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Abstract

Let R and S be non-negative and non-increasing vectors of order m and n respectively.

We consider the set A(R, S) of all m × n matrices with entries restricted to {0, 1}. We

give an alternative proof of the Gale-Ryser theorem, which determines when A(R, S) is

non-empty. We show conditions for R and S so that |A(R, S)| ∈ {1, n!}. We also examine

the case where |A(R, S)| = 2 and describe the structure of those matrices. We show that

for each positive integer k, there is a possible choice of R and S so that |A(R, S)| = k.

Furthermore, we explore gm,n(x; y), the generating function for the cardinality |A(R, S)|
of all possible combinations of R and S.
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Chapter 1

Introduction

Simply put, in mathematics, a (0, 1)-matrix is a matrix whose entries are restrictred to

be either 0 or 1. Such a matrix, can be a representation of different things so, is also

known as the logical matrix, binary matrix, relation matrix and also as the Boolean matrix

depending on the context of its use.

In this thesis, where possible, we keep the notation consistent with [4] for convenience

sake.

Now, let A be a (0, 1)-matrix of m rows and n columns. Let the sum of row i of A

be denoted by ri (i = 1, . . ., m) and let the sum of column j of A be denoted by

sj (j = 1, . . ., n). It is clear that if τ denotes the total number of 1’s in A, then

τ =
m∑
i=1

ri =
n∑
j=1

sj. (1.1)

We associate with the (0,1)-matrix A the row sum vector R = (r1, . . ., rm), where ri

gives the sum of row i of A. Similarly, the column sum vector S is denoted by

S = (s1, . . ., sn).

We denote by

A(R, S)
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the class 1 of all (0,1)-matrices with row sum vector R and column sum vector S.

Example 1.1

Let

M1 =


1 1 1 1

0 1 1 0

1 0 0 0

 and M2 =


1 1 1 1

1 0 1 0

0 1 0 0

 .
Then M1 and M2 are 3× 4 (0, 1)-matrices and M1,M2 ∈ A(R, S) with

R = (4, 2, 1) and S = (2, 2, 2, 1).

Also,

τ =
3∑
i=1

ri = 4 + 2 + 1 = 7 = 2 + 2 + 2 + 1 =
4∑
j=1

sj.

The class A(R, S) is a classic object in different branches of mathematics. In combi-

natorics, (0, 1)-matrices with prescribed row and column sums encode hypergraphs with

prescribed degrees of vertices and related structures, as seen in [27]. In algebra, for exam-

ple see Chapter 1 of [28], certain structural constants in the ring of symmetric functions

and in the representation theory of the symmetric and general linear groups are expressed

as numbers of (0, 1)-matrices with prescribed row and column sums. In statistics, (0, 1)-

matrices with prescribed row and column sums are known as binary contingency tables,

see [11]. Modern foundations of (0, 1)-matrix reconstruction can be traced to Herb Ryser,

Delbert Ray Fulkerson, and Richard Brualdi: [33], [14], [15], [5], [16], [17].

In Chapter 2 we define the concept of majorization (strictly on vectors, for majoriza-

tion can be extended to larger structures such as matrices). This concept was introduced

by Muirhead [30] and later developed by Hardy, Littlewood and Polya in their study of

symmetric means [24]. This concept of vector majorization is required in determining

1Ryser began the tradition of referring to A(R,S) as a class, rather than a set, of matrices.
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simple arithmetic condition(s) for the construction of a (0, 1)-matrix with prescribed row

and column sum vectors. In studying the property of vector majorization, we define and

study the structure of a maximal matrix by defining the conjugate of a given vector. We

also discuss how majorization requires vectors involved to be in non-increasing order,

hence, making it a process of comparing partial sums.

As we want to find more about the cardinality of the set A(R, S) we ask the ques-

tion: What condition guarantees A(R, S) to be non-empty? We give an answer to this

question particularly in Chapter 3 by proving the well-known result originally shown in-

dependently by both Gale [20] and Ryser [32], namely the Gale-Ryser Theorem. Such a

result does tell us something about the number of matrices in A(R, S), but it does not

enumerate them exactly. It just ensures that there exists a matrix in A(R, S) whenever

S is majorized by R∗ the conjugate of R.

In Chapter 4 we consider the case where |A(R, S)| > 1. Given that A,B ∈ A(R, S),

we discuss the process of how we can transform A into B (or vice-versa) by the con-

cept of interchanges. We then answer the question: When is there only one element

of A(R, S)? We also show that when |A(R, S)| = 2, each of the matrices in A(R, S)

contains exactly one interchange.

We define and study the structure matrix T (R, S) for a given (0, 1)-matrix A ∈ A(R, S)

in Chapter 5. We prove the assertion by Ford and Fulkerson [13] that it is necessary and

sufficient for the structure matrix T (R, S) to be a non-negative matrix for A(R, S) to

be non-empty. We also discuss a combinatorial interpretation of the structure matrix.

This becomes useful in studying the structure of matrices in A(R, S) by discussing the

properties of invariant sets in Chapter 6.

In Chapter 7 we answer the following: Given a positive integer k, can we construct a

(0, 1)-matrix so that it has exactly k number of completions? Or in other words, with a
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given k can we find R and S so that |A(R, S)| = k? We also determine the number of

(0, 1)-matrices of order n, for n ≥ 2, with exactly one 1-entry in each row and column. We

state and give a straightforward proof of a generating function for |A(R, S)| in Chapter

8. We also briefly explain the limitation of such function with regards to our purpose.

Finally in conclusion, we discuss possible areas of what to do next in future study as

a continuation of this thesis. We state a few open problems and conjectures regarding

the aspects of A(R, S) covered in this thesis. Finally, we give a summary of new material.



Chapter 2

Maximal Matrix and Majorization

Consider any given non-increasing vector of non-negative integers

R = (r1, r2, . . . , rm).

Let

δi = [1, . . . , 1, 0, . . . , 0]

be a vector of r1 components with 1’s in the first ri positions, and 0’s elsewhere. We can

visualize R using

Ā =



δ1

.

.

.

δm


.

Here, Ā = [āij] is a (0, 1)-matrix of size m by r1 with row sum vector R and with the

property:

if āij = 0 then āik = 0 for all k ≥ j.

We call such (0,1)-matrix Ā, the Ferrers matrix of R [22].

We define the conjugate of R to be the column sum vector of the Ferrers matrix of

R, denoted by R∗. Note that Ā
T

, the transpose of Ā, is the Ferrers matrix of R∗, hence,
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R∗ is the row sum vector of Ā
T

with R as the column sum vector, so (R∗)∗ = R. Also,

observe that R and R∗ are conjugate partitions of the same positive integer.

Example 2.1

For R = (4, 2, 1),

Ā =


1 1 1 1

1 1 0 0

1 0 0 0

 and Ā
T

=



1 1 1

1 1 0

1 0 0

1 0 0


.

So, R∗ = (3, 2, 1, 1), with (4, 2, 1) and (3, 2, 1, 1) as conjugate partitions of 7.

Equivalently, for

R = (r1, r2, ..., rm),

the conjugate of R is given by

R∗ = (r∗1, r
∗
2, ..., r

∗
r1

)

where

r∗i = {|rj| : rj ≥ i, 1 ≤ j ≤ m} (1 ≤ i ≤ r1).

Hence, r∗i is the count of how many numbers in R that are greater than or equal to i.

A (0, 1)-matrix whose row sum and column sum vectors are conjugates is called max-

imal. Thus, a Ferrers matrix is a maximal matrix.

Cavenagh gives an equivalent pictorial version of a maximal matrix in [10] as a (0, 1)-

matrix whose rows and columns are arranged so that a line of non-decreasing gradient

can be drawn with only 0’s below the line and only 1’s above the line or vice-versa.

It is clear to see that the row sum vector R determines the Ferrers matrix Ā and also
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R∗, which makes Ā maximal. So, the maximal matrix Ā may be obtained from any

matrix A ∈ A(R, S) by a rearrangement of the 1’s in the rows of A. Also, by inverse row

rearrangements one may construct the given A from Ā. This shows that we can get from

R∗ to S and vice-versa (similarly from R to S∗ and vice-versa) by exchanging 1’s and 0’s

within the same row in certain rows.

Example 2.2

Let R = (4, 2, 1) and S = (2, 2, 2, 1). Then we have

Ā =


1 1 1 1

1 1 0 0

1 0 0 0

 and A =


1 1 1 1

0 1 1 0

1 0 0 0


where Ā is maximal since Ā ∈ A(R,R∗) and A ∈ A(R, S). It is clear to see that we can

get from Ā to A and vice-versa by rearranging entries in row 2. In row 2, we exchange the

1 from the first column for the 0 from the third column. So we get from R∗ = (3, 2, 1, 1)

to S = (2, 2, 2, 1) by deducting 1 from r∗1 and adding 1 to r∗3.

From here onwards, we will use Ā = [āij] to denote the maximal matrix with row sum

vector R and column sum vector R∗, the conjugate of R.

Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be two partitions of a positive

integer τ . That is, X and Y are two non-increasing n-vectors of non-negative integers

with:

x1 ≥ x2 ≥ . . . ≥ xn and y1 ≥ y2 ≥ . . . ≥ yn

where

τ =
n∑
i=1

xi =
n∑
j=1

yj.

If the following inequality holds

k∑
i=1

xi ≤
k∑
j=1

yj (1 ≤ k ≤ n)
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with equality for k = n; equivalently

n∑
i=k+1

xi ≥
n∑

j=k+1

yj (0 ≤ k ≤ n− 1)

with equality for k = 0, then we say that X is majorized by Y , denoted by X � Y .

Theorem 2.3 Let X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) be non-increasing vec-

tors of positive integers. Then X � Y implies Y ∗ � X∗ .

The proof provided below is an adaption of Brualdi’s proof in [4].

Proof.

X � Y ⇔
k∑
i=1

xi ≤
k∑
i=1

yi (1 ≤ k ≤ n)

⇔
n∑

i=k+1

yi ≤
n∑

i=k+1

xi (0 ≤ k ≤ n− 1) (*)

Recall: y∗i = {|yj| : yj ≥ i, 1 ≤ j ≤ n} and Y ∗ = (y∗1, ..., y
∗
y1

).

Let p be a positive number. It then follows that for 1 ≤ p ≤ y1,

∑p
i=1 y

∗
i =

∑n
j=1 min{yj, p}.

Now, let k be the largest index such that p ≤ xk. Then we have,

p∑
i=1

y∗i =
n∑
j=1

min{yj, p}

≤ kp+
n∑

j=k+1

yj

≤ kp+
n∑

j=k+1

xj from (*)

=
n∑
j=1

min{xj, p}

=

p∑
i=1

x∗i .

Hence, Y ∗ � X∗. �



9

Example 2.4

Let X = (3, 2, 2, 1) and Y = (4, 2, 2, 0).

So, X∗ = (4, 3, 1, 0), Y ∗ = (3, 3, 1, 1) with n = 4.

Since y1 = 4, let p be a positive number such that 1 ≤ p ≤ 4.

We exhibit the case p = 3.

Observe,
p∑
i=1

y∗i = 3 + 3 + 1 = 7 = 3 + 2 + 2 + 0 =
n∑
j=1

min{yj, p}.

Now, letting k be the largest index such that p ≤ yk, we have k = 1 and

kp+
n∑

j=k+1

yj = 3 + (2 + 2 + 0) = 7,

while

kp+
n∑

j=k+1

xj = 3 + (2 + 2 + 1) =
n∑
j=1

min{xj, p} = 8 = 4 + 3 + 1 =

p∑
i=1

x∗i .

So we have

p∑
i=1

y∗i = 7

≤ 8

=

p∑
i=1

x∗i .

We can still compare X and Y for majorization if they have different sizes. Without

loss of generality, let us assume that X has dimension m while Y has dimension n with

m < n, then we can append (n−m) 0’s to X so as to obtain n-vectors. Because of this,

there is a certain arbitrariness in the size of the vectors we compare. So, we can append

0’s to R, R∗ and S if needed be to make them have the same size.

Example 2.5

Let R = (4, 2, 1) and S = (2, 2, 2, 1).

Appending one more 0 to R makes R = (4, 2, 1, 0) with R∗ = (3, 2, 1, 1) unchanged still,
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but at least R, R∗, S are all 4-vectors now. In likely manner we have S∗ = (4, 3, 0, 0).

So in this particular instance, S � R∗ and also R � S∗.

We can also do away with the assumption that X and Y are non-increasing vectors when

comparing partial sums for majorization, provided we first reorder the components of the

vectors to be in non-increasing order. Hence, if given two n-vectors X = (x1, x2, ..., xn)

and Y = (y1, y2, ..., yn) and we obtain X ′ = (x[1], x[2], ..., x[n]) and Y ′ = (y[1], y[2], ..., y[n])

from X and Y , respectively, by rearranging components in non-increasing order, then we

say that X � Y provided that X ′ � Y ′. Note that X ′ and Y ′ are both partitions of the

same positive integer.

Example 2.6

Let X = (2, 3, 4, 3, 1) and Y = (1, 2, 4, 5, 1). After having the components reordered in

non-increasing order, we obtain X ′ = (4, 3, 3, 2, 1) from X and Y ′ = (5, 4, 2, 1, 1) from Y .

So, since X ′ is majorized by Y ′, we say that X is majorized by Y .

Now it is safe to say that majorization is not a partial order since X � Y and Y � X

are only implications that X and Y are rearrangements of one another.

Majorization, however, has a nice characterization for integral vectors (such as S and

R) in terms of some transfers. Let us consider Y = (y1, y2, ..., yn) and X = (x1, x2, ..., xn)

to be integral vectors. Assume that yi > yj for some i, j such that 1 ≤ i < j ≤ n; we

define

xi = yi − 1, xj = yj + 1 with xk = yk ∀k 6= i, j.

We say that X is obtained from Y by a transfer from i to j. Clearly X � Y . This idea

of a transfer is implicit in [26].

Theorem 2.7 Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be integral vectors.

If X � Y , then X can be obtained from Y by a finite sequence of transfers.
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Proof.

Let i be minimal such that xi < yi, and let j be minimal such that xj > yj.

Then obviously i < j since X � Y .

Now, define

Y (1) = (y
(1)
1 , y

(1)
2 , . . . , y(1)n )

to be an integral vector obtained from Y by a transfer from i to j

(i.e. we define y
(1)
i = yi − 1, y

(1)
j = yj + 1 with y

(1)
k = yk for all k 6= i, j).

Clearly we have X � Y (1) � Y as y
(1)
s ≥ xs for all s < j, and since

t∑
l=1

xl ≤
t∑
l=1

yl =
t∑
l=1

y
(1)
l for all t ≥ j.

Similarly, repeating the whole transfer process, by letting i be minimal

such that xi < y
(1)
i , and letting j be minimal such that xj > y

(1)
j , again

i < j since X � Y (1). Then a transfer from i to j yields a new increasing

vector Y (2) such that X � Y (2) � Y (1) � Y .

Hence, after repeating the process for some t finite times, we have

X = Y (t) � Y (t−1) � . . . � Y (2) � Y (1) � Y . �

Example 2.8

Let X = (4, 3, 3, 2, 1) and Y = (5, 4, 2, 1, 1) so that X is majorized by Y . We have,

Y (1) = (4, 4, 3, 1, 1) (with i = 1, j = 3)

Y (2) = (4, 3, 3, 2, 1) (with i = 2, j = 4)

Hence, X = Y (2) � Y (1) � Y .

Lemma 2.9 Without loss of generality, let R,X, Y be partitions of a positive integer

τ with R = (r1, r2, . . . , rn), X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn). If A(R, Y )

is non-empty and X is obtained from Y by a transfer from i to j, then A(R,X) is also

non-empty.
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Proof.

Since A(R, Y ) is non-empty, there exists a matrix

A = [aij] ∈ A(R, Y ).

Letting Y and X be as claimed, we have yi = yj + 1 (1 ≤ i < j ≤ n),

so there is a row k in A (1 ≤ k ≤ n) where aki = 1 and akj = 0

(since yi is the sum of the ith column and yj is the sum of the jth column in A).

Let A′ be obtained from A by letting a′ki = 0 and a′kj = 1 and leaving all other

entries of A′ being equal to those of A. Hence, A′ ∈ A(R,X) and we are done. �

Example 2.10

Let R, Y,X be partitions of 7 with R = (3, 2, 2, 0), Y = (3, 2, 1, 1) and X is obtained

from Y by a transfer from i = 1 to j = 3 and let A be a matrix in A(R, Y ), say

A =



1 1 1 0

1 1 0 0

1 0 0 1

0 0 0 0


.

So we have, X = (2, 2, 2, 1) and y1 = 3 > y3 = 1. In matrix A, we can see in the second

row that a21 = 1 and a23 = 0. Now, let A′ be obtained from A by letting a′21 = 0 and

a′23 = 1 while entries of A′ in all other positions being equal to those of A. Then we have

A′ =



1 1 1 0

0 1 1 0

1 0 0 1

0 0 0 0


and A′ is a matrix in the class A(R,X).

We are now in a position to look at the condition(s) under which the class A(R, S) is

non-empty.



Chapter 3

Basic Existence Theorem

If we are given any two vectors R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) as parti-

tions of some positive integer τ , then the fundamental equation (1.1) holds. However, it

is not sufficient for the existence of a (0,1)-matrix A with R and S as its row and column

sum vectors respectively. In other words, we can find different partitions of a particular

positive integer that can never be row and column sum vectors of a (0,1)-matrix. For

instance, it is impossible to construct a (0,1)-matrix with row sum vector R = (3, 3, 2, 1)

and column sum vector S = (4, 4, 1). Hence, A((3, 3, 2, 1), (4, 4, 1)) is an empty set.

In this section, we are going to lay our focus on a very well-known and important theorem

called the Gale-Ryser Theorem. This is a basic theorem for the existence of a (0,1)-matrix

with row-sum vector R and column-sum vector S. In other words, this theorem gives the

condition that ensures that the class A(R, S) is non-empty. Ryser in [32] used induction

and direct combinatorial reasoning whereas Gale in [20] used the theory of network flows

as they both independently proved this theorem. This theorem is also derived in [9] us-

ing network flows and is also derived in [5]. Brualdi in [4] recites the inductive proof he

derived in [6]. Krause also has provided, what he called, a simple proof of this theorem

in [26] along the same reasoning provided by Ryser with use of ordinary Euclidean norm.

Even though the Gale-Ryser theorem does not go as far as enumerating the (0, 1)-matrices
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in A(R, S), it gives a nice characterization of the existence of a (0,1)-matrix in A(R, S),

in terms of majorization. Our proof here takes elements from different proofs in the

literature. It is partially based on the proof in [26], see also [27], and it incorporates the

theory of majorization.

Theorem 3.1 (Gale-Ryser, [20, 32]) Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn)

be non-increasing vectors of non-negative integers. Then A(R, S) is non-empty if and

only if S is majorized by the conjugate R∗ of R, that is,

S � R∗. (3.1)

Proof.

Let us look at the necessity of the majorization condition. It follows by looking

at the maximal matrix Ā = [āij]. Let us assume that A(R, S) is non-empty with

A = [aij] ∈ A(R, S).

If all the 1’s in each row of A are left-justified, that is, there are no i, j, k with

i ≤ m, j < k ≤ n such that aij = 0 but aik = 1, then A is a Ferrers matrix of R,

hence A = Ā. So, S = R∗ and (3.1) holds.

If A is not maximal otherwise, then there exist i, j, k with i ≤ m, j < k ≤ n

such that aij = 0 but aik = 1. So, A has at most as many 1’s in the first k columns

as Ā has, that is,

k∑
j=1

sj =
m∑
i=1

k∑
j=1

aij ≤
m∑
i=1

k∑
j=1

āij =
k∑
j=1

r∗j .

So, (3.1) holds.

Now, to prove the converse, let us assume that the majorization condition (3.1)

holds. Then by Theorem 2.7, S can be obtained by R∗ by a sequence of transfers,

namely

S = S(0) � S(1) � . . . � S(t−1) � S(t) = R∗
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where S(i) is obtained from S(i+1) by a transfer (0 ≤ i ≤ t− 1).

Since the Ferrers matrix of R uniquely determines R∗ and the maximal matrix

Ā, the class A(R,R∗) is therefore non-empty. So by Lemma 2.9, it follows

inductively that the class A(R, S) is also non-empty.

Thus, we have proven the theorem. �

Example 3.2

(i) Let R = (3, 1, 1) and S = (2, 2, 1), then S is majorized by R∗ = (3, 1, 1).

Hence, there exists a matrix M ∈ A(R, S) by Gale-Ryser. So, we have A

the Ferrers matrix for R to begin with,

A =


1 1 1

1 0 0

1 0 0


and we can construct the following two elements of A((3, 1, 1), (2, 2, 1)):

M1 =


1 1 1

1 0 0

0 1 0

 M2 =


1 1 1

0 1 0

1 0 0


Note that R = (3, 1, 1) is also majorized by S∗ = (3, 2).

(ii) By the Gale-Ryser theorem, A((4, 1), (3, 2)) is empty.

(iii) There exists M ∈ A((4), (1, 1, 1, 1)) and M is unique.

Note, R∗ = S ⇔ S∗ = R.

M =

[
1 1 1 1

]
.

From here onwards we assume A(R, S) to be non-empty unless otherwise stated.
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As mentioned before, Theorem 3.1 gives a nice characterization of the existence of a

(0,1)-matrix in A(R, S), in terms of majorization. So, it gives a simple necessary and

sufficient condition (3.1) for the non-emptiness of A(R, S). This condition requires only

the checking of (n− 1) inequalities and one equality. A different condition was obtained

by Ford and Fulkerson in [13] by using a theorem in network flows. While such condition

requires more inequalities than those in (3.1), it is still worthwhile for it involves a cer-

tain property associated with A(R, S). We will discuss that property in a later chapter,

but for now let us show how starting from any single matrix in A(R, S), the entire class

A(R, S) can be generated by simple transformations.



Chapter 4

Interchanges

Let us first look at some simple ideas of graph theory. This discussion of some notions

of graph theory is not intended to be complete, hence, readers can find more details

in books like [38]. Let D be a directed graph1. A directed cycle γ (of length p) of D

is a sequence (v1, v2, ..., vp, v1) of vertices of D such that v1, v2, ..., vp are distinct and

α(γ) = {(v1, v2), (v2, v3), ..., (vp−1, vp), (vp, v1)} is a set of arcs of D. The directed graph

D is defined to be balanced if it has the property that for each vertex v the number of

arcs entering v (the indegree of v) equals the number of arcs exiting v (the outdegree of

v).

Lemma 4.1 Let D be a directed graph in which every vertex has outdegree ≥ 1. Then

D contains a directed cycle.

Proof.

Starting a walk at an arbitrary vertex v0, and at each step, continue from the

vertex vi along an arbitrary arc with tail vi (which is possible since each vertex has

outdegree ≥ 1) until a vertex is repeated. At this point, we have a directed cycle.

�

Now let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} be disjoint sets of m and n elements,

respectively. Let C = [cij] be a (0,±1)-matrix (that is the entries of C are restricted to

1In Graph Theory, a directed graph or a digraph is a graph where the arcs (or the edges) have a

direction associated with them.
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the set {−1, 0, 1}) of size m by n. We define a directed bipartite graph Γ(C) with vertices

X ∪ Y (= {x1, x2, ..., xm, y1, y2, ..., yn}) as follows. In Γ(C) there is an arc (xi, yj) from xi

to yj if cij = 1, and an arc (yj, xi) from yj to xi if cij = −1. If each row and each column

sum of C equals 0, then we say that the matrix C is balanced. If C is balanced then it

follows that Γ(C) is a balanced directed bipartite graph.

Lemma 4.2 Let D be a balanced directed graph. Then there exists a list of directed cycles

γ1, γ2, ...γq so that every arc appears in exactly one.

Proof.

Choose a maximal list of cycles γ1, γ2, ...γq so that every arc appears in at most

one. Suppose that there is an arc not included in any cycle γi for i = {1, 2, ..., q}.

Let H be a component of D \ ∪qi=1α(γi) which contains an arc. Now, H must be

a balanced directed graph since every vertex v in H satisfies

deg+H(v) = deg−H(v) 6= 0.

So by Lemma 4.1, there is a directed cycle γq+1 in H. But then γq+1 may be

appended to the list of cycles γ1, γ2, ...γq. This contradicts the maximality of the

list γ1, γ2, ...γq. Hence, there are directed cyles γ1, γ2, ...γq that partition the

arcs of D. �

A minimal balanced matrix is a non-zero balanced (0,±1)-matrix where each non-zero

line contains exactly two non-zero elements (namely a 1 and a −1). By definition, it

follows that a minimal balanced matrix has the property that its rows and columns can

be rearranged so that, for some integer k ≥ 2, the resulting matrix D = [dij] satisfies

d11 = d22 = ... = dkk = 1, and d12 = d23 = ... = dk−1,k = dk1 = −1, with all other dij

equal to 0.

Let C be a non-zero balanced (0,±1)-matrix of size m by n. Then a directed cycle

γ of Γ(C) is a balanced directed bipartite graph, with the same set of vertices as Γ(C),

corresponding to a m by n minimal balanced matrix Cγ. In fact, by Lemma 4.2, there
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are directed cycles γ1, γ2, ...γq that partition the arcs of Γ(C). By letting Ci = Cγi ,

(i = 1, 2, ..., q), as Brualdi showed in Section 3.2 of [4], we can decompose C, which is a

non-zero balanced matrix, into minimal balanced matrices:

C = C1 + C2 + ...+ Cq (for some positive integer q) (4.1)

where Ci is a minimal balanced matrix and for i 6= j, the set of positions of the non-zero

elements of Ci is disjoint from the set of positions of the non-zero elements of Cj. Such

a decomposition (4.1) is called minimal balanced decomposition of C.

Example 4.3

This example shows that a minimal balanced decomposition of a balanced matrix does not

have to be unique. Consider the balanced matrix

C =



1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1


.

Then

C =



1 0 0 −1

0 1 −1 0

−1 0 0 1

0 −1 1 0


+



0 1 −1 0

1 0 0 −1

0 −1 1 0

−1 0 0 1


is a minimal balanced decomposition of C. Also

C = C1 + C2 + C3 + C4

is a minimal balanced decomposition, where

C1 =



1 0 0 −1

0 0 0 0

−1 0 0 1

0 0 0 0


, C2 =



0 1 −1 0

0 0 0 0

0 −1 1 0

0 0 0 0


,
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C3 =



0 0 0 0

1 0 −1 0

0 0 0 0

−1 0 1 0


, C4 =



0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1


.

Lemma 4.4 If A = [aij] and B = [bij] are m by n matrices in A(R, S) with A 6= B,

then C = A−B is a balanced (0,±1)-matrix.

Proof.

Since A and B are both members of A(R, S), A and B have the same number

of 1’s and 0’s in each line (but not necessarily in the same positions since A 6= B).

Therefore, the entries of C is restricted to {−1, 0, 1} and the sum of a line of A

equals the sum of the same line of B for each and every line. It follows that the

sum of each line of C is 0. �

So, if A and B are m by n matrices in A(R, S), then from the previous discussion and

by Lemma 4.4, we can conclude that there exist minimal balanced matrices C1, C2, ..., Cq

whose non-zero elements are in pairwise disjoint positions, such that

A = B + C1 + C2 + ...+ Cq.

A non-zero balanced matrix contains at least four elements. A balanced matrix C = [cij]

of size m by n with exactly four non-zero elements is obtained as follows:

(i) choose distinct integers p and q with 1 ≤ p < q ≤ m;

(ii) choose distinct integers k and l with 1 ≤ k < l ≤ n;

(iii) let cpk = cql = 1,

(iv) let cpl = cqk = −1,

(v) let all other cij = 0.

We call a balanced matrix with exactly four non-zero elements an interchange matrix.

In the previous example, the matrices C1, C2, C3, C4 are interchange matrices of order 4.

Clearly, the negative of an interchange matrix is also an interchange matrix.



21

Let A and B be matrices in A(R, S) such that A = B + C where C is an interchange

matrix. Then A is obtained from B by replacing a submatrix

A1[{p, q}, {k, l}] =

1 0

0 1


of B of order 2 with

A2[{p, q}, {k, l}] =

0 1

1 0

 ,
or vice-versa. Ryser [33] has defined this transformation between A1 and A2 as an inter-

change; or more precisely we say that A is obtained from B by a (p, q; k, l)− interchange.

If A is obtained from B by a (p, q; k, l)-interchange, then B is also obtained from A by a

(p, q; k, l)-interchange. Note that A1 = A2 + C1 and A2 = A1 + C2 where C1 and C2 are

the following interchange matrices:

C1 =

 1 −1

−1 1

 , C2 =

−1 1

1 −1

 .
Clearly an interchange (and hence any finite sequence of interchanges) does not change

the row and column sum vectors of a matrix and therefore transforms a matrix in A(R, S)

into another matrix in A(R, S). Ryser [32, 33] had proved the converse; that is, given

A,B ∈ A(R, S), there is a sequence of interchanges which transforms B into A; that is,

A = B+C1+C2+...+Cq where C1, C2, ..., Cq are interchange matrices and B+C1+...+Ck

is in A(R, S) for k = 1, 2, ..., q; these interchange matrices may have non-zero elements

in overlapping positions.

This discussion implies a characterization of those pairs R and S for which A(R, S)

contains an unique matrix [5, 32, 39].

Theorem 4.5 Let R = (r1, r2, ..., rm) and S = (s1, s2, ..., sn) be non-increasing, non-

negative integral vectors for which A(R, S) is non-empty. Then there is a unique matrix

in A(R, S) if and only if S = R∗ (where R∗ is the conjugate of R).
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We follow the proof in [4].

Proof.

Suppose that S = R∗.

Using the result and notation in Chapter 2, we have A(R, S) = A(R,R∗)

containing the maximal matrix Ā. Existence of another matrix in A(R, S)

suggests that an interchange (or a sequence of interchanges) can be applied to Ā.

So, let us assume an interchange can be applied to Ā.

Then there is a row i in Ā where the jth-entry is a 1 and the kth-entry is a 0

(with j < k) and we must have a row i′ in Ā (with i 6= i′) where a 0 in the

jth position precedes a 1 in the kth position.

This contradicts Ā being maximal, hence no interchange can be applied to Ā.

So, there can be no other matrix in A(R, S) but Ā.

Now assume that there is a unique matrix A = [aij] in A(R, S).

Suppose in row p of A a 0 precedes a 1 (1 ≤ p ≤ m).

Let apk = 0 and apl = 1 (1 ≤ k < l ≤ n).

Since by definition sk ≥ sl, there must be a q 6= p such that aqk = 1 and aql = 0.

Now a (p, q; k, l)-interchange gives another matrix in A(R, S) contradicting the

uniqueness of A. Hence A has no row where a 0 precedes a 1. So the 1’s in each

row of A are in the leftmost positions implying that A is maximal.

This implies that S = R∗ and we are done. �

There is enough motivation to suggest that if A ∈ A(R, S) and exactly one interchange

can be applied to A, then there are exactly two members of the class A(R, S). In this

case, A contains exactly one submatrix of type

A1 =

1 0

0 1

 or A2 =

0 1

1 0

 .
Without loss of generality, supposeA contains a submatrix of typeA1, then an interchange

will result in another member of A(R, S), say B. So, exactly one interchange can be
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applied to B and B contains exactly one submatrix of type A2. Applying an interchange

to B will only result with A. So, there can be no other matrix in A(R, S).

Theorem 4.6 Let A(R, S) be non-empty. Then |A(R, S)| = 2 if and only if each matrix

in A(R, S) contains exactly one submatrix of type

A1 =

1 0

0 1

 or A2 =

0 1

1 0

 .
Proof.

Suppose |A(R, S)| = 2. Let A,B ∈ A(R, S) with A 6= B.

Let C1, C2, ..., Cq be the minimal list of interchange matrices such that

A = B+C1 +C2 + ...+Cq, with q ≥ 2 and Ci 6= Cj whenever i 6= j (1 ≤ i, j ≤ q).

Then B + Ci where i = {1, 2, ..., q} is also a matrix in A(R, S).

Without loss of generality, suppose B + C1 ∈ A(R, S). Since |A(R, S)| = 2,

this implies that A = B + C1 which implies that C2 + ...+ Cq = 0.

This contradicts the minimality of q, hence, q = 1.

Let A(R, S) be non-empty with each matrix in A(R, S) containing exactly one

submatrix of type A1 or A2 but not both. Then exactly one interchange can be

applied to each matrix in A(R, S) that results in another matrix in A(R, S).

Suppose |A(R, S)| > 2 with M1,M2,M3 are distinct matrices in A(R, S), say.

Then without loss of generality, let M2 = M1 + C1 where C1 is an interchange

matrix. Then C1 is unique in being the only interchange matrix that can be added

to M1 to obtain another member of A(R, S). This therefore implies that

M1 = M2 + C2 where C2 is the negative of C1, and C2 is the only interchange

matrix that can be added to M2 to obtain another matrix in A(R, S). It follows

that either M3 = M1 or M3 = M2, which is a contradiction. �

More generally, we can say that if an element of A(R, S) contains k disjoint submatrices

of type A1 or A2, then there are 2k matrices in A(R, S).
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The Structure Matrix T (R, S)

Let A ∈ A(R, S). We can assume without loss of generality that R and S satisfy:

r1 ≥ r2 ≥ . . . ≥ rm > 0 (5.1)

and

s1 ≥ s2 ≥ . . . ≥ sn > 0. (5.2)

This means that there is no zero rows and no zero columns in A, and the rows and

columns had been permuted so that R and S are non-increasing.

A non-empty A(R, S) satisfying (5.1) and (5.2) is called normalized. In this chapter

we assume A(R, S) to be normalized.

We partition A as follows:

A =

 A1 X

Y A2

 (5.3)

where A1 is of size k × l (0 ≤ k ≤ m; 0 ≤ l ≤ n).

Let M be a (0,1)-matrix and let N0(M) denote the number of zeros in M and let N1(M)

denote the number of ones in M . Now let

tkl = N0(A1) +N1(A2) with (k = 0, 1, 2, . . . ,m; l = 0, 1, . . . , n). (5.4)
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We call the m+ 1 by n+ 1 matrix

T = T (R, S) = [tkl] (5.5)

the structure matrix of the normalized class A(R, S)

(the structure matrix associated with R and S).

By calculation, one can see that

kl = N0(A1) +N1(A1),

m∑
i=k+1

ri = N1(Y ) +N1(A2)

and
l∑

j=1

sj = N1(A1) +N1(Y ).

So,

kl −
l∑

j=1

sj = (N0(A1) +N1(A1))− (N1(A1) +N1(Y ))

= N0(A1)−N1(Y ).

and

kl −
l∑

j=1

sj +
m∑

i=k+1

ri = (N0(A1)−N1(Y )) + (N1(Y ) +N1(A2))

= N0(A1) +N1(A2).

Thus,

tkl = kl +
m∑

i=k+1

ri −
l∑

j=1

sj. (5.6)

So, T = [tkl] does not rely on our particular choice of the element A of A(R, S).

For covenience of notation, let us number the rows of T from 0 through m and its

columns from 0 through n. Let τ denote the total number of ones in A ∈ A(R, S). Then

from (5.6), we have the following elements of T :

t00 = τ ; t0n = 0; t1n = n− r1; tm1 = m− s1; and tmn = mn− τ.
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More generally, it follows from (5.6) that the entries of row 0 and column 0 of T are:

t0l = τ −
l∑

j=1

sj and tk0 =
m∑

i=k+1

ri.

So, with (k = 0, 1, . . . ,m; l = 0, 1, . . . , n) we have

tkl = kl + tk0 − (τ − t0l)

= kl + tk0 + t0l − t00. (5.7)

Equation (5.7) shows how to construct T from the (m + n + 1) elements in row 0 and

column 0.

Example 5.1

For R = (3, 2, 2, 1) = S,

T =



8 5 3 1 0

5 3 2 1 1

3 2 2 2 3

1 1 2 3 5

0 1 3 5 8


.

For R = (3,1) and S = (2, 2),

T =


4 2 0

1 0 −1

0 −2 0

 .
Note that by Theorem 3.1, A((3, 1), (2, 2)) is empty.

Theorem 5.2 (Ford-Fulkerson, [13])

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be non-increasing vectors of non-

negative integers. Then A(R, S) is non-empty if and only if

tkl ≥ 0 (k = 0, 1, . . . ,m; l = 0, 1, . . . , n);

that is, the structure matrix T is a non-negative matrix.
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Ford and Fulkerson, who introduced the concept of the structure matrix, used the theory

of network flows in [13] to prove this theorem. Brualdi also derived this theorem in [4]

following the proof technique he used in [6]. Here we provide a proof that relies on the

result of Theorem 3.1.

Proof. Using equation (5.6), and the definition of the conjugate sequence, we have:

tr∗j ,j = r∗j .j +
m∑

i=r∗j+1

ri −
j∑
i=1

si

=

j∑
i=1

r∗i −
j∑
i=1

si.

This implies that:

tr∗j ,j ≥ 0 (for all j), if and only if S � R∗.

That is, T is non-negative whenever equation (3.1) holds and vice-versa.

So, by Theorem 3.1, our proof is done. �

The structure matrix may be given a combinatorial interpretation. Let A ∈ A(R, S),

satisfying (5.1) and (5.2) and we partition A as was in (5.3). Thus, as we can see in the

equation (5.4), tkl counts something: the number of zeros in A1 (which has size k× l) plus

the number of ones in A2. This reveals something about the combinatorial meaning of

the structure matrix T , and with this interpretation, the necessity of the above theorem

is obvious. That is, if A is an existing element of A(R, S) then the structure matrix T of

A is non-negative.

Interestingly enough, as we have seen in equation (5.7), that all other entries of T are

determined by the entries in the first (actually, zeroth) row and column. Indeed, as we

will discuss further in the next chapter, the structure matrix T does reveal a lot about

the structure of matrices in A(R, S). For instance, assume that tkl = 0 for some k, l with

k, l ≥ 1. By the combinatorial interpretaion tkl = N0(A1) + N1(A2), this means that

every matrix A ∈ A(R, S) satisfies

aij = 1 (1 ≤ i ≤ k, 1 ≤ j ≤ l)

aij = 0 (k + 1 ≤ i ≤ m, l + 1 ≤ j ≤ n).
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Invariant Sets For The Class A(R, S)

Let A(R, S) be non-empty with |A(R, S)| > 1 . Let I ⊆ {1, 2, ...,m} and J ⊆ {1, 2, ..., n}

with Ī = {1, 2, ...,m} − I and J̄ = {1, 2, ..., n} − J being the complements of I and J

respectively. Let A ∈ A(R, S) and A[I, J ] be the submatrix of A with rows indexed by I

and columns indexed by J ; also, let A(I, J) be the submatrix of A with rows indexed by

Ī and columns indexed by J̄.

We say that I × J is an invariant set for A(R, S) if for any two matrices A and B

in A(R, S), N1(A[I, J ]) = N1(B[I, J ]) with A 6= B. Clearly I × J is an invariant set for

A(R, S) whenever one of the following holds:

I = ∅, I = {1, 2, ...,m}, J = ∅, J = {1, 2, ..., n}.

We refer to such invariant sets as trivial; all other invariant sets are non-trivial.

Since

N1(A(I, J)) = N1(A[I, J ]) +
∑
i∈Ī

ri −
∑
j∈J

sj,

it follows that if I × J is an invariant set for A(R, S) then so is Ī× J̄. Similarly, since

N1(A[I, J̄ ]) =
∑
i∈I

ri −N1(A[I, J ]),
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and

N1(A[Ī , J ]) =
∑
j∈J

sj −N1(A[I, J ]),

I × J̄ and Ī× J are invariant sets whenever I × J is.

An invariant position is an invariant set of cardinality one. Thus the position (i, j)

is invariant provided that all elements of A(R, S) have the same value for their (i, j)-

entry. That is, suppose {A1, A2, ..., Ak} = A(R, S), then (i, j) is an invariant position if

either the (i, j)-entry of Ap is 1 for all p = {1, 2, ..., k}, or the (i, j)-entry of Ap is 0 for

all p = {1, 2, ..., k}.

Ryser’s invariant 1 [32] is an invariant position (i, j) for which the (i, j)-entry of each

matrix in A(R, S) equals 1. In other words, for A ∈ A(R, S), an element aij = 1 of A

is an invariant 1 provided that no sequence of interchanges applied to A replaces aij = 1

by 0.

Theorem 6.1 (Ryser, [32, 33]) Let A be a (0, 1)-matrix of size m by n in A(R, S), then

the following are equivalent:

(i) A has an invariant position.

(ii) There exist integers k and l satisfying

0 ≤ k ≤ m 0 ≤ l ≤ n

such that tkl = 0 with (k, l) 6= (0, n), (m, 0).

(iii) There exist integers k and l satisfying

0 ≤ k ≤ m 0 ≤ l ≤ n

where (k, l) 6= (0, n), (m, 0) such that each of the positions in

{(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ l} is an invariant 1-position of A(R, S)

and each of the positions in {(i, j) : k + 1 ≤ i ≤ m, l + 1 ≤ j ≤ n}

is an invariant 0-position.

The equivalence of the statements (i), (ii) and (iii) had been proved by Ryser in [32, 33]

and also by Haber in [23].
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It follows from Theorem 6.1 that A(R, S) does not have any invariant positions if the

only zeros in the structure matrix T (R, S) are t0n and tm0. Otherwise, if there are other

zeros in T apart from t0n and tm0 then A(R, S) has at least one invariant position.

Example 6.2

Let

A =



1 1 1 0

1 1 0 0

1 0 1 0

0 0 0 1


.

So A ∈ A((3, 2, 2, 1), (3, 2, 2, 1)) and, as we can see, each entry of A associates with an

interchange (or a submatrix of type A1 or A2). We saw in Example 5.1 that the only

zeros in the structure matrix for A are t0,4 and t4,0. So, A has no invariant positions.

Moreover, as we briefly mentioned at the end of the previous chapter, it follows from

Theorem 6.1 that if tkl = 0 for non-negative integers k and l with (k, l) 6= (0, n), (m, 0),

then each matrix A ∈ A(R, S) has a decomposition of the form

A =

 Jk,l X

Y Om−k,n−l

 . (6.1)

Jk,l is of the specified size k × l (1 ≤ k ≤ m, 1 ≤ l ≤ n) with all entries as invariant 1’s

and Om−k,n−l is a (m− k)× (n− l) zero matrix.

Let us now consider our structure matrix T and how it reveals properties of the class

A(R, S). Let the 0’s in T occupy the positions

(0, n) = (i0, j0), (i1, j1), ..., (ip, jp) = (m, 0)

where

i0 ≤ i1 ≤ ... ≤ ip−1 ≤ ip, j0 ≥ j1 ≥ ... ≥ jp−1 ≥ jp,

and (it−1, jt−1) 6= (it, jt) for t = 1, 2, ..., p. In fact, each (it, jt) gives appropriate integers

k and l for the decomposition (6.1).
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Let

It = {it−1 + 1, it−1 + 2, ..., it} (t = 1, 2, ..., p)

and

Jt = {jt + 1, jt + 2, ..., jt−1} (t = 1, 2, ..., p).

Then I1, I2, ..., Ip are pairwise disjoint sets satisfying

I1 ∪ I2 ∪ ... ∪ Ip = {1, 2, ...,m}.

Similarly J1, J2, ..., Jp are pairwise disjoint sets satisfying

J1 ∪ J2 ∪ ... ∪ Jp = {1, 2, ..., n}.

One but not both of the sets in each pair It, Jt may be empty. So, we have

A[Ik, Jl] =

 J, if l > k

O, if k > l
(k, l = 1, 2, ..., t).

Let the matrix A[It, Jt] have row-sum vectorRt and column-sum vector St (t = 1, 2, ..., p).

Then since A[It, Jt] is in A(Rt, St), A(Rt, St) is non-empty and has no invariant positions,

and any invariant position of A(Rt, St) is also an invariant position of A(R, S). Thus, the

non-invariant positions of A(R, S) are precisely the positions occupied by the t matrices

A[I1, J1], A[I2, J2], ..., A[It, Jt].

For the case where the submatrices A[I1, J1], A[I2, J2], ..., A[It, Jt] are smallest possible;

that is each of them equal to 1 0

0 1

 or

0 1

1 0

 ,
we have ∣∣A(Ri, Si)

∣∣ = 2 for all i = {1, 2, ..., t}.

Hence,

|A(R, S)| =
t∏
i=1

∣∣A(Ri, Si)
∣∣ = 2t.
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Let each A[It, Jt] represents a (u, v;w, z)-interchange where It = {u, v} and Jt = {w, z}.

So, the set of entries {auw, auz, avw, avz} in A is a non-invariant set and by observation,

in the structure matrix T of A, we have tv,w−1 = 0 and tu−1,z = 0.

Example 6.3

For R = S = (3, 3, 1, 1), we have

T =



8 5 2 1 0

5 3 1 1 1

2 1 0 1 2

1 1 1 3 5

0 1 2 5 8


.

The 0’s in T are in positions (0, 4), (2, 2) and (4, 0). The pairs (It, Jt) both of whose sets

are non-empty:

(I1, J1) where I1 = {1, 2}, J1 = {3, 4}

and

(I2, J2) where I2 = {3, 4}, J2 = {1, 2}.

Thus, each matrix A in the class A((3, 3, 1, 1), (3, 3, 1, 1)) has the form

A =



1 1 ∗ ∗

1 1 ∗ ∗

∗ ∗ 0 0

∗ ∗ 0 0


where each of the submatrices A[{1, 2}, {3, 4}] = A[I1, J1] and A[{3, 4}, {1, 2}] = A[I2, J2]

are either of the form 1 0

0 1

 or

0 1

1 0

 .
There are 22 = 4 matrices in this class A((3, 3, 1, 1), (3, 3, 1, 1)).

Consider the non-invariant set A[{1, 2}, {3, 4}] = A[I1, J1], and let u = 1, v = 2, w = 3
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and z = 4. This implies that t2,2 = 0 and t0,4 = 0. Similarly by considering the non-

invariant set A[I2, J2], we have t4,0 = 0 and t2,2 = 0.

Now we take a look at the structure of matrices in A(R, S) where |A(R, S)| = 2 in light

of Theorem 4.6.

Theorem 6.4 Let R = (r1, r2, ..., rm) and S = (s1, s2, ..., sn) be two positive non-increasing

integral vectors, where m ≤ n and m,n > 2. Let A = [aij] ∈ A(R, S) with |A(R, S)| = 2.

Let A[{p, p+ 1; k, k + 1}] represents a (p, p+ 1; k, k + 1)-interchange in A where 1 ≤ p <

m, 1 ≤ k < n. Then the structure of A is as the following:

A =


1 1 M1

1 A[{p, p+ 1; k, k + 1}] 0

M2 0 0


where 1 is a matrix of 1’s, and 0 is a matrix of 0’s, and M1 and M2 are maximal.

Proof.

Obviously, from Theorem 4.6, matrix A contains exactly one (p, q; k, l)-interchange

where 1 ≤ p < q ≤ m, 1 ≤ k < l ≤ n. That is, eitherapk apl

aqk aql

 =

1 0

0 1

 ,
or apk apl

aqk aql

 =

0 1

1 0

 .
Now, let T = [tij] be the structure matrix for A.

Since R and S are non-increasing, it is apparent that q = p+ 1 and l = k + 1.

The non-invariant positions of A(R, S) are precisely the positions occupied by the

matrix A[{p, q; k, l}]. Hence, it follows from our discussion of non-invariant sets

that tq,k−1 = 0 = tp−1,l. So, from the combinatorial interpretation of T and
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since tp−1,l = 0, we can partition A as follows:

A =


1 1 ∗

∗ A[{p, q; k, l}] 0

∗ ∗ 0

 .
Similary, since tq,k−1 = 0, we have the following partitioning of A:

A =


1 ∗ ∗

1 A[{p, q; k, l}] ∗

∗ 0 0

 .

Combining the two ways of partitioning A above we have

A =


1 1 M1

1 A[{p, p+ 1; k, k + 1}] 0

M2 0 0

 .
Since A contains exactly one interchange, both M1 and M2 cannot be of the form1 0

0 1

 or

0 1

1 0

 ;

and by the property of invariant sets, there is no restriction on the entries of both

M1 and M2 to be only of one value (but they can be). Hence, we conclude that

they are maximal matrices. �

To conclude this section, it is worth noting that an invariant position gives a non-trivial

invariant set of cardinality one. Brualdi and Ross in [8] proved that if A(R, S) has an

invariant position then it has a non-trivial invariant set.



Chapter 7

Spectrum Of Sizes For A(R, S)

In this chapter, we show the following:

Theorem 7.1

Let k be a given positive integer. Then there exist R and S such that |A(R, S)| = k.

Beginning with k = 1; for any row sum vector R, let the column sum vector S be the

conjugate of R (that is, S = R∗), then |A(R, S)| = 1 and the only element of A(R, S)

is the Ferrers matrix of R as asserted by Theorem 4.5. For instance, if R = (2, 1) and

S = (2, 1), then there is only one matrix that can be uniquely reconstructed from R as

its row sum vector and S as its column sum vector:1 1

1 0

 .
We also have looked at the case where the set A(R, S) has exactly two elements. We

only need to construct a (0, 1)-matrix A with exactly one submatrix of type

A1 =

1 0

0 1

 or A2 =

0 1

1 0

 ,
but not both. In other words, |A(R, S)| = 2 when each of the matrices in A(R, S) con-

tains only one interchange exactly. Since we obtain A1 from A2 (or vice-versa) by exactly

one interchange, and their row and column sum vectors are both equal to (1, 1), we have

|A((1, 1), (1, 1))| = 2.
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Now, let A be a 2 × n (0, 1)-matrix with row sum vector R = (a, (n − a)) and col-

umn sum vector S = (1, 1, ..., 1), where a, n are positive integers (a ≥ 1; n ≥ 2). Since

each 1-entry in the first row of A corresponds to a 0-entry in the second row of A (and

vice-versa), the number of ways we can reconstruct A by the given R and S is the same

as the number of ways of selecting a (or n− a) elements from a set of n elements: n

a

 =
n!

a! · (n− a)!
=

 n

n− a

 .

Example 7.2

How many (0, 1)-matrices in the class A((2, 2), (1, 1, 1, 1))? Here we have n = 4 and

a = 2. So, since  4

2

 =
4!

2! · 2!
= 6,

we conclude that there are six 2 × 4 (0, 1)-matrices in the class A((2, 2), (1, 1, 1, 1)).

Here they are: 1 1 0 0

0 0 1 1

 ,
0 1 1 0

1 0 0 1

 ,
0 0 1 1

1 1 0 0

 ,
1 0 1 0

0 1 0 1

 ,
0 1 0 1

1 0 1 0

 ,
1 0 0 1

0 1 1 0

 .

It follows that, since

 k

1

 = k for k ≥ 2, there are k different ways of constructing a

2 × k (0, 1)-matrix with row sum vector (1, k − 1) and column sum vector (1, 1, ..., 1).

Hence, for any given integer k ≥ 2, we have |A((1, k − 1), (1, 1, ..., 1))| = k and thus

proven Theorem 7.1.
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Example 7.3

Let k = 5. There are five (0, 1)-matrices in the set A((1, 4), (1, 1, 1, 1, 1)) and they are:1 0 0 0 0

0 1 1 1 1

 ,
0 1 0 0 0

1 0 1 1 1

 ,
0 0 1 0 0

1 1 0 1 1

 ,
0 0 0 1 0

1 1 1 0 1

 ,
0 0 0 0 1

1 1 1 1 0

 .

A non-negative square matrix A = [aij] of order n is called doubly stochastic provided

each of its row and column sums equals 1:

n∑
j=1

aij = 1 (i = 1, 2, ..., n), and
n∑
i=1

aij = 1 (j = 1, 2, ..., n).

A doubly stochastic (0, 1)-matrix is known as a permutation matrix.

A permutation matrix of order n is therefore a matrix obtained by permuting the rows of

an n× n identity matrix according to some permutation of the numbers 1 to n. In other

words, a permutation matrix of order n represents a specific permutation of n elements.

Theorem 7.4

Let n be a given positive integer. Then there are n! permutation matrices of order n.

Proof.

We are trying to answer the question: How many different ways can we reconsruct

a permutation matrix of order n? For each row/column, we have n available

positions for our 1-entry. Once we decide on the position of the 1 in the first

row/column, the second row/column has now only n− 1 available positions for

its 1-entry. After deciding the position of the 1 for the second row/column, only

n− 2 available positions for the 1-entry of the third row/column. As we come to

the nth row/column, only one position left for the 1-entry.
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Evidently, what we are trying to do is to find out the number of ways of

permuting n elements. So, by multiplication rule, there are n! permutation

matrices of order n. �

Let A(n, k) denote the set of (0,1)-matrices of order n with exactly k 1’s in each row and

column. By letting an,k = |A(n, k)|, we have an,1 = an,n−1 = n!. In general, an,k = an,n−k

holds since a (0, 1)-matrix obviously has only two symbols as its entries (namely 0 and

1).

Example 7.5

By letting n = 3 and k = 1, there are 3! = 6 matrices in A(3, 1) and they are the

permutation matrices of order 3:
1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,


0 1 0

1 0 0

0 0 1

 ,


0 1 0

0 0 1

1 0 0

 ,


0 0 1

0 1 0

1 0 0

 ,


0 0 1

1 0 0

0 1 0

 .
Similarly, there are also 6 matrices in A(3, 2) (as we note n− k = 3− 1 = 2), and they

are obtained from the 6 matrices above by exchanging the zeros and the ones:
0 1 1

1 0 1

1 1 0

 ,


0 1 1

1 1 0

1 0 1

 ,


1 0 1

0 1 1

1 1 0

 ,


1 0 1

1 1 0

0 1 1

 ,


1 1 0

1 0 1

0 1 1

 ,


1 1 0

0 1 1

1 0 1

 .
So, we have a3,0 = a3,3 = 1, a3,1 = a3,2 = 3! = 6.

Moreover, for the case of n = 2, we have a2,0 = a2,2 = 1, a2,1 = 2! = 2.
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In the next chapter, we state the generating function for |A(R, S)|. Brualdi in Chapter

4 of [4] suggested that one can deduce a formula for an,2 and an,3 from such function,

building upon ideas presented in [1] and pages 235 and 236 of [12].



Chapter 8

Generating Function For |A(R, S)|

Our primary focus in this chapter is on the evaluation of the number of (0,1)-matrices

with prescribed row and column sum vectors R and S respectively. In particular, there

has been a considerable amount of study of integer matrices with a prescribed row and

column sum.

Let us assume A(R, S) to be normalized. Let x1, x2, ..., xm, y1, y2, ..., yn be m+n variables

with x = (x1, x2, ..., xm) and y = (y1, y2, ..., yn). By the Gale-Ryser Theorem of Chapter

3, |A(R, S)| 6= 0 if and only if the non-increasing rearrangement of S is majorized by the

conjugate R∗ of R. We can write the generating function for the numbers |A(R, S)| as

gm,n(x; y) = gm,n(x1, x2, ..., xm; y1, y2, ..., yn)

where

gm,n(x; y) =
∑
R,S

|A(R, S)|xr11 xr22 ...xrmm ys11 y
s2
2 ...y

sn
n .

The following theorem has been proved in [12] and in [41]. It is also implied with not

much details in Knuth’s derivation of identities of Littlewood [25] and is used in [19] and

[36] in showing a remarkable correspondence between (0, 1)-matrices and pairs of combi-

natorial constructs known as Young tableaux.
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Theorem 8.1 Let m and n be positive integers. Then

gm,n(x; y) =
m∏
i=1

n∏
j=1

(1 + xiyj).

Here, we follow Brualdi’s proof in [4].

Proof.

We have

m∏
i=1

n∏
j=1

(1 + xiyj) =
∑

{aij=0 or 1: 1≤i≤m, 1≤j≤n}

m∏
i=1

n∏
j=1

(xiyj)
aij (8.1)

where the summation extends over all 2mn (0, 1)-matrices A = [aij] of size m× n.

By expansion and simplification then collecting like terms, we see that the

coefficient of

xr11 x
r2
2 ...x

rm
m ys11 y

s2
2 ...y

sn
n

on the right side of (8.1) equals |A(R, S)|. �

Example 8.2

Let m = 2 = n with x = (x1, x2) and y = (y1, y2). We consider the complete set of 2× 2

matrices with entries restricted to {0, 1}; that is all the classes A(R, S) with R = (r1, r2)

and S = (s1, s2). There are 22×2 = 16 of them. So, our generating function for 2 × 2

(0, 1)-matrices is as follows:

g2,2(x; y) =
2∏
i=1

2∏
j=1

(1 + xiyj)

= (1 + x1y1)(1 + x1y2)(1 + x2y1)(1 + x2y2)

= (1 + x1y1 + x1y2 + x21y1y2)(1 + x2y1)(1 + x2y2)

= (1 + x1y1 + x1y2 + x2y1 + x21y1y2 + x1x2y
2
1 + x1x2y1y2 + x21x2y

2
1y2)(1 + x2y2)

= 1 + x1y1 + x1y2 + x2y1 + x21y1y2 + x1x2y
2
1 + x1x2y1y2 + x21x2y

2
1y2+

x2y2 + x1y1x2y2 + x1x2y
2
2 + x22y1y2 + x21x2y1y

2
2 + x1x

2
2y

2
1y2 + x1x

2
2y1y

2
2 + x21x

2
2y

2
1y

2
2.

and by collecting like terms, we have

g2,2(x; y) = 1 + x1y1 + x1y2 + x2y1 + x2y2 + 2(x1x2y1y2) + x21y1y2 + x1x2y
2
1 + x1x2y

2
2

+ x22y1y2 + x21x2y
2
1y2 + x21x2y1y

2
2 + x1x

2
2y

2
1y2 + x1x

2
2y1y

2
2 + x21x

2
2y

2
1y

2
2.
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Hence, by considering the indices and coefficient of each term, we conclude that

|A((0, 0), (0, 0))| = 1,

|A((1, 0), (1, 0))| = |A((1, 0), (0, 1))| = |A((0, 1), (1, 0))| = |A((0, 1), (0, 1))| = 1,

|A((1, 1), (1, 1))| = 2,

|A((2, 0), (1, 1))| = |A((1, 1), (2, 0))| = |A((1, 1), (0, 2))| = |A((0, 2), (1, 1))| = 1,

|A((2, 1), (2, 1))| = |A((2, 1), (1, 2))| = |A((1, 2), (2, 1))| = |A((1, 2), (1, 2))| = 1,

|A((2, 2), (2, 2))| = 1.

By replacing some of the terms (1 + xiyj) in (8.1) with a 1 or with xiyj’s we get the

generating function for the number of matrices in A(R, S) having 0’s and 1’s in prescribed

places.

Example 8.3

Let us consider the class A((2, 2, 1), (2, 2, 1)). In the expansion of the generating function,

we are looking for the different combination of xiyj (1 ≤ i, j ≤ 3) that will generate

the x21x
2
2x3y

2
1y

2
2y3-term. So, we are allowed to use x1 and x2 twice but x3 only once;

and similarly y1 and y2 are used twice with y3 only once. By replacing some of the

terms (1 + xiyj) in (8.1) with a 1 or with xiyj’s in corresponding to having 0’s and 1’s

in prescribed places, here are the different xiyj product combinations that will give an

x21x
2
2x3y

2
1y

2
2y3-term:

(x1y1)(x1y2)(x2y1)(x2y2)(x3y3),

(x1y1)(x1y2)(x2y1)(x2y3)(x3y2),

(x1y1)(x1y2)(x2y2)(x2y3)(x3y1),

(x1y1)(x1y3)(x2y1)(x2y2)(x3y2),

(x1y3)(x1y2)(x2y1)(x2y2)(x3y1).
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So, the coefficient of the x21x
2
2x3y

2
1y

2
2y3-term is 5, hence, |A((2, 2, 1), (2, 2, 1)| = 5.

Here are the five matrices in A((2, 2, 1), (2, 2, 1):
1 1 0

1 1 0

0 0 1

 ,


1 1 0

1 0 1

0 1 0

 ,


1 1 0

0 1 1

1 0 0

 ,


1 0 1

1 1 0

0 1 0

 ,


0 1 1

1 1 0

1 0 0

 .

The stated generating function gm,n(x; y) is exhaustive in giving the cardinality of the set

A(R, S) for all possible combinations of R and S of order m and n respectively. However,

the calculation is clearly cumbersome especially when m and n are very big. It is difficult

to evaluate the cardinality of A(R, S) for prescribed R and S by going through all of

the 2mn (0, 1)-matrices of size m × n. Nevertheless, gm,n(x; y) can be used in deriving

formulas for the cardinality of A(R, S) in special cases of specified R and S.

Recall, we defined an,k in the previous chapter as the number of (0,1)-matrices of or-

der n with exactly k 1’s in each row and column. Brualdi [4] evaluates an,2 in the next

corollary, based on ideas from [1] and [12, p. 235, 236].

Corollary 8.4 (Brualdi [4])

For n ≥ 2 we have

an,2 =
1

4n

n∑
j=0

(−1)j(2n− 2j)!j!

 n

j


2

2j.

Proof of the above corollary can be found in Section 4.1 of [4].
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Example 8.5

Let n = 4. Then

a4,2 =
1

44

4∑
j=0

(−1)j(2(4)− 2j)!j!

 4

j


2

2j

=
1

256
[8!− 6!(16)(2) + 4!(2)(36)(4)− 2(3!)(16)(8) + 4!(16)]

=
1

256
[23040]

= 90.

Thus, we have a4,0 = a4,4 = 1; a4,1 = a4,3 = 4! = 24; and a4,2 = 90.

In case of n = 5, we have

a5,2 =
1

45

5∑
j=0

(−1)j(2(5)− 2j)!j!

 5

j


2

2j

=
1

1024
[3628800− 2016000 + 576000− 115200 + 19200− 3840]

=
1

1024
[2088960]

= 2040.

Thus, we have a5,0 = a5,5 = 1; a5,1 = a5,4 = 5! = 120; and a5,2 = a5,3 = 2040.

Brualdi [4] also noted that Corollary 8.4 implies that the exponential-like generating

function

g(t) =
∑
n≥0

an,2
tn

n!2

satisfies

g(t) =
e−t/2√
1− t

.



Chapter 9

Conclusion

Our main aim in this thesis was to explore the cardinality of (0, 1)-matrix classes with

fixed row and column sums, that is |A(R, S)|. Our first task was to give a proof of the

Gale-Ryser Theorem, which describes a condition for A(R, S) to be non-empty based on

majorization. We gave a proof using the concept of some transfers together with differ-

ent ideas used in various proofs of the Gale-Ryser Theorem in the literature. We showed

the link between the Gale-Ryser Theorem and the result shown by Ford and Fulkerson,

which is based on the flows of network using the concept of a structure matrix. We also

classified the case where there is only one unique matrix in A(R, S).

The concept of interchanges shows that the class A(R, S) can have have more than one

matrix as its elements. We showed how the combinatorial interpretation of a structure

matrix T of a (0, 1)-matrix A precisely determines the non-invariant positions in A. This

aided us in exploring not only the number of matrices in A(R, S) but also their structure.

Ideally we would like to establish a formula for an,k with (2 < k ≤
⌊
n
2

⌋
). However,

this may not be possible; at least, without giving a function which overly intricate and

difficult to compute. It is known that the number of (0, 1)-matrices with m rows and n

columns uniquely reconstructible from their row and column sums are the poly-Bernoulli

numbers of negative index, B
(−n)
m ; see [3]. There is some interest, as a continuation of this
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thesis, to explore the relationship between the poly-Bernoulli formula and gm,n(x; y) the

generating function for the cardinality of A(R, S) in Chapter 8; since the former considers

a specific prescribed R and S while the later deals with all possible combinations of R and

S of order m and n respectively. Another possible area of continuation would be to write

programs that would assist in the process of vector-majorization, or even a program that

would take two vectors as R and S and determine if A(R, S) is non-empty which would

be a good foundation in working towards a program for the enumeration of (0, 1)-matrices.

Consider square matrices of even order. We conjecture the following:

Conjecture 9.1 For a positive integer m, let R and S be non-negative vectors of order

2m . Then |A(R, S)| is maximized when ri = m = sj (i, j = 1, 2, ..., 2m).

In other words, we conjecture that the number of matrices in A(R, S) is maximized when,

for each matrix A ∈ A(R, S), half of the entries of each line of A are ones and the other

half as zeros. How about the case where R and S are of order n where n is odd? Well,

in surveying the cases of n ∈ {2, 3, 4, 5} and observing all matrices of specified sizes, we

extend the above conjecture as follows:

Conjecture 9.2 Let R and S be non-negative vectors of order n with n a positive integer.

Then |A(R, S)| is maximized when ri =
⌊
n
2

⌋
= sj (i, j = 1, 2, ..., n).

Enumerating all n × n matrices for n ∈ {2, 3, 4, 5} by hand, together with examples we

have encountered in this thesis, the above conjecture is true when n ∈ {2, 3, 4, 5}. The list

of matrices becomes extremely enormous for large n, hence to explore these conjectures

further, we need to establish formulas of enumeration that are not as cumbersome as the

generating function of Chapter 8.

The main results that are new in this thesis are:

(1) A description of the structure of matrices in A(R, S) when |A(R, S)| = 2

(Theorem 6.4),

and
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(2) Showing that for each positive integer k, there exist row and column sum

vectors R and S such that |A(R, S)| = k

(Theorem 7.1).

We conclude with the following open question: For a given k, how small can R and

S be?
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