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Electrical recordings of brain activity during the transition from wake to anesthetic coma show
temporal and spectral alterations that are correlated with gross changes in the underlying brain state.
Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of
electrical activity ( < 1 Hz) similar to the slow waves observed in natural sleep. Here we present a two-
dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously
through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal)
instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by
interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical
behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of
a general-anesthetic-induced transition from “wake” to “‘coma.” In this region, the system is poised at a
codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a
moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response,
producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is
chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the
inclusion of a single idealized point-to-point connection. We find that the additional excitation from the
long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is
weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of
anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic
modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might
underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics

for memory processing and learning.
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L. INTRODUCTION

Over the past two decades, extensive imaging studies
using functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET) have demonstrated
that, during specific cognitive tasks, human subjects ex-
hibit a high degree of spatial organization in neuronal
activation [1]. The underlying basis of this spatiotemporal
patterning of neural activity has not yet been unambigu-
ously established. While there is evidence linking imaging
patterns retrieved from blood oxygen-level-dependent
(BOLD) studies to hard-wired axonal pathways defined
by specific anatomic projections [2,3], known connectiv-
ities cannot account for many of the correlated BOLD
observations [4-6]. This absence of a clear mapping
between anatomical connectivity and cognitive function

*msr@waikato.ac.nz
Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-

bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOL

2160-3308/13/3(2)/021005(19)

021005-1

Subject Areas: Biological Physics, Complex Systems, Nonlinear Dynamics

suggests that some kind of spatial self-organization could
be occurring. It is our belief that aspects of the observed
patterns of neural activation can be generated by intrinsic
Turing and Hopf instabilities that emerge spontaneously
under physiologically realistic modulation of cortical
parameters. Indeed, we advance the idea that normal brain
function requires a delicate balance between these
instabilities.

Our cortical model is based on early work by Liley et al.
[7,8], but with enhancements motivated by Rennie et al. [9]
and Robinson et al. [10], and recently augmented with the
inclusion of electrical gap-junction synapses [11,12] to
supplement communication via standard chemical synap-
ses. Our state parameter is the mean excitatory firing rate,
presumed to provide a proxy for the scalp-measured EEG.
The model equations are set out in Sec. II; in summary, the
cortex is pictured as a continuum of excitable tissue con-
taining populations of excitatory neurons and inhibitory
neurons (interneurons) that communicate locally via
chemical and electrical synapses (gap junctions), and
over longer ranges via myelinated axons. The gap
junctions that link neighboring interneurons form direct

Published by the American Physical Society


http://dx.doi.org/10.1103/PhysRevX.3.021005
http://creativecommons.org/licenses/by/3.0/

STEYN-ROSS, STEYN-ROSS, AND SLEIGH

PHYS. REV. X 3, 021005 (2013)

resistive connections that permit ionic currents to flow,
tending to equalize neuron voltages. The bulk effect of
electrical synapses is to produce diffusion terms similar in
form to those found in standard reaction-diffusion models
that support Turing structures [13]. We find that increasing
the strength of the interneuronal gap-junction coupling D,
can precipitate a Turing bifurcation that generates station-
ary labyrinthine patterns of raised and lowered cortical
activity [11].

Spatial self-organization associated with Turing struc-
tures has been identified in a variety of physical systems
and studied extensively in the context of the so-called
Brusselator equations, first expounded by Prigogine and
coworkers [14] and expanded subsequently by many other
authors (e.g., [15,16]). For a Turing instability to occur, the
inhibitor must diffuse more rapidly than the activator.
Since the cortex can be modeled as a network of inhibitory
and excitatory neural populations coupled via nonlinear
interactions, it has the necessary prerequisites for emer-
gence of spatial instability. The prediction of such Turing
structures in a mean-field cortex has been made by several
investigators [17-22], with most work being confined to
the consideration of a one-dimensional (1D) cortex.
Typically, the Turing mechanism in these cases has relied
on a presumed ‘“Mexican-hat” kernel featuring long-range
inhibitory and short-range excitatory axonal connections.
In contrast, in the present paper we present an alternative
mechanism for Turing instability in a two-dimensional
(2D) model of the cortex in which the longer-range inhibi-
tory dominance arises from gap-junction currents between
adjoining interneurons that may form a diffusive syncy-
tium scaffolding the cortex [23]. If inhibitory gap-junction
diffusive coupling D, is sufficiently strong, a spatial
instability is predicted.

Our model also predicts that a sufficient reduction in y;,
the inhibitory rate constant for postsynaptic response at
chemical synapses, can promote a temporal (Hopf) bifur-
cation that manifests as global, whole-of-cortex oscilla-
tions of soma voltage; this form of oscillatory dynamics
has been interpreted as grand mal seizure [24-26].

Significantly, a simultaneous tuning of y; and D, can
locate a codimension-2 Turing-Hopf (c2TH) point [27] at
which Turing and Hopf instabilities interact, giving rise to
complex mixtures of traveling waves and oscillating
Turing structures [28,29]. Such traveling patterns allow
separated patches of cortex to exhibit phase-coherent os-
cillations, providing a plausible dynamic substrate for the
“binding” and “‘action at a distance’ behaviors supposed
to be prerequisites for cognition and consciousness [30].

We have argued that the small-amplitude ultralow-
frequency spatiotemporal oscillations generated near the
Turing-Hopf point might represent some features of the
default noncognitive idling background state of the con-
scious brain since these oscillations can provide a func-
tional connection between brain areas that lack an

identifiable anatomical connection; these coherent oscilla-
tions persist over time scales ranging from hundreds of
milliseconds to seconds [29]. Empirical and modeling
studies of the resting default state by Honey et al. [31,32]
show that structurally connected regions of cortex do ex-
hibit stronger functional connectivity, but only over time
scales of minutes. This suggests that, while brain dynamics
is guided by anatomical connectivity, it is not necessarily
constrained by it, particularly at the faster time scales (of
the order of seconds) where c2TH activity patterns can
emerge.

An important difference between this and previous
iterations of our model [11,12,28,29] is the inclusion of a
long-range axonal fiber that connects two points in the 2D
neural field. While we recognize that other workers
[31,33,34] have incorporated into their models anatomi-
cally detailed maps of the cortico-cortical links between
brain areas, our intention here is simply to identify any new
dynamics arising from a single heterogeneous connection.
Our approach is a generalization of that described by Jirsa
and Kelso for a 1D neural topology [21].

Locating the cortex close to the c2TH point gives it
access to a rich variety of diverse spatiotemporal behav-
iors. To explore the alterations in dynamics across a range
of cognitive states, we adopt the anesthetic phase transition
as a paradigm. This framework, well studied by the au-
thors, allows us to move with relative ease between the
putative cortical states with minimal tuning of parameters.
The system is characterized by a distribution of equilib-
rium states which can be used to identify specific phases of
consciousness.

We select two reference states, “wake’ and ‘“‘anesthetic
coma,” and carefully investigate the dynamic impact of
alterations in Turing-Hopf balance by varying the gap-
junction connection strength D,. For coma, the dynamics
can range from a wakelike state that might correspond to
delirium [35] (large D,) to seizurelike bursting and
eventually suppression (small D,), while for wake, the
progression is from wake to “‘seizure.” In both cases, at
intermediate values of diffusion, we see spontaneous
emergence of a large-amplitude slow chaotic oscillation
between up (activated) and down (quiescent) states.

In our previous study [12]—in which we examined the
role of gap-junction modulation of Turing-Hopf dynamics
with respect to transition from wake to seizure—we inter-
preted the emergent chaotic oscillations as an incoherent
precursor signaling the onset of the pathologically coherent
seizure state (see Fig. 2 of Ref. [12]). But when the
anesthetic effect was boosted (Fig. 3 of Ref. [12]), down-
scaling of inhibitory diffusion gave a chaotic regime,
closely followed by cortical collapse into a completely
silent ““suppressed” state. The addition of the long-range
two-point connection described here (see Fig. 1) allows a
new regime of ‘““‘anesthetized” dynamics to emerge: The
chaotic slow oscillations now give way to a seizurelike
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FIG. 1. Long-range two-point connections on a 120 X 120
grid representing a 25-cm X 25-cm square of flattened cortical
tissue. The diagram shows direct axonal connections from co-
ordinate (x;, y;) = (20, 60) to (x,, y,) = (40, 60) (black arrow),
and back (gray arrow). Communication between connected
points occurs after a time delay Az = Ar/v, where v is the
axonal conduction speed and Ar is the physical separation
(L/NJ)|x; — x,|, with L =25 cm and N, = 120. We apply
periodic (toroidal) boundaries.

“bursting” state as diffusion is reduced (see Figs. 8 and 10),
followed eventually by full suppression. Although highly
idealized, the fact that the two-point connection evokes a
more realistic anesthetic dynamics motivated us to identify
the chaotic state as a potential source of the cortical slow
oscillation, and to examine in detail the impact of the long-
range connection on anesthetic cortical dynamics (Fig. 12).
The interesting finding is that, in a mean-field sense, the
slow oscillation can arise without recourse to the classical
mechanisms involving ion channels in neurons.

The paper is structured as follows. In Sec. II, we define the
cortical model, locate its equilibrium states, and explain
how cortical dynamics can be quantified in terms of a phase
coherence measure. In Sec. III, we report on a comprehensive
series of numerical simulations that survey the effect of
inhibitory diffusion on wake and anesthetic-coma states,
and assess the impact of the two-point connections on system
behavior. A significant conclusion of this theoretical study is
the prediction that the slow-wave up-down oscillations of
anesthetic coma are chaotic in nature, arising spontaneously
from a competitive interaction between Turing (spatial) and
Hopf (temporal) instabilities. This mechanism for the slow
oscillation is quite distinct from the conventional view of a
cyclic alternation in ionic concentrations that tends to sup-
press firing in the active state, then activates firing in the
quiescent state. Our prediction of chaotic dynamics is sup-
ported by clinical studies of phase synchronization changes
in EEG during induction of propofol anesthesia [36]. The
Turing-Hopf interaction may also underlie the slow waves of
natural sleep, and, if so, it has interesting implications for
memory processing during sleep.

II. METHODS
A. Model equations

Our model envisions the cortex as a 2D network of
excitatory and inhibitory neurons that are interconnected

locally via resistive gap junctions and neurotransmitter-
mediated chemical synapses, and over distances via long-
range myelinated axons. Since scalp and cortical electrodes
can only sense average voltages generated by populations of
neurons (and not single-unit activity), we represent the
cortex as a continuum of excitable tissue whose cortical
parameters have been coarse grained over a spatial extent
of order 1 mm?, corresponding to the area of a cortical
macrocolumn [37]. In our numerical simulations, we map
the cortex to a 120 X 120 grid (see Fig. 1).

The spatially averaged excitatory and inhibitory soma
potentials V, and V; at grid location 7 = (x, y) obey the
following differential equations:

aV, (7, 1)

my I = Vi AV -V (R1)

Fpe ¥ en(F )P, (7 1) + pih i (7, ) Dy, (7, 1)]
+ D, V*V, (7 1), (1)

where we have adopted a left-to-right convention for label-
ing presynaptic and postsynaptic connectivity so that, for
example, eb is given as “‘e — b,” with the postsynaptic
subscript b standing for either e or i. The terms [...] in
square brackets are chemical-synaptic voltage inputs. The
nabla-square symbol denotes the 2D Laplacian operator
V2 = (02/0x* + 02/0y?).

The final term on the right of Eq. (1) is the voltage
contribution arising from gap-junction currents diffusing
between adjacent neurons. Gap junctions are connexin-
protein channels that form spontaneously at the points of
contact between the dendrites of adjoining neurons, and
which allow the passive diffusion of ions driven by inter-
cellular potential differences [38]. We write D, as the
diffusive-coupling strength between electrically adjoined
[ <> i or e — e neuron pairs, so D, /7, can be regarded as
an effective diffusion coefficient (see [11] for a detailed
derivation and magnitude estimates). To simplify notation,
we now write (D, D,) = (D,,, D;;). Because gap-junction
coupling between inhibitory interneurons is substantially
more abundant than that between excitatory neurons [38],
we set D; to be a small fraction of D, (D, = D,/100),
with D, being an adjustable parameter. Layer 1 of the
cortex is predominantly (over 90%) comprised of inhibi-
tory neurons [23], so it is not implausible to posit a con-
tinuous syncytium of interneuron-to-interneuron diffusive
scaffolding spanning the cortex. The physiological signifi-
cance of dominant inhibitory diffusion is that it allows for
the spontaneous formation of distributed Turing patterns
that might modulate cortical activity.

The 7, in Eq. (1) are soma time constants for the neuron
populations, and V**' are their respective resting voltages.
The p,; are the chemical-synaptic strengths given by the
area under the excitatory or inhibitory postsynaptic poten-
tial (PSP), with p, > 0 (EPSP) and p; < 0 (IPSP). These
strengths are scaled by dimensionless reversal-potential
functions ¢,
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b =V
a ]

V;ev — Vlrjest ’

that are normalized to unity when the neuron is at its
resting voltage and are zero when the membrane voltage
reaches the relevant reversal potential, taken to be
V¥ =0 mV for excitatory (AMPA) receptors and
Viev = =70 mV for inhibitory (GABA) receptors. For
simplicity, we assume that the V' term appearing in
the denominator of #,, is a constant, independent of
the AVe* offset of Eq. (1).

The four ®,, functions in Eq. (1) are postsynaptic
fluxes. Assuming that the impulse response at the postsy-
naptic dendrite obeys an alpha-function form y?¢exp(—yt)
with rate constant y (and time to peak 1/7v), the ®,;, are
governed by second-order differential equations,

0 2 R S R
(— " ye) (7 1) = YN (7. 1) + NE 0,(F. 1)

ot
+ @S (FE D+ dEDL ()

d 2 - >
(&4 v)ouin = yboGo
The o and B superscripts distinguish longer-range
(cortico-cortical) versus local chemical-synaptic inputs;
N, Nfb are the number of such input connections, and

%, Q.. the corresponding long-range and local spike-rate
fluxes. ¢%, is the unstructured stimulatory tone arriving
from subcortical sources. This stimulus is modeled as a
low-intensity spatiotemporal white-noise variation &,
about a constant tonic background (%),

oo (7 1) = (@) + ay[( @y )Een (7, 1),

with a being a dimensionless amplitude scale factor. The
&, (7, 1) is Gaussian-distributed delta-correlated noise with
statistics (¢(7, 1)) = 0 and (£,,(1))¢,(12)) = 8,,,6(t) — 1)
In numerical simulation with fixed time increment Az, we
approximate continuous noise &(7) with discrete noise
samples {£X} constructed using the MATLAB randn ran-
dom number generator: ¥ = randn/ VAt. Inclusion of a
noisy stimulus encourages the cortical model to explore its
repertoire of dynamic behaviors accessible from a resting,
equilibrium state, and represents the reality that any living,
biological system is unavoidably exposed to a continuous
background wash of random perturbations. The fourth flux
term on the right of Eq. (2), gbg,;het, is the symmetry-
breaking heterogeneity arising from the direct two-point
connection illustrated in Fig. 1 and described below [see
Eqgs. (5) and (6)]. The local fluxes Q,; in Egs. (2) and (3)
are defined by a sigmoidal mapping from soma voltage to
firing rate,

O™
1 +exp[—C(V,(# 1) —6,)/0,]

Q,(F 1) =

with the subscript a standing for e or i, and C = 7/ V3.
Here, 6, is the population-average threshold for firing, o,
is its standard deviation, and Q7** is the maximum firing
rate (see Table I for values).

We follow Robinson et al. [10] by treating the isotropic
long-range flux ¢¢, from distant excitatory neurons as
damped waves generated by sources Q,(7, t); this flux
obeys the 2D wave equation

2
(5 vAa) — 292|050 = wALPQ.GD. @
where A, is the inverse-length scale for e — b axonal
connections, and v is the axonal conduction speed.

Jirsa and colleagues [21,39—41] have investigated the
dynamical changes in a 1D neural-field model wrought by
breaking isotropic symmetry with a direct point-to-point
connection. Here, we generalize their approach to two
spatial dimensions as a modest first step towards represent-
ing realistic anatomical heterogeneity. Note that these
earlier works are primarily concerned with the effects of
point-to-point transmission delays on cortical stability,
showing that higher axonal speeds—such as those that
occur during developmental myelination—tend to stabilize
the homogeneous steady state against oscillatory instabil-
ities [40]. In contrast, here we keep the two-point axonal
delay fixed and vary the inhibitory diffusion strength as a
control parameter to alter the relative balance between
spatial and oscillatory instabilities that can emerge in a
2D model cortex.

The heterogeneous flux input (;Sfl;he‘ in Eq. (2) is expressed
in terms of a lossless two-point connectivity kernel [21],

2
HE(F, ) = f > i 0.(R T)8(R — 7)8(7 — 7,,)dR,

€,m=1
€+ m, )

where Qe(ﬁ, T) is the excitatory neural activity at location R
at earlier time T = ¢ — |7 — R|/v. This timing offset ac-
counts for the propagation delay |# — R|/v from source
point R to field point 7 with axonal speed v. Here, g, is
the connection strength from point € to point m. Applying the
properties of delta functions, Eq. (5) becomes

PENF 1) = w0, (Fy, T))S(F — Fy)
+ usP 0. (7, To)8(7F — 7y), (©6)

with offset times T, = t — |F — #,|/v for n = 1, 2. This
means that, in numerical simulations, there can be no flux
contribution from either distant connection until a delay time
|F; — F»l/v has elapsed.

Figure 1 illustrates the geometry of the direct two-point
connections used in the present work. For simplicity,
we place both connected points along the y = 60 column
of our 120 X 120 cortical grid and impose balanced two-
way connections of equal strength in both directions:
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TABLE I. Symbol definitions and standard values for the cortical model.

Symbol Description Value Unit
Tei neuron time constant 0.040, 0.040 S
Vet reversal potential at dendrite 0, =70 mV
Vet neuron resting potential —64, —64 mV
AVES offset to resting potential 15,0 mV
Pe excitatory synaptic gain 1.00 X 1073 mV s
o} inhibitory synaptic gain at zero anesthetic —1.05x 1073 mV s
Ve excitatory rate constant 170 s7!
% inhibitory rate constant at zero anesthetic 50 57!
D, i < i gap-junction diffusive-coupling strength 0-1.0 cm?
D, e « e gap-junction diffusive-coupling strength D, /100 cm?
Ng, longer-range e — b axonal connectivity 2000 s
N fb, i local e — b, i — b axonal connectivity 800, 600 .-
(&35, e — b tonic flux entering from subcortex 300 s7!
a subcortical noise scale factor 4 :
v axonal conduction speed 140 cms™!
Ay inverse-length scale for e — b axonal connections 4 cm™!

o maximum firing rate 30, 60 s~
0. sigmoid threshold voltage —58.5, —58.5 mV
O, standard deviation for threshold 3,5 mV
s strength of two-point e — b heterogeneity 200, 200
L, length and width of cortical sheet 25, 25 cm

wéh = ush = u = 200. To investigate the effect of vari-

able separation distance Ax = |x; — x|, we fix x; = 20
and allow x, to vary. For most of the work reported here,
we set x, = 60 to give a physical separation of Ar =
8.33 cm (i.e., one-third of the side length of our cortical
grid). Note that the values for our model parameters have
been chosen to be physiologically plausible; see Table I for
parameter values. (See Ref. [42].)

B. Modeling anesthesia

At the molecular level, inductive anesthetic agents
suppress neural activity by prolonging the opening of
gamma-aminobutyric acid (GABA) channels on the post-
synaptic neuron [43], hyperpolarizing the neuron by in-
creasing the net influx of chloride ions. For example, the
anesthetic propofol prolongs the duration of the inhibitory
postsynaptic potential (IPSP) without altering its peak
amplitude [44]. We model propofol’s effect by scaling
both the inhibitory rate constant y; and synaptic strength
p; by a dimensionless scale factor A that is set to unity in
the absence of propofol, and which grows proportionately
to propofol concentration,

Yi = ’Y?/)\r

where y? and p; are the anesthetic-free default values. This
scaling ensures that the area of the IPSP response (repre-
senting the total charge transfer) increases linearly with drug
concentration while the IPSP peak remains unchanged. We
note that at very high propofol concentrations—well above
the clinically relevant range—the charge-transfer versus

Pi = /\P?’

drug-concentration curve shows saturation effects [44], but
the assumption of linearity is accurate at low concentrations
and has been used by Hutt and Longtin [45] in their anes-
thesia modeling.

C. Equilibrium states of the cortex

We view cortical dynamics as a spatiotemporal variation
about, or relaxation towards, the family of underlying
homogeneous equilibria that define one or more resting
reference states of cortical activity. By linearizing about
such a reference state, we can apply linear stability analysis
to make predictions about the conditions under which spatial
or temporal instabilities might arise [12]. If the homogeneous
equilibrium is stable, the cortex will tend to relax to this
steady state when input stimuli are removed; if the equilib-
rium is unstable, it acts to organize the resulting spatiotem-
poral dynamics. And if the cortex has access to multiple
steady states, very rich dynamical behaviors can emerge,
particularly when more than one of these states is unstable.

We locate the homogeneous equilibrium states by
setting the heterogeneous flux term in Eq. (2) to zero
(%t = 0) and eliminating all space and time derivatives
in differential equations (1)—(4) (V> =0; a/dt=
9%/dt> = 0), then solving (numerically) the resulting set
of nonlinear coupled algebraic equations for the steady-
state firing rates (Q,, Q;) of the excitatory and inhibitory
neural populations. For the present work (see Fig. 2), we
have visualized the distribution of steady-state solutions as
a (multivalued) function across a domain defined by the
anesthetic effect A and resting potential offset AVest,
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FIG. 2. Manifold of steady-state firing rates Q, across the
(A, AV™!) anesthesia domain. The control parameter A sets
the anesthetic effect; AV™"' is an additive offset representing
background cortical excitation (AV™'>0) or suppression
(AV™st < 0). The yellow curve marks the edge of the reentrant
“fold”; the dashed black curve shows the projection of this edge
onto the lower and upper surfaces, bounding the zone of multiple
steady states. The red-green-blue curve shows the distribution of
steady states for varying anesthetic inhibition at constant cortical
excitation (see Fig. 3).

We note that, over part of the (A, AVI*!) domain, the
steady-state manifold folds back on itself to form a reverse
S-shaped reentrance whose top and bottom surfaces corre-
spond to activated and suppressed neural states, respec-
tively. Thus, we identify the upper surface with awake and
the lower surface with anesthetic coma. In Fig. 3, we have
plotted a vertical slice through the Fig. 2 manifold in the
0, — A plane at resting voltage offset AV = 1.5 mV.

In the work that follows, we investigate the impact of
two-point heterogeneity on the dynamical behavior of the
awake and comatose cortexes. We acknowledge that, as

25F
20k ‘Awake
s 15}
SERTY
5f - "Coma"
0

0.9 0.95 1.0 1.018 1.05 1.1
Anesthetic effect, \;

FIG. 3. Vertical slice through the homogeneous equilibrium
manifold of Fig. 2 showing the distribution of steady-state firing
rates as a function of the anesthetic effect for constant excitation
AV™st = 1.5 mV. We associate the upper, high-firing branch
with the awake state, and the lower, low-firing branch with the
“asleep” state corresponding to anesthetic-induced coma.
Circled points indicate reference states at A; = 1.0 and 1.018
on awake and coma branches, respectively.

soon as spatial heterogeneity enters, the equilibrium states
will also become spatially dependent, meaning that each
spatial coordinate on the 2D cortical grid could own a
distinct equilibrium manifold. Nevertheless, it is conceptu-
ally useful to regard the homogeneous distribution of steady
states as our background reference, which is to be perturbed
by the (l)jéhe‘ heterogeneity. This is not unreasonable, given
that the nonlocal term has a strength (u,;, = 200) equivalent
to a quarter of the local connectivity (Nfb = 800) and a
tenth of the longer-range connectivity (N¢, = 2000; see
Table 1), so its effect is to raise destination firing rates by
only a few percent above the homogeneous steady-state
values.

D. Linear stability predictions

Equations (1)—(4) define the cortical model in terms of
two first-order (V,; soma voltages) and six second-order
(Peeeis Piciis Peeei firing-rate fluxes) partial differential
equations (DEs), equivalent to 14 first-order DEs. In
Sec. IV, we examine model response to changes in both
inhibitory diffusion (D,) and inhibitory response rate (vy;)
by time-stepping these equations to obtain numerical
solutions. Since the long-range axonal strength has been
set deliberately weak, we can make reasonable predictions
as to which instability modes might emerge by looking at
the linear stability of the homogeneous stationary states.

We do this by disabling the subcortical noise and dis-
connecting two-point axonal linkages (u = 0). Noting the
parameter symmetries evident in Table I (viz., N, = N&;
NE = Nfi; N{Z = Nﬁ.), the homogeneous system reduces
to a set of two first-order and three second-order DEs,
equivalent to eight first-order equations. We define the
eight-variable state vector X = [V,, V,, ®,,, @, P,
by, by dop]T with an equilibrium value X©. We then
express the cortical state as its equilibrium value plus a
small spatiotemporal disturbance,

X, P =X+ 8X(t, 7),
with 6X(z, 7) being a plane-wave perturbation
8X(1, 7) = 86X(1)ed” = 5X(0)eMeldT,
where ¢ is the wave vector with wave number |G| = ¢, and
A is an eigenvalue whose real part gives the growth rate of
the 6X(0) initial perturbation: If Re(A) > 0, an instability is

predicted. Substituting X = X9 + sXinto Egs. (1)—(4) and
retaining only linear terms results in the matrix equation

d - .
= 5X = J(q)8X,
o J(q)

where J is an 8 X 8 Jacobian matrix in which the V?
Laplacians for excitatory and inhibitory diffusion [Eq. (1)]
and wave propagation [Eq. (4)] appear as —g” terms. The
eight eigenvalues owned by J describe the linearized dy-
namics of the homogeneous cortex. For each wave number
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g, we extract and plot the dominant eigenvalue—i.e., that
eigenvalue whose real part is the most positive (or the least
negative)—since this eigenvalue describes the most strongly
growing (or most long-lived) mode at a given spatial
frequency.

Figure 4 plots the predicted wave number ¢ dependence
of the real and imaginary parts of the dominant eigenvalue
for three values of inhibitory diffusion (D, = 0.7, 0.4,
0.1 cm?) for the top- and bottom-branch equilibria at A; =
1.0. Figure 4(a) shows that, for all three diffusion values,
the high-firing up-state is expected to destabilize in favor
of a whole-of-cortex Hopf oscillation (peak instability
occurs at ¢ = 0) of temporal frequency of approximately
3 Hz. In contrast, the low-firing down-state [Fig. 4(b)]
exhibits instability properties that are strongly D, depen-
dent, starting from a Turing-dominated spatial mode of
spatial frequency g =~ 0.4 waves/cm, wavelength around
2.5 c¢m, for strong inhibitory diffusion (D, = 0.7 cm?),
evolving to interacting but damped Hopf and Turing in-
stabilities at moderate diffusion (D, = 0.4 cm?), and giv-
ing way to a damped Hopf instability when diffusion is
weak (D, = 0.1 cm?).

As we will see later in Sec. III, these linear stability
predictions provide a reasonable prediction of spatial and
temporal instabilities, but the range of complex and chaotic
nonlinear dynamics that can emerge from the modal
interplay of Hopf and Turing instabilities only becomes

(a) Top-branch dispersion for A\; = 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Wave number, ¢ (waves per cm)

FIG. 4. Predicted dispersion curves for spatially homogeneous
cortex for (a) top branch and (b) bottom-branch equilibria at
A; = 1.0 (see Fig. 3). Blue traces show the real part of the
dominant eigenvalue, @ = Re(A), as a function of wave number
q; dashed-red traces indicate oscillation frequency (in Hz)
f = /27 =Im(A)/27. Selected inhibitory diffusion values
are D,/cm? = 0.7, 0.4, 0.1.

apparent when the full cortical equations are simulated
numerically.

E. Phase coherence as a measure of cortical state

Although D, (inhibitory diffusion) and 7; (inhibitory
synaptic rate constant) have no influence on the location
and distribution of equilibrium states of our model cortex,
these two inhibitory parameters are key determinants of the
nonequilibrium dynamical states that can spontaneously
emerge from the equilibrium manifold. These far-from-
equilibrium states cover the gamut from static Turing pat-
terns (large D,) at one extreme, to global whole-of-cortex
Hopf oscillations (small ;) at the other, and encompass a
rich diversity of complex spatiotemporal dynamics in be-
tween. The intermediate settings for which neither instabil-
ity dominates are particularly interesting, because minor
alterations in the Turing-Hopf balance can produce very
dramatic changes in the emergent cortical dynamics.

This dynamic complexity presents a challenge: How can
we encapsulate the state of a noise-stimulated cortex whose
oscillatory patterns of activity are fluctuating in time and
space? We choose to compute the average phase coherence,
R, as a measure of the degree to which oscillations at
separated points on the cortical grid have a consistent phase
relationship. Following Mormann et al. [46], we define the
time-averaged phase coherence between reference point 7,
and some other point 7; on the cortical grid as

R(7o, 71) = Wexpil (1, 7o) — (. F)DI,

where the instantaneous phase angles ¢ (z, 7)), ¢ (7, 7) are
computed from the Hilbert transforms of the excitatory
firing rates Q,(t, 7o), O,(t, ;) recorded at locations 7y, ¥,
at time ¢ (see [12] for further details and for sample
MATLAB code). The time average {...) is taken across a
2-s interval captured when the cortex has settled into a fully
developed (and usually nonequilibrium) dynamical state,
well after initial startup transients have decayed away.
These startup transients typically die out within about
0.5 s for top-branch awake simulations [see strip charts of
Fig. 5(b)] but can persist for up to 5 s for the bottom-branch
coma state [Fig. 8(b)].

If neural activity at 7, and 7, is tightly phase coupled,
then mapping their sampled phase differences to the com-
plex unit circle via Eq. (7) will give a tightly clustered
angular distribution of phasors leading to an enhanced
mean coherence (R = 1). However, if Q,(7,) and Q,(F;)
have phase angles that are unrelated, their phase differ-
ences will tend to be randomly distributed around the unit
circle, giving a degraded coherence statistic (R = 0).

Our numerical simulations have a grid resolution of
120 X 120 elements, so, in principle, there are

1202\ _ . g
(2 )~10

pixel pairs for which phase coherence could be computed.
However, to keep the calculation manageable, we choose
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FIG. 5. Effect of inhibitory diffusion on wake state. Grid simulations, initialized at the high-firing wake state of Fig. 3, show
dynamical effect of stepped reductions in diffusion strength from D, = 0.7 cm? (top row) to D, = 0 (bottom). (a) Time-series extracts
showing excitatory firing rates Q,(¢) for the final 4 s of a 20-s run at x = 30 ( black lines), x = 85 ( gray lines) on the midline (y = 60)
of the 120 X 120 cortical grid. (b) O, (¢, x) space-time strip charts showing x-axis activity along the y = 60 midline strip for a full 20-s
simulation. (¢) Q,(y, x) bird’s-eye view of cortical activity at = 20 s; the color bar indicates the firing rate in spikes/s. Simulation
settings: toroidal boundary conditions; integration time step Az = 0.4 ms. Stimulus: spatiotemporal white noise with scale factor
a = 4; direct two-way connection joins x; = 20 to x, = 60 on the y = 60 midline.

instead to focus on the 120 elements making up the middle
vertical column at y = 60 (see Fig. 1), giving

120\
( 5 )—7140

distinct pairs of coherence values that we visualize as
R(x', x) coherence maps (see Figs. 6 and 9). For a given
simulation run, we assume that the spatial average across
the coherence map provides a scalar estimate of the
“global” phase coherence for the entire cortex; these
global coherence values are particularly useful for tracking
changes in Turing-Hopf interaction dynamics arising from
variations in D, inhibitory diffusion (Figs. 7 and 12).

II1. RESULTS

In Fig. 3, we identify two contrasting states for the
homogeneous model cortex: an awake state on the upper
branch of the equilibrium manifold and an anesthetically

suppressed coma state on the lower branch at A; = 1.018.
For both cortical states, we now investigate the effect of
variation in the strength of inhibitory diffusion D,, and also
the impact of direct axonal connections linking two sepa-
rated points on the cortical grid.

A. Effect of inhibitory diffusion on resting wakefulness

We define resting wakefulness as a background idling
state of the brain that spontaneously emerges in the ab-
sence of structured external inputs. We have suggested
previously that the slow beating dynamics (= 0.1 Hz)
observed in BOLD functional MRI recordings during de-
fault network activation [5] arises from a competitive
interaction between Turing (spatial) and Hopf (temporal)
instabilities: The inhibitory diffusion strength D, (via in-
terneuronal gap junctions) mediates pattern formation, and
the inhibitory rate constant y; (governing inhibitory PSP
charge transfer via chemical synapses) mediates network
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FIG. 6. Fourier spectra and phase coherence maps for the wake
strip charts of Fig. 5. (a) Q,(f, k) shows the 2D discrete Fourier
transform of Q,(z, x) images of Fig. 5(b); f is the temporal
frequency (Hz), and k is the spatial frequency in cycles/L,,
where L, = 25 cm is the x-axis side length of the cortical grid.
Inset line graphs in black compare the average temporal spec-
trum Q,(f) (horizontal format: summed over wave number k)
against the average 1D spatial spectrum Q,(k) (vertical format:
summed over frequency f). (b) Phase coherence maps R(x, x')
showing the degree of firing-rate coherence for all time-series
pairs Q.(1, x), Q,(t, x) along the y = 60 midline of a 120 X 120
cortical grid; coherence maps are computed from Hilbert
transforms of the final 2 s (from r=18 to 20 s) of
Fig. 5(b). The color bar shows the mapping between color and
phase coherence.

oscillation [29]. Their coaction can generate small-
amplitude oscillations that are phase synchronized across
separated cortical regions, with the degree of phase syn-
chrony being strongly dependent on D,. We selected 7;
and D, as parameters of interest because variations in their
values provide the simplest, physiologically justified way
of generating the two types of instability; while these
parameters have a controlling influence on model dynam-
ics, they have no effect on the shape or distribution of the
manifold of equilibrium states shown in Fig. 2.

Figure 5 illustrates the dynamical effect of stepped
reductions in gap-junction diffusion for a cortex initialized

at the upper-branch wake state indicated in Figs. 2 and 3.
The six rows correspond to six numerical experiments for
different values of diffusion, and, for each experiment, the
three columns show (a) a 4-s time-series extract of excita-
tory firing rates Q,(¢) for two representative points along
the y = 60 vertical midline of the 120 X 120 cortical grid;
(b) a 20-s space-time image Q,(t, x) that captures the
complete time evolution of cortical activity along the y =
60 midline strip; and (c) a bird’s-eye snapshot Q,(y, x) of
the state of the cortex at the conclusion of the 20-s
simulation.

Scanning Fig. 5 from top to bottom, we observe that the
cortical dynamics for the A; = 1.0 wake state is remark-
ably sensitive to changes in D, diffusion strength. From the
linear stability predictions of Fig. 4, it is evident that this
sensitivity arises from diffusion-dependent alterations in
the balance between competing spatial (Turing) and tem-
poral (Hopf) instabilities: for strong diffusion (e.g., D, =
0.7 cm?), the Turing instability dominates, so spatial pat-
terning takes precedence over temporal oscillations, while
for weak diffusion (e.g., D, =< 0.3 cm?), the Hopf insta-
bility drives large-scale oscillations and traveling waves
that erase any static Turing patterns. For intermediate
diffusion strengths (0.4 < D,/cm? < 0.6), neither insta-
bility dominates, and the result is a turbulent mix of
oscillating and translating neural structures whose bounda-
ries and shapes evolve continuously in space and time.

Although the space-time images of Fig. 5 capture as-
pects of the spatiotemporal dynamics, the onset and time
evolution of the neural activity structures is better visual-
ized in a movie sequence. See Video 1 for a set of movies
for three representative settings of inhibitory gap-junction
diffusion.

We identify the top row of Fig. 5 (D, = 0.7 cm?) as the
resting state of the awake brain. The cortex settles into an
irregular mazelike labyrinthine Turing structure of ele-
vated and suppressed activity, on which rides an approxi-
mately 4-Hz temporal oscillation that is not only phase
correlated across separated Turing limbs, but also slowly
modulated on time scales of 5-10 s. The spatiotemporal
spectrum and phase coherence map for the noncognitive-
wake strip chart is shown in the top row of Fig. 6. The
spatial spectrum in Fig. 6(a) shows peaks at wave number
k = 10/L, waves/cm, consistent with the approximately
2.5-cm spacing between Turing limbs evident in the top
row of Fig. 5(c); the coherence map of Fig. 6(b) confirms
the claim that separated patches of cortex are oscillating in
a phase-coherent manner.

Successive reductions in inhibitory diffusion strength
tend to destabilize the Turing structures: Small-scale os-
cillations about the “up” (activated) and “down” (inacti-
vated) Turing states [top row of Fig. 5(a)] are replaced by
lower-frequency large-scale oscillations between up and
down states (third and subsequent rows), with oscillations
becoming progressively more synchronized in time and
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Three movies showing the effect of inhibitory diffusion D, on cortical dynamics. (a) D, = 0.68 cm?; (b) D, = 0.40 cm?;

(c) D, = 0.30 cm?®. Each simulation is started at the A; = 1.0 high-firing awake state of Fig. 3, and runs for 10 s of simulated time.

(See Ref. [42] for further details.)
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FIG. 7. Phase coherence trends for a two-point-connected cor-
tex. Spatially averaged phase coherence measurements for
(a) high-firing wake (A; = 1.00) and (b) low-firing coma (A; =
1.018) states of the noise-driven cortex for default two-point
connectivity strength (u = 200) are shown. Gray circles repre-
sent the outcomes of 20-s noise-stimulated numerical experi-
ments at a given value of inhibitory diffusion in the range 0.0 to
1.0 cm? in steps of 0.01 cm; simulations were repeated 20 times
at each D, value for a total of 2020 data points per panel. For
each experiment, we computed the R(x’, x) coherence matrix for
the final 2 s of the space-time record [e.g., see Figs. 5(b) and 6(b)],
then extracted its upper-triangular matrix mean as an estimate of
global phase coherence. Bold-black curves show the data median
to guide the eye. Solid- (striped-) red bars indicate regions of a
strongly (weakly) positive Lyapunov exponent as extracted from
paired noise-free simulation runs.

space, eventually leading to an extreme oscillatory state
that we label as seizure (bottom two rows of Figs. 5 and 6).
The passage from coherent wake (D, = 0.7 cm?) to co-
herent seizure (D, < 0.3 cm?) is marked by the emergence
of intermediate states whose patterns of neural activity are
incoherent and turbulent. Following the method described
by Destexhe [47], we ran a series of paired noise-free
simulations (see Fig. S1 of Ref. [42] for sample divergence
trends) and demonstrated early exponential divergence of
adjacent state-space trajectories; thus, these low-coherence
intermediate states (for 0.4 < D,/cm? < 0.6) have a
positive dominant Lyapunov exponent and chaotic
dynamics.

The simulation results presented in Figs. 5 and 6 are six
representative samples drawn from over 2000 numerical
experiments that surveyed the full range of cortical dy-
namics from pure Hopf oscillation (no diffusion: D, = 0)
to frozen Turing patterns (strong diffusion: D, = 1.0 cm?).
For each experiment, we extracted a scalar measure of the
global (i.e., spatially averaged) phase coherence across the
cortical grid by computing the mean value of its R(x’, x)
[Fig. 6(b)] phase coherence map; the survey results are
presented in Fig. 7(a). Although some regions of the graph
show considerable scatter, the underlying trend is clear:
high global coherence in the wake state (D,/cm? = 0.7);
diminished coherence in the intermediate mixed states
(0.4 = D,/cm? =< 0.6); and back to even higher coherence
values in the seizure state (D,/cm? < 0.3). [The “frozen
Turing” states (D,/cm? = 0.8) have the lowest global
coherence values; however, with permanently elevated
and suppressed limbs of unmodulated cortical activity,
these states are likely to be pathological, but may have
significance in cortical morphogenesis; this idea is briefly
developed in Sec. IV.]

Within the seizure regime [top-left corner of Fig. 7(a):
D,/cm? < 0.2], we see a splitting in coherence values,
suggesting that, when diffusion is weak, the seizing cortex
has access to multiple and distinct stable dynamic states,
leading to the possibility of hysteresis effects. An exami-
nation of the detailed bifurcation structure and neurophy-
siological implications will be reported in future work.
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These model results allow two predictions. First, if the
cortex is in the idling noncognitive-wake state, complete
closure of inhibitory gap junctions should tend to promote
seizure. Second, the passage from wake to seizure should
be observable as an initial decrease, followed by increase,
in phase coherence between separated cortical electrodes.

B. Effect of inhibitory diffusion on anesthetic coma

We now shift attention from the awake state to the coma
state and ask the following question: What is the effect of
variations in gap-junction diffusion for an anesthetized cor-
tex? For our comatose state, we select a point on the lower
branch of the homogeneous equilibrium manifold, just
beyond the region of multiple roots mapped out in
Figs. 2 and 3, at coordinate (A;, AVE)=(1.018,1.5mV).
Figures 8 and 9—respectively analogous to Figs. 5 and 6 for
the wake state—illustrate the dynamical impact of stepped
changes in gap-junction diffusion for an initially low-firing
comatose cortex that includes the same two-point connec-
tivity (4 = 200) and is perturbed continuously by the same

Qe(t)

18 20 0 5
Time (s)

0=
16

Qe(t, )

Time (s)

intensity of spatiotemporal white noise as that used for the
wake experiments described above.

If the diffusion is weak (D, < 0.1 cm?: bottom rows of
Figs. 8 and 9), an initially silent, suppressed cortex remains
electrically silent, and thus generates a “flatline” EEG
trace. To ‘“‘rouse” the cortex, it is sufficient to increase
the diffusive-coupling strength. For example, when D, is
raised to 0.3 cm? (fifth rows of Figs. 8 and 9), the two-point
axonal connections at x;, = 20, 60 become spontaneous
sources of coherent, periodic outgoing wave fronts that
invade the entire cortex, producing synchronous patterns
that may correspond to the bursting phase of burst sup-
pression seen in very deep anesthesia.

Further increases in D, (to 0.4, 0.5, 0.6 cm”: rows 4, 3, 2
of Figs. 8 and 9) cause the seizurelike bursting patterns to
break up into highly irregular, relatively incoherent, turbu-
lent structures. This chaotic behavior arises from competi-
tive interference between Hopf (temporal ordering) and
Turing (spatial ordering) instabilities and may provide
a natural generator for the irregular slow-wave cortical

(C) e(yv I)
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FIG. 8. Effect of inhibitory diffusion on the anesthetic-coma state. Grid simulations are given, initialized at the low-firing coma state
of Fig. 3, showing the effect of stepped reductions in inhibitory diffusion strength from D, = 0.8 (top) to D, = 0.1 cm? (bottom).
(a) Time-series extracts showing excitatory firing rates Q,(¢) for the final 4 s of a 20-s run at x = 30 (black lines) and x = 105 (gray
lines) on the y = 60 midline of the 120 X 120 cortical grid. (b) Q,(f, x) space-time charts showing x-axis activity along the y = 60
midline for a full 20-s simulation. (¢) Q,(y, x) bird’s-eye image of cortical activity at r = 20 s; the color bar indicates the firing rate in
spikes/s. Points x; = 20 and x, = 60 on the y = 60 midline are directly connected; see Fig. 5 for the remaining simulation details.
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FIG. 9. Fourier spectra and phase coherence maps for the coma
strip charts of Fig. 8. (a) Q,(f, k) shows the 2D discrete Fourier
transform of Q,(z, x) images of Fig. 8(b); f is the temporal
frequency (Hz), and k is the spatial frequency (cycles/L,).
Inset line graphs in black compare the average temporal spec-
trum Q,(f) (horizontal format) against the average 1D spatial
spectrum Qe(k) (vertical format). (b) Phase coherence maps
R(x, x") showing the degree of firing-rate coherence for time-
series pairs Q, (1, x), Q,(t, x') (with {x, x'} € {1, 2, ... 120}) along
the y = 60 midline; coherence maps are computed from the final
2 s of Fig. 8(b) strip charts. The color bar shows the mapping
between color and phase coherence.

oscillations of inductive anesthesia (e.g., see Fig. SE of
[48]). Boosting D, to 0.8 cm? (top rows of Figs. 8 and 9)
tilts the balance in favor of spatially ordered structures
carrying small-amplitude oscillations that are strongly co-
herent across the cortex, and very similar to the
noncognitive-wake state in Fig. 5 (top row). We might
refer to this state as “‘delirium” since the cortex is still
under the influence of anesthetic. Nevertheless, the notion
that a sleeping cortex can be roused to a wakelike state by
administering an agent (e.g., modafinil) that opens gap
junctions does have clinical support [49].

The spectra and coherence maps of Fig. 9 provide addi-
tional insights into comatose dynamics. Although delirium
(top row: D, = 0.8 cm?) and bursting (fifth row: D, =
0.3 cm?) both have elevated average phase coherence, their

wave-number-frequency spectra and coherence maps are
strikingly different. The delirium state is dominated by an
oscillatory but nonpropagating Turing pattern, so the
wave-number-vs-frequency dispersion trends are vertical,
implying a zero group velocity. In contrast, the spatially
periodic quilting in the bursting coherence map arises from
periodic traveling waves whose group velocity can be de-
duced from the inverse slope of the k-vs-f spectral trend,
giving a value of around 7.0 cm/s, consistent with the slope
of the x-vs-t zigzagged wave-front chevrons in Fig. 8(b)
(note that the group velocity is much slower than the axonal
conduction speed of 140 cm/s: see Table I).

For the anesthetized cortex, we surveyed the full range of
diffusion-controlled dynamics from zero diffusion (all gap
junctions closed: D, = 0) to strong inhibitory coupling (gap
junctions open: D, ~ 1.0 cm?). For each 20-s experiment,
we computed the spatially averaged global coherence for
the final 2 s of recording; the results appear in Fig. 7(b).
Although the wake [Fig. 7(a)] and coma [Fig. 7(b)] global
coherence graphs are broadly similar, the effect of anesthetic
is to completely eliminate seizures at the lowest diffusion
values (“suppression”: 0 < D,/cm? < 0.16) and to shift
the activated ‘“‘noncognitive-wake” coherence peak of
Fig. 7(a) to the right. This latter change is consistent with
a comatose cortex requiring stronger Turing instability to
support an activated state.

Lying between the Hopf-dominated coherence peak [on
the left of Fig. 7(b)] and the Turing-dominated peak (on the
right) is a broad intermediate zone (0.4 < D,/cm? < 0.7)
of reduced coherence whose oscillations are chaotic: large
amplitude, low frequency, but very irregular—in marked
contrast to the regular periodic traveling waves for anes-
thetic bursting. This contrast, visualized earlier in the
space-time strip charts of Fig. 8(b) (rows 4 and 5), is
reinforced in the full 20-s time series shown in Fig. 10
and quantified in the spatially averaged power spectra of
Fig. 11.

We identify the mixed-mode chaotic dynamics as
“anesthetic slow-wave” because its time series and spec-
trum are very similar to the distorted slow-wave sleep
patterns seen in general anesthesia (e.g., compare the delta
waves of natural and anesthetic slow-wave sleep illustrated
in Fig. 1A, B of [50] and in Fig. 2A, B of [51]). The model-
generated anesthetic slow-wave spectrum of Fig. 11 shows
a very broad energy distribution over the low-frequency
domain 0.05 = f =< 2.0 Hz, whereas for the seizure state,
spectral energy is bunched to show strong resonant peaks at
around 1.75 Hz and its harmonics. Both spectra exhibit a
steep power-law decay at higher frequencies.

C. Effect of two-point connectivity on wake
and coma dynamics

We investigate the impact of varying both orientation
(horizontal, vertical, diagonal) and separation A7=|7; —7,|
of the two directly connected grid points, but generally
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(a) Anesthetic slow-wave (b) Anesthetic bursting

FIG. 10. Firing-rate time series for (a) chaotic anesthetic slow-
wave oscillations (D, = 0.4 cm?) and (b) bursting (D, =
0.3 cm?) for 10 equally spaced points lying on the y = 60
midline of the cortical grid. These graphs correspond, respec-
tively, to horizontal samples x = 1 + 12i (i =0, ...,9) within
rows 4 and 5 of the strip-chart images of Fig. 8(b).

found no significant differences in the fully developed
cortical dynamics across the range of gap-junction diffu-
sion settings (variations in D,) in either cortical state (wake
vs coma). Although the connected grid points act as a pair
of excitatory seed locations that hasten symmetry breaking
of the initial homogeneous equilibrium state, the resulting
outward-propagating target patterns are transients that dis-
sipate rapidly.
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FIG. 11. Spatially averaged |Q,(f)|* power spectra for anes-

thetic slow-wave (thick-black curve: D, = 0.4 cm?) and bursting
(gray curve: D, = 0.3 cm?) time series illustrated in Figs. 10(a)
and 10(b), respectively. Power is expressed in dB relative to the
value at 100 Hz. Bursting, but not slow-wave, shows pronounced
resonances at f; = 1.75 Hz and its harmonics nf;, n = 2...12.
The red line shows the best-fit trend for the power law P ~ f 44,
Frequency resolution for both spectra is 0.05 Hz.

But this is not the case for seizure and anesthetic burst-
ing: For both wake and coma experiments (row 5 of Figs. 5
and 8: D, = 0.3 cm?), the heterogeneous source points act
as foci to “pin”’ outgoing seizure wave fronts. In a clinical
context, having identified a focus of epileptic seizure
events in cortical tissue, a clinician might plan to surgically
excise or lesion the focus in order to suppress the seizures.
We can perform a virtual excision of the seizure foci by
setting u = O to eliminate the heterogeneity, then rerun-
ning our simulations. The outcome can be deduced by
comparing the orange (. = 200) and black (i = 0) global
coherence curves of Fig. 12: For both wake (upper panel)
and coma (lower panel), removal of the heterogeneity
eliminates the seizure-bursting state at D, = 0.3 cm?.

The surprising feature of Fig. 12 is that, apart from the
Hopf-dominated seizure end of the curve, the presence of
two-point heterogeneity makes little or no difference to the
global coherence statistics. It appears that, provided there
is sufficient inhibitory diffusion (D, = 0.4 cm?), the
Turing instability is able to activate normal cortical dy-
namics, and, at the global scale, the small local excitation
from two-point connections (evident as parallel contrails of
activity at x; , = 20, 60 in Figs. 5 and 8) is neither needed
nor noticed. Thus, adding a point source of activation to an

] (a) "Wake" global coherence for [ = 0
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FIG. 12. Phase coherence trends for (a) wake (A; = 1.00) and
(b) coma (A; = 1.018) for a homogeneous cortex devoid of
two-point connections (i.e., w = 0). Bold-black curves show
the median trend through data points (gray circles) obtained
from 2020 homogeneous cortex experiments; these u = 0 bold-
black trends are superimposed on the p = 200 thin-orange
median fits from Figs. 7(a) and 7(b) to illustrate the impact of
suppressing the two-point axonal connection.
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already-activated cortex has little effect on cortical dynam-
ics, though the presence of a point source can seed the
onset and precipitation of that dynamics from an initially
homogeneous equilibrium state.

IV. DISCUSSION

In this paper, we have investigated the symmetry-
breaking impact of bringing direct long-range connectivity
into our previously isotropic mean-field cortical model.
We have deliberately selected the simplest case of a single
pair of two-way axonal connections so that we can identify
the essential changes to cortical dynamics wrought by
imposition of spatial heterogeneity; generalization to
anatomically realistic maps of regional interconnectivity
(e.g., using the CoCoMac primate connectivity database
[52]) will form the basis of future work. We selected two
reference states for detailed dynamical analysis: a
noncognitive-wake activated state lying on the high-firing
upper branch of the Fig. 2 equilibrium manifold, and an
anesthetic-coma state on the quiescent lower branch. Both
states lie in the vicinity of a c2TH point that allows
dynamic interaction between spatial (Turing) and temporal
(Hopf) instabilities. We were able to alter the relative
balance between these competing instabilities by tuning
D,, the diffusive-coupling strength for the gap-junction
connections between adjoining inhibitory neurons:
Strong diffusion encourages formation of spatial patterns
(Turing structures); weak diffusion favors whole-of-cortex
Hopf oscillations. Intermediate values of diffusion gener-
ate turbulent mixed states exhibiting low-frequency spa-
tiotemporal chaos.

It should be noted that for each of our numerical simu-
lations, we have treated the inhibitory diffusion strength
D, as a fixed control parameter. In reality, gap-junction
conductivity is not fixed, but is dynamically modulated by
a plethora of physiological and pathological stimuli. For
example, states of conscious attention are associated with
increased brain concentrations of neuromodulator amines
which tend to open gap junctions; conversely, states of
somnolence are associated with increased concentration
of the inhibitory neurotransmitter GABA which is known
to close gap junctions [53,54]. We have not attempted to
model these dynamic feedback effects here.

A. Impact of two-point connections on
cortical dynamics

Provided the level of Turing activation is moderately
high (e.g., D, = 0.4 cm?), we find that the inclusion of
two-point connectivity makes little difference to either
noncognitive-wake or ‘“‘anesthetic-coma” dynamics. This
apparent insensitivity to the presence of two-point connec-
tions arises because the cortex is already active, so the
incremental contribution to cortical excitation from these
point sources is swamped by ambient network activity.

However, this is not the case at lower levels of cortical
activation (e.g., D, < 0.3 cm?). Without the point-source
connections, an anesthetized cortex would remain in a
low-firing suppressed state [see Fig. 12(b)], but with direct
connections enabled, the incremental excitation is suffi-
cient to flip the cortical state from suppression to seizure-
like bursting. And for the noncognitive-wake case,
enabling direct connections can switch the dynamics
from a disordered, chaotic state to an ordered, coherent
seizure state [Fig. 12(a)].

Our cortical model pictures the cortex as a continuum of
cortical tissue containing a single two-point axonal con-
nection. In contrast, other workers have built network
models of the cortex consisting of neural hubs that are
linked via an anatomically informed point-to-point con-
nectivity matrix [33,34,55,56] derived from diffusion-
tensor imaging of the human brain or fiber tracing of the
primate cerebral cortex. Despite this obvious difference in
modeling philosophies—a single fiber embedded in a
cortical continuum in the present work versus networks
of neural hubs in those other works—we see some unex-
pected and interesting similarities in model behaviors
when we compare the dynamics of our lower (quiescent)
branch with anatomically motivated network models for
the brain rest state. Specifically, our finding that the low-
activity quiescent state of the brain is most sensitive to
large-scale connectivity aligns nicely with the notion of
criticality proposed by Ghosh et al. [33], later refined by
Deco and colleagues [55,57]: namely, that, during rest, the
brain operates at the edge of instability in order to max-
imize noise-evoked explorations of its state space. Deco
and Jirsa [55] reported that their network model gave the
best agreement with observed fMRI functional connectiv-
ity when the model was close to the transition region
separating low- and high-firing states, and that the resulting
dynamics was influenced by the presence of latent ““ghost”
attractors. In our work, spatiotemporal patterns are most
likely to evolve from the lower equilibrium branch when
the model is close to criticality, and these can arise even
when there is no stable upper branch (e.g., at the coma state
of Fig. 3), implying ghost attraction to the latent upper
state. If two-point connections are enabled, a larger region
of the resting branch is able to support pattern formation
[compare black and orange curves of Fig. 12(b)], consis-
tent with the idea that large-scale connections can provide
anatomical guidance for rest-state dynamics. In future
work, the single long-range connection will need to be
replaced by an anatomically informed hierarchical connec-
tivity map. Kaiser et al. [58] have examined the spreading
of activation in neural networks and shown that hierarch-
ical cluster networks—such as those found in the mamma-
lian cortex—are more resistant to runaway network
activation (“‘epileptic seizure’’) than are random networks
or small-world networks that lack hierarchical modules.
This suggests that imposition of a modular topology onto
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our cortical model might tend to limit the spreading of
spatiotemporal patterns to local modules unless there is
strong coupling between neural modules.

B. Effect of inhibitory diffusion on
noncognitive-wake dynamics

Our noncognitive-wake state at D, =~ 0.7 cm? is char-
acterized by small-scale coherent oscillations that modu-
late a labyrinthine Turing pattern of elevated (up-state) and
suppressed (down-state) activity (top row of Fig. 5).
Boosting the diffusion strength to D, = 0.8 cm? strength-
ens the spatial patterning while simultaneously extinguish-
ing the Hopf oscillations and their phase coherence
[Fig. 7(a)], resulting in a low-coherence ‘“‘frozen Turing”
structure. Under normal circumstances, this frozen state is
probably pathological, but may possibly be relevant to
early brain development when the immature brain is richly
endowed with gap junctions [38] and the conditions for
formation of permanent Turing patterns are most favor-
able. Cartwright [59] has proposed that the morphogenesis
of the mazelike features of the convoluted ridges (gyri)
and valleys (sulci) of the cortex is a Turing solution, but
his speculation assumes an axonal guidance competition
between (unknown) inhibitor and activator chemical spe-
cies rather than a gap-junction process in which inhibitory
diffusion D, dominates excitatory diffusion D;.

Lowering the diffusion strength to D, = 0.5 cm?
strengthens the Hopf instability while destabilizing
Turing structuring, resulting in the spontaneous emergence
of a turbulent dynamics that is chaotic in space and time
(third row of Fig. 5). Further reduction in D, eventually
leads to a highly coherent seizurelike state. Thus, the
model predicts that the path from coherent noncognitive-
wake to coherent seizure should cross an intermediate
chaotic regime of low coherence. This prediction is in
agreement with the clinical report of Mormann et al. [60]
who observed decreased synchronization in EEG record-
ings during the period leading up to seizure.

C. How do anesthetic agents affect cortical coherence?

As well as boosting the strength of the IPSP [43,44], most
general anesthetics also inhibit gap-junction communication
[61]. Consequently, the transition from awake to anesthetic
coma on Fig. 3 should correspond to a movement from the
noncognitive-wake high-coherence peak of Fig. 12(a) to a
region of lower diffusion (and diminished coherence) labeled
“anesthetic slow-wave” on the Fig. 12(b) graph. Slow-wave
spatiotemporal dynamics, pictured in Fig. 8 (rows 2-5) and
Fig. 10(a), is characterized by low-frequency, chaotic tran-
sitions between low-firing down-states and activated up-
states. The notion of chaotic-state transitions is consistent
with clinical observation of changes in phase coupling be-
tween pairs of EEG channels during propofol-induced anes-
thesia: For most channel pairs, Koskinen ez al. [36] observed
a systematic loss in phase synchrony in the subdelta band

(0.05-1.0 Hz) during induction, followed by an increase
during recovery of consciousness.

We need to acknowledge an important limitation to our
coherence predictions. Because our model is devoid of
subcortical structures such as the thalamus, it cannot in-
form on the anesthetic effect on thalamocortically gener-
ated rhythms such as alpha-band (8—12 Hz) and spindle
(12-14 Hz) oscillations. Recent papers (e.g., [62-64])
show that transition into unconsciousness induced by pro-
pofol is accompanied by a decrease in alpha-band coher-
ence in posterior regions, concomitant with an increase in
coherence in frontal areas. This boost in alpha-band coher-
ence is almost certainly the result of anesthetic-induced
thalamic hyperpolarization; inclusion of thalamocortical
feedback will be the subject of future work.

D. Chaotic slow oscillations in nonREM sleep?

The slow oscillation is the defining feature of scalp-
measured EEG under general anaesthesia and also during
the slow-wave stage of natural sleep. Preliminary model
investigations (not shown here) suggest that a spatiotem-
porally chaotic slow-wave state can emerge in the
nonREM sleep state, provided that gap-junction diffusivity
is reduced sufficiently. This is plausible, since the GABA
neurotransmitter is abundant in nonREM sleep [65] and is
thought to close gap junctions [53]. Furthermore, the
so-called “wake-up” pills (e.g., modafinil) are known to
open gap junctions [49]. Our suggestion that nonREM
sleep might be chaotic is concordant with clinical obser-
vations that the cortex is less functionally connected during
slow-wave sleep [66], and is consistent with a recent study
reporting that anesthesia-induced slow oscillations occur
asynchronously across the cortex, fragmenting global net-
work activity while maintaining local (<4 mm) connec-
tivity patterns [67]. In our model, turbulent wave fronts
generated by chaotic interactions between Turing and Hopf
instabilities support localized patterns of correlated activ-
ity that is disrupted at larger length scales [Fig. 10(a)].

E. Implications of chaotic oscillations for memory
processing during slow-wave sleep

Tononi and Cirelli [68] argue that slow-wave sleep is
essential to restore synaptic weights—that were elevated
during prior wakeful learning—to an energetically sustain-
able baseline level; this is the synaptic homeostasis hy-
pothesis. Recent studies by Liu et al. [69] provide direct
experimental evidence for both wake-related increases and
sleep-related decreases, in cortical synaptic strength. We
speculate that the turbulent dynamics of slow-wave spatio-
temporal chaos might provide a natural substrate for
synaptic down-scaling during sleep. Suppose that, at a
particular instant, the sleeping cortex is in a well-mixed
turbulent state such as that illustrated in row 4 of Fig. 8(c).
About one-third of the cortex is in the excited (red) up-
state, and these activated limbs are surrounded by larger
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regions of the low-firing (blue) down-state neural popula-
tions. These inactive neighbors comprise the bulk of the
instantaneous presynaptic input to the up-state populations,
and similarly, the majority of the up-state connections will
be presynaptic to the down-state populations. Therefore,
most synaptic activity is between populations in opposed
states. Assuming a population-scale version of Hebbian
“unlearning” applies here (“‘neurons out of sync fail to
link”), then we might expect the unlearning to take the
form of a gradual reduction in the synaptic weights at the
interface between the opposed populations. At each suc-
cessive instant, the turbulent mixing creates new up-down
partitions of the cortex; thus, the unlearning rule is able to
propagate throughout in a random and unbiased fashion,
carried on the chaotic wave fronts. In addition, the lack of
fixed timing relationships in a turbulent network could
prevent the induction of spike-timing—dependent plasticity.

F. Mechanisms for the slow oscillation

What is the underlying mechanism for the slow cortical
delta-wave oscillations that characterize deep sleep and
general anesthesia? Physiological measurements show
slow cyclic changes in ionic concentrations of extracellular
Ca?" and K" that are correlated with the transitions be-
tween the up and down phases of the slow oscillation
[70-72], but it is presently unknown whether these ionic
changes cause the oscillation—via a slow homeostasis that
increases excitation in the down-state and suppresses ex-
citation in the up-state—or are caused by the oscillation.
Typically, cortical modelers have attempted to capture the
slow ionic dynamics by incorporating an additional equa-
tion (with a suitably large time constant) to modulate, for
example, the sigmoidal firing-rate function [73] or the
excitatory synaptic strength [74].

Our approach is quite different. In our model, the slow
oscillation is generated spontaneously by the same Hopf
temporal instability that—in its uncontrolled pathological
phase—has been linked to whole-of-cortex seizure
[24-26,75-77]. But, as shown here, provided there is suf-
ficiently strong inhibitory gap-junction interneuronal cou-
pling, a Turing spatial instability can emerge to interact
with—and moderate—the Hopf oscillations, breaking the
global coherence patterns of seizure by creating turbulent
structures and chaotic slow oscillations. The notion that
seizure and the slow oscillation are intimately linked is
consistent with the experimental observations by Steriade
et al. that spontaneous seizures at 2-4 Hz can develop
without discontinuity from the slow (0.5-0.9 Hz) sleeplike
oscillations of general anesthesia [78].

We have shown that—depending on neuromodulatory
conditions—the mean-field cortex provides a substrate that
supports either spatial patterns or global oscillations; we
postulate that normal brain function relies on a dynamic
balance between these two competing instabilities. As seen
in Figs. 7 and 12, inhibitory diffusion strength D, provides

a sensitive control parameter that alters cortical dynamics
from Hopf-dominated seizure for weak diffusion to
Turing-dominated ultraslow beating patterns for strong
diffusion settings. We find that incorporating a nonlocal
direct connection between two points in the cortical grid
makes no appreciable difference to dynamics or coherence
patterns when diffusion is strong and the cortex is well
activated, but does serve as an additional source of excita-
tion in the low-diffusion state, tending to increase propen-
sity to seizure. We do acknowledge, however, that this
idealized nonlocal connection cannot represent real ana-
tomical structure, a shortcoming that will be addressed in
future work.
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