Pilot Scale Continuous Pyrolysis of Pinus Radiata Sawdust

Kavwa Sichone
Masters of Engineering (Materials and Process Engineering)
University of Waikato New Zealand
Thesis Advisor : Dr. Mark Lay

Outline
• Project background
• Pyrolysis overview
• Feedstock characterisation
• Pilot plant trials
 • Effects of variables on process-ability
 • Effects of variables on product yields
• Process economics
• Conclusions
• Future research
Project background

- Prospective client approached Lakeland Steel Limited for mobile pyrolysis plant feasibility assessment

Technical Trials
- Lab-scale
- Lakeland steel pilot plant
- Effects of pre-drying feedstock, variation of feed rate and reactor temperature.

Economic Feasibility
- Identify major variables affecting feasibility

Pyrolysis overview

Pyrolysis is the decomposition of carbonaceous matter under heat in the absence of oxygen.

Key parameters of this process include:
- Feedstock type
- Reaction temperature
- Residence time
- Heating rate

The yields of these products can be tweaked depending on the key parameters.
Feedstock characterisation

- Proximate & ultimate analyses
- Drying characterisation
- Thermogravimetric Analysis (TGA)

These were used to justify temperatures used in pilot trials and large scale design.

Pilot plant trials

<table>
<thead>
<tr>
<th>Level</th>
<th>Moisture (%)</th>
<th>Temperature (°C)</th>
<th>Throughput (hertz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15%</td>
<td>400</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>30%</td>
<td>450</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>50%</td>
<td>500</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Moisture (%)</th>
<th>Temperature (°C)</th>
<th>Throughput (hertz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15%</td>
<td>400</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>30%</td>
<td>450</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>50%</td>
<td>500</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor B</th>
<th>Factor C</th>
<th>Factor A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000 100 200</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>001 101 201</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>002 102 202</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>010 110 210</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>011 111 211</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>012 112 212</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>020 120 220</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>021 121 221</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>022 122 222</td>
</tr>
</tbody>
</table>
Effects of processing parameters on processability

- 15% and 30% moisture feedstock flowed through reactor consistently.
- 60% moisture feedstock caused blockages
- Higher moisture content reduced feedstock flow properties due to lubricating effect.
- Higher producer gas fraction

Effects of moisture variation
Effects of temperature variation

- Increase in flame height suggesting higher volume flow rate. Confirmed by rotameter readings
- More tar formed at 400°C
- More oil at 450°C
- More Syngas at 500°C

Effects of reactor auger speed

- Increased speed produced less cooked char
- Higher char volume
- However, increasing speed to values of 30-50 after reactor is operating at steady state increases the rate of gas evolution
Blockages

Loose sawdust being fed through bulk density 280 kg/m³

Dry compacted sawdust prior to decomposition, bulk density 1,202 kg/m³

Effects of process parameters on product yield
Effects of moisture variation

- Char yield %: 38.37%, 48.01%, 36.35%
- Oil yield %: 15%, 23.14%, 46.01%
- Gas yield %: 40.51%

Effects of temperature variation

- Char yield %: -10%, 0%, 10%
- Oil yield %: 40%, 45%, 50%
- Gas yield %: 50%, 60%, 70%
Effects of reactor auger speed

- Char yield %
- Oil yield %
- Gas yield %

Process economics

<table>
<thead>
<tr>
<th></th>
<th>Base Case</th>
<th>Optimistic Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Capacity (Tpa)</td>
<td>29,000</td>
<td>29,000</td>
</tr>
<tr>
<td>Capital ($)</td>
<td>736,489</td>
<td>595,783</td>
</tr>
<tr>
<td>Operating ($ /ton)</td>
<td>1,207,409</td>
<td>633,989</td>
</tr>
<tr>
<td>Revenue ($/ton)</td>
<td>787,215</td>
<td>787,215</td>
</tr>
<tr>
<td>Annual Cash flow ($/yr)</td>
<td>(420,194)</td>
<td>153,226</td>
</tr>
<tr>
<td>Payback period (yrs)</td>
<td>N/A</td>
<td>3.89</td>
</tr>
</tbody>
</table>
Conclusions

- Increase in moisture content increases tendency of blockages for the temperatures used.
- Process economics are still not favourable however, potential for viability depends on the selling of biochar and development of low cost technology.

Future research

- Global Model to accurately describe the pyrolytic conversions on a pilot scale.
- Pilot plant run for a significant amount of time to improve operating cost data.
Ministry of Science and Innovation (MSI)

Dr Mark Lay
University of Waikato

Cory Leatherland
General Manager of Lakeland Steel Limited

Other Staff and Students who helped along the way

Pyrolysis product applications

Char
- Soil amendment
- Low sulfur fuel
- Water/air filtering medium once activated
- Catalyst support
- Traditionally used as antidote
- Reducing agent

Bio-oil
- Is composed of many hydrocarbons such as acetic acid
- Can be upgraded to biodiesel
- In some cases can be burned as fuel

Syngas
- A “cleaner” fuel replacement for LPG or natural gas
- Used for electricity generation
Kavwa Sichone
B.E(Hons.), M.E
University of Waikato,
New Zealand

+64-212987311
ks161@waikato.ac.nz