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FIG. 6 Inferred precipitation rate of imogolite and 
smectite in estuarine and interstitial waters in 
marine sediments. 
A. the parameter log vs mixing 
extent. 
B. the parameter R41 vs mixing ex!ent. 

with expressions for their reaction activity coefficients 
(logQ41) are given in Table I. In these expressions and 
calculations it is assumed that the dominant aluminium 
species in basic solution is Al(OH)4-, in near neutral 
solution Al(OH)2+, and in acid solution AJ3+. Also 
shown on Table 1 are the corresponding parameters 
(log Kg, log Qe) for the dissolution of silica glass. 

To use this approach to predict the likely rate of 
clay mineral formation the concentration of dissolved 
species in estuarine waters, interstitial waters in marine 
sediments, and soil waters are required. If estuarine 
waters arc assumed to be a mixture of average river 
water (23) and seawater, with all components mixed in 
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equal proportions, and if interstitia) waters are taken to 
range from seawater to a solution wherein the solution 
is saturated with respect to amorphous silica, values of 
the parameters for glass for clay minerals 
and the denied parameter for the clay minerals can 
be calculated. The results of these calculations arc 
shown in Table 2 and plotted in Fig. 6. Although the 
plot Fig. 6B shows more dramatically that smectite is 
formed rapidly than imogolite once the concentration of 
silica starts to increase (i.e., with diagenesis), the trend 
is also apparent on Fig. 6A, where there is no particular 
assumption about the relative rate constants for 
dissolution (viz, k+, k+' ). 

Similar calculations for the formation of 
smectite, halloysite, and imogolite in a free - draining 
soil formed from rhyolitic tephras show that the rate of 
fomtation of imogolite far exceeds that of smccti!e and 
is slightly higher than that for halloysite (Table 3). 
Comparison of the rate proxies between Tables 2 
and 3 indicate that the rate of formation of smectite 
during early diagenesis may be orders of magnitude 
higher than the rate of formation of imogolite in soil 
water. For a soil with impeded drainage the rates of 
formation of halloysite and imogolite seem similar, but 
in the lower honzons there seems little difference 
between these rates and those inferred for the 
dissolution of glass (Table 4). There seems a 
sympathetic relationship between the relative rate of 
formation of halloysite and imogolite and the actual 
proportions of each of halloysite and allophane in soils 
(Fig.7). This suggests that the formation of the clay 
minerals in these soils is more a consequence of 
kinetics than thermodynamic stability. The inferred 
similar rate to that of glass dissolution may also suggest 
that the clay - mineral forming processes in soil are 
diffusionally controlled rather than surface reaction 
controlled. 

MECHANISTIC IMPLICATIONS 

As noted by Lasaga (30) and shown on Fig. 5, 
activation energies of the dissolution of clay minerals 
are generally higher than those typical for transport in 
solution (- 20 kJ mol ·1), but less than that expected 
for the breaks of bonds ( 160-400 kJ mot · l). The 
cqulibrium constants for halloysite and imogolite 
dissolution under acid conditions - as in the C - horizon 
of the poorly drained tephra derived soil - are rather 
higher (7.54 and 10.08, respectively). On basis of 
Fig. 5, these processes could be diffussionally 
controlled with activation energies of 60 and 57 kJ mol· 
I respectively. 

Jambon (33) derived a relationship between the 
activation energy for diffusion (E*) in obsidian and the 
radius (r) and charge (z) of the diffusing ions, viz. 
E" = 4.184 [ 8 + I 28( r· 1.34) 2 + 33 r.21( r + 1.34)] (17) 

In this el\pression r is the radius of the ion •. in 
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TABLE 5: Calculated activation energies for the 
diffusion of selected cations in glass 

Ion charge radiusO> 
activation )- ~ 
energy(2> 

z r [viii] (A•) E* (kJ mol-1) 

AJ3+ 3 0.74(3) 220 

Al(OH)l+ 1.73 77 

AI(OH)3° 0 1.97 88 

Al(OJ-1)4- 2. 15 120 

Si4+ 4 0.48(3) 392 

H4Si04° 0 2.13 110 

(I) from Wittaker and Muntus (34), as used by 
Jambon (32) 

(2) equation ( 18) 
(3) extrapolated from radii at lower co-ordination 

numbers 
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FIG. 7 Relative rates of formation of halloysite to 
imogolite as a function of (A) the percentage 
of halloysite and '(B) the percentage of 
allophane in soils derived from rhyolitic 
tephra. Closed circles are horizons in a well -
drained profile, open circleS are horizons in a 
poorly drained profile. Lines join similar 
horizons. Arrows show expected trends. 

(285 to105 kJ moJ·l) equation (17) can be amended so 
that for hydrated media it becomes: 
E* = 4.184 [13 + 20.6 (r- 1.34)2 + 7.5 z2/(r + 1.34)] 

(18) 

The· most likely species to be involved in any 
diffisional process leading to the formation of 
halloysite or imogolite involve AI or Si. From the 
calculated values of E* (equation 18), in Table 5 the 
most probable species is AI(OH)2+ having an activation 
energy for diffusion close to that calculated on the basis 
of the equilibrium constaP.t for clay mineral dissolution. 
To be consistent with the re~ognition (35) that the 
"AI (iv) in ... allophane corresponds to the solution form 
of AI from which the allopbane precipitates ", the 
diffusing species must be AI[JV](OHh(H20h+. 

CONCLUSION 
lmogolite is the kinetically and 

thermodynamically favoured weathering product from 
rhyolitic volcanic glass in the soil-forming 
environment. However, on thermodynamic grounds 
imogolite would also appear to be the favoured 
alteration product of rhyolitic glass deposited in' the 
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nearshore marine environment. On the basis that the 
rate of conversion of glass to clay minerals is a function 
of the solubility of the clay mineral, smectite is 
expected to be formed under mildly diagenetic 
conditions, and formed more rapidly than imogolite in 
soil. The derived activation energies for formation of 
imogolite from glass in soils are appropriate for a 
diffusion controlled reaction, and appear consistent with 
the diffusion of the tetrahedrally co-ordinated species 
Al[ivJ(OH)2(H2Q)+. In the marine environment, 
however the mechanism for all reactions appear to be 
surface reaction control. 
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