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Abstract 

The high cost of titanium has motivated a global drive to research and develop 

low-cost titanium production technologies. In New Zealand, the TiPro process has 

been invented at the University of Waikato. The process starts with a combustion 

reaction between TiO2 and Al powders, followed by: solid/liquid separation by 

extrusion which separates the metal rich liquid from the Al2O3 solid. The metal-

rich phase is subsequently purified to reduce its oxygen content to acceptable 

level (e.g. <0.3 wt%). 

The aim of this study was to establish such key relationships required to maximise 

the yield of Ti-Al and quality of the Ti-Al powder product. An in-depth 

understanding of the effects of key process parameters (e.g. heating rate, 

temperature, time and pressure) and starting TiO2/Al composite powder 

characteristics (e.g. microstructure and compressibility) on the quality, production 

rate and cost of Ti-Al based powders was achieved. The solid/liquid separation 

step was identified to be most critical in determining the quality and cost of Ti-Al 

powders produced using the TiPro process. The results indicated that the 

microstructure of reactant powders, wetting properties of TiAl alloy on the Al2O3 

particles, the viscosity of the liquid TiAl and the degree of saturation of the 

combustion product with liquid TiAl are some of the major factors in the 

extraction of TiAl from the combustion product using extrusion as the solid/liquid 

separation technique. In the current state of the invention, where the alloy is 

extracted by extruding the combustion product, the TiPro process is not viable due 

to poor yields. The throughput, alloy product purity and yield of the TiPro process 

are constrained by the solid/ liquid separation unit operation. When extrusion is 

the sole separation technique, the alloy yields are limited to only 10% of total 

input. This falls far below the minimum yield, (60%) that is required to make the 

process economically viable. Therefore, unless the solid/ liquid separation is 

supplemented by other separation techniques, such as froth flotation and leaching, 

the cost of producing titanium alloy powders by the TiPro process will be high 

and the quality of the alloy poor, consequently making the process uneconomical.  

This study has demonstrated that froth flotation can recover 65.7 wt% of TiAl 

content of the extrusion by-product into a 71.0 wt% TiAl grade product. This 

corresponds to removing 20 wt% of the total Al2O3 contained in the extrusion by-
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product (flotation feed). The potential exists to increase the TiAl grade further by 

multiple flotation stages. However, further work is required to investigate more 

suitable reagents than the HF acid that was used to activate Al2O3 in this study. 
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Chapter 1  

Introduction 

1.1 Background 

Titanium alloys have many favourable properties such as high strength to weight 

ratio, good ductility and fracture toughness, high corrosion resistance, high 

melting point and good biocompatibility with human tissue, making them very 

important engineering materials for many applications in aerospace, chemical 

engineering, automotive, biomedical and other industries.  

Despite having desirable properties and being highly abundant in the earth’s crust 

(0.63 percent by weight), the annual world production of titanium and its alloys is 

limited to only about 230,000 tonnes, due to the high cost of production. On the 

other hand, the strong demand for titanium alloys driven by fast economic 

development of countries such as China and India and the strong interest in using 

titanium alloys for making different products causes a shortage of the titanium 

alloy products and dramatic price increases. This opens many opportunities for 

new titanium alloy product manufacturers. For example between 2002 and 2011, 

China increased its Ti production capacity from 3,800 tonnes to 103,500 tonnes 

(Qian et al., 2012). Russia also increased its titanium output by 23.7 percent in 

2012 (Kenerly, 2012; Qian, et al., 2012).  

In New Zealand, the TiPro process which is a low cost titanium alternative that 

can be used to produce titanium alloy powders from titanium dioxide (TiO2) and 

aluminium (Al) powders, has been developed at the University of Waikato 

through research projects funded by the Foundation for Research, Science and 

Technology (FRST), Titanox Development Ltd (TDL) and WaikatoLink Ltd. The 

TiPro process comprises two stages. In the first stage a composite powder is 

produced by high energy mechanical milling of a TiO2/Al powder mixture. The 

composite powder is preheated to initiate the combustion synthesis reaction in the 

subsequent stage of solid/liquid separation. The combustion synthesis product, 

which is a mixture of liquid TiAl and solid Al2O3 (corundum) is extruded by 

applying light pressure in order to recover TiAl. The TiPro process has the 

potential to lower the production cost of Ti-Al alloy powders and make them 

more affordable for non-aerospace applications. The by-product of the process is 
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an Al2O3/TixAly composite that can either be used as an engineering material for 

various applications or processed to recover the residual TiAl and Al2O3 as 

separate products. The TiPro process has passed the proof of concept stage, but 

needs systematic research to establish the key relationships underlying the process 

before it is ready to be scaled up to pilot plant level. This research aims to 

establish such key process parameters affecting the cost and quality of Ti-Al alloy 

powders produced by the TiPro process.  

Titanium extraction technology and output have lagged behind other metallurgical 

processes. For instance after its discovery in Cornwall, UK by William Gregor 

round about 1790  it was only purified in the early 1900s (Donachie, 2000). The 

first commercial process, the Hunter Process, was not developed until 1910. 

Extraction of titanium from its ores and its subsequent processing presents special 

problems because of its immense reactivity. Titanium readily reacts with oxygen, 

carbon, hydrogen and nitrogen.  The resulting contamination is detrimental in 

processing and application (Donachie, 2000; Schwandt et al., 2010). To minimize 

contamination, titanium processing is carried out using high purity precursors and 

in carefully controlled environments. Therefore the existing titanium production 

processes are characterized by a need for high purity precursors, low energy 

efficiency, long complex and slow sequence of batch steps which result into low 

world annual output and a relatively high cost of the metal. The 2011 market price 

of titanium powder varied between about US$15/kg and US$1000/kg depending 

on grade (Qian, et al., 2012). Table 1.1 compares the cost of producing a 25 mm 

plate from titanium, steel and aluminium. Titanium metal costs five times 

aluminium and about fifty times that of steel (Imam & Froes, 2010).  

Table 1.1: Cost of titanium and alternative materials (Imam & Froes, 2010) 

 

 

The cost sensitive applications often opt for less costly alternatives such as steel.  
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The production cost reduction strategies by the titanium industry have included 

modifying conventional technologies and developing alternative technologies. In 

2007, more than twenty companies around the world were reported to be 

researching and developing low cost titanium production processes (Hogan et al., 

2008). Notable modifications of conventional technologies include the Kroll 

process-based TiRO process and the Armstrong process which is based on the 

Hunter process chemistry. Both processes have been modified to run in 

continuous mode in order to increase throughput, energy efficiency and 

consequently reduce the cost of production. In addition to modification, research 

and development efforts have focussed on direct titanium production from 

titanium dioxide TiO2, which is unlike the modified technologies that first convert 

TiO2 into TiCl4. It is anticipated that significant cost reduction can be achieved by 

replacing the more costly TiCl4 (Table 1.2) which accounts for 52 percent of the 

total cost in the extraction of titanium from its ores (Hartman et al., 1998; 

Lütjering & Williams, 2010; Turner et al., 2001). Under the direct titanium 

production technologies category are the FFC electrolytic process and TiPro 

process. The TiPro process has a greater potential to lower the cost of titanium 

because the pertinent chemical reactions are faster and the process does not need 

complex or costly equipment. 

Table 1.2: Cost of titanium precursor materials (Imam & Froes, 2010) 

 

1.2  Significance of the Current Study 

The TiPro process has gone through the conceptual stage, but needs systematic 

research to establish the key relationships underlying the process. The results from 

the current study will be utilised in optimising the processing conditions and scale 

up for commercialisation of the low cost production of titanium alloys by the 

TiPro process. Lowering the production cost of titanium has the potential to 

expand the use of titanium for those cost-sensitive applications, such as the 
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automobile industry, that continue to shun titanium for alternative materials on 

account of cost. Using the TiPro process, the potential to lower the cost of 

titanium production exists due to the use of locally available low cost inputs and 

the simplicity of the technology.  The vast ironsand deposits of New Zealand, 

such as the Taharoa deposit mined for iron by the now Blue Scope steel on the 

west coast of North Island, contain significant amounts of  by-product titanium 

and are some of the well-established TiO2 resources (Barakat & Drain, 2006). 

Shallow drilling cores off the southern Taranaki Coast validated by aeromagnetic 

surveys in 2010 and 2011 have estimated ironsand deposits equivalent to 200 

million tonnes of concentrate at 60 percent iron (Scoop Independent News, 2011). 

Other areas off the west coast of the North Island have potential deposits. The 

other process input used in the alloy refining step CaCl2 is a low cost material too.  

The viability of low cost titanium production innovations like the TiPro process 

facilitates the growth of the New Zealand titanium industry into an employment 

and revenue creation alternative. 

1.3 Problem Statement and Objectives of this Study 

In the TiPro process, TiO2 is reacted with Al to cost effectively produce TiAl(O) 

and Al2O3. However to produce an acceptable grade of TiAl, the TiAl has to be 

free of Al2O3 and dissolved oxygen. The separation of TiAl from Al2O3 poses a 

challenge. Similarities in specific gravity (4.25 for TiAl and about 3.98 for Al2O3), 

implies that traditional techniques such as gravity separation are not effective.  

The cost of titanium alloys can be reduced by replacing the conventional Kroll 

process based technologies with combustion synthesis reactions of low cost 

materials such as TiO2 and Al. The powders produced can be used in near-net 

shapes thereby cutting the costs associated with fabrication, TiCl4, magnesium 

reduction and repeated melts (Figure 1.1).  
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Table 1.3: R & D projects on titanium production processes in 2007 (Hogan, et al., 

2008) 

Organisation/Process Name 

 

Country Process Type Product 

CSIRO/ Tiro Australia Chemical Powder 

ITP/ Armstrong USA Other Powder 

MSE University of Tokyo/ 

EMR 

Japan Electrolysis Powder 

Cambridge University/ FCC 

Cambridge 

UK and 

USA 

Electrolysis Powder 

Idaho Research Foundation USA Chemical Powder 

Idaho Titanium 

Technologies 

USA Chemical Powder 

MER Corporation USA Electrolysis Powder 

Kyoto University/ OS Japan Other Powder 

Peruke (Pty) Ltd RSA Chemical Powder 

University of Tokyo/ 

Preform Reduction 

Japan Chemical Powder 

SRI International USA Other Powder 

Vartech USA Chemical Powder 

BHP Billiton Polar™ 

Titanium 

Australia Electrolysis Liquid  

CSIR RSA Other Liquid 

GTT S.R.L. Italy Electrolysis Liquid 

Rio Tinto QIT Canada Electrolysis Liquid 

Tresis International USA Chemical Liquid 

Mir-Chem Germany Chemical Other 

MIT  Two- Year Initiative USA Electrolysis Other 

South African Titanium  

(Peruke) 

RSA Other Other 

Roskill Information Services   
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Figure 1.1: Cost by process activity based on producing a 25-mm plate from the 

Kroll process titanium sponge. 

 

1.4 Theoretical Basis 

High energy mechanical milling enhances the kinetics of the chemical reaction 

between Al and TiO2 by creating new atomically clean reactive particle surfaces 

and the reduction of inter-particle diffusion distances by intimate mixing to 

nanometre level. The reaction temperature of mechanically milled TiO2/Al 

powders is much lower than in conventional thermochemical processing (Fecht, 

1995; Welham, 1998; Zhang, 2004). Therefore, the use of mechanically activated 

TiO2/Al powders as feedstock for metallurgical processes can enhance process 

economics. 

1.5 Status of TiPro Project at Commencement of this Study 

By the start of this project previous studies had been attempting to attain a 50% 

TiAl yield since 2006. However despite adjusting the experimental conditions by 

varying the feed composition and increasing the extrusion pressure alloy yields at 

4% remained well below the desired target. The project had opted for extrusion as 

the sole TiAl extraction technique and much effort had been directed at increasing 

alloy yields by varying parameters expected to affect the process; however the 

fundamentals such as characterising the type of flow and thermodynamics of the 

solid/liquid stage had not been explored. These made the TiPro process a 

potentially high technology risk.  
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An unpublished research update on this project (Raynova, 2007) reported only 

extremely low alloy yields had been achieved as at 2007. Before commencement 

of this study, an attempt to increase alloy yields had also been made through an 

undergraduate final year project but results had not improved. The main focus had 

up to then remained on increasing the heat content of products as it was 

hypothesised that doing so might increase alloy yields. The mechanism 

underlying the TiPro process had not been understood making scale-up difficult 

and unachievable as earlier studies had not provided a justifiable and robust basis 

for process equipment selection and sizing.  

This study has provided an economic sensitivity analysis and a preliminary 

costing estimate (±20% accuracy) of the TiPro process. The cost of production at 

US$ 250 per kg (at 10% yield) falls within the range of current prices titanium 

powders, however; the excessive recycle stream resulting from poor yields at the 

solid/liquid separation stage is a major technological risk that no process plant 

could adequately mitigate without a further substantive capital project investment 

that might adversely impact the overall process economics.    

Even though the project had settled on extrusion as the sole TiAl extraction 

technique, the physical phenomena associated with fluid flow solid/liquid 

separation had not been explored. The thermodynamics aspects of the process 

were also not elucidated.  It was then clear that to achieve any significant increase 

in TiAl yields it was necessary to characterise the type of flow occurring and the 

thermodynamics during solid/liquid separation. Without an appreciation of such 

fundamentals, the TiPro process would be a high technological risk. This study 

has achieved that understanding by identifying the similarities between 

solid/liquid separation and liquid-phase sintering and also by characterising the 

extraction of liquid TiAl as flow through porous media.  

Based on the Classic and Pore-filling models (Kang, 2005) of liquid-phase 

sintering and also considering the characteristics of flow of liquid through porous 

media, this study has demonstrated that solid/liquid separation by extrusion is 

fundamentally not an efficient separation technique. It is instead a densification 

technique. This study has recommended a more feasible alternative that involves 

dissolution of Al2O3 using cryolite which is a well-established operating practice 

in aluminium smelting. 

The contribution this study has made to the project is: 
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1. As the research update on this project reported extremely low (only 4%) 

alloy yield had been achieved as at 2007 and that efforts to increase alloy 

yields had focussed mainly on increasing the heat content of products and 

extrusion pressure; this study embarked on understanding the mechanisms 

driving the extraction of the alloy from the combustion product. This study 

has achieved up to 12.23% TiAl alloy yield (three times previous research 

results).  

2. The hypothesis that holding the combustion products above 1460oC the 

alloy melting point might increase alloy yields was disapproved when 

holding for 40 min failed to achieve the anticipated benefit. Investigation 

into the mechanisms behind the solid/ liquid separation has shown that 

temperature alone cannot increase alloy yields. 

3.  This study has identified that mechanisms of the solid/ liquid separation in 

TiPro process can best understood by considering the mechanisms of 

liquid-phase sintering. Since there is no appreciable chemical reaction 

between the combustion products liquid TiAl and solid Al2O3, the 

interfacial energies have a dominant effect on microstructure evolution. 

Also due to a low contact angle (38o) of liquid TiAl, there is good wetting 

between the liquid TiAl and the Al2O3 solid particles. The conditions 

prevailing during solid/liquid separation are similar to those found in 

liquid-phase sintering. A wetting liquid layer generates a compressive 

capillary force, which is equivalent to subjecting the system to a large 

external hydrostatic compression given by the Young and Laplace 

(Equation (5-1)).  The large capillary pressures cause rapid particle 

rearrangement while the viscosity of the system is still low. Capillary 

pressure gradients will also cause liquid to flow from regions with large 

pores to regions with smaller pores thereby redistributing the liquid. This 

phenomenon accounts for why densification achieved with liquid-phase 

sintering is significantly higher than in solid-state sintering. Also since the 

liquid wets and spreads over the solid particles, the solid-vapour interface 

of the particulate system is eliminated and pores form in the liquid. The 

reduction of the liquid-vapour interfacial area provides a driving force for 

shrinkage and consequently densification of the system.  

Following particle rearrangement, densification might occur by the 

solution-precipitation mechanism, and the liquid layer separating the 
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grains progressively becomes thinner with time until the liquid capillary 

becomes too narrow for the liquid to flow, making the extraction of TiAl 

from the combustion product difficult. Therefore, extrusion cannot be used 

to efficiently recover TiAl from the combustion product.  

4. The study has also characterised solid/ liquid separation as a porous 

media-flow type of problem. Therefore, physical properties of the 

reactants and products such as porosity, capillarity, viscosity and surface 

tension do limit flow of the alloy out of the combustion product 

consequently leading to the poor TiAl yields that have characterised TiPro 

process.  

5. This study has successfully applied single stage froth flotation to upgrade 

the TiAl content of the extrusion by-product to concentrate containing 71 

wt% TiAl and 30% Al2O3 at a recovery of about 65%. As it is apparent 

that the original intention of producing titanium alloys by a single stage 

TiPro process is not practical given the current status of the technology, 

froth flotation might enhance TiAl yields.   

6. Less than 1 volume percent liquid phase is sufficient to coat the grains 

when the liquid is distributed uniformly in a material with 1-µm grain size. 

The liquid draws the particles together and angular particles may rotate, 

enabling sliding and rearrangement into a denser configuration. In systems 

where the liquid phase is inhomogeneously distributed (like powders 

milled for 1 h), differential rates of densification and grain growth produce 

an inhomogeneous (coarse) microstructure and a more porous texture 

(Reed, 1995) that could facilitate easier flow channels for TiAl. 

7. This study has therefore provided a framework for further research and 

development of the TiPro process such as applying more effective 

alternatives like using cryolite to dissolve away Al2O3. The cryolite – 

alumina system is well-established in aluminium smelting because of the 

high solubility of Al2O3 in cryolite.  

1.6 Research Objectives 

To achieve an in-depth understanding of the effects of key process parameters (e.g. 

heating rate, temperature and starting TiO2/Al composite powder characteristics 

on the quality, production rate and cost of Ti-Al based powders produced by using 

the TiPro process. 
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1.7 Scope  

The study involved:  

 preparing TiO2/Al composite powders with different powder particle 

microstructures by high energy mechanical milling of TiO2/Al mixtures 

with a TiO2:Al ratio of 3:7  

 conducting combustion synthesis experiments and solid/liquid separation 

by extrusion;  

 froth flotation experiments for recovery of TiAl from the extrusion by-

product  

 powder purification experiments;   

 characterising the products by particle size analysis, optical microscopy, x-

ray diffractometry (XRD), scanning electron microscopy (SEM) and x-ray 

fluorescence (XRF) analysis 

1.8 Thesis Outline 

The thesis is divided into eight chapters as follows: 

 The introduction, giving the background and motivation of the research. 

 Literature review describing the existing and emerging titanium 

production technologies. 

 Characterization of the experimental materials. 

 Application of High Energy Mechanical Milling (HEMM) as a feedstock 

preparation unit operation for the thermic reaction between TiO2 and Al. 

 Solid/Liquid separation presenting experimental results of the separation 

of liquid TiAl from solid Al2O3 by extrusion. 

 The results of the flotation experiments conducted to separate TiAl from 

the Al2O3 contained in the extrusion by-product. 

 Alloy purification and process costing 

 Conclusions and recommendations.  
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Chapter 2  

Literature Review 

This chapter presents an overview of the various existing and emerging titanium 

technologies found in the literature. The technologies are classified under 

conventional, modified and direct titanium categories. The latter is discussed in 

more detail because it is the subject of the thesis.  The chapter finishes with the 

aims of the research and the methods that will be used to obtain the required data.  

2.1 Conventional Titanium Production Technologies 

2.1.1 Background 

Conventional commercial titanium production technologies use the Hunter and 

the Kroll processes, which were developed in the 1900s.  Both processes are 

based on reduction-oxidation reactions between the titanium tetrachloride (TiCl4) 

precursor and alkali (Kroll) or alkali earth (Hunter) metals. The TiCl4, which is 

produced by a multi-step, batch carbothermic-chlorination of natural or synthetic 

rutile (TiO2) and subsequent repetitive distillation at elevated temperatures is the 

preferred precursor because it is not associated with oxygen, which is detrimental 

in titanium processing and applications. The Kroll process has become the 

standard for process evaluation (EHK Technologies, 2004; Imam et al., 2000; 

Thompson, 2002). 

2.1.2 Overview of the Process Chemistry 

The conventional titanium production processes start with carbothermic 

chlorination of high purity natural or synthetic rutile (TiO2) at 1000oC to produce 

titanium tetrachloride (TiCl4) in a fluid-bed reactor (Turner et al., 2001):  

 TiO2(s) + 2Cl2(g) + C(s) = TiCl4(g) + CO2(g) (2-1) 

 TiCl4(g) = TiCl4(l) (2-2) 

As the world’s natural high-grade rutile deposits are diminishing, synthetic rutile 

is being produced from ilmenite and slags (Imam, et al., 2000; Thompson, 2002). 

The initial product, crude TiCl4, is purified further by fractional distillation. The 

first distillation stage removes lower boiling point impurities such as CO and CO2 
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and the second stage removes higher boiling point impurities including SiCl4 and 

SnCl4. The TiCl4 obtained has high purity because the titanium in this compound 

is not associated with oxygen (for which titanium has an enormous affinity). To 

obtain titanium metal, TiCl4 is reduced with magnesium, sodium or calcium in an 

inert atmosphere.  

2.1.3 Hunter Process 

The Hunter process, which involves reducing TiCl4 using sodium (Equation(2-3)), 

was the first commercial titanium production process.  

 TiCl4(l) + 4Na(molten) = Ti + 4NaCl(molten)  (2-3) 

It is not as widely applied as the Kroll process because magnesium is a more economic 

reductant than sodium. The process is however still used to produce extra-pure titanium 

for electronic applications. 

2.1.4 Kroll Process 

The Kroll process (Figure 2.1), which was developed by William Kroll in the 

1930s and commercialised by DuPont in 1948 (Barakat & Ruddock, 2006) is the 

primary commercial titanium production process and the standard used to evaluate 

new technologies. Processing is conducted in a stainless steel retort. To start the 

process, 15 – 30% stoichiometric excess of molten magnesium is run into an 

argon–filled retort to enhance reaction kinetics (Equation (2-4)). The retort is 

heated and maintained between 850 and 950oC (i.e. above the solidification point 

of magnesium chloride of 715oC) but below 1025 oC to avoid titanium attacking 

the iron retort. Then, high purity TiCl4 is gradually added over several days. The 

basic reaction is:  

 TiCl4(l) + 2Mg(molten) = Ti + 2MgCl2(molten) (2-4) 

After several days, a spongy mass of titanium forms at the bottom of the retort and 

magnesium chloride (MgCl2) floats as a molten top layer. The MgCl2 is drained 

and recycled to recover the magnesium and chlorine by electrolysis. After cooling, 

the titanium is dug out of the retort with jackhammers, crushed in a jaw crusher 

and purified by vacuum distillation or helium sweep between 1000 and 1060oC to 

remove entrapped residual magnesium salts. About 25 percent of the sponge is 

low quality due to iron and nickel contamination picked-up from the retort wall 

(Hartman et al., 1998; Kroll, 1940; Turner, et al., 2001). The purer portion is 
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mixed with scrap and pressed into a consumable vacuum arc furnace electrode, 

which is then remelted three times to remove inclusions and obtain a homogenous 

ingot for use in manufacturing (Brooks et al., 2007).   

2.1.5 Sponge Purification 

Sponge titanium is purified by volatilising impurities such as chlorides of 

magnesium and other metals under vacuum. The sponge is heated to 1000oC then 

condensed in a cold trap. Distillation takes over 85 h (Hogan et al., 2008) while 

the whole processing takes 21 days. 

In the helium sweep purification technique, helium gas is forced through the 

1000oC sponge titanium. The helium scavenges unreacted magnesium and the 

MgCl2 reaction product, which are recovered by cooling the helium to condense 

magnesium and MgCl2 (Hartman, et al., 1998; Kroll, 1940; Turner, et al., 2001). 

 

 

Figure 2.1: Kroll process flowsheet (Mauk et al., 2006) 

 

2.2  Modified Technologies  

Conventional commercial titanium production processes have high capital and 

operating costs because they require high purity feed stock and are batch 

processes. They are less efficient in terms of energy and yield than other 

metallurgical processes e.g. copper and aluminium.  To ameliorate the constraints 
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of conventional titanium processing, modified technologies such as the Armstrong 

(ITP) (EHK Technologies, 2004) and TiRO™ (Doblin et al., 2012) processes 

have been developed to respectively convert the Hunter and Kroll processes to a 

continuous operation.  

2.2.1 Armstrong (ITP) Process 

International Titanium Powder Inc. (ITP) in the USA, now Cristal Global, 

developed the Armstrong Process. By 2006, this continuous process had 

demonstrated that it could produce 16 tonnes per year of titanium metal with less 

than 0.05 percent (500 ppm) oxygen. Schematics of the process flowchart and the 

reactor are shown in Figure 2.2 and Figure 2.3, respectively. 

 

Figure 2.2: Armstrong process flow diagram (Crowley, 2003) 

Like the Hunter Process, the Armstrong process is based on sodium reducing 

TiCl4 to Ti metal using a special reactor (Figure 2.3). A flowing loop of liquid Na 

is reacted with TiCl4 vapour that is continuously injected at a single point. The 

reaction goes to completion at a low temperature, producing small Ti-metal 

particles and a NaCl by-product that are removed from the reaction zone by the 

flowing Na. Control of the particle shape and size distribution is achieved by 

varying the relative flow rates and geometry of the reaction zone. 

Further downstream the Na flowing loop, the liquid is filtered to separate the solid 

Ti and NaCl. Once sufficient material accumulates on the filter, the flow is 
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directed to another filter to maintain a continuous flow of Na. Residual Na is 

distilled from the filtrate. The Ti powder is washed to remove the NaCl. The 

washed Ti powder meets the specification of commercially pure Ti. The NaCl by-

product is recycled electrolytically recover Na and Cl (Crowley, 2003).  

 

Figure 2.3: Schematic of the Armstrong process reactor (Crowley, 2003) 

2.2.2  TiRO™ Process 

CSIRO in Australia modified the Kroll process by replacing batch reduction of 

titanium tetrachloride (TiCl4) with a continuous fluidised bed reactor (Doblin, et 

al., 2012). The gas-solid reaction equation (2-5) between magnesium and TiCl4 is 

done in the 62oC window between the melting point of Mg (650oC) and the 

melting temperature of MgCl2 712oC (Figure 2.4). 

 2 Mg(s) + TiCl4(g) = Ti(s) + 2 MgCl2(s) (2-5) 

 

Argon is the fluidisation medium. The intermediate product, which is a fine 

dispersion of Ti particles (d50 ≈1.7µm) in an MgCl2 matrix (d50 ≈ 350 µm) 

averaging 80 wt% MgCl2 and 20 wt% Ti, is vacuum distilled to separate Ti from 

MgCl2 in a retort at 750 to 850oC.  The vacuum distilled Ti sinters to form 

“biscuits” that have to be lightly milled to break the agglomerates.  The purity of 

the final TiRO™ powder is very sensitive to purity of the feed materials and the 

operating practice. To date, TIRO™ powder with the lowest O content of 0.3 wt% 

and 300 ppm Cl has been produced (Doblin, et al., 2012).   

 



 

18 

 

 

Figure 2.4: Flow diagram of the TiRO™ process (Crowley, 2003; Doblin, et al., 2012) 

 

While the TiRO™ process has the potential to achieve a higher throughput than 

the traditional Kroll process because it is continuous rather than a batch TiCl4 

reduction step, significant reductions in production cost are still dependent on 

having a high purity TiCl4 precursor. Also, the Grade 2 metal specification could 

not be obtained at the laboratory scale stage because oxygen levels exceeded the 

stipulated 0.25 percent.  

2.2.3 Direct Titanium Production Technologies 

It is evident from the breakdown of cost by process activity that modified 

processes may achieve only a limited improvement on conventional processes, 

unless fabrication and the cost of conversion of ore to metal are addressed (Imam 

& Froes, 2010). About 87 percent of the costs in producing titanium components 

from conventional titanium production processes are converting ore to metal, 

melting and fabrication (Table 2.1) 

 Direct titanium and alloy powders production from low cost materials such as 

TiO2, coupled with subsequent powder metallurgy (PM) processing into near-net 

shape components has the greatest potential to significantly reduce titanium cost 

because machining and fabrication (major costs in processing) are considerably 

reduced (Table 2.1) 
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Table 2.1: Cost by process activity to fabricate a 25-mm titanium plate (Hartman, et 

al., 1998) 

Process Activity Cost as % of Total 

Rutile 4 

Chlorination to TiCl4 9 

Magnesium reduction 25 

Preliminary arc melting + master alloy 12 

Second melt 3 

Fabrication to 25- mm thick plate 47 

 

Direct titanium production technologies such as the FCC electrolytic process 

(EHK Technologies, 2004; Schwandt et al., 2010) and the TiPro process are more 

attractive because they utilise TiO2, which is cheaper than TiCl4 (Table 2.2). 

Table 2.2: Cost of titanium and associated inputs in 2010 (EHK Technologies, 2004; 

Imam & Froes, 2010) 

Materials Cost in US$/lb 

 Material Contained Ti 

Rutile (TiO2) 1.75 2.94 

TiCl4 1.00 4.00 

Titanium sponge (Kroll using rutile) 5.44 5.44 

 

2.2.4 Electrolytic Processes 

The four electrolytic processes for producing titanium from a TiO2 feed are the 

Fray-Farthing-Chen (FFC) process, the Electro-Slag Electrolysis (ESE) and the 

OS Process. The FFC process (also called the Metalysis process) is reported to 

have higher efficiency, better operability and adaptability to continuous operation 

(Suzuki, 2007). 

2.2.5 Electroslag Refining (ESR) Process 

The Electroslag refining process (Suzuki, 2007) produces titanium by utilising an 

electron conductive CaF2-CaO molten electrolyte laden with dissolved TiO2 
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(Figure 2.5). The ohmic resistance provides enough heat to keep the TiO2 and the 

titanium product molten.  

 

 

Figure 2.5: Electroslag refining by (a) Takenaka et al. and (b) Quebec Iron and 

Titanium Corporation (Suzuki, 2007) 

The basic chemical reactions for electrolysing the TiO2 are: 

 TiO2 + 2Ca(Disolved) = Ti + 2 CaO(Disolved) (2-6) 

 2O2- + C = xCO2 (gas) + 4e- (2-7) 

 O2- + C = CO(gas) + 2e-  (2-8) 

 

Contamination can occur due to formation of TiC and Ti-Fe alloy from reactions 

with the crucible (Suzuki, 2007). Also, the high solubility of Ca in CaCl2 increases 

the electronic conductivity of the melt, consequently reducing the current 

efficiency to around 5 percent (Fray, n.d.).   

2.2.6 OS Process 

The OS process (Figure 2.6), which was developed by Professors Suzuki and Ono 

at Kyoto University, is based on the ability of CaCl2 to dissolve 3.9 mol%   Ca 

and about 20 mol% CaO at 900oC. When CaCl2 is electrolysed above the 

decomposition voltage of CaO but below that of CaCl2, the Ca+ ions are reduced 

to Ca at the cathode while O2 evolved at the anode combines with the carbon 

anode to produce CO and CO2. 

(a) (b) 
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Figure 2.6: OS Process (Suzuki, 2007) 

The OS process can produce low oxygen titanium in reasonable processing times. 

However, problems with Cl contamination and production of sub-oxides during 

the calciothermic reduction are yet to be resolved. Also, the titanium product is 

lumpy and requires further processing into a usable form (EHK Technologies, 

2004). 

2.2.7  FFC-Cambridge Process (Metalysis) 

The Fray-Farthing-Chen (FFC) Cambridge process (Figure 2.8) was invented by 

D.J. Fray and co-workers at the University of Cambridge in conjunction with 

industry (Bertolini et al., 2010; Schwandt, et al., 2010). Titanium powder is 

produced by electrolysing a molten calcium chloride electrolyte between a 

sintered titanium oxide (rutile, TiO2) preform cathode and a carbon anode at a 

temperature between 800oC and 1000oC.  Synthetic rutile that is pre-treated for 

removing the iron is normally used to avoid contaminating the product. At an 

applied voltage of about 3 volts, oxygen is stripped from the TiO2 cathode and 

transported through the CaCl2 electrolyte to be discharged as oxygen gas at the 

anode made of carbon:  

 Cathode Reaction: TiO2 + 4e- = Ti + 2 O2- (in CaCl2) (2-9) 

 Anode Reaction: 2 O2- (in CaCl2)  +  xC = xCO2/x + 4e- (2-10) 

 Net Reaction: 2 TiO2(cathode) +  xC(gr anode) = Ti + xCO2/x (2-11) 
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Figure 2.7: FFC process electrolysis (Suzuki, 2007) 

 

 

 

Figure 2.8: Schematic of the FFC Cambridge process (Bertolini, et al., 2010) 

 

In 2010, the FFC process could produce ASTM Grade 4 Titanium with an oxygen 

content of about 2900 ppm, (Table 2.3).   Further process development and 

optimisation work continues to increase product purity and process efficiency 

(Bertolini, et al., 2010). 
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Table 2.3: Composition of titanium produced by FFC process (Bertolini, et al., 2010) 

 
Composition in ppm 

 O C Fe Ca Cl 

FFC Ti 2900 700 140 1300 600 

ASTM Gr4 4000 800 5000 1000 - 

 

2.2.8 TiPro Process 

The TiPro process (Figure 2.9) has two main stages; mechanical activation by 

high energy mechanical milling (HEMM), and solid/liquid separation by extrusion. 

A complimentary alloy purification stage may be incorporated to further reduce 

oxygen content. In the HEMM stage, powders blended to the desired 

stoichiometry are milled under an argon protective environment to prevent 

oxidation (Lü & Lai, 1998). To control excessive loss of powders through welding 

to vial walls and mill media, a process control agent isopropanol is also added.  

The blending ratio corresponds to the stoichiometry of the following reaction  

 
3TiO2 + 7Al = 3TiAl + 2Al2O3      = -178.616 kcal 

At 970oC:   = -141.824 kcal 

(2-12) 

 

The Gibbs free energy of the reaction is negative in the temperature range of 

testing; indicating that the reaction is thermodynamically favourable. The object 

of high-energy mechanical milling is merely to enhance its kinetics. Since in this 

case high energy mechanical milling is only used as a feedstock preparation step 

and is not accompanied by a chemical reaction it is referred to as mechanical 

activation (Suryanarayana, 2004). Studies indicate that high energy mechanical 

milling (HEMM) of TiO2/Al mixtures enhances kinetics and lowers the 

temperature of onset of the reduction reaction from about 1000oC for unmilled 

reactants to below 660oC depending on milling intensity. During milling there is 

creation of fresh surfaces, intimate mixing of reactants and consequently 

shortening the reactants diffusion distance. The milled composite powders 

produced are the feed to the solid/liquid separation stage.  Integrating HEMM as a 

unit operation step into titanium production systems has the potential to reduce net 
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operating costs and the capital costs such as those for heating and refractory 

linings that are associated with conventional thermally activated processes (Moore 

& Feng, 1995; Zhang, 2004).   

The subsequent solid/liquid separation stage starts by moderately preheating the 

TiO2/Al composite produced by HEMM to ignite the combustion synthesis 

reaction. 

 

 

Figure 2.9: Flowsheet of the TiPro process 

As milling time increases, the ignition temperature of the resultant TiO2/Al 

composite powder decreases. The molten titanium-rich alloy product of 

combustion is separated from the alumina solid by-product by extrusion. This 

alloy may be purified further by calciothermic reduction to remove residual 

oxygen and alumina inclusions while the by-product may be processed to recover 

the contained titanium and alumina or used as a metal matrix composite.  

2.3 Process Theory  

2.3.1 High Energy Milling  

High energy mechanical milling was developed at INCO’s Paul D. Merica 

Research Laboratory about 1966 for producing oxide dispersion strengthened 

(ODS) nickel-based super alloys, but has since then gained recognition as a viable 

metallurgical processing unit operation. Before being milled, reactant powders are 

intimately mixed to get a homogenous composite powder. The mill is evacuated 

and filled with argon to avoid oxidation. When milling a ductile–brittle powder 



 

25 

 

mixture, the mixture goes through four stages of particle morphology: the initial, 

intermediate, final and completion stages. In the initial stage, the ductile Al 

powder particles go through plastic deformation and fracturing while TiO2 

particles, being brittle, are mainly fractured and incorporated into the ductile 

phase (Figure 2.10). 

 

Figure 2.10: Schematic of composite powder formation through high energy 

mechanical milling (Zhang, 2004) 

At the intermediate stage, the composite powder particles go through further 

refinement as fracturing and welding continues, creating lattice defects and 

shortening diffusion distances between particles. The particle shapes are changed 

into a layered structure with clear domains of component powders (Benjamin, 

1990; Suryanarayana, 2004; Welham, 1998; Zhang, 2004). In the final stage, the 

composite powder has a fine nanostructure close to the composition of the starting 

powder mixture.  

The particle size reduction following high energy mechanical milling of the TiO2 

and Al powder particles is accompanied by increased particle specific surface area, 

new atomically clean surfaces, intimate mixing to nanometre level and an increase 

in defect density. These factors shorten the atom diffusion path. There is also a 

localised temperature increase due to plastic deformation. All these effects make 

the milled powders so metastable they are ready to react at significantly lower 

temperatures than predicted by conventional process chemistry (Benjamin, 1990; 

Zhang, 2004).  

High energy mechanical milling is a solid state powder process where powder 

particles are repeatedly fractured and cold-welded as the grinding media impacts 

the powder mixture (Zhang, 2004). During milling, the cold work energy is stored 

in the powder particles and then released through recovery and relaxation 
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processes within grain boundaries and grain growth when the powders are heated 

at moderate temperatures. Fecht (1995) reported that the stored enthalpy is 

significantly high and can be up to 40 percent of the enthalpy of fusion, depending 

on the intensity of high energy milling. The stored energy is mainly from reducing 

the grain size to nanometre level and from disordering (Zhang, 2004).  This agrees 

with Fecht, who indicated that stored energy is in the form of grain boundaries 

and strain energy within the nano-particles (Fecht, 1995). Various researchers 

have since shown that this stored energy allows high energy milling to reduce the 

onset temperatures of chemical reactions and alter physical properties including 

melting temperature of milled powders (Adam et al., 2007; Benjamin, 1990; 

Claussen et al., 1996; Kamali & Fahim, 2009; Liu et al., 2006; Welham, 1998; 

Zhang & Raynova, 2009; Zhang, 2004; Zhang et al., 2004). Zhang et al. (Zhang 

& Raynova, 2009; Zhang, 2004; Zhang, et al., 2004; Zhang et al., 2009; Zhang et 

al., 2005) demonstrated that mechanical milling can be used to initiate TiO2-Al 

reactions at significantly lower temperatures than conventional thermochemical 

reactions. Welham (1998) also observed that the onset of the reaction between 

TiO2 and Al powders decreased from 1050oC in unmilled powders to 660oC after 

5 h of mechanical milling. 

2.3.2 Solid/Liquid Separation  

After the TiO2/Al composite powder produced by high energy mechanical milling 

(HEMM) is preheated to the ignition temperature Tig, (Figure 2.11) a combustion 

synthesis reaction (Takacs), also referred to as a self-propagating high temperature 

synthesis (SHS) reaction occurs. The heat generated raises the reaction products 

TiAl and Al2O3 to a combustion temperature Tc that is sufficiently high to 

volatilise impurities and produce more refined products than conventional 

metallurgical processing. Other advantages of high energy milling over 

conventional processing include simplicity; it uses cheaper equipment, and fewer 

processing steps, creating the potential for lower operating and capital costs. 
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Figure 2.11: Schematic illustration of temperature profile of the thermal explosion 

mode combustion synthesis 

The combustion synthesis reaction conditions used in the TiPro process produce 

solid corundum (Al2O3) and a liquid TiAl alloy. The density of both products is 

about 4 g cm-3 therefore they cannot be separated by gravitational methods. In 

previous studies, extrusion has been the main separation method.   

2.3.3 Microstructural Development (Rahaman, 2003; Kang, 2005) 

The solid Al2O3 - liquid TiAl system resulting from the combustion reaction in 

TiPro process is similar to conditions found in liquid-phase sintering. Liquid-

phase sintering is a well-established consolidation technique in ceramic 

processing (Table 2.4). Unlike solid state sintering, the microstructural 

development during liquid-phase sintering is fast because of enhanced matter 

transport facilitated by the liquid. Therefore, in liquid-phase sintering where the 

intention is to densify the product, liquid-forming materials (additives) are 

deliberately added to enhance densification rates through particle rearrangement 

and liquid distribution. As the liquid phase forms during heating of a reactants 

powder compact, liquid flows into fine capillaries due to the capillary pressure 

difference between the fine and coarse channels of the solid particles. This liquid 

flow redistributes the solid particles through a phenomenon referred to as “particle 

rearrangement”.  

Two models have been formulated to explain densification during liquid-phase 

sintering. The model proposed by Cannon and Lenel suggests that liquid-phase 

sintering comprises liquid flow, solution/reprecipitation and solid-state sintering. 
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Based on this model, Kingery developed a densification theory for the solution/re-

precipitation stage by assuming a continuous change in particle shape by 

flattening of the inter-particle contact area. The basic mechanisms and processes 

occurring in such systems and hence microstructural development have been 

explained in terms of three sometimes overlapping stages of liquid-phase sintering 

comprising: 

Stage 1: Rearrangement and liquid redistribution 

Stage 2: Solution-precipitation 

Stage 3: Ostwald ripening 

2.3.3.1 Rearrangement and Liquid Redistribution 

In the presence of a wetting liquid (25 – 30 vol%), rearrangement of the solid 

phase particles coupled with liquid flow has been used to effect microstructural 

changes in materials. In traditional ceramics, the liquid phase usually a molten 

silicate remains as a glassy phase that gives the fabricated material a glassy 

appearance after cooling.        

A wetting liquid phase enables the liquid phase to spread and cover the surface of 

the solid particles. This reduces inter-particle friction and enables particles to 

move more easily under the action of the compressive capillary stress exerted by 

the liquid. The densification attained is much higher compared to solid-state 

sintering.                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Table 2.4: Common ceramic liquid-phase sintering systems (Rahaman, 2003) 

Ceramic System Additive 

content 

(wt %) 

Application 

Al2O3(talc) ≈5 Electrical insulators 

MgO(CaO.SiO2) <5 Refractories 

MgO(LiF) <3 Refractories 

ZnO(Bi2O3) 2-3 Electrical varistors 

BaTiO3(TiO2) <1 Dielectrics 

BaTiO3(LiF) <3 Dielectrics 

UO2(TiO2) ≈1 Nuclear ceramics 

ZrO2(CaO.SiO2) <1 Ionic conductors 

Si3N4(MgO) 5-10 Structural ceramics 

Si3N4(Y2O3-Al2O3) 5-10 Structural ceramics 

SiC(Y2O3-Al2O3) 5-10 Structural ceramics 

WC(Ni) ≈10 Cutting tools 
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The compressive capillary stress develops as the liquid wets and spreads over the 

solid surfaces eliminating the solid-vapour interface of the particulate system and 

forming pores in the liquid (Figure 2.12). The reduction of the liquid-vapour 

interfacial area therefore, is the driving force for shrinkage or densification of the 

system (Rahaman, 2003). According to Reed, less than 1 volume percent liquid 

phase is sufficient to coat the grains when the liquid is distributed uniformly in a 

material with 1-µm grain size. The liquid draws the particles together and angular 

particles may rotate, enabling sliding and rearrangement into a denser 

configuration. In systems where the liquid phase is inhomogeneously distributed 

(like powders milled for 1 h), differential rates of densification and grain growth 

produce an inhomogeneous (coarse) microstructure and a more porous texture 

(Reed, 1995) that could facilitate easier flow channels for TiAl.  

 

 

Figure 2.12: Sketch of a two-sphere model comparing microstructural development 

in (a) solid-state sintering with (b) liquid-phase sintering (Rahaman, 2003) 

Particle rearrangement and densification in the presence of a wetting liquid is 

faster than in solid-state sintering because of the reduced inter-particle friction and 

enhanced matter transport provided by the liquid. In Figure 2.12, the pressure 

difference across the curved surface of the spherical pore with radius r in a liquid 

is given by the Young and Laplace equation: 

 

 
ΔP =  

(2-1a) 

  is the specific surface tension of the liquid-vapour interface. 



 

30 

 

The pressure in the liquid is lower than the pressure in the pore and this generates 

a compressive capillary stress on the particles that is equivalent to subjecting the 

system to an external hydrostatic pressure given by the Equation (2-1a). It is these 

capillary gradients that cause redistribution of the liquid and rearrangement of the 

particulate solid. As the capillary stresses cause the liquid to distribute itself 

between the particles and into small pores, further rearrangement and 

densification occurs, consequently limiting how much liquid alloy can be 

recovered by extrusion. Densification increases the viscosity of the system and 

drainage of the liquid alloy from small capillaries is impaired by the high capillary 

pressures holding the liquid. For systems with a wide particle size distribution, 

small particles are transported through the liquid to large particles. The net effect 

is coarsening of the microstructure by a process referred to as Ostwald ripening.  

Figure 2.13 shows a schematic of the microstructural evolution of a powder 

compact during liquid-phase sintering (Rahaman, 2003). 

 

 

Figure 2.13: Schematic evolution of a powder compact during liquid-phase sintering 

showing three dominant stages (Rahaman, 2003) 

2.3.4 Extrusion Mechanics 

The extrusion pressure applied must overcome the crucible-wall friction and the 

resistive force of the solid Al2O3, which acts as a porous media. During extrusion, 

the flow of TiAl occurs as laminar flow between Al2O3 particles in the crucible 

and in the die entry-region (Reed, 1995). At the crucible wall, flow by slippage 

predominates.  Flow of the liquid TiAl depends on die geometry, flow properties 

(such as viscosity) of the TiAl and permeability of the combustion synthesis 

product. For pressurised liquid TiAl to flow out, the permeability constant (Kp) of 
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the combustion synthesis product must be sufficiently high (Kp≫ 10-18 m2) and 

the viscosity of TiAl must be low. Flow of liquid TiAl into interspaces between 

the corundum particles can be related to the driving force of the applied extrusion 

pressure drop using Darcy’s law, which states that volume flow rate, Q is 

proportional to the differential pressure ΔP across the porous media of thickness L 

and cross-sectional area A. Flow rate is inversely proportional to viscosity of the 

fluid, η, and porous medium thickness, L.  

   (2-13) 

The high porosity (around 50 percent of theoretical density) of the combustion 

synthesis products makes extrusion a potential alternative for recovering liquid 

TiAl (Moore & Feng, 1995).  The molten TiAl flow direction is independent of 

extrusion pressure direction (Reed, 1995). The melt can preferentially flow into a 

pore space with a larger radius regardless of the pore orientation. Therefore, the 

porosity of the combustion synthesis product and the alloy phase fluidity are 

critical to ensuring the drainage and separation of the alloy from the solid 

corundum by-product. The flow of TiAl is affected by the temperature and the 

solids fraction of the melt. The presence of fine corundum particles in the liquid 

alloy phase can significantly change flow behaviour due to an under-cooling 

effect and increase in viscosity. This might adversely affect alloy yields during 

solid/liquid separation.  

A high temperature during solid/liquid separation is needed to reduce viscosity 

and to stop the alloy from solidifying. The relationship between the viscosity of 

liquids and the volume fraction of solids’ content can be represented by an 

Einstein-Roscoe type equation (Wright et al., 2000): 

  η = ηo (1- afs)
-n  (2-14) 

where η and ηo are the viscosity of the solid-containing and solid-free liquid 

respectively; fs is the volume fraction of solid particles in the liquid; a and n are 

constants. The reciprocal value of a corresponds to the maximum solids loading 

of the liquid before it has an infinite viscosity. The applicability of Einstein-

Roscoe type equations has been confirmed empirically.  The viscosity of most 

melts increases drastically and transitions from Newtonian to Non-Newtonian 

behaviour as the volume fraction of solids is increased (Figure 2.14). This 

phenomenon might adversely affect alloy yields during solid/liquid separation.  
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Figure 2.14: Viscosity and shear stress as functions of the solids fraction for the Sn-

15%Pb alloy continuously cooled and sheared (Nafisi et al., 2004) 

2.3.5 Thermodynamic Considerations  

The highest temperature that can be attained by the products of the combustion 

synthesis reaction is estimated by the adiabatic temperature Tad, calculated using 

the energy balance in Equation (2-15)  

 
Energy of reaction + Energy Supplied = Energy for 

Heating Products 

(2-15) 

For the TiO2–Al powder milled for 1 h, the combustion reaction is assumed to 

occur at the ignition temperature 970oC (1243K). Since the adiabatic temperature 

at constant pressure Tad of this self-propagating high temperature synthesis system 

is higher than 1733 K, the TiAl melting temperature, Equation (2-15) reduces to: 
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Solving the above polynomial yields Tad = 1929.08 K (1656ºC)  

 

Specific Heat Capacity Data 

Cp (cal/K.mol) = A + B*10^-3T + C*10^5T-2 + D*10^-6T^2 

 

Compound A B C D Temp.  Range (K) 

Data 

Source 

TiO2 - Anatase 17.934 

 

-4.213 

 

298 - 2000 2 

TiAl 13.37 1.42 -1.8 

 

298 - 1733 1 

Al(s) 4.94 2.96 

  

298 - 932 2 

Al(l) 7.6 

   

932 -1650 2 

Al2O3α 27.43 3.06 -8.47 

 

298 - 1373 2 

Al2O3γ 25.48 4.25 -6.82 

  

2 
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Enthalpy Data 

Compound MW 

Δ H°298 

(kcal/K.mol) 

Lt,s,m,b 

(kcal/K.mol) 

Transition 

Temp.  

(K) Data Source 

TiO2 (anatase) 79.867 -225 

 

1949 mp 1 

TiAl(s) 74.847 -17.4 11.4 1713  1 

Al(s) 26.98 

   

2 

Al(l) 

  

2.56 

 

2 

Al2O3α 

 

-400 

  

2 

Al2O3γ 101.96 -367.852 

  

2 

Data Sources: 1 - (Kubaschewski, et al,. 1993); 2 – (Barin, 1973) 

The adiabatic temperature calculated using Equations (2-16) and standard 

enthalpy of the combustion synthesis reaction (-178.616 kcal) from Equation (2-

12), is about 1656oC, which is above the melting point of TiAl (1460oC) but 

below the melting point of Al2O3 (2054 oC). However, to enhance liquid-solid 

separation, the heat content of the products has to be high enough to avoid the 

alloy phase fluid solidifying during extrusion. Due to heat losses, the actual 

combustion temperature (Tc) attained by the products is lower than the adiabatic 

temperature. 

In combustion synthesis processing, the finer the composite powder the higher 

their reactivity such that it takes only moderate heating to initiate the reaction. The 

combustion starts at much lower temperatures compared to coarse composite 

powders. Consequently, the products plummet to low temperatures quicker. This 

is unfavourable for draining the liquid alloy out before it solidifies. 

Coarse composite powders on the other hand are less reactive and have to be 

heated to relatively higher temperatures to initiate combustion. Since the 

combustion initiates at a much higher temperature, the corresponding heat content 

of the combustion products is higher and the alloy is maintained in molten state 

much longer. High ignition temperatures can potentially increase heat content of 

products (Figure 2.15). By the time the ignition temperature is attained, the 

powders would have acquired sufficient heat to maintain the alloy phase in a 

liquid state long enough to allow separation by extrusion. It is for this reason that 

coarse rather than fine microstructured composite powders are preferred.  
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Figure 2.15: Products heat content as a function of reaction temperature 

Combustion synthesis has been used to produce advanced materials ceramics, 

ceramic composites and intermetallic compounds since the early 1970s (Moore & 

Feng, 1995). Using highly reactive metals as reductants to produce metals from 

ores is well established in metallurgical processing. Applications include titanium 

production by the Kroll process and uranium reduction by calcium (Kubaschewski 

et al., 1993). The reactions involved are called metallothermic reactions. 

Aluminothermic reduction uses aluminium as the reductant and calciothermic 

uses calcium as the reductant. Metallothermic reactions are designed so the heat 

generated by the reaction is sufficient to fuse one of the products of reaction and 

hence facilitate liquid-solid separation (Kubaschewski, et al., 1993). In the TiO2-

Al system, the Ti-rich phase is melted by optimising high energy milling 

parameters to obtain a composite powder with a suitable microstructure. The other 

reaction product, Al2O3, remains solid. The reaction between TiO2 and Al is 

sufficiently exothermic to be applied in combustion synthesis. Once heated to an 

ignition temperature, which depends on milling intensity, the chemical reaction is 

self-sustaining as it generates sufficient heat to melt the TiAl alloy but not the 

aluminium oxide (Al2O3).  

Moore and Feng (1995) have reported that combustion synthesis reactions and 

final products are affected by the initial temperature of the reactants, the ignition 

temperature, the adiabatic temperature (i.e. the maximum combustion temperature 

under adiabatic conditions), and the actual combustion temperature (i.e. the 

maximum temperature under normal, non-adiabatic conditions).  
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When TiO2/Al composite powders produced by high energy mechanical milling 

(HEMM) are heated, the combustion synthesis reaction rate is extremely high at a 

reaction temperature much lower than possible with unmilled reactants. 

Depending on milling intensity and other parameters such as TiO2/Al mole ratio, 

the product contains TixAly (O) and Al2O3. The CS reaction conditions that are 

chosen for producing TiAl by the TiProTM process result in solid corundum 

(Al2O3) and a liquid alloy that can then be separated by extruding the combustion 

synthesis product. The solid/ liquid separation stage in the TiProTM process for 

producing TiAl is based on the following nominal chemical reaction: 

 3 TiO2 + 7 Al = 3 TiAl + 2 Al2O3               = -178.616 kcal (2-17) 

2.3.6 Physical Separation Processes 

Following a chemical reaction stage of a process, a subsequent stage is often 

required to separate the valuable product from the by-product. Separation may be 

achieved by chemical or physical separation techniques. Chemical separation 

entails recovering valuables by altering the chemistry of one the constituents. 

Physical separation processes are techniques that separate components of a 

mixture depending on differences in their physical rather than chemical properties. 

However, chemicals may be added to enhance separation (Towler & Sinnott, 

2012). Various physical separation processes based on different physical 

properties such as magnetic susceptibility, melting temperature, density, particle 

size, particle wetting and particle surface charge exist (Figure 2.16). For example, 

screening separates on the basis of size and can be used to separate materials that 

have different breakage characteristics. Gravity techniques such as sedimentation 

achieve separation due to differences in density. In previous studies (Adam, 2005), 

efforts to upgrade the combustion synthesis product by sedimentation (a gravity 

technique) yielded only little success, especially when there was little particle size 

difference between TiAl(O)-rich and Al2O3-phases.  This potentially high 

technology risk was due to similarity in density between TiAl (4.15 g/cm3) and 

Al2O3 (3.98 g/cm3). In this study, an alternative physical separation process (froth 

flotation) has been proposed. Froth flotation is an established solid-solid 

separation process used to upgrade mineral processing ores. Froth flotation is 

often used to separate materials with similar physical properties of particles in the 

1 to 800 microns size range (Figure 2.16).  
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In froth flotation, minerals suspended in water are separated by attaching them to 

air bubbles to selectively levitate the aerophilic (hydrophobic) mineral into the 

concentrate fraction, while leaving the other mineral in the tailings. The froth 

laden with hydrophobic mineral particles overflows into a launder constituting a 

concentrate. The hydrophilic mineral particles collect at the bottom of the tank to 

form tailings. In forward flotation, the more valuable mineral reports to the 

concentrate stream whereas in reverse flotation it reports to the tailings stream 

(Figure 2.17). 

 

 

Figure 2.16: Solid to solid separation techniques and equipment (Towler & Sinnott, 

2012) 

To enhance attachment of mineral particles to air bubbles, a surfactant (collector) 

is added to the slurry. A collector acts by coating and making surfaces of mineral 

particles hydrophobic (aerophilic). A frother is added to make stable bubbles that 

can support mineral particles without collapsing. Flotation is a proven, cost-

effective mineral processing technology with minimal technology risk (Crozier, 

1992; Wills, 2006). Flotation separation has the extra advantage that it does not 

alter alloy phase chemical composition.  
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Figure 2.17: Reverse froth flotation process schematic (Aldo Miners, 2012) 

2.4 Froth Flotation 

Froth flotation was patented in 1906 to treat sulphide ores of copper, lead and zinc 

initially but due to its selectivity, applications now include processing of other 

low grade complex ores. The theory of froth flotation is complex and not fully 

understood. During flotation, the mineral being separated is selectively attached to 

air bubbles and lifted to the water surface from where it is skimmed off as an 

enriched froth. The other mineral (gangue) is left in the pulp or tailing. Air is 

introduced through a concentric tube surrounding the agitator shaft (Figure 2.17). 

As the agitator rotates, the air is broken into a dispersion of air bubbles throughout 

the slurry where it collides with and attaches to the particles. The rotation action 

of the agitator also maintains the particles in suspension. To enhance differences 

in physico-chemical surface properties and consequently the floatability of the 

particles of various minerals in the flotation pulp, a surface active reagent 

(collector) is added in small quantities. Excessive collector dosages tend to float 

other minerals and reduce their selectivity. Due to the chemical, electrical, or 

physical attractive forces between the polar end and mineral particles the 

collectors adsorb on the mineral particles with their non-polar end pointing toward 

the bulk solution thereby making the particles hydrophobic i.e. aerophilic  (Wills, 

2006). To help maintain a stable froth, a frother is also added. The particles to be 

separated attach themselves to the bubbles and are transported into the froth phase 

which overflows into a launder for recovery as a concentrate (Figure 2.17).  The 
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froth phase enhances the overall selectivity of the flotation process by retaining 

the attached mineral and reducing entrainment of the tailing.  

The flotation response of a mineral or compound is determined by the forces 

acting on its surface (Figure 2.18). The forces acting at the solid–water–air 

interface at equilibrium are given by Young’s equation:  

 γs/a = γs/w + γw/acos θ (2-18) 

γs/a, γs/w  and  γw/a are the surface energies between solid and air, solid and water 

and water and air, respectively and θ is the contact angle between the mineral 

surface and the bubble. 

 

Figure 2.18 : Contact angle formed between the mineral surface and the bubble 

surface as a result of tensile forces 

For a mineral to be recovered by flotation it must be rendered non-wettable. 

Wetting of a mineral particle occurs when its solid-air interface is replaced by a 

solid-water interface. When the contact angle θ at the water-solid interface is zero, 

water spreads on the solid. In such a case the solid is said to be wetted by water or 

hydrophilic. Air bubbles do not adhere to these hydrophilic solids when 

suspended in water. However, as the contact angle increases above zero, solids 

become hydrophobic and are not wetted by water; but air bubbles adhere to them 

(Yarar, 2000). This phenomenon can be represented as work of adhesion Ws/a. 

The work of adhesion is the force required to break the particle-bubble interface 

and is equivalent to the work required to separate the solid-air interface and 

produce separate air-water and solid-water interfaces 

 Ws/a = γs/w + γw/a - γs/a (2-19) 

Combining Equations (2-19) and (2-20) yields 

 Ws/a = γs/w + γw/a(1- Cos θ) (2-20) 
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Equation (2.21) shows that the work of adhesion between a particle and a bubble 

increases with the contact angle. That is, the floatability of a mineral can be 

increased by increasing the contact angle. To increase the contact angle of an 

otherwise poorly floatable mineral, surface active reagents called collectors are 

added to the pulp (Wills, 2006).  The flotation process can be carried out by either 

sending the valuable product to the froth or float fraction while maintaining the 

by-product or gangue in the pulp or the tailings. In direct flotation the more 

valuable mineral is transferred to the froth or float fraction, leaving the by-product 

to the tailing while in reverse flotation, the by-product in this case corundum is 

separated into the float fraction. 

2.4.1 Collector Adhesion Mechanism 

Separation of most minerals by froth flotation is based on selectively adsorbing a 

collector at the mineral/water interface. Since the contact angle plays an important 

role in froth flotation, techniques for studying factors that affect contact angles 

have been developed and applied in understanding the floatability of various 

minerals. The introduction of the concepts of the double layer and electrokinetic 

potentials in the interpretation of froth flotation has facilitated a physical-chemical 

analysis of the adsorption phenomenon as it relates to wettability and floatability 

of minerals (Fuerstenau & Pradip, 2005).  

Through measurement of the conditions prevailing at solid/liquid/gas interfaces, a 

correlation among various mineral particle/water interface phenomena such as the 

adsorption density, contact angles, flotation response and zeta potential 

(Figure 2.19), has culminated into what is known as the electrostatic model of 

flotation. 

Based on their surface bonding, minerals can be classified into non-polar and 

polar types. The non-polar minerals are characterized by weak molecular bonds 

that make them hydrophobic (i.e. difficult to wet). Mineral particles can only 

attach to air bubbles and subsequently be separated by flotation if they are 

hydrophobic. In pure state, non-polar minerals (such as sulphur, coal, diamond, 

talc and pure metals) are naturally floatable. In contrast, polar minerals have 

strong covalent or ionic surface bonding. They exhibit rapid surface wetting due 

to the strong reaction with water molecules that form multi-layers on the mineral 

surface, consequently making them hydrophilic.  
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Figure 2.19: Correlation of various mineral particle/water interface phenomena 

2.4.2 Electrical Double Layer 

The phenomenon of the electrical double layer and electrokinetic potentials arises 

from the fact that when a solid is immersed into an aqueous solution a region of 

electrical inhomogeneity is formed at the solid-solution interface. The excess 

charge existing at the solid surface is balanced by a diffuse region of equal but 

opposite charge of the counter ions to maintain electroneutrality. Together, the 

surface charge and counter ions constitute the electrical double layer (Figure 2.20). 

The layer of counter ions adjacent to the surface (extending to the Stern plane) 

called Stern layer are strongly held to the surface through coulombic, chemical or 

Van der Waals forces. The remainder of counter ions are held by weak coulombic 

forces and they form a diffuse layer that extends into the liquid (Modi & 

Fuerstenau, 1960; Yarar, 2000).  
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Figure 2.20: Electrical double layer phenomenon (Fuerstenau & Pradip, 2005; 

Yarar, 2000) 

Adsorption of a collector at a mineral-water interface is in many cases controlled 

by the electrical double layer. Therefore, the parameters that quantify the 

electrical double layer such as the magnitude of the surface charge, the point of 

zero charge of minerals and specific adsorption of collectors have been applied in 

understanding selective adsorption of collectors and interpreting flotation 

behaviour. In the double layer, the collector ions function as counter ions 

therefore for the collector to be adsorbed it must carry a charge opposite to the 

charge of the mineral surface (Modi & Fuerstenau, 1960).  

2.4.3 Electrokinetic Effect 

When a phase is in relative tangential motion to an aqueous solution of an 

electrical double layer, an electric field is induced. The induced field results from 

the charge gradient at the plane of slippage (the slip plane) that is situated within 

the diffuse area of the electrical double layer in the bulk solution of the interface 

(Figure 2.20). The tangential motion along the slip plane disturbs the equilibrium 

of charges within the interface. The disturbance triggers a flow of charges in an 

attempt to restore the electrical balance across the interface on both sides of the 

slip plane. The interfacial flow and redistribution of charges is referred to as the 

electrokinetic effect. The charge gradient created at the slip plane is called the 

electrokinetic potential or zeta potential and is the difference in potential at the 
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slip plane and the potential in the bulk solution (Leja, 1982). As an indication of 

the particle charge surface, the zeta potential has successfully been used to 

delineate the favourable conditions for flotation. Extensive work carried out by 

Fuerstenau from 1953 to 1956 led to the electrostatic model of flotation. The 

model established that flotation collectors that adsorb by physical interaction with 

mineral particle substrates only function as counter ions in the electrical double 

layer. Therefore, the flotation of an oxide mineral using anionic collectors is 

appreciable only at pH levels below the PZC while for pH levels above the PZC, 

cationic collectors are required (Fuerstenau & Pradip, 2005). Electrokinetic 

studies have established the significance of the electrical double layer effects in 

the adsorption of collectors and other modifying reagents during flotation of oxide 

minerals.  

2.4.4 Corundum Flotation Mechanism 

Corundum is a polar mineral therefore recovering it by flotation requires that the 

particles are coated with a hydrophobic reagent called a collector (Wills, 2006). A 

collector may be an ionising compound which dissociates into ions in water or a 

non-ionising and insoluble type that renders the mineral particles hydrophobic by 

coating them with a thin film. Ionising collectors are widely applied in flotation. 

They are complex molecular compounds containing a non-polar organic group 

and a polar group. Due to chemical, electrical or physical attraction between the 

polar group and the mineral surfaces, collectors adsorb on the particles with their 

non-polar ends oriented towards the bulk solution thus making the particle 

hydrophobic (Figure 2.21). 

 

Figure 2.21: Collector adsorption on a mineral surface (Wills, 2006) 
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Fuerstenau and Pradip (2005) have demonstrated that in systems where the 

collector is physically adsorbed on the mineral surface, selective flotation depends 

on differences in the point for zero charge (PZC) of the minerals that are to be 

separated. Corundum (Al2O3) and TiAl can be separated by flotation in the pH 

window where the two minerals are oppositely charged (Modi & Fuerstenau, 

1960). The PZC is determined by measuring the zeta potential as a function of pH 

and corresponds to the pH where the zeta potential is zero.   

 

Figure 2.22: Influence of surface charge on flotation of corundum (Fuerstenau & 

Pradip, 2005) 

The PZC of corundum is pH 9.1 while for non-oxide Ti suspensions in water the 

PZC lies between pH of 3 and 4 (Yeh & Hon, 1995). Above pH 4, TiAl is 

negatively charged while corundum remains positively charged up to pH 9.1; 

therefore corundum can be floated with an anionic collector by maintaining the 

pH as acidic as possible but above the PZC of TiAl. Within this pH window TiAl 

cannot be floated with an anionic collector. A cationic collector is required for pH 

above 9.1 (Figure 2.22 and Figure 2.23).  
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In their investigations on the effects of alkyl sulfonates on the wettability of Al2O3, 

Wakamatsu and Fuerstenau (1973) observed that the contact angle on Al2O3 was 

affected by the adsorption of sulfonates at the solid/water interface and was 

strongly controlled by the pH, the sulfonate concentration and the number of 

carbon atoms in the alkyl chain. As the pH was increased beyond pH 9.1 the point 

of zero charge (PZC), sulfonate adsorption ceased and the alumina became 

hydrophilic.  In neutral and acidic solutions sulfonate adsorption and the contact 

angle increased significantly. Therefore floatability of corundum using an anionic 

collector increases as the slurry becomes more acidic (Figure 2.22).  Since pH 

controls the charge at the surface of corundum particles it also controls its 

flotation (Modi & Fuerstenau, 1960). 

 

Figure 2.23: Effect of pH on flotation response of corundum with sodium dodecyl 

sulphate (Fuerstenau & Pradip, 2005) 

2.4.5  Calciothermic Alloy Purification 

The Ti-Al alloy product from the combustion synthesis (aluminothermic reduction) 

step contains dissolved oxygen and some Al2O3 inclusions that need to be 

removed by calciothermic or calcium hydride reduction. In calciothermic 

purification, the crude Ti-Al alloy powder is mixed with CaCl2 and reacted with 

calcium vapour at about 1000oC. Using calcium vapour rather than condensed 
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calcium is preferable because it avoids introducing contaminants. Kubaschewski 

and co-workers (1993) demonstrated that at 1000oC, calcium can reduce the 

oxygen content in titanium down to 0.07 percent by weight by overcoming the 

affinity of oxygen to both the oxides of titanium and dissolving in metallic 

titanium phases such as α-Ti, γ-TiAl and α2-Ti3Al (Figure 2.24).  

An unpublished previous work based on an existing patent by Zhang that 

describes the use of calcium vapour in a vacuum furnace failed to reproduce the 

results. This was attributed to poor reactor design, a feature that is also known to 

adversely affect scalability of the process. In this study, the vacuum furnace was 

replaced with an induction furnace in order to ease the control process parameters.   

 

Figure 2.24. Partial Gibbs energies of dissociation of 1 mole oxygen in the titanium-

oxygen system at 1000oC  (Kubaschewski, et al., 1993) 

The mechanisms of the calciothermic reaction are illustrated in Figure 2.25. 

Calciothermic purification is based on the ability of CaCl2 to dissolve up to 20 

mol % CaO (the reaction product) and up to 3 mol % Ca (the reductant) at 900oC 

(Suzuki, 2007; Zhang, 2010). The Gibbs energy of dissociation of CaO, MgO and 

BaO (i.e. assimilation of oxygen from the Ca/CaO, Mg/MgO and Ba/BaO 
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mixtures equilibrated with the titanium-oxygen system respectively) are 

represented by the three circles in Figure 2.25.  The Ca/CaO reaction is the most 

effective in deoxidising titanium. 

The inclusion/removal reaction is: 

 Al2O3(solid) + 3Ca(vapour) = 2Al(molten) + 3CaO(solid) (2-21) 

The dissolved oxygen removal reaction is: 

 Ca(vapour) + O(dissolved) = CaO(solid) (2-22) 

 

 

Figure 2.25: Schematic of CaO passivation in absence of CaCl2 carrier 

 

In the absence of carrier CaCl2, the CaO produced in the reaction between Ca and 

Al2O3 (Figure 2.25) could inhibit further reaction and the purification process 

(Suzuki, 2007). 

2.4.6 Calcium Hydride (CaH2) Reduction 

The dissolved oxygen and alumina inclusions (the main impurities in the alloy 

phase) can also be reduced using CaH2. Compared to other reductants (Al, Mg 

and Si), CaH2 reduction occurs at a lower temperature and separation of the alloy 

from the by-product is easily achieved by washing the product with water. CaH2 
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neither forms intermediate titanium oxides such as Ti3O5, Ti2O3 (Figure 2.24) and 

TiO; it has very little tendency to form alloys therefore the product yield is 

quantitative. Also, the formation of a protective hydrogen atmosphere reduces 

oxygen pick-up. The reduction of Al2O3 with CaH2 (Equation (2-23)) initiates at 

500 oC and is complete by 750oC (Wiberg & Amberger, 1971).  

 

Al2O3 + 3CaH2 = 2Al + CaO + H2   

At 700ºC:  = +84.024 kcal    = -19.448 kcal   

(2-23) 

CaH2 can be used to remove oxygen dissolved in combustion synthesis products 

by the endothermic reaction 

 

CaH2 + O(dissolved) = CaO + H2 

At 1000ºC:  = +5.617 kcal   = -33.862 kcal   

(2-24) 

The Gibbs free energy of the reaction calculated using data obtained from 

(Kubaschewski, 1983; Barin, 1973 and HSC Software) is negative hence 

thermodynamically favourable but endothermic. 

2.5 Process Inputs and Raw Materials 

The vast iron sand deposits of New Zealand, including the Taharoa on North 

Island’s west coast and Waikato North Head mine deposits, which are mined for 

iron by New Zealand Steel, contain significant amounts of by-product titanium 

that can be used as a TiO2 source (Barakat & Drain, 2006). Shallow drilling cores 

off the southern Taranaki coast, validated by aeromagnetic surveys in 2010 and 

2011, estimate iron sand deposits equivalent to 200 million tonnes of concentrate 

at 60 percent iron (Scoop Independent News, 2011). There are also other potential 

deposits off the west coast of the North Island. The other raw material for alloy 

refining is CaCl2, a low-cost material. 

2.6 Process Parameters Optimisation 

The composition and microstructure of reactant powders have a significant effect 

on solid state reactions. High energy mechanical milling is a well-established 

technique for varying microstructures of reactant powders in order to optimise 

reaction kinetics, energy utilisation and the separation of reaction products.  
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2.6.1 Effect of Mixing 

High-energy mechanical milling or activation and combustion synthesis are solid 

state processes and homogeneity of reactant powder mixtures influence the 

reaction mechanism and products (Thompson, 2002). Prior to milling, the starting 

powders are thoroughly mixed to ensure a homogenous distribution of component 

powders in the desired stoichiometric ratio (Lu ̈ & Lai, 1998). Other investigations 

on wettability of TiO2 by molten Al (Shen et al., 2006) demonstrated that an 

alumina-rich phase product of the reaction can limit Al availability to TiO2 and 

subsequently affect both reaction kinetics and type of aluminide formed. 

Therefore, the composite powder microstructure must be as uniform as possible 

and the alumina product of the reduction reaction needs to be optimised to achieve 

the desired aluminide at acceptable yields. 

The composition of the titanium aluminide formed is influenced by homogeneity 

and TiO2:Al ratio of the reactant composite powders in the reaction zone 

(Gheorghe & Rack, 2002; Shen, et al., 2006; Thompson, 2002). At the 

microstructural level, the alumina-rich phase formed in the reaction can act as a 

barrier between the reactants (Figure 2.26). 

 

 

Figure 2.26: Coexisting phases and formation of an alumina-rich reaction inhibiting 

barrier at the TiO2-Al interface during thermal treatment (Shen, et al., 2006) 

 

Some researchers report that regardless of the initial composition of the reactants, 

TiAl3 is the first intermetallic phase formed. Formation of other titanium 

compounds depends on the availability of TiO2 at the reaction interface. They 
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proposed the following sequential reaction mechanism until all TiO2 is consumed 

(Feng & Froyen, 2000; Gaus et al., 2000; Welham, 1998).  

 3 TiO2 + 13 Al = 3 TiAl3 + 2 Al2O3         = -172.130 kcal (2-25) 

 6 TiO2 + 7 TiAl3 = 13 TiAl + 4 Al2O3      =-212.933  kcal (2-26) 

 6 TiO2 + 15 TiAl = 7 Ti3Al + 4 Al2O3     +131.146  kcal (2-27) 

 24 TiO2 + 2 Ti3Al = 15 Ti2O3 + Al2O3     =-430.721  kcal (2-28) 

 

Gheorghe and Rack (Gheorghe & Rack, 2002) report that although the initial 

steps in the reaction sequence do not depend on the TiO2:Al ratio, the final steps 

do. Based on the proposed reaction mechanisms, it is probably important to ensure 

a homogeneous distribution of reactant powders to attain the desired 

stoichiometry.  

2.6.2 Effect of Temperature on the Enthalpy of Reaction  

The reaction between TiO2 and Al is metallothermic and should be designed so 

the heat generated by the chemical reaction is high enough to produce a molten 

TiAl product and thus facilitate separation from the solid alumina (Al2O3) phase 

(Kubaschewski, et al., 1993). The widely-accepted Ti-Al phase diagram 

(Figure 2.27) shows the liquidus temperature of the TiAl alloy is about 1450oC. 

Therefore, the final temperature of the reaction products, Tfinal, needs to be above 

1450oC to obtain molten TiAl.   

 Tfinal = TReaction + ∆T (2-29) 

Tfinal  is the temperature of the products; TReaction is the temperature at which the 

reaction takes place i.e. the ignition temperature Tig and ∆T is the temperature  

increase due to the reaction.  
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Figure 2.27: Phase diagram of the Ti - Al system (Schuster & Palm, 2006) 

The temperature at which the reaction occurs, TReaction, and the temperature rise 

∆T are influenced by composition and microstructure of the reactant mixture. 

Extended high energy milling lowers the ignition temperature of the powders and 

this makes solid state reactions possible because the onset of the reaction between 

TiO2 and Al is below 660oC, the melting temperature of aluminium (Adam, 2005). 

Reaction conditions need to be optimised to increase the heat content of the 

products of combustion. An ignition temperature that ensures sufficient heat to 

produce molten TiAl product without increasing heating costs and adversely 

affecting process economics should be used.   

2.6.3 Effect of Heating Rate 

Studies of a 55 vol% Al / 45% TiO2, by differential thermal analysis (DTA),   

indicated that exothermic peak temperatures high enough to form a liquid alloy 

phase could be attained by increasing the heating rate (Gaus, et al., 2000). The 

effect of heating on the attained exothermic peak is illustrated in Figure 2.28. 
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Figure 2.28: Effect of heating rate on attained exothermic peak temperature (Gaus, 

et al., 2000)  

 

2.6.4 Effect of Cooling Rate on Alloy Flow and Separation  

Alloy flow and yield are affected by the rate at which the combustion synthesis 

products are cooled. The alloy cannot flow out once solidification occurs.  To 

maintain alloy flow and increase alloy yields, the CS products may be held at the 

peak temperature by continuing to heat the products for several minutes after the 

combustion reactions have finished using an external heat source (induction coil).  

2.6.5 Effect of Milling Time 

Gennari and his co-workers (Gennari et al., 2006) showed that the wave velocity 

of the SHS process for particle sizes above 1 µm was almost linear to the inverse 

of the particle size and that dissolution of the transition metal ceases to be a rate 

controlling mechanism. Precipitation or dissolution of reaction products then 

becomes the rate controlling mechanism. Consequently, particle size affects 

composition and microstructure of reaction products. Particle size is determined 

by the milling time. Extending milling beyond a critical stage where fracturing 

exceeds welding mechanisms produces fine powders with a low onset temperature 

for the combustion reaction.  
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2.6.6 Effect of Porosity and Dilution 

Gennari and his co-workers (Gennari, et al., 2006) showed that porosity of 

reactants influences the effective thermal conductivity and energy per unit volume 

produced by the exothermic reaction. High porosity reduces propagation speeds in 

combustion synthesis reactions. 

2.7 Hypothesis of the Research 

The combustion reaction between TiO2 and Al goes to completion, producing 

TiAl and Al2O3 at almost 100% conversion efficiency. However, the yield of TiAl 

alloy from solid/liquid separation by extrusion alone is less than 10% of the 

stoichiometric quantity. Mechanisms involved in solid/liquid separation of TiAl 

from Al2O3 by extrusion are not well understood. The hypothesis is that the 

microstructure of reactant powder mixtures will affect separation of the Ti alloy 

from Al2O3.  In this research, the effects of microstructure on the solid/liquid 

separation process will be investigated. By controlling the milling intensity, the 

reactant powder microstructure can be tailored to attain sufficiently high 

temperatures to allow extrusion of the Ti alloy out of the combustion synthesis 

product. During combustion synthesis, powders with a coarse microstructure (i.e. 

milled for short periods) will ignite at a high temperature and increase the heat 

content of products. Therefore, by the time the ignition temperature is attained, 

the powders would have acquired sufficient heat to maintain a molten alloy phase 

for separation by extrusion. Coarse rather than fine microstructured composite 

powders are in this regard more suitable.  

The yield and quality of liquid TiAl that can be extruded out of the combustion 

synthesis product is limited because of the wetting properties of liquid TiAl on 

Al2O3. The contact angle of liquid TiAl on Al2O3 is 38o, which is low and 

therefore significant amounts of TiAl will be retained by Al2O3 particles due to 

wetting and solidification (Li et al., 2008). Also, viscosity of most melts increases 

drastically and transitions from Newtonian to Non-Newtonian behaviour occur as 

volume fraction of solids is increased (Wright et al., 2001). This phenomenon 

might adversely affect alloy yields during solid/liquid separation. To understand 

the mechanisms underlying separation of the Ti alloy from Al2O3 during extrusion, 

this research investigates the different microstructures in reactant powder 

mixtures produced using various milling intensities. The microstructure will be 
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monitored by optical and scanning electron microscopy (SEM) imaging. The 

composition and textural data obtained will also be used to establish the extent of 

combustion synthesis, delineate the extent of milling required to liberate the Ti 

alloy from Al2O3 contained in the extrusion by-product and to identify potential 

alternative separation methods (such as froth flotation) for increasing Ti alloy 

yields. The reaction temperature will be monitored with a Type B (Rhodium-

Platinum) thermocouple imbedded in a 2mm hole drilled into the compact and 

attached to a Picolog data logger.  

In previous studies (Adam, 2005), gravity separation experiments were not 

satisfactory because of similarities in density of TiAl and Al2O3. Therefore, I will 

evaluate the viability of using froth flotation as a complementary process to 

increase TiAl yields. Froth flotation is a proven cost effective mineral processing 

technology with minimal associated technology risk and has been applied in the 

separation of minerals with similar physical and chemical properties (Crozier, 

1992; Wills, 2006). Froth flotation separating efficiency will be calculated from 

the TiAl partition between the float and the tails fractions. The TiAl content of the 

fractions will be determined by gravimetric methods, XRD and XRF analyses.  

2.8 Aims of the Study 

The aims of this study are to: 

 Understand solid/liquid separation mechanism in extraction of TiAl from 

TiAl(O)/Al2O3 composite by extrusion 

 Investigate effects of microstructure on TiAl yields 

 Investigate froth flotation parameters to increase TiAl grade of the 

combustion by-product before leaching to recover the residual TiAl 
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Chapter 3  

Experimental Methods 

 

This chapter describes the materials and experimental methods used in the study. 

The methods are summarized in the metallurgical investigation plan (Figure 3.1). 

They include preparing reactants by high energy mechanical milling (HEMM), 

producing TiAl(O)/Al2O3 composites by combustion synthesis,  solid/liquid 

separation by extrusion, froth flotation, sample characterisation by optical 

microscope (OM), scanning electron microscope (SEM), x-ray diffraction (XRD), 

differential thermal analysis (DTA), porosity by pycnometer, particle size analysis 

by laser particle analyser (LPSA) and particle surface charge measurement to 

determine the point of zero charge of TiAl. 

The results from each experimental method are reported separately in Chapters 4, 

5 and 6.  

 

 



 

 

6
1
 

 

Figure 3.1: Metallurgical investigation plan 
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3.1 Preparing TiO2/Al Composite Powders  

The objective of making the reactant powders into TiO2/Al composites before 

combustion synthesis was to enhance reaction kinetics. The TiO2/Al composite 

powders were prepared by high energy mechanical milling using 98.5% pure, 

commercial grade TiO2 0.2-µm particles (anatase supplied by Millennium 

Chemicals Ltd., Australia) and 99.5% pure commercial Al of less than 60-μm 

particle size (Ecka Granules Australia Pty Ltd). High energy mechanical milling 

was done in a Rocklabs Split Discus Mill (Rocklabs, New Zealand) (Figure 3.2). 

 

Figure 3.2: (a) Rocklabs Split Discus Mill (b) Discus and Vial 

 

In the Rocklabs Split Discus Mill, the TiO2-Al powder mixture was milled as it 

was repeatedly forged between two sliding discusses and also against the vial wall 

as each discus rotated and vibrated. 

3.1.1 Discus Milling Procedure 

 Known amounts of Al and TiO2 powders that met the stoichiometry of 

Equation (3-1)  and gave a TiO2:Al molar ratio of 3:7 were homogenized in a 

Bottle-roller mill for 12 h.  

 3 TiO2 + 7 Al = 3 TiAl + 2 Al2O3  (3-1) 

To process each batch, 500 g of the homogenized powder mixture was put in the 

Rocklabs Split Discus Mill vial along with 0.5 wt% of isopropyl alcohol as 

process control agent (PCA) to minimize excessive sticking of powders to the 

milling media. To avoid oxidation, the mill vial was evacuated and then filled 

with argon to about -5 kPa before milling.  
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3.1.2 Normalizing 

After high energy mechanical milling, TiO2/Al powders are extremely reactive 

therefore they need to be normalised before exposure to air. The following 

procedure was applied: 

1. The discus mill bowl and milled TiO2/Al powders were placed in a glove 

box. 

2. A scope, thermometer and a thermocouple were placed in the glove box. 

3. The glove box was closed and evacuated to -80kPa. 

4. The glove box was then refilled to -5kPa with argon. 

5. Steps 4 and 5 were repeated two times. 

6. In the last refill with argon the pressure was left at 0kPa (ambient pressure) 

before opening the lid of the discus milling bowl. 

7. The two discuses were carefully taken out of the bowl. 

8. The powder was stirred and the temperature of the powders measured. 

9. If the temperature was above 40°C, the powder was left to cool down 

below 40°C. Once the temperature was below 40°C, the glove box was 

evacuated to -20kPa. 

10. Air was introduced into the glove box (by disconnecting the argon hose 

and opening the valve) until the pressure reached 0kPa and then closing 

the valve. 

11. The powder was stirred and the temperature of the powder measured. 

12. Steps 11 to 13 were repeated three times. 

13. If the temperature was below 40°C, the glove box was evacuated to -

50kPa and air introduced until ambient pressure. 

14. The powder was stirred and the temperature of the powder measured. 

15. If the temperature was below 40°C, the glove box was evacuated to -

80kPa and air introduced until ambient pressure. 

16. The powder was stirred and the temperature of the powder measured. 

17. The powder was left to cool below 30°C before being removed from the 

glove box and being stored in a metal container. 
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3.1.3 Microstructure Optimization 

To study the effect of microstructure on the downstream solid/liquid separation 

efficiency, milling was done for 1, 2, 4 and 6 h. The milling media (discus) to 

powder weight ratio was maintained at about 18:1. For each milling time, four 

500-g batches prepared as detailed above were tested and characterized using OM 

SEM, XRD, XRF and DTA as detailed in 3.3 to establish the effect of milling 

time on: 

 Microstructure development, compositional and particle size variation and 

 Reaction rate, reaction temperature, temperature attained by products and 

phase separation during combustion synthesis at the solid/liquid 

separation stage   

3.1.4 Composite Powder Compaction 

To enhance heating efficiency and combustion synthesis kinetics during the 

solid/liquid experiments, reactant powders were compacted. Portions (400 g) of 

milled composite powder portions were cold pressed into 80-mm diameter x 37-

mm thick compact discs (Figure 3.3) in a H13 tool steel die using an applied 

pressure of 14.5 MPa and 2-min dwell time in a 100-ton hydraulic press. This was 

replicated three times to get an average.   Results are discussed in Chapter 4. 

 

Figure 3.3: A 400-g milled TiO2/Al composite powder green compact  
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3.2 Combustion Synthesis  

The combustion synthesis and liquid/solid separation experiments were done 

under argon in equipment that consisted of an alternating current (ac) induction 

heating device, a stainless steel 316L grade shell as a conductive receptor, an O-

Sialon extrusion die, thermocouples, and a USB TC-08 Picolog data logger for 

temperature monitoring (Figure 3.4). The 400-g green compacts of milled TiO2/Al 

composite powders (Figure 3.3) were placed in the O-Sialon die and heated. The 

reaction temperature was monitored with a platinum-rhodium (B-type) 

thermocouple imbedded in the compact.  Additional thermocouples (K-type) were 

used to monitor ambient and shell temperatures. The trials were done in triplicate. 

After ignition, which was marked by a “super-adiabatic peak” and fuming, the 

combustion synthesis products were extruded under light pressure (about 60 bars) 

to separate the liquid alloy-rich phase from the solid alumina-rich phase 

 

Figure 3.4: Schematic of the experimental set-up 

 

3.2.1 Reactor Design Considerations  

A previous study reported an alloy yield below 10% compared with the target of 

50% required to ensure commercial success of the TiPro process (Raynova, 2007). 
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The low titanium alloy yield was attributed to poor molten alloy-solid separation 

because the alloy solidified before it could be extruded (Raynova, 2007). To 

overcome low alloy yields, this research is aimed at understanding the 

microstructure and flow patterns of liquid TiAl formed in combustion synthesis of 

TiO2/Al powders milled for 1, 2, 4, and 6 h.   

Titanium processing presents a significant challenge in reactor design due its 

immense reactivity. Therefore apart from designing for a reactor that maximizes 

heat transfer into the compacts while minimizing heat loss from the reactor, the 

design criteria should include inertness to titanium during processing. As the 

crucible is exposed to high temperatures and is in direct contact with molten 

reactive contents, O-Sialon was selected  because it is thermally conductive, has a 

high bulk density, and is chemically and erosion resistant. O-Sialon is a ceramic 

with 65 wt% SiC and 35% Sialon (a Si3N4 base-ceramic in which some of the Si 

has been replaced with Al and some of the N has been replaced with O). Sialon 

has a compositional range of Si6-xAlxOxN8-x, where x is the number of oxygen 

atoms substituted for nitrogen and has a limiting value of 4.2 at 1700oC and 2.0 at 

1400oC ([Davis, 1995). Given that Al readily reduces TiO2 to produce Ti that in 

turn reacts with Si3N4 to produce TiN according to the Equation(3-2); it is 

inevitable that O-Sialon might introduce some contamination into the metal. 

 4 Ti +  Si3N4 = 3Si + 4TiN              = -125.740 kcal (3-2) 

To minimize conductive heat loss, an outer layer of insulation with low thermal 

conductivity and stable in the operating temperature range had to be used. A 

combination of kaowool and a fireclay-based refractory castable was considered. 

Kaowool has a very low thermal conductivity because of the large air space 

between the fibers. However; it cannot store heat because of its extremely low 

mass. To increase the heat-retaining capacity of the reactor assembly (and 

consequently extend the time the alloy phase was kept molten), a combination of 

the two insulation layers were applied (Richerson, 1992).  

Unlike previous studies that used a tube furnace (Adam et al., 2007), in this study 

thermal treatment was done using a reactor assembly incorporating a 26-mm thick, 

230-mm long 316-Stainless steel shell as the secondary in the induction heating. 

The maximum operating temperature for 316-stainless steel is 900oC (Peters et al., 
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2003). A layer of alumina-based refractory cement, which acted as a radiation 

heat shield, was coated on the steel shell.  

To enhance separation of molten TiAl from the solid alumina rich by-product, the 

O-Sialon crucible was mounted on a 100-mm high die, which also acted as the 

alloy collector. The volume of the alloy collector (receptor) was determined from 

the stoichiometric alloy fall estimated using Equation (3-1) as detailed in the 

calculation below: 

Density of TiAl     3.9 – 4.1 g/cm3  

TiO2 as weight fraction in reactant mixture  0.5592 

Al as weight fraction in reactant mixture  0.4408 

Total weight of reactant mixture   900 g 

Weight of TiO2 in mixture    503.28 g 

Equivalent weight of TiAl expected   471.55 g 

Volume of TiAl expected    120.91 cm3 

Volume of receptor (110% of TiAl expected) 133 cm3 

The criteria for selecting crucibles that were used for combustion synthesis 

experiments were based on inertness to chemical attack, cost effectiveness, 

adequate thermal shock resistance, compressive strength and the ability to 

facilitate molten alloy and solid alumina separation.  

3.3 Sample Preparation and Characterization  

Quantitative phase characteristics such as concentration, grain size of the product 

(alloy and corundum) phases, and oxygen associations are needed to achieve 

optimum alloy yields during solid/liquid separation and other downstream process 

stages. To characterise the samples using OM and SEM, powdered samples of 

reactants and products were mounted in resin for 24 h and then ground using 

silicon carbide (SiC) grinding papers in the sequence 320, 600 and 1000/1200 grit. 

To study the solid/liquid separation mechanism, longitudinal and transverse cross 

sections of the extrusion product (Figure 3.5) were cut using a wire-cutter. The cut 

samples were polished using 320, 600 and 1000/1200 grit SiC papers.  Samples 

for XRD, LPSA and DTA analysis did not need to be mounted in resin.  
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Figure 3.5: Photographs of the extruded combustion synthesis product (a) before 

and (b) after sectioning with a wire-cutter 

 

3.3.1 Optical Microscopy (OM) 

Micrographs of polished samples were taken using an Olympus BX 60 optical 

microscope with a Nikon camera attachment. Phase microscopy analysis to 

determine the spatial distribution of TiAl, Al2O3 was done using Image-Pro Plus 

6.3 (Media Cybernetics) and IQ Materials™ software (Media Cybernetics) was 

used for materials (grain size, percent area and particle size) analysis.  

To study the flow mechanism during solid/liquid separation by extrusion, a 

longitudinal cross-section of the solid/liquid separation by-product from each 

experiment was delineated using X-Y coordinates (Figure 3.6). OM micrographs 

were taken at 5mm intervals using the Image-Pro Plus 6.3 software. The 

distribution of TiAl and Al2O3 within each delineated area of the entire 

longitudinal cross-section was then measured using the IQ Materials™ software. 

The micrographs and their corresponding TiAl content were presented as a 

montage depicting the spatial distribution TiAl and Al2O3. The TiAl spatial 

distribution obtained was used as the TiAl saturation in studying alloy flow 

mechanism of the extrusion by-product. The results are reported in Chapter 5. 
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Figure 3.6: Co-ordinate grid for delineating TiAl relative abundance (saturation) 

 

3.3.2 Scanning Electron Microscopy and EDS 

Microstructural characterization of samples taken at every stage of the trials was 

done using a Hitachi S-4700 Scanning electron microscope equipped with energy 

dispersive spectroscopy (EDS). Alloy phase composition and element distribution 

within phases were determined using data from elemental maps and EDS analysis.  

3.3.3  X-ray Diffractometry (XRD) 

Phases in composite powders and products from various stages of the trials were 

characterized using a Phillips X-pert system diffractometer (XRD) with Cu Kα 
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radiation at 40 kV and 40 mA. The patterns were obtained using a 0.02o step size 

averaging 5 seconds per increment. Samples were scanned whilst secured in either 

shallow stainless steel holders or as specimens mounted in epoxy resin. Indexing 

for phase composition was done using Phillips X-pert HighScore Software 

(PANalytical B.V.). The phase composition at various stages of the study was 

established using SEM and EDS, XRD. 

3.3.4 Thermal Analysis 

To establish thermal behavior of the composite powders, samples were analyzed 

by differential thermal analysis (DTA) in a TA Instruments SDT 2960 DTA under 

argon at a flow rate of 150 mlsec-1. The data were used to optimize milling time 

and identifying ignition temperature. The DTA analyses were also done at a 

10oCmin-1 scanning rate to attain a pre-determined temperature. After attaining the 

set temperature, the sample was held for 30 min. X-ray diffraction (XRD) analysis 

was used to identify phases formed during thermal analysis on samples which 

were removed from the DTA equipment at different temperatures during the 

thermal analysis experiment. DTA was supplemented with XRD analysis because 

DTA alone is not used for a complete interpretation of a system (Charsely & 

Warrington, 1992). DTA results were only indicative because they were done on 

loose reactant powders while combustion synthesis experiments were done using 

compacted reactant powders. However, DTA results can be used in establishing 

expected trends as the milling time is varied.   

3.3.5 Particle Size Analysis (PSA) 

An analysis of particle size distribution of homogenized powders and milled 

powders was done using a Mastersizer 2000 Laser particle sizer (Malvern 

Instruments Ltd., UK).  

3.3.6 X-ray Fluorescence Analysis (XRF) 

XRF analysis was used to check the elemental composition of reactant powders 

and extrusion by-product samples.  
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3.3.7 Determination of Corundum in Combustion Products 

One (1) to two (2) grams of sample were treated with excess hydrofluoric acid 

(60gpl concentration) for 16 h. The solution was filtered and analysed by ICP as a 

second check on the composition of the products. The residue was thoroughly 

washed, dried and weighed. The weight obtained was calculated as corundum 

(Pratt, 1906). The residue was analysed by XRD to ascertain that Al2O3 was the 

only phase contained. 

 

Figure 3.7: Phase composition of HF leach residue after gravimetric analysis of 

Al2O3 

 

3.3.8 Phase Liberation Analysis (PLA) 

To determine the liberation size of the TiAl phase in the extrusion by-product, 

samples were stage crushed to less than 6300 microns in a 500-mm x 245-mm 

TIDCO Swing Jaw Crusher with an 8500-micron gap-setting. The jaw crusher 

product was further milled in a UA 53 BICO Pulverizer; Model: 242-53 X3 

(BICO-Braun Intern., US) using a gap setting of 0.280 mm. The two-stage 
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crushing procedure helped preserve the in situ texture of the extrusion by-product 

and also limited generating fines.  

To minimize the coarse fractions being contaminated by fines (Burrows et al., 

2007), crushed samples were wet sieved into 6300, 1180, 425, 212, 106, 75 and 

32-microns size fractions.  OM micrographs, backscatter images, XRD and XRF 

analyses were done on the various fractions obtained to establish whether there 

was preferential breakage, which would be indicated by differences in deportment 

patterns of the TiAl and Al2O3 phases. 

3.3.9 Determination of Porosity  

The porosity in combustion reactants and products was determined using an 

Ultrapycnometer 1000 manufactured by Quantachrome Instruments. The 

pycnometer works on the Archimedes principle. Density is automatically 

calculated from the volume measured by the equipment. The porosity was then 

calculated from the difference between the material’s specific gravity and the 

density determined using the pycnometer. 

3.3.10 Ignition Temperature Measurement 

Two thermocouples were used to monitor the temperature; one was drilled 1 cm 

into the green compact and the other on the surface of the green compact. The 

ignition temperature which was marked by evolution of fumes was measured with 

the thermocouple placed on the green compact surface. The one drilled 1 cm into 

the green compact was connected to a Picolog Datalogger that produced a 

temperature profile at a point 1 cm into the green compact. This was used to 

measure the combustion temperature only and not the ignition temperature 

because it lagged behind and understated the ignition temperature. (as indicated 

by thermographs in Figure 5.17, Figure 5.18 and Figure 5.26). The surface 

thermocouple gave the true ignition temperature reading during the experiment. 

3.4 Froth Flotation 

Less than 10% of the possible yield of primary TiAl alloy is obtained by extruding 

combustion synthesis product at the solid/liquid separation stage (Raynova, 2007). 

The extrusion by-product contains appreciable amounts of TiAl alloy, which must 

be recovered to increase process viability.  
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Gravity separation methods are ineffective because the density of TiAl and Al2O3 

are similar.  Froth flotation is often used to separate materials with similar 

physical properties. In froth flotation, minerals suspended in water are separated 

by attaching them to air bubbles to selectively levitate one mineral into the 

concentrate fraction, leaving the other mineral in the tailings. The froth laden with 

hydrophobic mineral particles overflows into a launder constituting a concentrate. 

The hydrophilic mineral particles collect at the bottom of the tank to form tailings. 

In forward flotation, the more valuable mineral reports to the concentrate stream 

whereas in reverse flotation it reports to the tailings stream (Figure 2.17). To 

enhance attachment of mineral particles to air bubbles, a surfactant (collector) is 

added to the slurry. A collector acts by coating and making surfaces of mineral 

particles hydrophobic (aerophilic). A frother is added to make stable bubbles that 

can support mineral particles without collapsing. Flotation is a proven, cost-

effective mineral processing technology with minimal technology risk (Crozier, 

1992; Wills, 2006). Flotation separation has the extra advantage that it does not 

alter alloy phase chemical composition.  

3.4.1 Preliminary Sample Assessment  

An initial sample assessment was made. This involved grinding the combustion 

synthesis product to various particle sizes and applying flotation parameters. 

These were established by measuring particle surface charge carried on contained 

minerals (TiAl and Al2O3). The surface charge carried by a mineral particle 

determines the efficiency of separation by froth flotation.  To float a mineral 

particle, its surface charge is altered by selectively adsorbing molecules with 

surface active properties (surfactants) on it. Due to their amphiphilic structure 

(one containing a polar or hydrophilic head and a non-polar or hydrophobic tail), 

surfactants (collectors, frothers or activators) adsorb and generate a charge by 

acting like counter-ions in an electrical double layer formed between a particle 

surface and the suspending liquid (Figure 2.21). Surfactants are classified 

according to the head group type (ionic, non-ionic and amphoteric). Ionics can be 

either cationic or anionic.  Cationic surfactants produce a positively charged 

surface and anionic surfactants produce a negatively charged surface. 

In this study, the pH operating window for selectively floating corundum was 

determined by measuring the particle surface charge at various pH levels using a 

Mütek PCD-04 Travel particle charge detector (BTG Instruments) (Figure 3.8).   
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To measure the particle charge, an aqueous sample (0.1 g of powder in 150 ml 

sodium dodecyl sulphate solution) was placed in the measuring cell.  

 

Figure 3.8: BTG Mütek PCD-04 Travel particle charge detector 

 

Once turned on, the oscillating action of the cell piston induces a high flow rate 

that separates any charged material adsorbed to the cell wall from it counter-ions 

thereby creating a streaming potential. The current is picked-up by two electrodes 

and displayed on the touch screen while the pH was measured with the probe 

inserted in the cell. The pH of the aqueous sample was adjusted by adding drops 

of 100 gpl H2SO4 or 100 gpl Na2CO3 to the cell when and as necessary.  

The point of zero charge (PZC) was obtained by plotting slurry pH against 

measured potential and used to determine whether a cationic or anionic surfactant 

was to be used. 

3.4.2 Experiment Set-up 

Flotation experiments were done using equipment manufactured in-house 

(Figure 3.9).  The equipment had a sub-aeration assembly made from a 3500-ml 

Perspex cell and an agitator with a 70-mm diameter impeller. A rotameter 

installed in the air line between the compressor and the flotation cell was used for 

controlling and duplicating airflow from experiment to experiment (Dunne et al., 

2010).  
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Figure 3.9: Flotation experiment set-up 

 

The flotation experiment procedure was as follows: 

1. A 100-gram sample of extrusion by-product was gradually added to the 

flotation cell containing about 2500 ml of water with the impeller speed 

set at 1000 rpm and air inlet shut.  

2. Over the following 3 min, 1000 ml more water was slowly added and 

impeller speed increased to 1500 rpm.  

3. The mixture was then agitated for a further 3 min to thoroughly wet the 

sample.  

4. Appropriate modifying reagents (activator or depressant) were then added 

and agitation continued for 5 min. 

5.  Additions of collector and frother were made and agitation continued for a 

further 5 min.  

6. Air was then turned on to give 6 litres per min flow rate. At 15-sec 

intervals, a scraper was gradually moved through the concentrate to 

collect the froth.  Froth produced over 1 min was collected as concentrate. 

7.  After 10 min, the impeller was stopped and any particles adhering to the 

sides of the cell and the impeller housing were transferred to the 

concentrate. The solids that collected at the bottom of the cell constituted 

the tailings.  

8. Each concentrate and each tailing was dewatered and dried to constant 

mass and then reweighed.  
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3.4.3 Evaluation of Flotation Experiments 

The criteria for evaluating flotation reagents and parameters are their collecting 

power (determined by recovery) and selectivity which is indicated by the grade of 

the concentrate produced. These two criteria are preferably evaluated using 

rougher kinetic tests and multiple-stage cleaning tests because they provide 

significant information (such as preliminary grade - recovery relationships, and 

flotation times) in a single test.   

3.4.4 Rougher Flotation Kinetics 

Rougher flotation tests were done by taking multiple concentrates over a 

measured time period. The grade of the individual concentrate samples taken 

every minute and the cumulative grade of the overall concentrate were plotted 

against time. The cumulative grade was also plotted on the secondary axis. 

Flotation is considered complete at the point where the incremental concentrate 

grade curve crosses the grade of the feed to the flotation test. The time at which 

this occurs determines the cumulative concentrate grade and the cumulative 

recovery of the test as no additional concentration can be achieved without 

regrinding the feed (Mular et al., 2002).  

3.4.5 Multiple Stage Cleaning Tests 

To determine the potential for upgrading concentrates and to establish various 

factors, such as concentrate regrind, pulp dispersion and additional reagents 

(collector or activator) during cleaning, rougher concentrates from a test were 

combined and subjected to multiple cleaning stages. The results were plotted and 

evaluated by comparing the recovery at fixed concentrate grade for various 

flotation conditions or reagent schemes (Mular, et al., 2002).  After reviewing the 

initial rougher and cleaner flotation results alterations were made to grind size, 

reagent suite and flotation time to further enhance separation (Dunne, et al., 2010). 

3.5 Calcium Hydride (CaH2) Reduction 

Experiments to remove dissolved oxygen and alumina from the primary alloy 

were done using CaH2 of 99.9% purity supplied by Aldrich, USA and 95% CaCl2 

(Sigma Aldrich, New Zealand).  On an industrial scale, CaH2 is preferred to other 

reductants (Al, Mg and Si) because reduction occurs at a lower temperature, it is 

less reactive (easily handled), and separation of the alloy from the by-product is 
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easily achieved by washing the product with acidified water. CaH2 is capable of 

reducing oxygen levels to 0.07 wt% i.e. well below the stability of TiO, Ti2O, 

Ti3O the lower oxides of titanium (Kubaschewski et al, 1993) and unlike Al, CaH2 

has very little tendency to form alloys therefore the product yield is quantitative 

(Mackay, 1966). Also, unlike elemental Ca, CaH2 forms a protective hydrogen 

atmosphere that is beneficial in reducing oxygen pick-up.  However it more costly 

compared to Ca. 

In a previous study the subject of US patent 2010/0015003 A1; reduction using 

CaH2 was carried out between 1000oC and 1300oC in a tube furnace for a period 

of more than 2 h (Adam, 2010). In this study the reduction was carried out with a 

mixture of CaH2 and CaCl2 between 500oC and 800oC using an induction furnace 

(Figure 3.10). An induction furnace was preferred because of the relative ease in 

maintaining a reducing reaction atmosphere. The pressure in the glove box was 

maintained between -1 and 0 mbar while the oxygen level was 1 ppm. 

The reduction experiments were conducted based on the stoichiometry of 

Equations (3-3) and (3-4).  

 Al2O3 + 3 CaH2 = 2 Al + 3CaO + 3 H2      = -29.969 kcal (3-3) 

 O Ti  +  CaH2 = CaO + H2                           = -33.493 kcal   (3-4) 

O Ti  is oxygen dissolved in titanium. 
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Figure 3.10: Reduction experiment in an induction furnace 

 

3.5.1 Oxygen reduction (with Ca in CaCl2) – Induction Furnace 

The reduction was done using the following procedure: 

1. An appropriate weight of Ca granules was loaded in the flask. 

2. A mixture containing 5 g of TiAl(O) and 3.95 g CaCl2 flux was added to 

the retort tube.  

3. The retort tube was placed in the vessel case and the vessel case lid 

secured. 

4. The whole assembly was inserted into the induction coil (in the glove box) 

Figure 3.10.  
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5. The glove box was continuously evacuated and purged with argon to 

maintain 1±1 mbar pressure and less than 100 ppm O2. 

6. The furnace was turned on.   

7. Temperature was controlled by adjusting the power input and monitored 

using a B-type thermocouple connected to a TC-08 Data logger.  

8. Upon attaining the set temperature value (e.g. 800oC), the furnace was 

kept on for a predetermined number of minutes. 

9. On completion and when the furnace had cooled to 60oC, the pressure was 

adjusted to atmospheric pressure with argon or a vacuum pump before 

retrieving the reduction vessel and recovering the sample.  

10. The sample was characterized using XRD, XRF, OM, SEM and 

gravimetric analysis. 

3.5.2 Oxygen reduction (with Ca in CaCl2) by reaction milling 

Reaction milling was developed by Jangg to initiate reactions between Al, 

graphite (C), and O2 by intensive milling (Lu & Lai, 1998). In this study, the 

following procedure was used 

1. A mixture containing appropriate amounts of reactants (e.g. 22 g of 

TiAl(O), 1.35 g Ca and 3.95 g CaCl2 flux) was added to the mill vial.  

2. The sample was milled for 300 sec or longer for TiAl(O)/Al2O3.  

3. About 5 g of the as-milled powder was leached with 400 ml acidified 

water (25oC). The residue was filtered off and dried for 24 h in an oven set 

at 100oC.  

4. The sample was characterized using XRD, XRF, OM, SEM and 

gravimetric analysis. 

The various trials were done in triplicate and the results averaged. Results are 

discussed separately in subsequent chapters. 
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Chapter 4  

High Energy Mechanical Milling 

4.1 Introduction 

High energy mechanical milling (HEMM) was developed at INCO’s Paul D. 

Merica Research Laboratory for production of oxide dispersion strengthened 

(ODS) nickel-based super alloys but has since then been considered for 

application in the preparation of feedstock for metallurgical processes. In HEMM, 

the starting material is not homogeneous but usually a mixture of commercial 

powders. During high energy mechanical milling the powder mixture becomes 

more homogeneous as a result of material transfer (Blazquez et al., 2013). Also as 

a result of new atomically clean reactive particle surfaces that are created and a 

reduction in inter-particle diffusion distances by intimate mixing, the kinetics of 

the chemical reactions are enhanced. Various studies (Fecht, 1995; Welham, 1998; 

Zhang, 2004) have demonstrated that mechanically milled TiO2/Al powders react 

at a much lower temperature than unmilled reactants used in conventional 

thermochemical processing. This chapter presents and discusses results of the 

high energy mechanical milling of the TiO2/Al powder mixtures that were later 

used as feed stock in the production of TiAl powders by combustion synthesis and 

solid/liquid separation by extrusion of the combustion synthesis product. 

4.2 Results 

4.2.1 Effect of Milling Time on Microstructure 

The reaction between Al and TiO2 is interfacial therefore the microstructure of the 

starting TiO2/Al composite is critical to the reaction and the subsequent 

solid/liquid separation process (Ying et al., 2004). During the initial 2 h of milling 

there was a noticeable increase in particle size due to forging and welding as the 

ductile Al particles were plastically deformed into elongated shapes and the brittle 

TiO2 particles were fractured and imbedded into the Al. With further milling, 

fracturing superseded forging and welding. This resulted in a decrease in particle 

size, and more homogenous and fine microstructured powders whose composition 

approached the stoichiometry of the starting powder mixture (Blazquez, et al., 

2013). Short milling times produced coarse microstructured composite powders 
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with significant chemical composition variation within the particles and from 

particle to particle (Table 4.1 and Figure 5.20).  

 

Figure 4.1: Evolution of the average particle size with milling time 

 

The compositional variability of the TiO2/Al composite powders produced by 

high energy mechanical milling decreased as the milling time was increased. The 

standard deviation of the Ti content of the particles in the powders milled for 1 h 

was 23.06 compared to 1.65 for powders milled for 6 h (Table 4.1) 

 The compositional and textural variability of the TiO2/Al composite powders can 

adversely affect the subsequent solid/liquid separation process. 

 

Figure 4.2: Effect of milling on particle size distribution 

The unmilled powder mixture had a bi-modal particle size distribution (PSD) due 

to differences in particle size of the TiO2 and Al component powders used 
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(Figure 4.2). The fine size fraction was predominantly TiO2 (-0.2µm) while the 

coarser fraction was mainly Al (-60µm). 

Table 4.1: Compositional variability of as-milled powders (EDS analyses) 

 

 

During milling, the powder particle size and morphology changed with time. 

Because of forging and welding of powder particles, an initial increase in particle 

size was observed as the malleable was flattened. This was followed by a decrease 

in the powder particle size due to fracturing the hardened particles (Figure 4.2).   

As fracturing became more dominant there was a decrease in the proportion of the 

coarser size fraction. The net effect was an increase in mean size of fine fraction 

and a decreased mean size of coarse size fraction (Figure 4.1 and Figure 4.2).  

The tap density of milled powders increased with the milling time (Table 4.2). 

However, when the milled composite powders were cold-pressed, the apparent 

density of the green compacts obtained, (determined from weights and dimensions) 

averaged 55%.  

4.2.2 Effect of Milling Time on TiO2/Al Powders Reactivity 

The ignition temperatures of the combustion reaction that were extracted from the 

DTA traces of the powders milled for 1, 2, 4 and 6 h (Figure 4.3  and Table 4.2) 

indicate that the reaction ignition temperature decreases with an increase in the 

milling time. Milling creates new atomically clean reactive particle surfaces and 

also reduces inter-particle diffusion distances by intimate mixing. Therefore, 

sufficiently milled TiO2/Al composite powders can react even below 660oC, the 
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melting point of aluminium. This is in agreement with other studies (Kamali & 

Fahim, 2009; Liu et al., 2006; Welham, 1998; Welham & Llewellyn, 1998; Zhang 

& Raynova, 2009; Zhang et al., 2004). In the current study, the milling was aimed 

at obtaining a microstructure capable of igniting the TiO2/Al combustion reaction 

at a temperature sufficient to produce molten TiAl with minimal external energy 

input.  

Table 4.2: Relative tap densities and ignition temperatures of as-milled powders 

obtained from DTA traces 

Milling Time 

(h) 

Tap Density 

(g/cm3) 

Ignition Temperature 

(oC) 

0  900 

1 1.14 849 

2 1.20 829 

4 1.53 541 

6 1.72 532 

 

 

Figure 4.3: DTA for TiO2/Al composite powders as a function of milling time 

 

The criterion for selecting the milling time was based on optimising the 

downstream stage of solid/liquid separation. This required high porosity 

(characteristic of inhomogeneous reactant mixtures obtained by milling for 1 h). 

The higher porosity in powders milled for 1 h is probably due to evolution of 

volatiles contained in the green compacts and the fact that Al melts first and 

spreads on account of capillary forces leaving voids as illustrated in Figure 5.12(a) 
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and Figure 5.13. Coarse microstructured powders also allow the alloy phase has to 

be maintained liquid for long enough to facilitate extrusion of the alloy after 

combustion synthesis. Related research (Moore, 1995) has shown that high 

combustion temperatures cause gas channels, voids and surface to interior cracks. 

This is favourable for draining the alloy from the combustion product. In contrast, 

finer microstructured powders enable liquid Al is to spread more quickly between 

particles (because of shorter inter-particle distances) leading to enhanced reaction 

rates and a microstructure of lower porosity as observed in powders milled for 6 h. 

Taking into account thermodynamic and economic considerations that are 

elaborated in Chapter 5, powders milled for 1 h were preferred because of their 

potential to enhance alloy yields during solid/liquid separation. 

4.2.3 Effect of Milling on Phase Composition 

XRD patterns of the TiO2/Al powders showed no evidence of a reaction between 

Al and TiO2 even after 6 h of high energy mechanical milling (Figure 4.4); 

therefore the overall stoichiometric composition remained the same. However, 

powders milled for 1h exhibited a high variability in spatial distribution of 

constituents from particle to particle (Figure 5.20) giving an average Ti content of 

29.11 wt%. This was lower than the chemical composition of the more 

homogenous 6h milled composite (39.31 wt% Ti). The Ti content of the starting 

powder mixture determined by XRF analysis was 35.69 wt% Ti; slightly lower 

than the average for the 6h milled powder because of Al loss (about 7 wt%) after 

6h of milling. Short milling times produce composite material with significant 

chemical composition variation within the particles and from particle to particle 

(Lu et al., 1995). Related research (Gheorghe & Rack, 2002) has reported that the 

reaction path and compounds formed depend on the TiO2: Al ratio of the starting 

powder mixture (i.e. on the amount of Al available to react with the TiO2). 

Intimately mixed powders provide much larger contact between reactants and 

bring each reactant within a composite particle to allow diffusion in all directions 

(Welham, 1998). Therefore the milling time was optimized to ensure formation of 

the desired titanium aluminide alloy composition and yield. As the milling time 

was increased, particles became more homogenous in composition (Figure 4.5).  
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Figure 4.4: X-ray diffraction spectra of as milled TiO2/Al powder mixture after 

milling for 6 h 
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Figure 4.5: An inhomogenousTiO2/Al mixture after 1h milling showing two distinct 

reactants 

 

 
Figure 4.6:  A still coarse but more homogenous powder after 2h milling 

 

 
Figure 4.7: A more refined with blue Ti-enriched spots obtained after 4h milling 

 

 
Figure 4.8 A fine microstructured and homogenous powder obtained after 6h  
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After milling for 2h, the TiO2 particles were effectively incorporated into Al 

particles to form fairly homogenous composite powders (Figure 4.6). However, 

there were occasionally a few slightly titanium enriched areas (Figure 4.9).  

 
Figure 4.9: EDS element map of a powder produced after 4 h milling 

 

 

Figure 4.10: Back-scatter images of TiO2/Al powders milled for (a) 1h, and (b) 6 h  

 

4.2.4 Effect of Temperature on Phase Composition 

When composite powders were reacted below 1000oC (DTA combustion 

temperature), the product contained unreacted feed constituents (TiO2 and Al) and 

intermediate phases (TiAl3, Ti0.72O2, Ti4O7 and Al2TiO5). As the milling time was 

increased above 2h, the reaction went to completion at a lower temperature. 
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Table 4.3: Effect of reaction temperature on co-existing phases 

 

The kinetics of combustion synthesis are expected to be faster than observed in 

the above DTA results because of the shortened inter-particle distances and better 

heat transfer when reactants are compacted. The general trend observed in the 

DTA results is that combustion is incomplete at low temperatures and short 

milling times (Table 4.3). To ensure the reaction goes to completion, the 

combustion reaction will be done above 930oC. From thermodynamic 

considerations elaborated in Chapter 2, this would also ensure sufficient heat to 

produce molten TiAl. Results of solid/liquid separation experiments (Chapter 5) 

showed that only powders milled for 1h fulfilled this criterion.    

4.3 Summary 

The results have demonstrated that high energy mechanical milling can be 

effectively used for preparing feed to the solid/liquid separation process. While 

there was no evidence of a chemical reaction between Al and TiO2 during milling, 

it was observed that the milling intensity had a significant effect on the 

microstructure and reactivity of milled powders. Fine microstructured powders 

produced by prolonged milling ignited quicker and at lower temperatures. This 

resulted in low combustion temperatures and rapid solidification of the alloy that 

would cause low solid/liquid separating efficiencies. 

Conversely, powders milled for shorter milling times had a coarse microstructure, 

higher compositional variability and a higher ignition temperature. A higher 
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ignition temperature is expected to be favourable for the solid/liquid separation 

because the TiAl phase in the combustion synthesis product would remain molten 

long enough to be extruded out. Therefore the powders milled for 1 h were 

deemed to be most suitable to be used in solid/liquid separation and consequently 

became the basis for testing unit process downstream the solid/liquid separation 

stage. 
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Chapter 5  

Liquid/Solid Separation 

5.1 Introduction 

When TiO2/Al composite powders produced by high energy mechanical milling 

(HEMM), are preheated to the ignition temperature Tig, a self-sustaining 

exothermic reaction, also referred to as a combustion synthesis reaction, occurs 

producing TiAl and Al2O3 at a temperature much lower than is possible with 

unmilled reactants (Welham, 1998; Ying et al., 2004). The ignition temperature is 

determined by the milling intensity. Powders subjected to higher milling intensity 

ignite at lower temperatures. Depending on the milling intensity and ignition 

temperature, the combustion synthesis products may be solid, semi-solid or liquid. 

In the TiPro process, the combustion synthesis reaction produces solid corundum 

(Al2O3) and liquid TiAl. Liquid TiAl is subsequently separated from the solid 

corundum by extruding the combustion synthesis product during solid/liquid 

separation.  Therefore, it is necessary to maintain the alloy phase in the liquid 

state long enough for it to be extruded and flow out of the solid corundum (Al2O3) 

inter-particle spaces. This chapter discusses the results of the solid/liquid 

separation experiments conducted to extract TiAl from the combustion synthesis 

TixAly(O)/Al2O3 product. 

5.2 Theory of Two Phase Flow in Porous Media  

The products of combustion synthesis reactions are extremely porous; typically 

around 50% of theoretical density (Moore & Feng, 1995). Therefore, the 

extraction of liquid TiAl from the combustion synthesis product by extrusion can 

be considered to be a two-fluid phase flow system (consisting of liquid TiAl and a 

gas phase consisting of entrapped air and volatile combustion synthesis products) 

in a porous medium of corundum particles. Two phase flow in porous media is of 

significance, forming the basis for many important industrial applications, such as 

recovery of oil from reservoir rocks in petroleum production and in trickle-bed 

reactors for water purification processes and hydrogenation. In porous media, 

capillary pressure is a major factor as it affects liquid distribution, holdup and 

wetting efficiency (Lappalainen et al., 2009). The capillary pressure can be 

described as the pressure gradient that arises due to the curvature of the interfacial 
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surface of two coexisting immiscible fluids. In the pore space of a porous material 

containing two fluids (liquid TiAl and gas phase), the interfacial boundary 

between the fluids is curved and the sharpness of the curvature is a function of the 

inter-granular spaces and the proportion of the coexisting fluids. The curvature 

results from the interfacial surface adopting a shape with the least interfacial-

surface free energy compatible with the volumes of fluids present and the shapes 

of the retraining solid surfaces (Leverett, 1941). The capillary pressure, Pc, acting 

on the interface separating two phases is given by the Young-Laplace formula, 

 Pc = Pnw – Pw =   (5-1) 

where R = (  + ), 

Pnw and Pw are the pressures of the non-wetting and wetting phases, R1 and R2 

denote the principal radii of curvature of the interface (Figure 5.1), and γ is the 

surface tension between the phases.  

Since the interface is considered as a two-dimensional surface which spans a 

three-dimensional space therefore its shape cannot be sufficiently described by the 

curling seen in a single cross-section of the particle. There are two curvatures 

(referred to as principal curvatures C1 and C2) that characterise the shape at each 

point in space. The principle curvatures are the curvatures of the two lines of 

intercepts between the planes and the surface, which have almost circular shapes 

in close proximity to the point under consideration. The radii of these two circular 

fragments, R1 and R2, are called the principle radii of curvature, and their inverse 

values, C1 =  and C2 = , are referred to as the two principle curvatures 

(Zimmerberg, 2006). 
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Figure 5.1: Concept of the principal radii of curvature of an interface (Zimmerberg, 

2006) 

The fluid having a fluid-solid contact angle between 0o and 90o is the wetting 

phase whereas the one with a contact angle between 90o and 180o is the non-

wetting phase. The contact angle of liquid TiAl on Al2O3 is 38o; therefore in the 

TiPro process TiAl is the wetting phase and gas is the non-wetting phase (Bear et 

al., 2011).  

Differing theories relating to capillary pressure (e.g. hysteresis) have been 

reported by various researchers; however there is general agreement that particle 

properties such as size, sphericity, and surface roughness influence capillary 

pressure (Bear, 1972). Capillary pressure increases with decreasing particle size 

and increasing surface roughness. As capillary pressure increases, imbibition 

increases at the expense of drainage and the flow of liquid out of the porous 

medium is impeded. It has been reported that the wetting phase gets imbibed 

much more in the grooves on the rough surface than in the pore spaces between 

the particles. Surface roughness also causes an increase in the film thickness on 

the particle surface (Lappalainen, et al., 2009). This is unfavourable for 

solid/liquid separation as it increases liquid holdup.  

The possible liquid configurations in porous media systems where gas and liquid 

coexist can be categorized into three saturation zones of the capillary pressure 

curve (Figure 5.2). At low content, the liquid phase occurs as pendular rings 

around inter-grain contacts (Figure 5.3(a)). The full liquid saturation, in which 

only the gas-liquid interface exists on the surface of the medium, corresponds to 

the capillary zone. In the zone of intermediate liquid saturation, or the funicular 
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region, the liquid forms various configurations referred to as funicular bridges. 

The funicular region results by coalescence of pendular rings (Smith, 1933) and 

its limits are not clear as they overlap with the pendular and the full saturation 

zones (Lappalainen, et al., 2009). In the high liquid saturation zones the liquid is 

more loosely bound because of lower capillary pressure; therefore as the liquid 

saturation increases it gets easier to drain the liquid.  

 

Figure 5.2: Capillary pressure – liquid saturation curve showing pendular, funicular 

and capillary regions (Lappalainen, et al., 2009) 

 

Figure 5.3: Liquid bridges in the (a) pendular and (b) funicular regions 

(Lappalainen, et al., 2009) 

 

In the pendular region, capillary pressure is a function of the mean curvature 

which in turn is a function of the two principal radii, R1 and R2 (Figure 5.4). The 

capillary pressure-liquid saturation relationship is obtained by calculating the 
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capillary pressure and liquid saturation based on R1 and R2 using equation (5-1).  

The two radii depend on factors such as the pore size and geometry, wettability of 

the medium, saturations of the phases and whether the saturation state has been 

obtained by drainage or imbibition. 

 

Figure 5.4: A schematic of the pendular ring at the inter-particle contact point 

showing the filling angle φ and the corresponding principal radii R1 and R2 

(Lappalainen, et al., 2009) 

The capillary pressure in the funicular region is determined by the particle 

interstices and is calculated using the hydraulic diameter DH, (R* =1/2DH) of the 

smallest pore in Equation (5-1).  

DH = 4A/s, where A is the cross-sectional area and s is the wetted 

perimeter of the flow channel. 

In the capillary region, the liquid starts flowing out and as the drainage force is 

exerted on the porous medium, the gas starts displacing first the liquid on the 

particle surface where the capillary force is zero. As the liquid surface lowers, the 

menisci of the inter-particle free surfaces gets smaller thereby increasing the 

capillary pressure. In non-homogenous porous media, the capillary pressure that 

holds the liquid in place varies spatially. Relatively less drainage force is required 

to displace liquid with gas in areas of higher porosity and larger particles. 

Capillary driven liquid flow can be radial in orientation as it is irrespective of pore 

orientation (Lappalainen, et al., 2009). 

5.2.1 Liquid-solid Interaction and Microstructure Evolution 

The presence of the liquid phase creates conditions similar to liquid-phase 

sintering. Since there is no chemical reaction between the combustion products 

liquid TiAl and solid Al2O3, the interfacial energies have a dominant effect on 

microstructure evolution. If the liquid wets and spreads to cover the solid particles, 

the particles will be separated by a liquid bridge that significantly reduces inter-
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particle friction so that they can easily rearrange under the compressive capillary 

stress of the liquid.  A wetting liquid layer generates a compressive capillary force, 

which is equivalent to subjecting the system to a large external hydrostatic 

compression given by the Young and Laplace (Equation (5-1)).  The large 

capillary pressures cause rapid particle rearrangement when the viscosity of the 

system is still low. Capillary pressure gradients will also cause liquid to flow from 

regions with large pores to regions with smaller pores thereby redistributing the 

liquid. This phenomenon accounts for why densification achieved with liquid-

phase sintering that is significantly higher than in solid-state sintering. If the 

liquid wets and spreads over the solid particles, the solid-vapour interface of the 

particulate system is eliminated and pores form in the liquid. The reduction of the 

liquid-vapour interfacial area provides a driving force for shrinkage and 

consequently densification of the system. Following particle rearrangement, 

densification might occur by the solution-precipitation mechanism, and the liquid 

layer separating the grains progressively becomes thinner with time until the 

liquid capillary becomes too narrow for the liquid to flow. 

5.2.2 Liquid-Phase Sintering Mechanisms 

The basic mechanisms and processes occurring during liquid-phase sintering can 

be divided into three stages, each over-lapping with the successive stage. 

5.2.2.1 Stage 1: Rearrangement and Liquid Redistribution 

Investigations into sintering fine tungsten powders containing coarse nickel 

particles that melt into a liquid phase have established that the liquid redistributes 

sequentially in such a way that the small pores are filled first and the larger pores 

later (Park, 1986). This produces shrinkage and densification a feature that has 

been observed in the combustion synthesis products of the TiPro process. Once in 

small pores, the particle-wetting liquid phase is so tightly held by strong capillary 

forces that it cannot be drained out by extruding the combustion product. 

Inhomogeneous powders that are characteristic of coarse microstructured powders 

milled for 1 h lead to inhomogeneous liquid distribution producing regions that 

are enriched with the liquid alloy.  

The particle rearrangement process can be divided into the primary and the 

secondary rearrangement stages (Figure 5.5). The primary stage occurs rapidly 

soon after the formation of the liquid under the surface tension forces of liquid 
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bridges between particles. The secondary rearrangement occurs only if the liquid 

can penetrate the grain boundaries and fragment the polycrystalline particles. It is 

much more slowly than the primary rearrangement because it depends on the rate 

the grain boundaries dissolve away. 

 

Figure 5.5: Schematic illustrating particle rearrangement of polycrystalline particles 

(Rahaman, 2003) 

5.2.2.2 Stage 2: Solution-Precipitation 

In stage 2, rearrangement decreases and solution-precipitation that leads to 

densification followed by coarsening dominates. In addition to solution-

precipitation, coarsening also occurs by coalescence of small grains with 

contacting large grains. In coalescence, the grains are pulled into contact by a 

wetting liquid (Figure 5.6). 

 

 

Figure 5.6: Schematic illustrating agglomeration by coalescence of small and large 

particles 
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In systems where no solid-solid contacts exist, coalescence may occur by 

migration of the liquid film separating the grains. This is referred to as directional 

grain growth. 

 

Figure 5.7: Three possible coalescence mechanisms between contacting grains. (a) 

Solid-state grain boundary migration; (b) liquid-film migration; (c) solution-

precipitation through the liquid (Rahaman, 2003) 

Tungsten crystal spheres sintered in the presence of liquid Ni showed one sphere 

grows at the expense of its neighbour (Figure 5.8). Electron probe analysis 

indicated that the shrinking grain consisted of pure W, while the precipitated 

material on the growing grain was a solid solution of tungsten containing 0.15 

wt% Ni.  

 

Figure 5.8: Directional grain growth during liquid-phase sintering of single-crystal 

W spheres with Ni at 1640oC showing (a) the microstructure and (b) the microprobe 

analysis (Rahaman, 2003) 

It is inferred that the compositional difference between the pure W and the solid 

solution provides a large decrease in chemical energy, which more than offsets the 
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increase in the interfacial energy and is therefore the driving force of the 

coalescence process (Rahaman, 2003).  

5.2.2.3 Stage 3: Ostwald Ripening 

In stage 3, densification slows down significantly giving way to microstructural 

coarsening by Ostwald ripening a process by which smaller particles are 

transported and deposited on to larger particles in order to reach a more 

thermodynamically stable state wherein the specific surface area is minimised. 

The bigger particles grow bigger at the expense of smaller ones (Figure 5.9). 

During grain growth, large pores remain stable until the liquid meniscus radius 

increases sufficiently to initiate capillary refilling of the pores thereby enhancing 

densification. 

 

Figure 5.9: Schematic of Ostwald ripening showing growth of larger particles by 

deposition of smaller particles 

 

5.3 Results   

5.3.1 Composition of Products 

XRD analysis results of the Ti-Al alloy and the co-existing Ti-Al / Al2O3 by-

product obtained after extruding the liquid Ti-Al / solid Al2O3 mixture indicated 

that the alloy that was produced was predominantly TiAl with minor Al2O3 

impurities. The by-product contained mainly Al2O3, TiAl (Figure 5.11(a) and (b)) 

and probably minor amounts of Ti3Al, TiO and TiAl3 (Figure 5.10). This was 

confirmed by EDS analyses (Table 5.1). The formation of titanium aluminide 

TiAl by preheating the reacting TiO2/Al composite powders is therefore not 

hindered by kinetic and thermodynamic conditions used in the experiments. 

However, since the alloy phase has to be molten in order to facilitate its separation 

from solid alumina (Al2O3) the period that the alloy is maintained liquid is one of 

the critical parameters for increasing the alloy yields by extruding the combustion 
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synthesis product. Maintaining the alloy phase in a molten state is determined by a 

combination of interdependent factors such as the combustion temperature, heat 

losses and the rate of preheating the reactants. 

Table 5.1: EDS analyses of the Ti-Al alloy and composite by-product 

  Composition - Wt% 

Sample Ti Al O 

Alloy  64.43 34.30 1.77 

Composite  30.12 44.95 24.95 
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Figure 5.10: XRD patterns of solid/liquid separation by-products from combustion of TiO2/Al powders milled for (a) 1h, (b) 2h, (c) 4h and (d) 6h, 

respectively 
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Figure 5.11: XRD patterns of (a) TiAl alloy and (b) extrusion by-product of the 

combustion synthesis product powders milled for 1h 
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Figure 5.12: Extrusion products (a) By-product (b) TiAl alloy 

 

5.3.2 Distribution of Co-existing Phases  

The TiAl relative abundance (saturation level determined IQ Materials Software) 

of the extrusion by-product averaged about 15% TiAl (Figure 5.24). The spatial 

distribution, and association of co-existing phases on SEM element maps of a 

cross section of the combustion synthesis product, also confirm that the TiAl 

concentration was too low for much liquid TiAl to be extruded out (Figure 5.14). 

For liquid TiAl to be extruded out, the alloy phase has to be fully interconnected 

and the low capillary pressure conditions, prevalent at high TiAl concentration in 

the capillary zone, have to be attained (Figure 5.2).   

The mechanism of TiAl grain growth through coalescence of pendular rings is 

illustrated by SEM elemental maps of a cross section of a combustion synthesis 

(CS) product (Figure 5.14). The spatial saturation of the CS product with liquid 

TiAl increases by rearrangement and agglomeration of Al2O3 particles 

(Figure 5.15). As the contact angle of TiAl on  corundum (38o) is low (Li et al., 
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2008), molten TiAl has a tendency to wet and lubricate the corundum particle 

surfaces. This facilitates rearrangement of the corudum  particles into denser 

agglomerates while leaving the TiAl to coalesce into bigger grains. Upon 

solidification, these big grains appear as isolated TiAl-enriched areas in pores and 

surounded by a TiAl(O)/Al2O3-composite intergrowth (Figure 5.13).  

 

Figure 5.13: Coalesced TiAl in pores and surrounded by a TiAl(O)/Al2O3-composite 

 

 

Figure 5.14: TiAl funicular bridges (light blue) of TiAl alloy in the combustion 

synthesis product of powders milled for 1h 

TiAl 

Pore

TiAl 

Composite 
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According to Moore and Feng (1995), when particles are in contact with a wetting 

fluid an attractive force is generated that pulls particles together into denser 

agglomerates. The wetting fluid also lubricates the surfaces thereby facilitating 

particle rearrangement. Various research has reported this phenomen has been 

observed in liquid-phase sintering too (Anestiev, 2000; Moore, 1995; Rahaman, 

2003). Particle rearangement of the initial or primary particle network is reported 

to occur rapidly in as little as a few minutes and has been associated with the 

enhanced densification that occurs during liquid-phase sintering in contrast with 

lower densification achieved in solid-state sintering (Rahaman, 2003; Moore, 

1995; Anestiev, 2000). The micrograph of the combustion product (Figure 5.15) 

and that obtained by other researchers studying agglomeration during liquid-phase 

sintering (Figure 5.16) bear similar microstructural features of liquid distribution 

and particle rearrangement driven by capillary stress gradients that characterise 

liquid-phase sintering. The analysis of rearrangement in randomly packed packed 

array of particles is a challenging problem and understanding the process in real 

systems is limited (Rahaman, 2003).  

 

Figure 5.15:  SEM image of Al2O3 agglomerates and coalesced TiAl in combustion 

synthesis product of powders milled for 1h  
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Figure 5.16: High magnification view of agglomeration in the W (15.4 wt% Ni + 6.6 

wt% Fe) system after liquid-phase sintering for 1 min (Rahaman, 2003) 

5.3.3 Effect of Milling Time  

Powders produced after milling for different time durations exhibited different 

microstructural characteristics, thermodynamic and kinetic behaviour. Short 

milling times produced coarse microstructured composite powders with high 

ignition and combustion temperatures. The combustion temperature attained with 

powders milled for 1 h ignited at 970oC and attained a combustion temperature 

above 1460oC the melting point of TiAl (Figure 5.17).  

However, the peak temperature could not be maintained long enough to facilitate 

solid/liquid separation. The temperature dropped to about 1200oC (Figure 5.17). 

Significant amounts of TiAl still remained frozen in the extrusion by-product. 

Maintaining high temperatures and TiAl in liquid state is critical for high alloy 

yields.   
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Figure 5.17: Thermograph of a compact of TiO2/Al composite powder milled for 1h 

 

As the milling time was increased the microstructure of the powders became finer; 

the ignition and combustion temperatures dropped.  Powders milled for 4 h and 6 

h ignited around 250oC and the combustion temperature was about 700oC 

(Figure 5.18 and Figure 5.19). 

 

Figure 5.18: Thermograph of combustion synthesis of TiO2/Al powders milled for 4h 
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Ignition time was 23 min and 20 min for powders milled for 4 h and 6 h 

respectively compared to 42 min for 1h-milled powder. Faster kinetics of 4 h and 

6 h milled powders was due to the formation of more reactive fresh new surfaces 

(Fecht, 1995; Welham, 1998; Zhang, 2004). 

 

Figure 5.19: Thermograph of combustion synthesis of TiO2/Al powders milled for 6h 

 

XRD and EDS analyses of all the combustion product samples revealed the 

presence of significant quantities of residual TiAl.  The Ti content of the 

composite particles in the powder milled for 1 h ranged between 0.73 and 58.29 

wt% with a standard deviation of 23.06 wt%, compared to a range from 37.69 to 

43.11 wt% Ti and 1.22 wt% standard deviation for the powder milled for 6 h. 

From the EDS element mapping and the optical micrographs (Figure 5.20) it was 

evident that as the milling time was increased, the composition of as-milled 

powder particles became more homogeneous and the thickness of reactants was 

reduced due to refinement of the composite structure. This caused a decrease of 

ignition temperature from above 970oC for 1 h milled powder to about 250oC for 

6 h-milled powder. A higher ignition temperature is advantageous for solid/liquid 

separation because it allows the temperature of the products to be raised to above 

the melting temperature of TiAl. It was observed that the combustion temperature 

attained with powders milled for 4 h or 6 h was only 700oC compared to 1714oC 



 

111 

attained with powders milled for 1 h. When the combustion temperature was 

lower than 1460oC the alloy solidified and could not be extruded out of the 

combustion synthesis TiAl(O)/Al2O3 product.  

In contrast, when the powders milled for 1h were reacted, the product had a 

coarser microstructure of the two phases and when extruded; some liquid TiAl 

was recovered because TiAl remained molten for a longer period due to the higher 

ignition temperature and corresponding combustion temperatures attained. This is 

more favourable for the solid/liquid separation.  

 As illustrated by Table 5.3, Figure 5.20, Figure 5.21 and Figure 5.35, there was 

an apparent correlation between the microstructure of the as-milled TiO2/Al 

composite powders and the grain intergrowth of TiAl and Al2O3 in the final 

combustion synthesis product.  

 

Figure 5.20: SEM element maps contrasting coarse and fine microstructures 

obtained after milling for 1h and 6 h respectively  

It was also observed that, powders milled for 1 h were inhomogeneous with 

porosity varying in space; the resultant CS product exhibited more connectivity 

among pores and capillaries compared to fine microstructured powders milled for 

6 h (Figure 5.21 (a) and (b)). Wider capillaries or pores are drained before 

narrower capillaries therefore powders milled for 1 h are more suitable for 

solid/liquid separation because interconnected pores facilitate flow of the alloy out 

of the combustion synthesis product during extrusion.  
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Figure 5.21: SEM Backscatter images of combustion synthesis products of TiO2/Al 

composite powders milled for (a) 1h and (b) 6h, respectively 

 

Figure 5.21 contrasts the microstructure obtained by shorter (1 h) and extended (6 

h) milling. Drainage of the alloy from fine microstructured combustion products 

obtained by extended milling is more difficult because TiAl is held by capillary 

forces that are stronger in fine microstructured combustion products obtained by 

milling for 6 h. This is evident from the decreased porosity observed in 

combustion products milled for 6 h (6.8%) compared to 31.3% porosity in 

powders milled for 1 h. 

5.3.4 Effect of Extrusion Pressure 

The extrusion pressure was not varied in this study because results of the previous 

research (Raynova, 2007) showed that merely increasing the pressure did not 

increase alloy yields. This was due to the rapid solidification of TiAl. However, it 

is well known that in the extrusion die, the flow-motivating pressure varies 

depending on the position in the extruder. It is highest in the barrel and decreases 

along the axis of the extruder as illustrated in Figure 5.22.  
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Figure 5.22: Mean axial pressure profile during extrusion and pressure drop in 

barrel, die entry and die-land (Reed, 1995) 

 

The axisymmetric section of the combustion synthesis composite product 

(Figure 5.25) shows the effect of pressure on the spatial distribution of the TiAl 

and Al2O3 phases post extrusion.  During extrusion the pressure inducing the flow 

of liquid TiAl is highest at the top (where the plunger makes contact with the 

compact) and decreases toward the bottom of the compacts. Migration of liquid 

TiAl under the action of the extrusion force is marked by an increase in intensity 

of the dark Al2O3 phase in the top region (Figure 5.25). This is also confirmed by 

an increase in TiAl and a decreasing Al2O3 concentration with an increase in axial 

distance from the top of the compact, the point of application of the extrusion 

pressure (Figure 5.24).  

During extrusion, the spatial distribution of TiAl was changed (Figure 5.24 and 

Figure 5.25).  The pressure inducing the flow of liquid TiAl was highest at the top 

(where the plunger makes contact with the compact) and decreased axially toward 

the bottom of the compact. This was marked by apparent depletion of the TiAl 

phase in the top region of Figure 5.25 that left the top enriched with the dark 

phase Al2O3 as the TiAl phase migrated away under the effect of the extrusion 

pressure.   
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Distribution of the residual TiAl in the extrusion by-product (Figure 5.24 and 

Figure 5.25) indicates that the flow of the liquid TiAl out of the combustion 

synthesis composite product during extrusion is pressure and temperature 

dependent. Therefore, the separation of liquid TiAl from corundum during the 

solid/liquid separation process can be described by Darcy’s law.  Darcy’s law 

states that the volumetric flow rate, Q, of a liquid through a porous medium is 

proportional to the pressure gradient ∆p, inversely proportional to the thickness of 

the combustion product L and proportional to the cross sectional area A. In 

Equation (5-2), L corresponds to the axial distance measured from the top of the 

combustion product, η the fluid viscosity while P1 and P2 are the upstream and 

downstream pressures, respectively  

 Q = kA  (5-2) 

 

where k is the Darcy permeability of the material (German, 2005). It is well 

established that combustion synthesis products are characterised by high porosity 

(Moore & Feng, 1995). Permeability depends on both the material and the fluid 

properties and is inversely proportional to the fluid viscosity. The capillarity in the 

corundum particles tends to draw liquid TiAl into the corundum particles to form 

a viscous slurry (Figure 5.23) (Leverett, 1941). According to the Einstein-Roscoe 

equations, the viscosity of a liquid containing solid suspensions increases as the 

volume percent of solids contained increases (Wright et al., 2001).  Back scattered 

electron images of the extrusion by-product show Al2O3 existing as large 

agglomerates and as fine disseminations less than 2µm in a TiAl matrix 

(Figure 5.21). The fine Al2O3 disseminations in TiAl lead to an increase in the 

viscosity and adversely affect drainage of TiAl during extrusion. The increase in 

viscosity decreases the permeability, fluidity and flow rate of the TiAl through the 

corundum particles. 
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Figure 5.23: Formation of viscous slurry of fine Al2O3 particles (grey spots) in a 

white TiAl matrix of 1 h CS product (black spots are pores) 

 

 

 

Figure 5.24: Spatial distribution (saturation level) of TiAl alloy phase with axial 

depth of the extrusion by-product (the axes are rotated 90o to the extrusion axis of 

Figure 5.25) 

From Figure 5.24 it is apparent that except for the centre (x=40 mm), there is an 

increase in TiAl content from the top (the point of pressure application) to the 
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bottom of the compact. The liquid TiAl flow in the centre is more efficient due to 

less friction. 

 

 

Figure 5.25: Spatial distribution of phases after extrusion. White = TiAl, Black = 

Al2O3 and Grey = TiAl (O)/Al2O3 composite 

5.3.5 Effect of the Combustion Temperature  

As stated earlier, the combustion temperatures attained with fine microstructured 

TiO2/Al  composite reactant powders (Figure 5.18 and Figure 5.19) were below 

1460oC, the melting point of TiAl, and therefore unfavourable for recovery of 

TiAl by extruding the combustion synthesis product. In contrast, when coarse 

microstructured reactant powders obtained by 1h high energy mechanical milling 

were reacted the combustion temperature was 1714oC. However, due to the rapid 

cooling after combustion synthesis, there was still a significant quantity of 

residual TiAl in the extrusion by-product and the high combustion temperature 

attained rapidly fell from the peak temperature of 1714oC to about 1200oC 

(Figure 5.17). The peak temperature could not be maintained long enough to 
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facilitate solid/liquid separation. To study the effect of combustion temperature 

attained by the reaction products, extra heat was given from the induction coil to 

supplement the heat generated by the combustion reaction. This helped to heat the 

products and maintain the temperature of the products at 1788oC for 43 min 

(Figure 5.26). However, despite holding the products above the melting point of 

TiAl, not much alloy was recovered as significant amounts of TiAl still remained 

solidified in the extrusion by-product. The flow of TiAl during extrusion is not 

solely determined by the combustion temperature but on other factors such as the 

liquid TiAl content attained before extruding the combustion synthesis product.  
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Figure 5.26: Combustion synthesis thermograph of TiO2/Al powder mixture milled 

for 1 h (with 10% excess Al) and 41min holding at 1800oC 

5.3.6 Effect of the Reactants Preheating Rate  

The results from the liquid/solid separation experiments, conducted with compacts 

made from the powders milled for 1 h, showed that the heating rate of the powder 

compact and holding the solid/liquid mixture at the maximum temperature for a 

period of time had a significant effect on the solid/liquid separation. It was 

observed that high heating rates led to the rapid vaporisation of volatiles, more 

cracking and porosity generation. The intrinsically generated porosity, in addition 

to the porosity carried over from the green compact porosity and volume changes 
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resulting from formation of products of higher molar density, compared to 

reactants, facilitated the outflow of the molten TiAl alloy phase (Long et al., 1995; 

Moore & Feng, 1995; Rice & McDonough, 1985; Li, et al., 2008). The generated 

porosity and cavities provided the network for melt flow during extrusion 

(Figure 5.29). The volume change resulting from the formation of TiAl and Al2O3 

was about 17%. The formation of liquid TiAl contributed an additional source of 

porosity. When the heating rate was raised from 12.5oC/min to 44.5oC/min the 

combustion temperature attained rose from 1204oC to 1788oC and the alloy yield 

increased from zero to 9.7% (Table 5.2). At high preheating rates, the heat losses 

were offset without the temperature of the products rapidly plunging below the 

TiAl melting temperature. The residual porosity of the extrusion by-product of 

from the powders milled for 1 h was 31.3% compared to 6.8% for powders milled 

for 6 h. 

Table 5.2: Effect of preheating rate on the yield of the alloy phase from TiO2/Al 

powders milled for 1h 

Sample 

No. 

Preheating 

Rate 

(oC/min) 

Ignition 

Time 

(min) 

Combustion 

Temperature 

(oC) 

TiAl 

Extrudate 

Yield 

(%) 

1 44.5 40.8 1788 9.7 

2 12.5 19.5  1704 0.0 

The rate at which reactants are heated prior to combustion is critical to 

maintaining the alloy phase in liquid state and consequently affects alloy yields.  

According to Horvitz et al. (2002), at the low heating rate (Figure 5.28) no 

thermal explosion can take place, even if the reactants were heated above the 

ignition temperature, because of the partial transformation of the reactants into 

products during the slow heating, and the exposure of the sample to elevated 

temperatures (Horvitz, et al., 2002). This reduces the exothermicity and the 

combustion temperature of the system. 
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Figure 5.27: Effect of the rate of reactant preheating on the yield of TiAl alloy from 

powders milled for 1h 

 

In this study there was complete transformation into TiAl and Al2O3 regardless of 

heating rate (Figure 5.11); however, the temperature attained by the alloy phase 

was lower causing it to solidify faster before extrusion (Figure 5.28). 
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Figure 5.28: Combustion synthesis thermograph with a low (less than 10oC/min) 

preheating rate  
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Figure 5.29: Flow of the molten alloy phase (white phase) in the cracks in the 

combustion synthesis product during extrusion 

 

For pressured liquid TiAl to migrate through and be separated from the solid 

Al2O3, the permeability of the combustion synthesis product has to be sufficiently 

high. The effect of gravity on separation is negligible because of the similarity in 

density of the two phases; therefore the liquid TiAl preferentially flows into 

cracks and pores regardless of spatial orientation (Long, et al., 1995). This is 

evident from the orientation of the TiAl phase particles (Figure 5.29). 

5.3.7 Solid/Liquid Separation Mechanism  

Despite holding the products above the melting temperature of TiAl for 43 min, 

only a small fraction of the stoichiometric quantity of TiAl alloy expected was 

extracted by extruding the combustion product. This is due to the solid/liquid 

separation mechanism. The mechanism behind solid/liquid separation involves 

two capillary force driven processes; the growth of a continuous liquid TiAl phase 

by imbibition followed by drainage which is the flow of the alloy out of the 

combustion synthesis product. Products of combustion synthesis are 

characteristically porous. The porosity is passed on from reactants which are as-

milled TiO2/Al composites pressed into compacts with a green density of about 50 
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percent and not less than 70 percent in combustion products. Additionally, some 

porosity is generated by the vaporisation of volatiles during combustion. The 

pores are initially saturated with the gas phase. Therefore, after combustion, the 

gas phase in the pores forms an interface with the liquid TiAl and solid Al2O3. As 

the contact angle of liquid TiAl on Al2O3 (38o), is less than 90o, it tends to wet the 

solid Al2O3 and spontaneously flows in along the walls of the pores, displacing the 

non-wetting gas phase that initially saturates the pores by a capillary force driven 

process called imbibition (Bear, 1972; Bear, et al., 2011; Li, et al., 2008). The 

wetting process evolves through three stages of liquid TiAl saturation between 0 

and 100%. At a very low liquid TiAl saturation (Figure 5.31), TiAl forms rings 

called pendular rings around Al2O3 particle contact points. At this low liquid TiAl 

saturation the rings are isolated and they do not form a continuous alloy phase, 

except for a thin molecular thickness film on the Al2O3 surfaces. No pressure can 

be transmitted from one ring to another within the liquid TiAl alloy phase. 

However, the intervening TiAl film on the alumina surfaces creates conditions 

similar to liquid-phase sintering, that reduce the inter-particle friction and 

facilitate the rearrangement of Al2O3 particles under the driving force of the 

compressive capillary stress of the liquid and the applied extrusion force. Rapid 

Al2O3 particle arrangement continues as long as the viscosity of the system 

remains low (Rahaman, 2003). The liquid TiAl saturation increases by imbibition 

and by the rearrangement of Al2O3 particles into agglomerates. According to 

Moore and Feng (1995), when particles are in contact with a wetting fluid an 

attractive force is generated that pulls particles together into denser agglomerates 

(Figure 5.30).  

 

Figure 5.30: Effect of wettability on the force between particles (a) non-wetting, 

repulsive force; (b) wetting attractive, attractive repulsive force; α is the contact 

angle (Moore & Feng, 1995) 

 

As the TiAl phase saturation increases, the pendular rings expand until a 

continuous TiAl alloy phase is formed at a critical saturation referred to as 
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equilibrium saturation to the liquid TiAl phase. It is only above the critical 

saturation, called funicular, that the liquid TiAl is able to flow. With a further 

increase in the saturation of liquid TiAl, the non-wetting fluid (i.e. gas phase) is 

no longer a continuous phase; it breaks into individual bubbles lodged in the 

larger pores that can only move by exerting sufficient pressure on the liquid TiAl. 

The resulting state, referred to as the insular state of the non-wetting (gas) phase, 

may probably be the source of high dissolved oxygen content in TiAl alloy phase 

(Bear, 1972).  

 

Figure 5.31: Al2O3 particles with TiAl pendular rings (a) isolated from each other (b) 

touching each other (Bear, et al., 2011)  

 

According to Bang-sheng et al. (Li, et al., 2008) the oxygen from the wetted 

Al2O3 combines with Ti from molten TiAl to form TiO on the surface of Al2O3-x. 

Once liquid TiAl saturation is attained, a certain pressure must be achieved in the 

gas phase before the gas can begin to penetrate the combustion synthesis product, 

displacing the liquid TiAl contained in it and consequently allowing drainage of 

the alloy phase. The capillary pressure that must be built up at the TiAl-gas phase 

interface before drainage of the liquid TiAl starts is referred to as threshold 

pressure or bubbling pressure (Bear, 1972). As the liquid TiAl saturation is 

reduced, the channels of the liquid TiAl break down and become discontinuous 

throughout the CS product. Therefore the liquid TiAl is unable to flow and 

extraction of TiAl is limited by this mechanism. This threshold is attained faster in 

combustion products of powders milled for 6 h than in their 1 h counterparts and 

is illustrated by the absence of discrete TiAl grains in Figure 5.34.  
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Figure 5.32: Fluid content states of TiAl wetted Al2O3 particles (a) at very low TiAl 

saturation, (b) at increased TiAl content and (c) above equilibrium content of TiAl 

where TiAl flow starts and some gas is entrapped 

In contrast, combustion products of powders milled for 1 h (Figure 5.33) exhibit 

discrete TiAl grains, an indication of better liquid TiAl flow conditions resulting 

from the higher combustion temperature and porosity attained (Table 4.2 and 

Table 5.3).  

 

Figure 5.33: Combustion product of powders milled for 1 h showing alloy discreet 

alloy particles, TiAl/Al2O3 composite areas and pores 
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Figure 5.34: Combustion product of powders milled for 6 h showing TiAl/Al2O3 

composite areas and pores but no discreet alloy particles 

 

 

Table 5.3: Effect of milling time on the (a) particle size distribution and porosity of 

reactants (b) porosity of products 

 

 

Figure 5.15 shows that the solid/liquid separation involves a liquid-phase sintering 

type mechanism in which Al2O3 particles rapidly agglomerate. Figure 5.35 shows 

that the agglomeration increases with milling intensity. As indicated by the 

connectivity of Al2O3 particles, the intensity of agglomeration in products of 

reactants milled for 6 h was evidently higher than those produced from powders 

milled for 1 h. This was probably due to more intimate mixing and shorter inter-

particle distances in 6 h products. 



 

 

1
2
5
 

 

Figure 5.35: Correlation between microstructures of as-milled TiO2/Al powders with the TiAl-Al2O3 particles intergrowth in the combustion product. More 

intense agglomeration in the 6 h product
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5.4 Conclusion  

X-ray diffraction (XRD) analysis (Figure 5.11) revealed that irrespective of the 

microstructure of reactants, the final combustion products were TiAl and α-Al2O3 

(corundum) a high temperature polymorph of alumina; indicating that the 

combustion synthesis reaction went to completion. This was also confirmed by 

EDS (Table 5.1) and thermodynamic considerations. The combustion temperature 

of about 700oC, attained with powders milled for 4 h (Figure 5.18) and 6 h 

(Figure 5.19), is significantly lower when compared with 1700oC and above for 

powders milled for 1 h (Figure 5.17). This had an adverse effect on solid/liquid 

separation and alloy yields. The alloy phase could not be extruded out of the 

combustion synthesis TiAl(O)/Al2O3 product.  

In contrast, powders milled for 1h produced a coarser microstructure of the two 

phases and upon extruding the combustion synthesis product, some liquid TiAl 

was recovered. However, the TiAl yield was low. Characterising the extrusion by-

product by optical and scanning electron microscopy, and also confirming the 

characterisation with EDS and XRD analyses, indicated that significant quantities 

of residual TiAl were still present in the extrusion by-product (Figure 5.29). 

The flow of the alloy during solid/liquid separation is governed by Darcy’s law. 

Therefore the permeability, weight and thickness of the compacts formed from the 

reactants have a significant effect on the pressure driven molten TiAl flow during 

solid/liquid separation by extrusion. Table 5.3 shows that powders milled for 1h 

produced a combustion product with higher permeability (31.3% porosity), and 

these were therefore the most suitable for solid/liquid separation, compared to 

more intensely milled powders (6.8% porosity). The temperature attained by the 

combustion synthesis products and the level of extrusion pressure applied have a 

significant effect on solid/liquid separation and the yield of Ti-Al alloys produced 

by the TiPro process. The combustion temperature is a function of interdependent 

factors, such as the rate of preheating the reactants and the milling time. It was 

possible to attain temperatures above 1700oC with the microstructure developed 

by milling TiO2/Al powder mixtures for 1 h. However, it is apparent that in 

addition to maintaining the TiAl phase temperature above the melting point of 

TiAl (1460oC) and exerting adequate extrusion pressure during extrusion, the 

level of TiAl saturation and the wetting properties of TiAl on Al2O3 particles are 

critical to increasing the alloy yields during solid/liquid separation. The 
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combustion synthesis product had some isolated TiAl-saturated (almost pure TiAl) 

particles of various sizes; however the average TiAl content was only 15% TiAl. 

At such a low TiAl saturation, the liquid TiAl is held by extremely high capillary 

forces in the combustion synthesis product, resulting in poor liquid TiAl outflow 

or drainage during extrusion. Therefore to increase TiAl yields other 

supplementary separation techniques, such as froth flotation and leaching must be 

used, together with extrusion to recover the residual TiAl contained in the 

extrusion by-product.  

Oxide Dispersion Strengthened Materials (ODS) Application 

The stable viscous slurry illustrated by Figure 5.23 can be used to produce oxide 

dispersion strengthened (ODS) titanium-based materials. Oxide dispersion 

strengthened materials contain a matrix in which an oxide is finely dispersed. By 

incorporating hard phases (Al2O3, TiC, TiN and NbC) into the matrix which might 

be for example titanium, iron or any other structural material, desirable properties 

such as high-wear-resistance can be imparted to the material. In mechanically 

alloyed dispersion-strengthened aluminium alloys it has been observed that since 

an aluminium oxide layer is always present either on the surface of the powder 

particles before processing or after milling, its incorporation into the alloy during 

solidification enhances the mechanical properties of the alloy significantly.  Also, 

like in the TiPro process to minimise cold welding when milling aluminium (a 

ductile metal), process control agents (PCAs) which are usually hydrocarbons are 

added. During milling, Al2O3 and Al4C3 are formed due to the reaction of Al with 

PCA decomposition products oxygen and carbon. The oxide- or carbide–type 

dispersions about 30 to 50 nm in size stabilise the ultrafine grain size. This results 

in a 50% increase in strength, higher fracture toughness, and improved resistance 

to stress corrosion cracking and fatigue crack growth in mechanically alloyed 

materials (Suryanarayana, 2004). In this study, combustion products of TiO2/Al 

powders milled for extended periods (2 h, 4 h and 6 h) might be more suited as 

starting feedstock for oxide dispersion strengthened materials because of their 

increased homogeneity (Table 4.1, Figure 5.20 and Figure 4.5 to Figure 4.8). 

5.5 Summary 

The solid/liquid separation stage in the TiPro process is critical because it 

determines the primary TiAl yield, purity and cost. Therefore the TiPro process 
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design criteria are based on optimizing the solid/liquid separation.  In preparing 

reactant powders, by high energy mechanical milling, the high kinetics have to be 

balanced with the objective of achieving a high combustion temperature to 

extrude liquid TiAl out of the combustion synthesis product. 

The combustion temperature attained with compacts of powders milled for 6 h 

was too low (700oC) to facilitate the solid/liquid separation mechanism. The 

microstructure of the product consisted of a dispersion of submicron solid Al2O3 

particles in a TiAl matrix, (Figure 5.21(b)). It also exhibited a closed porosity as 

indicated by low porosity (about 6.8%) determined with a pycnometer. In contrast, 

the combustion of powders milled for 1h (31.3% pycnometric porosity) resulted in 

a product with a coarse microstructure and high permeability or interconneted 

porosity that facilitated alloy out-flow during extrusion. However, despite high 

combustion temperatures and permeability, the TiAl yield by extrusion was only 

slightly above 10%. The low yield has been attributed to the wetting properties of 

liquid TiAl on Al2O3 particles and the low TiAl saturation of the combustion 

synthesis product during extrusion. Other researchers that have studied similar 

systems in which a liquid co-exists with solid particles while heating have come 

up with the Classic Liquid-phase sintering model and the Pore filling model both 

of which demonstrate that the conditions prevalent during solid/liquid separation 

only lead to densification and not separation of the phases (Kang, 2005). This is 

borne out by previuos workers on this project that reported a yield of only 4% 

(Raynova, 2007).  

The flow of liquid TiAl during solid/liquid separation can be treated on the basis 

of a two-fluid flow involving liquid TiAl and a gas phase (air and combustion 

volatiles) in a porous medium of Al2O3 particles. In such a system, the level of 

liquid TiAl saturation attained in the combustion product has to exceed a critical 

value. Once the combustion product is sufficiently saturated with liquid-TiAl, the 

pressure of the gas phase increases to what is referred to as threshold pressure or 

bubbling pressure (Bear, 1972). At that pressure, the gas begins to penetrate the 

combustion synthesis product displacing the liquid TiAl contained in it and 

consequently allowing drainage of the alloy phase. As the liquid TiAl content is 

reduced, the channels of the liquid TiAl break down and become discontinuous 

throughout the CS product. Therefore the liquid TiAl is unable to flow and 

extraction of TiAl is limited by this mechanism. 
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When the TiAl content level is low, liquid TiAl is held by extremely high 

capillary forces in the combustion synthesis product. Also according to Darcy’s 

law, an increase in viscosity of liquid TiAl due to the presence of submicron 

Al2O3 particles could cause poor outflow or drainage of liquid TiAl during 

extrusion. Therefore to increase TiAl yields, other supplementary separation 

techniques, such as froth flotation and leaching, must be used together extrusion 

to recover the residual TiAl contained in the extrusion by-product. Extracting 

TiAl by solid/liquid separation by extrusion on its own is not viable however; the 

process might find application to produce oxide dispersion strengthened (ODS) 

materials.  

A more effective alternative of extracting TiAl from the combustion product than 

solid/liquid separation by extrusion would probably be using cryolite to dissolve 

away Al2O3. The cryolite – alumina system is well-established in aluminium 

smelting practice due to the high solubility of Al2O3 in cryolite. Cryolite ionises 

into hexafluoroaluminate (AlF6
3-) which dissociates further into 

tetrafluoroaluminate (AlF4
-), sodium (Na+) and fluoride (F-) ions as follows: 

Na3AlF6 
  ͢   3Na+ + AlF6

3- 

AlF6
3-   ←

→  AlF4
- +2 F2-  

At low concentrations, Al2O3 dissolves by forming oxyfluoride ions (Al2OF2n
4-2n) 

with an Al: O ratio of 2:1. 

At higher concentrations, Al2O3 dissolves by forming oxyfluoride ions (AlOFn
1-n) 

with an Al: O ratio of 1:1. 

Al2O3 + 4AlF6
3-    ͢   3Al2OF6

2- + 6F-  

Al2O3 + AlF6
3-    ͢   3AlOF2

-  

In aluminium smelting cell practice the Al2O3 concentration is maintained 

between 2 and 6 wt%. The saturation varies between 7 and 12 wt% depending on 

composition and temperature. By adding 5-7% CaF2, 5-7% AlF3 and 0-7% LiF the 

smelting temperature is reduced to 940-980oC (Staley, 1991-1998). It is evident 

from Figure 5.36 that the liquidus temperatures in the system are much lower than 

in the solid/liquid separation of the TiPro process. 
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Figure 5.36: Ternary diagram of the Na3AlF6-AlF3-Al2O3 system (Staley, 1991-1998, 

p. 193) 
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Chapter 6  

Froth Flotation  

6.1 Introduction 

The results in the previous chapter demonstrated that the TiAl yields obtained by 

solid/liquid separation were low and uneconomical. For that reason froth flotation 

was considered and evaluated as an alternative method for recovering the alloy. 

Froth flotation is a separation process that utilises differences in wettability of 

mineral particles suspended in water. The differences in wettability of minerals 

can be inherent or imparted by use of surface active reagents which are usually 

hydrocarbon compounds (Yarar, 2000). Separation is achieved by selectively 

attaching the desired mineral to gas bubbles to provide levitation. Flotation is the 

cheapest and most versatile mineral processing technique applied in the separation 

of minerals with similar physical and chemical properties (Crozier, 1992; Wills, 

2006). The objective of this study was to evaluate the efficacy of flotation in 

concentrating the TiAl content by separating corundum from the residual alloy 

contained in the extrusion by-product. The desired product would be a TiAl-rich 

fraction that could be processed to recover TiAl with less reductant at the alloy 

purification or oxygen removal stage.  The option of separating corundum from 

the alloy phase by flotation is attractive because flotation is a proven cost 

effective mineral processing technology with minimal associated technology risk. 

Also, the alloy phase does not undergo a chemical change during flotation. A 

detailed description of froth flotation is given in Section 2.4.4 of Chapter 2 

(Literature Review). 

6.2 Experimental  

6.2.1 Sample Preparation 

To study the phase size and association, the texture of the extrusion by-product 

was preserved by crushing in stages. The first crushing stage was done to a 

relatively coarse size of about 80 per cent passing 1.18 mm using a 500 mm x 250 

mm TIDCO Swing Jaw crusher. The jaw crusher product was subsequently 

crushed to less than 280 microns to achieve good liberation of TiAl and corundum 

rich phases using a BICO Pulveriser (BICO, Burbank, California). The various 
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size fractions that were produced were studied by optical microscopy to establish 

the liberation size of the TiAl and corundum phase particles.  

6.2.2 Flotation Testing 

Froth flotation testing was done to recover the residual alloy from the extrusion 

by-product. The option of separating the corundum from the alloy phase by 

flotation is attractive because of the associated lower technology risk given that 

flotation is a proven mineral processing technology and also the alloy phase does 

not undergo a chemical change (Yarar, 2000). In this study the flotation scheme 

used is referred to as reverse flotation because corundum, the less valuable 

mineral, was transferred to the float fraction while the desired product, TiAl, was 

left in the tailing. 

The flotation tests were carried out using in-house apparatus consisting of a sub-

aeration assembly, a 3500 ml Perspex cell and an agitator with a 70 mm diameter 

impeller. The flotation testing was done in two stages comprising the initial stage 

referred to as rougher stage and the cleaner stage. The objective at the rougher 

stage was to maximise the removal of Al2O3 into the float section. The resultant 

tails were subsequently floated to remove as more residual Al2O3 at the cleaner 

flotation stage.  A 100 gram sample of the extrusion by-product was gradually 

transferred to the flotation cell containing about 2500 ml of water, with the 

impeller rotating at 1000 rpm and the air inlet shut. Mixing was continued for 3 

min while slowly adding more water and increasing the impeller speed to 1500 

rpm. Agitation was continued for a further 3 min in order to ensure thorough 

wetting of the sample. The appropriate modifying reagents (activator or 

depressant) were added and agitation continued for 5 min without air. Additions 

of collector and frother were made and agitation continued for a further 5 min. Air 

was turned on and adjusted to a predetermined flow rate using a rotameter. Every 

15 sec, the scraper was gradually moved through the concentrate to collect a froth 

increment.  The total froth produced over a 3-min period was collected as 

concentrate. At the end of 3 min, the impeller was stopped and all the particles 

adhering to the sides of the cell and the impeller housing were restored to the 

concentrate. The concentrate and tailings were de-watered and dried separately to 

constant mass and weighed.  

 



 

135 

 

 

Table 6.1: Flotation reagents suite and conditions 

Reagent Name Dosage  

      g/MT 

Reverse Flotation 

Acid pH 2.5-3.0 Media 

   Corundum Collector Sodium Dodecyl  Sulphate 10-4M 405 

  

10-5M 40.5 

Corundum Activator Hydrofluoric Acid (HF) 

 

500.0 

    Frother Pine Oil 

 

50.0 

 

Conditions:  
Pulp Density   8%  

Conditioning Time 5 Min  

Flotation Time  5 Min (Rougher) 

   1.5 Min (Cleaner) 

Impeller speed  1500 rpm  

Air flow rate  3.0 – 6.0 litres/min 

Air: Solids Ratio 41 (g/g basis)  

 

 

 

 

Figure 6.1: Flotation experiment set-up  
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6.3 Results 

6.3.1 Phase liberation analysis of flotation feed 

Characterization of the extrusion by-product was done using optical microscopy 

(OM), XRD, SEM and EDS. These techniques indicated the presence of 

significant amounts of the TiAl alloy phase containing entrapped and finely 

disseminated primary and agglomerated corundum particles of about 1.5 microns 

and above in diameter (Figure 6.2). To selectively adsorb the collector at the 

corundum particle surface the two constituent phases have to be adequately 

liberated by controlled milling.  

  

Figure 6.2: SEM Backscattered image of a cross-section of feed to flotation showing 

Al2O3 inclusions in TiAl 

 

Liberation of the alloy phase particles was achieved by grinding the extrusion by-

product to 106 – 75 µm (Figure 6.3 ). This particle size range is also favourable 

for the froth flotation process. 
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Figure 6.3: Back-scatter image illustrating the alloy phase liberation  

 

The TiAl content of the milled extrusion by-product increased with decreasing 

particle size. This was caused by the preferential breakage of the softer TiAl alloy 

phase (Figure 6.4). The Bond work index (a parameter for expressing the 

resistance of a material to crushing) of corundum is 56.70kWh/ton (Wills, 2006) 

indicating that corundum is more resistant to crushing compared to TiAl. The 

TiAl enriched fines, generated by the differential grindability, were the first to 

report to the froth fraction (Figure 6.5). This trend may be used as a pre-flotation 

sorting stage to enhance the overall TiPro process efficiency. 
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Figure 6.4: Effect of preferential breakage on TiAl content of size fractions 

 

The TiAl content of slimes collected during the first 2 min. of desliming rose up 

to 59.5 wt% compared to 46.7 wt% for the feed head grade (Figure 6.5).   

 

Figure 6.5: Pre-flotation desliming showing high grade slimes in the first 100 min 

 

6.3.2 Effect of pH on Selectivity of Flotation 

Based on the point of zero charge (PZC) for TiAl that was determined from zeta 

potential measurements and the PZC of Al2O3 obtained from literature (Modi & 

Fuerstenau, 1960), the optimum window for selectively floating Al2O3 using an 

anionic collector such as sodium dodecyl sulphate, is around pH 4; between the 

point of zero charge (PZC) for TiAl and Al2O3 (Figure 6.6).  
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Figure 6.6: Point of zero charge (PZC) of (a) TiAl at pH 3.7 determined in this study 

and (b) Al2O3, pH 9.1 derived from literature (Fuerstenau & Pradip, 2005)  

 

At pH 4, the Al2O3 particles are positively charged therefore they attract the polar 

side of collector molecules. The collector molecules end up forming a thin film on 

the particles thereby making them hydrophobic hence floatable.  

The separating efficiency of froth flotation is expressed by the enrichment ratio 

which is the ratio of the grade of the TiAl concentrate to the grade of the feed 

(Wills, 2006). It is evident from (Table 6.2) that the low enrichment ratio, at pH 

10, was because above pH 3.7, (the PZC of TiAl), the collector molecules do not 

attach on to TiAl particles because the TiAl surface is negatively charged. Low 

enrichment ratios at pH 3.2 occurred because of poor selectivity as both Al2O3 and 

TiAl were floatable below pH 4.   
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Table 6.2: Effect of pulp pH and sodium dodecyl sulphate (Al2O3 collector) on 

separation during rougher flotation 

 

 

6.3.3 Rougher Flotation Kinetics 

During the first 2 min of rougher flotation, the TiAl content of the concentrate is 

high due to the high TiAl containing slimes generated by milling (Figure 6.7). 

Thereafter, there was a drop in TiAl content (or alternatively an increase in the 

Al2O3 concentrate grade) until the limiting Al2O3 recovery was attained. This 

occurred after 7 min.  

 

 
 

       
        
        
        
        
        
        
        
        
        

        
        
        
        Figure 6.7: Rougher flotation kinetics 
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In Figure 6.7, this corresponds to the point where the incremental grade curve 

crossed the feed grade (44.7% Al2O3). Beyond this point no more Al2O3 can be 

recovered without regrinding the sample. 

 

Figure 6.8: Rougher flotation kinetics for Al2O3 using incremental grade evaluation 

 

The optimum rougher flotation residence time (when the recovery curve stops its 

steep increase and flattens) occurred after 7 min. At this point, 65.7% of the TiAl 

was recovered into a TiAl-rich fraction (tailings) containing 71.0 wt% TiAl. This 

represented a 20% removal of the total Al2O3 fed to the process (Figure 6.8).   

 

Table 6.3: Rougher flotation mass balance 

 

6.3.4 Effect of Air to Solids Ratio 

The mass distribution to the concentrate and tails fractions varied and there was a 

noticeable loss in separating efficiency and mass distribution to the Ti-rich (Tails) 
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fraction as the mass of Air: Solids Ratio was increased above 41 (Table 6.4). This 

was probably due to froth collapse caused by non-quiescent pulp-froth interface 

(Dunne et al., 2002).The grade of the TiAl-rich fraction obtained with the -425 

+355 µm particle size range was highest at the Air to Solids Ratios of 41.  

 

Table 6.4: Effect of Air to Solids Ratio on mass distribution 

 

6.3.5 Cleaner Flotation 

The mass balance of the cleaner flotation indicated significant unaccountable 

alloy losses (Table 6.5). The TiAl content of both cleaner flotation products was 

much lower than the 71.8 wt% TiAl, the grade of the cleaner flotation feed.  

 

Table 6.5: Cleaner flotation mass balance 

 

 

The losses can be attributed to the dissolution of TiAl by HF acid which was used 

as the Al2O3 activator. This was confirmed by the XRD analysis of the solids 

obtained by boiling the filtered flotation liquor to dryness (Figure 6.9). The major 

constituents of the solids were TiO2 and Al2O3. 
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Figure 6.9: XRD analysis of solutes dissolved during flotation
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6.3.6 Characterisation of Flotation Losses  

Besides acid-soluble losses, TiAl losses were due to incomplete liberation and 

TiAl and Al2O3 remained intimately associated. Using SEM in BSE mode, images 

of the flotation products (Figure 6.10, Figure 6.11 and Figure 6.12) show fine 

dispersions of Al2O3 in a TiAl matrix, as described in the solid-liquid separation 

mechanism (Chapter 5). This is because the contact angle of TiAl (38o) is low; 

TiAl is imbibed into Al2O3 particles. 

The intimate association of the phases imposes a huge limitation on how 

efficiently the alloy phase can be recovered by physical methods only. To evaluate 

the separation efficiency at each set of flotation parameters, an index was 

calculated using the equation proposed by Schulz (Wills, 2006):  

 Separation efficiency = RTiAl-RAl2O3 = 100C mTi (cTi - fTi)/( mTi - fTi) fTi (6-1) 

where RTiAl and RAl2O3 are the recovery of TiAl and Al2O3 respectively, to the tails 

(i.e. theTiAl-rich concentrate), C is the total feed weight that reports to the TiAl-

rich concentrate, fTi is the Ti content of the feed, cTi is the Ti assay of the TiAl-rich 

concentrate (i.e. the sample left in the cell at the end of the test) and mTi is the 

percentage Ti in this sample.   

Table 6.6: Effect of flotation air and grind size of feed on the separation of TiAl 

from Al2O3 using sodium dodecyl sulphate as Al2O3 collector at pH 4.2 

Feed Grind 

(µm) 

Superficial Air 

Velocity  

(cm sec-1)  

 

 Separation Efficiency 

(%)  

-425 to + 355 0.5  44.3 

-425 to + 355 0.9  0.5 

-355 0.5  5.9 

-32 0.5  2.6 
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Figure 6.10: SEM backscattered image of flotation slimes with TiAl (light phase) 

and TiAl(O)/Al2O3 (grey phase) 

 

 

Figure 6.11: SEM backscattered image of the flotation concentrate 
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Figure 6.12: SEM backscattered image of +32 -56 microns regrind size fraction  

 

The selectivity of froth flotation toward Al2O3 was influenced by pH, feed particle 

size, collector dosage and flotation air flow rate.  The separation efficiency 

reached its maximum in the region slightly above pH 3.7; the point of zero charge 

of TiAl and declined away from it. For instance, at pH 3.2, the separation 

efficiency was only 17.3% in comparison to 44.3% at pH 4.2. Since pH 3.2 is 

below the point of zero charge of TiAl, both TiAl and Al2O3 were positively 

charged. Since the negatively charged sodium dodecyl sulphate collector attached 

to and floated both TiAl and Al2O3 no separation could be effected. However, 

between pH 4 and pH 9.1 (the point of zero charge of Al2O3), the surface of TiAl 

particles became negatively charged while the Al2O3 particles remained positively 

charged. This made Al2O3 selectively floatable (Fuerstenau, 2005). The results 

demonstrated that selective flotation of Al2O3 with sodium dodecyl sulphate was 

possible at around pH 4. 

The separation efficiency dropped significantly as the superficial air velocity was 

increased from 0.5 cm sec-1 to 0.9 cm sec-1. This could be attributed partly to froth 

collapse caused by non-quiescent pulp-froth interface (Dunne, 2002). Decreasing 

the flotation feed particle size from -425 +355 µm to less than 32 µm, while 
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maintaining the superficial air velocity at 0.5 cm sec-1 and the pH at 4.2, resulted 

in a corresponding decrease in the separation efficiency from 44.3% to 2.6% 

(Table 6.6). This was probably due to TiAl losses to slimes. Increasing the 

collector dosage from 40 g/t to 405 g/t of feed had a similar adverse effect on the 

separation efficiency. 

6.3.7 Conceptual Flowsheet 

 

Figure 6.13: Conceptual flowsheet for the separation of TiAl from Al2O3 by froth 

flotation  

 

6.4 Conclusion 

 Froth flotation has a potential application in recovering some TiAl into a 

TiAl-rich fraction of the CS by-product by using anionic surfactants at 

slurry of pH 4 and feed particle size of -425 µm. The TiAl recovery at the 

rougher flotation stage was 65.7 wt% at 71.0 wt% TiAl grade. This 

corresponded to removing 20 wt% of the total Al2O3 in the flotation feed. 

Further rejection of Al2O3 to increase the grade and recovery of TiAl 

requires multiple cleaning stages using an Al2O3 activator that is less 

aggressive to TiAl. 
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 Flotation is more selective between PZC of Al2O3 (pH 9.1) and PZC of 

TiAl (≈pH 3.7).  

 Excessive collector dosages adversely affect the separating efficiency. A 

dosage of 10-5M sodium dodecyl sulphate is more effective. 

 The separating efficiency is also sensitive to the specific air flow. An Air: 

Solids ratio of 41.1 gave more efficient separation when floating feed with 

a particle size from -32 to -425 µm. 

 TiAl losses are mainly due to TiAl wetting and being imbibed on to Al2O3 

particles surfaces and incomplete liberation of the TiAl phase. 

 Pre-flotation de-sliming recovers high TiAl slimes that can be fed 

downstream. Therefore, there is potential to increase throughput by de-

sliming the flotation feed and routing slimes downstream in the flotation 

circuit (Figure 6.13). 
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Chapter 7  

Alloy Purification and Costing 

7.1  Introduction 

The previous chapter sought to increase the grade of the TiAl-rich product, by 

removing as much Al2O3 as possible, because it is a major contributor of oxygen 

in titanium produced by the TiPro process.  The presence of oxygen for which 

titanium has an immense affinity is detrimental in both the processing and 

application of titanium and its alloys. To overcome oxygen contamination, 

conventional titanium extraction is often carried out in an oxygen free chloride 

environment. In the TiPro process however, oxygen contamination is unavoidable 

because TiAl is produced from TiO2. Oxygen that occurs as dissolved species and 

Al2O3 inclusions requires subsequent removal. The price of titanium in 2012 

varied from about US$15/kg to about US$1000/kg depending on impurity level 

and particle size (Qian et al., 2012). Since oxygen is one of the major impurities 

determining the quality and cost of titanium powders, purification is incorporated 

to satisfy the increasingly demanding quality specifications in application 

(Table 7.1). This chapter is divided into two parts. Part I discusses the results 

obtained in experiments conducted to reduce the oxygen content, while Part II 

determines the cost and quality of TiAl produced by the TiPro process. Capital 

and operating costs have also been estimated. 

Table 7.1: Common titanium metal grades 

 Impurities in ppm 

Grade O C Fe Ca Cl 

ASTM Gr 1 1800 1000 2000   

ASTM Gr 2 2500 1000 3000   

ASTM Gr 3 3500 1000 3000   

ASTM Gr 4 4000 800 5000 1000  

 

For a metal to be used to remove oxygen from the alloy and the by-product of the 

TiPro process, its oxide has to be more stable than oxides of titanium and 

aluminium. It also has to easily separate from the alloy. These criteria limit the 
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choice to Ca, Mg, Li and Sr. Calcium is usually preferred because, in addition to 

its low melting point and viscosity of the reaction product, calcium is capable of 

reducing Al2O3 and removing the oxygen dissolved in titanium also 

(Kubaschewski et al., 1993). In the purification of titanium, Ca can be used in 

form of Ca metal or CaH2 according to the reactions shown below (Belyanchikov, 

2010) 

 3 CaH2 + Al2O3 = 2Al + 3CaO + 3H2      = -29.969 kcal (7-1) 

 
CaH2 + O = CaO + H2                            = -33.493 kcal (7-2) 

  

3 Ca + Al2O3 = 2Al + 3CaO                   = -64.062 kcal (7-3) 

  

 Ca + O = CaO                                         = -44.874 kcal (7-4) 

O = oxygen dissolved in TiAl alloy 

CaO = calcium oxide dissolves in the carrier CaCl2 subsequently 

 

Previous attempts to replicate the use of the calcium vapour process have failed. 

Another study (Adam, 2010), purified Ti(Al,O)/Al2O3 with CaH2 at 1100oC. The 

product contained 8000 ppm O and 4300 ppm Ca. CaH2 is preferred to Ca 

because it is easier to control (Wiberg, 1971). The objective of the current 

reduction experiments is to investigate the feasibility of using lower temperatures. 

All the experiments were conducted on a scale of a few grams.  This has potential 

economic benefits for the plant scale process.  

PART I: Alloy Purification Results 

7.2  Reduction Using Ca  

To remove oxygen using calcium, the reductant (Ca) can be used in granular or in 

vapour form. The main advantage of Ca vapour is that unlike Ca granules its 

purity is less critical. However, equipment requirements are more complex. 

7.2.1 Ca Granules 

When Ca granules were mixed and reacted with the alloy the reduction product 

picked up some contamination from the reductant and the reactor material. 
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Figure 7.1: Comparison of XRD analyses of the alloy before reduction (feed alloy) and purification (reduced alloy) 
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Figure 7.1 compares the phase composition before and after reduction with 

calcium granules. The Al2O3 in the reduced product was below the detection limit 

of XRD analysis. This is in agreement with Equations (7-3) and (7-4) that are 

thermodynamically feasible as indicated by the Gibbs free energy of reaction. 

7.2.2 Ca Vapour 

The use of Ca vapour overcame contamination resulting from the reductant, 

however, reactor sourced contamination was still significant. Whether the Ca was 

mixed with other reactants or introduced as a vapour the attack on the retort was 

evident. The process has also been reported to be difficult to scale up because of 

problems in ensuring a homogeneous reaction when reducing large tonnages of 

feed in a single reactor (Okabe et al., 2004).  

XRD analysis (Figure 7.2) indicates that Ti was completely oxidised to CaTiO3 

and TiO2 while the Al2O3 intact. This was confirmed by SEM – EDS, which only 

showed Ti existing in association with Ca and O2 but not with Al (Figure 7.3).  

The Al2O3 could not be reduced and instead the titanium became oxidised. This 

might be attributed to reactions (7-5) and (7-6).  

 

4AlTi + 4CaCl2 + 7O2 +4H2O = 4CaTiO3 + 2Al2O3 + 8HCl   

 = -1280.860 kcal (7-5) 

 4AlTi + 4CaCl2 + 9O2 = 4CaTiO3 + 2Al2O3 + Cl2            

 = -1267.517 kcal (7-6) 
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Figure 7.2: XRD pattern for the Ca reduction product showing CaTiO3, unreduced Al2O3 and V contamination 
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Figure 7.3: SEM -EDS element maps of the Ca reduction product 
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7.3  Reduction Using CaH2 

When the reduction was carried out with a mixture of CaH2 and CaCl2, it was 

possible to maintain the O2 level in the chamber at 1ppm and the pressure between 

0 and -1 mbar. The reduction was carried out for 1 h and below 800oC 

(Figure 7.4). This is in agreement with Wiberg and Amberger (1971) who have 

stated that reduction of Al2O3 with CaH2 starts at about 500oC and is complete at 

750oC. Low O2 levels in the chamber could be maintained because the H2, 

produced when CaH2 reduces Al2O3, forms a protective reducing atmosphere 

(Wiberg & Amberger, 1971).  

 

 
 

Figure 7.4: Temperature profile and chamber O2 level during CaH2 reduction  

 

After 1h, the XRD pattern of the reduction product showed the presence of TiAl, 

Ti3Al, Ti2Al, CaClOH, and CaO; but Al2O3 was below the detection limit 

(Figure 7.5).  Gravimetric analysis of the reduction product showed that the Al2O3 

had dropped from 5.18 wt% Al2O3 (equivalent to 2.44% O2) to 1.61% O2. Upon 

washing the product with water at 60oC, CaClOH and CaO were completely 

leached out (Figure 7.6). 
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Figure 7.5: XRD pattern of reduction product before washing 
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Figure 7.6: XRD pattern of reduction product after washing with acidified water at 25oC 
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The calcium hydroxychloride (CaClOH) might have been formed by the reaction 

between Ca, CaCl2 and H2O (Equation(7-7)).  

7.4  Alloy Purification by Reaction Milling 

When a mixture of CaCl2, Ca and TiAl(O) was subjected to high energy 

mechanical milling for 300 seconds, the Al2O3 was reduced (Figure 7.7) and the 

as-milled product contained CaClOH ; probably formed by the reaction 

Equation (7-7).  

 CaCl2 + Ca +3H2O= 2CaClOH + H2     = -12.706 kcal 
(7-7) 

Equation (7-7) can be broken into the following steps 

1. Reduction of Al2O3 

 3Ca + Al2O3 + 3H2O = 3Ca(OH)2 + Al        = -95.300 kcal (7-8) 

2. Reduction of Al2O3 

 3Ca + Al2O3 = 3CaO + 2Al                       = -55.050 kcal (7-9) 

3. Calcium hydroxide formation 

 CaO + H2O= Ca(OH)2                               = -13.420 kcal (7-10) 

4. Calcium hydrochloride formation 

 CaCl2 + Ca + 2H2O= 2CaClOH + H2        = -12.706 kcal (7-11) 

The formation of CaClOH is accompanied by the partial replacement of TiAl with 

Ti0.9Al1.1, which contains a higher proportion of Al (Figure 7.7). The formation of 

additional Al probably results from Equation (7-8). After the as-milled powder 

was leached with acidified water at 25oC, the residual Al oxides in the residue 

were below the detection limit of XRD analysis (Figure 7.8).  However; oxygen 

analysis by inert gas fusion-ASTME 1409-13 method indicated a drop in oxygen 

content from 2.69% O2 to 1.01% O2 after processing for 5 min. 
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Figure 7.7: XRD analysis of the Alloy-Ca-CaCl2 after high energy mechanical milling 
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Figure 7.8: Composition of powder purified by reaction milling 
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The powder purified by reaction milling is irregular in shape (Figure 7.9). The 

median size (d50) of the powder was 75 µm and the d90 was 142 µm (Figure 7.10). 

 

 

Figure 7.9: OM micrograph of a cross section of TiAl powder purified by reaction 

milling (x100 magnification) 

 

 

Figure 7.10: Particle size distribution of washed alloy powder 
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PART II: Process Costing 

The objective of this part is to determine operating and capital costs based on 

conceptual design and estimated prices derived from the metallurgical testing 

results. Therefore the estimate is of a preliminary type with a level of accuracy of 

±20% (Noakes, 1993). The incremental effects of each process step on the cost of 

producing TiAl alloy by the proposed flow sheet have been estimated. The cost 

indices obtained from government agencies have been used to estimate equipment 

prices where quotations from manufacturers were not available (Bouman et al., 

2005). The spreadsheets are included in the appendices. 

The process flowsheet was evaluated under the following unit operations:-  

 high energy mechanical milling 

 liquid/solid separation 

 froth flotation 

 alloy purification 

 

Three downstream alternatives for processing the extrusion by-product 

comprising calciothermic reduction/ direct leach, TiO2 recycle and flotation/ 

leach/ TiO2 recycle were evaluated. 

7.5 Calciothermic Reduction and Direct Leach 

In this scenario, the milled extrusion product was reacted with calcium (in a CaCl2 

flux) to remove oxygen that exists as Al2O3 inclusions and dissolved species in 

titanium in the alloy (Equations (7-3) and (7-4)).  The reduction reaction was 

initiated either thermally or by milling as described in Chapter 3. The reduction 

product was leached with water to extract the alloy.  

7.6  TiO2 Recycle 

In a related proof of concept study (Jennings, 2013) it was demonstrated that the 

TiAl contained in the extrusion by-product could be converted to recyclable TiO2 

at 92.3% yield. In addition, about 75% Al2O3 that could be sold to smelters was 

recovered. However, the process conditions were not optimised.  Based on the 

mass balance and cost of direct materials, conversion to TiO2 appears 

uneconomical when considered on its own. The projections made from the 

empirical results of the study indicate that the cost of inputs is higher than the 

value of products (Table 7.2).  
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The conceptual study does not state the chemical reaction equations involved in 

conversion to TiO2. However, to calculate the stoichiometric input requirements 

and products this study has assumed the following chemical equations 

 6H2SO4 + 2TiAl = Ti2(SO4)3 + Al2(SO4)3 + 6H2 (7-12) 

 Ti2(SO4)3 + 6NaOH = 2Ti(OH)2O + Na2SO4 (7-13) 

 Al2(SO4)3 + 6NaOH = 2Al(OH)3 + Na2SO4 (7-14) 

 Al2(SO4)3 + 6NH4OH = 2Al(OH)3 + 3(NH4)2SO4 (7-15) 

 

7.7 Flotation/ Calciothermic Reduction /Leach/ TiO2 Recycle 

By upgrading the extrusion by-product from 47.4% to 71% TiAl using froth 

flotation the calcium reductant requirement is reduced from 0.56 to 0.34 

tonnes/tonne TiAl. This corresponds to a saving of about US$1600/tonne TiAl 

produced. Therefore, to make the TiPro process more economical, only the TiAl-

lean product of flotation should be converted to TiO2. Conversion of the entire 

extrusion by-product stream to TiO2 can result into a high circulating load and 

poor process economics given the low yield (10%) at the solid/liquid separation 

stage.  
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Table 7.2: Cost of raw materials and expected revenue 

 

  

7.8  Economic analysis for a 500 tonnes per annum (tpa) TiAl 

plant 

 

OSBL Capital Cost 
 

40% of ISBL cost  

Engineering Cost 
 

30% of ISBL + OSBL cost  

Contingency   
 

20% of ISBL + OSBL cost  

Working Capital   
 

7 weeks' cost of production less 2 weeks' feedstock costs  

The economic assumptions such as the tax rate, depreciation method and period 

are detailed in Appendix 1. 

 

Table 7.3 gives a summary of the economic analysis of a 500-tpa capacity plant 

operating at 65% yield of TiAl. The calculations are detailed in Appendix 1. 

Appendices 2 to 7 all feed into Appendix 1. The 500 tpa design criteria is based 

on metallurgical results of the study, economic considerations and current 

industry practice and facilities under development (Froes). 

 The total investment cost is calculated in Appendix 1 by adding the total 

fixed capital cost and the working capital.  
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 The total fixed capital cost is calculated in Appendix 1 and includes the 

total installed cost which is the cost of the plant itself (inside battery limits, 

ISBL), the cost of modifications to the site infrastructure (offsite battery 

limits, OSBL), contingency costs, engineering and construction costs. 

 The total installed cost is calculated in Appendix 3. 

 Simple pay-back period = Total Investment cost ÷ Average annual cash 

flow 

The following costs were calculated using industry practice factors (Towler & 

Sinnott, 2012). 

OSBL Capital Cost 
 

40% of ISBL cost  

Engineering Cost 
 

30% of ISBL + OSBL cost  

Contingency   
 

20% of ISBL + OSBL cost  

Working Capital   
 

7 weeks' cost of production less 2 weeks' feedstock costs  

The economic assumptions such as the tax rate, depreciation method and period 

are detailed in Appendix 1. 

 

Table 7.3: Economic analysis of TiPro process operating at 65% yield 

  

7.9 Conclusion 

 The study has demonstrated the efficacy of reducing the oxygen content of 

TiAl produced by the TiPro process by using either Ca or CaH2. CaH2 

does not form lower oxides and has very little tendency to form alloys 

therefore the product yield is reported to be quantitative (Wiberg & 

Amberger, 1971). 
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 Ca is more attractive because it is cheaper than CaH2. Reactive milling of 

a mixture of TiAl(O) or TiAl(O)/Al2O3 with Ca and CaCl2 is easier to 

scale up compared to Ca vapour reduction. 

 About 62% removal of oxygen (i.e. from 2.69 to 1.01% O2) was achieved 

by reaction milling in fewer than 300 sec. 

 The preliminary production cost estimate, at US$23.92 per kg TiAl alloy 

powder, compares favourably with most emerging cost reduction titanium 

production technologies that are targeting costing reductions of 30 or 50% 

and more of the Kroll process (EHK Technologies, 2004). 

 The total investment cost of a 500-tonne per annum TiPro process plant 

operating at 65% efficiency was estimated at US$5,914,692. With an 

average annual cash flow of US$5,678,666 pay-back period would be 1.04 

years. This corresponds to 91.19% return on investment, NPV of 

US$10,915,626 and an IRR of 62% over 10 years. 
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Chapter 8  

Conclusions and Recommendations 

8.1 Introduction 

In this study, the key factors affecting the cost and quality of TiAl powders 

produced by the TiPro process have been systematically investigated, by 

analysing three main unit operations of this process (milling, combustion and 

oxygen removal). This chapter presents the conclusions and recommendations for 

further work. 

8.2 Conclusions  

In the current state of the invention, where alloy separation is extracted by 

extruding the combustion product, the TiPro process is not viable due to poor 

yields. The throughput, alloy product purity and yield of the TiPro process are 

constrained by the solid/ liquid separation unit operation. When extrusion is the 

sole separation technique, the alloy yields are limited to only 10% of total input, 

as against a minimum yield of 60% required to make the process economically 

viable. Therefore, unless the solid/ liquid separation is supplemented by other 

separation techniques, such as froth flotation and leaching, the cost of producing 

titanium alloy powders by the TiPro process will be high and the quality of the 

alloy poor, consequently making the process uneconomical. This study has 

demonstrated that froth flotation can recover 65.7 wt% of TiAl content of the 

extrusion by-product into a 71.0 wt% TiAl grade product. Al2O3 is the main 

impurity (accounting for the balance of 29 wt%). This corresponds to removing 

20 wt% of the total Al2O3 contained in the extrusion by-product (flotation feed). 

The potential exists to increase the TiAl grade further by multiple flotation stages. 

However, further work is required to investigate more suitable reagents than the 

HF acid that was used to activate Al2O3 in this study. 

The TiAl-lean flotation by-product stream can be leached in sulphuric acid 

(H2SO4) to recover TiO2 and Al2O3 separately (Jennings, 2013). 
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8.2.1 Solid/ Liquid Separation Mechanism 

• The solid/ liquid separation process can be described as the flow of liquid 

TiAl through a porous media of Al2O3 particles. Parameters such as the 

porous media permeability, wetting properties and viscosity of TiAl, that 

influence the flow and subsequent separation of TiAl during extrusion can 

be represented by three main governing equations : 

1. The Washburn Equation:  P = -4 γ cos θ (dp)-1
  

2.  Darcy’s Law:   Q = Kp A ΔP(ηL)-1 

3. An Einstein-Roscoe type equation:  η = ηo (1- af)-n  

• The average TiAl saturation of the combustion product at about 0.15 is 

inadequate to sustain flow during extrusion because at such a low 

saturation level, the capillary pressure (the force holding TiAl in the pores) 

is high. 

• Increasing the TiAl saturation reduces the capillary pressure.  

• TiAl saturation increases by Al2O3 agglomeration and TiAl coalescence. 

This phenomenon requires TiAl to be a liquid. 

• The finely suspended Al2O3 particles increase the viscosity and 

consequently inhibit separation of TiAl. 

• Also due to a low contact angle (38o) of liquid TiAl, wetting properties on 

Al2O3  inhibit separation. Liquid TiAl merely wets the solid Al2O3 particles 

creating liquid-phase sintering like conditions that redistribute the liquid 

TiAl and agglomerate Al2O3 particles thereby densifying the extrusion by-

product. Therefore, extrusion is not an efficient way of recovering TiAl 

from the combustion product. 

• To economically extract TiAl, other techniques should be used to 

supplement extrusion. 

• Froth flotation can be used to increase the grade of the TiAl-rich phase 

from about 47% to 71% TiAl, before the alloy purification stage, in order 

to minimise reductant costs at the calciothermic reduction stage.  

• Alloy purification consists of calciothermic reduction followed by 

leaching with water at 60oC. 
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• Apart from poor alloy yields, scaling the solid/liquid separation up might 

pose heat balance and mass flow related challenges because of the 

observed rapid cooling of the combustion synthesis product. 

8.2.2 Effect of Milling Intensity on Solid/ Liquid Separation   

Reactant powders milled for 1 h are more suitable for solid/ liquid separation 

compared to powders milled for a longer duration. The combustion of powders 

subjected to more intense milling are characterised by closed porosity and the 

temperature attained by products is too low to facilitate separation. Powders 

milled for 1 h have a coarse microstructured combustion product with open 

porosity. The temperature attained by products is above the TiAl melting point 

1460oC. This is favourable for separating TiAl from solid Al2O3 by extrusion. 

8.2.3 Alloy Purification 

Purification of the alloy using Ca in the presence of CaCl2 is preferred to CaH2 on 

account of cost. The reaction is initiated by reactive milling of a mixture of 

TiAl(O) or TiAl(O)/Al2O3 with Ca and CaCl2. XRD analysis showed that the 

alloy containing 5.1 wt% Al2O3 (equivalent to about 2.44 wt% O2) upon being 

subjected to reaction milling was free of Al2O3. 

The production cost using Ca is estimated to be US$23.29 per kg TiAl alloy 

powder at 65% recovery of TiAl. Plant yield increases to US$151.40 per kg TiAl 

at the current TiPro process yield of 10%. To compare favourably against most 

emerging cost reduction titanium production technologies, the TiPro process 

should achieve cost reductions 30, 50% and more of the Kroll process (EHK 

Technologies, 2004). This criterion cannot be satisfied given the low TiAl yields 

in the current state of the art in TiPro process. Also, when Ca is replaced by CaH2 

as reductant the production cost of TiAl alloy increases to US$38.53 per kg TiAl 

at 65% plant yield and to US$250.44 per kg TiAl at the current achievable TiPro 

process plant yield of 10%. 
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8.3 Recommendations for Further Work 

Since the yield at the solid/liquid separation stage is low (10% of input), the 

following should be studied to enhance the viability of TiPro process:  

 Feasibility of increasing the TiAl grade further by multiple flotation stages 

or by other separation techniques to obtain a product with a higher content 

of TiAl.  

 Other techniques of separating Al2O3 from TiAl such as conventionally 

fluxing it into a molten slag by adding suitable chemical compounds such 

as cryolite that can combine with Al2O3 to form a low-melting point slag 

that could be skimmed off the surface of the molten alloy bath.  

This study has demonstrated the efficacy of various alloy purification alternatives, 

however, the alloy yield of each process need to be studied and optimised.
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