Predicting Regression Test Failures using
Genetic Algorithm-Selected Dynamic
Performance Analysis Metrics

M. Mayo and S. Spacey

Waikato University, Hamilton, New Zealand
mmayo@waikato.ac.nz
sspacey@waikato.ac.nz
WWW home page: http://cs.waikato.ac.nz/

Abstract. A novel framework for predicting regression test failures is
proposed. The basic principle embodied in the framework is to use per-
formance analysis tools to capture the runtime behaviour of a program as
it executes each test in a regression suite. The performance information is
then used to build a dynamically predictive model of test outcomes. Our
framework is evaluated using a genetic algorithm for dynamic metric se-
lection in combination with state-of-the-art machine learning classifiers.
We show that if a program is modified and some tests subsequently fail,
then it is possible to predict with considerable accuracy which of the
remaining tests will also fail which can be used to help prioritise tests in
time constrained testing environments.

Keywords: regression testing, test failure prediction, program analysis, ma-
chine learning, genetic metric selection

1 Introduction

Regression testing is a software engineering activity in which a suite of tests
covering the expected behaviour of a software system are executed to verify a
system’s integrity after modification. As new features are added to a system,
regression tests are re-run and outputs compared against expected results to
ensure new feature code and system changes have not introduced bugs into old
feature sets.

Ideally, we would like to run all regression tests as part of the normal devel-
opment process when each new feature is committed. However, regression testing
the large number of tests required to cover (an ever expanding) previous feature
set can take considerable time. For example, the regression test suite [14, 15]
used in Section 4 of this work takes approximately 12 hours to execute fully in
our environment which makes on-line regression testing difficult.

Recently authors concerned with regression testing have began looking to
performance analysis and machine learning to aid software engineering [1] and
in this paper we propose a method that joins performance analysis [2], machine

learning [3] and genetic algorithms [4] to predict the outcome of unexecuted
regression tests in a large regression test suite. A contribution of our work is
the inclusion of a set of unique execution metrics measured from the dynamic
execution path of the program to compliment the pass/fail and coverage metrics
used in previous work [5]. Since the dynamic execution paths corresponding to
different test inputs on the same program, to greater or lesser degrees, overlap,
this information is useful for modelling the interrelationships between tests and
therefore for predicting test outcomes as we will soon show.

One problem with modelling interactions based on execution paths is that
even small programs can have a very high execution path trace length and there-
fore there can be an extremely large number of dynamic metrics describing even
a simple test’s execution [6]. We solve this problem by using dynamic analysis
tools to compress the program’s execution trace information into a set of key
metrics that we consider could be important determiners and then we use a ge-
netic algorithm to select the best subset of these metrics for a final predictive
model as detailed later in this paper.

Our results show that it is indeed possible to predict, with high accuracy,
which future regression tests will fail. Additionally we present results showing
which of our measurement metrics has the greatest impact on model prediction
accuracy. For software engineers, the results presented in this paper demonstrate
that the proposed approach could be useful for either ranking tests (e.g. in order
to execute those most likely to fail first) or for skipping tests (e.g. in order to
avoid executing both tests in a pair if the test outcomes have high correlation).
For dynamic instrumentation tool makers and quality assurance professionals
the results indicate the value of key performance analysis metrics and could help
focus future research in dynamic measurement tool development.

2 Dynamic Performance Analysis

Before we introduce our algorithm to predict regression test correlations, we first
present an overview of the Open Performance Analysis Toolkit (OpenPAT) [2]
which provides the dynamic execution path measurements we need. OpenPAT [2]
is an open source performance analysis toolkit that analyses program execution
paths.

OpenPAT is derived from 3S [7,8] and, like its predecessor, OpenPAT instru-
ments programs by inserting measurement stubs at critical points in a program’s
assembly code as illustrated in Figure 1(a). At runtime, the stubs back-up the
main program’s state and measure characteristics such as timing information
which they pass on to one or more analysis tools for consolidation and later
reporting as illustrated in Figure 1(b).

The approach of static assembly instrumentation and dynamic analysis can
be used with any program that compiles to assembly [7,8] and combines the low
execution overhead advantages of traditional one time instrumentation toolk-
its such as SUIF [9] with the dynamic performance measurement accuracy ad-
vantages of modern frameworks such as Gilk [10], Valgrind [11] and Pin [12].

Program Stub Tool

— =1 = =

£ (0]
Compile | » Instrument | »| Link > % £ 8
& &
¢ ¢ T Instrumented
Executable
Program Instrumented Runtime
Assembly [~ Assembly [~

(a) Source assembly is statically instrumented with stubs at critical points.

|Instrumented Executable

Performance
Analysis Tool
Report

Program
Runtime
- amm = -
Tool
A

)

(b) Stubs pass dynamic measurements (dotted line) on to
analysis tools at runtime.

Fig. 1. The Open Performance Analysis Toolkit (OpenPAT) approach of combining
static instrumentation with dynamic analysis.

OpenPAT extends the 3S meaning of a “program that compiles to assembly”
to include programs that compile to assembly bytecodes running on a virtual
machine [2] such as .NET and Java so that the same tools can be used to anal-
yse programs targeted for native and interpreted environments. In addition to
allowing the same tools to gather runtime measurements for a wide range of lan-
guages, OpenPAT adds several other features that can be of value for regression
testing including test case code coverage metrics, ranged instrumentation and
assembly block to source code correspondence information [2].

OpenPAT comes with a number of analysis tools that provide unique dynamic
and structural analysis metrics. We will concentrate on the metrics provided by
just one of these tools, the OpenPAT version 3.0.0 hotspot tool discussed further
in Section 3.2, which will be sufficient for demonstrating that we can provide
high regression test prediction accuracy with our approach of combining dynamic
performance metrics with machine learning and genetic algorithms which we
describe next.

3 Approach to Predicting Regression Test Failures

We now describe the framework we have constructed for building predictive
models of regression test outcomes based on dynamic execution measurements.
We begin with an overview of the framework followed by a subsection describing
the role of evolutionary search in our approach.

3.1 Framework Overview

Our framework for predicting test failures and ranking tests is explained with
reference to Figure 2. The hypothesis underlying our framework is that dynamic
execution metrics measured for a correct execution of a program contain char-
acteristics that describe how the program needs to operate internally in order
to produce valid outputs and that machine learning can use this information to
better discern the relationships between different tests than simply relying on
the test code coverage intersection metrics of previous work [5].

The basic framework process is to run a suite of initial regression tests on
a program at a time when the program is known to be correct and to save the
correct test results for future comparison as in an unguided traditional testing
approach. At the same time, we also record dynamic and structural metrics for
the program’s execution for every test case using OpenPAT. These additional
OpenPAT metrics are referred to as “per test metrics” in Figure 2.

After the program has been modified we re-run the same tests. If the modifi-
cation has introduced a bug in previous tested features one or more tests will fail.
As each test completes, our framework takes the set of tests that have already
been executed (where the executed tests are labelled with either “P” or “F” for
pass or fail respectively), combines them with the dynamic metrics measured for
the correct version of the program, and constructs a table of labelled examples
suitable for machine learning.

The table consists of one row for each test that has been executed with
columns corresponding to the metrics measured by OpenPAT for the original
“correct” version of the program and the known pass/fail results from the “in-
correct” version. The table is used to build a dynamically predictive model of
test failure as shown in Figure 2. This model in turn is used to label all of
the remaining outstanding tests with a failure probability based on the original
OpenPAT measurements that can be used to rank tests.

With the test failure rank predictions, a developer is equipped to decide
whether to:

Regression Test Suite

\ Pre-modification Time

Correct Version

of Program {Per Test Metrics
\ Post-modification Time

Faulty Version Per Test Labels
of Program from Partially Executed Tests

/

Labelled Dataset
from Partially Executed Tests

Genetic Algorithm-based
Metric Selection

Build Model from Labelled Examples
and Selected Metrics

Predictions of Failure
over Remaining Tests

Fig. 2. Flow of information in the test failure prediction system. The inputs are the
regression test suite and two versions of the program, one correct and one faulty.

Metric Class Description

source_file |[Structural Source file where a code section is located
source_line |[Structural Line in the source file being executed
instructions|Structural Number of assembly instructions in a code section
order Dynamic Order in which code sections were first executed
entries Dynamic Number of times a code section was executed
ticksmin Dynamic Minimum CPU cycles a code section took to execute
ticks_max Dynamic Maximum CPU cycles a code section took to execute
ticks_sum Dynamic Total CPU cycles to execute a code section

Table 1. Structural and dynamic metrics measured by our version of the OpenPAT
hotspot tool. We added the ticksmin and ticks max timing metrics to the basic
hotspot tool provided in the OpenPAT version 3.0.0 pre-release 1 distribution our
selves by simply inserting min and max counters in the _-OP_MEASUREMENT_T and per
entrance updates in the OpenPAT version 3.0.0 hotspot _OP_TOOL_ANALYSE function.

1. execute the remaining tests that are most likely to fail first in order to provide
additional information to support their debug process or

2. execute the remaining tests that are not likely to fail first to identify if
unrelated features are affected or

3. execute the remaining tests that the learning classifier is not sure about
(probability of failure around 50%) in order to strengthen the prediction
probabilities for the remaining tests, which requires retraining the model.

The exact decision will be developer, context and business process dependent,
but the decision is supported by our algorithm’s predictions which we need to
be of high quality to be of any practical value.

3.2 Program Test Metrics

The OpenPAT toolkit includes a wide range of metrics available at a fine-grained
level for each code section aka “assembly basic block”, in the program. Because
a typical program can have a large number of code sections [22], we can quickly
obtain an extremely high dimensionality (that being code sections times metrics
per section) in the dataset. Unfortunately, many machine learning algorithms
do not perform well when data dimensionality is high compared to the number
of labelled examples used for training [21]. Therefore it is desirable to reduce
the data dimensionality somehow and we discuss our use of a genetic algorithm
for metric selection later in this work. First however, we describe the specific
OpenPAT metrics that we used to measure each program’s execution per-test.

The OpenPAT 3.0.0 hotspot tool provides a number of useful program anal-
ysis metrics that we use for machine learning. These metrics fall broadly into
two categories: structural metrics and dynamic metrics. These are described in
Table 1.

The source_file and source_line structural measures of the hotspot tool
together with the dynamic entries measure give, in effect, test coverage infor-

mation. Specifically, each code section that is executed will have an entries
figure of at least one and as the static metrics map the number of entries back
to specific code lines we know that every code section that is executed by a test
will have entries > 1 and 0 otherwise.

The structural instructions metric can be considered a measure of source
line complexity. Code that is more complex such as long formulas will, in general,
expand to more assembly instructions than simpler code and so the number
of assembly instructions associated with a code section can be an important
indicator of potential logical issue points.

The dynamic order metric is a program execution path indicator. Program
code sections that execute earlier in a program’s execution path are assigned
an earlier execution order by OpenPAT. For example, if a program consists of
three code sections A, B and C, and A is executed first, then B executes in a
loop 100 times followed finally by C, the OpenPAT execution order for the three
blocks would be 1, 2 and 3 respectively (with B having an entries figure of
100 because of the loop). While it is true that a program’s execution path can
be test input data dependent, the internal path of tests is expected to provide
information about dependent chains of sub-feature tests through predictable
sub-path patterns. Thus (a possibly shifted) order metric chain can be useful
in identifying test dependencies in addition to the traditional measure of the
structural intersection of covered lines which is also identified by the hotspot
tool as explained above.

The dynamic ticks min, ticks max and ticks_sum metrics provide actual
CPU execution cycle measurements for the blocks of code executing in a pro-
gram. The ticks min and ticks_max can be used to ascertain information about
cache and data access patterns in a program’s execution. For example, if code
section B executes repeatedly in a loop on a single set of data obtained from
main memory, then the second time B executes it could take considerably less
time than the first if the data being operated on is still in the CPU’s cache.
As another example, if the same data is used by A and B and A executes be-
fore B then B’s ticks_max figure could be close to its ticks_min figure because
the overhead of initial cache loading was suffered by A. The ticks_sum met-
ric is the total time a code section takes to execute and can compliment the
instructions and entries figures in providing an execution time dimension to
the computational complexity for a line of source code.

While the eight metrics of Table 1 are expected to provide useful information
for test case outcome correlation prediction for the reasons outlined above, some
can be expected to be of more predictive importance than others. Thus we will
evaluate the importance of the different metrics as predictors of regression test
set outcomes in Section 4.5 using a genetic search to find the best subset of the
metrics to train a machine learning classifier with.

Program Name|Code Lines|Code Sections|#Faulty Versions|# Tests|#Failing Tests
print_tokens 472 315 7| 4,072 69
print_tokens2 399 286 10| 4,057 224
replace 512 442 31| 5,542 107
schedule 292 244 8| 2,638 96
schedule? 301 264 9| 2,638 33
tcas 141 150 41| 1,592 39
tot_info 440 259 23| 1,026 84

Table 2. Siemens HR Variant v 2.2 [14, 15] programs and their test suites. The Code
Lines column is the source lines excluding comments and blank lines in the program,
the Code Sections column refers to OpenPAT version 3.0.0 compiled program basic
blocks, #Faulty Versions is the number of faulty versions of the programs supplied,
#Tests is the number of feature tests in the benchmark suite and #Failing Tests is the
average number of failing feature tests for each of the faulty program versions.

4 Evaluation

In this section we describe the actual implementation of our framework concept
and provide comprehensive practical evaluation results.

4.1 Programs and Regression Test Suites

In order to evaluate our method, we need one or more programs, each with a
corresponding suite of regression tests. We require correct and faulty versions of
the programs so that pass and fail test results can be used to test the predictive
power of our approach. To this end, we used the public benchmark of faulty
programs originally developed by Siemens and discussed in [14,15].

Table 2 describes the program suite. There are in total seven different pro-
grams, all written in the C programming language, each program accompanied
by over a thousand feature tests. Each program also comes with a varying num-
ber of faulty, buggy variants.

The figures in Table 2 reflect some minor adjustments we made to the original
dataset. In particular, there are three faulty versions that fail no tests. This leaves
129 buggy variants of the seven programs in total. Many of the test suites also
have a small number of duplicate tests, and the number of tests in the table
reflects the test suite sizes after removal of these duplicates.

4.2 Metric Volume and Balance for the Benchmarks

We took measurements for the correct versions of each program as they exe-
cuted every test. These measurements were used to compute the metrics for our
datasets.

We then compiled each faulty program and re-ran the tests again, this time
to determine which tests would pass or fail as a consequence of the bugs injected

into the faulty versions. These pass/fail outcomes became the ground truth labels
for our datasets. Note that there are 129 datasets in total, one for each faulty
program version, with the number of instances in each dataset being equal to
the number of (non-duplicate) tests in the corresponding program’s test suite.

The dynamic performance execution measurements that we used were ac-
quired using OpenPAT’s hotspot tool. Specifically, we measured the eight met-
rics of Table 1 for each code section in the program as described in Section 3.2.
As the number of code sections in the benchmark set ranged from 150 for tcas
to 442 for replace, the total metric measurements for each program test case
ranged from 1,262 to 3,653. Such a large number of metrics can cause issues for
machine learning algorithms [21] as introduced in Section 3.2 and is the justi-
fication for our inclusion of Genetic Algorithms in this work which we discuss
further in Section 4.4.

In addition to the large number of metrics caused by the fine measurement
granularity available in OpenPAT, there was also quite a large degree of class
imbalance in the datasets as the number of failing tests for the faulty benchmarks
of Table 2 is only a small proportion of the total number of regression tests for
each program. This class imbalance has severe impact on how any predictive
modelling scheme can be evaluated as discussed in the next section.

4.3 Prediction Quality Assessment

In order to evaluate the effectiveness of our method, it was necessary to decide
on a scheme for measuring and comparing regression test outcome predictions
made by different implementations of our basic approach. The simplest measure,
prediction accuracy, is not ideal for the Siemens test suite [14,15] because there
are only a small percentage of failing tests for each program as shown in Table 2.
In fact the average number of failing tests is only 3% for the programs of Table 2,
so even a naive prediction scheme that simply classified all tests as passing would
already achieve an average accuracy of around 97% for the regression test suite.
An alternative, and the prediction quality metric we use in this paper, is
to report Area Under the Curve (AUC) [16], a different machine learning per-
formance metric that focusses on the trade-off between true positives and false
positives as the classification threshold changes. AUC reports a number between
0.5 (for a random classifier) and 1.0 (for a perfect classifier). The advantage of
this metric is that it is not sensitive to class imbalance, and therefore a classifier
predicting that all tests pass will achieve the worst possible AUC of 0.5.

4.4 Predictive Algorithm Selection

In total, we evaluated nine different combinations of test class (pass/fail) pre-
diction algorithms on our datasets, as detailed in Table 3. The prediction algo-
rithms consist of three machine learning approaches: Naive Bayes [18], a simple
bayesian classifier that assumes conditional independence of metrics; Sequen-
tial Minimal Optimization [19], a linear support vector machine classifier; and
Random Forests [20], a state-of-the-art method based on an ensemble of trees.

Class Prediction Algorithm Metric Selection Algorithm

NB: Naive Bayes ALL eight hotspot metrics or
SMO: Sequential Minimal Opt. X GA: metrics selected by a Genetic Algorithm or
RF: Random Forests CV: Coverage only metrics

Table 3. The nine algorithmic combinations used to predict regression test outcomes.
Each of the machine learning algorithms has three forms: one with all eight Open-
PAT dynamic metrics as input, a second with the metrics pre-selected by a Genetic
Algorithm and the third with coverage-only metrics.

We used the implementations of these algorithms from Weka 3.7.7 [3] with all
default settings, except for the Random Forests algorithm that had its number
of trees set to 100.

To allow us to evaluate the relative importance of different dynamic mea-
surement metrics on regression test prediction quality we used three versions of
each dataset for each of the three machine learning approaches: the first dataset
version comprised all of the OpenPAT metric measurement information; the sec-
ond version comprised a subset of the metric information; and the third supplied
only the coverage information from Table 1. To select the metric subset for the
second variant of the datasets we used a Simple Genetic Algorithm [4] with a fit-
ness function that rewards correlation of the metrics with the test outcomes (i.e.
pass or fail) while explicitly penalising redundancy between metrics as described
in Hall [13]. Our genetic algorithm (GA) was again a Weka 3.7.7 implementation
and was a simple binary GA with “1” on a chromosome to indicate the presence
of a particular OpenPAT metric or coverage feature and a “0” to indicate its ab-
sence. The GA was executed for 100 generations with all other default settings,
and it was applied only to the training split of the dataset as described below.

We trained and tested each combination of class prediction and metric selec-
tion algorithm with randomly selected subsets of the regression tests for each of
the faulty versions of the benchmark programs. In all cases, the selected training
tests comprised 25% of the total tests (simulating 25% of the regression suite be-
ing executed), and the remainder of the tests (i.e. 75%) were used for evaluating
the model’s predictive power.

We performed ten randomised training and predictive power assessment runs
for each of the nine algorithmic combinations of Table 3 and the 129 faulty
program versions of our test suite yielding a total of 129 x 10 x 9 = 11,610
individual experimental runs. Prediction quality figures were computed to assess
the quality of each experimental run as discussed next.

4.5 Results

The average Area Under the Curve (AUC) performance quality results of our
nine experimental runs across the 129 faulty program versions and nine algorithm
combinations are presented in Table 4 below. The best performing classifier

Naive Bayes Seq. Min. Opt. Random Forests
program ALL GA Cv ALL GA Cv ALL GA Cv
print_tokens 0.614 0.677 0.500{ 0.793 0.807 0.761] 0.866 0.872 0.810
print_tokens2 | 0.820 0.858 0.500| 0.934 0.937 0.931| 0.968 0.967 0.936

replace 0.726 0.812 0.500{ 0.917 0.914 0.884| 0.913 0.916 0.877
schedule 0.644 0.718 0.500{ 0.817 0.823 0.789| 0.831 0.843 0.791
schedule2 0.613 0.714 0.500{ 0.856 0.851 0.778| 0.879 0.872 0.845
tcas 0.820 0.857 0.500] 0.868 0.864 0.734] 0.860 0.857 0.883
tot_info 0.765 0.823 0.500{ 0.925 0.931 0.879| 0.944 0.944 0.887

Table 4. Average Area Under the Curve (AUC) prediction quality results by program
and algorithmic classifier. Each column provides results for one of the machine learning
classifiers used with a subset of OpenPAT metric data from Table 3. For example the
first three columns give the results for the Naive Bayes machine learning classifier
used with all the OpenPAT metrics, a subset of the metrics selected by a Genetic
Algorithm (GA) and just the OpenPAT coverage metrics (CV) respectively as discussed
in Section 4.4.

algorithm for each program has been emphasised in the tables for the reader’s
convenience.

From the table, three observations can be made. Firstly, the Random Forests
algorithm is clearly the best performing classification method. The linear support
vector machine classifier Sequential Minimal Optimization frequently comes a
close second, but overall it is unable to improve on Random Forests. The Naive
Bayes classifier is universally the worst classifier. It is also apparent that the best
algorithmic classifier’s predictive abilities are always much more accurate than
random guessing.

Secondly, the inclusion of the OpenPAT metrics improves performance in
most cases compared to using simple code coverage. This is most obvious in the
case of Naive Bayes, where code coverage (i.e. CV) features alone are insufficient
to train the model at all, as demonstrated by the AUC measures being at 0.5
which indicates no predictive power.

The third observation is that for four of seven benchmarks, the best predic-
tion quality was achieved using a Genetic Algorithm to select a subset of the
OpenPAT metrics so as not to “overwhelm” the machine learning algorithm with
all the OpenPAT metrics as discussed in Section 4.2. In fact, considering each of
the machine learning algorithms in isolation, we see that the GA variant of the
classification algorithm gives the best results for:

1. all seven of the benchmarks using the Naive Bayes algorithm
2. four of the seven benchmarks using Sequential Minimal Optimization and
3. four of the seven benchmarks using Random Forests

which indicates the value of the GA metric sub-selector in these tests.

In order to examine the performance of the GA more closely, we looked at
the OpenPAT metrics selected by it during all runs for Naive Bayes over all
129 datasets. The results are shown in Table 5, and they give the probability of

Metric Class GA Selection Prob.
source_file |[Structural 29%
source_line |Structural 29%
instructions|Structural 29%
order Dynamic 30%
entries Dynamic 31%
ticks min Dynamic 29%
ticks_max Dynamic 29%
ticks_sum Dynamic 31%

Table 5. Importance of the OpenPAT hotspot tool metrics as indicated by the prob-
ability that each metric was selected by the Genetic Algorithm for the Naive Bayes
machine learning algorithm.

each metric being selected by the GA, averaged over faulty version and run. The
results show that while the different metrics are selected fairly uniformly, there
is a slight bias towards ticks_sum, entries and order. It is also valuable to
note that while the GA only selects 30% of the available attributes for use with
the Naive Bayes algorithm, the predictive quality of the GA variant is better
than the Naive Bayes approach using all the available metrics as shown by the
ALL column of Table 4 for every benchmark considered here.

As previously indicated, the genetic algorithm allows the Naive Bayes classi-
fier to perform better with larger initial metric volumes (number of metrics used
times program code sections the metrics are measured for) than would other-
wise be possible. While the GA metric subset selection improvement was less pro-
nounced for the other machine learning algorithms for these small benchmarks,
the Genetic Algorithm improvements are already valuable for these benchmarks
and are expected to become more pronounced for larger commercial and open
source programs as the metric volume increases [22].

5 Conclusion

We have presented a framework for using dynamic execution measurements taken
during the regression testing of correct versions of a program for predicting future
regression test failures using genetic search and machine learning algorithms. Our
experiments demonstrate that combining dynamic performance metric informa-
tion with machine learning and genetic algorithms can provide improved test
result accuracy predictions over approaches that use test code coverage metric
intersections alone. This increased prediction accuracy could lead to reductions
in regression testing time and allow regression testing to be more frequently
applied to feature modifications to support on-line software quality assessment.

While we restricted our experiments to the well known Siemens test suite [14,
15] and eight OpenPAT metrics [2] in this paper, the approach as presented is
directly applicable to larger software programs and additional dynamic program

analysis metrics. Future work may consider incorporating dynamic metric in-
formation gathered during testing (not just prior information gathered for the
correct program version) into the method, adding new dynamic measurement
metrics from OpenPAT including for example detailed internal control flow in-
formation, evaluating the accuracy of the approach with different training sets
sizes, different prediction quality metrics, and different code section sizes, and
evaluating the benefits of the GA metric selection feature with different machine
learning algorithms on larger commercial and open-source programs [22].

References

1.

10.

11.

12.

13.

14.

A.V. Nori and S.K. Rajamani (2011). Program Analysis and Machine Learning:
A Win-Win Deal. Microsoft Research India, In Proc. 18th International Static
Analysis Symposium (SAS), pp. 2-3.

. The OpenPAT Project. The Open Performance Analysis Toolkit.

http://www.OpenPAT .org [Online; accessed 20-March-2013].

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I.H. Witten (2009).
The WEKA data mining software: An update, SIGKDD Ezplorations, 11(1), pp.
10-18.

D.E. Goldberg (1989). Genetic algorithms in search, optimization and machine
learning. Addison-Wesley.

M. Harman, P. McMinn, J. Teixeira de Souza and Shin Yoo (2012). Search Based
Software Engineering: Techniques, Taxonomy, Tutorial. Empirical Software Engi-
neering and Verification, (7007), pp. 1-59.

S. Spacey, W. Wiesmann, D. Kuhn and W. Luk (2012). Robust software parti-
tioning with multiple instantiation. INFORMS Journal on Computing 24(3) pp.
500-515.

S. Spacey (2006). 3S: Program instrumentation and characterisation framework.
Technical Paper, Imperial College London.

. S. Spacey (2009). 3S Quick Start Guide. Technical Manual, Imperial College Lon-

don.

G. Aigner, A. Diwan, D. Heine, M. Lam, D. Moore, B. Murphy and C. Sapuntza-
kis (2000). An overview of the SUIF2 compiler infrastructure. Technical Paper,
Stanford University.

D.J. Pearce, P.H.J. Kelly, T. Field and U. Harder (2002). GILK: A dynamic instru-
mentation tool for the Linux kernel. In Proc. of the 12th International Conference
on Computer Performance FEvaluation, Modelling Techniques and Tools 37, pp.
220-226.

N. Nethercote and J. Seward (2003). Valgrind: A program supervision framework.
Electronic Notes in Theoretical Computer Science, 89(2) pp. 44-66.

C-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J.
Reddi and K. Hazelwood (2005). Pin: Building customized program analysis tools
with dynamic instrumentation. In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 190-200.

M.A. Hall (1998). Correlation-based Feature Subset Selection for Machine Learning.
Ph.D. Thesis, University of Waikato, Hamilton, New Zealand.

Siemens, HR Variants v 2.2. http://pleuma.cc.gatech.edu/aristotle/Tools/subjects/.

15

16.

17.

18.

19.

20.

21.

22.

M. Hutchins, H. Foster, T. Goradia, T. Ostrand (1994). Experiments on the effec-
tiveness of dataflow- and controlflow-based test adequacy criteria. In Proc. of the
16th International Conference on Software Engineering, pp. 191-200.

T. Fawcett (2006). An introduction to ROC analysis, Pattern Recognition Letters,
27, pp. 861-874.

S. Yoo. (2012). Evolving human competitive spectra-based fault localization tech-
niques. In G. Fraser (Ed.) Proc SSBSE 2012, LNCS 7515, pp. 244-258.

G.H. John and P. Langley (1995). Estimating Continuous Distributions in Bayesian
Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence. pp. 338-345. Morgan Kaufmann, San Mateo.

J.C. Platt (1998). Fast training of support vector machines using sequential min-
imal optimization. In Advances in Kernel Methods — Support Vector Learning,
B. Scholkopf, C. Burges, and A. Smola, Eds. MIT Press.

L. Breiman (2001). Random Forests. Machine Learning 45(1) pp. 5-32.

P. Domingos (2012). A Few Useful Things to Know about Machine Learning.
Communications of the ACM, 55 (10), pp. 78-87.

S. Spacey, W. Luk, D. Kuhn and P.H.J. Kelly (2013). Parallel Partitioning for Dis-
tributed Systems using Sequential Assignment. Journal of Parallel and Distributed
Computing 73(2), pp. 207-219.

