc 4.2.1 and clang 3.0. The builds of SFFT and FFTW 3.3.1 for iOS

5 on ARM NEON were compiled with Apple clang 3.0.

Several binary libraries were also benchmarked: Intel IPP 7 and Apple

Accelerate. Because these libraries are only available in binary form, they

are compared against the icc builds of SFFT, FFTW 3.3 and SPIRAL,

because icc generally produced the fastest code.

7.1 speed

The speed results are presented in subsections according to the SIMD

extensions: SSE, AVX and ARM NEON.
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Figure 16: Performance comparison between SFFT and FFTW 3.3 in patient
mode on SSE machines
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Figure 17: Performance comparison between SFFT and SPIRAL on SSE ma-
chines. Although SPIRAL is faster when compiled with clang 1.1,
Figure 19 shows that SFFT is faster than SPIRAL when compiled
with clang 3.0
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7.1.1 SSE

Figure 15 summarizes the speed performance of SFFT against FFTW

3.3 running in estimate mode on Linux machines with SSE. Twelve

heatmaps are used to present data from different configurations. The

three rows in the grid correspond to the three different compilers used,

while the four columns correspond to the four different architecture

and floating-point precision pairs. Within each heatmap, the rows cor-

respond to different machines, and the columns correspond to different

sizes of transform (21 through to 218). Shades of green indicate that SFFT

is faster for a particular point of data, while shades of yellow through

to red indicate that FFTW is faster; lighter shades indicate a small differ-

ence, while darker shades indicate a bigger difference in performance.

The scale for the colour map is computed separately for each of the 12

heatmaps in the grid, so a particular colour in one heatmap is not di-

rectly comparable to the same colour in another heatmap; the colours

are only meant to indicate differences within each heatmap.

Similarily, Figure 16 compares SFFT to FFTW 3.3 running in patient

mode, and Figure 17 compares SFFT to SPIRAL. There are fewer columns

in the heatmaps of Figure 17 because SPIRAL only computes single-

threaded FFTs for sizes 21 through to 213.

7.1.1.1 FFTW 3.3 in estimate mode

Figure 15 shows that SFFT is faster than FFTW 3.3 running in estimate

mode in almost all cases over a range of Intel x86 machines that imple-

ment SSE. The horizontal streaks of yellow-red that can be seen in some

heatmaps are outliers and likely caused by transient system processes
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sfft fftw3-patient fftw3-estimate spiral intel-ipps vdsp
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(b) Core i7-2600, double-precision
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(c) Core i5-2557M, single-precision
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(d) Core i5-2557M, double-precision

Figure 18: Performance of FFTs on recent Sandy Bridge machines, with x86_64

SSE binaries. Compiler: icc

that were running while SFFT was being benchmarked. Similar streaks

appear at the same locations in Figures 16 and 17.

7.1.1.2 FFTW 3.3 in patient mode

Figure 16 shows that SFFT is faster than FFTW 3.3 running in patient

mode in the majority of cases over a range of Intel x86 machines that

implement SSE. SFFT was generally slightly slower than fftw3-patient

on older machines such as the Pentium 4’s and the 1GHz Pentium M,

while on the newer machines such as the Sandy Bridge based Core i7-

2600 and the Nehalem based Core i5-660, SFFT was clearly faster than
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sfft fftw3-patient fftw3-estimate spiral
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(a) Single-precision, clang 1.1
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(b) Double-precision, clang 1.1
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(c) Single-precision, clang 3.0
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Figure 19: Performance of clang-compiled x86_64 SSE FFTs on an Intel Core2

Duo P8600

FFTW (see Figure 18). This could be explained by the fact that FFTW

performs extensive instruction level optimizations, such as scheduling,

and that the older processors have smaller instruction and trace caches.

7.1.1.3 SPIRAL

The last row of Figure 17 shows that SFFT is generally slower than SPI-

RAL when both libraries are compiled with clang 1.1. However, with

more recent releases of clang, which do much more code optimization,

the situation is reversed, as shown in Figure 19. In some cases SPIRAL

compiled with clang 3.0 is slower than SPIRAL compiled with clang

1.1, while SFFT is generally faster when compiled with clang 3.0. This
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demonstrates that the speed of automatically tuned SPIRAL code is spe-

cific to certain compilers.

SPIRAL’s double-precision performance is slightly better than SFFT

when compiled with icc or gcc, while SFFT’s single-precision code is

faster than SPIRAL on recent machines, and of similar speed on older

machines.

7.1.2 AVX

Of the machines that were used for benchmarks, only two supported

AVX: the Macbook Air 4,2 with an Intel Core i5-2557M, and a Linux ma-

chine with an Intel Core i7-2600. Figure 20 shows that SFFT is clearly

faster than FFTW up until about 1024 points, while performance be-

tween the two is similar for larger transforms.

Results for Intel IPP are also plotted in Figure 20, but only for the Core

i7-2600. IPP did not detect the existence of AVX on the Core i5-2557M,

and instead used SSE, as plotted in Figure 18. Apple vDSP does not

support AVX, and so SSE vDSP results for the Macbook Air 4,2’s Core

i5-2557M are also plotted in Figure 18.

7.1.3 ARM NEON

SFFT and FFTW 3.3.1 were compiled with Apple clang 3.0 and bench-

marked on an Apple iPod touch 4G and an Apple iPad 2, which contain

the Apple A4 and A5 SoCs respectively. The A4 implements the ARM

Cortex-A8, while the A5 implements the ARM Cortex-A9, both of which

support ARM NEON.
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(b) Core i7-2600, double-precision
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(c) Core i5-2557M, single-precision
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(d) Core i5-2557M, double-precision

Figure 20: Performance of FFTs on recent Sandy Bridge machines, with x86_64

AVX binaries. Compiler: icc

sfft fftw3-patient fftw3-estimate vdsp
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(a) Apple A4 (ARM Cortex-A8)
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Figure 21: Performance of single-precision FFTs on ARM NEON devices run-
ning iOS. Compiler: Apple clang 3.0
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Figure 21 shows that SFFT is easily faster than FFTW on both de-

vices. This contradicts Frigo and Johnson’s claim that the performance

of FFTW is portable, and tends to support the idea that it is possible

to write fast and portable code without exhaustive searches through the

configuration space of all possible FFTs.

A considerable amount of effort was needed to work around several

problems that were encountered when targeting ARM NEON with Ap-

ple clang 3.0, and many of SFFT’s primitive macros for NEON were

written in inline assembly code. Among the problems encountered when

targeting ARM NEON with Apple clang 3.0:

1. There is no way of explicitly specifying memory alignment when

using vector intrinsics;

2. Fused multiply-add/subtract intrinsics do not currently compile to

the correct instructions because of a bug in clang;

3. Clang’s inline assembly front-end lacks the syntax and semantics

to properly address the dual-size aliased vector registers.

The above problems affect all FFT libraries equally, and it seems that

portability depends critically on the quality of the machine specific code

and macros.

7.2 accuracy

The accuracy of each FFT was measured as per the methods in Chapter 6.

The accuracy of single and double precision FFTs on an Intel Core i7-

2600 is plotted in Figure 22, and shows that the relative RMS error for

FFTW, SFFT and SPIRAL is within an acceptable range. Graphs for all

other machines are similar.
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Figure 22: Accuracy of FFTs on an Intel Core i7-2600. SFFT, FFTW and SPIRAL
were compiled for x86_64 with icc
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Figure 23: Setup times of FFTs on an Intel Core i7-2600. SFFT, FFTW and SPI-
RAL were compiled for x86_64 with icc

7.3 setup time

Figure 23 shows that FFTW, in patient mode, requires several orders of

magnitude more time to initialize as it searches for a fast FFT config-

uration. SPIRAL has a very fast setup time, because it is entirely stat-

ically elaborated and needs no dynamic initialization. The setup time

for SFFT is comparable to FFTW in estimate mode, though SFFT’s setup

time begins to increase for transforms larger than 8192 points. This is

likely because of repeated calls to the complex exponential function as
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twiddle factor LUTs are elaborated; no effort was made to optimize this

setup code, and it is likely that it would be much faster if the calls to the

complex exponential function were optimized.

Graphs for all other machines are similar.

7.4 binary size

Compared to other libraries, SFFT produced larger binaries for the bench-

marks, because there is currently no optimization performed between

transforms contained in the same library. For 64-bit single precision bi-

naries on OS X with AVX, the size of the SFFT benchmark was approx-

imately 2.8 megabytes while the size of the FFTW benchmark was 1.8

megabytes.

7.5 predicting performance

For each size of transform on a particular machine, SFFT chooses the

fastest configuration from a set of up to eight possible configurations.

Small transforms have only one option, which is a fully hard-coded

transform, while larger transforms have up to eight, which could in-

clude the four-step transform, and several variants of the hard-coded

leaf transform, where each variant corresponds to a particular size of

leaf sub-transform and size of body sub-transform, and for size-16 leaf

sub-transforms, a streaming store variant is included too. The decision

of exactly which configuration to use depends on the size of transform,

the compiler, and the characteristics of the host machine.

For the benchmarks in this chapter, SFFT used a calibration routine

to choose the fastest configuration. The calibration data was collected,
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along with some data about the machine and the compiler, and used to

train a classifier.

The data was processed into instances, with each instance having at-

tributes for the size of the transform and the precision, the size of each

level of cache, the architecture and micro-architecture of the machine, the

SIMD extensions, the OS, the compiler used, and the CPU frequency. In

total there were 3348 instances of data, each of which had 12 attributes.

Weka [77] was used to experiment with several classifiers, and a REP-

Tree classifier with bagging was used to train a model. Using 10-fold

cross-validation, the model correctly classified 76.1% of the instances

with a weighted average precision of 74.8%, which tends to confirm the

existence of a relationship between the characteristics of the machine

and the performance of a particular FFT configuration.

The accuracy of the classifier is promising, and it has the potential to

replace the calibration code in SFFT. It is highly likely that if the noise

in the data was reduced through the use of an isolated benchmarking

environment, the accuracy of the classifier would increase. The accuracy

would also likely benefit from a larger dataset collected from a larger

range of benchmark machines.

7.6 split-radix vs . conjugate-pair

In order to quantify the gain in performance that might be attributable to

the use of the conjugate-pair algorithm, SFFT was retrospectively modi-

fied to compute the FFT using the ordinary split-radix algorithm as well

as the conjugate-pair algorithm. The results of benchmarks between the

two algorithms, as well as FFTW and SPIRAL, are plotted in Figure 24.
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Figure 24: Ordinary split-radix versus conjugate-pair split-radix on an Intel
Core i5-2557M. SFFT, FFTW and SPIRAL were compiled for x86_64

with icc

Unexpectedly, the ordinary split-radix algorithm is faster than the

conjugate-pair algorithm for some smaller sizes of transform, but for

transforms above a certain size, the conjugate-pair algorithm is faster by

a few hundred MFLOPS.

The performance advantage of the ordinary split-radix algorithm for

smaller sizes of transforms is likely due to shorter chains of dependent

instructions where twiddle factors are loaded and used. Consider that

the ordinary split-radix algorithm separately loads two twiddle factors

into two registers, and there are no dependencies between these instruc-

tions, while the conjugate-pair algorithm must load one twiddle factor

and then duplicate it into another register, which does result in depen-

dent instructions. Thus the ordinary split-radix algorithm is faster for

smaller transforms where memory bandwidth is not the limiting fac-

tor, but when memory bandwidth does become the limiting factor, the

conjugate-pair algorithm is faster.

In future, SFFT could exploit the performance advantage of the ordi-

nary split-radix algorithm when computing smaller sizes of transforms.
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7.7 applications of this work

This section provides an overview of how the techniques presented in

this thesis may be applied to the prime-factor algorithm, sparse Fourier

transforms, and multi-threaded transforms.

7.7.1 Prime-factor algorithm

The techniques presented in this work rely on the fact that FFTs operat-

ing on signal lengths that are a power-of-two can be factored into smaller

power-of-two length components, which are computed in parallel by be-

ing evenly divided into a number of SIMD vector registers that are a

power-of-two length.

The prime-factor algorithm factors other lengths of FFTs into compo-

nents that are co-prime in length, and ultimately small prime compo-

nents, which do not evenly divide into the power-of-two length SIMD

registers, except in the special case where a SIMD register contains only

one complex element (such is the case with double-precision on SSE

machines).

Because the prime components do not evenly divide into power-of-

two length SIMD registers, the algorithm level vectorization techniques

presented in this work are not directly applicable. In contrast, the auto-

vectorization techniques used in SPIRAL [29, 51, 52] are performed at

the instruction level, and are applicable to the prime-factor algorithm,

but as the results in Figure 18 show, the downside of SPIRAL’s lower

level approach is that performance for power-of-two transforms scales

poorly with the length of the SIMD register.
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7.7.2 Sparse Fourier transforms

The recently published Sparse FFT [39, 38] will benefit from the tech-

niques presented in this work because the inner loops use small DFTs

(e.g, 512 point for a certain 256k point sparse FFT), which are currently

computed with FFTW. Replacing FFTW with SFFT will almost certainly

result in improved performance, because SFFT is faster than both FFTW

and Intel IPP for the applicable small sizes of transform on an Intel Core

i7-2600 (see Figure 20).

Version 2.0 of the Sparse FFT code is scalar, and would benefit greatly

from explicitly describing the computation with SIMD intrinsics. How-

ever, a key difference between the sparse Fourier transform and other

FFTs is the use of conditional branches on the input signal data. This

has performance implications on all machines, but it is worth noting

that some machines will be drastically affected by this, such as the ARM

Cortex-A8, where the SIMD pipeline is located behind the main pipeline,

resulting in fast transfers from the main CPU unit to the SIMD pipeline,

but large penalties when SIMD registers or flags are accessed by the

main CPU unit.

7.7.3 Multi-threaded transforms

MatrixFFT has recently shown that the four-step algorithm [8], designed

to efficiently use hierarchical or external memory on Cray machines in

the 1980’s, is useful for computing large multi-threaded transforms on

modern machines, providing performance far surpassing that of FFTW’s

multi-threaded performance [69].
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Figure 25: Speed of multi-threaded four-step algorithm running on an Intel
Core i5-2557M with four threads. The algorithm decomposes trans-
forms into smaller single-threaded components, which are computed
above with three different implementations. All code was compiled
with icc for x86_64 with SSE.

The four-step algorithm decomposes a transform of size N into a two-

dimensional array of size n1 × n2 where N = n1n2, and n1 = n2 =
√
N

(or close) often obtains the best performance.

The four-steps of the algorithm are:

1. Compute n1 FFTs of length n2 along the columns of the array;

2. Multiply each element of the array with ωijN, where i and j are the

array coordinates;

3. Transpose the array;

4. Compute n2 FFTs of length n1 along the columns of the array.

Each step can be divided amongst a pool of threads, with a synchro-

nisation barrier between the third and fourth steps. The transforms in

steps one and four operate on sequential data, and if they are small
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enough, they are not subject to bandwidth limitations (and if they are

not small enough, they can be further decomposed with the four-step

algorithm until they are small enough). The bandwidth bottleneck does

not disappear, but it is factored out into the transpose in step three,

and because of this, the performance of the small single-threaded 1D

transforms used in steps one and four correlate with the overall multi-

threaded performance. A simple multi-threaded implementation of the

four-step algorithm was benchmarked with SFFT and FFTW transforms,

and the results are shown in Figure 25, which tends to confirm that the

performance of single-threaded transforms for steps one and four trans-

lates to the overall multi-threaded performance when using the four-step

algorithm.

7.8 similar work

Aside from Bernstein’s FFT library, which was designed in the days of

scalar microprocessors and has not been updated since 1999, there have

been a few other challenges to the automatically adaptive approach of

FFTW, but none present concrete results that definitively dismiss the

idea. Most recently, Vasilios et al. presented an approach that uses the

characteristics of the host machine to choose good FFT parameters at

run time [49], but their approach has several issues that render it al-

most irrelevant. First, the approach uses optimizations that only apply

to scalar machines, viz. twiddle factor symmetries are exploited to com-

press the twiddle LUTs, and arithmetic is avoided when twiddle factors

contains zeros or ones. The vast majority of microprocessors, even those

found in mobile devices such as phones, feature SIMD extensions, and

so an approach that is limited to scalar arithmetic is of little consequence.
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Second, they benchmark the FFTs in a most unusual way. Rather than re-

peat a large number of iterations of the FFT, they repeat a large number

of iterations of a binary that initializes and then executes only one FFT;

such an approach is by no means representative of applications where

the performance of the FFT is a concern, and is more a measurement of

the initialization time rather than the FFT.





8
C O N C L U S I O N S A N D F U T U R E W O R K

“... programming is basically planning and detailing the
enormous traffic of words through the von Neumann bot-
tleneck, and much of that traffic concerns not significant
data itself, but where to find it.”

— John W. Backus [7, 19]

The results presented in this thesis show that vectorization at the al-

gorithm level of abstraction produces good performance results, the

conjugate-pair algorithm is in many cases faster than the ordinary split-

radix algorithm, and that there are good heuristics for predicting the

performance of the FFT on SIMD microprocessors (i.e., the need for em-

pirical optimization may be overstated).

This work concludes with a review of the hypotheses, a summary of

the contributions, some ideas for directions that future work might take,

and a few final remarks.

8.1 revisiting the hypotheses

This section discusses the hypotheses of Section 1.1 with reference to the

experiments in Chapters 3 and 5 and the results in Chapter 7.

135
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Hypothesis 1: Accessing memory in sequential “streams” is critical for best

performance

The simple implementation in Section 3.2 used a LUT to store precom-

puted coefficients, but for every size of sub-transform that composes a

particular transform, the LUT is accessed non-contiguously, with vector

gather operations of varying strides. In Section 3.3, vector intrinsics and

a sequentially accessed LUT for each size of sub-transform are shown to

improve performance. Although the set of LUTs increases the memory

footprint, the speed improves markedly, by over 30% in many cases.

In Section 5.3.2, a DAG representing the computation was topolog-

ically sorted so that accesses to the input data, which are effectively

pseudo-random for a decimation-in-time decomposition, are ordered

into sequential streams. Benchmark results in Figure 14 show that this

technique, in tandem with several others, achieves good results, being

faster than FFTW in many cases.

The results from the above two cases confirm the idea that access-

ing data in sequential streams provides big performance gains, even in

the somewhat counter-intuitive case where data is duplicated and more

memory is required.

Hypothesis 2: The conjugate-pair algorithm is faster than the ordinary split-

radix algorithm

Hypothesis 2 is based on the idea that memory bandwidth is a bottle-

neck, and on the fact that the conjugate-pair algorithm requires only half

the number of twiddle factor loads.
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In Section 7.6, a highly optimized implementation of the conjugate-

pair algorithm is benchmarked against an equally highly optimized im-

plementation of the ordinary split-radix algorithm. For smaller sizes of

transform, the ordinary split-radix algorithm is faster, but above a cer-

tain size (4096 in this case), the conjugate-pair algorithm is faster.

Thus, Hypothesis 2 is confirmed with the proviso that the transform

is larger than a particular size.

Hypothesis 3: The performance of an FFT can be predicted based on characteris-

tics of the underlying machine and the compiler

In Chapter 7, SFFT and FFTW were benchmarked on sixteen x86 ma-

chines and two ARM NEON machines, and SFFT was found to be as

fast as, or faster than FFTW, suggesting that the performance of an FFT

running on a certain machine can be predicted and reasoned about, and

that extensive machine calibration might not be required.

In Section 7.5, a model was evaluated with 10-fold cross-validation

to have 74.8% precision when using characteristics of the underlying

machine and the compiler to predict performance, further supporting

the idea that the performance of the FFT on SIMD microprocessors can

be predicted and reasoned about.

8.2 contributions

The contributions of this work are summarized as follows:

1. Three methods of computing the conjugate-pair algorithm on SIMD

microprocessors are presented in Chapter 5. The three techniques

are suited for different sizes of transform, but in general, all tech-
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niques are amenable to algorithm level vectorization, and latency

and memory locality optimizations. These techniques are shown

to produce results that are, in many cases, faster than state of the

art libraries such as FFTW and SPIRAL, but without extensive ma-

chine calibration;

2. The source code for the library developed in this thesis, SFFT,

is publicly available under a permissive open source licence at

https://github.com/anthonix/sfft. A permissive open source li-

cence will hopefully ensure that SFFT is developed further.

8.3 future work

This section presents some ideas for future work that can be divided into

four categories: measurement, modelling, systems and applications.

8.3.1 Measurement

FFTW could be instrumented to collect data on the huge space of trans-

forms it evaluates, which could then be used to build more accurate

models.

The existing FFT benchmarking infrastructure could be improved by

detecting interruption by other system processes and re-running the af-

fected results. Benchmarks could then be run on a much wider range of

machines, under more controlled conditions, which would increase the

accuracy of models built from the data.

https://github.com/anthonix/sfft


8.3 future work 139

8.3.2 Modelling

It might be possible to build a classifier that predicts whether a trans-

form is likely, given some threshold, to be the fastest. The fastest is then

selected from a subset of those that are likely to be the fastest, and thus

the number of transforms that must be evaluated during calibration is

reduced, while sacrificing little or no performance.

8.3.3 Systems

SFFT could be extended to multi-dimensional, multi-threaded, real, large

(megapoint and above) and arbitrary sized transforms. Additionally, sup-

port for other architectures such as POWER and Cell B.E. could be

added. Code could be optimized between transforms in a library, which

would reduce binary size, but there may be other effects.

8.3.4 Algorithms

So far, there have been no known attempts to seriously optimize the

tangent FFT, and the results of optimizing the tangent FFT to the same

degree as the conjugate-pair FFT in this thesis would be very interesting.

SFFT could be utilized in the sparse FFT algorithms which have re-

cently been published, perhaps improving their performance even fur-

ther.
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8.3.5 Applications

Applications such as the SETI@home client could be patched to sup-

port SFFT. The results of benchmarks between SFFT, FFTW and other

libraries, when used in real world applications such as SETI@home,

would be of great interest.

8.4 final remarks

This thesis showed that high-performance computation of the FFT is by

no means a solved problem, and it is hoped that this work will serve

as a catalyst or foundation for future efforts that push efficiency and

performance even further.
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Part III

A P P E N D I C E S





A
S I M P L E F F T S

This Appendix contains source code listings corresponding to the simple

implementations in Section 3.1.

Listing 20: Simple radix-2 FFT

1 #include <complex.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <math.h>
5
6 typedef complex float data_t;
7
8 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)k / (float)N))
9

10 void ditfft2(data_t *in, data_t *out, int stride, int N) {
11 if(N == 2) {
12 out[0] = in[0] + in[stride];
13 out[N/2] = in[0] - in[stride];
14 }else{
15 ditfft2(in, out, stride << 1, N >> 1);
16 ditfft2(in+stride, out+N/2, stride << 1, N >> 1);
17
18 { /* k=0 -> no multiplication */
19 data_t Ek = out[0];
20 data_t Ok = out[N/2];
21 out[0] = Ek + Ok;
22 out[N/2] = Ek - Ok;
23 }
24
25 int k;
26 for(k=1;k<N/2;k++) {
27 data_t Ek = out[k];
28 data_t Ok = out[(k+N/2)];
29 out[k] = Ek + W(N,k) * Ok;
30 out[(k+N/2) ] = Ek - W(N,k) * Ok;
31 }
32 }
33 } �

Listing 21: Simple split-radix FFT

1 #include <complex.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <math.h>
5
6 typedef complex float data_t;
7
8 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)k / (float)N))
9

10 void splitfft(data_t *in, data_t *out, int stride, int N) {
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11 if(N == 1) {
12 out[0] = in[0];
13 }else if(N == 2) {
14 out[0] = in[0] + in[stride];
15 out[N/2] = in[0] - in[stride];
16 }else{
17 splitfft(in, out, stride << 1, N >> 1);
18 splitfft(in+stride, out+N/2, stride << 2, N >> 2);
19 splitfft(in+3*stride, out+3*N/4, stride << 2, N >> 2);
20
21 {
22 data_t Uk = out[0];
23 data_t Zk = out[0+N/2];
24 data_t Uk2 = out[0+N/4];
25 data_t Zdk = out[0+3*N/4];
26 out[0] = Uk + (Zk + Zdk);
27 out[0+N/2] = Uk - (Zk + Zdk);
28 out[0+N/4] = Uk2 - I*(Zk - Zdk);
29 out[0+3*N/4] = Uk2 + I*(Zk - Zdk);
30 }
31 int k;
32 for(k=1;k<N/4;k++) {
33 data_t Uk = out[k];
34 data_t Zk = out[k+N/2];
35 data_t Uk2 = out[k+N/4];
36 data_t Zdk = out[k+3*N/4];
37 out[k] = Uk + (W(N,k)*Zk + W(N,3*k)*Zdk);
38 out[k+N/2] = Uk - (W(N,k)*Zk + W(N,3*k)*Zdk);
39 out[k+N/4] = Uk2 - I*(W(N,k)*Zk - W(N,3*k)*Zdk);
40 out[k+3*N/4] = Uk2 + I*(W(N,k)*Zk - W(N,3*k)*Zdk);
41 }
42 }
43 } �

Listing 22: Simple conjugate-pair FFT

1 #include <complex.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <math.h>
5
6 typedef complex float data_t;
7
8 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)k / (float)N))
9

10 void conjfft(data_t *base, int TN,
11 data_t *in, data_t *out, int stride, int N) {
12 if(N == 1) {
13 if(in < base) in += TN;
14 out[0] = in[0];
15 }else if(N == 2) {
16 data_t *i0 = in, *i1 = in + stride;
17 if(i0 < base) i0 += TN;
18 if(i1 < base) i1 += TN;
19 out[0] = *i0 + *i1;
20 out[N/2] = *i0 - *i1;
21 }else{
22 conjfft(base, TN, in, out, stride << 1, N >> 1);
23 conjfft(base, TN, in+stride, out+N/2, stride << 2, N >> 2);
24 conjfft(base, TN, in-stride, out+3*N/4, stride << 2, N >> 2);
25
26 {
27 data_t Uk = out[0];
28 data_t Zk = out[0+N/2];
29 data_t Uk2 = out[0+N/4];
30 data_t Zdk = out[0+3*N/4];
31 out[0] = Uk + (Zk + Zdk);
32 out[0+N/2] = Uk - (Zk + Zdk);
33 out[0+N/4] = Uk2 - I*(Zk - Zdk);
34 out[0+3*N/4] = Uk2 + I*(Zk - Zdk);
35 }
36 int k;
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37 for(k=1;k<N/4;k++) {
38 data_t Uk = out[k];
39 data_t Zk = out[k+N/2];
40 data_t Uk2 = out[k+N/4];
41 data_t Zdk = out[k+3*N/4];
42 data_t w = W(N,k);
43 out[k] = Uk + (w*Zk + conj(w)*Zdk);
44 out[k+N/2] = Uk - (w*Zk + conj(w)*Zdk);
45 out[k+N/4] = Uk2 - I*(w*Zk - conj(w)*Zdk);
46 out[k+3*N/4] = Uk2 + I*(w*Zk - conj(w)*Zdk);
47 }
48 }
49 } �

Listing 23: Simple tangent FFT

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include <complex.h>
5
6 typedef complex float data_t;
7
8 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)(k) / (float)(N)))
9

10 float
11 s(int n, int k) {
12 if (n <= 4) return 1.0f;
13
14 int k4 = k % (n/4);
15
16 if (k4 <= n/8) return (s(n/4,k4) * cosf(2.0f * M_PI * (float)k4 / (float)n));
17 return (s(n/4,k4) * sinf(2.0f * M_PI * (float)k4 / (float)n));
18 }
19
20 void tangentfft8(data_t *base, int TN, data_t *in, data_t *out, int stride, int N) {
21 if(N == 1) {
22 if(in < base) in += TN;
23 out[0] = in[0];
24 }else if(N == 2) {
25 data_t *i0 = in, *i1 = in + stride;
26 if(i0 < base) i0 += TN;
27 if(i1 < base) i1 += TN;
28 out[0] = *i0 + *i1;
29 out[N/2] = *i0 - *i1;
30 }else if(N == 4) {
31 tangentfft8(base, TN, in, out, stride << 1, N >> 1);
32 tangentfft8(base, TN, in+stride, out+2, stride << 1, N >> 1);
33
34 data_t temp1 = out[0] + out[2];
35 data_t temp2 = out[0] - out[2];
36 out[0] = temp1;
37 out[2] = temp2;
38 temp1 = out[1] - I*out[3];
39 temp2 = out[1] + I*out[3];
40 out[1] = temp1;
41 out[3] = temp2;
42
43 }else{
44 tangentfft8(base, TN, in, out, stride << 2, N >> 2);
45 tangentfft8(base, TN, in+(stride*2), out+2*N/8, stride << 3, N >> 3);
46 tangentfft8(base, TN, in-(stride*2), out+3*N/8, stride << 3, N >> 3);
47 tangentfft8(base, TN, in+(stride), out+4*N/8, stride << 2, N >> 2);
48 tangentfft8(base, TN, in-(stride), out+6*N/8, stride << 2, N >> 2);
49 int k;
50 for(k=0;k<N/8;k++) {
51 float s4 = s(N/4,k)/s(N,k);
52 float s4_n8 = s(N/4,k+N/8)/s(N,k+N/8);
53
54 float s2 = s(N/2,k)/s(N,k);
55 float s2_n8 = s(N/2,k+N/8)/s(N,k+N/8);
56
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57 data_t w0 = W(N,k)*s4;
58 data_t w1 = W(N,k+N/8)*s4_n8;
59 data_t w2 = W(N,2*k)*s(N/8,k)/s(N/2,k);
60
61 data_t zk_p = w0 * out[k+4*N/8];
62 data_t zk_n = conj(w0) * out[k+6*N/8];
63 data_t zk2_p = w1 * out[k+5*N/8];
64 data_t zk2_n = conj(w1) * out[k+7*N/8];
65 data_t uk = out[k] * s4;
66 data_t uk2 = out[k+N/8] * s4_n8;
67 data_t yk_p = w2 * out[k+2*N/8];
68 data_t yk_n = conj(w2) * out[k+3*N/8];
69
70 data_t y0 = (yk_p + yk_n)*s2;
71 data_t y1 = (yk_p - yk_n)*I*s2_n2;
72
73 out[k] = uk + y0 + (zk_p + zk_n);
74 out[k+4*N/8] = uk + y0 - (zk_p + zk_n);
75 out[k+2*N/8] = uk - y0 - I*(zk_p - zk_n);
76 out[k+6*N/8] = uk - y0 + I*(zk_p - zk_n);
77 out[k+1*N/8] = uk2 - y1 + (zk2_p + zk2_n);
78 out[k+3*N/8] = uk2 + y1 - I*(zk2_p - zk2_n);
79 out[k+5*N/8] = uk2 - y1 - (zk2_p + zk2_n);
80 out[k+7*N/8] = uk2 + y1 + I*(zk2_p - zk2_n);
81 }
82 }
83
84 }
85
86 void tangentfft4(data_t *base, int TN,
87 data_t *in, data_t *out, int stride, int N) {
88 if(N == 1) {
89 if(in < base) in += TN;
90 out[0] = in[0];
91 }else if(N == 2) {
92 data_t *i0 = in, *i1 = in + stride;
93 if(i0 < base) i0 += TN;
94 if(i1 < base) i1 += TN;
95 out[0] = *i0 + *i1;
96 out[N/2] = *i0 - *i1;
97 }else{
98 tangentfft4(base, TN, in, out, stride << 1, N >> 1);
99 tangentfft8(base, TN, in+stride, out+N/2, stride << 2, N >> 2);
100 tangentfft8(base, TN, in-stride, out+3*N/4, stride << 2, N >> 2);
101
102 {
103 data_t Uk = out[0];
104 data_t Zk = out[0+N/2];
105 data_t Uk2 = out[0+N/4];
106 data_t Zdk = out[0+3*N/4];
107 out[0] = Uk + (Zk + Zdk);
108 out[0+N/2] = Uk - (Zk + Zdk);
109 out[0+N/4] = Uk2 - I*(Zk - Zdk);
110 out[0+3*N/4] = Uk2 + I*(Zk - Zdk);
111 }
112 int k;
113 for(k=1;k<N/4;k++) {
114 data_t Uk = out[k];
115 data_t Zk = out[k+N/2];
116 data_t Uk2 = out[k+N/4];
117 data_t Zdk = out[k+3*N/4];
118 data_t w = W(N,k)*s(N/4,k);
119 out[k] = Uk + (w*Zk + conj(w)*Zdk);
120 out[k+N/2] = Uk - (w*Zk + conj(w)*Zdk);
121 out[k+N/4] = Uk2 - I*(w*Zk - conj(w)*Zdk);
122 out[k+3*N/4] = Uk2 + I*(w*Zk - conj(w)*Zdk);
123 }
124 }
125 } �
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This Appendix contains source code listings corresponding to the FFT

implementations with precomputed coefficients in Section 3.2.

Listing 24: Simple radix-2 FFT with precomputed LUT

1 #include <math.h>
2 #include <complex.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 typedef complex float data_t;
7
8 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)k / (float)N))
9

10 data_t *LUT;
11
12 void ditfft2(data_t *in, data_t *out, int log2stride, int stride, int N) {
13 if(N == 2) {
14 out[0] = in[0] + in[stride];
15 out[N/2] = in[0] - in[stride];
16 }else{
17 ditfft2(in, out, log2stride+1, stride << 1, N >> 1);
18 ditfft2(in+stride, out+N/2, log2stride+1, stride << 1, N >> 1);
19
20 { /* k=0 -> no multiplication */
21 data_t Ek = out[0];
22 data_t Ok = out[N/2];
23 out[0] = Ek + Ok;
24 out[N/2] = Ek - Ok;
25 }
26
27 int k;
28 for(k=1;k<N/2;k++) {
29 data_t Ek = out[k];
30 data_t Ok = out[(k+N/2)];
31 data_t w = LUT[k<<log2stride];
32 out[k] = Ek + w * Ok;
33 out[(k+N/2) ] = Ek - w * Ok;
34 }
35 }
36 }
37
38 void fft_init(int N) {
39 LUT = malloc(N/2 * sizeof(data_t));
40 int i;
41 for(i=0;i<N/2;i++) LUT[i] = W(N,i);
42 } �

Listing 25: Simple split-radix FFT with precomputed LUTs

1 #include <math.h>
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2 #include <complex.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 typedef complex float data_t;
7
8 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)k / (float)N))
9 data_t *LUT1;

10 data_t *LUT3;
11
12 void splitfft(data_t *in, data_t *out, int log2stride, int stride, int N) {
13 if(N == 1) {
14 out[0] = in[0];
15 }else if(N == 2) {
16 out[0] = in[0] + in[stride];
17 out[N/2] = in[0] - in[stride];
18 }else{
19 splitfft(in, out, log2stride+1, stride << 1, N >> 1);
20 splitfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
21 splitfft(in+3*stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
22
23 {
24 data_t Uk = out[0];
25 data_t Zk = out[0+N/2];
26 data_t Uk2 = out[0+N/4];
27 data_t Zdk = out[0+3*N/4];
28 out[0] = Uk + (Zk + Zdk);
29 out[0+N/2] = Uk - (Zk + Zdk);
30 out[0+N/4] = Uk2 - I*(Zk - Zdk);
31 out[0+3*N/4] = Uk2 + I*(Zk - Zdk);
32 }
33 int k;
34 for(k=1;k<N/4;k++) {
35 data_t Uk = out[k];
36 data_t Zk = out[k+N/2];
37 data_t Uk2 = out[k+N/4];
38 data_t Zdk = out[k+3*N/4];
39 data_t w1 = LUT1[k<<log2stride];
40 data_t w3 = LUT3[k<<log2stride];
41 out[k] = Uk + (w1*Zk + w3*Zdk);
42 out[k+N/2] = Uk - (w1*Zk + w3*Zdk);
43 out[k+N/4] = Uk2 - I*(w1*Zk - w3*Zdk);
44 out[k+3*N/4] = Uk2 + I*(w1*Zk - w3*Zdk);
45 }
46 }
47 }
48
49 void fft_init(int N) {
50 LUT1 = malloc(N/4 * sizeof(data_t));
51 LUT3 = malloc(N/4 * sizeof(data_t));
52 int i;
53 for(i=0;i<N/4;i++) LUT1[i] = W(N,i);
54 for(i=0;i<N/4;i++) LUT3[i] = W(N,3*i);
55 } �

Listing 26: Simple conjugate-pair FFT with precomputed LUT

1 #include <math.h>
2 #include <complex.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 typedef complex float data_t;
7
8 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)k / (float)N))
9 data_t *LUT;

10
11 void conjfft(data_t *base, int TN,
12 data_t *in, data_t *out, int log2stride, int stride, int N) {
13 if(N == 1) {
14 if(in < base) in += TN;
15 out[0] = in[0];
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16 }else if(N == 2) {
17 data_t *i0 = in, *i1 = in + stride;
18 if(i0 < base) i0 += TN;
19 if(i1 < base) i1 += TN;
20 out[0] = *i0 + *i1;
21 out[N/2] = *i0 - *i1;
22 }else{
23 conjfft(base, TN, in, out, log2stride+1, stride << 1, N >> 1);
24 conjfft(base, TN, in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
25 conjfft(base, TN, in-stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
26
27 {
28 data_t Uk = out[0];
29 data_t Zk = out[0+N/2];
30 data_t Uk2 = out[0+N/4];
31 data_t Zdk = out[0+3*N/4];
32 out[0] = Uk + (Zk + Zdk);
33 out[0+N/2] = Uk - (Zk + Zdk);
34 out[0+N/4] = Uk2 - I*(Zk - Zdk);
35 out[0+3*N/4] = Uk2 + I*(Zk - Zdk);
36 }
37 int k;
38 for(k=1;k<N/4;k++) {
39 data_t Uk = out[k];
40 data_t Zk = out[k+N/2];
41 data_t Uk2 = out[k+N/4];
42 data_t Zdk = out[k+3*N/4];
43 data_t w = LUT[k<<log2stride];
44 out[k] = Uk + (w*Zk + conj(w)*Zdk);
45 out[k+N/2] = Uk - (w*Zk + conj(w)*Zdk);
46 out[k+N/4] = Uk2 - I*(w*Zk - conj(w)*Zdk);
47 out[k+3*N/4] = Uk2 + I*(w*Zk - conj(w)*Zdk);
48 }
49 }
50 }
51
52 void fft_init(int N) {
53 LUT = malloc(N/4 * sizeof(data_t));
54 int i;
55 for(i=0;i<N/4;i++) LUT[i] = W(N,i);
56 } �

Listing 27: Simple tangent FFT with precomputed LUTs

1 #include <math.h>
2 #include <complex.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 typedef complex float data_t;
7
8 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)(k) / (float)(N)))
9

10 float
11 s(int n, int k) {
12 if (n <= 4) return 1.0f;
13
14 int k4 = k % (n/4);
15
16 if (k4 <= n/8)
17 return (s(n/4,k4) * cosf(2.0f * M_PI * (float)k4 / (float)n));
18 return (s(n/4,k4) * sinf(2.0f * M_PI * (float)k4 / (float)n));
19 }
20
21 data_t *LUT, *LUT0, *LUT1, *LUT2;
22 float *s2, *s4;
23
24 void tangentfft8(data_t *base, int TN, data_t *in, data_t *out, int log2stride,
25 int stride, int N) {
26 if(N == 1) {
27 if(in < base) in += TN;
28 out[0] = in[0];
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29 }else if(N == 2) {
30 data_t *i0 = in, *i1 = in + stride;
31 if(i0 < base) i0 += TN;
32 if(i1 < base) i1 += TN;
33 out[0] = *i0 + *i1;
34 out[N/2] = *i0 - *i1;
35 }else if(N == 4) {
36 tangentfft8(base, TN, in, out, log2stride+1, stride << 1, N >> 1);
37 tangentfft8(base, TN, in+stride, out+2, log2stride+1, stride << 1, N >> 1);
38
39 data_t temp1 = out[0] + out[2];
40 data_t temp2 = out[0] - out[2];
41 out[0] = temp1;
42 out[2] = temp2;
43 temp1 = out[1] - I*out[3];
44 temp2 = out[1] + I*out[3];
45 out[1] = temp1;
46 out[3] = temp2;
47
48 }else{
49 tangentfft8(base, TN, in, out, log2stride+2, stride << 2, N >> 2);
50 tangentfft8(base, TN, in+(stride*2), out+2*N/8, log2stride+3, stride << 3, N >> 3);
51 tangentfft8(base, TN, in-(stride*2), out+3*N/8, log2stride+3, stride << 3, N >> 3);
52 tangentfft8(base, TN, in+(stride), out+4*N/8, log2stride+2, stride << 2, N >> 2);
53 tangentfft8(base, TN, in-(stride), out+6*N/8, log2stride+2, stride << 2, N >> 2);
54 int k;
55 for(k=0;k<N/8;k++) {
56 data_t w0 = LUT0[k<<log2stride];
57 data_t w1 = LUT1[k<<log2stride];
58 data_t w2 = LUT2[k<<log2stride];
59
60 data_t zk_p = w0 * out[k+4*N/8];
61 data_t zk_n = conj(w0) * out[k+6*N/8];
62 data_t zk2_p = w1 * out[k+5*N/8];
63 data_t zk2_n = conj(w1) * out[k+7*N/8];
64 data_t uk = out[k] * s4[k<<log2stride];
65 data_t uk2 = out[k+N/8] * s4[k+N/8 << log2stride];
66 data_t yk_p = w2 * out[k+2*N/8];
67 data_t yk_n = conj(w2) * out[k+3*N/8];
68
69 data_t y0 = (yk_p + yk_n)*s2[k<<log2stride];
70 data_t y1 = (yk_p - yk_n)*I*s2[k+N/8 << log2stride];
71
72 out[k] = uk + y0 + (zk_p + zk_n);
73 out[k+4*N/8] = uk + y0 - (zk_p + zk_n);
74 out[k+2*N/8] = uk - y0 - I*(zk_p - zk_n);
75 out[k+6*N/8] = uk - y0 + I*(zk_p - zk_n);
76 out[k+1*N/8] = uk2 - y1 + (zk2_p + zk2_n);
77 out[k+3*N/8] = uk2 + y1 - I*(zk2_p - zk2_n);
78 out[k+5*N/8] = uk2 - y1 - (zk2_p + zk2_n);
79 out[k+7*N/8] = uk2 + y1 + I*(zk2_p - zk2_n);
80 }
81 }
82
83 }
84
85 void tangentfft4(data_t *base, int TN, data_t *in, data_t *out, int log2stride,
86 int stride, int N) {
87 if(N == 1) {
88 if(in < base) in += TN;
89 out[0] = in[0];
90 }else if(N == 2) {
91 data_t *i0 = in, *i1 = in + stride;
92 if(i0 < base) i0 += TN;
93 if(i1 < base) i1 += TN;
94 out[0] = *i0 + *i1;
95 out[N/2] = *i0 - *i1;
96 }else{
97 tangentfft4(base, TN, in, out, log2stride+1, stride << 1, N >> 1);
98 tangentfft8(base, TN, in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
99 tangentfft8(base, TN, in-stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
100
101 {
102 data_t Uk = out[0];
103 data_t Zk = out[0+N/2];
104 data_t Uk2 = out[0+N/4];
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105 data_t Zdk = out[0+3*N/4];
106 out[0] = Uk + (Zk + Zdk);
107 out[0+N/2] = Uk - (Zk + Zdk);
108 out[0+N/4] = Uk2 - I*(Zk - Zdk);
109 out[0+3*N/4] = Uk2 + I*(Zk - Zdk);
110 }
111 int k;
112 for(k=1;k<N/4;k++) {
113 data_t Uk = out[k];
114 data_t Zk = out[k+N/2];
115 data_t Uk2 = out[k+N/4];
116 data_t Zdk = out[k+3*N/4];
117 data_t w = LUT[k<<log2stride];
118 out[k] = Uk + (w*Zk + conj(w)*Zdk);
119 out[k+N/2] = Uk - (w*Zk + conj(w)*Zdk);
120 out[k+N/4] = Uk2 - I*(w*Zk - conj(w)*Zdk);
121 out[k+3*N/4] = Uk2 + I*(w*Zk - conj(w)*Zdk);
122 }
123 }
124 }
125
126 void fft_init(int N) {
127 LUT0 = malloc(N/8 * sizeof(data_t));
128 LUT1 = malloc(N/8 * sizeof(data_t));
129 LUT2 = malloc(N/8 * sizeof(data_t));
130 LUT = malloc(N/4 * sizeof(data_t));
131
132 s2 = malloc(N/4 * sizeof(float));
133 s4 = malloc(N/4 * sizeof(float));
134
135 int i;
136 for(i=0;i<N/8;i++) LUT0[i] = W(N,i)*s(N/4,i)/s(N,i);
137 for(i=0;i<N/8;i++) LUT1[i] = W(N,i+N/8)*s(N/4,i+N/8)/s(N,i+N/8);
138 for(i=0;i<N/8;i++) LUT2[i] = W(N,2*i)*s(N/8,i)/s(N/2,i);
139 for(i=0;i<N/4;i++) LUT[i] = W(N,i)*s(N/4,i);
140 for(i=0;i<N/4;i++) s4[i] = s(N/4,i)/s(N,i);
141 for(i=0;i<N/4;i++) s2[i] = s(N/2,i)/s(N,i);
142 } �





C
F F T S W I T H V E C T O R I Z E D L O O P S

This Appendix contains source code listings corresponding to the vec-

torized FFT implementations in Section 3.3.

Listing 28: Radix-2 FFT with vectorized loops

1 #include <math.h>
2 #include <complex.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <xmmintrin.h>
6
7 typedef complex float data_t;
8
9 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)(k) / (float)(N)))

10
11 data_t **LUT;
12
13 void ditfft2(data_t *in, data_t *out, int log2stride, int stride, int N) {
14 if(N == 2) {
15 out[0] = in[0] + in[stride];
16 out[N/2] = in[0] - in[stride];
17 }else if(N == 4){
18 ditfft2(in, out, log2stride+1, stride << 1, N >> 1);
19 ditfft2(in+stride, out+N/2, log2stride+1, stride << 1, N >> 1);
20
21 data_t temp0 = out[0] + out[2];
22 data_t temp1 = out[0] - out[2];
23 data_t temp2 = out[1] - I*out[3];
24 data_t temp3 = out[1] + I*out[3];
25 if(log2stride) {
26 out[0] = creal(temp0) + creal(temp2)*I;
27 out[1] = creal(temp1) + creal(temp3)*I;
28 out[2] = cimag(temp0) + cimag(temp2)*I;
29 out[3] = cimag(temp1) + cimag(temp3)*I;
30 }else{
31 out[0] = temp0;
32 out[2] = temp1;
33 out[1] = temp2;
34 out[3] = temp3;
35 }
36 }else if(!log2stride){
37 ditfft2(in, out, log2stride+1, stride << 1, N >> 1);
38 ditfft2(in+stride, out+N/2, log2stride+1, stride << 1, N >> 1);
39
40 int k;
41 for(k=0;k<N/2;k+=4) {
42 __m128 Ok_re = _mm_load_ps((float *)&out[k+N/2]);
43 __m128 Ok_im = _mm_load_ps((float *)&out[k+N/2+2]);
44 __m128 w_re = _mm_load_ps((float *)&LUT[log2stride][k]);
45 __m128 w_im = _mm_load_ps((float *)&LUT[log2stride][k+2]);
46 __m128 Ek_re = _mm_load_ps((float *)&out[k]);
47 __m128 Ek_im = _mm_load_ps((float *)&out[k+2]);
48 __m128 wOk_re = _mm_sub_ps(_mm_mul_ps(Ok_re,w_re),_mm_mul_ps(Ok_im,w_im));
49 __m128 wOk_im = _mm_add_ps(_mm_mul_ps(Ok_re,w_im),_mm_mul_ps(Ok_im,w_re));
50 __m128 out0_re = _mm_add_ps(Ek_re, wOk_re);
51 __m128 out0_im = _mm_add_ps(Ek_im, wOk_im);
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52 __m128 out1_re = _mm_sub_ps(Ek_re, wOk_re);
53 __m128 out1_im = _mm_sub_ps(Ek_im, wOk_im);
54 _mm_store_ps((float *)(out+k), _mm_unpacklo_ps(out0_re, out0_im));
55 _mm_store_ps((float *)(out+k+2), _mm_unpackhi_ps(out0_re, out0_im));
56 _mm_store_ps((float *)(out+k+N/2), _mm_unpacklo_ps(out1_re, out1_im));
57 _mm_store_ps((float *)(out+k+N/2+2), _mm_unpackhi_ps(out1_re, out1_im));
58 }
59 }else{
60 ditfft2(in, out, log2stride+1, stride << 1, N >> 1);
61 ditfft2(in+stride, out+N/2, log2stride+1, stride << 1, N >> 1);
62
63 int k;
64 for(k=0;k<N/2;k+=4) {
65 __m128 Ok_re = _mm_load_ps((float *)&out[k+N/2]);
66 __m128 Ok_im = _mm_load_ps((float *)&out[k+N/2+2]);
67 __m128 w_re = _mm_load_ps((float *)&LUT[log2stride][k]);
68 __m128 w_im = _mm_load_ps((float *)&LUT[log2stride][k+2]);
69 __m128 Ek_re = _mm_load_ps((float *)&out[k]);
70 __m128 Ek_im = _mm_load_ps((float *)&out[k+2]);
71 __m128 wOk_re = _mm_sub_ps(_mm_mul_ps(Ok_re,w_re),_mm_mul_ps(Ok_im,w_im));
72 __m128 wOk_im = _mm_add_ps(_mm_mul_ps(Ok_re,w_im),_mm_mul_ps(Ok_im,w_re));
73 _mm_store_ps((float *)(out+k), _mm_add_ps(Ek_re, wOk_re));
74 _mm_store_ps((float *)(out+k+2), _mm_add_ps(Ek_im, wOk_im));
75 _mm_store_ps((float *)(out+k+N/2), _mm_sub_ps(Ek_re, wOk_re));
76 _mm_store_ps((float *)(out+k+N/2+2), _mm_sub_ps(Ek_im, wOk_im));
77 }
78 }
79 }
80
81 void fft_init(int N) {
82 int i;
83
84 #define log2(x) ((int)(log(x)/log(2)))
85
86 int n_luts = log2(N)-2;
87 LUT = malloc(n_luts * sizeof(data_t *));
88 for(i=0;i<n_luts;i++) {
89 int n = N / pow(2,i);
90 LUT[i] = _mm_malloc(n/2 * sizeof(data_t), 16);
91
92
93 int j;
94 for(j=0;j<n/2;j+=4) {
95 data_t w[4];
96 int k;
97 for(k=0;k<4;k++) w[k] = W(n,j+k);
98
99 LUT[i][j] = creal(w[0]) + creal(w[1])*I;
100 LUT[i][j+1] = creal(w[2]) + creal(w[3])*I;
101 LUT[i][j+2] = cimag(w[0]) + cimag(w[1])*I;
102 LUT[i][j+3] = cimag(w[2]) + cimag(w[3])*I;
103 }
104 }
105
106 } �

Listing 29: Vectorized math functions for split-radix implementations

1
2 typedef struct _reg_t {
3 __m128 re, im;
4 } reg_t;
5
6 static inline reg_t MUL(reg_t a, reg_t b) {
7 reg_t r;
8 r.re = _mm_sub_ps(_mm_mul_ps(a.re,b.re),_mm_mul_ps(a.im,b.im));
9 r.im = _mm_add_ps(_mm_mul_ps(a.re,b.im),_mm_mul_ps(a.im,b.re));

10 return r;
11 }
12 static inline reg_t MULJ(reg_t a, reg_t b) {
13 reg_t r;
14 r.re = _mm_add_ps(_mm_mul_ps(a.re,b.re),_mm_mul_ps(a.im,b.im));
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15 r.im = _mm_sub_ps(_mm_mul_ps(a.im,b.re),_mm_mul_ps(a.re,b.im));
16 return r;
17 }
18
19 static inline reg_t ADD(reg_t a, reg_t b) {
20 reg_t r;
21 r.re = _mm_add_ps(a.re,b.re);
22 r.im = _mm_add_ps(a.im,b.im);
23 return r;
24 }
25 static inline reg_t SUB(reg_t a, reg_t b) {
26 reg_t r;
27 r.re = _mm_sub_ps(a.re,b.re);
28 r.im = _mm_sub_ps(a.im,b.im);
29 return r;
30 }
31 static inline reg_t ADD_I(reg_t a, reg_t b) {
32 reg_t r;
33 r.re = _mm_sub_ps(a.re,b.im);
34 r.im = _mm_add_ps(a.im,b.re);
35 return r;
36 }
37 static inline reg_t SUB_I(reg_t a, reg_t b) {
38 reg_t r;
39 r.re = _mm_add_ps(a.re,b.im);
40 r.im = _mm_sub_ps(a.im,b.re);
41 return r;
42 }
43
44 static inline reg_t LOAD(float *a) {
45 reg_t r;
46 r.re = _mm_load_ps(a);
47 r.im = _mm_load_ps(a+4);
48 return r;
49 }
50 static inline void STORE(float *a, reg_t r) {
51 _mm_store_ps(a, r.re);
52 _mm_store_ps(a+4, r.im);
53 }
54 static inline void STOREIL(float *a, reg_t r) {
55 _mm_store_ps(a, _mm_unpacklo_ps(r.re, r.im));
56 _mm_store_ps(a+4, _mm_unpackhi_ps(r.re, r.im));
57 } �

Listing 30: Split-radix FFT with vectorized loops

1 #include <math.h>
2 #include <complex.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <xmmintrin.h>
6
7 typedef complex float data_t;
8
9 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)(k) / (float)(N)))

10 data_t **LUT1;
11 data_t **LUT3;
12
13 #include "vecmath.h"
14
15 void splitfft(data_t *in, data_t *out,
16 int log2stride, int stride, int N) {
17
18 if(N == 1) {
19 out[0] = in[0];
20 }else if(N == 2) {
21 out[0] = in[0] + in[stride];
22 out[1] = in[0] - in[stride];
23 }else if(N == 4) {
24 splitfft(in, out, log2stride+1, stride << 1, N >> 1);
25 splitfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
26 splitfft(in+3*stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
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27
28 data_t temp0 = out[0] + (out[2] + out[3]);
29 data_t temp1 = out[0] - (out[2] + out[3]);
30 data_t temp2 = out[1] - I*(out[2] - out[3]);
31 data_t temp3 = out[1] + I*(out[2] - out[3]);
32 if(log2stride) {
33 out[0] = creal(temp0) + creal(temp2)*I;
34 out[1] = creal(temp1) + creal(temp3)*I;
35 out[2] = cimag(temp0) + cimag(temp2)*I;
36 out[3] = cimag(temp1) + cimag(temp3)*I;
37 }else{
38 out[0] = temp0;
39 out[2] = temp1;
40 out[1] = temp2;
41 out[3] = temp3;
42 }
43
44 }else if(N == 8) {
45 splitfft(in, out, log2stride+1, stride << 1, N >> 1);
46 splitfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
47 splitfft(in+3*stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
48
49 data_t o[8];
50 {
51 data_t Uk = creal(out[0]) + creal(out[2])*I;
52 data_t Zk = out[4];
53 data_t Uk2 = creal(out[1]) + creal(out[3])*I;
54 data_t Zdk = out[6];
55
56 o[0] = Uk + (Zk + Zdk);
57 o[4] = Uk - (Zk + Zdk);
58 o[2] = Uk2 - I*(Zk - Zdk);
59 o[6] = Uk2 + I*(Zk - Zdk);
60 }
61 {
62 data_t Uk = cimag(out[0]) + cimag(out[2])*I;
63 data_t Zk = out[5];
64 data_t Uk2 = cimag(out[1]) + cimag(out[3])*I;
65 data_t Zdk = out[7];
66 data_t w1 = LUT1[log2stride][1];
67 data_t w3 = LUT3[log2stride][1];
68
69 o[1] = Uk + (w1*Zk + w3*Zdk);
70 o[5] = Uk - (w1*Zk + w3*Zdk);
71 o[3] = Uk2 - I*(w1*Zk - w3*Zdk);
72 o[7] = Uk2 + I*(w1*Zk - w3*Zdk);
73 }
74 if(log2stride) {
75 out[0] = creal(o[0]) + creal(o[1])*I;
76 out[1] = creal(o[2]) + creal(o[3])*I;
77 out[2] = cimag(o[0]) + cimag(o[1])*I;
78 out[3] = cimag(o[2]) + cimag(o[3])*I;
79 out[4] = creal(o[4]) + creal(o[5])*I;
80 out[5] = creal(o[6]) + creal(o[7])*I;
81 out[6] = cimag(o[4]) + cimag(o[5])*I;
82 out[7] = cimag(o[6]) + cimag(o[7])*I;
83 }else{
84 int i;
85 for(i=0;i<8;i++) out[i] = o[i];
86 }
87 }else if(!log2stride){
88
89 splitfft(in, out, log2stride+1, stride << 1, N >> 1);
90 splitfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
91 splitfft(in+3*stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
92 int k;
93 for(k=0;k<N/4;k+=4) {
94 reg_t Uk = LOAD((float *)&out[k]);
95 reg_t Zk = LOAD((float *)&out[k+N/2]);
96 reg_t Uk2 = LOAD((float *)&out[k+N/4]);
97 reg_t Zdk = LOAD((float *)&out[k+3*N/4]);
98 reg_t w1 = LOAD((float *)&LUT1[log2stride][k]);
99 reg_t w3 = LOAD((float *)&LUT3[log2stride][k]);
100
101 reg_t w3Zdk = MUL(w3, Zdk);
102 reg_t w1Zk = MUL(w1, Zk);
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103 reg_t sum = ADD(w1Zk, w3Zdk);
104 reg_t dif = SUB(w1Zk, w3Zdk);
105
106 STOREIL((float *)&out[k], ADD(Uk, sum));
107 STOREIL((float *)&out[k+N/2], SUB(Uk, sum));
108 STOREIL((float *)&out[k+N/4], SUB_I(Uk2, dif));
109 STOREIL((float *)&out[k+3*N/4], ADD_I(Uk2, dif));
110 }
111
112 }else{
113 splitfft(in, out, log2stride+1, stride << 1, N >> 1);
114 splitfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
115 splitfft(in+3*stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
116
117 int k;
118 for(k=0;k<N/4;k+=4) {
119 reg_t Uk = LOAD((float *)&out[k]);
120 reg_t Zk = LOAD((float *)&out[k+N/2]);
121 reg_t Uk2 = LOAD((float *)&out[k+N/4]);
122 reg_t Zdk = LOAD((float *)&out[k+3*N/4]);
123 reg_t w1 = LOAD((float *)&LUT1[log2stride][k]);
124 reg_t w3 = LOAD((float *)&LUT3[log2stride][k]);
125
126 reg_t w3Zdk = MUL(w3, Zdk);
127 reg_t w1Zk = MUL(w1, Zk);
128 reg_t sum = ADD(w1Zk, w3Zdk);
129 reg_t dif = SUB(w1Zk, w3Zdk);
130
131 STORE((float *)&out[k], ADD(Uk, sum));
132 STORE((float *)&out[k+N/2], SUB(Uk, sum));
133 STORE((float *)&out[k+N/4], SUB_I(Uk2, dif));
134 STORE((float *)&out[k+3*N/4], ADD_I(Uk2, dif));
135 }
136 }
137 }
138
139 void fft_init(int N) {
140 #define log2(x) ((int)(log(x)/log(2)))
141
142 int n_luts = log2(N)-1;
143 LUT1 = malloc(n_luts * sizeof(data_t *));
144 LUT3 = malloc(n_luts * sizeof(data_t *));
145 int i;
146 for(i=0;i<n_luts;i++) {
147 int n = N / pow(2,i);
148 LUT1[i] = _mm_malloc(n/4 * sizeof(data_t),16);
149 LUT3[i] = _mm_malloc(n/4 * sizeof(data_t),16);
150
151 if(n == 8) {
152 int j;
153 for(j=0;j<n/4;j++) {
154 LUT1[i][j] = W(n,j);
155 LUT3[i][j] = W(n,3*j);
156 }
157 }else{
158 int j;
159 for(j=0;j<n/4;j+=4) {
160 data_t w1[4], w3[4];
161 int k;
162 for(k=0;k<4;k++) w1[k] = W(n,j+k);
163 for(k=0;k<4;k++) w3[k] = W(n,3*(j+k));
164
165 LUT1[i][j] = creal(w1[0]) + creal(w1[1])*I;
166 LUT1[i][j+1] = creal(w1[2]) + creal(w1[3])*I;
167 LUT1[i][j+2] = cimag(w1[0]) + cimag(w1[1])*I;
168 LUT1[i][j+3] = cimag(w1[2]) + cimag(w1[3])*I;
169 LUT3[i][j] = creal(w3[0]) + creal(w3[1])*I;
170 LUT3[i][j+1] = creal(w3[2]) + creal(w3[3])*I;
171 LUT3[i][j+2] = cimag(w3[0]) + cimag(w3[1])*I;
172 LUT3[i][j+3] = cimag(w3[2]) + cimag(w3[3])*I;
173 }
174 }
175 }
176 } �
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Listing 31: Conjugate-pair FFT with vectorized loops

1 #include <math.h>
2 #include <complex.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <xmmintrin.h>
6
7 typedef complex float data_t;
8
9 #define W(N,k) (cexp(-2.0f * M_PI * I * (float)(k) / (float)(N)))

10 data_t **LUT1;
11
12 #include "vecmath.h"
13
14 data_t *base;
15 int TN;
16
17 void conjfft(data_t *in, data_t *out,
18 int log2stride, int stride, int N) {
19
20 if(N == 1) {
21 if(in < base) in += TN;
22 out[0] = in[0];
23 }else if(N == 2) {
24 data_t *i0 = in, *i1 = in + stride;
25 if(i0 < base) i0 += TN;
26 if(i1 < base) i1 += TN;
27 out[0] = *i0 + *i1;
28 out[N/2] = *i0 - *i1;
29 }else if(N == 4) {
30 conjfft(in, out, log2stride+1, stride << 1, N >> 1);
31 conjfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
32 conjfft(in-stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
33
34 data_t temp0 = out[0] + (out[2] + out[3]);
35 data_t temp1 = out[0] - (out[2] + out[3]);
36 data_t temp2 = out[1] - I*(out[2] - out[3]);
37 data_t temp3 = out[1] + I*(out[2] - out[3]);
38 if(log2stride) {
39 out[0] = creal(temp0) + creal(temp2)*I;
40 out[1] = creal(temp1) + creal(temp3)*I;
41 out[2] = cimag(temp0) + cimag(temp2)*I;
42 out[3] = cimag(temp1) + cimag(temp3)*I;
43 }else{
44 out[0] = temp0;
45 out[2] = temp1;
46 out[1] = temp2;
47 out[3] = temp3;
48 }
49
50 }else if(N == 8) {
51 conjfft(in, out, log2stride+1, stride << 1, N >> 1);
52 conjfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
53 conjfft(in-stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
54
55 data_t o[8];
56 {
57 data_t Uk = creal(out[0]) + creal(out[2])*I;
58 data_t Zk = out[4];
59 data_t Uk2 = creal(out[1]) + creal(out[3])*I;
60 data_t Zdk = out[6];
61
62 o[0] = Uk + (Zk + Zdk);
63 o[4] = Uk - (Zk + Zdk);
64 o[2] = Uk2 - I*(Zk - Zdk);
65 o[6] = Uk2 + I*(Zk - Zdk);
66 }
67 {
68 data_t Uk = cimag(out[0]) + cimag(out[2])*I;
69 data_t Zk = out[5];
70 data_t Uk2 = cimag(out[1]) + cimag(out[3])*I;
71 data_t Zdk = out[7];
72 data_t w1 = LUT1[log2stride][1];
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73
74 o[1] = Uk + (w1*Zk + conj(w1)*Zdk);
75 o[5] = Uk - (w1*Zk + conj(w1)*Zdk);
76 o[3] = Uk2 - I*(w1*Zk - conj(w1)*Zdk);
77 o[7] = Uk2 + I*(w1*Zk - conj(w1)*Zdk);
78 }
79 if(log2stride) {
80 out[0] = creal(o[0]) + creal(o[1])*I;
81 out[1] = creal(o[2]) + creal(o[3])*I;
82 out[2] = cimag(o[0]) + cimag(o[1])*I;
83 out[3] = cimag(o[2]) + cimag(o[3])*I;
84 out[4] = creal(o[4]) + creal(o[5])*I;
85 out[5] = creal(o[6]) + creal(o[7])*I;
86 out[6] = cimag(o[4]) + cimag(o[5])*I;
87 out[7] = cimag(o[6]) + cimag(o[7])*I;
88 }else{
89 int i;
90 for(i=0;i<8;i++) out[i] = o[i];
91 }
92 }else if(!log2stride){
93
94 conjfft(in, out, log2stride+1, stride << 1, N >> 1);
95 conjfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
96 conjfft(in-stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
97 int k;
98 for(k=0;k<N/4;k+=4) {
99 reg_t Uk = LOAD((float *)&out[k]);
100 reg_t Zk = LOAD((float *)&out[k+N/2]);
101 reg_t Uk2 = LOAD((float *)&out[k+N/4]);
102 reg_t Zdk = LOAD((float *)&out[k+3*N/4]);
103 reg_t w1 = LOAD((float *)&LUT1[log2stride][k]);
104
105 reg_t w3Zdk = MULJ(Zdk, w1);
106 reg_t w1Zk = MUL(w1, Zk);
107 reg_t sum = ADD(w1Zk, w3Zdk);
108 reg_t dif = SUB(w1Zk, w3Zdk);
109
110 STOREIL((float *)&out[k], ADD(Uk, sum));
111 STOREIL((float *)&out[k+N/2], SUB(Uk, sum));
112 STOREIL((float *)&out[k+N/4], SUB_I(Uk2, dif));
113 STOREIL((float *)&out[k+3*N/4], ADD_I(Uk2, dif));
114 }
115
116 }else{
117 conjfft(in, out, log2stride+1, stride << 1, N >> 1);
118 conjfft(in+stride, out+N/2, log2stride+2, stride << 2, N >> 2);
119 conjfft(in-stride, out+3*N/4, log2stride+2, stride << 2, N >> 2);
120
121 int k;
122 for(k=0;k<N/4;k+=4) {
123 reg_t Uk = LOAD((float *)&out[k]);
124 reg_t Zk = LOAD((float *)&out[k+N/2]);
125 reg_t Uk2 = LOAD((float *)&out[k+N/4]);
126 reg_t Zdk = LOAD((float *)&out[k+3*N/4]);
127 reg_t w1 = LOAD((float *)&LUT1[log2stride][k]);
128
129 reg_t w3Zdk = MULJ(Zdk, w1);
130 reg_t w1Zk = MUL(w1, Zk);
131 reg_t sum = ADD(w1Zk, w3Zdk);
132 reg_t dif = SUB(w1Zk, w3Zdk);
133
134 STORE((float *)&out[k], ADD(Uk, sum));
135 STORE((float *)&out[k+N/2], SUB(Uk, sum));
136 STORE((float *)&out[k+N/4], SUB_I(Uk2, dif));
137 STORE((float *)&out[k+3*N/4], ADD_I(Uk2, dif));
138 }
139 }
140 }
141
142 void fft_init(int N) {
143 #define log2(x) ((int)(log(x)/log(2)))
144 int n_luts = log2(N)-1;
145 LUT1 = malloc(n_luts * sizeof(data_t *));
146 int i;
147 for(i=0;i<n_luts;i++) {
148 int n = N / pow(2,i);
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149 LUT1[i] = _mm_malloc(n/4 * sizeof(data_t),16);
150
151 if(n == 8) {
152 int j;
153 for(j=0;j<n/4;j++) {
154 LUT1[i][j] = W(n,j);
155 }
156 }else{
157 int j;
158 for(j=0;j<n/4;j+=4) {
159 data_t w1[4];
160 int k;
161 for(k=0;k<4;k++) w1[k] = W(n,j+k);
162
163 LUT1[i][j] = creal(w1[0]) + creal(w1[1])*I;
164 LUT1[i][j+1] = creal(w1[2]) + creal(w1[3])*I;
165 LUT1[i][j+2] = cimag(w1[0]) + cimag(w1[1])*I;
166 LUT1[i][j+3] = cimag(w1[2]) + cimag(w1[3])*I;
167 }
168 }
169 }
170 TN = N;
171
172 } �
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