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Abstract

In this thesis I investigate the theoretical stochastic behaviour of a one-dimensional model of the

cerebral cortex, exposed to varying concentrations of a general anaesthetic agent. The model is

that of Steyn-Ross et al. (2003). Theirs is a continuum theory based on the electrical response of

a neural mass known as the macrocolum. The model predicts that as anaethetic concentration

is increased the cortex will undergo a sudden electrical phase transition corresponding to loss

of consciousness (LOC). Similarly, at return of consciousness (ROC) a second distinct phase

transition is predicted. Spatial variability is incorporated into the original homogeneous cortical

model of Steyn-Ross et al. (1999). This is done by including the possibility of spatial variation

in distant excitatory and inhibitory inputs. By modelling the cortex in this way, we hope to

gain an understanding of how the cortex functions, and how anaethestic agents “shut-down” the

brain.

I simulate the one-dimensional system numerically in order to verify analytical predictions.

Both analytical and numerical results show an increase in the coherence (spatial-correlation)

of the electrical activity along the one-dimensional rod on approach to both LOC and ROC.

Theory and simulations also show that the electrical fluctuations in the unconscious cortex

should have a larger correlation length than for the cortex in the conscious state, suggesting

that the unconscious state is the more ordered. I derive the theoretical power spectrum and

discuss some of its properties.

By expanding the model to include spatial variability, we discover the possibility of self-

organized structures forming spontaneously in the one-dimensional cortex. These “Turing” or

dissipative structures are stationary in time, showing giant DC voltage variations along the

cortical rod. Although the dissipative structures can from a rich variety of pseudo-periodic

patterns, the physiological significance of such stationary neural structures is not yet clear.
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Chapter 1

Introduction

In 1997 the Waikato cortical modelling group (Dr Moira Steyn-Ross, Dr Alistair Steyn-Ross

and Prof Jamie Sleigh) began developing a mean-field model for anaesthetia in the human

cerebral cortex. Their ambition was to craft a theory that describes the changes in electrical

activity that ocur in the cortex as a person is rendered anaesthetically unconscious. Their

model predicts that the cortex can only exist in either a highly disordered conscious state, or

a more ordered unconscious state. For an initially conscious patient, the model predicts that

as anaesthetic concentration is increased, a critical concentration will be reached at which the

cortex undergoes a sudden phase transition, from the conscious state to the unconscious state.

The loss of consciousness is sudden and not a gradual descent.

This predicted change in state is analogous to water freezing. When water is sufficiently

cooled it forms ice. The transition from liquid water to solid ice happens abruptly and, in

general, there is no well-defined intermediate state.

How anaesthetics “shut down” the brain is not well understood. To our knowledge the

Waikato model is the only theoretical physics-based theory of the cortex to include the effect of

anaethestics.

A rigorous model that could be used to accurately determine when a patient is unconscious

would be very beneficial to public health and well-being, for any procedures requiring general

anaesthetics.

Present-generation consciousness-monitoring devices can be inaccurate, reporting an awake

patient as unconscious. However, the drugs used to induce unconsciousness are often comple-

mented by muscle relaxant drugs designed to stop muscles “flinching” during surgery and have

the effect of paralyzing the body. Due to this paralyzing effect, an awake patient thought to be

unconscious cannot communicate the fact to the surgeon. Such a situation would undoubtedly

be very traumatic. Furthermore, anaesthetics are known to cause loss of memory for the period
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surrounding an operation. So, even if a person was aware during an operation they most likely

would “forget” the experience before being able to report it.

1.1 Thesis Overview

When the initial Waikato cortical model was developed, in order to simplify the equations, Steyn-

Ross et al. (1999) deliberately neglected the possibility of spatial variability among populations

of connected neurons by assuming a spatially homogeneous cortex. More recently Steyn-Ross

et al. have generalized their model to allow for spatial fluctuations within the cortex. The

aim of this thesis is to investigate the simplest case of spatial variability, corresponding to

a one-dimensional “line” of continuous macrocolumn “mass”. Initially I was given the task

of numerically simulating the one-dimensional system, in order to compare the analytical and

numerical spatial covariance curves. However, in doing so I discovered that the inclusion of space

could lead to the possibility of nonequilibrium structures forming. I also determined analytically

the power spectrum for the linearized one-dimensional system.

1.2 Thesis Structure

In Chapter 2 a brief review of the neurophysiology relevant to the model is given. The cerebral

cortex, which consists of billions of neurons is introduced. I discuss the electrical activity gen-

erated by a typical neuron, as well as how a neuron maintains a potential difference across its

membrane. How anaesthestics effect neurons is also reviewed.

Chapter 3 discusses how the physiological processes in the cortex can be mapped to mathemat-

ical formulas. The neural structure known as the macrocolumn is introduced, as well as the

cortical models of Liley et al. (1998, 1999, 2002) and Steyn-Ross et al. (1999). Some detail of

the construction of these models is given, and the identification of different states of the cortex

by Steyn-Ross et al. is shown.

In Chapter 4 the model of Steyn-Ross et al. (2003), which includes the possibility of spatial

variation in the cortex, is introduced. A chemical model named the Brusselator, which displays

similar behaviour to the cortical model is reviewed. The Brusselator predicts that a system forced

far from thermodyamic equilibrium can undergo a phase-change such that far-from-equilibrium

dissipative structures or patterns can form spontaneously. Such patterns have been observed in

a number of chemical reactions.
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Theoretical spatial covariance functions for the cortex are derived. These Predict an in-

crease in correlation length just prior to loss of consciousness, and againg just prior to return

of consciouness. The covariance function also predicts a general increase in spatial coherence

for the unconscious state relative to the conscious state. The stability of the cortical system is

investigated, leading to the prediction that spatial dissipative structures (Turing patterns) could

form.

Chapter 5 reviews the classic heat diffusion equation. This was done in order to investigate how

to discretize continuous spatial and temporal noise, and to serve as an intermediate step towards

stochastic simulation of the one-dimensional cortex.

In Chapter 6 I examine how to simulate numerically the continuous one-dimensional model of

the cortex. Three sets of difference equations are derived. These are used respectiviely to sim-

ulate (i) the linearized system, (ii) the nonlinear system near thermodynamic equilibrium and,

(iii) the nonlinear system far from thermodynamic equilibrium.

In Chapter 7 I investigate the theoretical predictions for the covariance function and test the

theory against numerical simulations. The stability of the linearised system is looked at and the

formation of dissipative structures (nonequilibrium steady-states) is demonstrated.

In chapter 8 I calculate the analytic spectra for the linearised one-dimensional equations. I

compare the simulation results with the analytic predictions, and explore a few pecularities that

arise in the cortical power spectrum.

1.3 Original Work

Chapter 1 is a summary of well-documented cortical processes. Chapter 2 is a summary of

the work of Liley et al. (1998, 1999, 2002) and Steyn-Ross et al. (1999), containing one piece

of original work showing that the area of the adiabatic PSP is identical to that for the full-

equations. Chapter 4 is a review of the work done by Chaturvedi et al. (1977) and Steyn-Ross

et al. (2003), with a small original contribution: I developed a method for linearizing systems

with a Laplacian term, and apply this analysis to the Brusselator (for which I derived the

spatial homogeneous steady-state) and also to the cortical model. I also approach the stability

analysis differently to Steyn-Ross et al. (2003). Chapter 5 is a summary of the features of the

diffusion equation. I wrote the code used, and also investigated driving the system with noise.
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Via personnal communication with Alistair Steyn-Ross and Lara Wilcocks, I determined how

to accurately model spatio-temporal white-noise. The numerical schemes derived in Chapter 6

are original with me, although motivated by the methods of Wilcocks (2001). The Matlab

codes used here are a combination of original code plus code written by Steyn-Ross (2002)

and Wilcocks (2001). The root-finding algorithms of Steyn-Ross were used to calculate the

homogeneous steady-states of the cortex, while Wilcocks’ code was almost completely rewritten

to include spatial variability. The sections showing how to avoid negative subcortical inputs

and how to discretely approximate spatio-temporal white-noise is a generalization, to include

space, of the work done by Steyn-Ross (2002). The comparisons between numerical data and

theoretical predictions in Chapter 7 is completely original with me. Likewise, the analysis of the

analytical predictions is original work. Chapter 8 is completely original, while being based on

similar work done by Wilcocks (2001).



Chapter 2

Neurophysiology

2.1 The Cerebral Cortex

The human brain is one of the largest organs in the body (Tortora and Grabowski (1996)). It

consists of four principal parts: the brain stem, cerebellum, diencephalon, and the cerebrum

(the largest part). A 1–4 mm layer of grey matter known as the cerebral cortex makes up the

external layer of the cerebrum. The cerebral cortex contains billions of neurons and is thought to

be involved in many of the brain’s complicated processes such as memory, awareness, judgement,

vision and consciousness.

A typical neuron (see Fig. 2.1) consists of a cell body (the soma), dendrites and an axon. The

dendrites are usually short, highly branched structures that probe outwards from the cell body.

The primary role of a dendrite is to sample its environment, receiving inputs from surrounding

neurons. Axons are long, thin cylindrical structures that extend out from the cell body and end

in a branched configuration. Each neuron has a single axon that sends out information (nerve

pulses) from the cell body into the surrounding neural mass.

Neurons interact with each other via electrical and chemical signals. The fluid contained

within a neuron’s soma (intracellular fluid) has different concentrations of ionic species com-

pared to the extracellular fluid surrounding the neuron. This ionic concentration difference

causes a potential difference to be generated across a neuron’s membrane. When measuring

the transmembrane voltage, it is common practice to use the extracellular ionic “sea” as the

reference point defining zero potential. When the voltage difference across a neuron’s membrane

rises above (becomes more positive than) a threshold value (approximately −60 mV), the neuron

generates a pulse of voltage (it fires) called an action potential. After the neuron fires, it quickly

returns to its resting potential (∼ −70 mV). The action potential travels along the neuron’s

axon, which connects to other neurons within the cerebral cortex. These connections, known



6 Neurophysiology

Figure 2.1: Diagram showing a “white matter” neuron, consisting of a soma with dendrite and axon
extensions. An action potential, generated in the presynaptic neuron, propagates down the axon until
it reaches the end of one of the axon’s branches. At this point neurotransmitters are released into the
synaptic gap, causing ion gates to be opened in the postsynaptic neuron. Note, the “white matter”
neuron shown here has a fatty coat (myelin) surrounding the axon, while a cerebral cortex or “grey
matter” neuron lacks this feature. [Source: http://www.pfizer.com/brain/dlgame.html]
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as synapses, are located at the junctions between axon and dendrite, axon and soma, and axon

and axon (Tortora and Grabowski (1996)).

Depending on the type of presynaptic neuron, its firing can have the effect of either hyper-

polarising or depolarising the postsynaptic neuron. Hyperpolarisation occurs when an input

potential makes the membrane more negative (less likely to fire), and depolarisation occurs

when a potential input makes the membrane less negative (more likely to fire). It is believed

the cerebral cortex consists of 85% depolarising (excitatory) neurons and 15% hyperpolarising

(inhibitory) neurons (Braitenberg and Schüz (1991)). A typical neuron receives inputs from

hundreds of neurons throughout the cortex. The summation of all of these synaptic inputs at a

given instant determines whether or not a given neuron will fire.

Neurons in the cerebral cortex communicate with each other by electrochemical impulses

passed from one neuron to another at a chemical synapse. At a chemical synapse the two mem-

branes are very close together but do not touch. This gap is known as a synaptic cleft. The

action potential cannot jump this gap but somehow needs to be relayed to the postsynaptic

neuron. This is achieved by chemicals known as neurotransmitters. When the electrical pulse

from the presynaptic neuron reaches the synaptic cleft, the signalling neuron releases a neuro-

transmitter that diffuses across the gap and acts on the receptors of the postsynaptic neuron

(see Fig. 2.1). The received neurotransmitters cause a postsynaptic potential that depolarises

(produces an excitatory postsynaptic potential at) or hyperpolarises (produces an inhibitory

postsynaptic potential at) the receiving neuron. The type of potential generated depends on the

type of presynaptic neuron. The neurotransmitters act by opening specific gated ion channels,

allowing selected ions to diffuse across the membrane.

2.2 Resting and Nernst Potential

The four most important ionic species in a neuron’s intracellular and extracellular fluid are:

sodium (Na+), potassium (K+), chloride (Cl−) and calcium (Ca2+). Neurons are said to be

at rest if they are not receiving any stimuli from other neurons. A neuron at rest has a non-

zero membrane potential due to the intracellular and extracellular fluid containing different

concentrations of ions.

The cell membrane is permeable to ions. Of importance here is that the permeability is

different for different ions. The permeability of K+ is 50 to 100 times greater than that of Na+,

for example. Relative to the extracellular fluid, the intracellular fluid has a excess of K+ and a
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Figure 2.2: At a chemical synapse an action potential causes the release of neurotransmitters that bind
to the receptors of the postsynaptic neuron [From Tortora and Grabowski (1996)]



2.3 The Cerebral Cortex and Anaesthetics 9

deficit of Na+. If potassium ions diffuse out of the cell due to the chemical gradient, the interior

of the of the cell will become more negative, eventually causing K+ to be drawn back into the

cell. If the membrane was only permeable to potassium, an internal membrane potential of

−90 mV (relative to the extracellular ionic sea) would just balance the concentration difference.

This is known as the potassium equilibrium potential (or potassium Nernst potential).

As a neuron’s membrane is permeable to Na+, K+ and Cl− ions, if the ionic concentration

difference between the extra- and intra-cellular fluid were not maintained, the electrochemical

gradients would eventually run down. In order to maintain the ionic concentration imbalance,

sodium–potassium pumps remove sodium as fast as it enters the intracellular fluid and at the

same time brings in potassium (for every three Na+ ions expelled, two K+ ions are brought in).

Using the ionic concentration differences, the relative Nernst potentials, and correct permeability

factor, the resting potential can be calculated to be approximately −70 mV (Steyn-Ross (2002)).

This value describes the “average” neuron, whereas in reality the resting membrane potential

for an individual neuron could lie anywhere in the range −40 to −90 mV.

2.3 The Cerebral Cortex and Anaesthetics

As well as the membrane being permeable to certain ions, it contains gated channels which open

and close in response to neurotransmitters. An inhibitory neurotransmitter, known as GABA

(gamma aminobutyric acid), has the effect of opening chloride channels, allowing an influx of Cl−

ions thereby hyperpolarising the postsynaptic neuron. It is thought that anaesthetics work by

increasing the duration of the chloride gate opening (Franks and Lieb (1997)). This means that

postsynaptic neurons will be hyperpolarised for longer, and hence less likely to fire. Evidently,

by reducing the number of neurons firing in the cerebral cortex, an anaesthetist is able to induce

a state of unconsciousness in the patient.





Chapter 3

Cortical Modelling

3.1 The Macrocolumn

The cerebral cortex contains billions of neurons that control consciousness and other vital func-

tions of the human brain. Modelling the electrical processes of every neuron in the cortex would

be an impossible task. It is believed that neurons in the cortex operate with a certain degree

of cooperation: groups of closely-spaced neurons (neural masses) act in a cooperative and or-

ganized fashion. Using this assumption the brain is often modelled using mean-field theories.

Mean-field theories model neural masses as single entities whose properties are determined from

the spatial average of all the neurons within the mass.

The mean-field approach has been used for the past 50 years to model the electrical behaviour

of the cerebral cortex: Beurle (1956); Wilson and Cowan (1972, 1973); Freeman (1975); Nunez

(1974, 1981); Rotterdam et al. (1982); Wright and Liley (1996); Robinson et al. (1997, 1998);

Jirsa and Haken (1996, 1997); Steyn-Ross et al. (1999).

Throughout this thesis we make use of a mean-field theory that refers to the electrical activity

of a neural mass known as a macrocolumn. A macrocolumn is a cylindrical column of organized

excitatory and inhibitory neural cells acting cooperatively inside the cortex. A macrocolumn has

a diameter of ∼ 0.3–1 mm and contains 40, 000–100, 000 neurons. Excitatory (pyramidal) cells

make up ∼ 85% of the total number of neurons (Braitenberg and Schüz (1991)). A schematic

representation of a macrocolumn is shown in Fig. 3.1.

3.2 The Cerebral Cortex and the EEG

The electrical activity in the cerebral cortex can be indirectly measured by electrodes placed

on the scalp. The data recording is called an electroencephalogram (EEG). This EEG signal

originates from electrical activity generated from the longitudinal flow of current that arises due

to the particular structure of the excitatory neurons within macrocolumns of the cerebral cortex.
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Figure 3.1: Schematic representation of a macrocolumn. Triangles are excitatory neural cells, while
circles represent inhibitory neural cells. [From Steyn-Ross et al. (1999)]

The structure of the excitatory and the inhibitory neurons is fundamentally different (see

Fig. 3.2; an inter-neuron is a type of inhibitory neuron). Excitatory neurons have long parallel

dendrites (see Fig. 3.3) that align perpendicular to the surface of the cortex and co-axial with the

macrocolumn, so the potential that arises at the cortical surface, due to the excitatory synaptic

activity, can be approximated by a current dipole term.

In contrast, inhibitory neurons are smaller and have their dendrites extending out with an

approximately spherical distribution. This spherical symmetry leads to a much smaller dipole

term, and hence the inhibitory neuron’s field at the cortical surface is vanishingly small. Because

of these factors, the local field potential at the cortical surface, and hence the scalp EEG, is

proportional to the spatially-averaged soma membrane potential of the excitatory neurons in

the cortex (Liley et al. (2002)).

By modelling the fluctuations of the excitatory membrane potential, we can make compar-

isons between theory and the experimentally acquired EEG. In order to understand how a model
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Figure 3.2: Photomicrograph of a Golgi stained slice of a cat’s cerebral cortex. The Golgi preparation
randomly stains 1 − 2 percent of the neurons in a slice of neural mass. If all the neurons were stained
it would be impossible to make out individual neurons. This photomicrograph shows the structural
difference between a pyramidal (excitatory) and an inter- (inhibitory) neuron. Pyramidal nerve cells
have long dendrites that are aligned axial to the cortical surface while the inter-neural cell’s dendrites are
randomly distributed with approximate spherical symmetry. [Source: http://www.medinfo.ufl.edu/
year1/neurosci/histo/]

for the cortex is derived, I will follow Steyn-Ross (2002) in reviewing how the modelling of a

single neuron can be scaled up to give a mean-field theory describing populations of cooperating

neurons.

3.3 Neural Circuits

A neuron can be modelled by an equivalent circuit as follows: The constant flow of ions between

a neuron’s extracelluar and intracelluar fluid can be modelled as a battery; the membrane

can be modelled via variable conductances and a capacitor. These variable conductances take

into account the stimulated opening and closing of gated ion channels. Hodgkin and Huxley

(1952) used the equivalent circuit of Fig. 3.4 to model the ion channels within a single neuron

(Tuckwell (1988a)). Because their equations accurately described the formation of a neuron’s

action potential, Hogkin and Huxley were awarded a Nobel prize in 1963 for their work.
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Figure 3.3: A Golgi stained slice of cortex showing how dendrites of excitatory neurons are aligned
parallel to each other. [From: http://www.anat.ucl.ac.uk/research/clarke-group/gallery.html]

Hogkin and Huxely modelled the electrical dynamics of a single neuron. In contrast, the

model investigated in this thesis uses a mean-field approach. The starting point is the mean-field

theory developed by Liley et al. (1998, 1999, 2002) that attempts to model the EEG generated by

millons of neurons contained within the cerebral cortex. Liley et al. use a mean-field picture that

describes the fluctuating potential of populations of excitatory and inhibitory neurons contained

within a macrocolumn. Because the Liley “neurons” are spatial averages, it would not be sensible
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Figure 3.4: Hodgkin and Huxl ey equivalent circuit of a neuron, used to model the formation of
an action potential. The gNa and gK variable conductances are voltage- and time-dependent, while the
gCl conductance is fixed. When a neuron fires, voltage-gated sodium channels open, increasing sodium
conductance and inward sodium current, which depolarizes the membrane. After a delay, potassium
channels begin to open, and, at the same time, sodium channels close. The outwards flow of potassium
ions restores the membrane to its resting potential and the potassium channels close. [Source of graphic:
Steyn-Ross (2002)]

for these “neurons” to fire (produce a grossly-coordinated action potential). Of note here is that

action potentials are never seen in scalp-measured EEGs. This is because action potentials have

very fast rise and fall times that are strongly low-passed filtered by cerebrospinal fluid, skull,

and scalp tissue that lies between the brain surface and the scalp electrode (Steyn-Ross (2002)).

As the Liley “neurons” never fire, we can approach them as generalizations of the Tuckwell

subthreshold neuron (Tuckwell (1988b)).

Tuckwell produces an equivalent circuit of a subthreshold neuron by modelling a resting

neuron coupled with synaptic inputs. For the resting neuron, its sodium, chloride, and potassium

batteries, and their associated conductances, are replaced by a single battery Vrest in series with

a constant resting conductance grest (not variable as the neuron never fires). For simplicity it is

assumed that there are only two ion species involved in mediating the synaptic inputs, one for the

excitatory inputs, and another for the inhibitory inputs. Each synaptic input is then modelled

by a synaptic reversal potential (set equal to the Nernst potential of the relevant ion), and a

variable conductance. The circuit for the two Tuckwell neurons, representing Liley’s population

average excitatory and inhibitory neurons appears in Fig. (3.5).
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Figure 3.5: Equivalent circuit for the (a) excitatory and (b) inhibitory neural populations modelling the
macrocolumn of Fig. 3.1. This is the Liley generalization of the Tuckwell subthreshold neuron. [Source:
Steyn-Ross (2002)].

The equations of motion for he,i in Fig. 3.5 are,

Ce
dhe
dt

= (hrev
e − he)gee + (hrev

i − he)gie + (hrest
e − he)grest

e (3.1)

Ci
dhi
dt

= (hrev
e − hi)gei + (hrev

i − hi)gii + (hrest
i − hi)grest

i (3.2)

where the variables are defined as,

he, hi excitatory and inhibitory membrane voltages

hrev
e excitatory reversal potential = +45 mV

hrev
i inhibitory reversal potential = −90 mV

hrest
e , hrest

i resting potential = −70 mV

Ce, Ci membrane capacitance

gee, gie conductance for excitatory-reversal battery

gei, gii conductance for inhibitory-reversal battery

grest
e , grest

i conductance for resting-potential battery

In the absence of synaptic inputs, a pair of membrane time-constants can be defined,

τe = Ce/g
rest
e (3.3)

τi = Ci/g
rest
i (3.4)
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The time-constants defined in Eqs. (3.3–3.4) give the time for a perturbation in he,i to decay

back to the resting potential hrest
e,i . With synaptic inputs coupled in, these time-“constants”

will be approximately constant or will become membrane-voltage dependent, depending on the

frequency of the synaptic events.

Following Liley, τe and τi are assumed to be constant. If we divide Eqs. (3.1–3.2) through

by grest
e , grest

i and rearrange, we obtain,

τe
dhe
dt

= (hrest
e − he) + (hrev

e − he)
gee
grest
e

+ (hrev
i − he)

gie
grest
e

(3.5)

τi
dhi
dt

= (hrest
i − hi) + (hrev

e − hi)
gei
grest
i

+ (hrev
i − hi)

gii
grest
i

(3.6)

These equations of motion are essentially the same as the first two equations in the Liley set
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Figure 3.6: Equivalent circuit for the Liley macrocolumn with local feedbacks explicitly shown. The
excitatory and inhibitory output voltages he,i are coupled back to the four gjk synaptic input conductances
via a pair of nonlinear voltage-to-spike-rate converters by the Se(he) (lower) and Si(hi) (upper) triangles.
The four Nβ

jk boxes are constant multiplicative scale-factors that represent the number of local inter-
connections between the excitatory and inhibitory populations within the macrocolumn. All possible
local feedbacks are allowed: e → e, e → i, i → e, i → i. [Source: Steyn-Ross (2002)]
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Eq. (3.7) (introduced shortly). For example, Liley uses the product ψee(he)Iee(he) to represent

the excitatory synaptic input to an excitatory “neuron”. Here, ψee(he) is a weighting factor and

Iee(he) is the synaptic input voltage. Writing ψee(he)Iee(he) out in full, we have,

ψee(he)Iee(he) =
hrev
e − he

|hrev
e − hrest

e |Iee(he)

= (hrev
e − he)

Iee(he)
|hrev

e − hrest
e |

= (hrev
e − he)

gee(he)
greste

Liley has used the fact that an incremental change in a synaptic conductance gjk is directly

proportional to the resulting change in the soma voltage, where the change in soma voltage is

determined by the relevant synaptic input.

The two circuits in Fig. 3.5 are strongly coupled. In the Liley model there are only two

“neurons” per macrocolumn. A macrocolumn consists of 40000-100000 neurons and has various

neural connections, as shown in Fig. 3.1. In order to include the short-range connections,

Liley includes feedback terms in the equivalent neural circuits. The feedback term models the

spatially-averaged effect of short-range neural activity arriving at the synaptic input receptors.

This term is calculated using an idea from Wilson and Cowan (1972): that there exists a

nonlinear sigmoidal (Eq. 3.23) mapping from soma voltage (input) to average firing rate (output).

Figure 3.6 shows how the excitatory and inhibitory “neurons” are coupled together via feedback

terms.

Liley adds subcortical spike inputs, then links macrocolumns together via long-range (cortico-

cortical) connections. A lumped equivalent circuit for the full Liley equations is shown in Fig. 3.7.

The equations of motion for the Liley model are described in the following section.
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(reversal and resting) have not being included. The complete schematic would also show independent pjk
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(2002)]
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3.4 The Liley Equations

The model studied in this thesis is the Steyn-Ross et al. (1999) adaption of the Liley et al. (1999)

cortical equations. The Liley equations are one-dimensional and use mean-field theory in order

to describe the fluctuations of the excitatory and inhibitory soma voltage. They model the time

evolution of the soma voltages and synaptic inputs illustrated in Fig. 3.7, and will be referred

to as the Liley equations throughout the rest of this thesis. The Liley equations consist of the

following eight coupled differential equations:

τe
∂he
∂t

= (hrest
e − he) + ψee(he)Iee(he) + ψie(he)Iie(hi) (3.7)

τi
∂hi
∂t

= (hrest
i − hi) + ψei(hi)Iei(he) + ψii(hi)Iii(hi) (3.8)

(
∂

∂t
+ γe

)2

Iee(he) = [Nβ
eeSe(he) + φe(he) + pee]Geγee (3.9)

(
∂

∂t
+ γe

)2

Iei(he) = [Nβ
eiSe(he) + φi(he) + pei]Geγee (3.10)

(
∂

∂t
+ γi

)2

Iie(hi) = [Nβ
ieSi(hi) + pie]Giγie (3.11)

(
∂

∂t
+ γi

)2

Iii(hi) = [Nβ
iiSi(hi) + pii]Giγie (3.12)

[(
∂

∂t
+ v̄Λee

)2

− v̄2 ∂2

∂x2

]
φe(he) = v̄ΛeeN

α
ee

(
∂

∂t
+ v̄Λee

)
Se(he) (3.13)

[(
∂

∂t
+ v̄Λei

)2

− v̄2 ∂2

∂x2

]
φi(he) = v̄ΛeiN

α
ei

(
∂

∂t
+ v̄Λei

)
Se(he) (3.14)

The values and definitions of the parameters of the Liley equations are listed in Table 3.1. The

aim of the Liley equations is to reproduce the scalp-measured EEG generated by macrocolumns

within the cerebral cortex. Each Liley macrocolumn consists of two “neurons” whose properties

represent the spatial average of the inhibitory and excitatory neurons within the macrocolumn.
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Table 3.1: Symbol definitions and model constants for the Liley equations (Steyn-Ross et al. (2001)).
Here, the maximum spike rate Smax

e,i has been lowered from 1000 (ms)−1 to 100 (ms)−1, to better represent
the cortical physiology.

Symbol Description Value Unit

e, i (as subscript) excitatory, inhibitory cell populations
he,i population mean soma voltage mV
τe,i membrane time constant 0.040, 0.040 s
hrest

e,i cell resting potential −70, −70 mV
hrev

e,i cell reversal potential (Nernst potential) 45, −90 mV
Iee,ie total e → e, i → e “current” input to excitatory synapses mV
Iei,ii total e → i, i → i “current” input to inhibitory synapses mV

ψjk (j,k∈{e,i}) weighting factors for the Ijk inputs
pee,ie exogenous (subcortical) spike input to e population 1100, 1600 s−1

pei,ii exogenous (subcortical) spike input to i population 1600, 1100 s−1

φe,i long-range (cortico-cortical) spike input to e, i populations s−1

Λee,ei characteristic cortico-cortical inverse-length scale 0.40, 0.65 (cm)−1

EPSP, IPSP excitatory, inhibitory post-synaptic potential mV
γe,i neurotransmitter rate constant for EPSP, IPSP 300, 65 s−1

Ge,i peak amplitude of EPSP, IPSP 0.18, 0.37 mV
e (e.g., Eqs (3.9–3.12)) base of natural logarithms 2.71828...

Nβ
ee,ei total number of local e → e, e → i synaptic connections 3034, 3034

Nβ
ie,ii total number of local i → e, i → i synaptic connections 536, 536

Nα
ee,ei total number of synaptic connections from distant

e-populations 4000, 2000
v̄ mean axonal conduction speed 700 cm s−1

Se(he), Si(hi) sigmoid function mapping soma voltage to firing rate s−1

Smax
e , Smax

i maximum value for sigmoid function 100, 100 s−1

θe,i inflexion-point voltage for sigmoid function −60, −60 mV
ge,i sigmoid slope at inflexion point 0.28, 0.14 (mV)−1

The first two equations of the Liley set,

τe
∂he
∂t

= (hrest
e − he) + ψee(he)Iee(he) + ψie(he)Iie(hi) (3.15)

τi
∂hi
∂t

= (hrest
i − hi) + ψei(hi)Iei(he) + ψii(hi)Iii(hi) (3.16)

describe the time-course of the excitatory (he) and inhibitory (hi) soma voltages. Liley uses a

double indexing scheme to indicate the sense of “flow” or influence. For example, Iie(hi) is read

as the voltage contribution, from the mass-averaged inhibitory neuron to the mass-averaged

excitatory neuron. ψie(he) is a factor, dependent on the voltage at the receiving neuron, which

moderates this i → e input (shortly to be explained). On the right-hand side of Eqs. (3.15–

3.16), the first two terms represent an exponential decay back to the resting potential of the
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soma membrane (−70 mV). The time-constant for this decay is given by τe,i. The next two

terms model perturbations away from the resting potential due to synaptic activity.

Depending on the potential or “state” of the membrane, the effect of synaptic inputs will

vary. Ijk(j, k ∈ {e, i}) represents the total input to the relative synapse (which is always positive)

and the corresponding ψjk term modulates its effectiveness and determines its sign. The ψjk

terms are dimensionless scale factors defined as,

ψee(he) =
hrev
e − he

|hrev
e − hrest

e | , ψei(hi) =
hrev
e − hi

|hrev
e − hrest

i | (3.17)

ψie(he) =
hrev
i − he

|hrev
i − hrest

e | , ψii(hi) =
hrev
i − hi

|hrev
i − hrest

i | (3.18)

These definitions take into account the fact that the magnitude of the post-synaptic poten-

tial depends on the present voltage state of the neuron, and also the fact that inhibition and

excitation are mediated by different ionic species and hence have different reversal potentials

(hrev
e = +45 mV, the sodium reversal potential; hrev

i = −90 mV, the potassium reversal poten-

tial). The weighting factors are arranged such that if a neuron is highly depolarized it is easier

to hyperpolarize and vice-versa. If a neuron’s soma potential exceeds hrev
e then all four weights

have an inhibitory or hyperpolarising effect. On the other hand, if a neuron’s soma potential

falls below hrev
i all the weights have an excitatory, depolarising effect (Steyn-Ross (2002)).

The time-evolution of the four synaptic voltage inputs Ijk are given by

(
∂

∂t
+ γe

)2

Iee(he) = [Nβ
eeSe(he) + φe(he) + pee]Geγee (3.19)

(
∂

∂t
+ γe

)2

Iei(he) = [Nβ
eiSe(he) + φi(he) + pei]Geγee (3.20)

(
∂

∂t
+ γi

)2

Iie(hi) = [Nβ
ieSi(hi) + pie]Giγie (3.21)

(
∂

∂t
+ γi

)2

Iii(hi) = [Nβ
iiSi(hi) + pii]Giγie (3.22)

The first pair of equations model the time-evolution of the excitatory postsynaptic potentials

(EPSP) induced by synaptic flux into the excitatory and inhibitory postsynaptic neurons respec-

tively; the second pair model the time-evolution of the inhibitory postsynaptic potentials (IPSP)
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induced in the excitatory amd inhibitory receiving neuron. The terms on the right sum to give

the total presynaptic input. Sources of the presynaptic potential are: local excitatory feedback

within the macrocolumn (Nβ
eeSe(he) in Eq. (3.19)), excitatory input from distant macrocolumns

(φe(he)), and exogenous (subcortical) spike inputs (pee). As all distant macrocolumn input is

believed to be excitatory, the time evolution of the postsynaptic potential within inhibitory

neurons (Eq. (3.21 and 3.22)) do not contain this term. Local feedback within the macrocolumn

is modelled via a Nβ
jkSj(hj) term. Nβ

jk is the total number of local connections, and Sj(hj) are

sigmoids which model the output pulse rate of a homogeneous neural mass in response to a

mean field of he, hi,

Se(he) =
S

max
e

1 + exp(−ge(he − θe))
, Si(hi) =

S
max
i

1 + exp(−gi(hi − θi))
(3.23)

This sigmoid definition comes about by considering a single neuron’s firing dependence. As

stated earlier, neurons have a threshold voltage, above which they fire action potentials. For an

“ideal” neuron, one could write the firing rate in terms of a Heaviside function,

H(θj) =


0 for θj < −60 mV

1 for θj > −60 mV
(3.24)

The mean-field approach has the effect of “smearing” this pure step function so that the

threshold voltage is mapped to the sigmoid inflection point θj = −60 mV. For small values

of average soma potential, the number of active neurons will be low (low firing rate). As the

soma potential becomes less negative, firing rate increases rapidly, eventually levelling off at a

maximum value (this is shown in Fig. 3.8).

Liley selected the form of Eq. (3.19), in order that the Green’s function (impulse response)

for the DE is,

I(t) = γte1−γt (3.25)

This models the postsynaptic potential which has a rapid rise to a maximum value followed by a

slow decay back to zero (Fig. 3.9). Eq. (3.25) gives a good approximation of the experimentally-

observed form of the postsynaptic potential (Tuckwell (1988a)).
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Figure 3.8: Sigmoid functions relating average firing rate to soma potential. See Eq. (3.23)

The last two equations of the Liley set,

[(
∂

∂t
+ v̄Λee

)
− v̄2 ∂2

∂x2

]
φe(he) = v̄ΛeeN

α
ee

(
∂

∂t
+ v̄Λee

)
Se(he) (3.26)

[(
∂

∂t
+ v̄Λei

)2

− v̄2 ∂2

∂x2

]
φi(he) = v̄ΛeiN

α
ei

(
∂

∂t
+ v̄Λei

)
Se(he) (3.27)

are a form of one-dimensional wave equation that describe the long-distance macrocolumn con-

tributions to the population EPSP and IPSP events. The number of long-range e → e cortio-

cortical connections is given by Nα
ee, and the e → i connections by Nα

ei. These connections are

assumed to drop-off exponentially in space, with the characteristic cortico-cortical inverse-length

scales given by Λee and Λei (see Table 3.1) . Voltage impulses travel along the cortico-cortical

axons with an average conduction speed of v̄.

Figure 3.7 illustrates how the Liley equations model the connections and feedbacks of a

one-dimensional chain of macrocolumns. The bulk of this thesis looks at a one-dimensional

stochastic cortical model of the cerebral cortex. Before this 1-D model is examined, the Steyn-

Ross spatially homogeneous model (Steyn-Ross et al. (1999)) will be reviewed in order to show
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Figure 3.9: The time-evolution of a IPSP post-synaptic potential as described by Eq. (3.25). For
the solid line the default value for the IPSP rate-constant γi (refer to Table 3.1) was used, while for the
dashed line γi was altered to include an anaesthetic effect of λGABA = 1.3 (see Eq. (3.28).

how different states of consciousness can arise. The 1-D model is the next step, in which spatial

homogeneity is not assumed.

3.5 The Steyn-Ross Model

The aim of the Steyn-Ross et al. (1999) theory was to create a model that predicts how the

brain reacts to general anaesthetic. Their starting point was the spatially homogeneous form

of the Liley equations. After including a term for anaesthetic effect, they calculated the long-

time limiting values for soma voltage, and showed that only certain stable steady-states were

available to the anaesthetized macrocolumn. Also, by using an “adiabatic” approximation Steyn-

Ross et al. (1999) were able to reduce the Liley equations from a set of eight partial differential

equations, to a single pair of coupled ordinary differential equations in he and hi. Stochastic

subcortical terms were then included to model the fluctuations seen in an EEG. The stability

analysis of the steady-states indicates that, as anaesthetic concentration is increased, there must

occur an abrupt change of state at the point of transition into unconsciousness. The steady-states
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also show a hysteresis effect: A person will regain consciousness at a lower level of anaesthetic

than that at which they fell unconscious.

With these simplifying approximations, all information about the time evolution of the post-

synaptic potentials and the spatial changes in the long-range (cortico-cortical) activity is dis-

carded. As consciousness is a bulk property (it is the most grossly measurabe property of the

cerebral cortex) these assumptions were not thought to effect the prediction of a change in state

of consciousness.

The Steyn-Ross alterations to the Liley equations are as follows:

• Anaesthetic effect is included by altering the rate-“constant” of the inhibitory post-synaptic

potential,

γi =
γi

λGABA

(3.28)

where λGABA is a dimensionless multiplicative scaling factor assumed proportional to

GABA anaesthetic effect. By increasing λGABA we are effectively increasing the amount of

inhibitory synaptic input. The effect of increasing λGABA is shown in Fig. 3.9.

• Spatial homogeneity is assumed. This removes the ∂2

∂x2 diffusion term in Eq. (3.26–3.27)

resulting in,

(
d

dt
+ v̄Λee

)2

φe(he) = v̄ΛeeN
α
ee

(
d

dt
+ v̄Λee

)
Se(he) (3.29)

(
d

dt
+ v̄Λei

)2

φi(he) = v̄ΛeiN
α
ei

(
d

dt
+ v̄Λei

)
Se(he) (3.30)

• The Liley equations are transformed into a set of stochastic equations by including noise

which drives the system. Noise is assumed to arise from the sub-cortical inputs to the

macrocolumn. This assumption is modelled by replacing each of the four subcortical

inputs pjk with a random variation p̃jk(t) about its mean 〈pjk〉,

pjk = 〈pjk〉 + αjk

√
〈pjk〉ξn(t) (3.31)

where αjk are dimensionless scale factors to ensure that the fluctuations are always small,

and ξn(t) are independent Gaussian-distributed white-noise sources.
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The Gaussian-distributed white-noise sources are defined to have zero mean,

〈ξn(t)〉 = 0 (3.32)

and delta-function covariances,

〈
ξn(t)ξm(t′)

〉
= δnmδ(t− t′). (3.33)

A common identity involving the delta function is,

∫ t′+ε

t′−ε
δ(t− t′)dt = 1 (3.34)

where ε is any positive number. This identity tells us that the total area under a delta function

is a dimensionless unity. Hence δ(t − t′) must have units of inverse-time, and hence, from the

covariance property of Eq. 3.33, the random noise ξ(t) has units of 1/
√

time = s−1/2 (Steyn-Ross

(2002)). It is reasonable to assume that if the mean of subcortical activity increases (increase

in 〈pjk〉), then the size of the subcortical fluctuations about the mean will also increase. This

is achieved by multiplying the noise-terms ξ by the (square-root of) the mean 〈pjk〉 term. This

scaling by
√〈pjk〉 ensures dimensional consistency.

Scale factors αjk are introduced in order to keep cortico-cortical inputs physiologically mean-

ingful. By modelling the sub-cortical fluctuations as Gaussian-distributed white-noise, there

comes the possibility that if the fluctuations are large enough, the pjk subcortical input fluxes

could become negative. However, in the present context, a negative flux is meaningless, so

should be suppressed. By multiplying the noise-term with a correctly chosen scale-factor, the

probability of negative subcortical inputs can be greatly diminished. (White-noise is defined to

have infinite variance and hence there will always be some possibility that a negative input will

occur). This safety scale factor is chosen to be,

αjk = 0.01 (3.35)

The derivation of this value is discussed in Sec. 6.3.
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The above alterations to the Liley equations lead to the following set of stochastic differential

equations

τe
dhe
dt

= (hrest
e − he) + ψee(he)Iee(he) + ψie(he)Iie(hi) (3.36)

τi
dhi
dt

= (hrest
i − hi) + ψei(hi)Iei(he) + ψii(hi)Iii(hi) (3.37)

(
d

dt
+ γe

)2

Iee(he) = [Nβ
eeSe(he) + φe(he) + 〈pee〉]Geγee + Γ1(t) (3.38)

(
d

dt
+ γe

)2

Iei(he) = [Nβ
eiSe(he) + φi(he) + 〈pei〉]Geγee + Γ2(t) (3.39)

(
d

dt
+

γi
λGABA

)2

Iie(hi) = [Nβ
ieSi(hi) + 〈pie〉]Gie

γi
λGABA

+ Γ3(t) (3.40)

(
d

dt
+

γi
λGABA

)2

Iii(hi) = [Nβ
iiSi(hi) + 〈pii〉]Gie

γi
λGABA

+ Γ4(t) (3.41)

(
d

dt
+ v̄Λee

)2

φe(he) = v̄ΛeeN
α
ee

(
d

dt
+ v̄Λee

)
Se(he) (3.42)

(
d

dt
+ v̄Λei

)2

φi(he) = v̄ΛeiN
α
ei

(
d

dt
+ v̄Λei

)
Se(he) (3.43)

where the Γm(m = 1 . . . 4) are the stochastic driving terms,

Γ1(t) = αee

√
〈pee〉ξ1(t)Geγee Γ2(t) = αei

√
〈pei〉ξ2(t)Geγee (3.44)

Γ3(t) =
αie

√〈pie〉ξ3(t)Giγie

λGABA

Γ4(t) =
αii

√〈pii〉ξ2(t)Giγie

λGABA

(3.45)

3.6 Stationary States

In order to find the stationary states of the cortex, Eqs. (3.36–3.43) are solved in the long-time

limit, d
dt → 0, with the noise sources turned off. Using this simplification and manipulating the

resulting equations, a pair of coupled nonlinear equations for the equilibrium spike-rates can be
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derived (Steyn-Ross (2002))

Ŝi(hi) = −
[

γ̄i
Gieψie(he)

[hrest
e − he + ψee(he)Iee(he)] + pie

]
/Nβ

ie, (3.46)

Ŝe(he) = −
[

γe
Geψei(hi)

[hrest
i − hi + ψii(hi)Iii(hi)] + pei

]
/(Nα

ei + Nβ
ei). (3.47)

Inverting the sigmoids of Eq. (3.23), we can obtain corresponding steady-state membrane volt-

ages for Se(he), Si(hi),

ĥi(he) = θi − 1
gi

ln(Smax
i /Ŝi(he) − 1), (3.48)

ĥe(hi) = θe − 1
ge

ln(Smax
e /Ŝe(hi) − 1). (3.49)

The above equations cannot be solved analytically. In order to find equilibrium values (or

stationary states) for he, hi a numerical scheme has to be implemented (Steyn-Ross (2002) uses

an iterative method). To show that stationary values exist (values for which Eq. (3.48) and

(3.49) are simultaneously satisfied), isoclines can be plotted. Using Eq. (3.49) and (3.47) in

isolation, we can vary hi and obtain a graph of ĥe(hi). Likewise using Eq. (3.48) and (3.46), in

isolation, we can obtain a graph of ĥi(he). Plotting these graphs on a single pair of axe, shows

that the two functions intersect (Fig. 3.10), with the intersection points giving the equilibrium

values (h0
e, h0

i ) for a given anaesthetic value (Eq. 3.28). The numerical scheme used by Steyn-

Ross et al. (2003) makes an initial guess and then “zooms” in on each of the isocline intersections

in turn.

As the anaesthetic effect is varied, different steady-state values are obtained. Plotting the

steady-states as a function of anaesthetic “amount” λGABA, the structure shown in Fig. 3.11 is

obtained. For a majority of the values shown, there are three solutions, but those lying on only

the top and bottom branches are stable. The top branch is called “active”, while the bottom

branch is labelled “quiescent” (Steyn-Ross et al. (1999)). The reason for this distinction is that

the values of (h0
e, h

0
i ) on the “active” branch lie above the sigmoid inflection point, and hence

have a high average firing rate. In contrast, the values on the “quiescent” branch lie below the

sigmoid inflection point, and therefore have a comparatively lower average firing rate.
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Figure 3.10: Example of isocline intersections, λGABA = 1. These intersection points locate the
steady-state soma voltages.

3.7 Adiabatic Elimination of Fast Variables

On closer inspection of Eqs. (3.36) and Table 3.1, it becomes obvious that the “input” terms

(Ijk, φe,i) vary on time-scales that are quite different from the time-scales of the soma potentials

he and hi. The relaxation times of the input terms (computed from the numerical values listed

in Table 3.1) are:

relaxation time for Iee(he), Iei(he) = (γe)−1 ≈ 3.3 ms

relaxation time for Iie(hi), Iii(hi) = (γi)−1 ≈ 15.4 ms

relaxation time for φe(he) = (v̄Λee)−1 ≈ 3.6 ms

relaxation time for φi(he) = (v̄Λei)−1 ≈ 2.2 ms

while the relaxation times of the he,i soma potentials, are set at τe = τi = 40 ms. Note, the

relaxation times of the he,i can actually be as large as 100 ms (Koch et al. (1996)).

Using this difference in time-scales we can assert that the neural inputs (Ijk, φe,i) are “fast”

variables that equilibrate to their steady-states much faster than the soma potentials he, hi.

This assertion can be incorporated into the equations by setting d
dt → 0 in the synaptic-input

Eqs. 3.38–3.43. This simplification is referred to as the adiabatic elimination of the fast variables.
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Figure 3.11: Model prediction for stationary states as a function of anaesthetic effect λGABA.

Note that the noise terms are not set to zero in the adiabatic elimination. This is to allow

fluctuations from the fast variables to be incorporated into the he,i equations. By setting the

time-derivatives of the fast variables to zero we have transformed the synaptic input response

functions (Eq. 3.25) into delta-function spikes. Interestingly, the anaesthetic effect was included

in the model by altering the relaxation time of the post-synaptic potentials due to inhibitory

neurons. But by replacing the post-synaptic potentials as delta-funcation spikes, this relaxation

time no longer exists! Nevertheless, anaesthetic effect is still incorporated in the model, as the

area of the time-evolving post-synaptic potential (PSP) function is the same as the area of the

spike PSP function. The impulse responses of the two PSPs are shown in Fig. 3.12.

Conservation of area is easily demonstrated. Expanding on Wilcocks (2001), the impulse

response ς(t) of the PSPs of the Liley equations,

ς(t) = Gγte1−γt t ≥ 0 (3.50)

ς(t) = 0 t < 0 (3.51)
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Figure 3.12: Post-synaptic potentials for the full Liley equations (top) and the adiabatic equations
(bottom). The full equations represent the postsynaptic potential as a smooth rise- and decay-curve,
while the adiabatic equations replace this time course with a delta-function whose area matches that of
the smooth curve.

has area given by

∫ +∞

−∞
ς(t)dt =

∫ +∞

0
Gγte1−γtdt (3.52)

which can be evaluated by making use of the identity

∫ ∞

0
xn−1e−xdx = (n − 1)! (3.53)

Making the substitutions x = γt, n = 2 gives area

∫ +∞

−∞
ς(t)dt =

Ge

γ

∫ +∞

0
xe−xdx (3.54)

=
Ge

γ
~ (3.55)
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The adiabatic post-synaptic potential is a scaled delta-function,

ς ′(t) =
Geδ(t)

γ
(3.56)

with area

∫ +∞

−∞
ς ′(t)dt =

Ge

γ

∫ +∞

−∞
δ(t)dt

=
Ge

γ
(3.57)

which matches ~, verifying that both the full and the adiabatic forms of the PSP have equal

area.

Once the adiabatic simplifications have been made, the following equations are obtained,

dhe
dt

= F1(he, hi) + Γe(t) (3.58)

dhi
dt

= F2(he, hi) + Γi(t) (3.59)

where the drift terms are,

F1(he, hi) = [(hrest
e − he) + ψee(he)[(Nα

ee + Nβ
ee)Se(he) + 〈pee〉]Gee/γe

+ λGABAψie(he)[N
β
ieSi(hi) + 〈pie〉]Gie/γi]/τe

(3.60)

F2(he, hi) = [(hrest
i − hi) + ψei(hi)[(Nα

ei + Nβ
ei)Se(he) + 〈pei〉]Gee/γe

+ λGABAψii(hi)[N
β
iiSi(hi) + 〈pii〉]Gie/γi]/τi

(3.61)

and the corresponding noise terms are,

Γe(t) = ψee(he)αee

√
〈pee〉Geeξ1(t)/γeτe + λGABAψie(he)αie

√
〈pie〉Gieξ3(t)/γiτe (3.62)

Γi(t) = ψei(hi)αei

√
〈pei〉Geeξ2(t)/γeτi + λGABAψii(hi)αii

√
〈pii〉Gieξ4(t)/γiτi (3.63)

Eqs. (3.60–3.63) will be referred to as the adiabatic equations throughout this thesis.
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3.8 Linearizing and Stability Analysis

The adiabatic simplifications only alter the time-evolution of the post-synaptic potentials. Hence

the stationary states for the adiabatic equations are the same as those discussed in Sec. 3.6. Sta-

bility analysis involves linearizing about the steady-state solutions and analyzing the resulting

eigenvalues (linear stability analysis is discussed in Sec. 4.3). The resulting linearized equa-

tions model small fluctuations (δhe, δhi) about the steady-states (h0
e , h0

i ). Steyn-Ross et al.

(1999) linearize the adiabatic equations about (h0
e, h

0
i ), to form a pair of linear, constant-matrix

equations for (δhe, δhi),

d

dt

δhe
δhi

 = −A

δhe
δhi

+
√
D

ξe(t)
ξi(t)

 (3.64)

where A is the 2× 2 drift matrix, D is the 2× 2 diffusion matrix and ξe(t), ξi(t) are noise terms.

Eigenvalue stability analysis shows that the active and quiescent branch are stable while the

middle branch is unstable. This result can be visualized as two valleys separated by a hill. The

two valleys are the active and quiescent branches while the hill is the middle branch. Consider

a ball sitting in one of the valleys, and compare its motion with that of a ball perched atop

the hill. Small movement perturbations to the “valley” ball cause the ball to oscillate to and

fro about the bottom of the valley, while small perturbations to the “hill” ball will knock the

ball off its unstable equilibrium position and into one of the neighbouring valleys. Similarly,

the potential energy landscape of the cortex only allows voltage fluctuations about the stable

equilibrium values corresponding to points on the upper and lower branches.

Following Steyn-Ross et al. (1999) the stationary states of the cortex can be partitioned into

three regions, Fig 3.13. Region III is labelled “seizure” as this is a very high-firing portion of the

inverted S-bend. Region I is labelled “coma” as only a very-low firing portion of the inverted

S-bend is available. In region II multiple states are available, currently thought to represent a

dissociated (dream-like) state. Normal consciousness is probably located near A1 on Fig 3.13

Due to the inverted S-bend distribution of steady-state solutions, it is impossible for the

macrocolumn to traverse continously between the upper and lower branches — there must be

jump transitions at both the A3 and the Q1 turning points.

Consider a person undergoing anaesthesia. As anaesthetic concentration is increased, the

patient will progress down along the top branch of the inverted S-bend until the A3 end of the
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Figure 3.13: The stationary states of the macrocolumn, separated into three regions [Steyn-Ross et al.
(2003)].

branch is reached. At this point, as the middle branch is unstable, the cortex must make a

sudden discontinuous “state” change to the lower branch (Q3). The patient is now deemed to

be unconscious and if anaesthetic is increased further, will progress towards the coma limit.

In order to bring a patient back to consciousness anaesthetic concentration has to be reduced.

Moving along the bottom branch until Q1 is reached, here another sudden change of states has

to occur in order to regain consciousness. In general, the model predicts that at a critical

anaesthetic concentration a rapid active→quiescent (or vice versa) change of “phase” will signal

a change in the state of consciousness. The next chapter looks at extending the homogeneous

model to include space. With the inclusion of spatial variability the possibility of nonequilibrium

phase transitions arises. General properties of nonequilibrium phase transitions are discussed

using the Brusselator a a well known chemical example that displays some similarities to our

1-D cortex model.





Chapter 4

Spatial Variation

4.1 Nonequilibrium Phase Transitions

Particular systems are known to undergo a phase transition such that they are no longer in

absolute thermodynamic equilibrium (Reichl (1998)). Systems which exhibit this effect are

initially at an isotropic steady state (thermodynamic equilibrium). A certain parameter is then

forced such that this state is no longer stable. A nonequilibrium phase transition then occurs,

and the system moves to a new stable configuration which is not described by the thermal

equilibrium condition.

A system in thermodynamic equilibrium can be treated by linear theory, assuming the system

is never far from this stable state. If this state becomes unstable, the system will move away from

the linear regime, so nonlinear effects must be included in the governing equations. Nonlinear

equations allow for the possibility of multiple solutions, each with different regions of stability.

Thus, as we change the parameters of a nonlinear system, it can exhibit phase transitions from

one state to another.

When a system in thermodynamic equilibrium undergoes a nonequilibrium phase transition,

the new state that appears in the nonlinear regime can oscillate in space and/or time. The

spatial or temporal symmetry of such systems is broken at the phase transition. The new stable

nonequilibrium state is typically much more ordered (in space or time) than the disordered equi-

librium state from which it evolved. So are referred to as dissipative or self-organized structures

(Reichl (1998)). They are named dissipative as a constant flow of energy and sometimes matter

(hence production of entropy) is required.

To better explain symmetry breaking, the well known water-freezing-to-ice equilibrium phase

transition can be used. Liquid water is rotationally symmetric, that is, it looks the same from

every point. In contrast, ice has preferential lattice directions along which water molecules align.

Thus when water freezes, the original symmetry of the liquid water phase is broken.
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Figure 4.1: Two-dimensional stationary Turing structures produced with the chlorite–iodide–malonic
acid-starch (CIMA) chemical reaction in a two-dimensional gel. (a) Hexagons, (b) stripes. [Source: figure
from Reichl (1998)]

The spontaneous formation of self-organized structures has been observed in chemical exper-

iments, hydrodynamic systems and biological systems. The chemical reaction–diffusion system,

polyacrylamide-methyleneblue-sulfide-oxygen, forms stationary spatial patterns. Comparable

phenomena have observed in bacteria colonies and in cardiac muscle (Münster (2002)). Jung

et al. (1998) has also demonstrated a system of cultured rat brain cells that produce spiral-shaped

chemical waves.

In 1952, Alan Turing predicted that stationary patterns could arise in nonlinear systems via

the coupling between reaction and diffusion processes. In order for these stationary patterns

(or Turing patterns) to occur, a system must contain an activatory species that stimulates self

production, and an inhibitory species that limits the growth of the activatory species. Further-

more, the diffusion coefficients of the activatory species must be significantly smaller than the
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diffusion coefficient of the inhibitory species (Andrésen et al. (1999)). Due to the requirement

of differing diffusion coefficients, experimental verification of Turing patterns has been difficult

to achieve. The laboratory verification of Turing patterns was finally achieved in 1990 (Reichl

(1998)). Two Turing patterns are shown in Fig. 4.1.

We will find that the spatially variable 1-D model of the cortex can also form Turing pat-

terns. A famous reaction–diffusion system that also leads to the possibility of Turing patterns

is the Brusselator. Following similar analytical techniques as those developed to investigate the

Brusselator, predictions about the behaviour of the 1-D cortex can be made. Thus it is wise to

review the methods used to analyse the Brusselator system.

4.2 The Brusselator

The Brusselator is a reaction–diffusion system which can form long-lived spatially-organized

patterns. First studied in Brussels (hence the name), it has proved very useful in understanding

the basic principles of nonlinear chemical reactions. The Brusselator can be used to qualitatively

model chemical oscillations that occur in the well known Belousov–Zhabotinsky reaction (the first

evidence of a dissipative structure). Belousov discovered this reaction in the early 1950’s but

no one believed him. Many scientists were strongly disinclined to believe there could exist a

chemical such a solution that could, from the products of the initial reactants, reform the initial

components again and again, in a repeating loop. It was considered a violation of the second law

of thermodynamics: Entropy in a closed system can never decrease, where entropy is a measure

of the disorder or randomness of a system. The reason that the second law is not violated is

that a constant input of energy and matter are required to sustain the structures formed by the

Belousov–Zhabotinsky reaction. In 1959 Belousov managed to publish his results in an obscure

medical journal.

The Brusselator is one of the simplest models of a nonlinear chemical system for which the

constituents can oscillate in time, or can exhibit nonlinear wave motion. Following Reichl (1998)
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the four steps of the Brusselator model are,

A
k1−→ X

B + X
k2−→ Y + D,

2X + Y
k3−→ 3X,

X
k4−→ E.

A,B,D,E,X and Y are the six chemicals involved in the reaction. k1, k2, k3, and k4 are the

rate constants for the appropriate reaction. In practice, chemicals A and B are held at constant

concentration by being continuously fed into the system, and D and E are held constant by being

removed as soon as they appear. Placing these restrictions on the system forces the reactions to

progress in only one direction and to be held far from thermodynamic equilibrium. As X and

Y are both inputs and outputs their concentrations can vary in both space and time.

Chaturvedi et al. (1977) define the rate equations for the concentrations of X and Y as,

∂ρX(r, t)/∂t = DX∇2ρX(r, t) + κ1 − κ2ρX(r, t) + κ3ρ
2
X(r, t)ρY (r, t) − κ4ρX(r, t) (4.1)

∂ρY (r, t)/∂t = DY ∇2ρY (r, t) + κ2ρX(r, t) − κ3ρ
2
X(r, t)ρY (r, t) (4.2)

where ρX and ρY are the concentrations of X and Y and they have taken into account the cell

size dependence of k1, k2, k3, k4, A and B by defining

κ1∆V = k1A, κ2 = k2B, κ3(∆V )−2 = k3, κ4 = k4 (4.3)

The concentrations are allowed to vary in space by allowing for the possibility of diffusion (DX

and DY are the coefficients of diffusion). By setting the time and space derivatives to zero in

equations (4.1) and (4.2), we can obtain the spatially uniform steady-state solution,

ρX,0 =
κ1

κ4
ρY,0 =

κ2κ4

κ1κ3
(4.4)

The steady-state solution (Eq. (4.4)) lies on the thermodynamic branch of steady-state so-

lutions for the Brusselator system (Reichl (1998)). If the thermodynamic steady-state becomes

unstable a nonequilibrium phase transition (bifurcation) to a state which does not lie on the ther-

modynamic branch may occur. This new nonequilibrium state may oscillate in space and time.
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In order to determine whether the thermodynamic branch is unstable to small perturbations,

linear stability theory is inoked.

4.3 Linear Stability Analysis

In order to linearize a general system consisting of two first-order ordinary differential equations,

ẋ = f(x, y) (4.5)

ẏ = g(x, y) (4.6)

there must exist a fixed point (x0, y0) such that,

f(x0, y0) = 0 (4.7)

g(x0, y0) = 0. (4.8)

We then expand about (x = x0 + δx, y = y0 + δy) using a Taylor series in two variables where

fx is understood to be the partial derivative of f with respect to x,

f(x0 + δx, y0 + δy) = f(x0, y0) + [fx(x0, y0)δx + fy(x0, y0)δy]

+
1
2!

[(δx)2fxx(x0, y) + 2δxδyfxy(x0, y0) + (δy)2fyy(x0, y0)] . . .
(4.9)

g(x0 + δx, y0 + δy) = g(x0, y0) + [gx(x0, y0)δx + gy(x0, y0)δy ]

+
1
2!

[(δx)2gxx(x0, y) + 2δxδygxy(x0, y0) + (δy)2gyy(x0, y0)] . . .
(4.10)

Using Eqs. (4.5–4.6) and Eqs. (4.9–4.10) we write,

δ̇x = fx(x0, y0)δx + fy(x0, y0)δy + fxy(x0, y0)δxδy + . . . (4.11)

δ̇y = gx(x0, y0)δx + gy(x0, y0)δy + gxy(x0, y0)δxδy + . . . (4.12)

Making the assumption that δx and δy are always small, to first order we have,

d

dt

δx
δy

 =

fx(x0, y0) fy(x0, y0)

gx(x0, y0) gy(x0, y0)


δx
δy

 . (4.13)
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Using the process outlined above a general system consisting of two first-order ordinary differ-

ential equations can be transformed into two linear differential equations (Eq. (4.13)).

A linear homogeneous system, consisting of two first-order differential equations with con-

stant coefficients, such as the one described by Eq. (4.13), has the form,

dx/dt = Ax, (4.14)

where A is a 2 × 2 constant matrix and x is a 2 × 1 vector (Boyce and Diprima (1997)). A is

called the stability matrix because its eigenvalues determine whether the solution of the system

will decay exponentially towards, or grow exponentially away from, its steady-state value. In

the case det A �= 0, the stability matrix is nonsingular and x = 0 is the only steady-state point

of the system. Following Boyce and Diprima (1997), if we seek solutions of the form x = ξert,

we find via substitution of x into Eq. 4.14 that,

(A− rI)ξ = 0. (4.15)

Thus r must be a eigenvalue of the matrix A and ξ the corresponding eigenvector. The eigen-

values are the roots of the polynomial equation

det(A− rI) = 0 (4.16)

and Eq. 4.15 can be used to determine the eigenvectors.

The general solution of Eq. (4.14) is,

x = c1ξ
(1)er1t + c2ξ

(2)er2t (4.17)

where c1, c2 are constants, r1, r2 are eigenvalues and ξ(1), ξ(2) are eigenvectors. The type (complex

or real) and value (positive or negative) of the eigenvalues determine the stability of the system.

Following Reichl (1998) we will consider several cases which can occur depending on values of

the real and imaginary parts or r1 and r2.

1. Both r1 and r2 are real and r1 < r2 < 0. This state is completely stable. A solution

displaced from the steady-state will decay exponentially back to this state.
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2. Both r1 and r2 are real and 0 < r1 < r2. This state is completely unstable. A solution

displaced from the steady-state will exponentially move away.

3. Both r1 and r2 are real and r1 < 0 < r2. This state is unstable. As long as c2 is nonzero,

the positive eigenvalue (c2) will dominate as t → ∞.

4. Both r1 and r2 are purely imaginary. In this case the nonlinear terms determine the

stability of the state. In the linear regime the solution neither decays nor moves away

from the steady-state, it oscillates around it.

5. Both r1 and r2 are complex with negative real part, so r1 = α+ iβ and r2 = α− iβ where

α < 0. This state is stable. A solution displaced from the steady-state is exponentially

damped towards the steady-state while oscillating around it.

6. Both r1 and r2 are complex with positive real part, so r1 = α + iβ and r2 = α− iβ where

α > 0. This state is unstable. A solution displaced from the steady-state will exponentially

move away from the steady-state while oscillating around it.

Linear stability analysis provides a way to determine whether a steady-state of a nonlinear

system is stable or not. If a steady-state is stable then nonlinear terms neglected in the analysis

cannot alter this. Similarly, if a steady-state is unstable, nonlinear terms neglected in the analysis

cannot make it stable. When a steady-state is unstable in a nonlinear system, a phase transition

or bifurcation to a nonequilibrium steady-state occurs (Reichl (1998)). Linear stability analysis

can tell us when this change of state will occur, but it cannot tell us the form of the new state.

4.3.1 Linear Stability Analysis for Diffusive Systems

The Brusselator and 1-D cortex systems also include a diffusion term. The Brusselator system

has the form,

ẋ = f(x, y) + κ1∇2x (4.18)

ẏ = g(x, y) + κ2∇2y (4.19)

where x = ρX(r, t), y = ρY (r, t) and κ1, κ2 are the diffusion coefficients. We can linearize the

above system using the method outlined in Sec. 4.3, but we also need to consider the diffusion
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term. Taking the Laplacian of x = x0 + δx and y = y0 + δy gives,

∇2x = ∇2δx (4.20)

∇2y = ∇2δy (4.21)

Hence, using the above result and Sec. 4.3, the linearized system for the Brusselator will take

the form,

d

dt

δx
δy

 =

fx(x0, y0) + κ1∇2 fy(x0, y0)

gx(x0, y0) gy(x0, y0) + κ1∇2


δx
δy

 . (4.22)

For the 1-D model of the cortex (detailed shortly) the system equations have the mathemat-

ical form,

ẋ = f(x, y) + κ1
∂2h(x)
∂x2

(4.23)

ẏ = g(x, y) + κ2
∂2k(x)
∂x2

. (4.24)

Expanding h(x) and k(x) about (x = x0 + δx, y = y0 + δy) to first order gives,

h(x0 + δx) = h(x0) + hx(x0)δx (4.25)

k(x0 + δx) = k(x0) + kx(x0)δx (4.26)

and then operating on both sides with ∂2/∂x2 gives,

∂2h(x0 + δx)
∂x2

= hx(x0)
∂2δx
∂x2

(4.27)

∂2k(x0 + δx)
∂x2

= kx(x0)
∂2δx
∂x2

. (4.28)

Therefore the linearized system for the 1-D cortex will take the form,

d

dt

δx
δy

 =

fx(x0, y0) + κ1hx(x0) ∂2

∂x2 fy(x0, y0)

gx(x0, y0) + κ2kx(x0) ∂2

∂x2 gy(x0, y0)


δx
δy

 . (4.29)
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In order to perform stability analysis on linear systems containing a diffusion term, we Fourier

transform the system to wavenumber space then investigate eigenvalue stability in Fourier space.

This technique applied first to the linear Brusselator (Sec. 4.4)and later to the 1-D cortex (Secs

3.6–3.8).

4.4 Linear Stability Analysis of the Brusselator

In order to use linear stability analysis on the rate equations of the Brusselator (Eqs. (4.1-4.2)),

we linearize the system about its steady-state (Eq. (4.4)). Writing ρX(r, t) and ρY (r, t) as,

ρX(r, t) =
κ1

κ4
+ δx(r, t) (4.30)

ρY (r, t) =
κ2κ4

κ1κ3
+ δy(r, t), (4.31)

where δx and δy are small space and time-dependent perturbations, linearizing gives,

d

dt

δx(r, t)

δy(r, t)

 =

DX∇2 + κ2 − 1 −κ2
1

−κ2 DY ∇2 − κ2
1


δx(r, t)

δy(r, t)

 (4.32)

where, following Chaturvedi et al. (1977), κ3 = κ4 = 1 for simplicity. We will use the 2 × 2

matrix in the above equation for stability analysis but first will introduce the possibility of noise

entering the system. Chaturvedi et al. apply stochastic analysis to the Brusselator system, in

which chemical noise has been incorporated. The rate equation with noise included is given as,

d

dt

δx(r, t)

δy(r, t)

 = −A

δx(r, t)

δy(r, t)

+D

ξx(r, t)
ξy(r, t)

 (4.33)

where

A =

−DX∇2 − κ2 + 1 −κ2
1

κ2 −DY∇2 + κ2
1

 (4.34)

D = 2(κ2κ1)1/2

 1 −1/2

−1/2 0


1/2

. (4.35)
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The terms ξx(r, t), ξy(r, t) are white-noise terms defined to satisfy the mean and correlation

properties

〈ξm(r, t)〉 = 0,
〈
ξm(r, t)ξn (r′, t′)

〉
= δnmδ(r− r′)δ(t − t′) (4.36)

Note that A is equivalent to the matrix derived via linearization in Eq. (4.32) except it has been

rearranged so that it carries an explicit negative sign. Chaturvedi et.al choose to do this in

order that Eq. (4.33) takes the form of a two-variable Ornstein-Uhlenbeck (OU) process. There

is well-defined stochastic calculus for OU systems that allows properties such as correlation

length and correlation time to be calculated. The analysis that Chaturvedi et al. give for

the Brusselator system is directly related to analysis that Steyn-Ross et al. (2003) perform for

the one-dimensional cerebral cortex. Both systems exhibit analogous behaviour and hence the

Brusselator serves as a well known reference example.

In order to analyse the stability of the steady-state branch for the Brusselator system, we have

to take into account the diffusion term. We follow Chaturvedi et al., and use Fourier transform

theory for an infinite system in order to simplify the Fourier transform mathematics. Defining

spatial Fourier transforms which map the three-dimensional position r to the three-dimensional

wavenumber q as,

δ̃x(q, t) ≡
∫ ∫ ∫ +∞

−∞
e−i2πq.rδx(r, t)dr (4.37)

δ̃y(q, t) ≡
∫ ∫ ∫ +∞

−∞
e−i2πq.rδy(r, t)dr (4.38)

we obtain the Fourier transform of Eq. 4.32

d

dt

δ̃x(q, t)

δ̃y(q, t)

 = −Ã(q2)

δ̃x(q, t)

δ̃y(q, t)

 (4.39)

where

Ã(q2) =

Dxq
2 − κ2 + 1 −κ2

1

κ2 DY q
2 + κ2

1

 . (4.40)

We can now use linear stability theory on the Ã(q2) matrix in Eq. (4.39) to determine the

stability of the steady-state for values of |q|.
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The stability analysis that follows is a summary of the analysis presented by Chaturvedi et

al. The eigenvalues of Ã(q2) are given by,

λ1, λ2 =
1
2
[(DX + DY )q2 + 1 + κ12 − κ2

± {[(Dx + DY )q2 + κ2
1 + 1 − κ2]2 − 4[(DXq2 − κ2 + 1)(DY q2 + κ2

1) + κ2
1κ2]}1/2

=
1
2
{(DX + DY )q2 + 1 + κ2

1 − κ2 ± [(δ − κ2 + κ2
1)

2 − 4δκ2
1]1/2}

(4.41)

where δ = 1 + (DX −DY )q2. Due to the explicit negative sign in Eq. (4.39) the homogeneous

steady-state will be stable provided that both eigenvalues are positive. There are two marginally

stable situations: (a) λ1, λ2 real and positive with λ2 → 0+ (the “soft mode” instability, i.e.,

spatial oscillations); (b) λ1, λ2 complex with Re(λ1, λ2) → 0+ (the “hard mode” instability, i.e.,

temporal oscillations). In order for the eigenvalues defined in Eq. (4.41) to be real, we require

(δ − κ2 + κ2
1)

2 − 4δκ2
1 > 0 (4.42)

For δ < 0, λ1 and λ2 are always real. For δ > 0, λ1andλ2 are real if either

κ2 > (
√
δ + κ1)2 or κ1 < (

√
δ − κ1)2 (4.43)

λ1 and λ2 are real and positive if, in addition to Eq. (4.43), we have,

κ2 < (DX + DY )q2 + 1 + κ2
1 (4.44)

and

(DXq2 − κ2 + 1)(DY q2 + κ2
1) + κ2

1κ2 > 0 (4.45)

⇒ κ2 < 1 + DXq2 + (κ2
1/DY q

2) + (DXκ2
1/DY ) (4.46)

The soft mode instability is approached as λ2 → 0+ along the real axis with λ1 real and positive.

This is the case if Eq. (4.43) and Eq. (4.44) are satisfied and

κ2 → κ2S(q2) ≡ 1 + DXq2 + (κ2
1/DY q2) + (DXκ2

1/DY ) (4.47)
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from below. Fixing κ1,DX , and DY , the minimum of κ2S(q2) occurs at

|q| = κ1/(DXDY )1/2 (4.48)

giving a minimum value of

κ2S = [1 + κ1(DX/DY )1/2]2. (4.49)

Equation (4.49) gives the threshold for the soft mode instability. As κ2 is increased beyond

κ2S a bifurcation to a dissipative steady-state which exhibits spatial oscillations will occur.

The marginally stable configuration is characterized by the wave vector given in Eq. (4.48). The

steady-state is stable for any spatial mode with wavenumber q < [1 + κ1(DX/DY )1/2]2, and

unstable for any spatial mode with wavenumber q > [1 + κ1(DX/DY )1/2]2.

In order for the eigenvalues defined in Eq. (4.41) to be complex, we require (δ − κ2 + κ2
1)

2 −
4δκ2

1 < 0, i.e.,

(
√
δ − κ1)2 < κ2 < (

√
δ + κ1)2, δ > 0. (4.50)

The eigenvalue’s real parts are positive if

κ2 < (DX + DY )q2 + 1 + κ2
1. (4.51)

The eigenvalues λ1 and λ2 become purely imaginary as

κ2 → κ2
1 + (DX + DY )q2 (4.52)

from below. The minimum of κ2H(q2) occurs when q = 0 and hence the threshold for the hard

mode instability is

κ2H = 1 + κ2
1 (4.53)

As κ2 is increased beyond κ2H a bifurcation to a dissipative steady-state exhibiting temporal

oscillations will occur. For the Brusselator system, which of the two instabilities occurs first
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depends on the relative magnitudes of DX and DY . The soft mode instability occurs first if

κ2S < κ2H (4.54)

and vice versa. The prediction of the soft- and hard-mode instabilities allow us to predict when

a bifurcation to a nonequilibrium state will occur.

4.5 Spatial Correlation Functions

For a two-variable OU system in the steady-state, such as the one defined by Eq. (4.33), the

fluctuation covariance in Fourier space is defined as (Chaturvedi et al. (1977))

G̃(q,q′) ≡ 2πδ(q + q′)G̃(q) (4.55)

where

G̃(q) =
(DetÃ)D2 + [Ã− (TrÃ)I]D2[Ã− (TrÃ)I]T

2(DetÃ)(TrÃ)
. (4.56)

Once G̃(q,q′) has been calculated, then, via Fourier inversion, the spatial covariance can be

derived. Chaturvedi et al. calculate the spatial covariance for the Brusselator system. They

find that the spatial covariance function is characterized by two correlation lengths and also a

wave vector. As the soft-mode threshold is approached, the covariance function is dominated

by an exponentially decreasing term and a purely oscillatory term. In contrast, near the point

of hard-mode instability, the covariance function is characterized by a long-range 1/|r − r′|
dependence.

I will now consider the cortical system to which similar analysis techniques will be applied.

4.6 Linearization of the 1-D Cortex

In order to generalize the “zero-dimensional” homogeneous cortex (Eqs. 3.60–3.63) to a 1-D

line of cortical “mass”, Steyn-Ross et al. (2003) explicitly include weak spatial variation by

retaining the ∂2/∂x2 terms in the wave equations for the long-range macrocolumn contributions

Eqs. (3.26–3.27). Allowing spatial variability to occur, and once again including noise terms via
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the subcortical inputs, results in the following PDEs:

τe
dhe
dt

= (hrest
e − he) + ψee(he)Iee(he) + ψie(he)Iie(hi) (4.57)

τi
dhi
dt

= (hrest
i − hi) + ψei(hi)Iei(he) + ψii(hi)Iii(hi) (4.58)

(
d

dt
+ γe

)2

Iee(he) = [Nβ
eeSe(he) + φe(he) + 〈pee〉]Geγee + Γ1(x, t) (4.59)

(
d

dt
+ γe

)2

Iei(he) = [Nβ
eiSe(he) + φi(he) + 〈pei〉]Geγee + Γ2(x, t) (4.60)

(
d

dt
+

γi
λGABA

)2

Iie(hi) = [Nβ
ieSi(hi) + 〈pie〉] Giγie

λGABA

+ Γ3(x, t) (4.61)

(
d

dt
+

γi
λGABA

)2

Iii(hi) = [Nβ
iiSi(hi) + 〈pii〉] Giγie

λGABA

+ Γ4(x, t) (4.62)

[(
d

dt
+ v̄Λee

)2

− v̄2 ∂2

∂x2

]
φe(he) = v̄ΛeeN

α
ee

(
d

dt
+ v̄Λee

)
Se(he) (4.63)

[(
d

dt
+ v̄Λei

)2

− v̄2 ∂2

∂x2

]
φi(he) = v̄ΛeiN

α
ei

(
d

dt
+ v̄Λei

)
Se(he) (4.64)

The only differences between the set of stochastic equations (3.36–3.38) and the set defined

above are: (i) spatial variation via the Laplacian term in the φe(he), φi(he) rate equations has

been included, (ii) the noise terms are redefined such that they are now a function of time and

space, and (iii) the derivatives have been mapped to partial derivatives to indicate that the

variables x and t are independent. The four Γj noise terms in Eqs. (4.59–4.62) are redefined as,

Γ1(x, t) = αee

√
〈pee〉ξ1(x, t)Geγee Γ2(x, t) = αei

√
〈pei〉ξ2(x, t)Geγee (4.65)

Γ3(x, t) =
αie

√〈pie〉ξ3(x, t)Giγie

λGABA

Γ4(x, t) =
αii

√〈pii〉ξ2(x, t)Giγie

λGABA

(4.66)

where the four ξm terms are zero-mean Gaussian-distributed delta-correlated white-noise sources,

〈ξm(x, t)〉 = 0,
〈
ξm(x, t)ξm(x′, t′)

〉
= δmnδ(x− x′)δ(t − t′). (4.67)
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We emphasize that the stationary states of the 1-D cortex (Eqs. (4.57–4.64)) are identical to

the stationary states of the spatially homogeneous cortex (derived in Section 3.6).

Following Section 3.7, the “adiabatic” simplification is adopted, but the ∂2

∂x2 term is retained.

In this “spatio-adiabatic” limit, the cortical inputs of Eqs. (4.59–4.62) reduce to,

Iee(he) = [Nβ
eeSe(he) + φe(he) + 〈pee〉]Gee/γe + Γ1(x, t)/γ2

e (4.68)

Iei(he) = [Nβ
eiSe(he) + φi(he) + 〈pei〉]Gee/γe + Γ2(x, t)/γ2

e (4.69)

Iie(hi) = λGABA[Nβ
ieSi(hi) + 〈pie〉]Gie/γi + λ2

GABAΓ3(x, t)/γ2
i (4.70)

Iii(hi) = λGABA[Nβ
iiSi(hi) + 〈pii〉]Gie/γi + λ2

GABAΓ4(x, t)/γ2
i (4.71)

while the long-range inputs (Eqs. (4.63)–(4.64) become,

φe(he) =
1

Λ2
ee

∂2φe(he)
∂x2

+ Nα
eeSe(he) (4.72)

φi(he) =
1

Λ2
ei

∂2φi(he)
∂x2

+ Nα
eiSe(he). (4.73)

Substituting Eqs. (4.68)–(4.73) back into Eqs. (4.57)–(4.64) gives a new system of equations,

∂he
∂t

= F1(he, hi) + Γe(x, t) (4.74)

∂hi
∂t

= F1(he, hi) + Γi(x, t) (4.75)

where the F1, F2 are drift terms defined by,

F1(he, hi) =
1
τe

{
(hrest

e − he) + ψee(he)[(Nα
ee + Nβ

ee)Se(he) +
1

Λ2
ee

∂2φe(he)
∂x2

+ 〈pee〉]Gee/γe

+ λGABAψie(he)[N
β
ieSi(hi) + 〈pie〉]Gie/γi]

}
(4.76)

F2(he, hi) =
1
τi

{
(hrest

i − hi) + ψei(hi)[(Nα
ei + Nβ

ei)Se(he) +
1

Λ2
ei

∂2φi(he)
∂x2

+ 〈pei〉]Gee/γe

+ λGABAψii(hi)[N
β
iiSi(hi) + 〈pii〉]Gie/γi]

} (4.77)
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and Γe,Γi are diffusive noise terms,

Γe(x, t) = beeξ1(x, t) + bieξ3(x, t) (4.78)

Γi(x, t) = beiξ2(x, t) + biiξ4(x, t) (4.79)

where the bjk coefficients are,

bee = ψee(he)αee

√
〈pee〉Gee/γeτe (4.80)

bei = ψie(he)αie

√
〈pie〉Gie/γiτe (4.81)

bie = λGABAψei(hi)αei

√
〈pei〉Gee/γeτi (4.82)

bii = λGABAψii(hi)αii

√
〈pii〉Gie/γeτi (4.83)

In order to make theoretical predictions concerning the behaviour of the “spatio adiabatic”

system (Eqs. (4.74–4.75)) we need to be linearize it about its homogeneous (∂2/∂x2 → 0) steady-

state equilibrium.

Following the linearization method outlined in section (4.3), we allow a small time- and

space-dependent voltage-deviation (ĥe(x, t), ĥi(x, t)) away from the homogeneous steady state

coordinate (h0
e, h

0
i ). Then the excitatory and inhibitory soma voltages at position x and time t

can be written,

he(x, t) = h0
e + ĥe(x, t) (4.84)

hi(x, t) = h0
i + ĥi(x, t). (4.85)

We note that evaluted at the homogeneous equilibrium, Eqs. (4.72)–(4.73) predicts,

∂φe

∂he

∣∣∣∣
eq.

= Nα
ee

∂Se(he)
∂he

∣∣∣∣
eq.

(4.86)

∂φi

∂he

∣∣∣∣
eq.

= Nα
ei

∂Se(he)
∂he

∣∣
eq.

(4.87)
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Making use of Eqs. (4.27-4.28),

∂2φe(h0
e + ĥe(x, t))
∂x2

≈ ∂φe

∂he

∣∣∣∣
eq.

∂2ĥe(x, t)
∂x2

(4.88)

∂2φi(h0
e + ĥe(x, t))
∂x2

≈ ∂φi

∂he

∣∣∣∣
eq.

∂2ĥe(x, t)
∂x2

(4.89)

giving

∂2φe(h0
e + ĥe(x, t))
∂x2

≈ Nα
ee

dSe
dhe

∣∣∣∣
eq.

∂2ĥe(x, t))
∂x2

(4.90)

∂2φi(h0
e + ĥe(x, t))
∂x2

≈ Nα
ei

dSe
dhe

∣∣∣∣
eq.

∂2ĥe(x, t))
∂x2

(4.91)

Making use of Eqs. (4.90–4.91) we linearize about the homogeneous steady-state to obtain a

pair of Langevin equations,

∂

∂t

ĥe(x, t)
ĥi(x, t)

 =

J11 + κe
∂2

∂x2 J12

J21 + κi
∂2

∂x2 J22


ĥe(x, t)
ĥi(x, t)

+

Γe(x, t)

Γi(x, t)


eq.

(4.92)

where κe, κi are Fick’s-law spatial diffusion coefficients [units: cm2/s],

κe =
ψee(h0

e)S
(1)
e Nα

eeGee

Λ2
eeγeτe

κi =
ψei(h0

i )S
(1)
e Nα

eiGee

Λ2
eiγiτi

(4.93)
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and the Jmn terms are,

J11 =
{
− 1 + ψ(1)

ee

[
(Nα

ee + Nβ
ee)Se(h

0
e) + pee

]
Gee/γe

+ ψee(h0
e)
[
(Nα

ee + Nβ
ee)S

(1)
e

]
Gee/γe

+ λGABAψ
(1)
ie

[
Nβ

ieSi(h
0
i ) + pie

]
Gie/γi

}
1
τe

(4.94)

J12 = λGABAψie(h0
e)N

β
ieS

(2)
i Gie/γiτe (4.95)

J21 = ψei(h0
i )(N

α
ei + Nβ

ei)S
(1)
i Gee/γiτe (4.96)

J22 =
{
− 1 + ψ

(2)
ei

[
(Nα

ei + Nβ
ei)Se(h

0
e) + pei

]
Gee/γe

+ λGABAψ
(2)
ii

[
(Nβ

ii)Si(h
0
i ) + pii

]
Gie/γi

+ λGABAψii(h0
e)N

β
iiS

(2)
i Gie/γi

}
1
τi

(4.97)

with partial derivatives of the weighting and sigmoid functions also evaluated at equilibrium,

ψ
(1)
je =

∂ψje

∂he
=

−1
|hrev

j − hrest
e | , ψ

(2)
ji =

∂ψji

∂hi
=

−1
|hrev

j − hrest
i | (4.98)

and,

S
(1)
e =

∂Se
∂he

∣∣∣∣
eq.

, S
(2)
i =

∂Si
∂hi

∣∣∣∣
eq.

. (4.99)

Now that we have linearized Eqs. (4.74–4.75), stability prediction are fore coming, but first the

approximation of a “infinite” brain must be made.

4.7 Infinite Brain

In a one-dimensional sense, we can think of the brain as having a length of approximately 40 cm.

The cross-sectional width of a macrocolumn is ∼0.3–1 mm. Hence on a macrocolumn scale, the

cortex can be thought to have an “infinite” length. Making use of this approximation allows

us to ignore the boundary conditions that otherwise would have to be imposed on our 1-D

length of cortical mass. As in Sec. 4.4, we introduce Fourier transforms of the ĥe excitatory

and ĥi inhibitory soma-voltage fluctuations, and of the ξ white-noise sources respectively, as the



4.7 Infinite Brain 55

variables h̃e, h̃i, ξ̃,

h̃e(q, t) =
∫ +∞

−∞
e−iqxĥe(x, t)dx (4.100)

h̃i(q, t) =
∫ +∞

−∞
e−iqxĥi(x, t)dx (4.101)

ξ̃(q, t) =
∫ +∞

−∞
e−iqxξ(x, t)dx. (4.102)

These relations map the spatial position x in 1-D space, to the spatial frequency or wavenumber

q in Fourier space. The corresponding inverse mappings from q → x are,

ĥe(x, t) =
1

2π

∫ +∞

−∞
eiqxh̃e(q, t)dq (4.103)

ĥi(x, t) =
1

2π

∫ +∞

−∞
eiqxh̃i(q, t)dq (4.104)

ξ(x, t) =
1

2π

∫ +∞

−∞
eiqxξ̃(q, t)dq (4.105)

Fourier transforming the Langevin equations (Eqs. (4.92)), we obtain,

∂

∂t

h̃e(q, t)
h̃i(q, t)

 =

J11 − κeq
2 J12

J21 − κiq
2 J22


h̃e(q, t)
h̃i(q, t)

+

Γ̃e(q, t)

Γ̃i(q, t)


eq.

(4.106)

where

Γ̃e(q, t) = beeξ̃1(q, t) + bieξ̃3(q, t) (4.107)

Γ̃e(q, t) = beeξ̃1(q, t) + bieξ̃3(q, t) (4.108)

and where the Fourier-transformed white-noise terms satisfy the correlation property

〈
ξ̃m(q, t)ξ̃n(q′, t′)

〉
= 2πδmnδ(q + q′)δ(t − t′) (4.109)
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Proof of Eq. (4.109): Fourier transforming the expectation 〈ξm(x, t)ξm(x′, t′)〉 from x-space

to q-space gives

〈
ξ̃m(q, t)ξ̃n(q′, t′)

〉
=
〈∫ +∞

−∞

∫ +∞

−∞
eiqxeiq

′x′
ξm(x, t)ξm(x′, t′) dx dx′

〉
(4.110)

=
∫ +∞

−∞

∫ +∞

−∞
eiqxeiq

′x′ 〈
ξm(x, t)ξm(x′, t′)

〉
dx dx′ (4.111)

Using Eq. (4.67)

= δnmδ(t − t′)
∫ +∞

−∞

∫ +∞

−∞
eiqxeiq

′x′
δ(x − x′) dx dx′ (4.112)

and the integral over x′ collapses to give,

〈
ξ̃m(q, t)ξ̃n(q′, t′)

〉
= δnmδ(t− t′)

∫ +∞

−∞
ei(q+q′)xdx (4.113)

= 2πδmnδ(q + q′)δ(t − t′) (4.114)

where the second equality follows from the Fourier transform of unity,

∫ +∞

−∞
1e−iuvdv = 2πδ(u) (4.115)

Steyn-Ross et al. (2003) proceed by transforming Eq. (4.106) into a two-variable OU system.

First, a diagonal 2 × 2 diffusion matrix D is defined,

D =

D1 0

0 D2

 (4.116)

whose elements are obtained by using the correlation identity (Eq. (4.109)) to compute the

expectation values of the Γ̃e, Γ̃i noise terms, giving

〈
Γ̃e(q, t)Γ̃e(q′, t′)

〉
= 2πD1δ(q + q′)δ(t − t′) (4.117)〈

Γ̃i(q, t)Γ̃i(q′, t′)
〉

= 2πD2δ(q + q′)δ(t− t′) (4.118)
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where

D1 = (bee)2eq. + (bie)2eq. (4.119)

D2 = (bei)2eq. + (bii)2eq. (4.120)

and (bjk)eq. are the noise coefficients (Eq. (4.80)–(4.83)) evaluated at equilibrium. The drift

matrix in Eq. (4.106) is redefined to carry an explicit negative sign. These two steps result in

the following OU system,

∂

∂t

h̃e(q, t)
h̃i(q, t)

 = −A(q)

h̃e(q, t)
h̃i(q, t)

+
√
D

ξ̃e(q, t)
ξ̃i(q, t)

 (4.121)

where

A(q) =

−J11 + κeq
2 −J12

−J21 + κiq
2 −J22


eq.

(4.122)

and the Jmn terms are defined earlier in Eqs.(4.94–4.97).

4.8 Stability of the Spatio-Adiabatic system

As discussed in Sec. 4.4 for the Brusselator, in order for the homogeneous steady-state of

Eq. (4.74–4.75) to be stable, we require the eigenvalues of A(q) to have positive real parts. The

eigenvalues λ1, λ2 of matrix A(q) are,

λ1, λ2 = −1
2
(c1 − κeq

2) ± 1
2

√
(c1 − κeq2)2 − 4(c2 + c3q2) (4.123)

where c1, c2, c3 have been defined as,

c1 = J11 + J22 (4.124)

c2 = J11J22 − J12J21 (4.125)

c3 = κiJ12 − κeJ22. (4.126)

From previous analysis done by Steyn-Ross et al. (1999) we know, for the top- and bottom-

branch steady-state solutions, that c1 < 0, c2 > 0, and both J12 and J22 are negative with
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|J12| < |J22|. Furthermore, the weighting function ψee(he) will always be positive provided the

soma voltage never exceeds the excitatory reversal potential hrev
e = +45 mV. Hence κe > 0 via

Eq. (4.93). Using the default values listed in Table 3.1 we find 0 < κi < κe (i.e., the long-range

cortico-cortical e–i diffusivity is weaker than the long-range e–e diffusivity) which gives c3 > 0.

Taking the signs of c1 and κe into account, we rewrite Eq. (4.123) as,

λ1, λ2 =
1
2

(|c1| + κeq
2) ± 1

2

√
(|c1| + κeq2)2 − 4(c2 + c3q2) (4.127)

If both eigenvalues are real then we require,

(|c1| + κeq
2)2 − 4(c2 + c3q

2) > 0 (4.128)

which if true,

(|c1| + κeq
2) >

√
(|c1| + κeq2)2 − 4(c2 + c3q2) > 0. (4.129)

From Eq. (4.129) and Eq. (4.128) it is obvious that if both eigenvalues are real, they both will

be positive.

If the discriminant of Eq. (4.129) is negative, then the eigenvalues will form a complex

conjugate pair with real parts given by,

Re(λ1, λ2) =
1
2
(|c1| + κeq

2) (4.130)

which is always positive. Hence for the above parameters, as the real parts of λ1 and λ2 are

always positive for the top and bottom branch of the inverted S-bend (see Fig. 3.13), these

steady-states are stable.

If we allow for the possibility of the long-range cortico-cortical e–i diffusivity dominating the

long-range e–e diffusivity, then the possibility exists for c3 to become negative. This will be the

case if

κi >
|J22|
|J12|κe → c3 < 0. (4.131)

For this case let us examine the possibility of the top and bottom branch becoming unstable.

The stability thresholds are given by (a) λ1, λ2 complex and Re(λ1, λ2) → 0+ (the hard mode

instability) and (b) λ1, λ2 real and positive with λ2 → 0+ (the soft mode instability). We now
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consider each threshold in turn:

(a) When the eigenvalues form a complex conjugate pair, c3 has no effect on the real part

given by Eq. (4.130). As the real part is always positive there is no possibility of the hard mode

instability occurring. Therefore temporal oscillations will not occur.

(b) The eigenvalues will be real when the discriminant is positive,

(|c1| + κeq
2)2 > 4(c2 + c3q

2). (4.132)

They will be real and positive if, in addition to Eq. (4.132), we have

c2 + c3q
2 > 0. (4.133)

From Eq. (4.127) we see that λ1 remains positive while λ2 → 0+ if in addition to Eq. (4.132),

c2 + c3q
2 = 0. (4.134)

This marginally-stable configuration is characterized by the wave vector qs,

qs =
√

c2
|c3| (soft-mode instability). (4.135)

For c2 > 0 and c3 < 0, then any wavenumber q > qs will guarantee a negative λ2 eigenvalue,

resulting in an unstable steady-state for that q value. A bifurcation to a new state must then

occur. Of note here is that for a specific value of anaesthetic concentration λGABA, the qs

value occurs at different top and bottom branch steady-state values (Fig. 3.11). Hence for

wavenumbers greater than qs there are two possible outcomes: (i) If only one equilibrium steady-

state is unstable then a bifurcation from the unstable steady-state to the stable equilibrium

steady-state will occur. (ii) If both equilibrium steady-state solutions are unstable, then a

bifurcation to a non-equilibrium steady-state (i.e., a state which does not lie on the S-bend) will

occur.
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4.9 Spatial Covariance of ĥe

In order to quantify the degree to which voltage fluctuations at separate points x and x′ are

correlated Steyn-Ross et al. (2003) define the steady-state spatial covariance G(x, x′),

G(x, x′) = lim
t→∞

〈
ĥe(x, t)ĥe(x′, t)

〉
(4.136)

They then assume that the voltage covariance will depend only on the separation |x−x′| rather

than the absolute positions x and x′, so the spatial covariance can be collapsed to,

G(x, x′) = G(|x− x′|). (4.137)

In order to determine the spatial covariance G(x, x′), the covariance in Fourier space is

determined,

G̃(q, q′) =
〈
ĥe(q, t)ĥe(q′, t)

〉
(4.138)

and then Fourier inverted to give G(x, x′),

G(x, x′) =
1

(2π)2

∫ ∫ +∞

−∞
eiqxeiq

′x′
G̃(q, q′)dqdq′

=
1
2π

∫ +∞

−∞
eiq|x−x′|G̃(q)dq

(4.139)

The 2 × 2 steady-state covariance matrix is defined as

G̃(q, q′) = lim
t→∞


〈
ĥe(q, t)ĥe(q′, t)

〉 〈
ĥe(q, t)ĥi(q′, t)

〉
〈
ĥi(q, t)ĥe(q′, t)

〉 〈
ĥi(q, t)ĥi(q′, t)

〉
 (4.140)

= 2πδ(q + q′)G̃(q) (4.141)

where for an OU system G̃(q) is defined in Eq. (4.56). The goal of Steyn-Ross et al. (2003) is

to predict the covariance of he fluctuations separated by a distance |x − x′| (these fluctuations

will be referred to as e–e from now on). To this end they investigate the G̃11 element of the G̃

matrix. Expanding Eq. (4.56) in 1-D, using the A = A(q) drift matrix of Eq. (4.122) and the
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D diffusion matrix of Eq. (4.116), we obtain

[
G̃(q)

]
11

=
D1

2(A11 + A22)
+

A2
22D1 + A2

12D2

2(A11 + A22)(A11A22 −A12A21)

=
D1 + κec4

2(κeq2 − c1)
− c3c4

2(c3q2 + c2)

(4.142)

where c1, c2, c3 were defined in Eqs. (4.124)–(4.126), and c4 is given by,

c4 =
J2

12D2 + J2
22D1

c1c3 + κec2
. (4.143)

Taking signs into account and the possibility of c3 being positive or negative, we rewrite

Eq. (4.142) as

[
G̃(q)

]
11

=
D1/κe + c4

2(q2 + |c1/κe|) − c4
2(q2 ± |c2/c3|) (4.144)

where, in the second denominator, the “±” operator follows the sign of c3 (i.e., “+” if c3 > 0;

“−” if c3 < 0).

In order to obtain the spatial covariance G(|x−x′|), we Fourier invert Eq. (4.144). Depending

on the sign of c3, two forms of the e–e spatial covariance are predicted. If c3 is positive the e–e

spatial covariance is the difference of two exponential decays whose respective 1/e decay-lengths

are L1 and L2 (defined below),

G(|x− x′|) =
D1/κe + c4

4
L1exp(−|x− x′|/L1)

− c4
4
L2exp(−|x− x′|/L2), c3 > 0

(4.145)

Alternatively, if c3 is negative then the e–e spatial covariance consists of an L1-length exponential

decay plus a sinewave variation of wavelength 2πL2,

G(|x− x′|) =
D1/κe + c4

4
L1exp(−|x− x′|/L1)

− c4
4
L2sin(|x− x′|/L2), c3 < 0

(4.146)
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where the quantities

L1 ≡
√

|κe/c1| (4.147)

L2 ≡
√

|c3/c1| (4.148)

define the characteristic lengths (either a correlation length or a scaled wavelength) for the

spatial covariance patterns.

4.10 Previous Models and Clinical Evidence

Analysis of the default theoretical correlation function (Eq. (4.145)) shows that as the transition

from consciousness to unconsciousness, or vice versa, is approached the correlation length in-

creases (Sec. 7.2.1). This suggests that just prior to the loss of consciousness (LOC) and return

of consciousness (ROC) transition points, the electrical activity in the brain is more synchronized

(i.e., voltage fluctuations separated by a distant |x− x′| are more correlated) than normal.

Clinical confirmation of increased correlation lengths near transition points has recently been

reported by John et al. (1999). They conducted experiments involving 176 patients undergoing

general aneasthesia. For each patient, 19 EEG-recording electrodes were placed around the scalp

at positions corresponding to the International 10/20 System.

Figure 4.2: International 10/20 EEG electrode positioning system. The reference electrode is often
placed on one of the positions indicated on either ear. [Source: http://www.innernet.net/doco/sjo/
neurofeedback.html]

A range of different anaesthetic agents were used in order to determine EEG changes that are

common to all anesthetics. Induction of anesthesia was accomplished using etomidate, propofol
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or thiopental, while desflurane, isoflurane, sevoflurane, propofol or nitrous oxide/narcotic were

used during surgery.

One of the main findings of John and coworkers was a general increase in EEG coherence

just prior to LOC and ROC, particularly for the frontal (forehead) pair of electrodes. While the

1-D spatio-adiabatic model cannot tell us why the frontal electrodes are favoured, the reported

increase in coherence is consistent with the theoretical prediction of increase in correlation length

prior to the LOC and ROC transition points.

A more controversial piece of clinical evidence, involving sleep rather than general anaes-

thesia, was reported by Destexhe et al. (1999), who investigated the spatiotemporal patterns

of oscillations in the cerebral cortex of cats during waking and natural sleep. They found that

there is a marked increase in correlation length for slow-wave sleep (SWS) relative to that of

rapid eye movement sleep (REM) and the awake state. When a person is in REM sleep the

body is paralyzed (only the eye muscles and ear muscles twitch), yet the activity in the cerebral

cortex is very similar to the awake state. In fact, REM sleep is when dreaming usually occurs.

SWS sleep is considered deep sleep and is characterized by slow waves in the EEG signal. If

we consider SWS sleep to be analogous to the anesthetized brain and REM sleep and awake to

be analogous to the awake brain, then these cat experiments demonstrate qualitative agreement

with the predicted difference in correlation length between the unconscious and conscious states

(Sec. 7.2.1).

In the spatio-adiabatic model we have allowed for the possibility that the inhibitory diffusivity

κi may dominate the excitatory diffusivity κe. This leads to the possibility of stationary large-

amplitude voltage patterns occurring in space (Sec. 7.6). It is interesting to note that Ermentrout

and Cowan (1979) identified the possibility of stationary periodic spatial patterns occurring in

their idealized 1-D neural net models. Their paper shows that spatial standing waves can form

via a bifurcation from the resting state of the system. Consistent with the present work they

showed that strong inhibitory influences are necessary in order for a bifurcation from the resting

state to a self-organized stable state exhibiting stationary spatial patterns.





Chapter 5

Diffusion

5.1 The Diffusion Equation

As the cortical model includes a diffusion term, it is prudent to review the properties of the

diffusion equation (Garcia (2000)). In particular, we wish to establish how to scale the noise

inputs in space, and to determine the effects this scaling is likely to have.

The diffusion equation is one of the most common partial differential equations:

∂

∂t
T (x, t) = κ

∂2

∂x2
T (x, t) (5.1)

This equation describes many diffusive processes: For example if T (x, t) is the temperature at

position x, time t in a uniform rod, and κ is the thermal diffusion coefficient, then this equation

describes the diffusion of heat along the rod. The diffusion equation is normally solved as

an initial value problem. If we know the initial temperature distribution at T (x, t = 0) and

the boundary conditions, then we can solve the diffusion equation such that the temperature

distribution can be found for all t > 0. Partial differential equations can be solved numerically

to investigate the effect of changing both the intial conditions and the boundary conditions.

5.2 Numerical Approximation for Derivatives

The derivative of a function f(x) with respect to the variable x is defined,

f ′(x) ≡ lim
h→0

f(x + h) − f(x)
h

(5.2)

By choosing a suitably small value for increment h, we can write an approximation for Eq. (5.2)

that allows us to solve the diffusion equation numerically. The value of h must be selected with

some care. While an overly small value for h will lead to round-off error, a large value for h will

give a poor estimate of the derivative.
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Assuming for a finite h, negligible round-off error occurs, there will remain a truncation

error arising from the difference between the analytical value f ′(x) and its numerical estimate
f(x+h)−f(h)

h . This difference can be found via the Taylor expansion,

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(x) + . . . (5.3)

where . . . indicates higher-order terms. An equivalent form that has a finite number of terms is

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(ζ) (5.4)

where ζ is a number lying between x and x + h; Taylor’s theorem guarantees that there will

always be some value ζ such that Eq. (5.4) is true; the catch is that we cannot analytically

determine this value ζ. Rearranging Eq. (5.4) gives us

f ′(x) =
f(x + h) − f(x)

h
− 1

2
hf ′′(ζ) (5.5)

where x ≤ ζ ≤ x+h. This equation is known as the forward derivative formula. The last term is

the truncation error that arises from truncating the infinite Taylors series. Sometimes Eq. (5.5)

is written as

f ′(x) =
f(x + h) − f(x)

h
+ O(h) (5.6)

where O(h) indicates that the truncation error is linear in increment h.

5.3 Numerical Solution of the Diffusion Equation

In order to solve the diffusion equation as an initial value problem we need: initial conditions,

a way to calculate how these propagate forward in time, and boundary conditions. If we are

looking at a diffusion process along a rod of length L, then we need to specify the conditions that

apply at the left (x = −L/2) and the right (x = L/2) ends of the rod. Normally one of three

different types of boundary conditions are considered: Dirichlet, von Neumann, or periodic. If
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we set the ends of our rod to a constant temperature

T (x = −L/2, t) = Ta (5.7)

T (x = L/2, t) = Tb (5.8)

then we are imposing Dirichlet boundary conditions. Alternatively we can set the heat flux at

the ends

−κ
dT

dx

∣∣∣∣
x = −L/2

= Fa (5.9)

−κ
dT

dx

∣∣∣∣
x = L/2

= Fb (5.10)

If we set Fa = Fb = 0 the ends of the rod are insulated. Setting the gradients at the endpoints

imposes von Neumann boundary conditions. Periodic boundary conditions, are imposed by

equating the function at the two ends. In one dimension this is equivalent to connecting the two

ends of the rod to form a circle,

T (x = −L/2, t) = T (x = L/2, t) (5.11)

dT

dx

∣∣∣∣
x = −L/2

=
dT

dx

∣∣∣∣
x = L/2

(5.12)

In order to solve the diffusion equation we need to discretize space and time. We discretize

time via the formula tn = (n−1)τ where τ is the time-step and n = 1, 2, 3, . . . Space is discretized

by setting up grid-points xi between x = −L/2 and x = L/2 with xi = (i − 1)h − L/2; h is

the grid spacing, and i = 1, 2, 3, . . .

The index i denotes the spatial location of a grid-point and the index n denotes the temporal

step. Following Garcia (2000) we adopt the shorthand

T n
i ≡ T (xi, tn) (5.13)
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to represent the temperature at position xi and time tn. Using the forward-derivative equation,

the time derivative can be approximated numerically

∂T (x, t)
∂t

⇒ T (xi, tn + τ) − T (xi, tn)
τ

(5.14)

=
T n+1
i − T n

i

τ
(5.15)

Likewise the space derivative can be written using the centered derivative form,

∂2T (x, t)
∂x2

⇒ T (xi + h, tn) + T (xi − h, tn) − 2T (xi, tn)
h2

(5.16)

=
T n
i+1 + T n

i−1 − 2T n
i

h2
(5.17)

This method of interation takes the name forward-time centered-space (FTCS). Applying

FTCS discretization to the diffusion equation Eq. (5.1) yields,

T n+1
i − T n

i

τ
= κ

T n
i+1 + T n

i−1 − 2T n
i

h2
(5.18)

which can be rearranged to give an update formula for T n+1
i ,

T n+1
i = T n

i +
κτ

h2
(T n

i+1 + T n
i−1 − 2T n

i ) (5.19)

If we know all the spatial information at a temporal step n (RHS of Eq. 5.19), then we can

determine all spatial values at the next step in time n + 1. We can apply this iteration formula

to an initial temperature profile to numerically determine T (x, t) for t > 0.

5.4 Simulations of the Diffusion Equation

Once the diffusion equation has been coded we can investigate various initial conditions. Let

us suppose we would like to see how a small impulse of heat in the middle of the rod diffuses

through space at each successive time-step. To achieve this, a delta spike at x = 0, t = 0 is

used as an initial condition. A delta spike represented in 1-D, is shown in Fig. 5.1.
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Figure 5.1: Discretized representation of a delta spike

With just an initial impulse of heat at the centre of the rod, we expect the heat to diffuse

out along the rod. As energy must be conserved, the temperature at the centre will decay as

the thermal energy diffuses out along the rod. A typical simulation is shown in Fig. 5.2. As

the numerical scheme progresses forward in time, the delta spike decays in height and broadens

symmetrically along the rod. To represent the delta spike numerically we use,

∆(x) =


(x + h)/h2 for − h < x ≤ 0

(h− x)/h2 for 0 ≤ x < h

0 otherwise

(5.20)

such that

lim
h→0

∆(x) = δ(x) (5.21)

The function ∆(x) is a triangular distribution with unit area (Fig. 5.1). Discretizing ∆(x) gives

∆i =


1/h for i = N/2

0 otherwise
(5.22)

Note that integrating gives

∫ L/2

−L/2
∆(x)dx →

N∑
i = 1

∆ih = 1 (5.23)

so ∆i also has unit area.
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Figure 5.2: Mesh plot from simulation of a temperature spike diffusing along a 1 m rod. In order to
emphasize the diffusion of the spike, the initial tmeperature T (x = 0, t = 0) = 1 K is not shown Grid
spacing h = 1 cm, timestep τ = 0.1 s, and κ = 1 cm/s2

Scaling the height of the delta spike by 1/h ensures that the triangle always has unit area. The

physical significance of this is that the amount of heat inputted as a delta spike is independent

of the grid spacing. If we keep the length of the rod the same but change the grid spacing, and

hence the number of grid-points, the T (x, t) solution should remain the same. For example, if

we have a rod discretized into 1-cm spacings, a delta spike should diffuse outwards at the same

speed as does a delta spike in a rod divided into 2-cm spacings. However, if we run simulations

of these two situations, it becomes apparent that the two solutions take a certain amount of

time to converge. This is illustrated in Figs. 5.3 and 5.4.
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(a) Grid point spacing h = 1 cm
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(b) Grid point spacing h = 2 cm

Figure 5.3: Diffusion of a delta spike for different grid spacings
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Figure 5.4: Temperature error profile showing the difference between time evolution of spike diffusion
on grid spacings 1 and 2 cm. Calculated as Th1(x, t) − Th2(x, t) where h1 = 1 cm and h2 = 2 cm

There is an obvious and expected disagreement at t = 0 s because by changing the grid

spacing we have changed the initial height of the spike. But by changing the grid spacing we

have also changed the truncation error. After one time step the two solutions should agree

within the difference of their relative truncation errors. An error profile, calculated using the

differences between the two simulations is shown in Fig. 5.4. Using the FTCS we can derive the

truncation error ε. The FTCS scheme of Eq. (5.18) reads,

T n+1
i − T n

i

τ
= κ

T n
i+1 + T n

i−1 − 2T n
i

h2
(5.24)

In section (5.2) we noted that there are truncation errors associated with the forward- and

centered-derivative formulas. Hence we aim to write the FTCS including its associated trunca-

tion error ε. Following the analysis similar to Tannehill et al. (1997), we write a Taylor series

expansion in time for T (x, t + τ),

T (x, t + τ) = T (x, t) + τ
∂T (x, t)

∂t
+

τ2

2!
∂2T (x, t)

∂t2
+

τ3

3!
∂3T (x, t)

∂t3
+ . . . (5.25)
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and a pair of Taylor expansions in space for T (x + h, t) and T (x− h, t),

T (x + h, t) = T (x, t) + h
∂T (x, t)

∂x
+

h2

2!
∂2T (x, t)

∂x2
+

h3

3!
∂3T (x, t)

∂x3
+ . . . (5.26)

T (x− h, t) = T (x, t) − h
∂T (x, t)

∂x
+

h2

2!
∂2T (x, t)

∂x2
− h3

3!
∂3T (x, t)

∂x3
+ . . . (5.27)

Making use of Eqs. (5.25–5.27) we write,

∂T (x, t)
∂t

− κ
∂2T

∂x2
=
(
T (x, t + τ) − T (x, t)

τ
− κ

T (x + h, t) + T (x− h, t) − 2T (x, t)
h2

)

− τ

2!
∂2T (x, t)

∂t2
+ κ

2h2

4!
∂4T (x, t)

∂x4
+ . . .

(5.28)

In discrete form, the LHS of Eq.(1.28) becomes

∂T (x, t)
∂t

− κ
∂2T

∂x2
⇒
(
T n+1
i − T n

i

τ
− κ

T n
i+1 + T n

i−1 − 2T n
i

h2

)
+ ε (5.29)

where ε, the truncation error, is given by

ε = −τ

2
∂2T

∂t2
+ κ

h2

12
∂4T

∂x4
+ . . . (5.30)

Taking the time derivative of Eq. (5.1), we find

∂2T

∂t2
= κ

∂

∂t

∂2T

∂x2
(5.31)

= κ
∂2

∂x2

∂T

∂t
(5.32)

= κ
∂2

∂x2

(
κ
∂2T

∂x2

)
(5.33)

= κ2 ∂
4T

∂x4
(5.34)

and thus rearrange the truncation error to give,

ε =
(
−κ2τ

2
+

κh2

12

)
∂4T

∂x4
+ O(t2 + h4) (5.35)
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Figure 5.5: Decay of peak of delta spikes illustrating effect of truncation error

This suggests that we can minimize the truncation error for a given grid spacing by arranging

that the coefficient of ∂4T/∂x4 be zero. Thus we should set the timestep τ to,

τ =
h2

6κ
(5.36)

Close observation of the numerical processes in Fig. 5.3, shows the effect of truncation error.

When the grid spacing is increased from 1 cm to 2 cm, the two numerical solutions should

converge after a number of iterations. Looking at the agreement of the rate of decay for each

delta spike, the effect of minimising the truncation error can be seen. Figure 5.5 illustrates that
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by minimizing the truncation error, the simulations with differing grid spacings converge more

rapidly. The effect of the truncation error is important when numerical simulations of a system

are being compared with analytical prediction. In the cortical simulations, noise is added in at

every timestep. After a single iteration the noise has not had sufficient time to fully diffuse along

the rod, hence we need to be especially watchful for truncation error in the cortical simulations.

5.5 Noise and the Diffusion Equation

Simulating stochastic processes requires a lot of care, especially how one is to go about dis-

cretizing continous white-noise. As a step towards accurately discretizing spatial white-noise we

consider the diffusion equation “driven” white noise. When inputting a single delta spike into

the diffusion equation, we have to ensure that the area of the triangle representing the spike is

always constant and independent of grid spacing. Using this principle, we proceed to investigate

how noise inputs should be scaled in space. One should ask: How do we scale the noise in space

in order to ensure that the cortical rod is being driven with the same amount of noise energy

per unit length, independent of the grid-spacing? Let us consider the implied area of the delta

spike Fig. 5.1 in the diffusion equation,

area =
1
2
base × height (5.37)

=
1
2
2h× 1

h
= 1

The cortical model is driven by continuous spatial white-noise. Consider the discretized version

where we assume an oppositely-signed delta spike at every grid point (Fig. 5.6)). In this case

Figure 5.6: Discretized (triangle) representation of spatial white noise
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the absolute area for the noise impulses input into an N -point rod is,

total area =
N∑

i = 1

|area of each triangle| (5.38)

= N × 1
2
h× |mean height of each triangle|

Using this formula it becomes obvious that if we do not scale the noise with the grid spacing the

total absolute area will in fact still be conserved. This is because if we halve the grid spacing

(i.e., improve the spatial resolution: h → h/2) then in order to keep the length of the cortical

rod the same we will need to double the number of grid points (N → 2N). Hence impulse “area”

will be conserved.

What about the case of varying the length of the rod? If we double the length we will

need to either double the number of grid points or double the grid spacing. Doing either will

mean the absolute total impulse area would double which is desirable because then the noise

per unit length is conserved. Not scaling the noise with the inverse grid spacing in order to

conserve impulse area stands in stark contrast to the case of a single delta spike used as an

initial condition for the diffusion equation. Hence it is a good idea to investigate the effect of

fixing the height of the delta spike in the diffusion equation.

We will apply a single spike as an initial condition, but keep the height fixed, independent of

grid spacing. In order to minimize the change in truncation error due to changes in grid spacing,

the time-step is set as described in Eq. (5.36). We find that the larger the grid spacing, the

longer it takes, in absolute time, for the height of the delta spike to decay to the same value

T (x, t). Two simulations were run using grid spacings h1 = 1 cm and h2 = 2 cm (Fig. 5.7). As

the rod with grid spacing 2 cm has twice (or h2/h1) as much heat applied as the initial condition,

at any time-step t > 0 s, the bar will be twice as hot at a given position x as the rod with 1 cm

grid spacing (within numerical error). This is illustrated in Fig. 5.7.

Using this reasoning, two temperature distributions T (x, t) obtained by simulating a rod of

fixed length Nh, with different grid-spacings h1 and h2, with a fixed height delta spike as an

initial condition, can be equated by dividing by the appropriate gridspacing,

Th1(x, t)
h1

=
Th2(x, t)

h2
∀t > 0 (5.39)

where h1 and h2 are two different grid spacings for the same length of rod.
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Figure 5.7: The effect of changing the grid spacing while keeping the height of the initial-condition
spike constant
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5.6 Correlations and the Diffusion Equation

When looking at the cortical model, one of the main objectives is to investigate spatial correla-

tions. If the length of the cortical rod is keep constant, the correlations should remain the same

irrespective of changes to grid spacing or number of grid points. This point can be investigated

using the diffusion equation with noise added at every time step. Let us examine the case of

noise being added continously at the centre point of the rod. Two runs with the same time

step and using the same random numbers are shown in Fig. 5.8. (Note, when adding noise in

at every time-step, it is well established that the noise amplitude should be pre-scaled by 1√
τ

in

order to preserve input energy per unit time (Wilcocks (2001))).

In Fig. 5.8 simulations using grid spacings of 1 cm and 4 cm are shown. Inspection of these

two graphs shows they obey Eq 5.39 (within numerical error). Notice that along the x = 0 cm

axis the agreement with Eq. (5.39) is not exact. This is due to the difference in truncation error

between the two simulations.

In order to measure the correlations in a single series, the autocorrelation function is used.

Applying the (unnormalized) autocorrelation function to a spatial sequence returns values,

r(m) =
N−1∑

n = −N+1

x(n)x(n −m) (5.40)

where x(n) is a N element sequence (zero-padded to map to a 2N − 1 element sequence) and

m = 0, 1, 2 . . . is the lag. The correlations as a function of space, in cm, is then,

r(m) ⇒ r(m h) = r(|x− x′|) (5.41)

where h is the grid spacing and |x−x′| is the distance of point x from reference point x′ (in the

following examples x′ = 0 cm).
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Figure 5.8: Diffusion process with noise for grid spacings of 1 cm and 4 cm
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Figure 5.9: Spatial correlations for grid spacings 1 cm and 4 cm. These graphs were computed from
the average autocorrelation, obtained by taking the autocorrelation of space series of Fig. 5.9 at each
time-step. Note that the spatial lag is in cm and not gridpoints

Taking the autocorrelation of the two simulations (Fig. 5.9), we determine that they are

related by a factor of 4 or h2/h1 (h1 = 1 cm and h2 = 4 cm). This is because although

Th2(x, t) = 4Th1(x, t) (approximately), we have kept the length of the rod the same, hence

there are four times as many grid points (N → 4N) in the rod with h = 1 cm compared to the

rod where h = 4 cm. Thus in order to normalize correlations between constant length rods we

need to divide through by the grid spacing h. If rh1(|x− x′|) is the correlation for each series as

defined in Eq. (5.40), then

rh1(|x− x′|)
h1

=
rh2(|x− x′|)

h2
(5.42)

where |x− x′| = mh1 = m′h2 are the lags in cm.

When adding noise in at every grid point rather than just one, similar logic should follow. In

this case by changing the number of grid points in a rod of length L we also change the number

of noise inputs. Hence to normalize we need to divide by the number of grid-points as well.

rh1

N1 h1
=

rh2

N2 h2
(5.43)

By doing this we are effectively dividing by the length of the cortical bar L = N∆x. Using

Eq. 5.43 to normalize all correlations in the cortical model allows different length rods to be

investigated as it normalizes to give correlation energy per unit length.
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5.7 Disagreement with Stochastic Theory

For a time-stochastic system such as Ornstein–Uhlenbeck process, the theoretical correlation is

known to agree exactly with numerical simulation when the (normalised) time-autocorrelation

function at lag l is calculated via,

r(l) =
1
N

N−1∑
k=−N+1

x(k)x(k − l). (5.44)

provided that the stochastic inputs that drive the time-sequence x(k) have been prescaled by

1/
√
τ .

For our spatial experiment with the diffusion process in which noise (prescaled by 1/
√
τ)

drives every gridpoint, we determined experimentally that the spatial-autocorrelation function

required a scaling by 1/Nh giving,

r(m) =
1

Nh

N−1∑
n=−N+1

x(n)x(n−m). (5.45)

This scale factor ensures that the correlations are independent of the grid spacing used to

simulate a rod of fixed length. In deriving this factor we have ignored the fact that the input

noise for the continuous 1-D cortical model is delta-correlated in time and space. To ensure

that the “amount” of delta-correlated noise (impulses of noise rather than a continous input)

is constant per unit length we have to prescale the noise appropriately both in time and space.

Comparing the correct autocorrelation formula Eq. (5.44) with the derived formula Eq. (5.45)

indicates we should prescale the noise by 1/
√
h.

The reason for the scaling discrepency between my derived formula Eq. (5.45) and the

expected form of Eq. (5.44) arises from my implicit assumption in Fig. 5.6 that one can “connect

up the dots”. This improperly implies a nonzero spatial correlation exists between grid points,

contradicting the delta-correlation property required of spatial white noise.

In Sec. 6.1 I will prove that when simulating a stochastic process driven by spatio-temperal

white noise, the computer-generated (i.e., finite-variance) noise must be prescaled by both 1/
√
τ

and 1/
√
h in order that in the limit τ → 0, h → 0, the discrete simulation approaches its

white-noise continuous limit.





Chapter 6

Numerical Simulations

This chapter discusses the numerical simulations of both the spatio-adiabatic equations Eqs. (4.74–

4.75) and the linearized spatio-adiabatic equations Eq. (4.92). The purpose of the simulations

is to provide confirmation of the formation of nonequilibrium steady-states (stationary Turing

structures), and to confirm the theoretical correlation predictions described by Eqs. (4.145-

4.146).

6.1 Numerical Method for Discretizing White-Noise

In order to solve the spatio-adiabatic and linearized spatio-adiabatic equations numerically we

need to discretize time and space. The time- and space-derivatives in the equations are simulated

using the forward time derivative and the space-centred derivative. In Section 5.3 we introduced

the shorthand

(he)nj ≡ he(xj, tn) (6.1)

where the n subscript indicates “value at time-increment n”,

tn = t0 + ∆tn (6.2)

and where t0 is the initial time (set to zero for these simulations) and ∆t is the time-step.

Similarly, j subscript reads “value at gridpoint j”,

xj = x0 + jh (6.3)
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where x0 is set to zero, and h is the gridspacing. The updating methods used have the generic

form

(he)n+1
j = (he)nj +

[
∂he
∂t

]n
j

∆t (6.4)

where
[
∂he
∂t

]n
j

denotes the forward derivative in time and includes a diffusion term modelled

using the space-centred derivative.

The theoretical equations are based on an infinite 1-D cortex. While an infinite 1-D cortex

is impossible to simulate, provided the cortex is long enough, meaningful comparisons between

experiment and theory can be made. The minimum length of cortex depends on a number of

factors, including exactly what fluctuation property is being measured (this will be discussed

when we investigate different properties of the space-time series).

When simulating the 1-D cortex we also have to be rather careful about how noise is input

in both space and in time. We need to determine how to correctly map the continuous spatial

and temporal white-noise to its discretized approximation. Murthy (1983) presents a treatment

for discretizing continuous temporal white-noise. Here I adapt the ideas presented by Murthy

to include continuous spatial white-noise.

The continuous random function ξ(x, t) is modelled as white noise which has zero mean and

is delta-correlated in both space and time:

〈ξ(x, t)〉 = 0,
〈
ξ(x, t)ξ(x′, t′)

〉
= δ(x− x′)δ(t − t′). (6.5)

The second result implies that white-noise is defined to have infinite variance. In order to

simulate white-noise we need a discretized approximation. We define a discrete random variable

{ηnj } of mean zero and variance σ2:

〈
ηnj
〉

= 0,
〈
ηnj , η

m
j

〉
= σ2δj,k δn,m (6.6)

where δn,m (and δj,k) is the Kronecker delta,

δn,m =


1 when m = n

0 when m �= n

(6.7)
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For a time-step ∆t and space-step h sufficiently small,

∫ L

0

∫ T

0
ξ(x, t) dxdt ≈

J∑
j=1

N∑
n=1

ηnj h∆t where T = N∆t and L = Jh (6.8)

with both sides going to zero as L, T → 0 since both ξ(x.t) and {ξnj } have zero mean.

For the product ξ(x, t)ξ(x′, t′), the expected value of the integral over all space and time is

〈
lim
L→∞

lim
T→∞

∫ L

−L

∫ T

−T
ξ(x, t)ξ(x′, t′) dxdt

〉
=
∫ ∞

−∞

∫ ∞

−∞

〈
ξ(x, t)ξ(x′, t′)

〉
dxdt = 1 (6.9)

which must match the corresponding expectation value for the summation of the discrete product

{ηnj ηmj },

〈
lim
J→∞

lim
N→∞

J∑
j=1

N∑
n=1

ηnj η
m
k h∆t

〉
= lim

J→∞
lim

N→∞

J∑
j=1

N∑
n=1

〈
ηnj η

m
k

〉
h∆t = σ2h∆t (6.10)

Equating Eqs (6.9) and (6.10), we see that the standard deviation of the discrete variable must

be

σ =
1√
h∆t

. (6.11)

For the stochastic simulations throughout this thesis, we use Matlab’s randn function to gen-

erate Gaussian-distributed random numbers {Rn
j } of zero mean, unit variance:

〈
Rn

j

〉
= 0,

〈
Rn

j , R
m
k

〉
= δn,mδj, k. (6.12)

Hence to map from continuous spatial and temporal noise ξ(x, t), to its discrete-time approxi-

mation ηnj we set,

ξ(x, t) −→ {ηnj } =
1√
h∆t

{Rn
j }, x = jh and t = n∆t. (6.13)

In the limit ∆t → 0, h → 0, the variance of {ηnj } tends to infinity, and better approximates

white-noise. Therefore as we reduce ∆t and h the stochastic simulation should become increasing

accurate.
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6.2 Difference Equations

The difference equations used in the numerical simulations are derived in the following sub-

sections. [Rk]nj are random independent Gaussian-distributed variables as in Eq. (6.13), and the

random variables driving each grid-point j are independent.

6.2.1 Linearized “Spatio-Adiabatic” Equations

The difference equations used to simulate the linearized “spatio-adiabatic” equations derived in

Chapter 3 (i.e., Eq. (4.92)) are as follows,

[ĥe]n+1
j = [ĥe]nj + [Γe]nj ∆t + κe∆t

{
[ĥe]nj+1 + [ĥe]nj−1 − 2[ĥe]nj

h2

}

+
∆t

τe

{
− 1 + ψ(1)

ee

[
(Nα

ee + Nβ
ee)Se(h

0
e) + 〈pee〉

]
Gee/γe

+ψee(h0
e)
[
(Nα

ee + Nβ
ee)S

(1)
e

]
Gee/γe

+λGABAψ
(1)
ie

[
Nβ

ieSi(h
0
i ) + 〈pie〉

]
Gie/γi

}
[ĥe]nj

+∆t
{
λGABAψie(h0

e)N
β
ieS

(2)
i Gie/γiτe

}
[ĥi]nj

(6.14)

[ĥi]n+1
j = [ĥi]nj + [Γi]nj ∆t + κi∆t

{
[ĥe]nj+1 + [ĥe]nj−1 − 2[ĥe]nj

h2

}

+∆t
{
ψei(h0

e)(N
α
ei + Nβ

ei)S
(1)
e Gee/γeτi

}
[ĥe]nj

+
∆t

τi

{
− 1 + ψ

(2)
ei

[
(Nα

ei + Nβ
ei)Se(h

0
e) + 〈pei〉

]
Gee/γe

+λGABAψ
(2)
ii

[
Nβ

iiSi(h
0
i ) + 〈pii〉

]
Gie/γi

+λGABAψii(h0
i )N

β
iiS

(2)
i Gie/γi

}
[ĥi]nj

(6.15)
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where the continuous noise functions in Eqs. (4.78–4.79) become the following discrete noise

time-series,

[Γe]nj =
[R1]nj ψee([he]nj ) αee

√〈pee〉 Ge e√
h∆t γe τe

+
[R3]nj λGABAψie([he]nj ) αie

√〈pie〉 Gi e√
h∆t γi τe

(6.16)

[Γi]nj =
[R2]nj ψei([hi]nj ) αei

√〈pei〉 Ge e√
h∆t γe τi

+
[R4]nj λGABAψii([hi]nj ) αii

√〈pii〉 Gi e√
h∆t γi τi

(6.17)

and the partial derivatives of the weighting and sigmoid functions are evaluated at equilibrium

and defined by Eqs. (4.98–4.99).

6.2.2 “Spatio-Adiabatic” Equations

Simulating the nonlinearized “spatio-adiabatic” differential equations Eqs. (4.74–4.75) requires

considerable care and thought. Naively writing the difference equations of Eqs. (4.74–4.75)

straight out gives,

[he]n+1
j = [he]nj + [Γe]nj ∆t +

∆t

τe

{
(hrest

e − [he]nj )

+ ψee([he]nj )

[
(Nα

ee + Nβ
ee)Se([he]

n
j ) +

1
Λ2
ee

([
∂2φe

∂x2

]n
j

)
+ 〈pee〉

]
Gee/γe

+ λGABAψie([he]nj )
[
Nβ

ieSi([hi]
n
j ) + 〈pie〉

]
Gie/γi

}
(6.18)

[hi]n+1
j = [hi]nj + [Γi]nj ∆t +

∆t

τi

{
(hrest

i − [hi]nj )

+ ψei([hi]nj )

[
(Nα

ei + Nβ
ei)Se([he]

n
j ) +

1
Λ2
ei

([
∂2φi

∂x2

]n
j

)
+ 〈pee〉

]
Gee/γi

+ λGABAψii([hi]nj )
[
Nβ

iiSi([hi]
n
j ) + 〈pii〉

]
Gie/γi

}
(6.19)

and the discrete Laplacian terms obey,

1
Λ2
ee

[
∂2φe

∂x2

]n
j

= [φe]nj −Nα
eeSe([he]

n
j ) (6.20)

1
Λ2
ei

[
∂2φi

∂x2

]n
j

= [φi]nj −Nα
eiSe([he]

n
j ) (6.21)
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Unfortunately the above difference equations are impossible to simulate. This is because as the

φe,i terms in Eqs. (4.74–4.75) have no time-dependence, the φe,i terms in the difference equations

Eqs. (6.20–6.21) cannot be marched forward in time. As we cannot determine φe,i at n + 1 we

cannot march he and hi forward in time.

“Spatio-Adiabatic” Equations Near Homogeneous Equilibrium

In order to simulate the he fluctuations about the steady-state for the nonlinear spatio-adiabatic

equations, we need to be able to march the difference equations forward in time. If we make the

assumption that the system is never far from equilibrium, we can make use of the approximation,

∂2φe

∂x2
≈ Nα

ee

dSe
dhe

∣∣∣∣
eq.

∂2he
∂x2

(6.22)

∂2φi

∂x2
≈ Nα

ei

dSe
dhe

∣∣∣∣
eq.

∂2he
∂x2

(6.23)

derived in Chapter 3 (i.e., Eq. (4.90)). Discretizing gives,

[
∂2φe

∂x2

]n
j

≈ Nα
ee

dSe
dhe

∣∣∣∣
eq.

[
∂2he
∂x2

]n
j

(6.24)

[
∂2φi

∂x2

]n
j

≈ Nα
ei
dSe
dhe

∣∣∣∣
eq.

[
∂2he
∂x2

]n
j

(6.25)

and using the centred derivative form,

[
∂2he
∂x2

]n
j

=
[he]nj+1 + [he]nj−1 − 2[he]nj

h2
(6.26)

Substituting the above approximation into Eqs. (6.18–6.19) gives a pair of difference equa-

tions for he and hi that can be marched forward in time and hence simulated. The difference
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equations become,

[he]n+1
j = [he]nj + [Γe]nj ∆t +

∆t

τe

{
(hrest

e − [he]nj )

+ ψee([he]nj )

[
(Nα

ee + Nβ
ee)Se([he]

n
j ) +

1
Λ2
ee

(
Nα

ee

dSe
dhe

∣∣∣∣
eq.

[
∂2he
∂x2

]n
j

)
+ 〈pee〉

]
Gee/γe

+ λGABAψie([he]nj )
[
Nβ

ieSi([hi]
n
j ) + 〈pie〉

]
Gie/γi

}
(6.27)

[hi]n+1
j = [hi]nj + [Γi]nj ∆t +

∆t

τi

{
(hrest

i − [hi]nj )

+ ψei([hi]nj )

[
(Nα

ei + Nβ
ei)Se([he]

n
j ) +

1
Λ2
ei

(
Nα

ei

dSe
dhe

∣∣∣∣
eq.

[
∂2he
∂x2

]n
j

)
+ 〈pee〉

]
Gee/γi

+ λGABAψii([hi]nj )
[
Nβ

iiSi([hi]
n
j ) + 〈pii〉

]
Gie/γi

}
(6.28)

“Spatio-Adiabatic” Equations Far from Homogeneous Equilibrium

As discussed in Section 4.8 for the 1-D cortex, if we alter the long-range cortico-cortical e–i

diffusivity relative to the long-range e–e diffusivity, the possibility exists for c3 to become negative

causing the top and/or bottom branch of the homogeneous steady-state solutions to become

unstable for all wavenumbers q > qs. Therefore, when driven by white noise, the homogeneous

steady-state will be unstable as spatial white noise consists of all wavenumbers including q > qs

(discussed in detail in Sec. 7.5). If for a certain λGABA the two stable homogeneous steady-

state become unstable with respect to white noise, the system must bifurcate to a new stable

nonequilibrium state, which we call he,i(x)|s. As discussed in Sec. 4.8 there only exists the

possibility of a bifurcation to a nonequilibrium state that oscillates in space but not time. Thus,

if we give the system an initial perturbation away from the unstable state it will bifurcate to a

new state,

lim
t→∞he(x, t) = he(x)|s (6.29)

lim
t→∞hi(x, t) = hi(x)|s. (6.30)
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For a nonequilibrium state that is stationary in time, ∂he,i(x)|s/∂t = 0. Hence from Eqs. (4.74–

4.75), and ignoring noise terms as we are only interested in the new steady-state, the he,i|s
obey

0 =
1
τe

{
(hrest

e − he|s) + ψee(he|s)
[
(Nα

ee + Nβ
ee)Se(he|s) +

1
Λ2
ee

∂2φe|s
∂x2

+ 〈pee〉
]
Gee/γe

+ λGABAψie(he|s)
[
Nβ

ieSi(hi|s) + 〈pie〉
]
Gie/γi

} (6.31)

0 =
1
τi

{
(hrest

i − hi|s) + ψei(hi|s)
[
(Nα

ei + Nβ
ei)Se(he|s) +

1
Λ2
ei

∂2φi|s
∂x2

+ 〈pee〉
]
Gee/γi

+ λGABAψii(hi|s)
[
Nβ

iiSi(hi|s) + 〈pii〉
]
Gie/γi

} (6.32)

where φe|s and φi|s are stable nonequilibrium solutions,

lim
t→∞φe(x, t) = φe(x)|s (6.33)

lim
t→∞φi(x, t) = φi(x)|s (6.34)

such that ∂φe,i|s/∂t = 0 when ∂he,i|s/∂t = 0.

The idea of a relaxation method is that the solution of Eqs. (6.31–6.32) are just the solution

of

∂he
∂t

=
1
τe

{
(hrest

e − he + ψee(he)
[
(Nα

ee + Nβ
ee)Se(he) +

1
Λ2
ee

∂2φe

∂x2
+ 〈pee〉

]
Gee/γe

+ λGABAψie(he)
[
Nβ

ieSi(hi) + 〈pie〉
]
Gie/γi

} (6.35)

∂hi
∂t

=
1
τi

{
(hrest

i − hi) + ψei(hi)
[
(Nα

ei + Nβ
ei)Se(he) +

1
Λ2
ei

∂2φi

∂x2
+ 〈pee〉

]
Gee/γi

+ λGABAψii(hi)
[
Nβ

iiSi(hi) + 〈pii〉
]
Gie/γi

} (6.36)
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in the limit t → ∞. Using a FTCS scheme we cast Eqs. (6.35–6.36) into a pair of difference

equations,

[he]n+1
j = [he]nj +

∆t

τe

{
(hrest

e − [he]nj )

+ ψee([he]nj )

[
(Nα

ee + Nβ
ee)Se([he]

n
j ) +

1
Λ2
ee

([
∂2φe

∂x2

]n
j

)
+ 〈pee〉

]
Gee/γe

+ λGABAψie([he]nj )
[
Nβ

ieSi([hi]
n
j ) + 〈pie〉

]
Gie/γi

}
(6.37)

[hi]n+1
j = [hi]nj +

∆t

τi

{
(hrest

i − [hi]nj )

+ ψei([hi]nj )

[
(Nα

ei + Nβ
ei)Se([he]

n
j ) +

1
Λ2
ei

([
∂2φi

∂x2

]n
j

)
+ 〈pee〉

]
Gee/γi

+ λGABAψii([hi]nj )
[
Nβ

iiSi([hi]
n
j ) + 〈pii〉

]
Gie/γi

}
(6.38)

In order to simulate the [∂2φe,i/∂x
2]nj terms we also use the relaxation technique. From Eq. (4.72–

4.73), we have

0 =
1

Λ2
ee

∂2φe|s
∂x2

+ Nα
eeSe(he) − φe|s (6.39)

0 =
1

Λ2
ei

∂2φi|s
∂x2

+ Nα
eiSe(he) − φi|s (6.40)

which is the stationary solution of

∂φe

∂t
= µ

(
1

Λ2
ee

∂2φe

∂x2
+ Nα

eeSe(he) − φe

)
(6.41)

∂φi

∂t
= µ

(
1

Λ2
ei

∂2φi

∂x2
+ Nα

eiSe(he) − φi

)
(6.42)

in the limit t → ∞. The value of the constant µ does not alter the stationary value, but is used to

ensure the scheme is stable. A new time increment m is introduced to determine the stationary

value for each [φ]j at time-increment n. The m increment can be thought of as a “fast” time

increment, while the n increment can be thought of as a “slow” time increment. Using a FTCS
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scheme we update over the new time-increment m for a given [he]j at time-increment n,

[φe]mj = [φe]m−1
j +

µ∆t

Λ2
ee

[φe]m−1
j−1 + [φe]m−1

j+1 − 2[φe]m−1
j

h2
+ µ∆tNα

eeSe([he]
n
j ) − µ∆t[φe]m−1

j

(6.43)

[φi]mj = [φi]m−1
j +

µ∆t

Λ2
ei

[φe]m−1
j−1 + [φe]m−1

j+1 − 2[φe]m−1
j

h2
+ µ∆tNα

eiSe([he]
n
j ) − µ∆t[φi]m−1

j .

(6.44)

When φe,i has reached its stationary solution, we use Eqs. (6.39–6.40), giving

1
Λ2
ee

([
∂2φe

∂x2

]n
j

)
= −Nα

eeSe([he]
n
j ) + [φe]mj (6.45)

1
Λ2
ei

([
∂2φi

∂x2

]n
j

)
= −Nα

eiSe([he]
n
j ) + [φi]mj (6.46)

and substitute Eqs. (6.45-6.46) back into Eqs. (6.37–6.38) resulting in,

[he]n+1
j = [he]nj +

∆t

τe

{
(hrest

e − [he]nj ) + ψee([he]nj )
[
Nβ

eeSe([he]
n
j ) + [φe]mj + 〈pee〉

]
Gee/γe

+ λGABAψie([he]nj )
[
Nβ

ieSi([hi]
n
j ) + 〈pie〉

]
Gie/γi

}
(6.47)

[hi]n+1
j = [hi]nj +

∆t

τi

{
(hrest

i − [hi]nj ) + ψei([hi]nj )
[
Nβ

eiSe([he]
n
j ) + [φi]mj + 〈pee〉

]
Gee/γi

+ λGABAψii([hi]nj )
[
Nβ

iiSi([hi]
n
j ) + 〈pii〉

]
Gie/γi

}
(6.48)

Eqs. (6.47–6.48) and Eqs. (6.43–6.44) are the difference equations used to stimulate the

formation of the nonequilibrium states. The overall scheme progresses forward such that for

each he at time-step n we find the stationary solutions of Eqs. (6.43–6.44) by updating φe,i over

the separate time-increment m, until φe,i is stationary and then update he,i via Eqs. (6.47–6.48)

and repeat the process. In order to perturb the system, noise via Eqs. (6.16–6.17) are included

for the first time-increment, and then turned off for subsequent time steps.
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6.3 Avoiding Negative Subcortical Inputs

In Section 3.5 the scale factors αjk were introduced to keep the cortico-cortical inputs physio-

logically meaningful. Modelling the sub-cortical fluctuations as Gaussian-distributed noise leads

to the possibility of negative sub-cortical firing rates. This can occur mathematically because

the Gaussian-distributed random variables η do not have upper and lower bounds. However,

there is no physiological meaning for negative firing rates, so we are motivated to suppress such

unphysical events.

In Section 3.5 the four sub-cortical inputs pjk were transformed into Gaussian-distributed

random numbers,

pjk(x, t) = 〈pjk〉 + αjk

√
〈pjk〉ξn(x, t) (6.49)

In order to simulate the ξ(x, t) noise sources, they are replaced by their discrete-time approxi-

mation Rn
j /

√
h∆t. Hence

pjk(x, t) → [pjk]nj = 〈pjk〉 + αjk

√
〈pjk〉

[R]nj√
h∆t

, x = jh and t = n∆t (6.50)

which is Gaussian-distributed with mean 〈pjk〉 and standard deviation

sdev{pjk} = αjk

√
〈pjk〉 /h∆t. (6.51)

The dimensionless “safety factors” αjk are used to ensure that the probability of negative sub-

cortical firing rates is vanishingly small. It was decided to use a safety factor of,

α = 0.01 (6.52)

which applies to all four subcortical noise inputs. From Table 3.1 the values for pjk are pee, pii =

1100 s−1 and pie, pei = 1600 s−1. If a time-step of ∆t = 10−5 and a spacing of 0.05 cm is used in
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the numerical simulations, then constraining pjk to one standard deviation bounds gives,

pee = 1100 ± 469 s−1 (6.53)

pii = 1100 ± 469 s−1 (6.54)

pie = 1600 ± 566 s−1 (6.55)

pei = 1600 ± 566 s−1. (6.56)

This is the worst case scenario: Negative firing rates occuring 2 percent of the time for pee, pii

and 0.5 percent of the time for pie, pei. For all the simulations used throughout this thesis a time-

step of 10−5 s was used, as it provides stable simulations for a range of grid-spacings (discussed

in the next section). The spacing was never reduced below 0.05 cm except on one occasion when

investigating the power spectrum at λGABA = 0.1. The spacing had to be reduced to 0.001 cm to

give an accurate simulation, giving rise to a 74 percent chance of negative firing for the pie, pei.

Even though the physiology has been compromised the simulation still gives good agreement

with the theoretical prediction.

6.4 von Neumann Stability Analysis

The stability of the difference equations used to simulate the spatial cortex is dependent on the

time-step ∆t and the grid-spacing h. If for a certain grid-spacing the time-step ∆t is too big,

the numerical scheme will be numerically unstable. The stability of the scheme is determined

by the rate at which information propagates out in space. For the numerical schemes described

above, in an amount of time ∆t, the information from a grid-point [he]j at time n can only

be passed onto the grid-points [he]j−1, [he]j and [he]j−1 at time n + 1. If according to the

partial differential equation governing the difference equation, the spatial information should

have propagated further than twice the grid-spacing (the distance between [he]j−1 and [he]j−1)

in a time-step ∆t, then information required to march forward in time accurately has been lost.

This lack of information gives rise to numerical instability. Using von Neumann stability analysis

we can determine what combinations of time-step and grid-spacing are numerically stable.

von Neumann stability analysis only works for constant-coefficient, linear difference equations

solved as initial value problems. For a nonlinear system, we apply the von Neumann stability

analysis to the linearized system. Stability conditions obtained using this technique are not

necessary valid for the nonlinear problem. Nevertheless, it usually gives a good estimate of the
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true stability condition. Since a general theory of stability for nonlinear problems does not exist,

linearization is the only practical approach.

Following Press et al. (1988) for a single non-coupled constant-coefficient linear difference

equation, the independent solutions, or eigenmodes, of the difference equation are all of the form

unj = ξneiqjh (6.57)

where unj is the variable being updated in time and space, h is the grid-spacing, q is a real spatial

wave number (which can have any value) and ξ = ξ(q) is a complex number that depends on

q. Advancing Eq. (6.57) by one time-step gives

un+1
j = ξn+1eiqjh (6.58)

This equation implies that the time dependence of a single eigenmode is nothing more than

successive integer powers of the complex number ξ. Hence the difference equation will be unstable

(have exponentially growing modes) if |ξ(q)| > 1 for some q. The number ξ is called the

amplification factor at a given wave number q.

The linearized spatio-adiabatic equations read,

∂

∂t

ĥe(x, t)
ĥi(x, t)

 =

J11 + κe
∂2

∂x2 J12

J21 + κi
∂2

∂x2 J22


ĥe(x, t)
ĥi(x, t)

+

Γe(x, t)

Γi(x, t)


eq.

(6.59)

Ignoring the noise terms, these are equivalent to a pair of coupled constant-coefficient linear

difference equations,

[ĥe]n+1
j = [ĥe]nj + ∆tJ11[ĥe]nj + κe∆t

{
[ĥe]nj+1 + [ĥe]nj−1 − 2[ĥe]nj

h2

}
+ ∆tJ12[ĥi]nj (6.60)

[ĥi]n+1
j = [ĥi]nj + ∆tJ21[ĥe]nj + κi∆t

{
[ĥe]nj+1 + [ĥe]nj−1 − 2[ĥe]nj

h2

}
+ ∆tJ22[ĥi]nj . (6.61)

(We can ignore the noise terms as they do not directly contribute to the numerical scheme’s

stability.)
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Following Press et al. (1988), we proceed by assuming that the eigenmodes are of the following

form,

[he]nj

[hi]nj

 = ξneiqjh

h0
e

h0
i

 (6.62)

where h0
e, h

0
i are the steady-state solutions. The vector on the right-hand side is a constant

eigenvector, and ξ is a complex number as before. Substituting Eq. (6.62) into Eqs. (6.60–6.61)

gives,

ξn+1eiqjhh0
e = ξneiqjhh0

e + ∆tJ11ξ
neiqjhh0

e + ∆tJ12ξ
neiqjhh0

i

+
κe∆t

h2

(
ξneiq(j+1)hh0

e + ξneiq(j−1)hh0
e − 2ξneiqjhh0

e

) (6.63)

and

ξn+1eiqjhh0
i = ξneiqjhh0

i + ∆tJ21ξ
neiqjhh0

e + ∆tJ22ξ
neiqjhh0

i

+
κi∆t

h2

(
ξneiq(j+1)hh0

e + ξneiq(j−1)hh0
e − 2ξneiqjhh0

e

) (6.64)

Dividing both sides of Eqs. (6.63–6.64) by ξneiqjh gives,

ξh0
e = h0

e + ∆tJ11h
0
e + ∆tJ12h

0
i +

κe∆t

h2
(eiqhh0

e + e−iqhh0
e − 2h0

e) (6.65)

⇒ h0
e + ∆tJ11h

0
e + ∆tJ12h

0
i +

κe∆t

h2
h0
e(2 cos(qh) − 2) − ξh0

e = 0 (6.66)

and

ξh0
i = h0

i + ∆tJ21h
0
e + ∆tJ22h

0
i +

κi∆t

h2
(eiqhh0

e + e−iqhh0
e − 2h0

e) (6.67)

⇒ h0
i + ∆tJ21h

0
e + ∆tJ22h

0
i +

κi∆t

h2
h0
e(2 cos(qh) − 2) − ξh0

i = 0 (6.68)

We can write Eqs. (6.66) and (6.68) as a vector equation

1 + ∆tJ11 + κe∆t
h2 (2 cos(qh) − 2) − ξ ∆tJ12

∆tJ21 + κi∆t
h2 (2 cos(qh) − 2) 1 + ∆tJ22 − ξ

 .

h0
e

h0
i

 =

0

0

 (6.69)
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This admits a solution only if the determinant of the matrix on the left vanishes, a condition

that requires,

ξ2 + bξ + c = 0 (6.70)

where b and c are defined as

b = −1 − ∆tJ11 − κe∆t

h2
(2 cos(qh) − 2) − 1 − ∆tJ22 (6.71)

c = (1 + ∆tJ11 +
κe∆t

h2
(2 cos(qh) − 2))(1 + ∆tJ22) − (∆tJ12)(∆tJ21 +

κi∆t

h2
(2 cos(qh) − 2))

(6.72)

The two roots of Eq. (6.70) are given by,

ξ =
−b±√

b2 − 4c
2

(6.73)

In order to calculate for which time-steps and grid-spacing the stability condition is satisfied the

Matlab code stability.m was written. Numerical stability requires |ξ| ≤ 1 for all wavenum-

bers q (i.e. q = 0 → ∞). But in Eq. (6.73) q only appears in the cosine function. As the cosine

function is symmetric and repeats its range of values every π it is sufficient to consider q over

the range 0 → π. For a given time-step and grid-spacing the code ramps q through 0 to π and

calculates the associated roots for ξ. These roots are then checked against the stability condition

|ξ| ≤ 1.

Figure 6.1 shows the maximum value for each |ξ(k)| associated with a time-step and grid-

spacing, for a simulation on the top branch at λGABA = 0.3. The process is also repeated in

Fig. 6.2 for the top branch at λGABA = 1.3. The figures show that we have to be careful when

choosing a grid-spacing for a given time-step. Notice that for the top-branch at λGABA = 1.3,

for a given time-step a larger grid-spacing has to be used than at λGABA = 0.3. In general for

a given time-step the closer we are to the transition points on the top and bottom branch, the

larger the grid-spacing required for numerical stability. This increase in required grid-spacing is

consistent with the increase in correlation lengths as the transition points are approached i.e.,

near transition, information for a given time-step propagates further in space.
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Figure 6.1: Stability as a function of time-step and grid-spacing for λGABA = 0.3 on the top branch
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Figure 6.2: Stability as a function of time-step and grid-spacing for λGABA = 1.3 on the top branch
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6.5 Boundary Conditions

The theory assumes an infinitely long 1-D cortical rod and therefore there are no boundary

conditions. For our numerical simulations we have to include boundary conditions as it is

impossible to simulate a truly infinite rod. However, provided the rod is “long enough” we

should still obtain good comparisons between theory and numerical experiment.

I investigated two types of boundary conditions: periodic and zero flux. With periodic

boundary conditions the cortex is effectively connected at the ends, transforming the coor-

dinates from a 1-D line to a circle. Thus, if spatial information reaches the end of the rod,

this information is immediately transmitted to the beginning of the rod. When determining the

spatial covariance curve of the cortical fluctuations, we do not want any spatial information to

travel further than the numerical “length” of the rod. A clear indication that the length is “too

short”, is when, instead of the expected bi-exponential decay in spatial covariance, we obtain

an exponential decay followed by a “hump” (Fig. 7.10). This hump indicates that information

has propagated around the entire length of the rod, suggesting that a longer rod is required for

more accurate comparisons.

Zero flux boundary conditions are simulated by fixing the flux at both ends of the 1-D

rod. For the cortical simulations this was achieved by setting the value of the grid-points at the

ends of the rods to their equilibrium value and not driving those grid-points with noise.

We discovered that as long as the cortical rod was of sufficient length, the type of boundary

condition imposed made little difference to the properties of the he fluctuations about equilib-

rium. However when simulating the formation of nonequilibrium states, the imposition of zero

flux boundary conditions by holding ends of the cortical rod at the homogeneous steady-state is

not appropriate because the homogeneous steady-state is no longer stable. Therefore periodic

boundary conditions are the better choice for this case. The only constraint periodic boundary

conditions place on the nonequilibrium states is they must form on a 1-D circle, rather than

along an infinite 1-D rod.

For simplicity, periodic boundary conditions were used for all simulations presented through-

out this thesis.
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6.6 Examples of he time-series

Fig. 6.3 shows four time-series of the simulated spatio-adiabatic equations near equilibrium. The

difference equations Eqs. (6.27–6.28) were used, with a timestep of 0.01 ms and the grid-spacing

adjusted for numerical stability.
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Figure 6.3: Time series for λGABA = 0.31 and λGABA = 1.31 on the top and bottom branches. A
time-step of 0.01 ms, and 100 grid points were used for all simulations. The grid spacing used for each
plot is (a) 0.05 cm (b) 2 cm (c) 1 cm (d) 0.1 cm.



Chapter 7

Properties of the “Spatio-Adiabatic”

Macrocolumn

7.1 Altering the Strength of the e–e Diffusivity Relative to the e–i
Diffusivity

Following Steyn-Ross et al. (2003), in order to increase the strength of the e–i diffusivity relative

to the e–e diffusivity (allowing for the possibility of c3 going negative), a dimensionless factor

f ≥ 1 is introduced to scale the inverse-length connectivity constants Λee and Λei in opposite

directions:

Λ′
ee = fΛee, Λ′

ei = Λei/f. (7.1)

We define a dendritic “wiring” ratio

R =
Λ′
ee

Λ′
ei

. (7.2)

(We note that changing Λee or Λei has no effect on the values for (h0
e, h

0
i ), the stationary solutions

of the spatially homogeneous cortex.)

From Eq. (4.93), κe,i ∝ 1/Λ2
ee,ei, so the respective e- and i-diffusivities will scale as:

κ′e = κe/f
2, κ′i = f2κi. (7.3)

Hence an increase in f will simultaneously strengthen κi while weakening κe. Setting f = 1 gives

the default values for diffusivities κe, κi and corresponds to a default wiring ratio of R = 0.615.

Setting f = 1.58 (R = 1.536) is sufficient to cause c3 to become negative in the immediate
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vicinity of the loss of consciousness transition point, λGABA = 1.31. Raising the factor f above

1.58 results in a larger region of the top-branch exhibiting a negative c3.

7.2 Correlation Length

Generally the correlation length L is defined as the length required for the covariance function

G(|x− x′|) to decay to 1/e of its zero-lag value. This definition makes the assumption that the

covariance function is a simple, single-exponential decaying function of space of the form,

G(τ) = G(0)e−kτ , τ ≥ 0 (7.4)

for which L = 1/k. We can extract the correlation length by plotting a semilog graph of lnG(τ)

vs τ , giving

lnG(τ) = lnG(0) − k|τ | (7.5)

The slope of this graph retrieves k, the inverse of the correlation length.

The spatial covariance for the cortex, derived in Sec. 4.9, has two forms depending on the

sign of c3. If c3 > 0, the spatial covariance has the form,

G(|x − x′|) = α1e
−|x−x′|/L1 + α2e

−|x−x′|/L2 (7.6)

where

α1 =
D1/κe + c4

4
L1, α2 = −c4

4
L2. (7.7)

As Eq. (7.6) consists of two exponentially-decaying functions, L1 and L2 are labelled correlation

lengths for both exponential functions. (It is possible to calculate a generalized correlation

length for the above process, as outlined by Gardiner (1985), but it does not help in seeking

comparisons between theory and experiment.) However it is very difficult to determine the two

correlation lengths accurately from stochastic simulations. Curve-fitting methods were tried but

yielded poor results. For these reasons, agreement between theory and stochastic experiment

was established by comparing the theoretical covariance curve with the smoothed experimental

covariance measurement, obtained after averaging over a large number of stochastic runs.
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Figure 7.1: Theoretical predictions for L1 and L2 correlation lengths as a function of anaesthetic effect
λGABA for the spatio-adiabatic 1-D cortex with default cortico-cortical wiring ratio R = 0.615 (f = 1).
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Figure 7.2: Theoretical predictions for L1, L2 and L1 + L2 covariance curves at an anaesthetic effect
of λGABA = 1, for the spatio-adiabatic 1-D cortex with default cortico-cortical wiring ratio R = 0.615
(f = 1).
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The second form of the covariance function occurs when c3 < 0, and has the form

G(|x − x′|) = α1e
−|x−x′|/L1 − α2sin(|x− x′|/L2). (7.8)

This function consists of an exponential with correlation length L1 added to a sinewave variation

of wavelength 2πL2.

7.2.1 Theoretical Predictions of Correlation Length for c3 > 0

Figure 7.1 plots the theoretical predictions for the correlation lengths L1 and L2 as anaesthetic

concentration is varied for the default value of the dendritic “wiring” ratio R = 0.615 (cor-

responding to f = 1). As the transition points of loss of consciousness (A3) and return to
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Figure 7.3: Theoretical covariance predictions for separations of |x− x′| cm along the cortical rod. The
four panels (a, b, c, d) show the difference in the spatial width of the covariance curve at four anaesthetic
concentrations, along the top branch (active branch) of Fig. 3.11. The four panels illustrate that as the
point of loss-of-consciousness is approached the spatial width of the covariance curve strongly increases.
These predictions are for the default of the κe,i diffusitivies.
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consciousness (Q1) are approached, the correlation lengths L1 and L2 dramatically increase.

Also note that the correlation lengths are larger at Q3 compared to A1. This indicates the un-

conscious brain is predicted to have greater spatial coherence compared to the conscious brain.

As the spatial covariance curves consist of two exponentially-decaying curves it is wise to

check the sum of the two exponentials. A typical summation of the two exponential curves is

illustrated in Fig. 7.2. Noting that L1 and L2 are always positive, and the coefficients of the two

exponential functions in Eq. (7.6) maintain the same sign for all stable steady-state solutions,

Fig. 7.2 illustrates the general form each exponential term will take and the resulting covariance

function.

Figure 7.3 shows the theoretical spatial covariance curves for a range of values of λGABA

along the top-branch. Similarly, for a range of values of λGABA along the bottom-branch, the

theoretical spatial covariance curves are shown in Fig. 7.4. Figures 7.3 and 7.4 demonstrate

that the overall spatial correlation increases strongly as the LOC and ROC transition points are

approached. This increase in correlation length for the 1-D spatio-adiabatic cortex is consistent

with a phase transition picture for the change of state of the cortex.

7.2.2 Zero-lag Covariance

Of note is that the zero-lag value of G(|x− x′|) changes as anaesthetic concentration is altered.

It is easily shown that the zero-lag value G(0) is proportional to the net spatial power in the 1-D

cortex at any one point in time. The covariance function in space, for a continuous stochastic

system is given by:

G(l) = lim
L→∞

1
L

∫ L

0
y(x + l)y(x)dx, (7.9)

where G(l) is defined for all lags −∞ < l < ∞, and is an even function. Parseval’s theorem

states: The total energy computed in the space domain must be identical to the total energy in

the spatial-frequency (wavenumber q) domain. In order to apply Parseval’s theorem to a signal

of infinite extent, we use the theorem in terms of spatial power conservation, i.e., the energy per

unit length must be identical in the space and wavenumber domains:

lim
L→∞

1
L

∫ L

0
|y(x)|2dx =

∫ +∞

−∞
S(q)dq. (7.10)
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Figure 7.4: Theoretical covariance predictions for separations of |x− x′| cm along the cortical rod. The
four panels (a, b, c, d) show the difference in the spatial width of the covariance curve at four anaesthetic
concentrations, along the bottom branch (quiescent branch) of Fig. 3.11. The four panels illustrate that
similar to the approach to the loss-of-consciousness point, the approach to the return-of-consciousness
point is characterized by a strong increase in the spatial width of the covariance curves. These predictions
are for the default of the κe,i diffusitivies.

Hence, via Eqs. (7.9–7.10) it is obvious the zero-lag covariance G(0) gives us the net spatial

power over all spatial frequencies.

Plotting G(0) (Eq. (7.6)) as a function of anaesthetic concentration reveals that the net

spatial-power at any one point in time increases as the consciousness → unconsciousness tran-

sition point is approached (see Fig. 7.5).

This figure also shows that the net spatial power increases as we move “back” along the top-

branch towards λGABA = 0. In Fig. 7.6 we consider the immediate neighbourhood of λGABA = 0,

and note that the net spatial-power initially increases significantly, then at λGABA ∼ 0.027 rapidly

drops to its λ = 0 value. The Matlab code used to calculate the equilibrium values (h0
e, h0

i )

fails for λGABA < 0.015 (and for λGABA > 20), hence in order to calculate the zero-lag covariance
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Figure 7.5: Top-branch theoretical zero-lag covariance as a function of anaesthetic concentration. As the
consciousness → unconsciousness transition point is approached there is an increase in zero-lag covariance
(equivalent to an increase in net spatial power).

aa λGABA → 0 (and for λGABA → ∞), we need to determine the two asymptotic limits for h0
e, h

0
i

analytically.

Zero Inhibition: Seizure

To calculate the steady-states of the homogeneous cortex, Eqs. (3.36–3.43) are used with the

noise turned off and in the long-time limit, d
dt → 0. The inhibitory contributions to the cortex

Eqs. (3.40–3.41) then become,

Iie(hi) = λGABA

[
Nβ

ieSi(hi) + 〈pie〉
]
Gie/γi (7.11)

Iii(hi) = λGABA

[
Nβ

iiSi(hi) + 〈pii〉
]
Gie/γi (7.12)

For λ → 0 the inhibitory restraint (Iie(hi), Iii(hi)) of the macrocolumn equates to zero, and

both inhibitory and excitatory sigmoids are at their S
max
e asymptotic limit corresponding to
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Figure 7.6: λGABA → 0 region of top-branch theoretical zero-lag covariance. As the we move “back”
towards λGABA = 0 the net spatial-power increases significantly, then at λGABA ∼ 0.027 rapidly drops to
its λ = 0 value.

maximum neural firing. Steyn-Ross (2002) derives the λGABA → 0 steady-state voltages as,

hseiz
e =

|hrev
e − hrest

e |hrest
e + hrev

e Iseiz
ee

|hrev
e − hrest

e | + Iseiz
ee

(7.13)

hseiz
i =

|hrev
e − hrest

i |hrest
i + hrev

i Iseiz
ei

|hrev
e − hrest

i | + Iseiz
ei

(7.14)

where

Iseiz
ee ≡

[
(Nα

ee + Nβ
ee)S

max
e + pee

]
Gee/γe (7.15)

Iseiz
ei ≡

[
(Nα

ei + Nβ
ei)S

max
e + pei

]
Gee/γe. (7.16)

Substituting the constant values from Table 3.1 gives,

hseiz
e = +34.5 mV, hseiz

i = +30.91 mV. (7.17)
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To obtain the limiting λGABA = 0 zero-lag covariance, we substitute hseiz
e , hseiz

i , |x− x′| = 0 and

λGABA = 0 into Eq. (7.6) and obtain G(0) = 2.51 × 10−4 mV2. This seems consistent with a

λGABA → 0 extrapolation on Fig. 7.6.

Infinite Inhibition: Coma

For the λ → ∞ limit the inhibitory restraint on the macrocolumn will become infinite, leading

to both the inhibitory and excitatory sigmoids approaching their zero-firing asymptotic limit;

this is deep coma. For the limit λ → ∞, Steyn-Ross (2002) obtains the steady-state voltages,

hcoma
e = hcoma

i = −90 mV. (7.18)

Unfortunately for λ → ∞ limit we cannot analytically determine the zero-lag covariance, because

for this limit it is not clear whether the covariance function converges analytically. If we plot

the zero-lag covariance on the bottom branch out to λGABA = 20, we obtain the graph shown

in Fig. 7.8. The behaviour shown in Fig. 7.8 for large λGABA is strange, and the physiological
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Figure 7.7: Bottom-branch theoretical zero-lag covariance as a function of anaesthetic effect. Prior to
the unconsciousness → consciousness transition point there is a decrease in zero-lag covariance (or net
spatial-power) followed by a sharp increase at the Q1 transition point.
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Figure 7.8: λGABA → 20 region of the bottom-branch theoretical zero-lag covariance. As we move towards
deep coma the net spatial-power increases and then begins to decrease. The physiological interpretation
of this trend is unclear.

meaning is unclear. Note that similar to the top-branch there is a decrease in the zero-lag

covariance followed by an increase prior to the transition at λGABA → 0.31 from unconsciousness

to consciousness. Figure 7.7 shows a close-up view of this change in zero-lag covariance for the

region λGABA = 0.31 → 1.31.

On the top- and bottom-branch the zero-lag covariance (equivalent to net spatial-power)

as a function of anaesthetic effect shows unusual behaviour at the two extremes λGABA → 0

and λGABA → ∞. Near the two transition points (Q1 and A3) the net spatial-power shows the

expected increase (power surges just prior to transition are evident in clinical recordings and

are referred to as a “biphasic” peak). The effect of the peculiarities near the λGABA → 0 and

λGABA → ∞ limits on the predicted theoretical power spectrum in time is investigated in the

next chapter.
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7.3 Covariance Agreement with Numerical Simulations

To test the theoretical covariance prediction for the c3 > 0 case, we simulated both the non-

linear system and the linearized system, allowing them to evolve for a number of steps before

computing the covariance. For the linearized system, the soma voltages were initialized to

zero deviation from their homogeneous steady-state value (i.e., ĥe(x, 0) = ĥi(x, 0) = 0). For

the nonlinear spatio-adiabatic system the soma-voltages were initialized to their homogeneous

steady-state values (i.e. he(x, 0) = h0
e and hi(x, 0) = h0

i ), and the long-range cortico-cortical

inputs (φe and φi) were initialized to their homogeneous steady-state values,

φe(x, 0) = Nα
eeSe(h

0
e) φi(x, 0) = Nα

eiSe(h
0
e). (7.19)

7.3.1 Nonlinear Spatio-Adiabatic Simulations Near Equilibrium

Figure 7.9 shows the agreement between theory and the nonlinear spatio-adiabatic simulations,

close to homogeneous equilibrium. A time-step of 0.01 ms was used for all runs and the grid-

spacing h was adjusted to maintain numerical stability, while remaining fine enough to obtain

adequate spatial resolution. The number of grid-points was set to N = 100 which ensured the

cortical rod was of sufficient length. The system was allowed to evolve for 10000 time-steps and

then the spatial covariance was calculated using the Matlab xcorr cross-correlation function,

Gsim(|x− x′|) =
xcorr(he)

N
(7.20)

where he is the 100-element vector of he − h0
e values along the rod. (The mean h0

e is subtracted

from he as the theoretical correlations are based on the fluctuations about the homogeneous

steady-state.) The average of ten such runs was calculated (thin black line) and compared with

theoretical predictions (thick grey line). The covariance of each individual run is represented by

the dots, which shows nicely the stochastic nature of the simulations. Increasing the number

of runs (and hence decreasing the average covariance error) gives simulation covariance that

converges to the theoretical prediction.
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Figure 7.9: Comparison of the theoretical covariance predictions (thick-grey curves) and stochastic
results (black dots) using the nonlinear difference equations (Eqs. (6.27–6.28)) at discrete points along
the cortical rod. The thin-black curves show the average simulation covariance of ten runs. The top
three panels (a),(b),(c) show the increase in correlation length as the anaesthetic effect is increased from
λGABA = 0.31 → 0.81 → 1.31. This increase in anaesthetic effect corresponds to the induction towards
unconsciousness along the top branch. Likewise the bottom three panels (f),(d),(e) show the increase in
correlation length as the anaesthetic effect is reduced λGABA = 1.31 → 0.81 → 0.31, corresponding to the
emergence trajectory along the bottom branch. For all runs the time-step was set to ∆t = 0.01 ms, the
number of grid-points were set to N = 100, but the grid-point spacing was altered to maintain numerical
stability while simultaneously being fine enough to obtain adequate spatial resolution. These grid-point
spacing settings and corresponding rod-length Nh (in cm) are: (a) h = 0.05, L = 5; (b) h = 0.2, L = 20;
(c) h = 2, L = 100; (d ) h = 1, L = 100; (e) h = 0.2, L = 20; (f) h = 0.1, L = 10;

If the simulation length of the cortical rod is too short, a “hump” appears at the end of the

covariance curve. To illustrate this hump, the covariance of a simulated 100 cm cortical rod at

λGABA = 1.31 on the top-branch was computed (Fig. 7.10). The time-step used was 0.01 ms, the

grid-point spacing used was 1 cm, and 100 averages were taken instead of the previous 10. As

in this case the length of the rod is not sufficiently longer than the predicted correlation length,

information from a grid-point is propagated around the entire length of the 1-D circle (periodic

boundary conditions are used) resulting in the hump like tail of the covariance curve.
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Figure 7.10: Covariance curve showing the “hump” that occurs when the cortical-rod is not of sufficient
length. The rod was simulated about the steady-state at λGABA = 1.31 on the top branch and the
covariance was computed from 100 averages. The settings used were: ∆t = 0.01 ms; h = 1 cm; N = 100.

7.3.2 Linearized Spatio-Adiabatic Simulations Near Equilibrium

Figure 7.11 shows the agreement between theory and the simulations of the linearized spatio-

adiabatic equations. As the theoretical predictions arise from the linearized theory, it is not

surprising that the spatial-covariance of the simulated linear system shows good agreement with

the predicted spatial-covariance. This good agreement suggests that as long as we are close to

the homogeneous steady-state, the linearized system is a good approximation to the nonlinear

system. The theoretical predictions do not appear to favour either the non-linear or linear

system in particular, which is evident from the similarity of Fig. 7.11 and Fig. 7.9.
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Figure 7.11: Comparison of the theoretical covariance predictions (thick-grey curves) and stochastic
simulation results (black dots) using the linear difference equations (Eqs. (6.14–6.15)) at discrete points
along the cortical rod. The thin-black curves shows the average simulation covariance of ten runs. The
top three panels (a),(b),(c) show the increase in correlation length as the anaesthetic effect is increased
from λGABA = 0.31 → 0.81 → 1.31. Likewise the bottom three panels (f),(d),(e) show the increase in
correlation length as the anaesthetic effect is reduced λGABA = 1.31 → 0.81 → 0.31 along the bottom
branch. The settings used were identical to those used to generate the plots of Fig. 7.9.

7.4 Theoretical Predictions of Covariance and Numerical
Agreement for c3 < 0

If the dendritic “wiring” ratio R is altered such that c3 < 0 then the spatial covariance is

predicted by Eq. (7.8). The theory used to derive Eq. (7.8) makes use of Taylor series expansions,

which assume the cortex is always close to the homogeneous steady-state solution. When c3

becomes negative, eigenvalue stability analysis shows the homogeneous steady-state solutions are

no longer stable for the spatio-adiabatic equations (discussed shortly in Sec. 7.5); the predictions

of Eq. (7.8) cannot be expected to be accurate.
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Figure 7.12: Covariance curve for the theoretical covariance function Eq. (7.6), and the “unstable”
covariance curve of the formation of steady-states. A factor of f = 1.8 was used, and the simulation
was initialized about the λGABA = 1.31 homogeneous steady-state. The experimental covariance curve is
labelled “unstable” as the simulation was stopped before further formation of the nonequilibrium state
led to a huge experimental curve. Settings used: h = 1 cm, N = 300, and ∆t = 0.01 ms.

For the linearized set of equations this instability leads to the numerical scheme “blowing

up”. This occurs because the state about which the system is linearized about is unstable.

Nevertheless, the nonlinear difference equations used to simulate the formation of nonequilibrium

states, show increasing-amplitude periodic correlations in the covariance (unfortunately not of

wavelength 2πL2) about the unstable state, as the system bifurcates to its new state. One

example is shown in Fig. 7.12. A factor of f = 1.8 was used, and the simulation was initialized

about the λGABA = 1.31 top-branch homogeneous steady-state. The length of the cortical-rod

was set to 300 cm consisting of 300 grid-points separated by 1 cm and with a time-step of 0.01 ms

used. The system was allowed to evolve until the covariance shown in Fig. 7.12 was obtained.

The covariance was calculated numerically using Eq. (7.20).
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7.5 Stability of the Homogeneous Steady-State

In Sec. 4.8 we investigated the criteria required for stability of the spatio-adiabatic equations.

It was found that for c3 < 0, the neutrally-stable point was charaterized by wave number

qs (Eq. (4.135)). For any wavenumber greater than qs, the eigenvalue of the matrix A(q)

(refer to Eq. (4.122), and note the negative sign) will be negative, resulting in the amplitude

of the eigenmode growing exponentially. Shown in Fig. 7.13 is the eigenvalue distribution for

λGABA = 1.25 on the top-branch with the connectivity factor f = 1.8, giving c3 < 0.
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Figure 7.13: Eigenvalues as a function of wavenumber q for f = 1.8 at λGABA = 1.25. The eigenvalue
pair is complex with positive real part for 0 ≤ q ≤ 0.101 cm−1, then becomes purely real for q >
0.101 cm−1. The smaller wavenumber crosses the x-axis at q = qs = 0.5205 cm−1.

The zero-crossing of Fig. 7.13 occurs at wavenumber qs, indicating a marginally-stable eigen-

mode of wavelength 2π/qs = 12.1 cm. All wavenumbers larger than 0.52 cm−1 will render a neg-

ative eigenvalue resulting in an unstable state. The greater the eigenvalue magnitude the greater

the rate of exponential growth of the eigenmode. Conversely, wavenumbers less than 0.52 cm−1

will give an exponentially-decaying eigenmode resulting in a stable state, with smaller wavenum-

bers decaying more rapidly. If an eigenmode has a wavenumber equal to qs, then that mode will

neither decay nor grow, so will be long-lived. To illustrate this long-lived mode (Fig. 7.14), we
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gave the linearized spatio-adiabatic system (with no noise contributions) an initial excitatory

voltage perturbation away from the steady-state defined by,

ĥe(x, t = 0) =
8∑

k=1

(−1)k+1

k
sin(kqsx/8) (7.21)

and left the inhibitory voltage unperturbed,

ĥi(x, t = 0) = 0. (7.22)

The summation in Eq. (7.21) represents the first eight terms of a harmonic expansion of a

sawtooth waveform, where the final term is the long-lived eigenmode of wavelength 2π/qs. The

k = 1 sawtooth waveform has a wavelength of 8 × 2π/qs. To ensure the k = 1 wavelength is

exactly periodic on the cortical rod, the spacing is set to h = 8×2π/qs

N for N grid-points (100

gridpoints were used to generate Fig. 7.14).

The initial sawtooth perturbation is shown in panel (a) of Fig. 7.14. Panel (b) shows a

“snap-shot” in time, in which the seven eigenmodes with q < qs are decaying to the homoge-

neous steady-state. The final panel (c) shows the decaying eigenmodes have almost completely

settled to the steady-state, leaving only the long-lived eigen mode of wavelength qs/2π. The

reason the completely relaxed state is not shown is because the scheme becomes unstable due

to accumulation of round-off error that acts like exponentially-growing high-wavenumber eigen-

modes.

In Fig. 7.14 the evolution of the long-lived mode cause ĥe and ĥi to become in phase.

Interestingly this is not always the case. Figure 7.15 shows the same sawtooth experiment

repeated, but for λGABA = 1, f = 2. The final panel in Fig. 7.15 shows that for these parameters

ĥe and ĥi are out of phase. A stable mode that has an inhibitory voltage with opposite sign

to the excitatory voltage, effectively exciting rather than inhibiting, seems counterintuitive. We

have actually made the inhibitory diffusivity so large that the excitatory voltage is now required

to inhibit the inhibitory voltage to form a stable state (hence being out of phase). Further

investigation showed that for the long-lived modes, ĥe and ĥi are either in phase or out of phase

depending on λGABA and f . If for a certain λGABA and f combination the stable modes are in

phase, we find that increasing f decreases the magnitude of the ĥi mode while retaining the

phase, until, for some value of f the inhibitory voltage is zero. Increasing f further results in

the stable modes of ĥe and ĥi becoming out of phase.
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For our cortical simulations we drive the system with white noise in space and time. Spatial

white noise contains all wavenumbers 0 < q < ∞. Hence, if c3 < 0 the homogeneous steady-state

will no longer be stable.

7.6 Formation of Nonequilibrium Steady-States

If we adjust f such that c3 < 0 for some λGABA on the top-branch, then perturb the system

with spatial white-noise, it must move away from the now unstable state. If for a value of f

such that c3 < 0 for λGABA on the top-branch, but c3 > 0 on the bottom branch, the system will

bifurcate to the stable bottom-branch homogeneous solution. For example, for factor f = 1.58

at λGABA = 1.31 the top-branch is unstable while the bottom-branch is stable. Figure 7.16 shows

the change of states from the unstable top-branch to the stable bottom-branch.

If for a value of f , c3 is negative for a specific λGABA on the top- and bottom-branch, the

system will bifuricate to a nonequilibrium steady-state (a nonequilibrium state stationary in

time). Starting on the top-branch, simulation of the formation of these nonequilibrium steady-

states shows that when we perturb the homogeneous steady-state via spatial noise, the system

evolves by forming strongly growing diffusive “fingers”. These fingers proceed towards, and then

overshoot, the second homogeneous stable state. The system continues to arrange itself until

a diffusion finger-pattern persists indefinitely. The above criteria is satisfied for a large range

of λGABA and factor f > 1.58. Figure 7.17 shows a typical simulation of the formation of one

such nonequilibrium “finger” state for λGABA = 1.31, f = 3. Another formation is illustrated

in Fig. 7.18. In general we find that for a certain λGABA the greater the factor f , the narrower

the diffusive finger patterns. For a set factor, we also find different patterns occur for different

values of λGABA.

The formation of the nonequilibrium “finger” states is also very sensitive to initial pertur-

bations. Although each finger has a very similar chain-like curvature, the location on the rod at

which the fingers form is random, depending sensitively on the noise pattern used to perturb the

initial state. Figure 7.19 shows a distribution of nonequilibrium states for f = 4 at λGABA = 1.2.

With respect to anaesthesia, the biological significance of nonequilibrium steady-states, also

known as dissipative structures, is unclear. It seems unlikely that any neural process could be

associated with these structures that show a large variation in DC voltage offsets over space.

The development of a frozen pattern of brain activity would severly constrain dynamic commu-

nication attempts from non-participating neuronal assemblies. One suggestion is that if we were
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to relax the adiabatic requirement, the structures might “unfreeze” into temporal oscillations

(hard-mode instabilities) or travelling wave patterns.

The next chapter moves away from the development of spatial-structures and instead focuses

on the effect that incorporating space has on the power spectrum of the cortex. We look at the

energy distribution of the stochastic fluctuations about the homogeneous steady-state in space

and time.
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(c) Relaxed Spatial Perturbation

Figure 7.14: (a) Initial voltage pertubation at 100 points along the cortical-rod. (b) “Snap-shot” in
time showing the decay of eigenmodes with q < qs. (c) Near-relaxed voltage distribution after 30 000
iterations (∆t = 1 µs), leaving the marginally-stable qs eigenmode. λGABA = 1.25, f = 1.8
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(b) Relaxing Spatial Perturbation
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Figure 7.15: Decay of a sawtooth waveform towards the qs eigenmode for f = 2 at λGABA = 1 on the
top-branch. Except for the slight spacing adjustment required to ensure that the new k = 1 fundamental
remains exactly periodic on the length Nh, the simulation settings are identical to those used for Fig. 7.14.
Notice that in contrast to Fig. 7.14, in panel (c) ĥe and ĥi are out of phase.
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Figure 7.16: Simulation showing the system moving from the unstable top-branch to the stable bottom-
branch. Black dots represent he and gray dots represent hi at each gridpoint. The dashed lines represent
the homogeneous steady-states. Simulation parameters: N = 100 points, h = 1 cm, ∆t = 0.01 ms,
λGABA = 1.31, connectivity scalefactor f = 1.58. (a) System is perturbed away from the homogeneous
state via aa impulse of spatial noise. (b) Each point “slides” off the unstable state. (c) Each point moves
towards the stable bottom-branch and (d) settles.
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Figure 7.17: Simulation showing the emergence of nonequilibrium steady-states. Black dots represent
he and gray dots represent hi at each gridpoint. The dashed lines show the homogeneous steady-states of
the cortex. Simulation parameters: N = 100 points, h = 1 cm, ∆t = 0.01 ms, λGABA = 1.31, connectivity
scalefactor f = 3. (a) System is perturbed away from the homogeneous state via an impulse of spatial
noise. (b) Each point “slides” off the unstable state and (c) “falls” towards one or the other of the
potential valleys near the top- or bottom-branch. (d) Fully developed spatial pattern.
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Figure 7.18: Simulation showing the emergence of nonequilibrium steady-states for factor f = 1.2 at
λGABA = 4. Black dots represent he and gray dots represent hi at each gridpoint. Simulation parameters
are identical to those used in Fig. 7.17.
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Figure 7.19: Distribution of nonequilibrium steady-states for factor f = 1.2 at λGABA = 4 formed
on the spatio-adiabatic 1-D cortical rod. Black dots represent he and gray dots represent hi at each
gridpoint. Simulation parameters are identical to those used in Fig. 7.18. In each case the simulation
was run until the new state (spatial pattern) was fully stabilized.





Chapter 8

Power Spectra of Linearized

Spatio-Adiabatic Equations

In this chapter I derive the theoretical power spectrum of the excitatory ĥe soma voltage fluc-

tuations for the linearized spatio-adiabatic equations.

8.1 Theoretical Power Spectrum of Stationary Stochastic Processes

For a stationary process the ensemble average, in which we repeat the same measurement

many times and compute the average 〈 〉, is equal to the time average. For such stochastic

processes, Gardiner (1985) derives a relationship between the fluctuating quantity x(t) and its

power spectrum S(ω). Gardiner proceeds by defining the Fourier transform of the stochastic

quantity x(t) as,

c(ω) =
1
2π

∫ +∞

−∞
dt x(t) e−iωt (8.1)

and derives the power spectrum as,

〈
c(ω)c(ω′)∗

〉
= δ(ω − ω′)S(ω) (8.2)

where ∗ denotes the complex conjugate. Likewise, the two-variable power spectrum S(q, ω) is

given by,

〈
c(q, ω)c(q′, ω′)∗

〉
= δ(q − q′)δ(ω − ω′)S(q, ω). (8.3)
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Gardiner’s definition of a Fourier transform Eq. (8.1) differs by a factor of 1/2π from the form

used so far throughout this thesis. Our definition of the one-variable Fourier transform reads,

c(ω) =
∫ +∞

−∞
dt x(t) e−iωt (8.4)

and hence Eq. (8.2) will become,

1
(2π)2

〈
c(ω)c(ω′)∗

〉
= δ(ω − ω′)S(ω). (8.5)

Likewise, our two-variable Fourier transform requires a factor of 1/(2π)2 giving,

1
(2π)4

〈
c(q, ω)c(q′, ω′)∗

〉
= δ(q − q′)δ(ω − ω′)S(q, ω). (8.6)

8.2 General Power Spectrum S(q, ω)

In order to calculate the power spectrum S(q, ω), we calculate h̃e(q, ω) and use Eq. (8.6),

δ(q − q′)δ(ω − ω′)S(q, ω) =
1

(2π)4
〈
h̃e(q, ω)h̃e(q′, ω′)∗

〉
. (8.7)

If the wavenumber q is set to zero, it should be possible to collapse the “spatio-adiabatic” power

spectrum down to the “adiabatic” power spectrum. The adiabatic power spectrum derived by

Steyn-Ross et al. (1999) does not include spatial variation, so all of its power will be situated

at the q = 0 wavenumber. In contrast, the power spectrum S(q, ω) for the spatio-adiabatic

equations gives the average power distributed over spatial and temporal frequencies for an infinite

cortex.

For an infinite 1-D cortex, we define two-variable Fourier transforms of the ĥe excitatory and

ĥi inhibitory soma-voltage fluctuations, and of the ξ white-noise sources of Eq. (4.92) as,

h̃e(q, ω) =
∫ +∞

−∞

∫ +∞

−∞
e−i(qx+ωt) ĥe(x, t) dx dt (8.8)

h̃i(q, ω) =
∫ +∞

−∞

∫ +∞

−∞
e−i(qx+ωt) ĥi(x, t) dx dt (8.9)

ξ̃(q, ω) =
∫ +∞

−∞

∫ +∞

−∞
e−i(qx+ωt) ξ(x, t) dx dt. (8.10)
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Fourier transforming Eq. (4.92) results in,

iωh̃e(q, ω) = (J11 − κeq
2)h̃e(q, ω) + J12h̃i(q, ω) + beeξ̃1(q, ω) + bieξ̃3(q, ω) (8.11)

iωh̃i(q, ω) = (J21 − κiq
2)h̃e(q, ω) + J22h̃i(q, ω) + beiξ̃2(q, ω) + biiξ̃4(q, ω). (8.12)

Rearranging Eq. (8.12) to make h̃i(q, ω) the subject gives,

h̃i(q, ω) =
(J21 − κiq

2)h̃e(q, ω) + beiξ̃2(q, ω) + biiξ̃4(q, ω)
iω − J22

(8.13)

Substituting Eq. (8.13) into Eq. (8.11),

iωh̃e(q, ω) = (J11 − κeq
2)h̃e(q, ω) + beeξ̃1(q, ω) + bieξ̃3(q, ω)

+ J12

(
J21h̃e(q, ω) − κiq

2h̃e(q, ω) + beiξ̃2(q, ω) + biiξ̃4(q, ω)
iω − J22

)
,

(8.14)

and rearranging to make h̃e(q, ω) the subject

h̃e(q, ω) =
(iω − J22)(beeξ̃1(q, ω) + bieξ̃3(q, ω)) + J12(beiξ̃2(q, ω) + biiξ̃4(q, ω))

(iω − J22)(iω − J11 + κeq2) − J12J21 + J12κiq2

=
(iω − J22)(beeξ̃1(q, ω) + bieξ̃3(q, ω)) + J12(beiξ̃2(q, ω) + biiξ̃4(q, ω))
q2(iωκe − J22κe + J12κi) − ω2 − iωJ11 − J22iω + J22J11 − J12J21

(8.15)

Multiplying the numerator and denominator of Eq. (8.15) by 1/(iωκe−J22κe +J12κi) we obtain

h̃e(q, ω) =
n

d
(8.16)

where

n =
(iω − J22)(beeξ̃1(q, ω) + bieξ̃3(q, ω)) + J12(beiξ̃2(q, ω) + biiξ̃4(q, ω))

(iωκe − J22κe + J12κi)
(8.17)

d = q2 +
−ω2 − iωJ11 − J22iω + J22J11 − J12J21

(iωκe − J22κe + J12κi)
(8.18)
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Now that we have h̃e(q, ω) as a function of q and ω we can calculate S(q, ω). First we

determine
〈
ξ̃m(q, ω)ξ̃n(q′, ω′)∗

〉
. Starting from Eq. (4.67), we have

〈
ξm(x, t)ξn(x′, t′)

〉
= δmnδ(x− x′)δ(t − t′) (8.19)

which, via Fourier transforming gives

〈
ξ̃m(q, ω)ξ̃n(q′, ω′)∗

〉
=
〈∫

. . .

∫ +∞

−∞
e−(qx+ωt) e+(q′x′+ω′t′) ξm(x, t)ξn(x′, t′) dx dt dx′ dt′

〉

=
∫

. . .

∫ +∞

−∞
e−(qx+ωt) e+(q′x′+ω′t′) 〈ξm(x, t)ξn(x′, t′)

〉
dx dt dx′ dt′

=
∫

. . .

∫ +∞

−∞
e−(qx+ωt) e+(q′x′+ω′t′) δmnδ(x− x′)δ(t − t′) dx dt dx′ dt′

and the integrals over x′ and t′ collapse to give

〈
ξ̃m(q, ω)ξ̃n(q′, ω′)∗

〉
= δnm

∫ +∞

−∞

∫ +∞

−∞
e−i(q−q′)xe−(ω−ω′)tdx dt

= (2π)2δnmδ(q − q′)δ(ω − ω′)

(8.20)

where the second equality follows from the definition of the Fourier transform of unity (Eq. 4.115).

Using equations (8.7), (8.16) and (8.20) we can calculate S(q, ω). When calculating the term〈
h̃e(q, ω)h̃e(q′, ω′)∗

〉
all of the parameters besides the noise terms can be pulled out the front of

the operator 〈 〉. The 〈 〉 operator then only acts on the noise terms, which obey Eq. (8.20).

The resulting S(q, ω) is given by,

S(q, ω) =
1

4π2

a1

(q2 + a2)(q2 + a∗2)
(8.21)

where a1, a2 are defined as,

a1 =
J2

12b
2
ei + J2

12b
2
ii + ω2b2ee + ω2b2ie + J2

22b
2
ee + J2

22b
2
ie

ω2 + J2
22 − J22κeJ12κi + J2

12κ
2
i

(8.22)

a2 =
−ω2 − iωJ11 − J22iω + J22J11 − J12J21

iωκe − J22κe + J12κi
(8.23)
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8.3 Power spectrum for q = 0

Steyn-Ross et al. (1999) derives the theoretical stationary power spectrum for the spatially homo-

geneous cortex. Making appropriate substitutions we obtain the homogeneous power spectrum

as,

S[he(ω)] =
1

2π
J2

12b
2
ei + J12b

2
ii + J2

22b
2
ee + J2

22b
2
ie + ω2b2ee + ω2b2ie

J2
11J

2
22 − 2J11J22J21J12 + J2

21J
2
12 + 2ω2J12J21 + ω4J2

11ω
2J2

22ω
2

(8.24)

As a check we should be able to collapse Eq. (8.21) down to the stationary power spectrum

Eq. (8.24) of the spatial homogeneous cortex. To do so we set q = 0 in Eq. (8.21) and note

that the 1
4π2 maps to 1

2π as for no spatial variation the noise terms are constant in space and

delta-correlated in time giving,

〈
ξm(t)ξn(t′)

〉
= δmnδ(t− t′) (8.25)

therefore

〈
ξ̃m(ω)ξ̃n(ω)∗

〉
= δmn

∫ +∞

−∞

∫ +∞

−∞
e−iωt e−iω′t′ δ(t− t′) dt dt′

= 2πδmnδ(ω − ω′)

(8.26)

Setting q = 0 and mapping 1
4π2 → 1

2π in Eq. (8.21) gives,

S(ω) =
a1

|a2|2 (8.27)

Applying a bit of algebra, if we expand Eq. (8.27) using Eqs. (8.22–8.23) and simplify, then the

two power spectra can be shown to agree exactly.

8.4 Power Spectrum including Spatial Variation

From our expression S(q, ω) for the infinite 1-D cortex, we want to be able to predict S(ω). The

power spectra S(q, ω) from Eq. (8.21) gives an expression describing how power is distributed

over spatial and temporal frequencies. To obtain S(ω), we add up the contributions from all q
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for each ω. This is achieved by integrating over all wavenumbers q from −∞ to +∞,

S(ω) =
∫ +∞

−∞
S(q, ω)dq. (8.28)

Substituting Eq. (8.21) into Eq. (8.28) gives

S(ω) =
∫ +∞

−∞

1
4π2

a1

(q2 + a2)(q2 + a∗2)
dq

=
∫ +∞

−∞

1
4π2

a1

q4 + (a2 + a∗2)q2 + |a2|2dq
(8.29)

In order to calculate Eq. (8.29), contour integration in the complex plane is used. To do this

we perform some complex calculus and then make use of the Residue theorem. First, following

Spiegel (1974) we note that in the complex plane (z = x + iy), if the function f(z) is bounded

such that

|f(z)| 5 M

Rk
for z = Reiθ (8.30)

where k > 1, and M and k are constants, then

lim
R→∞

∫
Γ
f(z)dz = 0 (8.31)

where Γ is the semi-circular arc of radius R shown in Fig. 8.1. Applying this identity to the

problem in hand, we consider the complex function,

f(z) =
1

z4 + b1z2 + b2
(8.32)

in which we have defined

b1 = (a2 + a∗2), b2 = |a2|2, z = Reiθ (8.33)
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Figure 8.1: Contour of integration (circling the two poles pc1 and pc2) in the complex plane. Adapted
form Spiegel (1974)

then

|f(z)| =
∣∣∣∣ 1
R4e4iθ + b1R2e2iθ + b2

∣∣∣∣
5

1
|R4e4iθ| − |b1R2e2iθ| − |b2|

=
1

R4 − (R2|b1| + |b2|)

(8.34)

using the inequality |z1 + z2 + z3| = |z1| − |z2| − |z3|. Continuing,

|f(z)| 5 1
R4 − (R2|b1| + |b2|)

5
M

R4

(8.35)

if R4 � (R2|b1| + |b2|) and M > 1. Hence using Eqs. (8.30–8.31)

lim
R→∞

∫
Γ

dz

z4 + (a2 + a∗2)z2 + |a2|2 = 0. (8.36)

We can now proceed to evaluate the power spectrum of Eq. (8.29). Consider the closed

contour integral,

∮
C

dz

z4 + (a2 + a∗2)z2 + |a2|2 , (8.37)
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where C is the closed path consisting of the line from −R to R and the semi-circle Γ (see

Fig. 8.1), traversed in the positive (counterclockwise) direction. The four poles of

1
z4 + (a2 + a∗2)z2 + |a2|2 (8.38)

are given by

p1 = i
√
a2, p2 = −i

√
a2 (8.39)

p3 = i
√

a∗2, p4 = −i
√

a∗2 (8.40)

Only two of these poles lie within C. Labelling the two poles that lie within C as pc1 and pc2,

then using the residue theorem we have

∮
C

dz

z4 + (a2 + a∗2)z2 + |a2|2 = 2πi(rc1 + rc2), (8.41)

where rc1, rc2 are the residues at the poles pc1, pc2. For a simple pole a the residue a−1 is

a−1 = lim
z→a

(z − a)f(z). (8.42)

Shortly we will also use L’Hôpital’s rule, which states,

lim
x→x0

f(x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

(8.43)

Calculating the residues rc1, rc2 using Eq. (8.42) then Eq. (8.43) gives,

rc1 = lim
z→pc1

{
(z − pc1)

1
z4 + (a2 + a∗2)z2 + |a2|2

}

= lim
z→pc1

1
4z3 + 2(a2 + a∗2)z

=
1

4p3
c1 + 2(a2 + a∗2)pc1

.

(8.44)

Likewise,

rc2 =
1

4p3
c2 + 2(a2 + a∗2)pc2

. (8.45)
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Thus via Eq. (8.41)

∮
C

dz

z4 + (a2 + a∗2)z2 + |a2|2 = 2πi
(

1
4p3

c1 + 2(a2 + a∗2)pc1
+

1
4p3

c2 + 2(a2 + a∗2)pc2

)
(8.46)

and therefore

∫ R

−R

dx

x4 + (a2 + a∗2)x2 + |a2|2 +
∫

Γ

dz

z4 + (a2 + a∗2)z2 + |a2|2

= 2πi
(

1
4p3

c1 + 2(a2 + a∗2)pc1
+

1
4p3

c2 + 2(a2 + a∗2)pc2

)
(8.47)

where x is the real part of the complex variable z = x + iy. Taking the limit of both sides of

Eq. (8.47) as R → ∞ and using the result of Eq. (8.36), we have

lim
R→∞

∫ R

−R

dx

x4 + (a2 + a∗2)x2 + |a2|2 =
∫ ∞

−∞

dx

x4 + (a2 + a∗2)x2 + |a2|2

= 2πi
(

1
4p3

c1 + 2(a2 + a∗2)pc1
+

1
4p3

c2 + 2(a2 + a∗2)pc2

)
(8.48)

Using the above equation the power spectrum can easily be derived as,

S(ω) =
∫ +∞

−∞

1
4π2

a1

q4 + (a2 + a∗2)q2 + |a2|2dq

= i
a1

2π

(
1

4p3
c1 + 2(a2 + a∗2)pc1

+
1

4p3
c2 + 2(a2 + a∗2)pc2

)
.

(8.49)

We can now use Matlab to calculate S(ω) for the desired range of ω. The Matlab pro-

gram theoryspec.m first calculates a1 and a2, then checks to see which two of the four poles

p1, p2, p3, p4 has a positive imaginary component and hence is contained within the contour C.

Once this has been established Eq. (8.49) is utilized to calculate S(ω). The program accepts a

range of ω and ramps though them, calculating S(ω) for each.

Often S(f) is desired rather than S(ω) where ω = 2πf . To map from S(ω) to S(f) we note

that the total power in S(ω) must equal the total power in S(f). Hence we require

∫ ∞

0
S(ω) dω =

∫ ∞

0
S(f) df. (8.50)
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Making the substitution ω = 2πf gives,

∫ ∞

0
2π S(2πf) df =

∫ ∞

0
S(f) df (8.51)

hence

S(f) = 2πS(ω). (8.52)

8.5 Power Spectrum Predictions and Numerical Agreement

The theoretical power spectra S(f) and the spectra determined from simulations of the non-

linear spatio-adiabatic equations near homogeneous equilibrium are shown in Fig. 8.2. Each

cortical rod simulation consisted of 100 grid-points separated by grid-spacings that were large

enough for numerical stability, yet small enough to give accurate space-series as determined by

comparsion between numerical and theoretical spatial covariance at zero-lag. To calculate the

power spectrum for each simulation, the power spectrum was calculated for each time-series at

each grid point along the rod. The 100 power spectra obtained for each simulation were then

averaged.

The power spectrum for each simulation was calculated using Matlab’s fft.m function

with a Hanning window employed to reduce spectral leakage. Following Steyn-Ross (2002), each

power spectrum was normalized according to,

S(k∆f) =
∆t

||W||2 |DFT{xW}k|2, k = 0, 1, . . . , N − 1 (8.53)

where the xW represents the element-by-element product of the times-series x with window W,

xW = [x0W0, x1W1, . . . , xN−1WN−1] (8.54)

and ||W|| is the norm or “rms height” of the W window,

||W|| ≡
√√√√N−1∑

j=0

W 2
j (8.55)

The experimental spectra and the theoretical spectra show good agreement at the lower

frequencies, but tend to diverge at the higher frequencies. It is believed that this disagreement
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at higher frequencies is due to the fact that the stochastic simulations have white noise entering

at every time- and space-step, and are therefore vulnerable to aliasing contamination (spectral

errors) entering from the high-frequency end of the spectrum. Steyn-Ross (2002) demonstrates

that for a well-behaved stochastic process (though admittedly, his analysis does not include

spatial variation) the theoretical and experimental power spectra are expected to show improved

agreement for smaller time-steps.
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Figure 8.2: Comparison of theoretically predicted power spectra (Eq. 8.49) and spectra calculated
from numerical experiments. The top three panels show the power spectra on the top-branch at (i)
λGABA = 0.1, (ii) λGABA = 0.81, and (iii) λGABA = 1.31. The bottom three panels show the power spectra
on the bottom-branch for (iv) λGABA = 0.31, (v) λGABA = 1.31, and (vi) λGABA = 2. All simulations
were run using a time-step of 0.01 ms, N = 100 grid-points and grid spacings (in cm) (i) h = 0.001 (ii)
h = 0.2 (iii) h = 2 (iv) h = 1 (v) h = 0.1 (vi) h = 0.05.
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Figure 8.3: Analytic spectra for the linearized “spatio-adiabatic” equations, for fluctuations about the
λGABA dependent top-branch steady-states. Spatial variability has been included, by integrating over all
possible spatial frequencies. Noise scale-factor α = 0.01 has been used, and all other constants are as
defined in Table 3.1.

We have shown that the theoretical spectrum agrees well with numerical experiment and

hence can investigate the spectrum in detail. In Fig. 8.3 we have plotted the stationary power

spectrum S(f) given by Eq. (8.49) and Eq. (8.52), for a range of top-branch equilibrium states.

As λGABA is increased from 0.31 to 1.31 we see the spectra initially flattens out before evolving

and into a low-frequency power surge on approach to the λGABA = 1.31 transition point (the

“biphasic effect” at induction). In Fig. 8.4 the process is repeated for bottom-branch equilibrium

states and similarly there is a surge in power at the λGABA = 0.31 transition point (emergence).
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Figure 8.4: Analytic spectra of the linearized “spatio-adiabatic” equations, for fluctuations about the
λGABA dependent bottom-branch steady-states. Spatial variability has been included, by integrating over
all possible spatial frequencies. Noise scale α = 0.01 has been used, and all other constants are as defined
in Table 3.1.
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Figure 8.5: Analytical spectra of the linearized “spatio-adiabatic” equations, for fluctuations about
the λ dependent top-branch steady-states in the region λGABA = 0.3 → 0.Note a log scale has been used
on the z-axis for clarity.
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The zero-lag spatial covariance graph of Fig. 7.6 predicts a rapid surge in spatial power as

λGABA → 0, followed by an drop to the λGABA = 0 value. A power surge in S(f) as λGABA → 0

is also evident in Fig. 8.3. If we “zoom” in on the λGABA = 0 region we obtain Fig. 8.5. We
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Figure 8.6: Analytical spatial spectra S(q) of the linearized “spatio-adiabatic” equations, for fluctua-
tions in space about steady-states, in the region 0 < λ < 0.3.

can also plot the power distribution in space, by making use of the covariance function G̃(q)

(Eq. 4.144) and the Wiener-Khinchin theorem. The Weiner-Khinchin theroem in time states

that the power spectrum and covariance function are related by,

S(ω) =
1

2π

∫ ∞

−∞
e−iωτG(τ)dτ. (8.56)

Mapping this theorem to space we obtain,

S(q) =
1

2π

∫ ∞

−∞
e−iqlG(l)dl (8.57)



8.5 Power Spectrum Predictions and Numerical Agreement 141

where, for our function, l = |x− x′|. Referring to the G(|x− x′|) definition of Eq. 4.139, we see

that the spatial power spectrum S(q) is actually equivalent to G̃(q),

S(q) ≡ G̃(q) =
D1/κe + c4

2(q2 + |c1/κe|) − c4
2(q2 ± |c2/c3|) . (8.58)

Plotting the power spectrum S(q) in the λGABA → 0 region reveals how power is distributed

over the spatial wavenumbers as we approach λGABA = 0 (Fig. 8.6). Figure 8.6 shows that the

power decrease for low wavenumbers while the power increases in the higher wavenumbers as

λ → 0. This change in power spatial power distribution is effecting the spectral power in time,

but the two graphs do not appear to be simply related. As we do not get an increase in power

as λ → 0 for the spatial homogeneous (Steyn-Ross et al. (1999)), this perculiarity must arise

from extending the generalization of the model from a homogeneous to a heterogeneous cortex.

Investigating the structure of power spectrum S(f) as λGABA → 20 reveals that the power

decays away in the low frequencies as λGABA → 20, analogous to the change in power spectrum

for the homogeneous cortex (Fig. 8.8). But plotting the power using a log scale reveals that

the power in the higher frequencies is in fact increasing (Fig. 8.7). The spectrum is effectively

flattening out, but it appears the total power is slightly increasing. The spatial power spectra

are shown in Fig. 8.9.

The physiological meaning of the increase and then sudden drop in power spectrum S(f) as

λGABA → 0 is unclear. In this region the average neurons are firing very close to their maximum

rate, so perhaps this surge in power could be related to epileptic fits. The physiological meaning

of the increase in power in the high frequencies as λGABA → 20 (approaching deep coma) is also

unclear.
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Figure 8.7: Analytical spectra S(ω) of the linearized “spatio-adiabatic” equations, for fluctuations
about the λ dependent bottom-branch steady-states in the region λGABA → 20
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Figure 8.8: This figure is identical to Fig. 8.7 except a log scale has been used on the z-axis.
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Figure 8.9: Analytical spatial spectra S(q) of the linearized “spatio-adiabatic” equations, for fluctua-
tions in space about the bottom-branch steady-states, for the region 0 < λ < 20. Relative to Fig. 8.6 this
graph has been rotated 180 degrees for clarity.





Chapter 9

Conclusions and Future Work

9.1 Overview

In this thesis I have investigated the properties of the one-dimensional model of the spatio-

adiabatic cerebral cortex developed by Steyn-Ross et al. (2003). The model aims to predict

the changes in EEG activity as a person is rendered unconscious via anaesthestic induction. A

set of theoretical functions were derived, namely the spatial-covariance and, the temporal- and

spatial-power spectra. Numerical simulations for both the nonlinear and the linearized systems

of equations were run, and both showed excellent agreement with the theoretical predictions.

The theoretical covariance function and power spectrum were analyzed in detail, revealing some

unexpected behaviours in the limits λGABA → 0 and λGABA → ∞. The stability of the spatio-

adiabatic equations was also investigated and showed the possibility of dissipative stationary

spatial patterns forming (nonequilibrium steady-states).

9.1.1 Diffusion Equation

In chapter 4 I investigated the classic diffusion equation for heat conduction along a rod. I

looked at how to accurately model heat entering the cortical rod via a noise source. The effect

of truncation error was briefly examined, and a scheme to minimize the error for the diffusion

problem was derived. I determined the scaling required to allow matching up of fluctuation

covariance curves (calculated from the space-series) for different combinations of grid-spacing

h and number of grid-points N . It was then determined that to simulate the stochastic 1-D

model, the spatial noise needed to be scaled by a factor of 1/
√
h. An analytical confirmation of

this scale factor was derived in Sec. 6.1.
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9.1.2 Numerical Simulation of the “Spatio-Adiabatic” Equations

Three sets of difference equations were used to thoroughly investigate the spatio-adiabatic sys-

tem. A mathematical derivation was done showing for a spatial-temporal stochastic system,

that to accurately stimulate continuous white-noise we must introduce the scale factor 1/
√
h∆t.

I simulated the linearized spatio-adiabatic equations, the near-homogeneous equilibrium non-

linear spatio-adiabatic equations, and the far-from-homogeneous equilibrium nonlinear spatio-

adiabatic equations. A von Neumann stability analysis was carried out on the linearized equa-

tions in order to determine the range of numerically stable time-steps and grid-spacings.

The time- and space-series close to homogeneous equilibrium, obtained by numerical simula-

tion, were used to confirm the analytically-derived spatial covariance and power spectrum. The

numerical data obtained from both the near-equilibrium nonlinear sytem and from the linearized

system, showed excellent agreement with the analytically-derived functions. This agreement in-

dicates that the linear system of equations, used to determine the theoretical functions, is an

excellent approximation to the nonlinear equations (provided the system is close to homogeneous

equilbrium).

I then proceeded to analyze the theoretical functions thoroughly.

9.1.3 Theoretical Predictions

It was shown that, for the 1-D spatio-adiabatic cortex, there is a predicted increase in cor-

relation lengths (or spatial covariance) of EEG signals separated in space, just prior to the

critical concentration at which a person is anaesthetically rendered unconscious. Similarly, an

increase in correlation length is predicted just prior to a patient regaining consciousness. These

increases in correlation length could be used as a clinical indication for a patient’s transition

from consciousness to unconsciousness, and vice versa.

The power spectra showed the expected “biphasic” surges in spectral power, just prior to loss

of consciousness and just prior to return to consciousness. This surge in power near transition

has been extensively documented in clinical recordings.

The theoretical power spectra showed some unexpected behaviours in the limits λGABA → 0

and λGABA → ∞. The limit λGABA → 0 corresponds to the brain being in a completely uninhib-

ited and therefore highly active state (seizure), while the limit λGABA → ∞ corresponds to brain

activity being strongly suppressed (deep coma). The power spectra for the seizure state showed
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a dramatic power increase followed by a sudden drop at λGABA = 0 across all spatial and tempo-

ral frequencies. The increase in power as λGABA approaches zero could possibly correspond to an

epileptic fit. For the coma state, the theoretical spectra predicted the expected decrease in power

across the low freqencies, but showed an increase in spectral power for the higher frequencies.

As λGABA → 20 this change in power distribution corresponds to the spectrum flattening out,

but contradictory to the physiological intuition the net spatial power was predicted to increase,

then gradually decline.

9.1.4 Formation of Nonequilibrium States

The implications of allowing the long-range inhibitory diffusion coefficient to dominate the ex-

citatory diffusion coefficient were investigated. This lead to the homogeneous steady-state of

the cortex becoming unstable, with a bifurcation to a stable nonequilibrium steady-state being

predicted. Linear stability theory was used to predict when the formation of the new state would

occur, but could not tell us the form the new state will take. Linear theory predicts the new

states will be stationary in time, displaying spatial oscillations (referred to in the literature as

Turing patterns) .

Numerical simulations were run to determine the form of these nonequilibrium states. It

was shown that different states form for different values of anaesthestic effect and diffusivities.

All the states displayed “finger”-like structure that were pseudo-periodic with the frequency of

structures determined by the combination of anaesthestic effect and relative diffusivity. The

nonequilibrium states were found to be very sensitive to the initial condition used to perturb

the system, so different states form for different spatial-temporal noise patterns.

Whether such nonequilibrium states form in the human cortex is not yet determined. It seems

physiologically unlikely that the brain could become “frozen” in such a state. One possibililty is

that these states could represent some sort of pathological condition similar to an epileptic fit.

9.2 Further Work

When investigating the 1-D cortex we found as λGABA approachs zero there is surge followed

by a drop at λGABA = 0 in power. What part of the model causes this increase then sudden

decrease in power needs to be furthur investigated. Likewise, why the model predicts anomalies

in the power spectra as λGABA → 20 should be investigated further.



148 Conclusions and Future Work

It would be worthwhile extending the model into a two-dimensional spatial system, since

this would be a better physiological representation of the cortex than the present 1-D model.

One could look at developing a theory for a finite length brain—specifically one of size similar

to the cortex. Of interest would be the effect a finite model would have on the spatial covariance

curves, especially for long correlation lengths. An important aspect of modelling a finite brain,

would be to investigate what boundary conditions to use to best represent the physiology.

In the current model we could relax the spatio-adibatic condition. This may allow the

stationary 1-D dissipative structures to “unfreeze” and oscillate in time. It would be prudent to

determine whether the mathematical requirement used to form these structures is physiologically

realistic. If this is the case, one would investigation what is the physiological meaning of such

structures forming in the cortex.



Appendix A

Summary of Matlab Code Used

Where applicable the code of Steyn-Ross (2002) has being used to calculate the homogeneous

steady-state voltage for a value of λGABA on a specific branch of the inverted S-bend.

Adiabaticwithspatial linearised.m: Simulates the linearized difference equations and pro-

duces a time-space series.

Adiabaticwithspatial nonequ.m: Simulates the near-equilibrium nonlinear difference equa-

tions and produces a time-space series.

Adiabaticwithspatial nonequ he.m: Simulates the formation of nonequilibrium dissipative

structures and produces a time-space series.

dftcs.m: This code simulates the diffusion equation using a forward-time centred-space scheme.

eigenstability.m: This code returns the eigenvalues for an input range of wavenumbers.

OUprocess.m: This code produces a time-series of the OU process.

power spec.m: This code takes an input space-time series and calculates the average power

spectrum.

sbends.m: This code reproduces the inverted S-bend of the homogeneous steady-states as a

function of anaesthetic effect.
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stability.m: This code uses the von Neumann stability analysis to determine whether a given

time- and space-step is stable for the linearized spatio-adiabatic equations.

theorycol.m: This piece of code calculates the analytic spatial covariance function.

theorypower.m: This code calculates the analytic temporal power spectrum for a range of

input parameters.
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