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The rumen of dairy cattle can be thought of as a large, stable fermentation vat

and as such it houses a large and diverse community of microorganisms. The

bacterium Butyrivibrio proteoclasticus is a representative of a significant

component of this microbial community. It is a xylan-degrading organism whose

genome encodes a large number of open reading frames annotated as fibre-

degrading enzymes. This suite of enzymes is essential for the organism to utilize

the plant material within the rumen as a fuel source, facilitating its survival in

this competitive environment. Xsa43E, a GH43 enzyme from B. proteoclasticus,

has been structurally and functionally characterized. Here, the structure of

selenomethionine-derived Xsa43E determined to 1.3 Å resolution using single-

wavelength anomalous diffraction is reported. Xsa43E possesses the character-

istic five-bladed �-propeller domain seen in all GH43 enzymes. GH43 enzymes

can have a range of functions, and the functional characterization of Xsa43E

shows it to be an arabinofuranosidase capable of cleaving arabinose side chains

from short segments of xylan. Full functional and structural characterization of

xylan-degrading enzymes will aid in creating an enzyme cocktail that can be

used to completely degrade plant material into simple sugars. These molecules

have a range of applications as starting materials for many industrial processes,

including renewable alternatives to fossil fuels.

1. Introduction

Lignocellulosic plant material is seen as an increasingly important

energy resource as it is abundant and renewable. The plant cell wall

makes up the majority of plant material and is predominantly

composed of polysaccharides, with the most important of these being

cellulose, hemicellulose and pectin. Complete degradation of a plant

cell wall into its component sugars requires a suite of enzymes with

specific activities for hydrolysing the various chemical linkages

between the sugars present within these polymers. As well as being an

attractive source of renewable carbon, plant material is also the basis

of pastoral grazing systems around the world. Ruminants that ingest

this material depend on specialized microorganisms in their rumen to

release and ferment the component sugars to volatile fatty acids,

providing a source of energy for the animal. The enzymes that are

used to accomplish this task have the potential to form an ideal

toolkit for the industrial depolymerization of plant material.

Butyrivibrio proteoclasticus was first isolated from the rumen

contents of a cow and is capable of degrading the hemicellulose xylan

(Attwood et al., 1996; Moon et al., 2008). Xylan consists of �-1,4-

linked xylose units with a variety of decorating side groups including

acetyl, arabinofuranosyl and feruloyl moieties. The genome of B.

proteoclasticus has been sequenced, revealing a suite of genes

annotated as enzymes involved in fibre degradation and which

encode part of the glycobiome of the organism (Kelly et al., 2010).

These enzymes cover a broad range of glycoside hydrolase (GH)

families, presumably to accommodate the broad range of activities

required for the complete degradation of xylan into simple sugars.

A structural genomics approach has been taken to characterize the

suite of fibre-degrading enzymes produced by B. proteoclasticus.

Enzymes that have been cloned and expressed and for which
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three-dimensional structures have been determined are then also

functionally characterized. Here, we present the structure of Xsa43E

(EC 3.2.1.37), a GH43 family enzyme. According to the CAZy

database, GH43 family enzymes have a number of known activities

including �-xylosidase, �-1,3-xylosidase, �-l-arabinofuranosidase,

arabinanase, xylanase and galactan 1,3-�-galactosidase activities

(Lombard et al., 2014; Cantarel et al., 2009). All structures of GH43

enzymes have a common five-bladed �-propeller domain. This fold

has been seen in four different GH families: GH families 32 and 68 of

the GH-J clan and GH families 43 and 62 of the GH-F clan. GH43

enzymes have an inverting mechanism with three residues implicated

as being involved in catalysis: a general acid, a general base and a

third acid residue proposed to modulate the pKa of the general acid

as well as to orientate the substrate and general acid. Here, we

highlight some of the interesting structural features of Xsa43E; we

also present biochemical evidence for its substrate specificity and use

point mutations to probe its catalytic mechanism.

2. Experimental procedures

2.1. Cloning, expression and purification

The Xsa43E gene was amplified from B. proteoclasticus B316

genomic DNA by nested PCR using two sets of primers.

Gene-specific primers (forward, 50-GGCAGCGGCGCGATGACA-

GAAACTATGACAGAAGA-30; reverse, 50-GAAAGCTGGGTGT-

CAGTTTATCTTTTCAACCCCAT-30) are used in the initial round

of PCR. These contain a 12 base-pair overlap with the generic

primers that are used in the second round of PCR (50-GGGGACAA-

GTTTGTACAAAAAAGCAGGCTTC-30 and 50-GTGGGTCGA-

AAGAACATGTTTCACCAGGGG-30). This two-stage strategy

adds the attB recombination sequences and also an rTEV cleavage

site between the attB sequence and the original ORF translational

start, allowing cloning into the Gateway vectors and facilitating

cleavage of any purification tag post expression of protein, as

previously described by Moreland et al. (2005). The PCR product was

cloned into the pDONR221 Gateway entry vector and then into the

pDEST17 Gateway vector for the expression of recombinant protein

with an N-terminal His6 affinity tag. The correct insert was confirmed

by DNA sequencing. The plasmid containing the appropriate gene

was transformed into Escherichia coli BL21 (DE3) cells for recom-

binant expression. Expression cultures were grown in 1 l LB broth at

37�C to an OD of �0.6 at 600 nm and were then induced with 1 mM

isopropyl �-d-1-thiogalactopyranoside and transferred to 28�C for a

further 16–20 h. Cells were harvested and lysed using sonication.

Filtered lysate was purified by immobilized metal-affinity chroma-

tography using a 5 ml HisTrap HP column (GE Healthcare). Protein

was eluted from the column with 20 mM Tris–HCl pH 8.0, 150 mM

NaCl, 300 mM imidazole. The target protein was identified using

SDS–PAGE and was further purified by size-exclusion chromato-

graphy using an S-200 16/60 column (Amersham Biosciences) in

20 mM Tris–HCl pH 8.0, 150 mM NaCl. The purity of Xsa43E was

analysed by SDS–PAGE. Protein concentration was estimated by UV

absorbance using a theoretical extinction coefficient of

77 865 M�1 cm�1. Selenomethionine-incorporated Xsa43E (SeMet-

Xsa43) was expressed using PASM-5052 medium containing seleno-

methionine and E. coli DL41 cells and was purified as described

above; the buffers contained the reducing agent �-mercaptoethanol

(1 mM) to prevent oxidation of the Se atoms.

2.2. Crystallization, data collection and structure determination

Crystallization was carried out using hanging-drop vapour diffu-

sion in 24-well VDX plates (Hampton Research, USA). Each well

contained 500 ml mother liquor. 2 ml mother liquor from the well was

mixed with 2 ml protein solution (50 mg ml�1 in buffer consisting of

20 mM Tris–HCl pH 8.0, 150 mM NaCl) on a 22 mm square un-

siliconized glass cover slip. The cover slip was then inverted and

placed on top of the well; a seal was formed using a layer of grease to

exclude air. Crystals of Xsa43E were grown with mother liquor

consisting of 18–20% PEG 8000, 0.2 M NaCl, 0.1 M phosphate–

citrate buffer pH 4.6. Crystals of SeMet-Xsa43E were grown in buffer

that also contained 1 mM �-mercaptoethanol and were grown with

mother liquor consisting of 20% PEG 8000, 0.2 M NaCl, 0.1 M

phosphate–citrate buffer pH 3.4. All crystals were grown at 18�C.

Crystals were transferred to a cryoprotectant consisting of mother

liquor containing 20%(v/v) glycerol before being flash-cooled in

liquid nitrogen. Diffraction data for native protein and seleno-

methionine-derivatized protein were collected on beamline 11-1 of

the Stanford Synchrotron Radiation Laboratory (SSRL), USA

equipped with a MarMosaic 325 CCD detector (MAR USA).

SAD (single-wavelength anomalous diffraction) data were

collected at a wavelength of 0.9795 Å. The images were integrated

using iMosflm (Battye et al., 2011) and scaled using the CCP4

program SCALA (Evans, 2006). The structure was then solved using

AutoSol in PHENIX (Adams et al., 2010) to a resolution of 1.33 Å.

AutoSol located nine sites with a figure of merit (FOM) of 0.50.

Following density modification with RESOLVE (Terwilliger, 2003)

the FOM improved to 0.73; this was followed by AutoBuild

(Terwilliger et al., 2008). The output model was put through an initial

round of refinement in the program REFMAC5 from CCP4 (Winn et

al., 2011). The output was used as a starting point for manual building.

Manual model building was performed in Coot (Emsley & Cowtan,

2004) and progress was checked and final refinement was performed

with restrained refinement in REFMAC5. Electron-density maps
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Table 1
Data and refinement statistics for Xsa43E.

Values in parentheses are for the outer shell.

Data statistics
Space group P212121

Wavelength (Å) 0.9795
Unit-cell parameters

a (Å) 59.13
b (Å) 76.54
c (Å) 82.56
� (�) 90
� (�) 90
� (�) 90

Resolution range (Å) 56.2–1.33 (1.4–1.33)
Rmerge (%) 7.7 (51.0)
No. of measured reflections 463689 (44441)
No. of unique reflections 82628 (11406)
Mean I/�(I) 14.9 (2.3)
Completeness (%) 95.9 (91.7)
Anomalous completeness (%) 88 (78.3)
Multiplicity 5.6 (3.9)
Anomalous multiplicity 3.0 (2.2)

Refinement statistics
Rwork/Rfree (%) 16.9/18.6
Total No. of atoms 2827
No. of protein atoms 2499
Other molecules/ions 2 [1 Tris, 1 Ca]
No. of waters 319
R.m.s. deviation from standard geometry

Bond lengths (Å) 0.031
Bond angles (�) 2.343

Average B factors (Å2)
Protein 15.653
Water 26.678



used for model building were �A-weighted 2|Fo| � |Fc| (contoured at

1.0�) and |Fo| � |Fc| (contoured at �3.0�). Model building required

inserting alternative conformations for some residues. Waters were

added in Coot (Emsley & Cowtan, 2004) and checked manually.

Structure validation was performed with PROCHECK (Laskowski et

al., 1993) from the CCP4 suite. Data-collection and refinement

statistics are shown in Table 1. Difference-map peak heights were

generated using PHENIX. Coordinates and structure factors have

been deposited in the PDB as entry 4nov.

2.3. Inductively coupled plasma mass spectrometry

Inductively coupled plasma mass spectrometry (ICP-MS) and the

resulting analysis was performed as a service provided by the

Chemistry Department at the University of Waikato, Hamilton, New

Zealand.

2.4. Site-directed mutagenesis

Site-directed mutagenesis was performed by overlap extension,

incorporating custom oligonucleotides containing the desired muta-

tion into the gene by PCR. Mutated genes were then cloned back into

the vector (pDEST17) as described for the wild type.

2.5. Enzyme assays

2.5.1. Substrates. p-Nitrophenyl substrates were purchased from

Sigma; all other substrates were purchased from Megazymes

(Ireland) unless otherwise stated.

2.5.2. Substrate specificity assays. The activity of Xsa43E was

tested on the following range of substrates: arabinobiose, arabino-

hexaose, xylose oligosaccharides with a degree of polymerization

from 2 to 6 and arabinoxylan. Xsa43E was incubated with the

substrate for a set time at 37�C in 20 mM sodium phosphate buffer

pH 7.2. The mixture was analysed by thin-layer chromatography

(TLC) for a qualitative result, which was run in a solvent system of

chloroform:acetic acid:water (6:7:1) and visualized by the addition of

5% sulfuric acid in ethanol and incubation at 110�C for 10 min.

Quantitative assays were carried out as above to determine the

specific activity for release of arabinose from arabinobiose,

arabinoxylan and arabinoxylan in conjunction with a xylanase from

Trichoderma viride. The specific activity for release of arabinose was

determined using the Lactose/Galactose Rapid Assay Kit (Mega-

zymes International Ltd) following the manufacturer’s instructions.

The kit contains �-galactose dehydrogenase, which oxidizes �-d-

galactose (using NAD+) to d-galactonic acid; the amount of NADH

formed in this reaction is measured, which is stoichiometric with the

amount of d-galactonic acid. The NADH is measured by the increase

in absorbance at 340 nm. The kit can also be used to determine the

amount of l-arabinose released in a system through the same

chemistry.

2.6. Model substrate assays

Kinetic data were obtained using 50 mM p-nitrophenyl-�-l-

arabinofuranoside or 50 mM p-nitrophenyl-�-l-xylanopyranose.

Reactions were performed in 20 mM sodium phosphate buffer pH

7.2. All assays were performed in triplicate and with a blank using

purification buffer alone (20 mM Tris–HCl, 150 mM NaCl) without

enzyme. The reactions were initiated by addition of enzyme and the

absorbance was monitored at 1 min intervals at 405 nm for 30 min in

a BMG FLUOstar Optima F plate reader at 21�C. The data were

corrected for non-enzymatic decay of the substrate. Michaelis–

Menten kinetics were modelled using the following formulae and

were processed using GraphPad Prism 5 or Microsoft Excel:

v ¼
Vmax½S�

Km þ ½S�
;

Vmax ¼ ½E0�kcat:

Enzyme concentration, pH, temperature, buffer and volume were

fixed while the substrate concentration was varied. Rates were

measured at a range of substrate concentrations and plotted using

GraphPad Prism 5.

3. Results and discussion

3.1. Overall structure of Xsa43E

One monomer, consisting of one catalytic domain, is present in the

asymmetric unit. The majority of the protein is visible in the electron

density from residue 9 through to the terminal residue 313. The final
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Figure 1
Cartoon representation of Xsa43E showing the five blades of the �-propeller, the Tris molecule and the calcium ion.



structure also contains 319 water molecules, a molecule of tris-

(hydroxymethyl)aminomethane (Tris) and a calcium ion (Fig. 1). The

presence of calcium in a solution of Xsa43E protein was confirmed

using ICP-MS. The highest resolution (1.33 Å) data were obtained

from a crystal of selenomethionine-derivatized protein; the final R

factor and Rfree for this data set were 16.9% and 18.6%, respectively.

Full data statistics are given in Table 1. The structure of Xsa43E has

96.4% of the residues within the most favoured region and 3.6% in

allowed regions of the Ramachandran plot (structure validation using

PROCHECK in CCP4; Laskowski et al., 1993).

Xsa43E has one domain, with the overall structure consisting of a

five-bladed �-propeller. This domain is common to all reported three-

dimensional structures of GH43 enzymes. The first reported five-

bladed �-propeller structure was that of tachylectin (Beisel et al.,

1999). Since then this fold has been seen in four different GH

families, GH families 32 and 68 of the GH-J clan and GH families 43

and 62 of the GH-F clan, as recorded in the CAZy database

(Lombard et al., 2014; Cantarel et al., 2009). The five blades of the

propeller form a cylindrical shape and are organized around a central

axial cavity. This central cavity is approximately 30 Å long and

contains the active site and a calcium ion. The calcium-ion position

corresponds to a peak in the difference map of 56� compared with an

average water peak of 19.6�. Each blade of the propeller consists of

four antiparallel �-strands connected by loops of varying sizes. The

loops between the first and second strand of each blade are short

hairpins two to three residues in length; the loops between the third

and fourth strands are also relatively short at between seven and 12

residues long. The loops between the second and third strands (six to

18 residues in length) and the fourth strand of one blade and the first

strand of the next blade are longer (12–23 residues long), and they

form the substrate-binding cavity and the active site. The inner

strands of the five blades form the base of the tapered end of the cup-

like propeller structure (Fig. 1). Intriguingly, the inner strands are all

preceded by a proline residue. The four strands that make up each

blade twist through approximately 90� from the inside to the outside

of the structure. The N-terminal and C-terminal ends of the protein

have short �-sheets that are at hydrogen-bonding distance and

effectively seal the propeller structure. The C-terminal strand is the

fourth strand of the fifth blade of the propeller and the N-terminal

end acts almost as a fifth strand in that blade, in a ‘molecular Velcro’

fashion.

The active site accommodates a molecule of Tris, most likely from

the purification buffer. The three catalytic residues previously

observed in GH43 family structures (Brüx et al., 2006; Vandermar-

liere et al., 2009; Cartmell et al., 2011) were identified by super-

imposing the structure of the arabinanase Arb43A (PDB entry 1gyd;

sequence identity = 26%; Nurizzo et al., 2002) from Cellvibrio japo-

nicus with that of Xsa43E. Asp24 is the general base, Glu202 is the

general acid and Asp141 is the third catalytic residue that is believed

to modulate the pKa of the catalytic acid as well as orientating the

catalytic acid and the substrate (Nurizzo et al., 2002). These residues

are located on the innermost strands of blades 1, 4 and 3, respectively.

As the catalytic base (Asp24) activates a water molecule, which

attacks the anomeric C atom from one side, the catalytic acid

(Glu202) donates a proton to the leaving group on the other side,

breaking the glycosidic bond between the two sugar moieties and in

the process inverting the configuration of the anomeric C atom. In

GH43 enzymes the active site lies in a groove that is shown to

accommodate multiple sugar moieties. The substrate-binding groove

has defined subsites which accommodate these sugars. The subsites

are labelled based on their proximity to the active site. Subsites �1

and +1 are the sites either side of the glycosidic bond being cleaved.

In Xsa43E subsite �1 accommodates the arabinose side chain while

subsite +1 accommodates the xylose sugar of the xylan backbone that

the arabinose branches from. It is the glycosidic bond between these

two sugar moieties that is hydrolysed (Brüx et al., 2006; Nurizzo et al.,

2002; Pons et al., 2004; Vandermarliere et al., 2009).

Metal ions are common in protein structures and are often

important for structural integrity and/or activity (Dokmanić et al.,

2008). The structure of Xsa43E reveals a calcium ion in close

proximity to the active site and within ligand-bonding distance of

His258, located on the innermost strand of blade 5. It has previously

been shown in other GH43 family enzymes with the same fold that

this conserved histidine is important for catalysis (de Sanctis et al.,

2010; Cartmell et al., 2011). We propose the mechanism by which this

histidine is involved in catalysis is via an electron-withdrawing

pathway between the divalent calcium ion and the catalytic acid

Glu202, helping to modulate the pKa of that acidic residue. The N"2

atom in the imidazole ring of His258 acts as a ligand for the central
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Figure 2
Proposed pathway by which the calcium ion and His258 can affect the environment
of the catalytic acid Glu202. Electron density is shown as a 2|Fo| � |Fc| map
contoured at 1.0�.

Table 2
Kinetic values for activity of Xsa43E and mutants of Xsa43E with model substrate
p-nitrophenyl-�-l-arabinofuranoside (PNPA) and p-nitrophenyl-�-l-xylopyranose
(PNPX) at pH 7.2 and specific activity of Xsa43E with natural substrates.

(a) Activity of Xsa43E and mutants with the model substrates PNPA and PNPX. ND, not
determined.

Substrate Enzyme Km (mM) kcat (s�1) kcat/Km (mM�1 s�1)

PNPX Xsa43E 8 � 2 1.25 � 0.10 0.15 � 0.05
PNPA Xsa43E 3.6 � 0.5 0.70 � 0.03 0.20 � 0.04
PNPA Xsa43E D24A ND ND ND
PNPA Xsa43E D141A ND ND ND
PNPA Xsa43E E202A ND ND ND
PNPA Xsa43E H258A ND ND ND
PNPA Xsa43E H258Q 16.6 � 3.2 0.20 � 0.02 0.012 � 0.003

(b) Specific activity of Xsa43E with natural substrates.

Substrate Enzyme
Specific activity
(nmol min�1 mg�1)

Arabinobiose Xsa43E 2 � 0.5
Arabinoxylan Xsa43E 10 � 4
Arabinoxylan Xsa43E with xylanase from T. viride 25 � 2



Ca2+ ion. His258 is hydrogen-bonded to a water molecule via the

ND1 atom in the imidazole ring. This water molecule forms a second

hydrogen bond to the OE2 atom of Glu202 as shown in Fig. 2. This

electron-withdrawing pathway shows that the calcium ion and His258

are positioned in a way that would allow them to exert an effect on

the pKa of Glu202. We have performed site-directed mutagenesis to

help support this proposal, mutating the histidine to alanine. This

effectively removes all activity from Xsa43E against the model

substrate p-nitrophenyl-�-l-arabinofuranoside, whereas mutating the

histidine to glutamine allows the enzyme to retain some activity (kcat

= 0.20 s�1), although it is significantly less than the wild-type enzyme

(kcat = 0.70 s�1) (Table 2). Modelling a glutamine in place of His258

positions the amide in a way that is analogous to the two N atoms

of the histidine ring. In theory, this would allow the ‘electron-

withdrawing pathway’ to be maintained.

3.2. Calcium-ion environment

The calcium ion shows pentagonal bipyramidal seven-coordinate

geometry (Fig. 3a). It has five equatorial ligands, which are all water

molecules. It is also coordinated to one water molecule in an axial

position, while the other axial position is occupied by N"2 of the

His258 ring. All bonding distances for the calcium are between 2.4

and 2.5 Å.

The calcium environment corresponds with the symmetry of the

overall structure. Each of the five equatorial water molecules are

positioned midway between two of the blades of the propeller. This

allows each water molecule to hydrogen-bond to two adjacent blades

of the structure. Each water molecule hydrogen-bonds to either a

proline residue or the preceding residue located at the inner loops of

two consecutive blades (Fig. 3b). These prolines are located where

the loops terminate and the innermost �-strands of each blade start.

They are also located near the catalytic residues in the sequence of

Xsa43E. Pro25 is the proline at the end of the loop that terminates at

the first �-strand of the first blade positioned next to Asp24, the

general base. Pro88 is located at the end of the loop that runs from

the final �-strand of blade 1 and terminates at the first �-strand of the

second blade; it participates in hydrogen bonding to one of the

equatorial waters. This is part of the highly conserved WAP region of

GH43 domains, of which the tryptophan is thought to form hydro-

phobic stacking interactions with the substrate (Brüx et al., 2006;

Vandermarliere et al., 2009). Pro142 is located at the end of the loop

that runs from the last �-strand of the second blade and the innermost

�-strand of the third blade, adjacent to Asp141, which is part of the

previously reported catalytic triad. Pro204 and Pro259 are the

remaining two prolines involved in coordinating the equatorial

waters surrounding the central calcium ion. Pro204 is two residues

away from the general acid Glu202 and is located in the loop that

terminates at the innermost �-strand of the fourth blade, and Pro259

is next to His258, again located just prior to the end of the loop that

runs into the innermost �-strand of the fifth blade of the propeller. In

Xsa43E we propose that this may help to position the catalytic

residues in the correct spatial configuration and generally assist in

formation of the active-site pocket. Structural alignments of 14

different GH43 enzyme structures from the PDB show that although

some of these proline residues are highly conserved, it is not common

to see all five in the GH43 structures.

3.3. Substrate specificity of Xsa43E and mechanistic investigation

GH43 family enzymes listed in the CAZy database have a number

of known activities, including �-xylosidase, �-1,3-xylosidase,

�-l-arabinofuranosidase, arabinanase, xylanase and galactan

1,3-�-galactosidase activities (Lombard et al., 2014; Cantarel et al.,

2009).

To characterize the function of Xsa43E, we have undertaken a

range of enzymatic assays with both natural and synthetic model

substrates. The specific activity of Xsa43E on natural substrates was
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Figure 3
The calcium-ion environment (a) with the seven ligands in a pentagonal
bipyramidal coordination and (b) with the five equatorial waters and their
interactions with either a proline or the preceding residue from adjacent blades of
the �-propeller. Electron density is shown as a 2|Fo| � |Fc| map contoured at 1.0�.



determined using the Lactose/Galactose Rapid Assay Kit (Mega-

zymes International Ltd). The results indicate that Xsa43E can

release arabinose units from arabinobiose with a specific activity of 2

� 0.5 nmol min�1 mg�1 but is unable to cleave arabinohexaose. It

cleaves arabinose from arabinoxylan with a specific activity of 10 �

4 nmol min�1 mg�1. This activity is greatly enhanced in the presence

of a xylanase from T. viride to 25 � 2 nmol min�1 mg�1 (Table 2).

Xsa43E shows no activity on xylose oligosaccharides with a degree

of polymerization from 2 to 6 (i.e. xylobiose to xylohexaose). It also

shows no activity towards the azo-wheat arabinoxylan substrate

(Megazymes). Xsa43E can cleave the glycosidic bond in p-nitro-

phenyl-�-l-arabinofuranoside and p-nitrophenyl-�-l-xylopyranose,

but cannot cleave p-nitrophenyl-�-d-xylopyranose. The kinetic

parameters for Xsa43E with these two model substrates are given in

Table 2. Structural analysis of the substrate-binding cleft and the

positioning of the catalytic residues indicate that Xsa43E would

cleave arabinose side chains from the xylose backbone of arabino-

xylan. The experimental results support this hypothesis and show that

Xsa43E works more efficiently on short xylose segments, as indicated

by its increased activity on arabinoxylan with the addition of a

xylanase. Xsa43E is a nonsecreted enzyme, and it is known that B.

proteoclasticus can only transport short oligosaccharides into the cell

(Kelly et al., 2010). This is also consistent with Xsa43E acting on short

arabinoxylan substrates.

4. Conclusions

Members of the GH43 family of enzymes have an inverting

mechanism; the configuration of the anomeric C atom of the sugar

substrate is inverted as opposed to being retained. This is achieved by

having the catalytic acid and the catalytic base on opposite sides of

the substrate in the binding pocket of the enzyme. As the catalytic

base activates a water molecule which attacks the anomeric C atom

from one side, a catalytic acid donates a proton to the leaving group

on the other side, breaking the glycosidic bond between the two sugar

moieties and in the process inverting the configuration of the

anomeric C atom. GH43 enzymes have three residues implicated in

catalysis: a general acid, a general base and a third acidic residue

proposed to modulate the pKa of the general acid as well as orientate

the substrate and general acid. The central calcium ion and a histidine

residue in a GH43 family enzyme have also been suggested to be

important for activity. de Sanctis and coworkers have postulated that

this histidine may be the true pKa modulator in GH43 family enzymes

(de Sanctis et al., 2010). We have used site-directed mutagenesis to

mutate each active-site residue to alanine, including His258. In

addition, we have also mutated His258 to glutamine. The resulting

enzymes all fail to show detectable levels of activity with model

substrates (Table 2) with the exception of H258Q, which showed

modest activity (although the kcat was only 29% of the wild-type

activity). These experiments lend support to the proposed mechanism

and indicate that His258 is important in catalysis.

This characterization of Xsa43E shows it to be an arabino-

furanosidase capable of cleaving arabinose side chains from short

segments of xylan. GH43 enzymes all have a five-bladed �-propeller

structure but can have a range of functions. The structural and

functional characterization of Xsa43E presented here supports its

inclusion in the GH43 family of enzymes.

B. proteoclasticus survives in a very crowded microbial environ-

ment; it has a large suite of xylan-degrading enzymes that allow it to

harvest the complex polysaccharide xylan as a food source. Through

understanding how these enzymes facilitate the depolymerization of

xylan, we can develop the potential to exploit these systems for

industrial processes.
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