ON TRIVIAL p-ADIC ZEROES FOR ELLIPTIC CURVES OVER KUMMER EXTENSIONS

DANIEL DELBOURGO

(Received 30 October, 2014)

Abstract. We prove the exceptional zero conjecture is true for semistable elliptic curves E/\mathbb{Q} over number fields of the form $F(e^{2\pi i/q^n}, \Delta_1^{1/q^n}, \ldots, \Delta_d^{1/q^n})$ where F is a totally real field, and the split multiplicative prime $p \neq 2$ is inert in $F(e^{2\pi i/q^n}) \cap \mathbb{E}$.

In 1986 Mazur, Tate and Teitelbaum [9] attached a p-adic L-function to an elliptic curve E/\mathbb{Q} with split multiplicative reduction at p. To their great surprise, the corresponding p-adic object $L_p(E,s)$ vanished at $s = 1$ irrespective of how the complex L-function $L(E,s)$ behaves there. They conjectured a formula for the derivative

$$L'_p(E,1) = \frac{\log_p(q_E)}{\text{ord}_p(q_E)} \times \frac{L(E,1)}{\text{period}}$$

where $E(\mathbb{Q}_p) \cong \mathbb{Q}_p^\times / \mathbb{Z}_E$, and this was subsequently proven for $p \geq 5$ by Greenberg and Stevens [6] seven years later.

In recent times there has been considerable progress made on generalising this formula, both for elliptic curves over totally real fields [10, 15], and for their adjoint L-functions [12]. In this note, we outline how the techniques in [3] can be used to establish some new cases of the exceptional zero formula over solvable extensions K/\mathbb{Q} that are not totally real.

1. Constructing the p-adic L-function

Let E be an elliptic curve defined over \mathbb{Q}, and $p \geq 3$ a prime of split multiplicative reduction. First we fix a finite normal extension K/\mathbb{Q} whose Galois group is a semi-direct product

$$\text{Gal}(K/\mathbb{Q}) = \Gamma \ltimes \mathcal{H}$$

where Γ, \mathcal{H} are both abelian groups, with $\mathcal{H} = \text{Gal}(K/K \cap \mathbb{Q}^{ab})$ and likewise $\Gamma \cong \text{Gal}(K \cap \mathbb{Q}^{ab}/\mathbb{Q})$. Secondly we choose a totally real number field F disjoint from K, and in addition suppose:

(H1) the elliptic curve E is semistable over F;
(H2) the prime p is unramified in K;
(H3) the prime p is inert in the compositum $F \cdot k^+$ for all CM fields $k \subset K \cap \mathbb{Q}^{ab}$.

2010 Mathematics Subject Classification 11F33, 11F41, 11F67.

Key words and phrases: p-adic L-functions, elliptic curves, Mazur-Tate-Teitelbaum conjecture.
Now consider an irreducible representation of dimension > 1 of the form

$$
\rho^{(\psi)}_{\chi, k} := \text{Ind}_{F_k}^F(\chi) \otimes \psi
$$

where k is a CM field inside of $K \cap \mathbb{Q}^{ab}$, the character $\chi : \text{Gal}(F \cdot K/F \cdot k) \to \mathbb{C}^\times$ induces a self-dual representation, and ψ is cyclotomic of conductor coprime to p. It is well known how to attach a bounded p-adic measure to the twisted motive $H^1(E/F) \otimes \rho^{(\psi)}_{\chi, k}$, as we shall describe below.

By work of Shimura [14], there exists a parallel weight one Hilbert modular form $g^{(\psi)}_\chi$ with the same complex L-series as the representation $\text{Ind}_{F_k}^F(\chi) \otimes \text{Res}_{F_k}(\psi)$ over the field $F \cdot k^+$. The results of Hida and Panchiskin [7, 11] furnish us with measures interpolating

$$
\int_{x \in \mathbb{Z}_p^\times} \varphi(x) \cdot d\mu_{f_E \otimes g^{(\psi)}_\chi}(x) = \varepsilon_p(\rho^{(\psi)}_{\chi, k} \otimes \varphi) \times (\text{Euler factor at } p) \times \frac{L(f_E \otimes g^{(\psi)}_\chi, \varphi, 1)}{(f_E, f_E)_{F, k^+}}
$$

where the character φ has finite order, f_E denotes the base-change to the totally real field $F \cdot k^+$ of the newform f_E associated to E/\mathbb{Q}, and $\langle - , - \rangle_{F, k^+}$ indicates the Petersson inner product.

We now explain how to attach a p-adic L-function to E over the full compositum $F \cdot K$. Let us point out that by the representation theory of semi-direct products [13, Proposition 25], every irreducible $\text{Gal}(F \cdot K/F)$-representation ρ must either be isomorphic to some $\rho^{(\psi)}_{\chi, k}$ above if $\dim(\rho) > 1$, otherwise $\rho = \psi$ for some finite order character ψ with prime-to-p conductor. For any normal extension N/\mathbb{Q}, at each character $\varphi : \text{Gal}(N(\mu_p^\infty)/N) \to \mathbb{C}^\times$ one defines

$$
\mathfrak{M}_p(N, \varphi) := \prod_{\rho} (\varepsilon\text{-factor of } \rho \otimes \varphi)^{m(\rho)}
$$

where the product ranges over all the irreducible representations ρ of the group $\text{Gal}(N/\mathbb{Q})$, and $m(\rho)$ counts the total number of copies of ρ inside the regular representation.

Theorem 1. There exists a bounded measure $d\mu^{(p)}_{f_E \otimes g^{(\psi)}_\chi}$ defined on the p-adic Lie group $\text{Gal}(F \cdot K(\mu_p^\infty)/F \cdot K) \cong \mathbb{Z}_p^\times$, interpolating the algebraic L-values

$$
\int_{x \in \mathbb{Z}_p^\times} \varphi(x) \cdot d\mu^{(p)}_{f_E \otimes g^{(\psi)}_\chi}(x) = \mathfrak{M}_p(F \cdot K, \varphi) \times \frac{L(E/F \cdot K, \varphi, 1)}{(\Omega_E^+ \Omega_E^-)^{(F \cdot K)_G/2}}
$$

at almost all finite order characters $\varphi \neq 1$, while $\int_{x \in \mathbb{Z}_p^\times} d\mu^{(p)}_{f_E}(x) = 0$ when $\varphi = 1$ is trivial (here the transcendental numbers Ω_E^\pm denote real and imaginary Néron periods for $E_{/\mathbb{Z}_p}$).

To prove this result, we simply take a convolution of the measures $d\mu_{f_E \otimes g^{(\psi)}_\chi}$ over the irreducible representations $\rho^{(\psi)}_{\chi, k}$ counted with multiplicity $[k : \mathbb{Q}]$, together with a convolution of ψ-twists of the p-adic Dabrowski [2] measure $d\mu_{f_E/F} \otimes \varphi$ for each (tame) character ψ of $\text{Gal}(K \cap \mathbb{Q}^{ab}/\mathbb{Q})$. After scaling by an appropriate ratio of automorphic periods $\prod (f_E, f_E)$ to Néron periods Ω_E^\pm, one duly obtains $d\mu^{(p)}_{f_E \otimes g^{(\psi)}_\chi}$ above.

At almost all finite twists by φ the Euler factor at p is trivial, so Theorem 1 now follows. For the full details we refer the reader to [3, Sections 5 and 6] where
a proof is given for the number field $K = \mathbb{Q}(\mu_q, m^{1/q})$ with $q \neq p$; the argument is identical in the general case.

Definition 1. For every $s \in \mathbb{Z}_p$, the p-adic L-function is given by the Mazur-Mellin transform

$$L_p(E/F \cdot K, s) := \int_{x \in \mathbb{Z}_p^\times} \exp ((s-1) \log_p x) \cdot d\mu_p^{(p)}.$$

Since $d\mu_p^{(p)}(\mathbb{Z}_p^\times) = 0$, it follows that $L_p(E/F \cdot K, s)$ must vanish at the critical point $s = 1$. The p-adic Birch and Swinnerton-Dyer Conjecture then predicts

$$\text{order}_{s=1} \left(L_p(E/F \cdot K, s) \right) \geq e_p(E/F \cdot K).$$

(1)

2. The Order of Vanishing at $s = 1$

Let $d \geq 1$ be an integer. We now restrict ourselves to studying the d-fold Kummer extension

$$K = \mathbb{Q}\left(\mu_q^n, \Delta_1^{1/q^n}, \ldots, \Delta_d^{1/q^n}\right) \quad \text{with} \quad p \nmid \Delta_1 \times \cdots \times \Delta_d,$$

where $q \neq p$ is an odd prime, and the Δ_i’s are pairwise coprime q-power free positive integers. Here $K_{ab} := K \cap Q^{ab} = \mathbb{Q}(\mu_q^n)$, and in our previous notation

$$\Gamma \simeq (\mathbb{Z}/q^n\mathbb{Z})^\times \quad \text{and} \quad \mathcal{H} = \text{Gal}(K/Q(\mu_q^n)) \simeq (\mathbb{Z}/q^n\mathbb{Z})^\oplus d.$$

Note that the full Galois group is the semidirect product $\text{Gal}(K/Q) = \Gamma \rtimes \mathcal{H}$, where Γ acts on \mathcal{H} through the cyclotomic character.

Recall that F was a totally real field disjoint from K over which the curve E is semistable. We now assume that ρ is inert in $F \cdot K_{ab}^+$ and write \mathfrak{p}^+ to denote the prime ideal $p \cdot \mathcal{O}_{F,K_{ab}^+}$. In particular, conditions (H1)-(H3) hold. The strategy is to employ the factorisation

$$L_p(E/F \cdot K, s) = L_p(E/F \cdot K_{ab}^+, s) \times L_p(E \oplus \theta/F \cdot K_{ab}^+, s) \times \prod_{\text{dim}(\rho) > 1} L_p(E/F, \rho, s)^{m(\rho)}$$

(2)

where θ is the quadratic character of the field K_{ab} over its totally real subfield $K_{ab}^+ = \mathbb{Q}(\mu_q^n)^+$, and the product ranges over the irreducible $\text{Gal}(F \cdot K/F)$-representations ρ of dimension ≥ 2 (we refer the reader to [13, Chapter 8] and [5, Section 2] for more details on the structure of these $(\mathbb{Z}/q^n\mathbb{Z})^\times \times (\mathbb{Z}/q^n\mathbb{Z})^\oplus d$-representations).

Case I - The prime p^+ is inert in $F \cdot K_{ab}/F \cdot K_{ab}^+$

Let $n_i := \text{ord}_p\left[\mathbb{Q}(\mu_q^n, \Delta_i^{1/q^n}) : \mathbb{Q}(\mu_q^n)\right]$ and $m(\rho) = \text{dim}(\rho)$, so that $\prod_{i=1}^d q^{n_i}$ is the number of places of K above p. The Artin representations $\rho_{\chi,k}^{(i)}$ that produce an exceptional zero in
$h^1(E/F) \otimes p^{(\psi)}_{\chi,k}$ at p are precisely those where $\psi = 1$ and the character χ factors through the quotient group

$$\mathcal{H}^1 = \frac{\mathcal{H}}{\bigoplus_{t=1}^{q^r m} \mathbb{Z}}.$$

Moreover $m(\rho^{(1)}_{\chi,k}) = \dim(\rho^{(1)}_{\chi,k}) = \phi([\mathcal{H}^1 : \text{Ker}(\chi)])$, which equals the number of generators for the image of χ; therefore

$$\sum_{\dim(\rho^{(1)}_{\chi,k}) > 1, \ h^1(E) \otimes p \text{ exc} \ 1} m(\rho^{(1)}_{\chi,k}) \geq \sum_{\dim(\rho^{(1)}_{\chi,k}) > 1, \ \chi : \mathcal{H}^1 \to \mathbb{C}^\times} \# \{ \chi : \mathcal{H}^1 \to \mu_{q^r} \} = \# \mathcal{H}^1 - 1.$$

We must also include the order of $L_p(E/F \cdot K_{ab}^+, s)$ at $s = 1$ which is at least one, hence

$$\text{order}_{s=1} \left(L_p(E/F \cdot K, s) \right) \geq 1 + (\# \mathcal{H}^1 - 1) = \prod_{t=1}^{d} q^{n_t}.$$

Case II - The prime p^+ splits in $F \cdot K_{ab}^+/F \cdot K_{ab}^+$:

There are $2 \times \prod_{t=1}^{d} q^{n_t}$ places of K above p. The rest of the calculation is the same as Case I except that both of $L_p(E/F \cdot K_{ab}^+, s)$ and $L_p(E \otimes \theta/F \cdot K_{ab}^+, s)$ have trivial zeroes at $s = 1$, whilst $\text{order}_{s=1} \left(L_p(E/F, \rho, s) \right) \geq 2$ by [3, Thm 6.3]. Consequently we obtain the lower bound

$$\text{order}_{s=1} \left(L_p(E/F \cdot K, s) \right) \geq 1 + 1 + 2 \times (\# \mathcal{H}^1 - 1) = 2 \times \prod_{t=1}^{d} q^{n_t}.$$

Combining both cases together, we have shown

Theorem 2. If p is inert in $F(\mu_{q^r})^+$, then

$$\text{order}_{s=1} \left(L_p(E/F \cdot K, s) \right) \geq \mathfrak{e}_p(E/F \cdot K).$$

In other words, the inequality in Equation (1) holds true for these number fields.

3. A Higher Derivative Formula

Henceforth we shall assume that $p \geq 5$ is inert in K_{ab}, corresponding to Case I mentioned on the previous page; this condition is equivalent to ensuring that p is a primitive root modulo q^2. Let us write $\mathcal{E}_p(X) \in \mathbb{Z}[X]$ for the characteristic polynomial of a geometric Frobenius element at p, acting on the regular representation of $\text{Gal}(F \cdot K/Q)$, such that the highest power of $X - 1$ has already been divided out of the polynomial (it is tautologically non-zero at $X = 1$).

Theorem 3. If $p \geq 5$ is inert in $F(\mu_{q^r})$, then

$$\left. \frac{1}{\mathfrak{e}_p} \frac{d^{n_p} L_p(E/F \cdot K, s)}{ds^{n_p}} \right|_{s=1} = \mathcal{L}_p(E) \times \mathcal{E}_p(1) \times \frac{\sqrt{\text{disc}(F \cdot K)} \cdot L(E/F \cdot K, 1)}{(\Omega_E^2 \cdot \Omega_E)(F \cdot K, \mathbb{Q})^{1/2}}. \quad (3)$$

where $\mathcal{L}_p(E) := \prod_{(p, q_{E, \psi})} \log_{1}(q_{E, \psi})$ denotes Jones’ L-invariant [8], with the product taken over the primes of $F \cdot K$ lying above p.

The proof follows identical lines to the $d = 1$ situation in [3, Section 6] – more precisely:

- the special values $L_p(E \otimes \theta / F \cdot K_{ab}, 1)$ and $L_p(E/F, \rho, 1)$ at the non-exceptional ρ's can be computed directly from their interpolation properties;
- the derivative $L'_p(E/F \cdot K_{ab}, 1)$ is given by Mok’s formula [10, Thm 1.1] since $p \geq 5$;
- the derivatives $L'_p(E/F, \rho, 1)$ at those exceptional ρ's are calculated using [3, Thm 6.2].

Lastly the terms can then be multiplied together as in Equation (2), and the result follows. Needless to say, the hard work is contained in [3, Thm 6.2] and requires us to extend the deformation theory approach of Greenberg and Stevens to p-twisted Hasse-Weil L-functions. The main ingredient is the construction of an “improved” p-adic L-function à la [6, Prop 5.8] (a conjectural p-adic interpolation rule for such an object can be found in [4, §§4.4]).

In fact Jones’ \mathcal{L}-invariant is non-vanishing by [1] as the elliptic curve E is defined over \mathbb{Q}. Therefore if one considers Theorems 2 and 3 in tandem, one immediately obtains the

Corollary 1. **If the prime $p \geq 5$ is inert in $F(\mu_{q^n})$, then**

$$L(E/F \cdot K, 1) \neq 0 \text{ if and only if } \text{order}_{s=1} \left(L_p(E/F \cdot K, s) \right) = e_p(E/F \cdot K).$$

More generally, one can replace the requirement that “E be an elliptic curve defined over \mathbb{Q}” with the statement that “f is a primitive HMF over F of parallel weight 2, that is Steinberg at the primes $p’|p$” and everything works fine, except that there is no longer a nice description for the L-invariant. Likewise one can accommodate weight two Hilbert modular forms with non-trivial nebentypus, providing the primes above p do not divide its conductor.

Of particular interest in non-commutative Iwasawa theory is to extend Theorems 2 and 3 to the situation where $q = p$, i.e. for the p-ramified extensions $F(\mu_{p^n}, \Delta_{1/p^n}, \ldots, \Delta_{d/p^n})/\mathbb{Q}$. The obstacles appear to be technical rather than conceptual, and a higher derivative formula should certainly be possible in this context (work in progress of Antonio Lei and the author).

References

Daniel Delbourgo
Department of Mathematics,
University of Waikato,
Private Bag 3105, Hamilton,
New Zealand
delbourgo@waikato.ac.nz