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Selective Decay and Coherent Vortices in Two-Dimensional Incompressible Turbulence
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Numerical solution of two-dimensional incompressible hydrodynamics shows that states of near
minimal ratio of enstrophy to energy can be attained in times short compared with the flow decay time,
confirming the simplest turbulent selective decay conjecture, and suggesting that coherent vortex struc-
tures do not terminate nonlinear processes. After all possible vortex mergers occur, the vorticity attains
a particlelike character, suggested by the late-time similarity of the streamlines to Ewald potential con-
tours.

PACS numbers: 47.25.—c

Mechanisms for turbulent relaxation known as selec-
tive decay processes' have been proposed as a dynami-
cal explanation for relaxation of toroidal plasma dis-
charges and as a basic property of decaying turbulence
in magnetohydrodynamics (MHD) and in two-dimen-
sional (2D) hydrodynamics. A common feature of these
conjectures is the prediction that the flows evolve to-
wards a state in which ratios of certain ideal quadratic
global invariants attain extremal values. In the simplest
case of 2D hydrodynamics, selective decay implies evolu-
tion to a state of minimal tt/E (enstrophy/energy) and
the theory is closely related to the dynamical evolution
suggested by Batchelor. At the present time, even
though rigorous proofs of their validity are unavailable,
selective decay theories stand as useful hypotheses that
have been supported by a number of computational stud-
ies in a variety of systems. As far as we are aware,
however, there have been no reported simulations that
have followed decaying turbulence for sufticiently long
times, at high enough Reynolds number (R), and at high
enough spatial resolution to conclude unambiguously
that the fiow attains the conjectured final state due to
turbulence processes, rather than because of the per-
sistence of the largest eddies. Moreover, recently, the
suggestion has been made ' that, at high R, the emer-
gence of isolated, possibly stable, ' coherent structures,
i.e., isolated vortices, thwarts the selective decay process
in 2D hydrodynamics by prematurely and permanently
eliminating the nonlinear couplings that give rise to tur-
bulence. This raises crucial questions regarding the ap-
plicability of turbulent relaxation mechanisms to 2D
Aows and to a variety of other high-Reynolds number,
nonlinear, fluid systems. ' '

In this Letter we investigate the long-time behavior of
the selective decay process, and its relationship to the
effects of coherent vortex structures, by direct spectral
method solutions of the 2D Navier-Stokes equations.
We emphasize the quasiuniversal character of the final
nonuniform state, which may be achieved as a conse-
quence of a variety of different turbulent evolutionary

scenarios. We show that turbulent selective decay
proceeds due to progressive stretching and merger of vor-
tex structures. By 220 initial eddy turnover times, all
possible vortex mergers occur, and the flow closely ap-
proaches the final state predicted by selective decay, a
state largely consistent with Batchelor's earlier theory
for the unbounded case. There remains an unsettled is-
sue pertaining to the degree of point vortexlike concen-
tration remaining at late times. However, the attain-
ment of this state contradicts McWilliams's conjecture
that coherent structures "arrest" turbulence at much
earlier times.

For 2D hydrodynamics at large R, the selective decay
scenario involves acceleration of the decay rate of enstro-
phy (mean-square vorticity) while kinetic energy is ap-
proximately conserved. This leads to an energy spectrum
progressively peaked at the longest wavelength, and, with
specified boundary conditions, a clear prediction for the
long-time Aow conditions, which are predicted to emerge
long before the period of final linear viscous decay. In a
finite-size periodic box, the energy is predicted to con-
centrate into two counter-rotating vortices of the longest
allowed wavelength. In this simplest instance of selective
decay, energy admits an afTinity for nonlinear back
transfer in wave number, while enstrophy preferentially
transfers to short wavelengths. Similar energy condensa-
tion effects are seen in the ideal equilibrium statistical
mechanics of 2D Aow, and in the inverse energy cascade
of steady driven 2D Aows. '"

To investigate the time (t) evolution of 2D hydro-
dynamic turbulence, we adopt a 2n-periodic geometry in
the (x,y) plane, with the fiuid velocity v(x, y, t), and all
other variables independent of the normal z =x&j coor-
dinate. Numerical solutions are obtained by solving the
equation for the scalar vorticity co =(V&&v)„

8 to +v Vco = vV co, (1)
Bt

using a Fourier-Galerkin method of the Orszag-Patter-
son type. ' The kinematic viscosity (v), in these dimen-
sionless units, acts as the reciprocal of a nominal large-
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scale Reynolds number 1/R, using unit length and unit
initial characteristic velocity. The method is based on a
Fourier decomposition ru(x, t ) =gt ro(k, t)exp(ik x)
with integer components of k. The results described
below utilize a fully dealiased' 512 code with max-
imum retained wave number = 241 and minimum wave
number k;„=1.The modal energy spectrum E(k)
=—~v(k)

~
/2 is initialized according to E(k) =C/[I+(k/

6) ], for 1 ~ k ~ 120 (zero otherwise) using a Gaussian
random number generator, corresponding to an omni-
directional energy spectrum 2+kE(k) that falls off as
k . The constant C is chosen to make the total energy
per unit mass E=(v /2) = —,

' gkk ~cu(k)~ have the in-

itial value —,
' (( ) denotes a volume average). The

enstrophy ft:—(cu )/2= —,
'

+~~co(k)~ has an initial value
of 67. The palinstrophy P= &Pkk—~ro(k)

~
is initially

=1.61X10 . This closely emulates the initial spectrum
used by McWilliams.

Here we report on the run of longest duration and
highest Reynolds number and spatial resolution we have
carried out, with R =14286, corresponding to an initial
microscale (enstrophy cascade) Reynolds number' Rz
= A i/ /2vP = 24.5. The computation extends beyond
time t =236 (using an explicit method with /3. t =,0'„,,
and no smoothing or hyperviscosity), using the 512-
resolution code and initial data described above. Short-
er, smaller, and lower-R runs showed extremely similar
behavior to the extent that comparisons were possible.

The most direct consequence of selective decay, the
rapid decrease of 0 relative to E, is clearly seen
throughout the computation. For example, by t =230, 0
has decreased to 1.08 (1.6% of its initial value), whereas
E has decayed to 0.42 (84% of its initial value). Howev-

er, since E = —2 v 0 and 0 = —2 vP, one can easily see
that d(f),/E)/dt ~ 0 for all 2D flows, whether turbulent
or not. Thus, decrease of 0/E is not alone sufficient to
conclude that turbulent dynamics are important. How-
ever, the monotonic decay of A/E does imply that the
dynamics are not frozen out into any single-wave-
number state with 0/E =k~ & k;„during the run, as
might be expected from the discussion in Ref. 8.

A more complete picture can 'be seen from comparison
of the behavior of the mean wave numbers dP/ft and
JA/E, shown in Fig. l. Apart from a factor involving
the viscosity, the squares of the ratios in Fig. 1 can be in-
terpreted as the decay rates (logarithmic time derivative)
of 0 and E, respectively. For a dynamically frozen
single-wave-number state, the ratio of these decay rates
would be unity, and for linear decay of any spectral dis-
tribution, the same ratio would necessarily approach uni-

ty. Thus, Fig. 1 implies that the characteristic time for
decay of enstrophy remains much shorter than that of
the energy throughout the simulation. To maintain this
condition, nonlinear interactions must persist in support-
ing the value of P against rapid decay, by transfer of ex-
citations to high wave number.

Characteristic wave-number spectra in selective decay
indicate both direct transfer to high k and back transfer
of energy to the longest allowed wavelength 2'/k;„. A
sequence of modal spectra of energy and enstrophy in

Fig. 2 illustrate these features. The spectra remain
broadband, though steepened at high k. The energy in

km;„modes [E(k =1)] increases steadily (but not mono-
tonically) throughout the computed time, with E(k =1)
=0.005 at t=1, representing about 1% of the total E,
while at t =236, E(k=1) =0.307, which is =74% of
the total energy. The peak in the enstrophy spectrum at
k & 1, clearly seen in Fig. 2(a) at t =1, disappears by
about t =9, and by t =72 [Fig. 2(b)1 the enstrophy spec-
trum has a bimodal appearance, with the major peak at
k=1 representing an energy-back-transfer subregion. A
steepened direct-transfer region appears in the same
figure at k & 10. At later times [e.g. , t =236 in Fig.
2(c)] the domination of the spectral features at low k is
even more pronounced. Given the enhancement of k
excitations, these features are not explained by viscous
decay.

The sequence of events in configuration (x) space is

described below in a time sequence of contour plots of
vorticity (Fig. 3) and of stream function y (Fig. 4;
v=Vxzy). Prior to about t =20 [Fig. 3(a)] the vortici-

ty dynamics are characterized by sheetlike structures
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FIG. l. Time evolution of v'P/rt and v'rt/E.
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FIG. 2. Modal spectra of energy E and enstrophy 0 at
simulation times (a) r 1, (b) r 72, and (c) r 236, sorted
into unit-width wave-number bins.
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FIG. 3. Equally spaced contours of tu at (a) t =20, (b)
t =72, (c) t =104, and (d) t =208. Data are averaged onto a
128-' grid for plotting purposes only.

FICJ. 4. Contour plots of ttt at (a) t =72, (b) t =104, and (c)
t =236. Panel (d) shows equipotentials of unit charges (vor-
tices) placed at the equilibrium positions of a 2D Ewald poten-
tial.

that continually roll up around emerging centers of vorti-
city concentration, as has been described previously. ' '
The vorticity centers also "collide" and merge into larger
structures rapidly at early times. After about t =30 the
number of vorticity concentrations has been significantly
reduced, and the amplitude of the sheetlike structures
linking them has also decreased. Thus, one may de-
scribe, in a qualitative way, the situation as coming to
resemble a system of emerging isolated vortices. The
early-time dynamics of the vorticity has been discussed
in detail by Brachet et al. , and the emergence of the
"isolated" vortices has been described in a similar com-
putation by McWilliams. The conclusion of the latter
work was that the emergence of isolated vortices acts to
terminate the turbulent phase of 2D turbulence, thus ha-
lting relaxation processes, i.e., selective decay, that de-
pend on continuation of strong nonlinear couplings.

The present computation, which is carried out to
significantly longer times than those in either Ref. 8 or 9,
shows that the coherent vortices have an important
inAuence on the dynamics, but they do not halt the selec-
tive decay process. To achieve the final selective decay
state, the vortices must continue to merge due to tur-
bulence, driving the flow towards a nonturbulent state
dominated by excitations at k;„.The contour plots
show that this indeed occurs. By about t =72 [Fig.
3(b)], all the major (nonsheetlike) negative-vortex con-
centrations have merged into a single strong coherent
vortex. At the same time, there remain three strong pos-
itive vortices. The stream-function plots [Fig. 4(a)] indi-

cate that the Aow has already become dominated by two
large, though distorted, Aow patterns. Two of the
remaining positive-vorticity structures undergo merger in
a "collision" that occurs just prior to t =104, clearly evi-
denced in the vorticity [Fig. 3(c)] and giving rise to an
even more regular stream-function pattern [Fig. 4(b)].
Each of these identifiable mergers is associated with a
significant transient increase in the palinstrophy, the
inAuence of which is clearly seen in Fig. 1. Subsequent-
ly, the last two positive vortices merge at t =204. The
late stage of this interaction is shown in Fig. 3(d). Once
again, there is a significant increase in P during the
merger. This is the last possible event of this type that
can occur. The two remaining vortices, one positive and
one negative, settle down to nearly circular cross sections
thereafter, with their spatial separation being very nearly
maximum along the diagonal of the periodic box. The
highly regular contours of the stream function after the
last merger [shown in Fig. 4(c)] show two large
counter-rotating flow structures, visually almost indistin-
guishable from a pattern consisting entirely of k;„exci-
tations.

Given that all possible mergers of coherent vortices are
accomplished, and that the II/E ratio is reduced to a
value of 2.57 (the minimum possible value = I), the flow,

by t =230, has achieved most of what is expected in the
selective decay picture of the dynamics. It seems im-
plausible, even though there remains some excitation in
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k & k;„,that the two remaining vorticity structures can
ever break apart after this time. This viewpoint is made
more clear by recalling the analogy between fully con-
centrated 2D discrete vortices' and electrostatic guid-
ing-center line charges, ' since the opposite-signed
charges will electively repel each other, at high energies,
attempting to achieve an equilibrium with maximum
possible separation. Taking periodicity into account,
such an equilibrium is described by a latticelike config-
uration with the vortices located at the minima of each
other's 2D Ewald potential, ' the charge separation at
equilibrium being J2x, half the length of the box diago-
nal. In Fig. 4(d), potential contours are shown of line

charges placed in the equilibrium Ewald lattice config-
uration. The similarity to the last y contour plot at
t =236 of the simulation is evident and is quite reason-
able in view of the high degree of spatial concentration
of the vorticity. At t =236, 81% of the negative vorticity
(69.5% of the positive vorticity) lies within a region of
radius 0.72 (=62 simulation cells) of the position of the
vorticity minimum (maximum), even though this region
represents only 4.6% of the area of the box. Within the
same regions lies 98.1% of the total enstrophy. Thus,
one is left with somewhat of a paradoxical situation: Al-

though the flow has very nearly approached the selective
decay state, in terms of reduction of II/E, the appear-
ance of large flow patterns, and the merger all possible
vortices, the surviving two vortex structures have re-
tained, to some degree, a pointlike nature. They are, of
course, not strictly point vortices, but are concentrated in

space to very nearly the maximum extent consistent with

the computed values of E and O. This Ewald lattice
configuration is suggestive of a negative-temperature
state of the discrete line-vortex model. ' ' Presumably,
the subsequent dynamics after t =236 is relatively
uneventful, and consists largely of small oscillations
about this quasiequilibrium, and slow decay towards a
k;„state on a viscous decay time scale —1/vk
=1.4X10 . It remains a challenge for theory to de-
scribe how this pointlike, spatially coherent, character of
the vorticity can be reconciled with the observed, ap-
parently inevitable, evolution towards the selective de-

cayed state. Potentially large differences between decay-
ing and driven spectra are suggested, to the extent that
random driving may destroy coherence of the vortices.

The simulation described above presents a firm coun-
terexample to the proposition ' that coherent vorticity
structures prevent evolution towards an extremal selec-
tively decayed state in a time much shorter than the
viscous flow lifetime. The persistence of turbulent dy-
namics in attaining the final state reported here is unan-
ticipated in previous simulations ' that computed for
much shorter times. However, it is also clear that the
spatial coherence of the vorticity plays an important role
in the nature and rate of evolution of the turbulence.
Merger of coherent vortices causes bursts of nonlinear
activity, evidenced by transient increases of P (cf. Fig.

I). This lends a temporal intermittency to the tur-
bulence. In addition, the overall rate of turbulent decay
of enstrophy (not shown), after t =10 but prior to the
last merger, appears to be reasonably close to a time
dependence of P —t, 0 —t '. In contrast, the previ-
ously unexamined (e.g. , Ref. 9) similarity law of
Batchelor predicts that P —t and 0 —t . Evident-
ly, the spatially coherent, temporally intermittent nature
of the vorticity interactions slows the turbulent evolution,
in a way unforeseen in the Batchelor decay rates (Ref.
18 cites early-time slowing of turbulence due to coherent
vortices). A full treatment of the statistics of 2D tur-
bulent decay needs to take into account the influence of
both selective decay and coherent vortices in a way'
that goes beyond simple inequalities in global decay
rates.
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