Ontological Quality Control in Large-scale, Applied Ontology Matching
Catherine Legg and Samuel Sarjant ([clegg,sarjant]@waikato.ac.nz)
The University of Waikato, Hamilton, New Zealand

Introduction
Many large-scale ontology mapping approaches rely on label matching and other relatively simple syntactic features. We offer a suite of partially overlapping ontology mapping heuristics which allows us to hypothesise matches and test them against the knowledge in our source ontology [1, 3].

Methodology
- Mappings are created via a stage-wise process.
- Each stage outputs one or more weighted results, where weight is roughly proportional to mapping confidence.
- The order of the process is governed by a priority queue.
- Beginning with an ontological concept, we employ three stages:
 - Ontology-Wikipedia mapping heuristics,
 - Wikipedia-Ontology mapping heuristics,
 - Consistency Checking heuristics.

Ontology-Wikipedia Mapping Heuristics

Title Matching: Return all articles with the same name as the concept (equally weighted).

Synonym Matching: Return all articles with anchor text (internal link text) equal to one of the concept’s synonyms. Weights are proportional to the frequency of links to the article.

Context-Related Synonym Matching: Like Synonym Matching, but uses a set of context articles composed from the concept’s ontological context (mapping context concepts to articles). Each output article weight is multiplied by relatedness — similarity of incoming and outgoing links [2].

Wikipedia-Ontology Mapping Heuristics

Title Matching: As above, but from article to concept.

Label Matching: Returns all concepts with the same name/synonym as the article’s incoming anchor text. Weight is proportional to the frequency of the anchor text.

Basketball Example

Consistency Checking Heuristics

- Consistency checking uses assertions extracted from the article as part of the mapping weight.
- E.g. “X is/was/are/were a/an/the Y” where Y can represent multiple weighted concepts (using the same mapping process to map article to concept).
- Using OpenCyc’s ontological disjointness information, the mapping’s weight is the proportion of consistent assertions.

For example:
- “Bill Laswell is an [[American|United States]] [[bassist]], [[record producer|producer]] and [[record label|label]] owner.”
- 75% of assertions are consistent:
 - BillLaswell is a UnitedStatesPerson, BassGuitarist, Producer.
 - ‘BillLaswell is a RecordCompany’ is rejected because a LivingThing cannot be a NonLivingThing.

Conclusions

- The algorithm identified ~55,000 mappings between the ontology (of ~180,000 concepts) and Wikipedia.
- 93% accuracy from a manual evaluation of 300 mappings.

Future Work

- The modular mapping process can easily integrate further mapping heuristics.
- Consistency checking is more effective when more information is extracted as consistent groups are more easily distinguished.
- We have developed a social ontology interface to incorporate user contributions and feedback (bit.ly/GRRBcP)

References