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Abstract

The Hawthorn model [1] is built upon the idea that the Lie algebra so(2, 3) is a

more natural description of the local structure of spacetime than the Poincaré

Lie algebra. This model uses a 10-dimensional spacetime referred to as an

ADS manifold. We find the model (as it stands in [1]) to be inconsistent with

Maxwell’s equations. We investigate why this is so and proceed to revise the

model so as to restore consistency with electromagnetic theory. Consequently

we find that the Faraday-Gauss equations (a subset of Maxwell’s equations)

arise naturally from the geometry of an ADS manifold.
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Chapter 1

Introduction

This thesis looks at the Hawthorn model [1] which is built upon the idea

that the Lie algebra so(2, 3) is a more natural description of the local structure

of spacetime than the Poincaré Lie algebra. This model uses a 10-dimensional

spacetime referred to as an ADS manifold. The Dirac equation works very

nicely on an ADS manifold. From the Dirac equation we can deduce an elec-

tromagnetic potential which satisfies equations similar to Maxwell’s. However

we find that these equations satisfy unphysical constraints. This thesis investi-

gates the problem of making (what should be) Maxwell’s equations work on an

ADS manifold. In the process adjustments to the Hawthorn model are made.

We manage to revise the model so as to make it consistent with a working

form of Maxwell’s equations. Furthermore we find that in this revised model

the Faraday-Gauss equations are simply geometric identities, i.e. they arise

naturally and necessarily from the structure of an ADS manifold.

1.1 Thesis overview

Chapter 2 introduces the classical forces; electromagnetism and gravity. This

is followed by a presentation of Kaluza-Klein theory which is an attempt to

unify these two classical interactions. After pointing out some weaknesses of

the theory (as we have presented it) the chapter concludes with some instruc-

tive principles which are relevant to the rest of the thesis. The main references



2

used are [6], [8], [10], [12], [18], [20], [21], [23] and [24].

Chapter 3 introduces and explores the Lie group SO(2, 3) and its correspond-

ing Lie algebra so(2, 3). The relationship between SO(2, 3) and the Poincaré

group via Lie group contraction is outlined. It is argued that we are at liberty

to use so(2, 3) rather than the Poincaré Lie algebra to describe the local sym-

metries of spacetime, and have reason to do so. The main references used are

[1], [5], [7], [8], [9], [13], [14] and [25].

Chapter 4 develops what we call the Hawthorn model, which attempts

to define the action of so(2, 3) on a curved manifold in a natural way. The

archetype manifold is the Lie group SO(2, 3) which is 10-dimensional. This

leads us to the use of an ADS manifold, a 10-dimensional manifold with local

structure so(2, 3). Each point on the 10-dimensional manifold is interpreted

as an inertial frame.1 The chapter concludes with a summary of the main

assumptions and a justification for each. This chapter follows [1] very closely

for the following reasons. As [1] is the only source for this material, it would

create unnecessary confusion to alter things significantly, in particular the no-

tation. Furthermore the Hawthorn model is central to this thesis and the only

reference for it is currently unpublished. It is therefore prudent to check its

correctness carefully, especially since we shall seek to make adjustments to the

model as it stands in [1]. The other references used are [3] and an updated

draft of Hawthorn’s work [2].

Chapter 5 defines some terminology for the low dimensional representations

of so(2, 3). Useful mathematical results are derived, in particular with regard

to the curvature. As in chapter 4, the results found here are presented very

much as they are in [1] and [2].

1In physics an inertial frame is specified by 10 parameters: one temporal, three spatial,

three Lorentz boost and three rotational.
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Chapter 6 shows how the Dirac equation works very well on an ADS manifold.

Benefits of using a Dirac equation defined on an ADS manifold are considered,

including how the issue of Zitterbewegung can be resolved. We perform a de-

composition of the connection term found in the covariant formulation of the

Dirac equation on an ADS manifold. One of the irreducible components of the

connection is identified as a 10-dimensional electromagnetic potential requisite

for building Maxwell’s equations. Again, this chapter draws heavily from the

work of [1]. Other important references are [15], [16], [17], [22] and [26].

Chapter 7 uses the electromagnetic 10-potential from chapter 6 to construct

an appropriate 10-dimensional generalisation of the electromagnetic field ten-

sor Fij . Similar 10-dimensional analogues of Maxwell’s equations are given

and refered to as the extended Maxwell equations. It is found that the

extended Maxwell equations do not reduce to the usual Maxwell equations in

the limit that so(2, 3) becomes the Poincaré Lie algebra.

After investigating what might have produced this failure we find that

the problem arises because of assumption 4.9. The process of lifting this as-

sumption then ensues with the subtle expense of permitting the existence of

quantities on the ADS manifold which are like scalars in every respect except

that they parallel transport non-trivially. These unusual quantities are referred

to as bullet scalars, see [2].

Chapter 8 considers the effects on the Hawthorn model from the inclusion

of these bullet scalars. Subsequently the extended Maxwell equations are re-

considered and it is shown that they do in fact reduce to the usual Maxwell

equations in the appropriate way.

Furthermore in our new approach there is a direct link between the cur-

vature and the electromagnetic field tensor. This prompts a more natural

definition of the electromagnetic field tensor in terms of the curvature. This
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new definition is subtly different from our previous one, yet it does not alter

the fact that the extended Maxwell equations reduce in the proper manner.

The identification does however mean the Faraday-Gauss equations 7.4 are a

direct consequence of one of the Bianchi identities 8.19. Hence not only does

the (revised) Hawthorn model permit Maxwell’s equations, but one could say

in some sense that “half” of Maxwell’s equations arise purely from the geome-

try of spacetime and do not need to be postulated independently. The relevant

references for this chapter are [2], [8], [10] and [11].



Chapter 2

The Classical Forces

The fundamental forces (or interactions) of electromagnetism and gravity are

known as the classical forces. In this chapter we briefly consider these two

forces. We then introduce Kaluza-Klein theory, which has the goal of unifying

these fundamental interactions. This requires one to show that they are both

in fact special cases of, or follow from some more general, overarching physical

interaction. This chapter draws from references [6], [8], [10], [12] and [23].

2.1 Electromagnetism

The development of electromagnetic theory climaxed in 1865 with Maxwell

adjusting the existing set of laws to make them self-consistent. His alteration to

the former set of experimental laws implied the existence of hitherto unknown

physical processes. The addition of this new phenomenon was verified by

subsequent measurements, see p. 177 of [10]. These laws are expressed in the

following section and unite the electric and magnetic forces into one theory.
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2.2 Maxwell’s equations

Let ∇ = (∂x, ∂y, ∂z). The microscopic Maxwell equations in vacuo are

Gauss’s Law ∇ ·E =
ρ

ǫ0
(2.1)

Absence of magnetic charges ∇ · B = 0 (2.2)

Faraday’s Law ∇×E = −∂B
∂t

(2.3)

Ampére’s Law ∇×B = µ0J +
∂E

∂t
(2.4)

These are the basic laws of classical electrodynamics (given in SI units). The

quantities E and B are the electric and magnetic fields respectively, ρ is the

electric charge density and J = ρv is the current density with v = (vx, vy, vz),

the velocity of the flow of the charge. The continuity equation

∇ · J +
∂ρ

∂t
= 0 (2.5)

is a consequence of equations 2.1 and 2.4. It expresses the fact that electric

charge is a locally conserved quantity and is true in any inertial frame. We

can write equation 2.5 in the more loquacious form

1

c

∂

∂t
(cρ) +

∂

∂x
(ρvx) +

∂

∂y
(ρvy) +

∂

∂z
(ρvz) = 0 (2.6)

Since ∂i = (c−1∂t,∇) transforms as a 4-vector in Minkowski spacetime, it

follows that J i ≡ (cρ,J) must also be a 4-vector in order to ensure equation

2.5 is Lorentz covariant. We may now concisely write equation 2.6

∂iJ
i = 0 (2.7)

Consider an electric scalar potential φ and a magnetic vector potential A sat-

isfying

E = −∇φ− ∂A

∂t
(2.8)

B = ∇×A (2.9)

These potentials do not uniquely determine the (physical) fields E and B, viz.

a transformation of the form

A → A + ∇χ φ→ φ− ∂χ

∂t
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for an arbitrary function χ, leaves E and B unchanged. Such a transformation

is called a gauge transformation. E and B (and hence Maxwell’s equations)

are said to be gauge invariant (with respect to the afore stated gauge transfor-

mation). This means we are free to choose our potentials so that they satisfy

the Lorenz gauge condition

∇ · A +
1

c2
∂φ

∂t
= 0 (2.10)

Define the 4-vector Ai ≡ (φ/c,A) which we shall refer to as the 4-potential.

From the 4-potential we build the electromagnetic field tensor Fij

Fij ≡ ∂iAj − ∂jAi

Using the notation Bj,i ≡ ∂iBj and the contravariant form of the Minkowski

metric gij with signature (− + ++), we are now in a position to see that

gjkFij,k = µ0Ji

describes equations 2.1 and 2.4. While

Fij,k + Fjk,i + Fki,j = 0

encapsulates equations 2.2 and 2.3. Using this notation a gauge transformation

looks like Ai → Ai + ∂iχ, and the gauge condition 2.10 is ∂iA
i = 0. These

equations are built from Lorentz covariant quantities therefore they too are

Lorentz covariant. To make them generally covariant we simply replace the

partial derivatives with covariant ones (denoted with a semicolon) and no

longer restrict gij to be Minkowskian.

Fij = Aj;i −Ai;j Definition of the field tensor. (2.11)

gjlFjk;l = µ0Jk Source equation. (2.12)

Fij;k + Fki;j + Fjk;i = 0 Faraday-Gauss equation. (2.13)

J i
;i = 0 Continuity equation. (2.14)

The covariant derivative Ai;j of a vector Ai is defined by Ai;j = Ai,j − Γk
ijAk

where Γk
ij = 1

2
gkl(gli,j + gjl,i − gij,l). Note again that equation 2.14 is a conse-

quence of equation 2.12.
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2.3 Gravitation

In 1915 Einstein published his general theory of relativity, see pp. 431-434 of

[11]. Einstein’s equations govern this theory of gravitation and determine the

geodesics of both massive and massless particles. In their full generality they

are

Rαβ − 1

2
gαβR − Λgαβ = κTαβ (2.15)

where Rαβ is the Ricci curvature tensor, R is the curvature scalar, κ =

−8πG/c2 is the Einstein constant of gravitation (in SI units), gαβ is the metric

tensor, and Λ is the cosmological constant. Cosmological models based on the

Friedmann metric require the current value of Λ to be very small, see [24], in-

deed for physical situations dealing with smaller than galactic distance scales

it is common to set Λ = 0, see p. 411 of [11]. Tαβ is the stress-energy tensor

describing the energy-density of spacetime, which we may write as the sum of

stress-energy tensors for matter fields and electromagnetic fields

Tαβ = Mαβ + Eαβ

where the stress-energy of the electromagnetic field is

Eαβ = − 1

µ0

(

FαλF
λ

β − 1

4
gαβFδσF

δσ

)

(2.16)

Hence via equation 2.15 the electromagnetic fields will determine, though not

necessarily completely, (if e.g. matter is present) a test particle’s trajectory.

However the converse is not the case, viz. we cannot determine how the elec-

tromagnetic fields will evolve using only equation 2.15. We must therefore

postulate equations 2.12 and 2.13 independently. The set of equations 2.12,

2.13, 2.15 and 2.16 form the Einstein-Maxwell equations.

The trace of equation 2.15

R− 1

2
4R + 4Λ = κT ⇒ R = 4Λ − κT

leading to an alternative form for equation 2.15

Rαβ = −κ
2
Tgαβ + 3Λgαβ + κTαβ (2.17)
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In the following work we shall neglect the cosmological constant (Λ = 0), thus

Einstein’s equation reduces to

Rαβ = κ

(

−1

2
Tgαβ + Tαβ

)

(2.18)

2.4 The Einstein-Hilbert action

At the same time that Einstein presented his general theory of relativity,

Hilbert showed the Einstein equations1 could also be derived using a varia-

tional principle, see pp. 132-136 of [12]. The independent variables in the

action integral are the components of the metric tensor. His approach was to

find the extremum of the Einstein-Hilbert action

I = − 1

2κ

∫

V4

(
√
−gR+ L) d4x

where g = det (gαβ), R is the curvature scalar, κ = 8πG/c4 and L is the La-

grangian for any fields containing energy. V4 is a region of spacetime on whose

boundary the variations δgαβ = 0.

This variational approach is what Kaluza made use of in 1921 when he pro-

posed what is now known as Kaluza-Klein theory. His theory attempted

(though not for the first time, see [19]) to unite the only two well under-

stood interactions of the day, gravity and electromagnetism. The aim is to

deduce both Maxwell’s and Einstein’s (4-dimensional) equations from the 5-

dimensional Einstein-Hilbert action, given a specific metric. The main sources

for this section are [8] and [12].

1Actually Hilbert presented a subclass of Einstein’s equations where the energy-

momentum tensor was that for the electromagnetic field only, and not general distributions

of matter.
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2.5 Kaluza-Klein theory

In this section upper-case Latin letters A,B can take on values 0, 1, 2, 3, 4 and

refer to coordinate indices on a 5-dimensional Riemannian manifold R5 while

lower-case Greek letters α, β can take the values 0, 1, 2, 3 and refer to coor-

dinate indices in R4 (4-dimensional Riemannian space). Thus the first four

components of any vector V A ∈ R5 correspond to a vector V α ∈ R4. Strictly

speaking R4 and R5 are actually pseudo-Riemannian manifolds since we wish

to consider metrics which are not positive definite.

Kaluza-Klein theory is built on R5 with a metric kAB of signature (+,−,−,−;−).

It is essentially 5-dimensional general relativity determined by the Einstein-

Hilbert action

I = − 1

2κ̂

∫

V5

√
−kR̂ d5x (2.19)

where k = det(kAB), R̂ is the curvature scalar and κ̂ is essentially the gravita-

tional constant of R5. The equations of motion for this action are

R̂AB = 0

Equation 2.19 is invariant under general coordinate transformations

k̄AB(x̄M) =
∂xC

∂x̄A

∂xD

∂x̄B
kCD(xM)

However, to ensure the fifth dimension is unobservable it must be assumed

that the components of the metric kAB are all independent of x4, which is to

say

∂

∂x4
(kAB) = 0

This is known as the cylinder condition. Such a condition is not generally

covariant, however it remains true under the following class of transformations

xα → x̄α = x̄α(xµ) (2.20)

x4 → x̄4 = ρx4 + ξ(xµ) (2.21)
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where ρ is a constant. A symmetric kAB has 15 independent components. They

can be grouped into 10 which describe gravity kαβ , 4 which describe electro-

magnetism kα4, and 1 scalar field k44 = φ which appears to be a redundant

degree of freedom. To justify these relations consider how these quantities

transform under 2.20

k̄αβ =
∂xµ

∂x̄α

∂xν

∂x̄β
kµν k̄α4 =

∂xµ

∂x̄α
kµ4

We see that they transform as usual covariant tensors of ranks 2 and 1 respec-

tively. And under transformation 2.21

k̄αβ = kαβ − ∂αξk4β − ∂βξkα4 + φ∂αξ∂βξ

k̄α4 = kα4 − φ∂αξ

In order to assert that kα4 transforms like the electromagnetic 4-potential we

make the further assumption that φ is a constant function. We are thus free

to write kα4 as any scalar multiple of the electromagnetic 4-potential Aα. We

choose kα4 = φAα. The ordinary 4-dimensional metric of physical spacetime

ought to be invariant under translations along x4, which is not the case for

kαβ. We pick

gαβ = kαβ − φ−1kα4k4β

as the metric of R4 since it satisfies this requirement. We are now in a position

to write the 5-dimensional Kaluza-Klein metric in terms of physical familiar

quantities (with the exception of φ).

kAB =






gαβ + φAαAβ φAα

φAβ φ






and its inverse

kAB =






gαβ −Aα

−Aβ φ−1 + AλA
λ






where gαβ is the inverse of the metric gαβ, used to raise 4-dimensional indices.

To calculate the determinant k = det(kAB), write the metric as

kAB =






I4 φAα

0T φ











gαβ 0

Aβ 1





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where I4 is the 4 × 4 identity matrix and 0 is the column zero vector of R4.

This form makes it easy to find the determinant.

k = det






I4 φAα

0T φ




 det






gαβ 0

Aβ 1






= φ det(I4) det(gαβ)

= φg

where g = det(gαβ).

If one performs the laborious task of writing out the Christoffel symbols,

see pp. 165-166 of [12], then the various components of the Ricci tensor can

be calculated.

R̂αβ =Rαβ − 1

2
φF ρ

αFρβ +
1

2
φAαF

ρ
β;ρ +

1

2
φAβF

ρ
α;ρ +

1

4
φ2AαAβF

σρFσρ

R̂4β =
1

2
φF ρ

β;ρ +
1

4
φ2AβF

σρFσρ

R̂44 =
1

4
φ2F σρFσρ

Contraction with kAB yields

R̂ = R +
1

4
φF µνFµν

where R̂ is the curvature scalar of R5 and R is the curvature scalar of R4. If

we pick φ = −2κ/µ0, the 5-dimensional Einstein vacuum equation R̂AB =

0 will yield the Einstein-Maxwell equations in the absence of matter and

charge/current. Unfortunately the additional restriction F σρFσρ = 0 is also

imposed, thus not even the source-free Maxwell equations are produced in their

full generality.

With a sleight of hand we can remove this unwanted restriction. Since

kAB 6= kAB(x4) the integrand 2.19 will not depend on x4 either. In order to

make the action 2.19 finite, the fifth coordinate must have finite measure. We

can achieve this by postulating the extra spatial dimension to be compact, with

the geometry of a circle. Thus x4 ∈ [0, L], where L ∈ R is the circumference
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of the circle.

I = − 1

2κ̂

∫ x4=L

x4=0

(∫

V4

√
−kR̂ d4x

)

dx4

= − L

2κ̂

∫

V4

√
−kR̂ d4x

= − 1

2κ

∫

V4

√

−gφ
(

R +
1

4
φF µνFµν

)

d4x κ ≡ κ̂/L (2.22)

Earlier on we could have chosen to scale the 5-dimensional metric by what is

known as the Weyl factor : kAB → φ−1/3kAB. Since this would have been a

messy substitution to keep track of we shall simply make use of the result here.

Making this substitution will remove of the factor of φ from under the square

root sign in equation 2.22 while leaving it identical in all other respects, see

[20] and [21]. We write down this modified version of equation 2.22.

I = − 1

2κ

∫

V4

√
−g

(

R +
1

4
φF µνFµν

)

d4x (2.23)

If we pick φ = −1/µ0, this leads to the Einstein equation (in the absence of

matter) by the principle of least action, and to the Maxwell equations (in the

absence of charge/current) via the Euler-Lagrange equations for the dynamics

of the field Aµ. Note the negative sign in the value chosen for φ in order to

give the correct Maxwellian Lagrangian. This is why the extra dimension is

spatial.

2.6 Disadvantages of Kaluza-Klein theory

The weaknesses of Kaluza-Klein theory are as follows:

• The formulation of Kaluza-Klein theory is not covariant with respect to

5-dimensional coordinate transformations. This is due to the additional

symmetry kAB,4 = 0.

• The original action 2.19 has equations of motion R̂AB = 0. The new

action 2.23 no longer satisfies these, yet it was derived from 2.19.
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• Kaluza-Klein theory does not produce Maxwell’s equations in their full

generality, i.e. the source equation 2.12 is given only in the limited case

Jk = 0.

• This unification of gravity and electromagnetism does not include gravi-

tational fields induced by the presence of mass. Since all known massless

particles are of neutral charge, see [18], this makes sense of why Kaluza-

Klein theory imposes the stringent condition Jk = 0. It is because the

existence of a charge distribution requires the presence of massive parti-

cles - of which we have none.

• The significance of the fifth spatial dimension is unclear. Here it has sim-

ply been employed as a mathematical device to achieve a given purpose.

Should we attribute to it any physical significance? Indeed we have pre-

sented no natural explanation for the employment of this method other

than ‘it works’.

Ultimately, unity of all the fundamental interactions is sought after, not just

gravity and electromagnetism. The goal of this thesis is not to salvage Kaluza-

Klein theory. Rather the point of considering it has been to illuminate the, or

more correctly, a process of unification. In light of this we can observe some

guiding principles which we see fit for the pursuit of any physical model.

• The addition of dimensions should be clearly motivated and, if possible,

be accompanied by a physical interpretation.

• Once a framework has been developed, results ought to follow naturally,

rather than by ad hoc maneuvers. Being forced into an ad hoc position

may indicate the necessity to revise the theory.



Chapter 3

The Lie algebra so(2, 3)

In physics the local symmetries of spacetime are described by the Poincaré

group. We can approximate the Poincaré group with the Galilean group, in

the limit that the speed of light is infinite. In a similar manner the Poincaré

group itself approximates a group called SO(2, 3), often referred to as the

anti-de Sitter group. We are interested in the consequences of choosing to use

the group SO(2, 3) to describe local spacetime symmetries. While the group

SO(2, 3) is of relevance to the study of anti-de Sitter/conformal field theory

(or AdS/CFT) correspondence, AdS/CFT is not something considered here.

Much of the notation and explanation has been adapted from [1].

3.1 The Lie algebra so(2, 3)

For coordinates λ, t, x, y, z in R5 we define SO(2,3) as the Lie group of 5 × 5

real matrices which conserve the bilinear form

F (u, v) = uλvλ + utvt − uxvx − uyvy − uzvz u, v ∈ R
5

i.e. if A ∈ SO(2, 3) then F (Au,Av) = F (u, v). We can of course write the

bilinear form F (u, v) as uTFv where F is now the matrix
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F =
















1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1
















Hence for A ∈ SO(2, 3)

uTFv = (Au)TF (Av)

= uTATFAv

but since this is true for any u, v ∈ R5 we can just say

ATFA = F (3.1)

In principle we can find what the elements of SO(2, 3) look like using 3.1,

however it is better for us to consider the Lie algebra so(2, 3). The Lie group

SO(2, 3) is also a matrix Lie group, hence following the approach found on

p. 39 of [7], the (matrix) Lie algebra so(2, 3) consists of all matrices X such

that eθX is in SO(2, 3) for all real numbers θ. Finding what a general matrix

X ∈ so(2, 3) looks like will enables us to find a basis for so(2, 3). Since θ

can be any real number, we take it to be small. Thus we shall only need to

consider an element of the Lie group up to first order in θ, i.e. eθX = I + θX.

Substitute I + θX into 3.1

F = (I + θX)TF (I + θX)

= (I + θXT )F (I + θX)

= F + θXTF + θFX + θ2XTFX

= F + θXTF + θFX (First order in θ.)

The form of X can therefore be determined by the following relation.

XTF = −FX (3.2)
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Let us write these matrices as

F =






I2 0

0 −I3




 X =






A B

C D






each entry in X having equal dimensions to the corresponding entry in F .

Thus 3.2 (upon simplification) is






AT −CT

BT −DT




 =






−A −B

C D






The matrices A, B = CT and D must therefore take the form

A =






0 a

−a 0




 B =






b c d

e f g




 D =









0 h i

−h 0 j

−i −j 0









Thus X can have up to 10 independent entries.

X =
















0 a b c d

−a 0 e f g

b e 0 h i

c f −h 0 j

d g −i −j 0
















i.e. so(2, 3) has basis of dimension 10. We choose a particular basis which is

given in table 3.1. Table 3.2 gives the commutators for these matrices.

Table 3.1: A basis for the canonical representation of

so(2, 3).

T =
















0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















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X =
















0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0
















Y =
















0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0
















Z =
















0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0
















A =
















0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0
















B =
















0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0
















C =
















0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0
















I =
















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 1 0
















J =
















0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0
















K =
















0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0
















3.2 Anti de Sitter space

Following [8], let M5 refer to the 5-dimensional flat space with metric signature

(+,+,−,−,−). In such a space

ds2 = dλ2 + c2dt2 − dx2 − dy2 − dz2 (3.3)

= dλ2 + ηijdx
idxj

ηij is the Minkowski metric. Consider the hypersurface S4 embedded in M5

given by the equation of a hypersphere of ‘radius’ a

λ2 + ηijx
ixj = a2 (3.4)
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Table 3.2: Commutation relations for the Lie algebra so(2, 3).

T X Y Z A B C I J K

T 0 A B C -X -Y -Z 0 0 0

X -A 0 -K J -T 0 0 0 Z -Y

Y -B K 0 -I 0 -T 0 -Z 0 X

Z -C -J I 0 0 0 -T Y -X 0

A X T 0 0 0 -K J 0 C -B

B Y 0 T 0 K 0 -I -C 0 A

C Z 0 0 T -J I 0 B -A 0

I 0 0 Z -Y 0 C -B 0 K -J

J 0 -Z 0 X -C 0 A -K 0 I

K 0 Y -X 0 B -A 0 J -I 0

It is the maximally symmetric subspace of M5 and is known as anti de Sitter

space or the AdS manifold (this is not the same as an ADS manifold defined

in chapter 4). When acting on the AdS manifold, SO(2, 3) is known as the

anti de Sitter group (AdS group). On S4 we can write λ as a function of the

other four coordinates. To express the invariant interval (on S4) independent

of the λ coordinate, differentiate 3.4 and substitute it into 3.3

ds2 = ηijdx
idxj +

(ηijx
idxj)2

a2 − ηmnxmxn
(3.5)

S4 inherits natural time and distance scales from R5 as follows. The radius of

S4 is a, informally we call it the radius of the universe, hence it makes sense

to define a metres = 1 natural distance unit. It then follows that a/c seconds

= 1 natural time unit, given that c, the speed of light, is the natural unit for

velocity. Following Hawthorn [1] we define a = rc so that r is the radius of

the universe as measured in seconds. Accordingly

- rc metres = 1 natural distance unit.

- r seconds = 1 natural time unit.

The operators in table 3.1 can be identified by examining the way in which
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they act on the AdS manifold.

Consider the neighbourhood of the point λ = a on S4 or equivalently λ = 1 in

natural units, this is precisely the neighbourhood of xi = 0. In this region the

metric tensor is closely approximated by

gij = ηij +
xixj

a2
(3.6)

Consider applying the group element eθT where θ is small, to a point in the

neighbourhood of λ = 1 (we are using natural units). Such a point is given by

the coordinate vector (1, t, x, y, z)T , where t, x, y, z are small.































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
















+ θ
















0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0














































1

t

x

y

z
















=
















1 − θt

t+ θ

x

y

z
















=
















1

t+ θ

x

y

z
















The θt term can be ignored as it is second order in small terms. The group

operation eθT has translated the time coordinate by θ natural units (of time).

Similarly we find that X, Y, Z are related to translation through space, A,B,C

to Lorentz boost, and I, J,K to rotation.

Let us now consider the basis in which these operators translate an inertial

frame through space, time etc. by 1 ordinary unit (e.g. metres, seconds).

This is the basis {1
r
T, 1

rc
X, 1

rc
Y, 1

rc
Z, 1

c
A, 1

c
B, 1

c
C, I, J,K}. If we commute the

elements of this new basis we find some of the results have extra factors of

1/c or 1/r than is shown by table 3.2 if we simply substitute in the new basis

elements. In particular the commutation relations between T,X, Y, Z produce

an additional factor of 1/r2, hence in the limit r → ∞ these elements will in

fact commute. Furthermore, the commutator table for so(2, 3) reduces to the

commutation relations for the generators of the Poincaré Lie algebra. This

process is called contraction [14] and we say that the AdS group contracts to
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the Poincaré group as the radius of the universe tends to infinity. In a similar

fashion the Poincaré group contracts to the Galilean group as the speed of

light tends to infinity. This is why the Galilean and Poincaré groups are

functionally equivalent for practical purposes when the velocities involved are

much less than the speed of light. Likewise SO(2, 3) and the Poincaré group

are functionally equivalent provided the distance scales considered are much

less than rc metres.

We note also that the AdS metric 3.6 reduces to the Minkowski metric ηij

as r (and hence a) tends to infinity. The curved anti de Sitter space becomes

the flat Minkowski spacetime as the radius of the universe extends.

3.3 Why so(2, 3)?

The AdS metric permits the existence of closed timelike curves, e.g. the curve

(λ, ct, x, y, z) = (a sin τ, a cos τ, 0, 0, 0), where τ is the proper time. These

curves contradict the notion of causality hence the metric 3.5 is typically inap-

propriate for the purposes of a cosmological model. However we are not trying

to claim anything about the global structure of spacetime. These closed time-

like curves are then no problem to us since we wish to employ so(2, 3) to

describe local symmetry. Indeed locally the causal structure of metric 3.5 is of

the same qualitative nature as Minkowski spacetime, see p. 195 of [9].

We shall assume the parameter r is sufficiently large so that the action

of so(2, 3) on spacetime is locally indistinguishable from that of the Poincaré

Lie algebra. We are then free to use so(2, 3) as the locally symmetry group

of spacetime for the purposes of classical physics. Hence we shall explore the

following assumption.

Axiom 3.1 The Lie algebra so(2, 3) describes the local symmetry of spacetime

At this point one may ask: what benefit is there in adopting assumption 3.1 if

we cannot make any practical distinction? To answer this question we need to

consider quantum mechanics. The symmetry group of spacetime can act not
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just extrinsically, on spacetime itself, but also intrinsically, on the range space

of the wave function of a particle. For example, rotation operators can act

both on the spacetime in which a particle sits, giving eigenvalues of angular

momentum, and on (the range space of the wave function of) the particle itself,

giving discrete eigenvalues of spin (intrinsic angular momentum).

Consider now the set of compatible observables {T, I}. In the terminology

of [13] the operator I (we mean eθI) is cyclic (for either group), hence it gives

discrete (spin) eigenvalues when acting on a wave function.

But the operator T from the Poincaré group is a hyperbolic (not cyclic)

operator and so it has a continuous spectrum of eigenvalues when acting on

the range space of a wave function. Since we do not know of a quantum

number with a continuous spectrum which would correspond to this action,

we conclude that this particular element of the group does not act intrinsically.

While it comes as a surprise that this second sort of (intrinsic) action should

exist at all, it is bizarre that it should be allowed or disallowed in a seemingly

unclear fashion.

In the case of SO(2, 3), T is indeed a cyclic operator giving rise to discrete

intrinsic eigenvalues. In fact the fundamental representation of so(2, 3) is 4-

dimensional with two quantum numbers: intrinsic angular momentum taking

values ±1
2
, and intrinsic energy also taking values ±1

2
(in natural units).

Solutions to the Dirac equation (fermions) are characterised by the two

quantum numbers, spin and charge. If we identify intrinsic energy as charge

this fits precisely with the intrinsic spectrum of so(2, 3). Such a link is quite

reasonable, indeed positrons can be described as electrons travelling backwards

in time, see [27].

3.4 The Lie algebra sp(4,R)

In this section we define the symplectic group Sp(4,R) and consider how it

relates to SO(2, 3).
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Definition 3.1 A symplectic form is a bilinear form Ω : R4 × R4 → R

satisfying:

Total isotropy, Ω(v, v) = 0, ∀v ∈ R4; and

Nondegeneracy, if Ω(u, v) = 0, ∀v ∈ R4, then u = 0.

Proposition 3.2 A symplectic form is antisymmetric.

Proof. The symplectic form Ω is totally isotropic, hence Ω(u + v, u+ v) = 0

for all u, v ∈ R4. But Ω is a bilinear form

Ω(u+ v, u+ v) = Ω(u, u) + Ω(u, v) + Ω(v, u) + Ω(v, v)

= Ω(u, v) + Ω(v, u)

Thus Ω(u, v) = −Ω(v, u) for all u, v ∈ R4. �

The symplectic group Sp(4,R) is the Lie group of 4× 4 real matrices which

preserve a symplectic form. Elements of Sp(4,R) are called symplectic ma-

trices. Consider the matrix

Ω =












0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0












it defines a symplectic form (with respect to a particular basis) given by

Ω(x, y) = xT Ωy. A matrix A ∈ Sp(4,R) must satisfy AT ΩA = Ω. Similarly

elements X of the Lie algebra sp(4,R) must satisfy (I + X)TΩ(I + X) = Ω,

or simply (neglecting second order terms)

ΩX = −XT Ω (3.7)

Let

X =






A B

C D




 and Ω =






0 I

−I 0





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where A,B,C,D, I, 0 are 2×2 real matrices, in particular I is the identity and

0 the zero matrix. From 3.7 we can deduce the dimension of the Lie algebra.






0 I

−I 0











A B

C D




 = −






A B

C D






T 




0 I

−I 0






⇒






C D

−A −B




 =






CT −AT

DT −BT






So A = −DT , B = BT and C = CT . Thus B and C each have 3 independent

entries and the 4 independent entries of A completely determine D (and vice

versa). In total any matrix X ∈ sp(4,R) has up to 10 independent entries,

hence the Lie algebra - and therefore the Lie group - have bases of dimension

10. Table 3.3 gives one such basis, the elements of the basis are given the fa-

miliar names T,X, Y, . . . etc. since they commute with each other in the exact

manner prescribed by table 3.2. Hence the Lie algebra sp(4,R) is isomorphic

to so(2, 3).

Table 3.3: A basis for the Lie algebra sp(4,R)

T = 1
2












0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0












X = 1
2












0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0












Y = 1
2












1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1












Z = 1
2












0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0












A = 1
2












0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0












B = 1
2












0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0











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C = 1
2












−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1












I = 1
2












0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0












J = 1
2












0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0












K = 1
2












0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0












Let us call a matrix P satisfying P TΩ = ΩP , an Ω-symmetric matrix. If P

is Ω-symmetric and M ∈ sp(4,R) then, using the usual notation [ , ] for the

commutator

Ω[M,P ] = ΩMP − ΩPM = −MT ΩP − P TΩM

= −MTP TΩ + P TMT Ω

= (−MTP T + P TMT )Ω

= (−PM +MP )T Ω

= [M,P ]TΩ

Thus [M,P ] is Ω-symmetric as well which means the 4 × 4 Ω-symmetric ma-

trices form a Lie algebra representation of sp(4,R). This representation is

6-dimensional, a basis is given in table 3.4. It is reducible and is the direct

sum of the irreducible representations of dimensions 1 and 5. We have shown

that the 16 dimensional space of 4 × 4 matrices can be decomposed into irre-

ducible representations of dimension 1, 5 and 10 under the action of sp(4,R).

Table 3.4: A basis for the 6-dimensional representation

of the Lie algebra sp(4,R)
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I =












1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1












Pλ = 1
2












0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0












PT = 1
2












0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0












PX = 1
2












−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1












PY = 1
2












0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0












PZ = 1
2












0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0












3.5 The adjoint representation

The adjoint map

ad : g → g

defined by

adX(Y ) = [X, Y ]

is a Lie algebra endomorphism and therefore a representation of g. The adjoint

map is also linear

adX(fY ) = [X, fY ] = f [X, Y ] = fadX(Y )

adX(Y + Z) = [X, Y + Z] = [X, Y ] + [X,Z] = adX(Y ) + adX(Z)

where f is a scalar and X, Y, Z are in g. We can build a basis for the adjoint

representation of so(2, 3) from our knowledge of how commutation relations



27

on table 3.2. Let us consider the operator

adT =
































0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
































which acts on 10-vectors (t, x, y, z, a, b, c, i, j, k)T . We know [T,X] = A, hence

adT should map (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T to the vector (0, 0, 0, 0, 1, 0, 0, 0, 0, 0)T .

This is the function of the 1 entered in row 5, column 2 in adT , the other five

non-zero commutators involving T explain the five remaining non-zero entries.

A basis for the adjoint representation is given in appendix A.

3.6 The representation theory of so(2, 3)

In this section we briefly summarise some important results from the repre-

sentation theory of so(2, 3). These are outlined in [1] which makes use of [7]

and [25].

The Lie algebra so(2, 3) is simple, we may therefore construct weight dia-

grams for every irreducible representation (although this is only practical for

ones of low dimension). In particular we will be able to deduce the fundamen-

tal representation of so(2, 3). From the fundamental representation one can

‘build’ all other irreducible representations by finding the invariant subspaces

of tensor products of the fundamental representation and its dual.

In the adjoint representation the operators T and I are diagonalisable over

C. It can be shown therefore, that the images of these operators in any finite
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dimensional representation will be diagonalisable over an algebraically closed

field. In particular the matrices of T and I are diagonalisable over any finite

dimensional complex representation.

The operators T and I form a maximal Cartan subalgebra, viz. the largest

possible set of mutually commuting elements from the basis of so(2, 3), so they

are simultaneously diagonalisable and indeed simultaneously diagonalisable in

any finite dimensional complex representation, which means so(2, 3) has a basis

of simultaneous eigenvectors for T and I.

Definition 3.2 If π is a representation of so(2, 3) on V , then an ordered pair

µ = (q, s) is called a weight for π if there exists v 6= 0 in V such that

π(T )v = iqv

π(I)v = isv (3.8)

(the factors of i are inserted to make the weights real and thereby maintain

consistency with the way physicists talk about spin). The vector v is called a

weight vector corresponding to the weight µ. The set of all weight vectors

for a particular weight together with the zero vector is a vector subspace of V

called the weight space.

From our previous statements we conclude that the weight space gives a basis

for V . We establish an ordering on weights by saying (q1, s1) > (q2, s2) if

q1 > q2 or if q1 = q2 and s1 > s2. A finite dimensional representation of

so(2, 3) is characterised by its highest weight.

Definition 3.3 The degree of a weight in a representation (π, V ) is defined

as the dimension of corresponding subspace (with respect to V ) of weight vec-

tors.

In a finite dimensional representation the degree of a weight is calculated by

Konstant’s formula (see Theorem 7.42 in [7]). The sum of the degrees of all

weights gives the dimension of the representation. Weights together with their

degrees can be depicted in weight diagrams, see pp. 13-15 of [1].



Chapter 4

The Hawthorn model

In this chapter we develop what shall be referred to as the Hawthorn model.

This development will closely follow that provided by chapter 2 in [1] since

this is our only source.

4.1 The spacetime manifold

We have examined a few of the representations of so(2, 3) and seen that ob-

servation does not rule it out as a candidate local symmetry group. On the

contrary discrete eigenvalues for charge and spin arise quite naturally out of

the fundamental representation. It is now time for us to make mathematically

precise what it means for us to use so(2, 3) to describe local symmetry.

We could tack the Lie algebra so(2, 3) onto an arbitrary manifold, but such

an approach would be unsatisfactory. We wish to attach the Lie algebra to a

manifold in a natural fashion so that it arises from the structure of the manifold

itself. In particular the local symmetry at every point on the manifold ought

to be described by the Lie algebra. The manifold must give rise to the tangent

space so(2, 3) at every point, so in order to make things work properly and

naturally, it is best for the manifold to be of the same dimension as the Lie

algebra.

It may seem that our choice of a 10-dimensional manifold (as opposed to

the usual 4-dimensional spacetime) will create more problems than it is worth
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when it comes to explaining away the extra six dimensions. But this is not

what we are trying to do here. Rather than bothering ourselves with how

to abandon these extra dimensions once they have served a given purpose, we

wish to embrace the extra dimensions as physical dimensions - those of rotation

and Lorentz boost. We shall call them Lorentz dimensions. Our manifold is

thus the 10-dimensional manifold of inertial frames. To properly locate an

event on this manifold one must specify the orientation and instantaneous

reference velocity of the inertial frame (in addition to the position and time

coordinates).

We are immediately confronted with a conundrum when we consider cur-

vature. Curvature describes the failure of parallel transport to commute - we

are not guaranteed things will look the same if we take an alternate route to

the same point on the manifold i.e. translations do not commute. But the

Lie algebra itself also describes the nature of translation’s failure to commute.

It seems we have two different mathematical structures competing to describe

the same thing. To resolve this clash we must first develop some clear notation.

4.2 The covariant derivative

To do physics we need a means by which we may compare tensor quantities at

two different points of the manifold. On a curved manifold partial derivatives

will not (in general) suffice for this task as they do not transform like tensors.

We define a more general operator satisfying some familiar conditions.

Definition 4.1 A tensor derivation D on a manifold M is a linear map

D : tensors → tensors that obeys the Leibniz condition on tensor products

and commutes with contraction (of the tensors it operates on).

Definition 4.2 An ordinary derivation is a tensor derivation which maps

scalar functions to scalar functions.

There is no guarantee that the composition of tensor derivations will obey the

Leibniz condition, and hence be another tensor derivation. However we can
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establish the following proposition.

Proposition 4.1 If D and E are tensor derivations, then [D,E] is also a

tensor derivation where [D,E](X) = D(E(X)) −E(D(X)).

Proof. For tensor derivations D and E, tensors X and Y and scalar f we need

only to show that [D,E] is linear, Leibniz and commutes with contraction.

Linearity

[D,E](fX) = D(E(fX)) −E(D(fX))

= D(fE(X)) −E(fD(X))

= fD(E(X)) − fE(D(X))

= f [D,E](X)

[D,E](X + Y ) = D(E(X + Y )) − E(D(X + Y ))

= D(E(X) + E(Y )) − E(D(X) +D(Y ))

= D(E(X)) +D(E(Y )) −E(D(X)) −E(D(Y ))

= [D,E](X) + [D,E](Y )

Leibniz

[D,E](XY ) = D(E(XY )) − E(D(XY ))

= D(E(X)Y +XE(Y )) −E(D(X)Y +XD(Y ))

= D(E(X)Y ) +D(XE(Y )) − E(D(X)Y ) − E(XD(Y ))

= D(E(X))Y + E(X)D(Y ) +D(X)E(Y ) +XD(E(Y ))

− E(D(X))Y −D(X)E(Y ) −E(X)D(Y ) −XE(D(Y ))

= [D,E](X)Y +X[D,E](Y )

Contraction

The tensor X may contract in some fashion (either with itself or with another

tensor Y ). The operator [D,E] can be reduced down to a combination of a

series of operations, all of which conserve contraction. Hence [D,E] itself will

also conserve contraction. Thus the map [D,E] is seen to satisfy the three

properties of a tensor derivation. �
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Definition 4.3 Let D be a tensor derivation and f a tensor of rank zero.

Then D(f) is a tensor of rank (i
j), say. We define (i

j) to be the rank of D.

We can therefore write D using index notation: Dα1α2...αi

β1β2...βj
.

Proposition 4.2 Every tensor derivation of rank (i
j) maps tensors of rank (k

l )

to tensors of rank (i+k
j+l ).

Proof. Let the tensor derivation D be of rank (i
j) and the tensors f and T be

of ranks zero and (k
l ) respectively. Using the Leibniz condition

D(fT ) = D(f)T + fD(T )

The first term (on the RHS) clearly has rank (i+k
j+l ), hence so does the second

term. Given that f is of rank zero it follows that D(T ) is of rank (i+k
j+l ). �

Proposition 4.3 If D is a tensor derivation and S is any tensor, then S⊗D

is a tensor derivation, where (S ⊗D)(T ) = S ⊗D(T ).

Proof. Similar to that of proposition 4.1. �

The forthcoming propositions contribute to determining what a general tensor

derivation might look like.

Proposition 4.4 D − ai ∂
∂xi is a tensor derivation of rank (0

0) which maps all

functions to the zero function, where D is a tensor derivation of rank (0
0) and

ai are (real) vector components.

Proof. Every ordinary derivation ai ∂
∂xi can be extended to a tensor derivation

of rank (0
0) by allowing it to act on the components of a tensor. Conversely, ev-

ery tensor derivation D of rank (0
0) acts on functions as an ordinary derivation.

Hence in any coordinate system we can find a vector field ai such that for any

function f , D(f) = ai ∂
∂xi (f). It follows that D − ai ∂

∂xi is a tensor derivation

of rank (0
0) and (D − ai ∂

∂xi )(f) = 0. �
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Proposition 4.5 Let E be a tensor derivation of rank (0
0) with E(f) = 0 for

all functions f on M. There exists a tensor Γi
j of rank (1

1) such that

E(Xα1α2...αm

β1β2...βn
) =

∑

s

Γαs

α̂s
Xα1...α̂s...αm

β1β2...βn
−

∑

t

Γβ̂t

βt
Xα1α2...αm

β1...β̂t...βn

Proof. If v is a vector field and f is a scalar field on M then E(fv) = E(f)v+

fE(v). But E(f) = 0 hence E(fv) = fE(v) which means E acts linearly on

the tangent vector fields of M. Such an action is given by contraction of a

vector field with a tensor of rank (1
1) (local matrix multiplication).

Consider the vector fields {ei} which form a basis of the tangent spaces

at each point of M. We can thus write the vector field in terms of this basis

v = viei in order to explicitly find this tensor. Thus

E(v) = E(viei) = viE(ei) = viΓj
iej

for some Γj
i . If we describe the tensor simply in terms of coordinates

E(vj) = viΓj
i

Since

0 = E(uiv
i) = E(ui)v

i + uiE(vi) = E(ui)v
i + uiΓ

i
tv

t

for all v, it follows that

E(uj) = −Γi
jui

It is an exercise in mathematical induction to show this for a tensor of arbitrary

rank. �

Conversely, if Γ is a tensor of rank (1
1), then Γ (∗∗) defined by

Γ (∗∗) (Xα1α2...αm

β1β2...βn
) =

∑

s

Γαs

α̂s
Xα1...α̂s...αm

β1β2...βn
−

∑

t

Γβ̂t

βt
Xα1α2...αm

β1...β̂t...βn

is a tensor derivation. Thus we have shown that (D − ai ∂
∂xi )(f) = −Γ (∗∗) (f),

therefore all rank (0
0) tensor derivations are of the form

ai ∂

∂xi
+ Γ (∗∗)
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Proposition 4.6 Every tensor derivation of rank (m
n ) is of the form

Dλ1...λm

µ1...µn
= aλ1...λmi

µ1...µn

∂

∂xi
+ Γλ1...λm

µ1...µn
(∗∗)

where

Γλ1...λm

µ1...µn
(∗∗) (Xα1α2...αm

β1β2...βn
) =

∑

s

Γλ1...λmαs

µ1...µnα̂s
Xα1...α̂s...αm

β1β2...βn
−

∑

t

Γλ1...λmβ̂t

µ1...µnβt
Xα1α2...αm

β1...β̂t...βn

Proof. Each component of Dλ1...λm
µ1...µn

is individually a general tensor derivation

of rank (0
0). �

Of importance to us are the tensor derivations of rank (01), viz.

Di = aj
i

∂

∂xj
+ Γi (

∗
∗)

In particular we shall work with a distinguished covariant derivative ∇i which

is the tensor derivation given by aj
i = 1j

i . Because of the way it appears in the

covariant derivative, we identify Γk
ij as the affine connection.

4.3 The Bianchi identities

Let M be a manifold with distinguished covariant derivative ∇i. The commu-

tator of two tensor derivations is (as we have shown) a tensor derivation, in

particular [∇i,∇j] is a tensor derivation of rank (0
2). We may thus write

[∇i,∇j] = T k
ij

∂

∂xk

+Kij (∗∗) (4.1)

If we let both sides operate on a function f

−Γk
ij

∂f

∂xk
+ Γk

ji

∂f

∂xk
= T k

ij

∂f

∂xk

and therefore

T k
ij = −(Γk

ij − Γk
ji)

which is the negative of the torsion tensor as it is usually defined. Similarly

by applying [∇i,∇j] to a vector field vk and comparing the terms which do

not involve partial derivatives of vk

Kk
ijx =

∂Γk
jx

∂xi
− ∂Γk

ix

∂xj
+ Γk

itΓ
t
jx − Γk

jtΓ
t
ix + T t

ijΓ
k
tx
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We see that Kk
ijx is the usual Riemann curvature tensor plus an extra torsion

term - in the torsion-free case it is the Riemann tensor.

Smooth operators will obey the Jacobi identity

[[∇i,∇j],∇k] + [[∇j ,∇k],∇i] + [[∇k,∇i],∇j ] = 0

We can use this to deduce the well known Bianchi identities which place crucial

constraints on curvature. However, evaluating the Jacobi identity by express-

ing [∇i,∇j ] in terms partial derivatives is not a nice way to proceed with the

calculation so we seek to express [∇i,∇j] in terms of ∇k. We therefore define

[∇i,∇j ] = T k
ij∇k +Rij (∗∗) (4.2)

where the coefficients T k
ij are the same as those in equation 4.1 because covari-

ant and partial derivatives act identically on functions. From this definition

T k
ij

∂

∂xk
+Kij (∗∗) = T k

ij∇k +Rij (∗∗)

= T k
ij

∂

∂xk
+ T k

ijΓk (∗∗) +Rij (∗∗)

⇒ Rij (∗∗) = Kij (∗∗) − T l
ijΓl (

∗
∗)

It follows from the linearity of the operators Kij (∗∗) and T l
ijΓl (

∗
∗) that Rij (∗∗) is

also linear. Letting both sides operate on a vector vk we find that Rk
ijx is the

usual Riemannian tensor even when the manifold is not torsion-free. Having

attained an expression of the commutator of nablas in terms of nabla we shall
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now derive the Bianchi identities. Consider the first term of the Jacobi identity

[[∇i,∇j],∇k](v
x)

= [T l
ij∇l +Rij (∗∗) ,∇k](v

x)

= (T l
ij∇l∇k +Rij (∗∗)∇k −∇kT

l
ij∇l −∇kRij (∗∗))(v

x)

= T l
ij∇l(∇k(v

x)) +Rij (∗∗) (∇k(v
x)) −∇k(T

l
ij∇l(v

x)) −∇k(Rij (∗∗) (vx))

= T l
ij∇l(∇k(v

x)) −Rt
ijk∇t(v

x) +Rx
ijs∇k(v

s) −∇k(T
l
ij)∇l(v

x) − T l
ij∇k(∇l(v

x))

−∇k(R
x
ijs)v

s − Rx
ijs∇k(v

s)

= T l
ij [∇l,∇k](v

x) −Rt
ijk∇t(v

x) −∇k(T
l
ij)∇l(v

x) −∇k(R
x
ijs)v

s

= T l
ij(T

u
lk∇u +Rlk (∗∗))(v

x) −Rt
ijk∇t(v

x) −∇k(T
l
ij)∇l(v

x) −∇k(R
x
ijs)v

s

= (T l
ijT

t
lk −∇k(T

t
ij) − Rt

ijk)∇t(v
x) + (T l

ijR
x
lks −∇k(R

x
ijs))(v

s)

If we cyclically permute the indices i, j, k in this expression we get the other

two terms from the Jacobi identity. By the Jacobi identity, the sum of these

three expressions is zero. We can now use the coefficient of ∇t(v
x) to get the

first Bianchi identity

T l
ijT

t
lk −∇k(T

t
ij) −Rt

ijk
(ijk)
= 0 (4.3)

Here we have used the notation Qijk
(ijk)
= 0 to abbreviate Qijk +Qkij +Qjki = 0.

Note the relation (ijk)
= sums together permutations of the LHS only. Similarly

the coefficient of vs gives the second Bianchi identity

T l
ijR

x
lks −∇k(R

x
ijs)

(ijk)
= 0 (4.4)

4.4 Local Lie manifolds

Consider the manifold M which is also a Lie group. A covariant derivative

on a manifold can be defined in a natural manner from the action of the Lie

algebra on the Lie group. In such a case the components of the torsion tensor

T k
ij will be precisely the structure coefficients ckij . Hence the torsion obeys the

Jacobi identity T x
ijT

y
kx

(ijk)
= 0. Given that the Lie algebra structure is the same
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anywhere on the manifold (the Lie algebra is the tangent space at any point)

it follows that the torsion tensor is invariant, ∇l(T
k
ij) = 0 everywhere.

Our interest is in manifolds possessing the aforementioned structural prop-

erties but without stipulating that they bear an entire Lie group structure.

More precisely

Definition 4.4 A Local Lie manifold is a manifold M together with a

covariant derivative ∇k where the torsion T k
ij satisfies

∇l(T
k
ij) = 0 (4.5)

T x
ijT

y
kx

(ijk)
= 0 (4.6)

On a local Lie manifold the torsion gives a Lie algebra structure on each

tangent space. This Lie algebra is the same across the whole manifold. The

trace of operators from the adjoint representation defines the killing form

kij = T a
ibT

b
ja

which is a bilinear form. It is invariant

∇x(kij) = ∇x(T
a
ibT

b
ja) = ∇x(T

a
ib)T

b
ja + T a

ib∇x(T
b
ja) = 0

If the Lie algebra is semisimple, the bilinear form will be non-degenerate and

define a pseudometric on the manifold.

On a local Lie manifold the first Bianchi identity reduces to

Rl
ijk

(ijk)
= 0

4.5 The Hawthorn universe

Axiom 4.7 The universe of the Hawthorn model is a local Lie manifold for

the Lie algebra so(2, 3). We call such a manifold an ADS manifold.

Note that an ADS manifold is different from the AdS manifold talked about

in chapter 3. We interpret the ADS manifold as the manifold of local inertial
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frames, which is ten dimensional. Our motivations for choosing so(2, 3) as the

local symmetry group (for the local Lie manifold which we have postulated

describes our universe) are summarised below.

• so(2, 3) contracts to the Poincaré Lie algebra, hence they are locally

indistinguishable.

• As so(2, 3) is semisimple it defines an intrinsic distance scale (unlike the

Poincaré Lie algebra). Thus a non-degenerate metric naturally arises.

Using the basis in table A.1 the metric kij is diagonal with values (in

natural units)

kTT = kII = kJJ = kKK = −6

kXX = kY Y = kZZ = kAA = kBB = kCC = 6

This metric agrees with the Minkowski metric (up to a factor of 6) on

the spacetime dimensions.

• Four component spinors arise naturally via the action of sp(4,R) =

so(2, 3).

On an ADS manifold parallel transport, described by the connection Γk
ij is

neither completely symmetric nor antisymmetric (with respect to the covariant

indices). The non-commutativity of the symmetric part of Γk
ij is encapsulated

by the Riemann curvature tensor (which describes curvature) whilst the non-

commutativity of the antisymmetric part constitutes the torsion tensor which

we have identified as the Lie algebra structure, which in turn describes the

failure of translations to commute. So the apparent clash in the preliminary

section of this chapter is resolved once we realise we are dealing with two

separate objects, namely curvature and torsion.

On an ADS manifold curvature is not merely between the spacetime di-

mensions, but the Lorentz dimensions also. For this reason the forces being

described by such curvature are expected to be more than purely gravitational

in nature. To progress with this model we need to consider how matter should
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be described in this universe, in particular fermions, which arise from the

Dirac equation. This will require a theory of spinors on ADS manifolds. The

following definitions will be employed.

4.6 V -tensors

Let V be any vector space with basis {eα} and M a manifold. A V -vector

field on M is defined to be a map v : M → V . A typical V -vector field can

be denoted by its components vα with respect to the basis of V .

The dual of a V -vector field is a V ∗-vector field so that if {eα} is a basis

of V , then {eα} is a basis of V ∗ where eαeβ = 1α
β . Similarly a V ∗-vector field

is denoted by its components uα with respect to this dual basis and maps vα

to uαv
α via the summation convention.

The tensor product (the most general bilinear operation) of a U -vector

field and a V -vector field is a U ⊗ V -vector field. If {eα} is a basis of U and

{fβ} is a basis of V then {eα ⊗ fβ} is a basis of U ⊗V and U ⊗V -vector fields

can be denoted by their components wαβ (with respect to this basis).

A pointwise linear map from U -vector fields to V -vector fields is a V ⊗U∗-

vector field or a Hom(U, V )-vector field.

A V -tensor of rank (m
n ) is a V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗-vector field.

4.7 X-tensors

If X is a set of vector spaces then an X-tensor is a X1 ⊗ · · · ⊗Xk-vector field

where either Xi ∈ X or X∗
i ∈ X for each i ∈ [1, k] ⊂ N. One can talk about

the V -rank of an X-tensors by considering each V ∈ X, however this may be

non-unique if the vector spaces in X are related in some way. So V -tensors

areX-tensors with X = {V } and ordinary tensors are V -tensors where V is the

tangent space of the manifold. The tensor product of X-tensors is again an

X-tensor, similarly the set of all X-tensors is closed under Hom and dual.

If we require that X includes the tangent space of the manifold then all
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ordinary tensors are X-tensors, thus X-tensors are indeed extended tensors

(abbreviated extensors).

Consider now the case where X consists of the tangent space TM and one

additional space V . The more general situation where X contains the tangent

space and a collection of additional spaces is mathematically straightforward,

but notationally cumbersome. It is simply stated that the following results

can be extended without (mathematical) difficulty to this more general case.

If an X-tensor has ordinary rank (m
n ) and V -rank (p

q) then we say it has

X-rank (m,p
n,q ). Such a tensor can be denoted by

X
i1...imλ1...λp

j1...jnµ1...µq
∈ TM ⊗ · · · ⊗ TM

︸ ︷︷ ︸

m times

⊗T ∗
M ⊗ · · · ⊗ T ∗

M
︸ ︷︷ ︸

n times

⊗V ⊗ · · · ⊗ V
︸ ︷︷ ︸

p times

⊗V ∗ ⊗ · · · ⊗ V ∗

︸ ︷︷ ︸

q times

in terms of a basis of V and a coordinate system on M. Of course if V is

related in some way to TM then X may have more than one X-rank, an obvious

example is when V = TM . We adopt the convention that Greek indices refer

to the fundamental space V and Latin indices give components with respect

to a coordinate system on the manifold.

4.8 The covariant derivative of X-tensors

We now extend previous definitions and propositions in order to deduce the

manner in which the covariant derivative of our local Lie manifold will act on

X-tensors.

Definition 4.5 An X-tensor derivation on a manifold M is a map from

X-tensors to X-tensors which satisfies

1. Linearity.

2. The Leibniz condition on tensor products.

3. Commutes with contraction.

The trace of Hom(V, V ) or V ∗ ⊗ V maps Xα
β to

∑

αX
α
α , and is basis indepen-

dent. This can be extended (via tensor product) to an operation on X-tensors
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which we shall call contraction of Greek indices. Most of the propositions from

section 4.2 can be extended quite easily and so we shall simply state them here.

Proposition 4.8 If D and E are X-tensor derivations, then [D,E] is also an

X-tensor derivation.

Definition 4.6 Let D be an X-tensor derivation and f an X-tensor of rank

(0,0
0,0). Then D(f) is a tensor of rank (i,m

j,n ), say. We define (i,m
j,n ) to be the rank

of D.

Proposition 4.9 Every X-tensor derivation of rank (i,m
j,n ) maps X-tensors of

rank (k,p
l,q ) to X-tensors of rank (i+k,m+p

j+l,n+q ).

Of course for the same reason that an X-tensor may have a non-unique

rank (if V is linked in some way to the tangent space) an X-tensor derivation

may also have more than one rank.

Proposition 4.10 If D is an X-tensor derivation and S is any X-tensor, then

S ⊗D is an X-tensor derivation, where (S ⊗D)(T ) = S ⊗D(T ).

Employing a similar version of previous arguments for an X-tensor deriva-

tion D, the difference D − ai ∂
∂xi is an X-tensor derivation of rank (0,0

0,0) which

maps all functions to the zero function.

Proposition 4.11 Let E be an X-tensor derivation of rank (0,0
0,0) with E(f) =

0 for all functions f on M. There exists an X-tensor Γi
j of rank (1,0

1,0) and an

X-tensor Γα
β of rank (0,1

0,1) such that E = Γ (∗∗), where Γ (∗∗) operates on Greek

indices in the obvious way.

We now have an X-tensor of rank (0,0
1,0)

∂

∂xk
+ Γk (∗∗)

which functions as a covariant derivative of X-tensors, defining for us parallel

transport, not only of tangent vectors, but also vectors in V .



42

4.9 Attaching spinors to an ADS manifold

We are interested in X-tensors which are of physical significance. In particular

we expect there will exist a representation of so(2, 3) on the space V . Now

‘combining’ representations of a Lie algebra via ⊕, ⊗, Hom or dual will yield

another representation of the Lie algebra. Hence if V is a representation of a

Lie algebra g then g will act quite naturally on X-tensors for X = {TM , V }.

The Lie algebra so(2, 3) is isomorphic to sp(4,R) and has a faithful rep-

resentation on R4. The extension of this representation to C4 is fundamental

as all other finite dimensional representations of so(2, 3) can be generated as

subspaces of tensors products of this representation and its dual. If we choose

the representation on the space V to be that of sp(4,R) on R4, then the set

of all X-tensors will include maps from the manifold into arbitrary finite di-

mensional representations of so(2, 3). Furthermore we shall be able to identify

the tangent space with its representation on R4. We do this by asserting the

existence of an X-tensor T β
iα of rank (0,1

1,1) such that

T β
iλT

λ
jα − T β

jλT
λ
iα = T k

ijT
β
kα (4.7)

where T k
ij are the Lie structure constants of so(2, 3). The name T is chosen

so that we may write the action of the Lie algebra on any X-tensor as Ti (
∗
∗)

where either T a
ib or T α

iβ is used depending on whether Latin or Greek indices

are acted on.

The matrices T β
iα are elements of the Lie algebra sp(4,R) and preserve

a symplectic form. We must therefore also require an antisymmetric, non-

degenerate X-tensor of rank (0,0
0,2) denoted sαβ satisfying

Ti (
∗
∗) (sαβ) = T λ

iαsλβ + T λ
iαsαλ = 0 (4.8)

The conservation of this symplectic form is what characterises the Lie algebra

sp(4,R).

The trace form associated with this representation is gij = T β
iαT

α
jβ. Since

so(2, 3) is simple, an invariant bilinear form on any representation is unique up
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to a scalar multiple, i.e. gij ought to be some multiple of kij . Upon examination

of the particular representations we do indeed find that kij = 6gij. We choose

to use the trace form gij rather than the Killing form for our metric on the

manifold since it shall free us from needlessly carrying about trivial constants

in subsequent processes. We are free to choose either for our metric since the

factor of 6 can easily be accommodated by a different choice of units. We de-

fine the contravariant form of the metric tensor gij by the equation gijgjk = 1i
k.

We have required that on an ADS manifold the covariant derivative conserve

the Lie algebra structure and that this structure is equal to the torsion. To

extend this definition to a manifold with X-tensors we must consider if there

are further conditions we want to place with respect to how so(2, 3) acts on

other X-tensors. We shall define some terminology as we consider the two

types of action we have defined.

• The local action of so(2, 3) on the manifold is that specified by Ti (
∗
∗)

as applied to X-tensors. An X-tensor X is said to be locally invariant

if Ti (
∗
∗) (X) = 0.

• The global action of so(2, 3) on the manifold is that specified by the

covariant derivative ∇i as applied to X-tensors. An X-tensor Y is said

to be globally invariant if ∇i(Y ) = 0.

• An X-tensor is said to be totally or fully invariant if it is both locally

and globally invariant.

4.10 Extending the physical assumptions

A local Lie manifold can thus be defined as a manifold together with a covari-

ant derivative where the torsion is totally invariant. Let us investigate upon

what physical basis assumptions 4.5 and 4.6 stand in the hope that this would

expose how we might properly extend these assumptions now that we have
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spinors defined on the manifold. A similar investigation can be found in [2].

In general relativity the metric tensor gij is assumed to be globally invari-

ant (in the sense that we have defined), see [3]. This ensures the associated

bilinear form, in particular the infinitesimal interval

ds2 = gijdx
idxj

is invariant with respect to parallel transport. The bilinear form can distin-

guish between spacelike and timelike coordinates, so the global invariance of

gij means this distinction will be conserved under parallel transport.

Local invariance of the torsion means T k
ij defines a Lie bracket i.e. the Lie

algebra structure. The metric we have chosen to use on the ADS manifold is

generated from the Lie structure, viz. gij = 1
6
T b

iaT
a
jb. Thus global invariance of

gij is a consequence of our (hence stronger) assumption that T k
ij is globally in-

variant. The equation ∇m(T k
ij) = 0 means that T k

ij and hence the Lie bracket

which it defines is conserved under parallel transport. This means that if

[X, Y ] = Z for tangent vectors X, Y, Z at any point, and we parallel transport

these to obtain tangent vectors X ′, Y ′, Z ′ at another point then [X ′, Y ′] = Z ′.

The Lie structure provides more information than the metric, it allows us to

distinguish between e.g. a displacement and a boost coordinate. We expect

that to be able to identify the nature of our coordinates on an ADS manifold.

It therefore seems physically reasonable to require that such an identification

is conserved under parallel transport.

The local invariance of T β
iα expressed in equation 4.7 follows from the fact

that T β
iα describes the action of the Lie algebra on a given space. Let us refer

to the representation on this space as the spinor representation. Assuming

global invariance of T β
iα means the action of the Lie algebra on spinors will be

conserved under parallel transport. More specifically if φ = X(ψ) for tangent

vector X and spinors φ and ψ defined at some point, then the parallel trans-
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port of these quantities X ′, φ′ and ψ′ will satisfy φ′ = X ′(ψ′) at an adjacent

point. This assumption can be viewed as allowing the local and global actions

on spinors to commute, an idea we choose to adopt.

Axiom 4.12

∇m(T β
iα) = 0

Now the total invariance of the metric gij = T β
iαT

α
jβ follows from the total in-

variance of T β
iα. Indeed the total invariance of T k

ij = gktT α
tβ(T β

iλT
λ
jα − T β

jλT
λ
iα) is

also a consequence of axiom 4.12 together with requirement 4.7.

Up until now we have talked about X-tensors with Greek indices without

considering how we might raise or lower these indices. The candidate quan-

tity for this job is the bilinear form sαβ (and its inverse). We must however

be conscientious about our ordering of indices so as to avoid unsolicited neg-

ative signs (due to the antisymmetry of sαβ). Define sαβ by the equation

1β
α ≡ sβλsαλ = sλβsλα where 1β

α is the identity map. The convention we adopt

for raising and lowering indices shall be to

• lower indices on the left: vα = sαβv
β.

• raise indices on the right: vα = vβs
βα

thus raising and lowering are inverse operations. However our current assump-

tions do not guarantee the process of raising/lowering a Greek index will be

conserved under parallel transport, viz. ∇m(vα) will not equal ∇m(vβ)sβα in

general. We do not wish for the raising or lowering of a Greek index in a

globally invariant equation to destroy its invariance, hence we make the as-

sumption

∇m(sαβ) = 0 (4.9)

Furthermore, when considering the decomposition of the space of spinor trans-

form in chapter 5 we shall identify sαβ as an intertwining map. (Intertwining

maps are globally invariant, see section 4.12.) We shall later find (in chapter
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7) that assumption 4.9 turns out to be too rigid as it does not permit the

existence of Maxwell’s equations on an ADS manifold.

4.11 Higher order representations

In this section we generalise our previous work to consider all finite dimen-

sional, irreducible representations of the so(2, 3). We extend the set X of

vector spaces (used to define X-tensors) so that it includes all other finite

dimensional irreducible representations of the Lie algebra. Since all finite di-

mensional representations of so(2, 3) can be constructed from the fundamental

representation it follows that any X-tensor can be built from tensor products,

direct sums and duals of vectors and spinors.

If vΣ is a vector into one of these representations then the Lie algebra acts

on vΣ via the matrices TΣ
iΛ (a generalisation of T k

ij and T β
iα). These matrices

must satisfy

TΣ
iΘT

Θ
jΛ − TΣ

jΘT
Θ
iΛ = T k

ijT
Σ
kΛ

In order to show that TΣ
iΛ is in fact globally invariant consider the following

theorem.

Theorem 4.13 If the local action Ti (
∗
∗) and global action ∇j commute and

are defined on X-tensors U and V , then actions which are defined on U ⊕ V ,

U ⊗ V and V ∗ will commute with each other.

Proof. The proof is routine for the tensor product and direct sum cases.

Ti (
∗
∗) (∇j(U ⊕ V )) = Ti (

∗
∗) (∇j(U) ⊕∇j(V ))

= Ti (
∗
∗) (∇j(U)) ⊕ Ti (

∗
∗) (∇j(V ))

= ∇j(Ti (
∗
∗) (U)) ⊕∇j(Ti (

∗
∗) (V ))

= ∇j(Ti (
∗
∗) (U ⊕ V ))
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Ti (
∗
∗) (∇j(U ⊗ V )) = Ti (

∗
∗) (∇j(U) ⊗ V + U ⊗∇j(V ))

= Ti (
∗
∗) (∇j(U) ⊗ V ) + Ti (

∗
∗) (U ⊗∇j(V ))

= Ti (
∗
∗) (∇j(U)) ⊗ V + ∇j(U) ⊗ Ti (

∗
∗) (V )

+ Ti (
∗
∗) (U) ⊗∇j(V ) + U ⊗ Ti (

∗
∗) (∇j(V ))

= ∇j(Ti (
∗
∗) (U)) ⊗ V + Ti (

∗
∗) (U) ⊗∇j(V )

+ ∇j(U) ⊗ Ti (
∗
∗) (V ) + U ⊗∇j(Ti (

∗
∗) (V ))

= ∇j(Ti (
∗
∗) (U) ⊗ V + U ⊗ Ti (

∗
∗) (V ))

= ∇j(Ti (
∗
∗) (U ⊗ V ))

It remains to show that Ti (
∗
∗) and ∇j commute on the dual space V ∗. For a

general X-tensor derivation D and X-tensors φ and v

D(φv) = D(φ)v + φD(v) (4.10)

we are interested in X-tensor derivations applied to φ so we shall rearrange

equation 4.10

D(φ)v = D(φv) − φD(v) (4.11)

Let φ = V ∗ and v = V , so φ : V → R hence φv ∈ R. We consider the X-tensor

derivation Ti (
∗
∗).

Ti (
∗
∗) (φ)v = Ti (

∗
∗) (φv) − φTi (

∗
∗) (v)

= −φTi (
∗
∗) (v)

since the local action on scalars is trivial. And the X-tensor derivation ∇j

∇j(φ)v = ∇j(φv) − φ∇j(v)
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Therefore

(∇jTi (
∗
∗))(φ)v = ∇j(Ti (

∗
∗) (φ))v

= ∇j(Ti (
∗
∗) (φ)v) − Ti (

∗
∗) (φ)∇j(v)

= ∇j(−φTi (
∗
∗) (v)) − Ti (

∗
∗) (φ)∇j(v)

= −∇j(φ)Ti (
∗
∗) (v) − φ∇jTi (

∗
∗) (v) − Ti (

∗
∗) (φ)∇j(v)

= −∇j(φ)Ti (
∗
∗) (v) − φTi (

∗
∗)∇j(v) − Ti (

∗
∗) (φ)∇j(v)

= −∇j(φ)Ti (
∗
∗) (v) + Ti (

∗
∗) (φ)∇j(v) − Ti (

∗
∗) (φ)∇j(v)

= −∇j(φ)Ti (
∗
∗) (v)

= Ti (
∗
∗) (∇j(φ))v

= (Ti (
∗
∗)∇j)(φ)v

so the local and global actions commute on V ∗, which completes the proof. �

All X-tensors are built from vectors and spinors using these operations and the

local and global actions on vectors and spinors commute. Hence by theorem

4.13 the local and global actions on general X-tensors must also commute, i.e.

∇m(TΣ
iΛ) = 0

4.12 Intertwining maps

Any irreducible representation is a direct sum of tensor products of the fun-

damental representation. We use X-tensors sα1α2...αn

Σ and sΣ
α1α2...αn

to alternate

between these descriptions.

xΣ = xα1α2...αnsΣ
α1α2...αn

(4.12)

xα1α2...αn = xΣsα1α2...αn

Σ (4.13)

These tensors define intertwining maps between Lie algebra representations,

the composition of these gives either the identity map

1Σ
Λ = sα1α2...αn

Λ sΣ
α1α2...αn
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on the irreducible representation, or a projection map

Πβ1β2...βn

α1α2...αn
= sβ1β2...βn

Σ sΣ
α1α2...αn

onto the corresponding component of the tensor space. Intertwining maps de-

scribe an equivalence between representations. This is essentially a relabelling

and ought to commute with the local and global actions of the Lie algebra

Ti (
∗
∗) (sα1α2...αn

Σ ) = 0 (4.14)

Ti (
∗
∗) (sΣ

α1α2...αn
) = 0 (4.15)

∇m(sα1α2...αn

Σ ) = 0 (4.16)

∇m(sΣ
α1α2...αn

) = 0 (4.17)

4.13 Summary

In this chapter we have assumed that our universe is an ADS manifold, viz.

a local Lie manifold for the Lie algebra so(2, 3). This means we have cho-

sen to use SO(2, 3) (over the Poincaré group) as the local symmetry group

of spacetime. Following this decision we have built up a sufficiently elaborate

mathematical structure upon which we might formulate physical theories. The

physical assumptions included can be summarised as follows.

There exists a local action of the fundamental representation of so(2, 3) =

sp(4,R) on the space R
4 which is locally invariant

T β
iλT

λ
jα − T β

jλT
λ
iα = T k

ijT
β
kα

There also exists a global action ∇i on the space R4 which defines the connec-

tion Γβ
iα that describes the parallel transport of maps from the manifold into

the space R4. The global action satisfies

[∇i,∇j ] = T k
ij∇k +Rij (∗∗)
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where Rij (∗∗) is a linear map defined on V at each point. These local and

global actions commute

∇m(T β
iα) = 0

We have a globally invariant bilinear form on R4 which enables us to raise and

lower spinor indices (the components of vectors from the spinor representation)

in a manner that is consistent with parallel transport

∇m(sαβ) = 0



Chapter 5

Representations of Low

Dimension

Following on from the mathematical framework which was developed in the

previous chapter, we now turn our attention in particular to the representations

of low dimension. We shall follow chapter 3 in [1] and [2] which give a more

extensive investigation of the low dimensional representations of so(2, 3). We

begin by clarifying some terminology.

• The word tensor shall now be used to refer to a general X-tensor, where

the set X contains all the irreducible representations of so(2, 3) as well

as the tangent space of the ADS manifold.

• The word scalar refers to a tensor associated with the trivial represen-

tation. Scalars are denoted by the index ◦ although we typically denote

them without indices (unless we find it useful to do so). So f◦ = f = f ◦.

• The word vector refers to a tensor associated with the (regular) 10-

dimensional irreducible representation. Vectors are denoted by lower-

case Latin indices; e.g. vi or vj . If we need to use the word vector to

refer to something other than a 10-vector, the context shall make this

clear.
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• The word spinor refers to a tensor associated with the 4-dimensional

irreducible representation sp(4,R). Spinors are denoted by lower-case

Greek indices; e.g. vα or vβ.

• The word versor refers to a tensor associated with the canonical 5-

dimensional irreducible representation. Versors are denoted by upper-

case Latin indices; e.g. vA or vB.

5.1 Spinor transformations

We seek to find intertwining maps for a smooth decomposition of the 16-

dimensional space of spinor transformations {Xα
β }. This will reflect the de-

composition of 4 × 4 matrices into irreducible representations carried out in

chapter 3.

• The set of X-tensors {T α
kβ} span a 10-dimensional irreducible subspace

of {Xα
β } under the local action. This representation is isomorphic to the

regular one. If we choose for our basis the matrices T α
kβ we can write

down intertwining maps

s α
kβ = T α

kβ

skσ
δ = gklT σ

lδ

along with the projection and injection maps

Πασ
βδ = gklT σ

lδT
α
kβ

1i
j = gilT σ

lδT
α
jβ

• The fully invariant transformation T α
◦β = 1

2
1α

β provides a basis for the 1-

dimensional irreducible component of {Xα
β } and behaves as a trivial rep-

resentation under the local action on spinor transformations. Elements

of this representation will be denoted as scalars. We have intertwining
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maps

sα
β =

1

2
1α

β

(
or s α

◦β = T α
◦β

)

sβ
α =

1

2
1β

α

(
or s◦βα = g◦◦T β

◦α

)

and projection/injection maps

Πασ
βδ =

1

4
1α

β1σ
δ

(
or g◦◦T α

◦βT
σ
◦δ

)

1◦◦ =
1

4
1α

β1β
α = 1

(
or g◦◦T α

◦βT
β
◦α

)

where is the trace form g◦◦ ≡ T α
◦βT

β
◦α and the equation g◦◦g◦◦ ≡ 1 defines

g◦◦, the inverse of the trace form, although these definitions are trivial

since g◦◦ = 1.

• We choose a basis {T α
Aβ} for the remaining 5-dimensional irreducible

component of {Xα
β }. This defines for us the 5 matrices T α

Aβ. Since they

map trivially onto the trivial and vector components we have T α
Aβ1β

α =

T α
Aα = 0 and T α

AβT
β
kα = 0 respectively. We now define

gAB ≡ T α
AβT

β
Bα (5.1)

which we use to construct the intertwining maps

s α
Aβ = T α

Aβ (5.2)

sBσ
δ = gABT σ

Aδ (5.3)

and projection/injection maps

Πασ
βδ = gABT σ

AδT
α
Bβ (5.4)

1A
C = gABT β

BαT
α
Cβ = gABgBC (5.5)

Equation 5.5 shows that gAB is non-singular with inverse gAB. The total

invariance of these intertwining maps necessitates the total invariance

of T α
Aβ and hence gAB and its inverse gAB. So we can use gAB and

its covariant counterpart to raise and lower versor indices. The total

invariance of T α
Aβ defines the local action TB

iA by the equation

Ti (
∗
∗) (T α

Aβ) = 0
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and the connection ΓB
iA which describes the parallel transport of versors

is defined by the equation

∇i(T
α
Aβ) = 0

The sum of these three projection maps is the identity map

1α
δ 1σ

β = gklT σ
lδT

α
kβ +

1

4
1α

β1σ
δ + gABT σ

AδT
α
Bβ (5.6)

5.2 Two component spinors

We could similarly perform the decomposition of the space of tensors with two

contravariant spinors indices {Xαβ} into irreducibles of dimension 10, 5 and 1.

We assume the 1-dimensional irreducible component is a scalar representation

with intertwining map s◦αβ : Xαβ → X◦. Given that intertwining maps are

totally invariant, this must define a totally invariant bilinear form for spinors.

We can therefore identify sαβ as s◦αβ since they also transform in the same

way, lending support to assumption 4.9. Indeed in order for us to relinquish

assumption 4.9 we would have to reinterpret this 1-dimensional irreducible

component as something other than a scalar representation.

5.3 Casimir identities

The quadratic operator

−T 2 +X2 + Y 2 + Z2 + A2 +B2 + C2 − I2 − J2 −K2

commutes with every element in {T,X, Y, Z,A,B, C, I, J,K}. It is called the

quadratic Casimir operator. Such an operator will be scalar in every ir-

reducible representation. This gives an identity for every irreducible represen-

tation. We call the collection of these identities the Casimir identities. We
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give some of the low dimensional ones here.

gijT β
iλT

λ
jα =

5

2
· 1β

α (5.7)

gijTB
iXT

X
jA = 4 · 1B

A (5.8)

gijT b
ixT

x
ja = 6 · 1b

a (5.9)

5.4 The reduced curvature tensor

The curvature tensor Rij (∗∗) can act on vectors or spinors and is described by

the tensors Rs
ijt or Rβ

ijα respectively. We can again use the Jacobi identity

to derive the Bianchi identities by acting on a spinor (instead of a vector).

The first Bianchi identity remains the same, but the second gives a new result

involving the curvature tensor with spinor indices

T l
ijR

β
lkα −∇k(R

β
ijα) (ijk)

= 0 (5.10)

We call Rβ
ijα the spinor curvature tensor. Using equation 4.2 we can ex-

press Rij (∗∗) in terms of covariant derivatives only. It then follows that any

globally invariant quantities will be invariant with respect to Rij (∗∗) as well.

In particular

Rij (∗∗) (sαβ) = 0

Rij (∗∗) (T β
iα) = 0

which leads us to the following theorem.

Theorem 5.1 There exists a tensor Rs
ij such that Rβ

ijα = Rs
ijT

β
sα

Proof. Since Rij (∗∗) (sαβ) = 0 this means that Rβ
ijα is a matrix in sp(4,R),

for fixed i and j. Therefore we can write Rβ
ijα as a linear combination of basis

elements of sp(4,R). Hence Rβ
ijα = Rs

ijT
β
sα. �

The strength of this result is displayed in the following theorem.

Theorem 5.2 If Rs
ij is defined as above then Rt

ijk = Rs
ijT

t
sk
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Proof. Rij (∗∗) (T β
kα) = 0 hence it follows that

Rt
ijkT

β
tα = Rβ

ijλT
λ
kα −Rλ

ijαT
β
kλ

= Rs
ij(T

β
sλT

λ
kα − T λ

sαT
β
kλ)

= Rs
ijT

t
skT

β
tα

Since T β
tα is generally non-zero, we conclude that Rt

ijk = Rs
ijT

t
sk. �

These results may be extended to all irreducible representations of so(2, 3)

so that Rij (∗∗) = Rs
ijTs (∗∗) in general. We call Rs

ij the reduced curvature

tensor. We can write the Bianchi identities for the reduced curvature tensor.

Rs
ijT

l
sk

(ijk)
= 0

Rl
isT

s
jk + ∇i(R

l
jk)

(ijk)
= 0

We now consider contractions of the curvature and reduced curvature ten-

sors since the properties of these tensors are of paramount importance if one is

interested in building a theory of gravitation on an ADS manifold. We name

these contractions

The curvature scalar R = Rijg
ij

The curvature vector Ri = Rj
ij

The Ricci tensor Rij = Ra
ibT

b
ja

Employing the Bianchi identities we verify the following results.

Proposition 5.3

1) The Ricci tensor is symmetric.

2) ∇k(R
k
ij) = 0

3) ∇k(R) = 2∇t(Rtk)

See pp. 52-53 of [1] for a proof of these results. The last result here is signifi-

cant. It shows that the 10-dimensional generalisation of the Einstein tensor

Rij −
1

2
gijR

is divergenceless. It is the zero divergence of the ordinary Einstein tensor which

is a necessary condition for its involvement in the Einstein field equations.
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The Dirac equation

After developing and exploring our mathematical framework let us now con-

sider how the equations of physics sit on our manifold. In particular this

chapter shall give its consideration to the Dirac equation.

Let us consider the usual (specially covariant) Dirac equation

iγΣ∂Σψ =
mc

~
ψ (6.1)

where ψ is a Dirac spinor and capital Greek indices shall refer to the usual

four spacetime dimensions of relativity, Σ = 0, 1, 2, 3. The γΣ are (of course)

the 4 × 4 gamma matrices, defined by

γΣγ∆ + γ∆γΣ = −2ηΣ∆I4 (6.2)

where ηΣ∆ is the Minkowski metric tensor of signature (−+++), and I4 is the

identity matrix. If we consider the first 4 basis elements T,X, Y, Z of sp(4,R),

it is not hard to demonstrate that 2i multiples of them obey precisely the

anticommutation relations which define the gamma matrices. For this reason

we make the following identifications

γ0 = 2iT, γ1 = 2iX, γ2 = 2iY, γ3 = 2iZ (6.3)

using this notation equation 6.1 is

(

−1

c
T∂T +X∂X + Y ∂Y + Z∂Z

)

ψα =
mc

2~
ψα



58

Consider now the following invariant equation on an ADS manifold (section

4.5)

gij∇iTj (∗∗) (ψα) = λψα (6.4)

where λ is a constant. In a locally flat basis we can write the operator gij∇iT
α
jβ

in natural units

−T∂T +X∂X + Y ∂Y + Z∂Z + A∂A +B∂B + C∂C − I∂I − J∂J −K∂K

where T,X, Y, Z,A,B, C, I, J,K are the matrices T α
iβ . We convert the deriva-

tives into natural units

−rT∂T + rcX∂X + rcY ∂Y + rcZ∂Z + cA∂A + cB∂B + cC∂C − I∂I −J∂J −K∂K

and divide through by rc in 6.4, neglecting the terms with factors of 1
r

(since

we have always assumed r to be very large)

(

−1

c
T∂T +X∂X + Y ∂Y + Z∂Z

)

ψα =
λ

rc
ψα

This is indeed equation 6.1 provided

λ

r
=
mc2

2~

We could alternatively arrive at the same conclusion by assuming that the

Dirac spinor ψα is a function of spacetime dimensions only (and not Lorentz

boost or rotation).

6.1 Benefits of the new Dirac equation

• Equation 6.4 is built from purely tensorial quantities, hence it is a tensor

equation valid in all frames. Normally one would have to justify that

equation 6.1 is indeed Lorentz covariant by investigating how the spinor ψ

transforms under arbitrary Lorentz transformations. This is the process

of finding the so-called S-matrix transformations.
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• Every quantity in equation 6.4 has a direct physical interpretation, in

particular the matrices T β
iα. Whereas their counterpart, the gamma ma-

trices of equation 6.1 are chosen purely for their geometric properties. As

a result, typical formulations of the Dirac equation use gamma matrices

which are complex. However as we have shown this need not be the case

in order to satisfy the relationships given in equation 6.2.

6.2 The speed of electrons

In the usual formulation of the Dirac equation the Hamiltonian for a free

particle is given by

Ĥ = c(γ0)−1γkp̂k + γ0mc2

where c is the speed of light, p̂k = −i~∂k is the momentum operator, and

the index k = 1, 2, 3. In the Heisenberg picture of quantum mechanics, state

vectors ψ are time independent while operators Q̂ are time dependent, and

satisfy the equation of motion

dQ̂(t)

dt
=
i

~
[Ĥ, Q̂(t)] +

∂Q̂

∂t
(t) (6.5)

Operators R̂ from the Schrödinger picture are related to operators Q̂ from

the Heisenberg picture by Q̂ = ÛR̂Û † where Û = eiĤt/~. If R̂ is a physical

observable then it will be time independent and Q̂ will have no explicit time

dependence. Thus a physical observable Q̂ will satisfy

∂Q̂

∂t
= 0

Hence in particular ∂t(x̂k(t)) = 0 for the time dependent position operator

x̂k(t) = eiĤt/~x̂ke
−iĤt/~ where x̂k is the position operator from the Schrödinger
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picture. Using equation 6.5 we consider the velocity operator

dx̂k(t)

dt
=
i

~
[Ĥ, x̂k(t)] =

i

~
[c(γ0)−1γkp̂k + γ0mc2, x̂k(t)]

=
i

~
[c(γ0)−1γkp̂k, x̂k(t)] +

i

~
[γ0mc2, x̂k(t)]

=
i

~
Û [c(γ0)−1γkp̂k, x̂k]Û

† +
i

~
Û [γ0mc2, x̂k]Û

†

=
i

~
cÛ(γ0)−1γk[p̂k, x̂k]Û

†

= Ûc(γ0)−1γkÛ † (6.6)

Define αk = (γ0)−1γk. The matrix cαk acts on fermions ψ and has a purely

discrete spectrum of eigenvalues: ±c. It is unitarily equivalent to the operator

cαk(t) = ceiĤt/~αke
−iĤt/~ hence cαk(t) has eigenvalues ±c for all time t, see

p. 19 of [26]. This is a paradox. These are supposed to be eigenvalues for

the velocity operator acting on a fermion. How can a massive object (e.g. an

electron) travel at the speed of light?

6.3 Zitterbewegung

A possible way of dealing with this paradox involves finding and interpreting

x̂k(t). Consider the operator αk(t). Since it is time-dependent we cannot (at

least not easily) integrate equation 6.6. We therefore will find it useful to

consider the Heisenberg equation of motion for the operator αk(t).

dαk(t)

dt
=
i

~
[Ĥ, αk(t)] =

2i

~

(

cp̂k − αk(t)Ĥ
)

We may integrate this with respect to time since p̂k and Ĥ are time-independent.
∫ t

0

dαk(t
′)

cp̂kĤ−1 − αk(t′)
=

∫ t

0

2iĤ

~
dt′

⇒ ln(cp̂kĤ
−1 − αk(t)) − ln(cp̂kĤ

−1 − αk(0)) =
2iĤ

~
t

⇒ αk(t) = cp̂kĤ
−1 −

(

cp̂kĤ
−1 − αk(0)

)

e2iĤt/~ (6.7)

Substitute equation 6.7 into equation 6.6.

dx̂k(t)

dt
= c2p̂kĤ

−1 −
(

c2p̂kĤ
−1 − cαk(0)

)

e2iĤt/~

⇒ x̂k(t) = x̂k(0) + c2p̂kĤ
−1t− ~c

2i

(

cp̂kĤ
−1 − αk(0)

)(

e2iĤt/~ − 1
)

(6.8)
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The first two terms describe a linear evolution of the position operator as is

expected for a free particle. The final term is oscillatory and may induce what

is called Zitterbewegung, which means trembling motion in German. To resolve

the paradox it is envisaged that the particle’s speed alternates between c and

−c at a very high frequency so that we observe some averaged velocity that is

less than the speed of light.

Consider for example an electron at rest. The Zitterbewegung frequency would

be f = 2mec
2/~ = 1.5× 1021

s
−1. An apparatus able to measure time intervals

of 6.5× 10−22
s would be required in order to detect such an effect. Given that

the record for the smallest measured time interval is about 12 × 10−18
s [15],

such a verification is, at least for the time being, out of the reach of obser-

vation. The effect has however been produced in a quantum simulator for a

trapped ion set to behave as a free relativistic quantum particle, see [16].

Apart from the experimental challenges there are also theoretical limitations

on measurement. The magnitude of the frequency of the oscillatory term in

equation 6.8 is f = 2Ĥ/~. For any particle H ≥ mc2, so the frequency of

the Zitterbewegung f ≥ 2mc2/~. According to the relationship c = fλ, this

frequency corresponds to a wavelength of λ ≤ ~/(2mc). This is the reduced

Compton wavelength which is often interpreted as the smallest measurable

distance for a single particle. This follows from an uncertainty in the energy

large enough to allow the creation of particles, see [22].

6.4 Hawthorn’s interpretation

Let us see how this issue is addressed by the Hawthorn model. In the view

of equation 6.4, the gamma matrices T,X, Y, Z represent the intrinsic action

of translation by one natural unit along the t, x, y, z directions. This is the

interpretation they bear a priori to their involvement in the Dirac equation.
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Extrinsic energy and extrinsic linear momentum (along the x-axis, say)

are given by the eigenvalues of the operators i~∂t and −i~∂x respectively. We

expect therefore that i~T and −i~X are the operators whose eigenvalues give

intrinsic energy and intrinsic momentum respectively. These should relate

to ordinary energy and momentum in much the same way as spin relates to

ordinary angular momentum. We note that intrinsic energy cannot be rest

mass since rest mass is a combination of the extrinsic properties, energy and

momentum, and therefore is itself extrinsic.

Intrinsic energy and momentum are not simultaneously observable on ac-

count of the failure of T,X, Y, Z to commute. Disregarding any factors of i, the

eigenvalues of each of these operators are ±1
2

in natural units (where ~ = 1).

Thus in ordinary units intrinsic energy is ± ~

2r
and intrinsic momentum (along

any axis) is ~

2rc
.

The most natural way of defining intrinsic velocity in a particular direction

(should we be interested in such a thing) would be as the quotient of intrinsic

energy and intrinsic momentum in the given direction. Given that

i~T (−i~X)−1 = −TX−1

consider now the eigenvalue equation

(−TX−1)φ = vφ

which has eigenvalues v = ±1 in natural units, or v = ±c in ordinary units.

The operator TX−1 is essentially αk = (γ0)−1γk (just use identity 6.2).

We have shown that in our formalism it also makes sense to interpret cαk as

a velocity operator. The contrast is that we interpret it as an intrinsic velocity

operator due to the quantities from which it is constructed. For this reason

there is no longer any need to explain away the discrete velocity eigenvalues

of ±c since we are no longer talking about extrinsic velocity. The extrinsic

velocity is free to take take any physically acceptable value independent of the

intrinsic velocity. The problem of Zitterbewegung is thus avoided.



63

Table 3.2 shows that the rotation operators I, J,K are commutators ofX, Y, Z.

We do not need to define spin operators as commutators of gamma matrices

with spatial indices (see p. 8 of [26]) since the operators I, J,K already bear

this interpretation.

In chapter 3 {T, I} is (the basis of) a maximal Cartan subalgebra of so(2, 3).

Thus intrinsic energy and spin are simultaneously observable. Each of these

observables takes on both a positive and a negative eigenvalue. There are four

linearly independent Dirac spinors characterised by positive/negative values

of charge and spin. Hence is is natural to interpret intrinsic energy as charge.

Thus the link between time reversal and charge inversion makes perfect sense.

6.5 Investigating the connection

We have up until now, neglected the idea of curvature. However, given that our

Dirac equation is defined in terms of the covariant derivative, it must include

a description of how curvature affects the evolution of spinors. Let us write

out equation 6.4 more explicitly

gijT β
jγ(∂i + Γα

iβ)(ψγ) = λψα

The curvature of the manifold is expressed by the connection Γi (
∗
∗). In general

relativity the connection Γk
ij gives rise to the gravitational force. Our model

includes quantities such as Γβ
iα which describes the parallel transport of spinors.

We expect that more than just gravitational forces are contained in Γi (
∗
∗).

The connection Γβ
iα has two spinors indices. According to chapter 5 this

may be decomposed into scalar, vector and versor components as follows.

Γβ
iα = Γδ

iσ1β
δ 1σ

α

= Γδ
iσ(gklT σ

lδT
β
kα +

1

4
1β

α1σ
δ + gABT σ

AδT
β
Bα)

We make the expression more compact

Γβ
iα = Ai1

β
α +NA

i T
β
Aα +Gk

i T
β
kα (6.9)
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where we have defined the quantities

Ai =
1

4
Γγ

iγ, NA
i = Γγ

iδT
δ
Bγg

BA, Gk
i = Γγ

iδT
δ
jγg

jk (6.10)

Although Γβ
iα is not a tensor, this does not render the above decomposition

invalid. It does of course mean that we cannot expect these newly defined

quantities to transform as tensors. To write down their transformation prop-

erties we choose local bases for vectors, spinors and versors and a new set of

bases denoted by primed indices. We define change of basis matrices at every

point of the manifold, δi′

j , δα′

β and δA′

B , and their respective inverses δi
j′, δ

α
β′ and

δA
B′ . The spinor connection thus transforms according to the equation

Γβ′

i′α′ = δi
i′δ

α
α′δ

β′

β Γβ
iα − δi

i′δ
α
α′

∂

∂xi
(δβ′

α )

Hence we obtain the following transformations

Ai′ = δi
i′Ai −

1

4
δi
i′δ

α
α′

∂

∂xi
(δα′

α ) (6.11)

Gk′

i′ = δi
i′δ

k′

k G
k
i − δi

i′
∂

∂xi
(δβ′

α )T α
jβg

jkδβ
β′δ

k′

k (6.12)

NA′

i′ = δi
i′δ

A′

A N
A
i − δi

i′
∂

∂xi
(δβ′

α )T α
Bβg

BAδβ
β′δ

A′

A (6.13)

We refer to them as the scalar, vector and versor components of the spinor

connection respectively. Let us exploit the idea from general relativity that

forces essentially arise from the components of the connection, however we

expect more than just gravitational forces are being described here.

6.6 The gravitational connection

Hawthorn [1] uses the equation ∇k(T
β
iα) = 0 to show that

Γj
ki = ∂k(T

β
iα)T α

yβg
yj +Gy

kT
j
yi

and

Gt
k =

1

6

(

Γj
kiT

i
mjg

mt − ∂k(T
β
iα)T α

yβg
yjT i

mjg
mt

)

We see that the connection Γk
ij determines Gi

j and vice versa. Thus Gi
j must

describe forces which arise from the curvature of the manifold i.e. gravity.

Accordingly we refer to Gi
j as the gravitational connection.
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6.7 The electromagnetic connection

The scalar component of the connection is Ai and we have already said that

it transforms according to the equation

Ai′ = δi
i′Ai −

1

4
δi
i′δ

α
α′

∂

∂xi
(δα′

α )

If we assume that the change of basis matrix for spinors is not a function of

position on the manifold then the last term will be zero. In such a case Ai will

transform like a tensor.

In the case where Ai is the only component present in the spinor connection,

the Dirac equation will take the form

(∂i + Ai)Ti (
∗
∗) (ψα) = λψα (6.14)

It is now evident that Ai appears in the Dirac equations precisely as the elec-

tromagnetic potential should. We therefore identify Ai as the electromagnetic

potential on our manifold from which the electromagnetic forces arise.

The stark difference between Ai and the usual electromagnetic potential

of relativity is that Ai is 10-dimensional. Whatever the extra six Lorentz

components may be, we expect them only to provide an O(1
r
) perturbation

to electromagnetism given that they are coefficients of matrices preceded by a

factor of 1
r

in equation 6.14.

In light of these connections we tentatively identify NA
i with the strong

and weak nuclear forces.



Chapter 7

Electromagnetism on the

manifold

In usual electromagnetic theory the fields can be constructed from the poten-

tials. Indeed in relativity the field tensor consists purely of derivatives of the

electromagnetic 4-potential. We should therefore expect to be able to construct

Maxwell’s equations from the electromagnetic 10-potential Ai, identified in the

previous chapter. In this chapter we attempt to do just that, however we find

that things don’t work properly. In particular we shall find that assumption

4.9 leads to an identity (theorem 7.2) which removes the vital terms from the

field tensor. We then explore how this issue can be resolved.

7.1 Maxwell’s equations - a first attempt

While seeking an electromagnetic theory for an ADS manifold we have already

seen it appropriate to extend the definition of the electromagnetic potential

from four components to ten. We shall identify the first four components

of Ai with those of the ordinary 4-potential, the extra six components are

at this stage unidentified although we presume they will provide only small

correction terms to the electromagnetic forces. Redefining Ai automatically

redefines Fij to a tensor with one-hundred components (we must now use the

ten component operator ∇i. The antisymmetry of Fij means it has only 45



67

independent components. In order to keep things consistent with the way

we have hereto extended equations 2.11 - 2.14, we define a ten component

current-density vector Ji, where the first four components are those of the

usual current-density. An important difference to note is the extra torsion

term in the field tensor

Fij = ∇iAj −∇jAi = ∂iAj − ∂jAi + T k
ijAk

This arises because we have not assumed the symmetry Γk
ij = Γk

ji as is done

in usual relativity. We shall refer to equations 7.1 - 7.3 as the extended

Maxwell equations (expressed in natural units).

Fij = ∇i(Aj) −∇j(Ai) Definition of the field tensor. (7.1)

gjl∇l(Fjk) = Jk Source equation. (7.2)

∇k(Fij)
(ijk)
= 0 Faraday-Gauss equation. (7.3)

∇i(J
i) = 0 Continuity equation. (7.4)

∇i(A
i) = 0 Gauge condition. (7.5)

7.2 Constraining the potential

Proposition 7.1 If ∇k(sαβ) = 0, then ∇k(s
αβ) = 0.

Proof.

0 = ∇k(1
β
α) = ∇k(sαλs

βλ)

= ∇k(sαλ)s
βλ + sαλ∇k(s

βλ)

= sαλ∇k(s
βλ)

but sαλ 6= 0, hence the result follows. �
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Given that ∇k(sαβ) = ∂k(sαβ) + Γk (∗∗) (sαβ) = 0, we establish the following

∂ksαβ = Γλ
kαsλβ + Γλ

kβsαλ

= (Ak1
λ
α +Gm

k T
λ
mα +NA

k T
λ
Aα)sλβ + (Ak1

λ
β +Gm

k T
λ
mβ +NA

k T
λ
Aβ)sαλ

= Ak(1
λ
αsλβ + 1λ

βsαλ) +Gm
k (T λ

mαsλβ + T λ
mβsαλ) +NA

k (T λ
Aαsλβ + T λ

Aβsαλ)

= 2Aksαβ +Gm
k (T λ

mαsλβ − T λ
mβsλα) +NA

k (T λ
Aαsλβ − T λ

Aβsλα)

= 2Aksαβ +Gm
k (T λ

mαsλβ − T λ
mαsλβ) +NA

k (T λ
Aαsλβ + T λ

Aαsλβ)

= 2Aksαβ + 2NA
k T

λ
Aαsλβ

Contracting this result with sαβ gives

∂k(sαβ)sαβ = 2Aksαβs
αβ + 2NA

k T
λ
Aαsλβs

αβ

= 2Ak1
α
α + 2NA

k T
λ
Aα1α

λ

= 8Ak + 2NA
k T

α
Aα

= 8Ak

and in a like manner

∂k(s
αβ)sαβ = −8Ak

Theorem 7.2 ∂iAj = ∂jAi

Proof. First we establish a useful result from two simple facts: ∂k(1
α
β) = 0

and 1α
β = sαµsβµ. Combining these

∂k(s
αµ)sβµ + sαµ∂k(sβµ) = 0

⇒ ∂k(s
αµ)sβµs

βλ = −sαµ∂k(sβµ)s
βλ

⇒ ∂k(s
αµ)1λ

µ = −sαµ∂k(sβµ)s
βλ

⇒ ∂k(s
αλ) = −sαµ∂k(sβµ)s

βλ

This provides us with a way to raise/lower indices of sαβ when it is being
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operated on by a partial derivative. Consider the following

8(∂iAj − ∂jAi)

= ∂i(∂j(sαβ)sαβ) − ∂j(∂i(sαβ)sαβ)

= ∂i∂j(sαβ)sαβ + ∂j(sαβ)∂i(s
αβ) − ∂j∂i(sαβ)sαβ − ∂i(sαβ)∂j(s

αβ)

= ∂j(sαβ)∂i(s
αβ) − ∂i(sαβ)∂j(s

αβ)

= −∂j(sαβ)sαµ∂i(sλµ)s
λβ + ∂i(sαβ)sαµ∂j(sλµ)s

λβ

After relabelling the dummy indices we see that these terms are in fact equal

and opposite. Hence ∂iAj = ∂jAi. �

Following theorem 7.2, the field tensor obtains the elegant form

Fij = Aj;i − Ai;j = ∂iAj − ∂jAi + Tm
ij Am = Tm

ij Am

However the left-hand-side of the source equation is

∇j(Fjk) = ∇jTm
jkAm

= gij∇iT
m
jkAm

= gijTm
jk∇iAm

= −gmjT i
jk∇iAm

= −gijTm
jk∇mAi (renaming summed over indices)

⇒ ∇j(Fjk) =
1

2
(gijTm

jk∇iAm − gijTm
jk∇mAi)

=
1

2
gijTm

jk(∇iAm −∇mAi)

=
1

2
gijTm

jkFim

=
1

2
gijTm

jkT
p
imAp

=
1

2
(6p

k)Ap (By equation 5.9.)

= 3Ak
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But the right-hand-side of the source equation is Jk, this would imply 3Ak =

Jk, viz. the potential is proportional to the current-density. This is not right,

in fact we should not really be comfortable with the result ∂iAj = ∂jAi since if

this were true in normal relativity (which should be an approximation of our

theory) then Fij = 0 everywhere, i.e. there exists only a trivial solution.

7.3 The resolution

This untenable result follows from theorem 7.2 which is based on the assump-

tion that sαβ is globally invariant. It seems that we are being forced to forego

this stipulation. However since we have identified sαβ as an intertwining map,

abandoning assumption 4.9 raises a problem. This is because the global in-

variance of intertwining maps asserts the equivalence of some component of

a representation to another representation. This is expressed in equations

4.12-4.13. The covariant derivatives of these expressions are

∇k(x
Σ) = ∇k(x

α1α2...αn)sΣ
α1α2...αn

+ xα1α2...αn∇k(s
Σ
α1α2...αn

)

∇k(x
α1α2...αn) = ∇k(x

Σ)sα1α2...αn

Σ + xΣ∇k(s
α1α2...αn

Σ )

Given that we do not expect the structure of the group to change under par-

allel transfer, nor the way it’s representations relate to each other - which is

expressed by the equations

∇k(x
Σ) = ∇k(x

α1α2...αn)sΣ
α1α2...αn

∇k(x
α1α2...αn) = ∇k(x

Σ)sα1α2...αn

Σ

it necessarily follows that

∇k(s
Σ
α1...αn

) = 0 and ∇k(s
α1...αn

Σ ) = 0

The problem is that we have identified the 1-dimensional trivial component of

the decomposition of the space {Xαβ} with scalars (which is reasonable). This

meant we were able to choose sαβ = s◦αβ. To resolve this contradiction we must

no longer insist that we are dealing with a scalar representation. Referring to
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this representation with a different index • (instead of ◦) we hope to show

that sαβ parallel transports differently to s•αβ (although they may be locally

the same). Let us see how covariant derivatives of these quantities are related.

0 = ∇k(s
•
αβ) = ∂k(s

•
αβ) + Γk (∗∗) (s•αβ) (7.6)

= ∂k(s
•
αβ) + Γ•

k•s
•
αβ − Γλ

kαs
•
λβ − Γλ

kβs
•
αλ (7.7)

and

∇k(sαβ) = ∂k(sαβ) + Γk (∗∗) (sαβ) (7.8)

= ∂k(sαβ) − Γλ
kαsλβ − Γλ

kβsαλ (7.9)

Hence if the components of s•αβ = sαβ

∇k(sαβ) = −Γ•
k•sαβ

We now see that assumption 4.9 is equivalent to the claim Γ•
k• = 0. If this

is no longer held to be true, then ∇k(s
•
αβ) = 0 and ∇k(sαβ) 6= 0 can be

simultaneously true. That means we must permit the existence of scalar-like

quantities which have non-trivial parallel transport. Although the property of

parallel transport is not commonly attributed to scalars, there is no reason for

us to assert the non-existence of such scalar-like entities. Our conclusion is

that the 1-dimensional irreducible component of the space of two component

spinors cannot parallel transport trivially. The paradox is thus resolved: while

the components of s•αβ might equal sαβ in one frame, the ways in which each of

these tensors transform are not in fact equivalent. Since ∇k(sαβ) 6= 0, theorem

7.2 can no longer disallow Maxwell’s equations.

This process has dispelled assumption 4.9 (section 4.10). We shall therefore

have to revisit all the areas of our model which depended on this fact and see

instead what is the case if we use the less stringent condition ∇k(s
•
αβ) = 0.



Chapter 8

Revising The Hawthorn Model

Hitherto the difficulties encountered in the previous chapter, the Hawthorn

model included assumption 4.9. This meant it was sufficient for us to use

sαβ to raise and lower spinor indices. (We may still use it to do so, but

there is now no guarantee that the resulting equation will remain true after

parallel transport, i.e. it will not be globally invariant.) In this chapter we

shall give consideration to the scalar-like quantities mentioned at the end of

chapter 7 and revise any results from the Hawthorn model which depended on

assumption 4.9. This material parallels [2]. We shall then make a second (and

more successful) attempt at putting Maxwell’s equations on an ADS manifold.

8.1 Bullet scalars

In addition to usual scalars - which parallel transport trivially, we now need to

define quantities on our manifold which we shall refer to as bullet scalars, or

b-scalars, denoted by f • or f•. These are essentially scalars with a non-trivial

parallel transport property.

In an obvious manner, b-scalars can either be contravariant or covariant

and of any rank. It should be noted that any b-scalar of mixed rank is equal

to a b-scalar without mixed rank since b-indices • automatically contract with

each other, e.g. a••••• = a•. As a result we need only a single integer to describe

the rank of a b-scalar. We let positive integers refer to contravariant indices
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and negative integers refer to covariant indices, e.g. v•• has b-rank (or b-index)

of −2.

The local action on b-scalars is trivial: T •
i• = 0. But as this is the same as

the local action on scalars, we conclude that the local action does not uniquely

determine the global action. Since s•αβ is locally invariant, and T •
i• = 0 it

follows that

T λ
iαs

•
λβ + T λ

iβs
•
αλ = 0

thus s•αβ is a locally invariant symplectic form.

Consider the b-scalar which takes the value 1 at every point, denoted by

1•. Tensor product with 1• raises b-index while tensor product with its dual

1• lowers b-index. These maps will alter the global action. The set {1•} is

a basis for the 1-dimensional trivial representation. We can transform to and

from another basis {1•′} using non-singular change of basis matrices δ•
′

• and

δ••′ . Thus δ•
′

• = k for some scalar k, hence

s•
′

αβ = δ•
′

• · s•αβ

s•
′

αβ = k · s•αβ

so transforming b-basis is equivalent to picking a different symplectic form.

8.2 The (new) reduced curvature tensor

Now that we do not maintain sαβ is globally invariant, we are no longer at

liberty to use equation 4.2 to conclude Rij (∗∗) (sαβ) = 0. However, it does

follow from equation 4.2 that

Rij (∗∗) (s•αβ) = 0

Consequently we must update theorem 5.1.

Theorem 8.1 There exists a tensor Rs
ij such that Rβ

ijα = Rs
ijT

β
sα + 1

2
R•

ij•1
β
α.

Proof. Since Rij (∗∗) (s•αβ) = 0
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Rij (∗∗) (s•αβ) = 0

⇒ −Rλ
ijαs

•
λβ − Rλ

ijβs
•
αλ +R•

ij•s
•
αβ = 0

⇒ −Rλ
ijαsλβ − Rλ

ijβsαλ +R•
ij•sαβ = 0

⇒
[

Rij (∗∗) −
1

2
R•

ij•1 (∗∗)

]

sαβ = 0

this means that Rβ
ijα − 1

2
R•

ij•1
β
α is a matrix in sp(4,R), for fixed i and j.

Therefore we can write it as a linear combination of basis elements of sp(4,R).

Hence

Rβ
ijα − 1

2
R•

ij•1
β
α = Rs

ijT
β
sα (8.1)

�

It turns out that the result theorem 5.2 remains true, though the argument

must be altered somewhat.

Theorem 8.2 If Rs
ij is defined as above then Rt

ijk = Rs
ijT

t
sk

Proof. Rij (∗∗) (T β
kα) = 0 hence it follows that

Rt
ijkT

β
tα = Rβ

ijλT
λ
kα − Rλ

ijαT
β
kλ

=

(

Rs
ijT

β
sλ +

1

2
R•

ij•1
β
λ

)

T λ
kα −

(

Rs
ijT

λ
sα +

1

2
R•

ij•1
λ
α

)

T β
kλ

= Rs
ij

(

T β
sλT

λ
kα − T λ

sαT
β
kλ

)

= Rs
ijT

t
skT

β
tα

Since T β
tα is in general non-zero, we conclude that Rt

ijk = Rs
ijT

t
sk. �

8.3 Maxwell’s equations - a second attempt

Now that we have refined our model we wish to once again consider the ex-

tended Maxwell equations. The simplest test would be to compare these to

the Maxwell equations in flat spacetime. The first thing we expect is for any
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additional terms in the extended version of Maxwell’s equations 2.1-2.5 to be

of order 1/r (at least). This means they should reduce correctly in the limit

r → ∞. Secondly, given that we have an additional six components in both

our electromagnetic potential and current-density vectors, we shall obtain an

extra set of equations. We seek to obtain relationships which these extra com-

ponents obey.

Let us refer to the vector whose components are Ai as A. We introduce the

notation A = (φ,A,P,M), φ is a scalar and A, P and M are 3-vectors. In a

similar manner the charge-density 10-vector J = (ρ,J, ~J, J̊) has components

Ji.

8.4 The source equations

Expanding the LHS of equation 7.2

∇j(Fjk) = gij∇i(Fjk)

= gij∇i(∇j(Ak) −∇k(Aj))

= gij[∂i∂jAk − ∂i∂kAj − Γl
ij∂lAk − Γl

ik∂jAl

+ Γl
ik∂lAj + Γl

ij∂kAl + T p
jk∂iAp − T p

jkΓ
l
ipAl] (8.2)

We wish to consider the extended Maxwell equations for flat space i.e. in the

absence of curvature. In usual relativity the condition Γk
ij = 0 is sufficient to

ensure the (4-dimensional) curvature tensor vanishes and Einstein’s equations

reduce to Rij = 0. The Minkowski metric is a solution to this form of Ein-

stein’s equations.

On an ADS manifold the connection Γk
ij has antisymmetric components which

we are not free to make zero since this would remove the Lie structure T k
ij. If

we use

Γk
ij = −1

2
T k

ij (8.3)
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as our flat space condition then the curvature tensor reduces to Rl
ijk = 1

4
T x

ijT
l
kx.

Contraction yields the Ricci tensor Rik = −1
4
gik. Across the spacetime dimen-

sions this is Einstein’s equation for empty space with non-zero cosmological

constant and has as its solution the anti de Sitter metric given in equation 3.5.

Flat space for an ADS manifold looks like anti de Sitter spacetime.

Using condition 8.3, the Casimir identity 5.9 and the identity gijT l
ik = −gilT j

ik

(a consequence of the local invariance of gij), the LHS of equation 7.2 reduces

to

∇j(Fjk) = gij[∂i∂jAk − ∂i∂kAj + 2T l
ik∂jAl] + 3Al1

l
k

We have therefore simplified our source equation for flat space

gij∂i∂jAk − gij∂i∂kAj + gij2T l
ik∂jAl + 3Ak = Jk (8.4)

As there is only one free index in this expression we have a total of ten

equations. It will be clearer for us to use the notation ∇ = (∂X , ∂Y , ∂Z),

~∇ = (∂A, ∂B, ∂C), ∇̊ = (∂I , ∂J , ∂K). The first equation, corresponding to the

index value k = 0 (k, the free index from 8.4) is then (in natural units)

∇ · ∇φ+ ~∇ · ~∇φ− ∇̊ · ∇̊φ−∇ · ∂TA − ~∇ · ∂TP + ∇̊ · ∂TM (8.5)

−2∇ ·P + 2~∇ · A + 3φ = ρ

We have chosen to work with the basis where the components of the torsion

tensor are given by the matrices in appendix A. Hence the metric will be

diagonal. In flat space we can establish the following proposition.

Proposition 8.3 Partial derivatives transform as tensors provided the as-

sumption (8.3) holds.

Proof. According to (8.3)

∇i = ∂i −
1

2
Ti (

∗
∗) ⇒ ∂i = ∇i −

1

2
Ti (

∗
∗)

Since ∇i and Ti (
∗
∗) are tensors and the difference of any two tensors is again a

tensor, it follows that ∂i is a tensor too. �
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Up until now we have assumed ourselves to be working in natural units. One

natural unit of time is equal to r ordinary units of time: T = rT̄ . Similar

relations hold for space: X = rcX̄, Lorentz boost: A = cĀ, and rotation:

I = Ī. Using these relations we deduce that the change of basis matrix which

transforms from natural coordinates xi and ordinary coordinates x̄j is

δi′

j =
∂x̄i

∂xj
=







0 i 6= j

1/r i = j = 0

1/(rc) i = j = 1, 2, 3

1/c i = j = 4, 5, 6

1 i = j = 7, 8, 9

We know what the matrix gij and the matrices T k
ij look like in natural units.

We are interested in expressing Ai and the derivative operators in ordinary

units.

Aj = δi′

j Ai′ and
∂

∂xj
= δi′

j

∂

∂xi′

Hence in ordinary units (8.5) becomes

r3c2∇ · ∇φ+ rc2~∇ · ~∇φ− r∇̊ · ∇̊φ− r3c2∇ · ∂T A− rc2~∇ · ∂T P (8.6)

+r∇̊ · ∂T M− 2rc2∇ · P + 2rc2~∇ · A + 3rφ = rρ

We now introduce constants to allow us to adjust the units of the components

of A and J (to e.g. SI units).

φ→ kφφ A → kAA P → kPP M → kMM

ρ→ kρρ J → kJJ ~J → k ~J
~J J̊ → kJ̊ J̊

Accordingly (8.6) is

kφc
2∇ · ∇φ− kAc

2∇ · ∂TA +
1

r2

(

kφc
2~∇ · ~∇φ− kφ∇̊ · ∇̊φ (8.7)

−kP c
2~∇ · ∂TP + kM∇̊ · ∂TM − 2kP c

2∇ · P + 2kAc
2~∇ ·A + 3kφφ

)

=
kρρ

r2

If we assume kφ(r) ∝ kA(r), kP/kA ∝ rn and kM/kA ∝ rn where n ≤ 1, we

may neglect the second order 1
r

terms on the left hand side of equation 8.7
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when r is large. In accord with the assumption that r is large we shall drop

the second order terms from the left hand side

kφc
2∇ · ∇φ− kAc

2∇ · ∂TA =
kρρ

r2
(8.8)

Assuming kA = −kφ allows us to factorise

kAc
2∇ · (−∇φ− ∂TA) =

kρρ

r2
(8.9)

Substituting the electromagnetic fields in terms of their potentials using equa-

tions 2.8 and 2.9 makes equation 8.9 equivalent to

kAc
2∇ · E =

kρρ

r2
(8.10)

which is precisely Gauss’s Law (equation 2.1) for the distribution of electric

charge in SI units provided

kA = −kφ kρ =
kAr

2c2

ǫ0

In a similar manner equation 8.4 also yields the Ampere-Maxwell equation

(equation 2.4)

kA∂T E − kAc
2∇×B =

kJ

r2
J (8.11)

where

kJ = −kAµ0r
2c2 ⇒ kJ = −kρ

c

We also obtain two new equations

kP c(−∂2
T + c2∇2)P− 2kAcE =

k ~Jc

r2
~J (8.12)

kM(−∂2
T + c2∇2)M − 2kAc

2B =
kJ̊ J̊

r2
(8.13)

If kP/kA and kM/kA are proportional to r then the E and B terms will also

disappear in the limit r → ∞.

8.5 The Faraday-Gauss equations

We expand the Faraday-Gauss equation 7.3

∂k∂iAj − ∂k∂jAi − Γx
ki(∂xAj − ∂jAx) − Γy

kj(∂iAy − ∂yAi)

+T l
ij∂kAl − T l

ijΓ
n
klAn

ijk
= 0
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Making our usual assumption that T k
ij = −2Γk

ij , simplifies this

∂k∂iAj − ∂k∂jAi +
1

2
T x

ki(∂xAj − ∂jAx) +
1

2
T y

kj(∂iAy − ∂yAi)

+T l
ij∂kAl − T l

ij

1

2
T n

klAn
ijk
= 0

The last term is the Jacobi identity when cycled through ijk. The other torsion

terms can also be simplified.

∂k∂iAj − ∂k∂jAi + T x
ki∂xAj

ijk
= 0 (8.14)

which provides us with so many equations that writing them all down will not

be an insightful exercise. However we shall write down the ones arising from

only considering the cases in which i, j, k are space or time indices. In the limit

r → ∞ we obtain the following

∇ · B = 0 (8.15)

and

∂T (B) + ∇× E = 0 (8.16)

which are precisely equations 2.2 and 2.3.

8.6 Maxwell’s equations - a final adjustment

In order for two tensor quantities to be equivalent both their components and

transformation properties must be identical. Consider now s•αβ , which has

components equal to the bilinear form sαβ . Hence the expression s•αβs
αλ
• has

components equal to those of sαβs
αλ = 1λ

β. Furthermore the indices • and

α are summed over thus these two expressions have identical transformation

properties. Therefore they are the same quantity. This essentially means that

the process of e.g. raising a spinor index, though it leaves behind a bullet

index, can be undone by lowering the spinor index whereby the bullet index

will be cancelled out. We have defined Ak = 1
4
Γα

kα and we shall now proceed
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to see how it is related to Dk ≡ Γ•
k•.

0 = ∇k(s
•
αβ)sαβ

• = ∂k(s
•
αβ)sαβ

• + Γ•
k•s

•
αβs

αβ
• − Γλ

kαs
•
λβs

αβ
• − Γλ

kβs
•
αλs

αβ
•

= ∂k(s
•
αβ)sαβ

• + Γ•
k•1

α
α − Γλ

kα1α
λ − Γλ

kβ1
β
λ

= ∂k(s
•
αβ)sαβ

• + 4Dk − 2Ak

If we now consider contractions of the tensors R•
ij• and Rβ

ijα obtained from the

action of Rij (∗∗) on a bullet scalar and a spinor respectively. We find that

R•
ij• = ∂i(Dj) − ∂j(Di) (8.17)

Rα
ijα = ∂i(Aj) − ∂j(Ai) (8.18)

Taking the trace of the Greek indices in equation 8.1 it follows that

∂iAj − ∂jAi = 2(∂iDj − ∂jDi)

We have chosen to use ∂iAj −∂jAi +T k
ijAk as our Electromagnetic field tensor,

however 8.18 indicates that ∂iAj − ∂jAi might be a more natural choice as

it would indicate that the electromagnetic force arises from the presence of

curvature. Nevertheless let us recall the Bianchi identity 5.10 obtained from

applying the Jacobi identity to spinors

T l
ijR

β
lkα −∇k(R

β
ijα) (ijk)

= 0 (8.19)

It will constrain Rα
ijα and hence the extended Maxwell equations in some way.

Substituting equation 8.18 into the contracted version of equation 8.19 and

using the fact that we can permute the i, j, k indices of any term without

altering the equation yields

−∂k(∂iAj − ∂jAi)
(ijk)
= 0 (8.20)

as identically true on an ADS manifold.

This means the extended Maxwell equations (as they stand) are inconsistent

with the geometry of an ADS manifold since they permit the torsion term in
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equation 8.14 which is a contradiction of identity 8.20. In order to make the

unwanted term disappear, we make a fundamental redefinition of the electro-

magnetic field tensor as follows

F̂ij ≡ ∂iAj − ∂jAi (8.21)

According to equation 8.18 this actually appears to be a more natural definition

anyway. Aside from the fact that Rα
ijα is a tensor, F̂ij is clearly a tensor

since ∇iAj − ∇jAi − T k
ijAk is a tensor. Such a redefinition will not alter the

approximations 8.15 and 8.16 obtained in the limit r → ∞.

This brings us to the realisation that the Faraday-Gauss equation 7.3 is

simply a consequence of the Bianchi identity 8.19. Equation 7.3 no longer

needs to be postulated independently but follows from the geometry of an

ADS manifold.

8.7 Consequences for the source equation

Using F̂ij instead of Fij will also simplify the LHS of the source equation 8.4

gij
(
∂i∂jAk − ∂i∂kAj + T l

ik∂jAl

)
= Jk (8.22)

(We are using condition 8.3.) The only difference this will make to the ap-

proximations 8.10-8.13 will be losing the factor of 2 in front of the E and B

terms from equations 8.12 and 8.13 respectively.

It remains to interpret the quantities P, M, ~J and J̊. The type of parti-

cles which carry charge - electrons and protons - also possess spin. In order

to describe the electromagnetic evolution of a distribution of charged particles

more accurately it would make sense to also take into account the spin-density1

of the distribution (although for practical purposes this addition may often-

times be negligible). We therefore predict the six components ~J and J̊ are

related to the spin-density of a charge distribution, indeed the total angular

1The intrinsic angular momentum of a charged particle gives rise to a magnetic moment.
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momentum tensor of relativity is antisymmetric, hence it has six independent

components, see p. 157-159 [11]. Thus we predict the components P and M of

the 10-potential should give rise to fields which excerpt forces on test particles

possessing an intrinsic angular momentum.



Chapter 9

Conclusion

We have explored how the Poincaré Lie algebra approximates the Lie algebra

so(2, 3) meaning that they may both be used to describe local spacetime sym-

metry for classical physics. We found reason to choose so(2, 3) as our local

symmetry group and it is upon this assumption that the Hawthorn model has

been constructed. The axioms involved were clearly stated before we moved

on to show that the Dirac equation fits very nicely on an ADS manifold. From

the covariant derivative in the Dirac equation arises what we have called a

spinor connection. This connection decomposes into three terms, one of which

we identify as the electromagnetic potential. Using this potential to construct

the extended Maxwell equations (an appropriate generalisation of Maxwell’s

equations on the ADS manifold) we discover a new result, that the assump-

tion ∇k(sαβ) = 0 essentially ensures their non-existence. To relinquish this

assumption we are forced to accept the existence of the so-called bullet scalars

on the ADS manifold. We then reconstructed the extended Maxwell equations

in a way that is consistent with Maxwell’s equations in the limit r → ∞. In

the process we obtain new equations pertaining to the extra components of

the potential A and current-density J . We then identified a relationship be-

tween the electromagnetic field tensor and the trace of the spinor curvature

tensor. As the curvature tensor must obey the Bianchi identities it turns out

that this condition contradicts the Faraday-Gauss equation 8.14 unless we re-
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define our field tensor. This redefinition means the electromagnetic field tensor

arises from the trace of the spinor components of the spinor curvature tensor.

Furthermore we have found that the Faraday-Gauss equation 7.3 is purely a

consequence of the Bianchi identity 8.19 i.e. the geometry of spacetime, and

does not need to be postulated independently.



Appendix A

The Adjoint representation

Table A.1: Basis for the adjoint representation of so(2, 3)

adT =
































0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
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