
Online Estimation of Discrete Densities using
Classifier Chains

Michael Geilke1 and Eibe Frank2 and Stefan Kramer1

1 Johannes Gutenberg-Universtität Mainz, Germany
{geilke,kramer}@informatik.uni-mainz.de

2 Department of Computer Science, University of Waikato, New Zealand
eibe@cs.waikato.ac.nz

Abstract. We propose an approach to estimate a discrete joint density
online, that is, the algorithm is only provided the current example, its
current estimate, and a limited amount of memory. To design an on-
line estimator for discrete densities, we use classifier chains to model
dependencies among features. Each classifier in the chain estimates the
probability of one particular feature. Because a single chain may not pro-
vide a reliable estimate, we also consider ensembles of classifier chains.
Our experiments on synthetic data show that the approach is feasible
and the estimated densities approach the true, known distribution with
increasing amounts of data.

1 Introduction

Whereas many data mining tasks have received considerable attention in the
context of stream mining recently, only little is known about the estimation of
joint densities in an online setting. Offline density estimation includes recent
work based on decision trees [12], where the leaves contain piecewise constant
estimators. A similar approach was pursued by Davies and Moore [2] as part of a
conditional density estimator. Vapnik and Mukherjee [15] used SVMs to perform
density estimation. Multi-variate densities are frequently estimated using kernel
density estimators ([7, 14]). Kernel density estimation is also the predominant
direction of the few online variants of density estimation so far, e.g., by Kristan
et al. [8, 9] and Lambert et al. [10].

In this paper, we propose a different approach to online estimation of discrete
joint densities (notice that we use discrete densities as a synonym for probability
mass functions) based on so-called classifier chains ([13, 3]), which uses a set of
probabilistic online classifiers to model a discrete joint probability distribution.
In this way, one can build on existing work in online learning and hence take
advantage of scalable, well-performing algorithms. The classifiers in a chain aim
to model the class probabilities of a particular feature, and the overall chain
aims to model the dependencies among the features. The individual estimates
are combined using the product rule. Because a single classifier chain may not
be sufficiently robust, we also provide a variant that uses ensembles of classifier

chains. We evaluate our density estimators by using discrete joint densities that
were generated with Bayesian networks.

The paper is organized as follows. In Section 2, we describe a method to
perform online estimation of discrete joint densities using ensembles of classifier
chains. This method is evaluated in Section 3, where we define the experimental
set-up and present the results of our experiments. Section 4 concludes the paper.

2 Online Density Estimation

Let X1, X2, . . . , Xn be nominal features and f(X1, X2, . . . , Xn) be an unknown
discrete joint density. We present algorithms that, given an infinite stream of
data that is distributed according to f , determine a density estimate f̂ for f .
The data stream is processed in an online fashion, that is, an algorithm is only
provided the current example, its current density estimate, and a limited amount
of memory. After each example, the algorithm returns its updated estimate.

2.1 Classifier Chain

As a first step, we provide an algorithm that uses a classifier chain to determine
a density estimate. Let f(X1, X2, . . . , Xn) be a discrete joint density. Then we
can apply the product rule and obtain the following equality:

f(X1, X2, . . . , Xn) = f1(X1) ·
n∏

i=2

fi(Xi | X1, X2, . . . , Xi−1). (1)

In other words, in order to model the discrete joint density f , it is sufficient to
model the density f1(X1) and the conditional densities fi(Xi | X1, X2, . . . , Xi−1),
i ∈ {2, . . . , n}. The product over these estimates yields an estimate of the joint
density f . To model the individual densities fi, 1 ≤ i ≤ n, we use classifiers that
return class probability estimates. For f1(X1), we use a majority class classifier
and for fi(Xi | X1, X2, . . . , Xi−1), i ∈ {2, . . . , n}, we use Hoeffding trees [4].
Both allow us to estimate the density in an online fashion. Note that we assume
the underlying density stays fixed. In case the density changes over time, one
could potentially use classifiers that are able to deal with concept drift such as
Concept-adapting Very Fast Decision Tree learner [6], but this is not considered
here.

Algorithm 1 describes the process of updating a density estimate when a
new example arrives. It is based on the classifier chain implied by Equation
1 as described above. First, Algorithm 1 receives an example (x1, x2, . . . , xn)
from an instance stream. Then it produces n examples, where example i con-
tains the features X1, X2, . . . , Xi. The example (x1) is forwarded to the classi-
fier for f(X1) and the example (x1, x2, . . . , xi) is forwarded to the classifier for
f(Xi | X1, X2, . . . , Xi−1), i ∈ {2, . . . , n}. Afterwards each classifier processes its
example and updates its current estimate.

Note that in applications where we need to draw an instance from our den-
sity estimate, we simply iterate over the classifiers from f1(X1) to fn(Xn |

Algorithm 1 Density estimation using a fixed classifier chain.

Require: (x1, x2, . . . , xn), a chain cc of n classifiers (cc[1] is a majority class classifier
and cc[i] are Hoeffding trees for i ∈ {2, 3, . . . , n})

1: for i ∈ {1, 2, . . . , n} do
2: train classifier cc[i] on instance (x1, x2, . . . , xi)
3: end for

X1, X2, . . . , Xn−1), draw an estimate from each classifier, sample a value based
on the distribution obtained, and use the output as input for the next classifier.
In a similar fashion, we can also compute the probability of a given instance.

2.2 Ensembles of Classifier Chains

The product on the right-hand side of Equation 1 is only one way to represent the
discrete joint density – there are many other possibilities. Let m : {1, 2, . . . , n} →
{1, 2, . . . , n} be a bijective mapping. Then

f(X1, X2, . . . , Xn) = f(Xm(1)) ·
n∏

i=2

f(Xm(i) | Xm(1), Xm(2), . . . , Xm(i−1)). (2)

In other words, we simply use a different ordering of the features to represent the
discrete joint density, which then results in a different classifier chain. Although
all such products represent the same joint density assuming the true conditional
density estimates are known, the ordering may be important for the performance
of our classifiers: ideally, the ordering enables the classifiers to exploit conditional
independence relationships so that some of the features can be ignored. Hence,
to increase robustness, we consider another algorithm that generates several
classifier chains and combines their estimates to a single density estimate. This
algorithm, which generates ensembles of classifier chains, simply samples chains
at random from the set of possible feature orderings and averages the density
estimates obtained.

Note that although it is straightforward to obtain a density estimate for a
particular instance from the ensemble, it is no longer straightforward to generate
data samples based on the estimated density. The simple process that can be
used in the case of a single chain no longer applies.

3 Experiments

In this section, we evaluate the algorithms presented in the previous section. Our
online density estimator has been implemented in the MOA framework [1] using
the classifiers MajorityClass and HoeffdingTree, where we use MajorityClass
as leave classifiers for the Hoeffding trees and disabled pre-pruning. In order to
compare the performance of the online density estimator with an offline variant,
we implemented the same algorithm in the WEKA framework [5] using the
corresponding offline classifiers ZeroR and REPTree with pruning disabled.

3.1 Experimental Set-up

To compare the performance of the algorithms, we used Bayesian networks to
randomly generate discrete joint densities using the BayesNetGenerator of the
WEKA framework. For each density, we specified the number of nodes and the
number of possible node values. The number of arcs were set to 10. Using the
Bayesian network, we then generated 103, 104, or 105 instances.

The resulting density estimates were evaluated using the Kullback-Leibler
divergence (KL-divergence). Let f be the true density and f̂ be an estimate.
Then the Kullback-Leibler divergence is defined as follows:

∑
i

f̂(i) · ln f̂(i)

f(i)
,

where i are the possible values that the density can take. Unfortunately, com-
puting the KL-divergence is computational expensive, since we have to consider
every possible combination of feature values. For instance, if we have 8 nodes
with 7 values each, then there are already 78 = 5764801 different combinations,
for each of which we have to compute the probability given by the estimator.
This computation is very expensive so that we can only consider discrete joint
densities with a small number of nodes and a small number of node values. No-
tice that, in order to avoid rounding errors, we computed the KL-divergence
using logarithms [11].

3.2 Experiment 1

In the first experiment, we generated discrete joint densities using Bayesian
networks with 10 arcs and 5 to 8 nodes each of which has cardinality 4. Then,
we drew M instances from this joint density with M being one of the values of
{103, 104, 105}. The instances were forwarded to our online and offline density
estimators. In both cases, we consider two variants of the algorithms: one with a
single random classifier chain, one with an ensemble of classifier chains. For the
latter, we chose a number of chains that is linear in the number of features, which
in this case is 1 times the number of features. In both cases, 10 independent runs
were performed, but the data remained the same in each run.

The results are summarized in Table 1. We start the discussion by comparing
the online variant of CC with the online variant of ECC. First of all, we observe
that in all cases the average KL-divergence of ECC is lower than the average
KL-divergence of CC. In particular, the average KL-divergence of ECC is, for
M = 103, between 9.7% and 31.2% lower, for M = 104, between 31.3% and 60.9%
lower, and, for M = 105, between 60.0% and 81.8% lower. For the minimal and
maximal KL-divergence, similar observation can be made. ECC performs better
in all cases. But, more importantly, in 11 out of the 12 cases, the difference
between the minimal and maximal KL-divergence for ECC is smaller than the
corresponding difference for CC – the only exception is n = 7 and M = 103.
Whereas the maximal difference for ECC is 0.420 (n = 6 and M = 103), the

Table 1. n is the number of nodes of the Bayesian network, where each node has
cardinality 4. M is the number of instances that we gave as input to the estimators.
For a given n, we always use the same sequence of instances. CC refers to a variant
where a single random classifier chain is used. ECC refers to an ensemble of classifier
chains for which we use n random classifier chains. For all such combinations, we
computed the average KL-divergence, the minimal KL-divergence, and the maximal
KL-divergence for the online and offline density estimators. For each combination, the
data was computed from 10 independent runs.

Online Offline

CC ECC CC ECC

n M avg min max avg min max avg min max avg min max

5

103 1.101 0.997 1.162 0.982 0.916 1.060 0.296 0.296 0.297 0.296 0.296 0.296

104 0.640 0.423 0.936 0.272 0.236 0.343 0.049 0.049 0.049 0.049 0.049 0.049

105 0.053 0.029 0.094 0.010 0.007 0.012 0.005 0.005 0.005 0.005 0.005 0.005

6

103 1.602 1.361 1.889 1.218 1.032 1.451 0.620 0.619 0.620 0.619 0.619 0.619

104 0.476 0.279 0.905 0.186 0.108 0.267 0.127 0.127 0.127 0.127 0.127 0.127

105 0.061 0.013 0.204 0.022 0.012 0.034 0.018 0.018 0.018 0.018 0.018 0.018

7

103 1.263 1.233 1.284 1.141 1.031 1.223 1.489 1.489 1.489 1.489 1.489 1.489

104 0.546 0.198 1.038 0.217 0.118 0.298 0.377 0.377 0.377 0.377 0.377 0.377

105 0.079 0.011 0.252 0.017 0.009 0.036 0.064 0.064 0.064 0.064 0.064 0.064

8

103 0.832 0.652 0.959 0.572 0.519 0.624 1.902 1.901 1.903 1.902 1.901 1.902

104 0.524 0.439 0.624 0.360 0.348 0.370 0.651 0.651 0.651 0.651 0.651 0.651

105 0.198 0.180 0.231 0.079 0.077 0.081 0.147 0.147 0.147 0.147 0.147 0.147

maximal difference for CC is 0.840 (n = 7 and M = 104). So, compared to ECC,
the performance of our density estimator using a single classifier chain depends
more heavily on the chain that was used.

The situation in the offline setting is completely different. For the average KL-
divergence, we observe no difference between CC and ECC. Almost the same holds
for the minimal and maximal KL-divergence. Differences can only be observed
in three cases (n = 5 and M = 103, n = 6 and M = 103, n = 8 and M = 103)
all of which are negligible due to insignificant differences.

If we compare the online and offline density estimators, we find cases where
the offline variant performs better and cases where the online variant performs
better. For n = 5 and n = 6, the offline algorithms have a lower average KL-
divergence than the online algorithms. However, if many instances are available,
then the average KL-divergence of the online ECC is very close to the offline
ECC. For n ∈ {7, 8} and M ∈ {103, 104, 105}, the online ECC has a lower average
KL-divergence than the offline algorithms, whereas the average KL-divergence
of the online CC is only lower for the pairs (n = 7, M = 103), (n = 8,M = 103)
and (n = 8,M = 104).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

K
L-

di
ve

rg
en

ce

number of instances

CC Online
ECC Online

CC Offline
ECC Offline

Fig. 1. The plot shows the KL-divergence with respect to the number of instances.
It is based on a discrete joint density that was generated from a Bayesian net-
work with 8 nodes where each node has cardinality 4 – the same that was used
in the first experiment. The KL-divergence was measured for M instances with
M ∈ {50, 100, 150, . . . , 500} ∪ {1000, 1500, 2000, . . . , 10000}.

In order to provide a more detailed analysis of the algorithms’ behavior,
we extended the set M to include the values {50, 100, 150, 200 . . . , 500} and
{1000, 1500, 2000, . . . , 10000}. Then we used the same discrete joint density that
we generated in the first experiment for the case n = 8, forwarded the instances
to our algorithms, and measured the KL-divergence of the corresponding den-
sity estimators. The results are illustrated by Figure 1, which shows the KL-
divergence of the density estimators with respect to the number of instances.
The KL-divergence for the offline algorithms is indistinguishable. The online
algorithms perform better than the offline algorithms, and, in particular, the
density estimator ECC has a lower KL-divergence than any other density estima-
tor. Moreover, the density estimator of the online ECC seems to converge faster
than the one of the online CC. We also observe that the offline density estimators
converge faster than the density estimator of the online CC, which results in al-
most the same KL-divergence when 104 instances are available. Figure 2 shows
the continuation of the experiment, where the KL-divergence was measured for
larger numbers of instances, namely {5 · 103}, {1 · 104, 2 · 104, . . . , 9 · 104}, and

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000

K
L-

di
ve

rg
en

ce

number of instances

CC Online
ECC Online

CC Offline
ECC Offline

Fig. 2. The plot shows the KL-divergence with respect to the number of instances.
It is based on a discrete joint density that was generated from a Bayesian network
with 8 nodes where each node has cardinality 4 – the same that was used in the first
experiment. The KL-divergence was measured for M instances with M ∈ {5 · 103} ∪
{1 · 104, 2 · 104, . . . , 9 · 104} ∪ {1 · 105, 2 · 105, . . . , 4 · 105}.

{1 · 105, 2 · 105, . . . , 4 · 105}. The online ECC still performs better than any other
algorithm, but the average performance of the online CC drops below the density
estimators of the offline algorithms between 10000 and 20000 instances. This is
due to faster rate of convergence, which we already observed in Figure 1.

Based on this first experiment, it seems that the online density estimator
using an ensemble of classifier chains provides the best estimate if many instances
are available and the discrete joint densities to be estimated have many features.

3.3 Experiment 2

In the first experiment, we observed that the performance of our online density
estimator using a single classifier chain depended on the classifier chain that was
used. In one case, the minimal KL-divergence was 0.198 and the maximal KL-
divergence was 1.038. To investigate this matter further, we conducted another
experiment. We assumed that a classifier chain that models the conditional in-
dependencies correctly performs better than a classifier chain that misses many

Table 2. n is the number of nodes of the Bayesian network, where each node has car-
dinality 4. M is the number of instances that we gave as input to the online estimators.
KL (Fixed) is the KL-divergence for online estimator using a classifier chain that is
sorted according to the topological order of the Bayesian network. KL (min) and KL
(max) is based on 10 independent runs of online estimators with classifier chains having
a random order. KL (min) is the minimal KL-divergence that has been observed and
KL (max) is the maximal KL-divergence that has been observed. In both cases, KL
(Fixed) has been excluded.

n M KL (Fixed) KL (min) KL (max)

5

103 1.154 0.997 1.162

104 0.424 0.423 0.936

105 0.093 0.029 0.094

6

103 1.198 1.361 1.889

104 0.299 0.279 0.905

105 0.022 0.013 0.204

7

103 1.148 1.233 1.284

104 0.200 0.198 1.038

105 0.011 0.011 0.252

8

103 0.708 0.652 0.959

104 0.403 0.439 0.624

105 0.059 0.180 0.231

9

103 2.726 2.566 4.356

104 1.815 2.079 2.541

105 1.832 1.807 2.086

10

103 2.658 2.640 3.258

104 2.203 2.181 2.560

105 1.949 1.930 2.143

conditional independencies due to a bad chain ordering. Therefore, we com-
pared the performance of an online estimator using a classifier chain that is
sorted according to the topological order of the Bayesian network with an online
estimators using random classifier chains.

We generated discrete joint densities from Bayesian networks with 10 arcs
and 5 to 10 nodes each of which has cardinality 4. Then, we drew M instances
from these joint densities with M being one of the values of {103, 104, 105}.
The instances were forwarded to 11 online density estimators all of which used
a single classifier chain. One density estimators used a classifier chain that is
sorted according to the topological order of the Bayesian network, the other
density estimators used random classifier chains. The results are summarized in
Table 2. KL (Fixed) is the KL-divergence of the online density estimator using
a chain ordering that is sorted according to the topological order of the Bayesian

network. KL (min) is the minimal KL-divergence of density estimators using a
random chain ordering. KL (max) is the same as KL (min) except that density
estimator with maximal KL-divergence is chosen.

In 5 out of 18 cases, KL (Fixed) is between 6.8% and 67.7% lower than
KL (min). In contrast to that, in 13 out of 18 cases, KL (min) is between 0.2%
and 69.3% lower than KL (Fixed). When comparing the KL-divergence of the
estimator with fixed classifier chain and the worst density estimator with a ran-
dom classifier chain, we observe a lower KL-divergence for the estimator with
fixed classifier chain in all cases. The improvements range between 0.1% and
163.0%. So the order of the classifier chains does make a difference, but a clas-
sifier chain that is sorted according to the topological order of the Bayesian
network does not necessarily provide the best estimate.

3.4 Experiment 3

In the first experiment, we observed performance improvements in the online
setting when ensembles of classifier chains were used instead of a single classifier
chain. There, we considered an ensemble having n classifier chains, which is 1
times the number of features. As a next step, we want to investigate whether
larger ensembles can improve the performance even further. But since we are
interested in fast online algorithms, we only consider linear numbers of classifier
chains, that is, linear in the number of features.

We repeat the first experiment with online estimators using a single random
classifier chain, and online estimators using an ensemble of i ·n classifier chains,
where n is the number of features and i ∈ {1, 2, 3}. The results are summarized
in Table 3. We observe that with increasing numbers of classifier chains, the
average KL-divergence decreases. Compared to a density estimator using a single
classifier chain, the average KL-divergence improves, for ECC1, between 9.7% and
81.8%, for ECC2, between 19.0% and 86.3%, and, for ECC3, between 31.6% and
87.6%. Similary, the difference between the minimal and maximal KL-divergence
decreases with increasing numbers of classifier chains. However, the larger the
number of instances the lower the performance increase. For instance, for n = 5
and M = 103, the average KL-divergence decreases, for ECC1, by 10.8%, and, for
ECC3, by 31.6%. In contrast to that, for n = 5 and M = 105, the average KL-
divergence decreases, for ECC1, by 81.8%, and, for ECC3, by 87.6%. Considering
that we expect many instances in an online setting, we assume that a smaller
ensemble of classifier chains should be sufficient for most purposes.

4 Conclusions and Future Work

In this paper, we proposed two online algorithms to estimate discrete joint den-
sities: one that uses a random classifier chain, one that uses an ensemble of
random equally weighted classifier chains. We could show that the algorithms
provide density estimates that approach the real density with increasing num-
bers of instances. When we considered the algorithms in an offline setting, the

Table 3. n is the number of nodes of the Bayesian network, where each node has
cardinality 4. M is the number of instances that we gave as input to the estimators.
For a given n, we always use the same sequence of instances. CC refers to an online
estimator where a single random classifier chain is used. ECC i refers to an ensemble of
classifier chains for which we use i·n random classifier chains. For all such combinations,
we computed the average KL-divergence, the minimal KL-divergence, and the maximal
KL-divergence for the online density estimators. For each combination, the data was
computed from 10 independent runs.

CC ECC 1 ECC 2 ECC 3

n M avg min max avg min max avg min max avg min max

5

103 1.101 0.997 1.162 0.982 0.916 1.060 0.892 0.842 0.940 0.753 0.715 0.795

104 0.640 0.423 0.936 0.272 0.236 0.343 0.168 0.134 0.205 0.128 0.109 0.146

105 0.053 0.029 0.094 0.010 0.007 0.012 0.007 0.007 0.008 0.007 0.006 0.007

6

103 1.602 1.361 1.889 1.218 1.032 1.451 0.940 0.848 1.047 0.731 0.643 0.798

104 0.476 0.279 0.905 0.186 0.108 0.267 0.128 0.084 0.167 0.096 0.072 0.116

105 0.061 0.013 0.204 0.022 0.012 0.034 0.016 0.010 0.023 0.014 0.011 0.017

7

103 1.263 1.233 1.284 1.141 1.031 1.223 0.943 0.829 1.077 0.768 0.647 0.858

104 0.546 0.198 1.038 0.217 0.118 0.298 0.121 0.079 0.150 0.091 0.061 0.121

105 0.079 0.011 0.252 0.017 0.009 0.036 0.014 0.011 0.019 0.015 0.013 0.018

8

103 0.832 0.652 0.959 0.572 0.519 0.624 0.537 0.514 0.567 0.518 0.506 0.531

104 0.524 0.439 0.624 0.360 0.348 0.370 0.300 0.292 0.311 0.258 0.254 0.264

105 0.198 0.180 0.231 0.079 0.077 0.081 0.054 0.053 0.055 0.045 0.045 0.046

density estimator using a single random classifier chain performed as well as the
density estimator using an ensemble of classifier chains. In contrast, in the on-
line setting, an ensemble of classifier chains proved to be a useful tool to provide
better density estimates. However, with increasing numbers of classifier chains,
only minor improvements were observed when many instances are available.

Our online density estimator using an ensemble of classifier chains performed
well on our synthetic data. Having an online method for estimating probabil-
ity mass functions at our disposal should be useful for answering queries on
the distribution of discrete random variables instantaneously and interactively,
according to the requirements of human users.

In future work, we would like to experiment with large real-world data with
drifting distributions and different underlying base classifiers, and develop a the-
ory for ensembles of classifier chains for density estimation. Moreover, we would
like to compare our new method with other approaches and consider a broader
range of discrete joint densities in the experiments. Computing the Kullback-
Leibler divergence is computationally expensive, and restricted densities could
be considered. Furthermore, one could run those experiments on a cluster or on
the cloud, thereby allowing consideration of a larger number of features and fea-
ture values. Finally, we would like to extend the work towards continuous joint

densities and conditional densities. There are several offline algorithms that at-
tempt to estimate such densities, but there appears to be little work in the online
area.

References

1. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.:
Moa: Massive online analysis, a framework for stream classification and clustering.
Journal of Machine Learning Research - Proceedings Track 11 (2010) 44–50

2. Davies, S., Moore, A.W.: Interpolating conditional density trees. In: Uncertainty
in Artificial Intelligence. (2002) 119–127

3. Dembczynski, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classifi-
cation via probabilistic classifier chains. In: International Conference on Machine
Learning. (2010) 279–286

4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Knowledge Dis-
covery and Data Mining. (2000) 71–80

5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explorations 11(1) (2009) 10–18

6. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Knowledge Discovery and Data Mining. (2001) 97–106

7. Hwang, J.N., Lay, S.R., Lippman, A.: Nonparametric multivariate density estima-
tion: a comparative study. IEEE Transactions on Signal Processing 42(10) (1994)
2795–2810

8. Kristan, M., Leonardis, A.: Online discriminative kernel density estimation. In:
International Conference on Pattern Recognition. (2010) 581–584

9. Kristan, M., Leonardis, A., Skocaj, D.: Multivariate online kernel density estima-
tion with gaussian kernels. Pattern Recognition 44(10-11) (2011) 2630–2642

10. Lambert, C.G., Harrington, S.E., Harvey, C.R., Glodjo, A.: Efficient on-line non-
parametric kernel density estimation. Algorithmica 25(1) (1999) 37–57

11. Mann, T.P.: Numerically stable hidden Markov model implementation. An HMM
scaling tutorial (2006) 1–8

12. Ram, P., Gray, A.G.: Density estimation trees. In: Knowledge Discovery and Data
Mining. (2011) 627–635

13. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Machine Learning 85(3) (2011) 333–359

14. Scott, D.W., Sain, S.R. In: Multi-Dimensional Density Estimation. Elsevier, Am-
sterdam (2004) 229–263

15. Vapnik, V., Mukherjee, S.: Support vector method for multivariate density esti-
mation. In: Neural Information Processing Systems. (1999) 659–665

