

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

An Extensible Web Application

Vulnerability Assessment and Testing

Framework

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

at the

University of Waikato

by

Baden Delamore

University of Waikato

2015

2

Abstract

The process of identifying vulnerabilities in web services plays an integral
role in reducing risk to an organisation that seeks to protect their intellec-
tual property and data. The process itself generally involves an automated
scan that looks for software misconfigurations, outdated services and expo-
sures that may lead to defacement, data loss or system compromise. How-
ever, even with myriad open-source and commercial applications that pro-
vide automated vulnerability assessments, the frequency of large scale data
breaches and exploitation by adversaries is continuing to increase. This the-
sis presents a framework that enables not only the skilled security profes-
sional to accurately assess the risk of vulnerabilities in web servers, but also
empowers non-technical users to scan their web servers and find out the
implications of vulnerabilities in their systems. This is achieved by build-
ing a user-centric solution which addresses the gaps identified in previous
work, and focuses on the most critical vulnerabilities outlined by two major
security research organisations.

Acknowledgements

I would like to thank Ryan Ko for his constant support and giving of his
time throughout this journey. I know of no other supervisor who takes such
a strong and active interest in his students, and I am incredibly blessed to
have him as a supervisor.

I would like to thank the team at the Cyber Security Lab, in particular Alan
Tan, Mark Will and Jeff Garae. They were a constant source of support
throughout this process.

I would also like to acknowledge the Technical Support Group (TSG) from
the University of Waikato for providing us consent and access to their web
servers for evaluation.

And finally, I am especially thankful for the support of my partner and fam-
ily. Their patience, encouragement and belief has been remarkable.

Contents

1 Introduction 11
1.1 Goal and Objectives . 14
1.2 Scope . 14
1.3 Key Contributions . 16
1.4 Document Structure . 16

2 Related Work 18
2.1 Vulnerability Detection . 19
2.2 Intercepting Proxies . 20
2.3 Web Application Injection . 21
2.4 Summary of Existing Toolkits 22
2.5 Common Weaknesses and Exposures 22
2.6 Summary of CWE Findings . 25
2.7 Conclusion . 26

3 Designing for Users 28
3.1 Click Study . 29
3.2 Addressing Gaps Identified . 31
3.3 Proposed Framework . 31
3.4 Design Decisions . 33

3.4.1 Input Panel . 33
3.4.2 Results Panel . 35
3.4.3 Preview Panel . 37

3.5 Feature Design . 38
3.5.1 Authentication Panel . 39
3.5.2 Settings Panel . 39

3.6 Summary . 40

4 Detecting Web Application Vulnerabilities 42
4.1 SQL Injection . 43
4.2 Cross Site Scripting . 45
4.3 File Inclusion . 46

4

4.4 Operating System Command Injection 48
4.5 Shellshock . 50

5 Exploiting Vulnerabilities 52
5.1 Using the Explore Feature . 52

5.1.1 File Inclusion Proof of Concept 53
5.1.2 Cross Site Scripting Proof of Concept 55
5.1.3 Shellshock & Command Injection Proof of Concept . . 56
5.1.4 SQL Injection Proof of Concept 57

6 Implementation Details 58
6.1 Model View Controller . 58
6.2 Writing a Detection Module . 60

6.2.1 HTTP Class . 62
6.3 How the Crawler Works . 63

6.3.1 How to Exclude Pages 63
6.3.2 Multi-threaded Scanning 65

6.4 User Accountability . 66

7 Results and Validation 68
7.1 Vulnerable Web Application . 69

7.1.1 Testbed Validation . 70
7.1.2 Comparison With State-Of-The-Art 72

7.2 Summary . 73
7.3 Live Sites Validation . 74

7.3.1 Method . 74
7.3.2 Results . 74

8 Conclusion 77
8.1 Contributions . 78
8.2 Future Work . 78

8.2.1 Detecting low and medium vulnerabilities 79
8.2.2 Reporting feature . 79
8.2.3 Deep vulnerability scanning 79
8.2.4 Migrating to the cloud 80
8.2.5 Intercepting proxy support 80
8.2.6 Detecting vulnerabilities in other protocols 80
8.2.7 CIDR notation support 81
8.2.8 Scripting support . 81

Appendices 82

5

A Top 40 Most Dangerous Software Errors 83

B Vulnerability Statistics for 2014 86

C Overall CWE Results over 6 Years 88

D Top Flaws Over 6 Years 91

E Pareto Chart Input Data (2014 Reported Flaws) 92

References 94

List of Figures

2.1 CWE/SANS Top 4 most dangerous software errors 23

2.2 CWE Top categories for highest number of reported attacks . 24

2.3 Top 5 reported attacks over a 6 year period 25

2.4 Pareto Chart for 2014 reported vulnerabilities 26

3.1 Pareto chart representing market share and average clicks . . 30

3.2 Proposed Escrow Framework 33

3.3 Standard pane input panel . 34

3.4 Standard pane results panel: vulnerable URL’s table 35

3.5 Vulnerability synopsis dialog box 36

3.6 Rendered HTML pane . 37

3.7 Raw HTML pane . 38

3.8 Authentication panel . 39

3.9 Settings panel . 40

4.1 Identified injection error in page source 43

4.2 Identified cross site scripting error in page source 45

4.3 Identified file inclusion error in rendered page view 48

4.4 Identified operating system command injection in page source 49

4.5 Identified Shellshock vulnerability in page source 51

5.1 Advanced dialog box - Explore 53

5.2 Remote code execution through Local File Inclusion (LFI) . . . 54

5.3 Cross Site Scripting vulnerability - proof of concept 55

5.4 Extracted database information stored in HTML document . . 57

7

6.1 Typical collaboration of the MVC components 59

6.2 Calling our detection modules within the application 61

6.3 POST method in HTTP class . 62

6.4 URL’s to ignore panel . 65

6.5 User information stored in database 67

6.6 Site info stored in database . 67

7.1 Comparison of most dangerous vulnerabilities detected by tool 73

7.2 Cross Site Scripting vulnerabilities detected in first web ap-

plication . 75

7.3 Cross Site Scripting proof of concept in first web application . 75

7.4 Cross Site Scripting proof of concept in second web application 76

7.5 Operating System Command Injection proof of concept 76

List of Tables

1.1 OWASP Top 10 . 15

2.1 Diversity percentages able . 25

3.1 Anti-virus vendors by market share 30

3.2 Toolkit comparison table . 32

4.1 Database error list . 44

6.1 Speed comparison of single thread vs multi-threads 65

7.1 OWASP scoring system results 70

7.2 CWE - Top 4 results . 71

A.1 Top 40 most dangerous software errors 84

A.2 Top 40 most dangerous software errors (continued) 85

B.1 Vulnerability statistics for 2014 87

C.1 Overall CWE results over 6 years 89

C.2 Overall CWE results over 6 years (continued) 90

D.1 Top flaws over 6 years . 91

E.1 Pareto chart input data (2014 reported flaws) 93

9

Acronyms

IP Internet Protocol

IDS Intrusion Detection Systems

IPS Intrusion Prevention Systems

WAF Web Application Firewalls

SIEM Security Information and Event Management

GUI Graphical User Interface

FQDN Fully Qualified Domain Name

OWASP Open Web Application Security Project

CWE Common Weaknesses and Enumeration

CWSS Common Weakness Scoring System

HTTP Hyper Text Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IT Information Technology

SQL Structured Query Language

XSS Cross Site Scripting

CSRF Cross Site Request Forgery

LFI Local File Inclusion

RFI Remote File Inclusion

URL Uniform Resource Locator

OS Operating System

10

SSH Secure Shell

DHCP Dynamic Host Configuration Protocol

HTML Hyper Text Markup Language

MVC Model View Controller

RFC Request For Comments

CIDR Classless Inter-Domain Routing

1
Introduction

Vulnerability assessment is a process that identifies and classifies the secu-

rity holes in a computer network, application or communication infrastruc-

ture. It plays an integral part in detecting and mitigating risk in an organ-

isation. This holds especially true for organisations whose responsibilities

include storing personal client information (emails, passwords, credit card

and social security information). And there are no shortage of companies

who are offering expertise and technologies to protect businesses from cy-

ber threats, some of which include Intrusion Detection Systems (IDS)/Intru-

sion Prevention Systems (IPS) [28], Web Application Firewalls (WAF) [34],

and Security Information and Event Management (SIEM) [26]. However,

with the aforementioned technologies and best practice security measures

in place we are still witnessing attacks on government, academia and en-

terprise on a daily basis, with the frequency of attacks and data breaches

steadily increasing. Web applications are a likely target for adversaries to

attack due to their ubiquity and large attack surface. And in the past, the

media have extensively covered attacks that result in large data breaches

12

including Snapchat [24], iCloud [21], Sony Playstation [3] and Adobe [12].

The latter two companies took significant hits to their reputation, along with

substantial financial damages in the hundreds of millions (damages report

Adobe at $180 million [14]; Playstation at $105 million [13]). At any rate,

both these circumstances could have been avoided with the appropriate ap-

plication security detection tool and mitigation policies in place. Therefore,

the design and implementation of such a tool is timely.

In web application security, there are two schools of thought that pertain

to risk assessment within an organisation, namely vulnerability assessment

and penetration testing.

A vulnerability assessment looks for known vulnerabilities in a system and

reports potential exposures. A penetration test is designed to actually ex-

ploit weaknesses in the system architecture or computing environment.

The thesis aims to explore current web application vulnerability assessment

techniques and exploitation methods, and combine key components from

vulnerability assessment and exploitation into a working software solution.

The contributions in this work are two-fold. Firstly, the software developed

in this work will provide true risk evaluation to its users. Put simply, pro-

viding true risk evaluation will show to the user what can happen to their

data and systems when vulnerabilities are leveraged within their web ap-

plication. Examples of which are website defacement, data loss and full

system compromise.

Secondly, the software will be user centric, meaning usable by those who

are not security practitioners but want to know the security posture of their

applications and whereabouts within their applications do vulnerabilities

reside. This will be achieved by developing a simple to use Graphical User

Interface (GUI) which will allow users to enter a Fully Qualified Domain

Name (FQDN) and have the software crawl through pages and test user

13

entry points. If the software successfully finds a vulnerability, the details of

that vulnerability are provided back to the GUI where the user can choose

what to do next.

Most existing tools for detecting web application vulnerabilities generally

rely on input fuzzing and Hyper Text Transfer Protocol (HTTP) status code

inferences [20]. However, inferring vulnerabilities from HTTP status codes

does not provide any objective measure for the likelihood of a vulnerabil-

ity, nor does it provide an accurate representation of the state of the web

application.

Other tools rely on methods such as fingerprinting to determine the likeli-

hood of a vulnerability which involves the software performing static code

analysis on the HTTP response source code [19]. And although this is an

improvement on traditional passive and HTTP status code detection meth-

ods, plaintext fingerprinting by itself is not a viable solution when assessing

applications that are behind a well configured WAF or IPS.

Perhaps the greatest drawback of traditional assessment tools is their in-

ability to leverage vulnerabilities in an organisation to determine the true

level of risk [2]. It is often thought of that vulnerability assessment and

penetration testing are two separate exercises carried out by Information

Technology (IT) staff whose skillsets are not alike. The former category is

usually carried out by systems and network administrators. While the latter

category usually requires a specialist in application, network and systems

security. However, with a global increase in cyber threats there is a need

for non security specialist to be equipped with a user-empowering tookit

that can leverage vulnerabilities and enable its users to accurately assess

the security posture and potential risks to their organisation.

To address these shortcomings, this thesis presents Escrow, a user-centric

vulnerability assessment and exploitation framework for web applications.

Escrow empowers security practitioners, systems administrators and non IT

14

savvy users to perform effective security assessments on web applications

regardless of the server-side language and operating system type. More-

over, the design of Escrow enables users to develop their own detection and

exploitation modules. The vulnerabilities that Escrow detects can be lever-

aged by the user with a single mouse click, therefore demonstrating to the

user what an attacker can see if they were to exploit the vulnerability and

thus demonstrating true risk.

1.1 Goal and Objectives

The goal of this thesis is to present a framework for effective detection and

proof of concept for web application security vulnerabilities. The objectives

are to design and implement our proposed framework into a working so-

lution that addresses some of the most critical exposures that lead to data

breaches, system compromise and remote code execution. The solution will

encompass both vulnerability assessment and exploitation techniques pro-

viding a proof of concept for the vulnerabilities detected.

Our rationale for using this approach is due to the threat of large scale data

breaches, which as mentioned, are continuing to increase. If we had a sys-

tem in place for effective detection of vulnerabilities which could illustrate

to users what an attacker can see, then the user will be under no illusion as

to what the dangers and risks really are to their organisation. And thus ap-

propriate action can then be taken to mitigate risks, and in doing so, reduce

the likelihood of exploitation.

1.2 Scope

The work undertaken throughout this thesis will not explore vulnerabilities

at the network or operating system level. Rather, the focus is on web appli-

cation security, in particular some of the top flaws identified by the Open

15

Web Application Security Project (OWASP) [31] (see Table 1.1), and Mitre’s

Common Weaknesses and Enumeration (CWE) [7].

Table 1.1: OWASP Top 10

Category Definition

A1-Injection Injection flaws, such as SQL, OS, and LDAP injection.

A2-Broken Authentication

and Session Management
Application functions related to authentication and session management.

A3-Cross-Site Scripting (XSS)
XSS flaws occur whenever an application takes untrusted data and sends

it to a web browser without proper validation or escaping.

A4-Insecure Direct Object References
A direct object reference occurs when a developer exposes a reference to

an internal implementation object, such as a file, directory, or database key.

A5-Security Misconfiguration

Good security requires having a secure configuration defined and

deployed for the application, frameworks, application server, web

server, database server, and platform.

A6-Sensitive Data Exposure

Many web applications do not properly protect sensitive data, such as

credit cards, tax IDs, and authentication credentials. Attackers may

steal or modify such weakly protected data to conduct credit card fraud,

identity theft, or other crimes.

A7-Missing Function Level Access Control

Most web applications verify function level access rights before making

that functionality visible in the UI.

If requests are not verified, attackers will be able to

forge requests in order to access functionality without proper

authorization.

A8-Cross-Site Request Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP

request, including the victim’s session cookie and any other

automatically included authentication information, to a vulnerable web

application.

A9-Using Components with

Known Vulnerabilities

Components, such as libraries, frameworks, and other software modules,

almost always run with full privileges. If a vulnerable component is

exploited, such an attack can facilitate serious data loss or server

takeover.

A10-Unvalidated Redirects and Forwards
Web applications frequently redirect and forward users to other pages

and websites, and use untrusted data to determine the destination pages.

The OWASP organisation is an online community dedicated to web appli-

cation security. The community includes corporations, educational organi-

sations and individuals from around the world who share a common goal

of improving the state of security in web application development.

Likewise, Mitre’s CWE list is a community initiative which provides a uni-

fied, measurable set of software weaknesses enabling more effective discus-

16

sion. And although the CWE is not specific to web application weaknesses,

there is significant overlap in Mitre’s dataset of software errors, and the

OWASP Top Ten list. By drawing on community knowledge and expertise

from both organisations, this allows us to focus our research on the most

pernicious threats to our data.

1.3 Key Contributions

This thesis presents the Escrow framework which empowers users to scan

web applications for vulnerabilities while demonstrating the impact those

vulnerabilities have on a remote systems and private data. In defending this

claim, this thesis makes the following contributions:

• Escrow, a vulnerability assessment system for scanning web applica-

tions that provides users with a proof of concept for the vulnerabilities

it claims to detect.

• A development environment for extending detection modules within

the system which enables users to write their own custom detection

and fingerprinting code for newly discovered vulnerabilities.

• An accountabiity system for tracking Escrow user activities. Some

activities include what sites users are scanning, what vulnerabilities

they are scanning for, at what particular time and also tracking geo-

location based on Internet Protocol (IP) address.

• An exploration module for leveraging vulnerabilities and demonstrat-

ing true risk potential (ie. what impact does the vulnerability have on

the system if it were to be exploited).

1.4 Document Structure

The remainder of this document is structured as follows:

17

Chapter 2 evaluates work relating to vulnerability assessment and examines

their capabilities. Further, it evaluates data collected from the Mitre’s CWE

list.

Chapter 3 examines our GUI and the rationale for the design decisions made

throughout the development phase.

Chapter 4 gives a detail description about the vulnerability detection mod-

ules and how this works implementation differs from traditional detection

methods.

Chapter 5 examines the proof of concept exploitation methods for the vulner-

abilities our solution claims to detect. It further describes the implications

of leveraging such vulnerabilities.

Chapter 6 describes the usage of modules within the software and the ratio-

nale for development choices.

Chapter 7 presents an evaluation on the current state-of-the-art toolkits and

validates the effectiveness of our system against several public facing web

applications.

Chapter 8 summarises the work undertaken for this thesis and its outcomes

and potential future work is described.

2
Related Work

Vulnerability assessment is one of the most important components for re-

ducing the likelihood of data breaches within an organisation and conse-

quently there is a large body of work in this area, some of which pertains

to web application security. Several tools have addressed specific tasks in

automating the assessment process including web crawling [17, 16], inter-

cepting HTTP requests and responses [38, 4], and brute forcing parameter

values [1]. Escrow is a more general toolkit for automating the vulnerability

assessment and exploitation process that can address the aforementioned

tasks and others proficiently.

In this chapter we survey major features in some of the well known toolkits

and compare how they are supported within the Escrow framework. Fur-

thermore, we present our findings from analysis carried out on Mitre’s CWE

dataset which allows us to focus our proposed solution on threats that are

actively being used by attackers to obtain sensitive data and disrupt busi-

ness causing financial loss.

19

2.1 Vulnerability Detection

Jovanovic et al. proposed Pixy, a static code analysis toolkit that is able

to detect taint-style vulnerabilities automatically. Their proposed detection

methods are interprocedural, flow and context sensitive for the purposes of

low false positives and higher accuracy. Empirical results show that Pixy

was able to detect for both Structured Query Language (SQL) injection and

Cross Site Scripting (XSS) vulnerabilities in PHP scripts with an observed

50% false positive rate [19].

The difference between Pixy and Escrow is that Pixy is considered a white-

box application security testing toolkit (ie. an assessment that that has ac-

cess to web application server and has therefore access to the underlying

source code) whereas Escrow is a black-box testing toolkit and therefore has

no prior knowledge of the underlying server side source code (black-box

scanners share the same perspective as any remote user to a web applica-

tion).

Angelo et al. present a heuristic based approach for detecting SQL injection

attacks in web applications [8]. Their approach is integrated into a soft-

ware solution called V1P3R, a toolkit that performs SQL penetration testing

by (1) using standard SQL injections and (2) by inferring the knowledge

from the output produced by the web application under test, specifically

by matching patterns into error messages or valid outputs produced by the

web application.

The ability to infer from web application error messages plays a key role in

in the detection process for SQL injection. Escrow’s SQL injection detection

method will incorporate similar attributes to V1P3R in addition to logical

inference testing (ie. time based injection tests) as well as scan for other

critical web application vulnerabilities.

In his paper Detecting and Exploiting XSS with Xenotix XSS Exploit Frame-

20

work [1], Abraham presents a XSS detection and exploitation framework

loaded with a database exceeding 350 XSS payloads. The author’s pro-

posed solution supports both manual mode and automated time sharing

based test modes. Furthermore, the author’s rationale for the toolkit devel-

opment was not because there was a shortage of XSS detection tools, rather

he recognised the need for a user-friendly GUI based toolkit that could ben-

efit all users.

2.2 Intercepting Proxies

Often known for its usage as a web proxy, Burp Suite [38] is touted as one of

the best toolkits for penetration testers assessing web application security

flaws. Burp differs with respect to previous tools covered in this chapter

in that Burp is equipped with a crawling capability that attempts to visit all

pages within a given web application until some condition is met (max page

limit, off-domain Uniform Resource Locator (URL)’s, unmatched keywords

or other specified conditions set by the user).

Because Burp is inherently an intercepting proxy, all HTTP requests and

responses can be modified within the toolkit before being sent back to the

requesting application. This feature is incredibly useful for monitoring traf-

fic to and from a remote server. The downside to this toolkit is that if one

wants to automate the scanning feature, a professional license first must be

purchased.

OWASP ZAP, commonly known as the Zed Attack Proxy is defined as an

integrated penetration testing toolkit for finding vulnerabilities in web ap-

plications [4]. In terms its vulnerability assessment and intercepting proxy

functionality, it is quite difficult to fault ZAP as a vulnerability assessment

and penetration testing toolkit for web applications. Our proposed solu-

tion differs from ZAP in that Escrow supports both HTTP GET and POST

21

request parameter tampering in addition to using fully encoded parameter

values for filter evasion.

Moreover, Escrow is not only a vulnerability assessment toolkit, it is also

equipped with exploit modules to leverage the vulnerabilities reported. De-

tails of which are covered in Chapter 5.

2.3 Web Application Injection

Bernado et al. present SQLMap, a system for automatic exploitation of SQL

injection vulnerabilities in which a user can specify a URL to be tested for,

and exploited with SQL injection [6]. Perhaps best known for its operating

system command execution modules, SQLmap is a command line based

toolkit that is also equipped with database fingerprinting and enumeration

capabilities. However, it is not equipped to scan a web application for vul-

nerabilities, rather the user is left to identify which parts of their application

take part in SQL queries before passing them to the command line toolkit.

Consequently, users must run other automated scanning tools to identify in-

put elements within the web application, and then pass the URL to SQLMap

for testing.

SQLMap shares similarities with another well known toolkit namely SQL-

Ninja. SQLNinja is yet another popular SQL injection testing toolkit [27].

Built in C, it is equipped with numerous modules for post exploitation for

Microsoft SQL Server. The toolkit supports Operating System (OS) com-

mand shell, meterpreter wrappers [37] and file upload capabilities. How-

ever, for it to be used effectively it would need to be used in conjunction

with other assessment toolkits, particularly for the purposes of identifying

SQL injection in the first instance (presently, SQLNinja is not equipped to

crawl web applications).

Furthermore, it could be argued that user-centric web application toolkits

22

come equipped with scanner capabilities, proxy support and a user-friendly

GUI. And because SQLNinja is designed specifically for SQL injection de-

tection and exploitation, it is not equipped with the required features to

be a robust user-centric web application auditing framework. Thus, non

security-trained IT staff typically will not be able to utilise it immediately

and may require training.

2.4 Summary of Existing Toolkits

In summary, we observed a number of trends with respect to existing toolk-

its. It was found that most vulnerability scanners are sufficiently equipped

to scan for flaws that reside in web applications. In terms of their ability

to leverage vulnerabilities, however, this capability remains to be seen. On

the other hand, most exploitation toolkits are terminal-based tools and per-

form relatively well in their objectives (ie. enumerating and fingerprinting

databases on a remote web application). The drawbacks of the exploitation

tools are (1) that they focus solely on one vulnerability and (2) can be diffi-

cult for users to use who are not familiar with terminal-based applications.

Moreover, none of them were equipped to scan a web application for the

vulnerabilities they seek to exploit.

2.5 Common Weaknesses and Exposures

In this Section we address the most critical vulnerabilities in web applica-

tion security by analysing publicly available the datasets from Mitre’s CWE.

The CWE is a compiled list of software errors that periodically updated and

maintained by over 20 industry experts [22]. Suffice to say it is a reputable

resource from which we draw our conclusions.

The CWE/SANS Top 25 Most dangerous software errors is a list of the

most widespread and critical errors that can be lead to vulnerabilities in

23

software [22]. It is the result of collaboration between the SANS Institute,

MITRE, and many top software security experts in the US and Europe.

The list uses inputs from over 20 different organizations, who evaluated

each weakness based on prevalence, importance and likelihood of exploit

which uses the Common Weakness Scoring System (CWSS) to score and

rank the final results. The CWSS is described as a collaborative, community-

based effort that is addressing the needs of its stakeholders across govern-

ment, academia, and industry. CWSS is a part of the CWE project, co-

sponsored by the Software and Supply Chain Assurance program in the

Office of Cybersecurity and Communications (CS&C) of the US Department

of Homeland Security (DHS) [22].

To draw a clear picture on the current state of vulnerabilities that are of

concern to industry, we compiled the following figures based off openly

available data published by the CWE [23]. The results from Figure 2.1 show

that SQL Injection, with a score of 93.8 out of 100, is still the most prominent

threat in terms of attributes stated above, with XSS coming in three places

below SQL Injection at number 4 with a score of 77.7.

0

10

20

30

40

50

60

70

80

90

100

SQL Injection OS Command
Injection

Classic Buffer
Overflow

Cross-site Scripting

CWE/SANS Top 4 Most Dangerous

Figure 2.1: CWE/SANS Top 4 most dangerous software errors

24

Figure 2.2 illustrates the number of threats per category reported as a per-

centage for the current year 2014. We find that while SQL Injection remains

the most prevalent threat to our data, XSS is the most reported software se-

curity vulnerability at the time of writing. To clear up any confusion about

the data, the category Insufficient Information refers to vulnerabilities where

details about which have been omitted. Therefore, we have excluded this

from our vulnerability categories in Figure 2.2. The full list of categories

and their corresponding data can be found in Appendix B.

0

20

40

60

80

100

120

140

160

180

Cross Site Scripting
(XSS)

Access Control Buffer Errors Input Validation

Top Reported Attacks - 2014

Figure 2.2: CWE Top categories for highest number of reported attacks

Figure 2.3 illustrates that XSS, not only the most prevalent reported attack

of 2014, is also the most reported over the past six years. Insufficient Infor-

mation is the category in which attack methods have been omitted from the

dataset, but nonetheless reported. Buffer Errors, closely followed by SQL

Injection take spots three and four respectively with Access Control being

the fifth most reported attack over the past 6 years. The full list can be found

in Appendices C and D.

For the ”top N” vulnerabilities in each year, Table 2.1 identifies the total per-

centage of overall vulnerabilities. For example, a figure of 50 for Top 3 says

25

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Top Reported Attacks Over 6 Years

Figure 2.3: Top 5 reported attacks over a 6 year period

that the Top 3 accounted for 50% of all reported vulnerabilities in that year.

This provides a rough estimate on the diversity of reported vulnerabilities.

Table 2.1: Diversity percentages able

Top N 2008 2009 2010 2011 2012 2013

3 42.6% 40.3% 36.7% 40.5% 42.5% 44.4%

6 64.2% 63.2% 61.8% 72.8% 66.8% 70.8%

Consistent with the 80/20 rule, we find that XSS, Input Validation and SQL

Injection fall in the top 20% of reported flaws for 2014 as illustrated in Fig-

ure 2.4. These flaws are pertinent to web application security. This informa-

tion, coupled with the dangerous software flaws list in Figure 2.1 allows us

to focus our research area on the most pernicious threats to our data.

2.6 Summary of CWE Findings

Our analysis of the CWE data suggests three things. First, traditional attack

vectors such as SQL Injection, OS Command Injection and XSS are very

26

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0

20

40

60

80

100

120

140

160

180

200

In
su

ff
ic

ie
n

t
In

fo
rm

at
io

n

C
ro

ss
 S

it
e

Sc
ri

p
ti

n
g

A
cc

es
s

C
o

n
tr

o
l

B
u

ff
er

 E
rr

o
rs

In
p

u
t

V
al

id
at

io
n

SQ
L

In
je

ct
io

n

R
e

so
u

rc
e

 M
an

ag
em

en
t

Er
ro

rs

In
fo

rm
at

io
n

 L
e

ak
/D

is
cl

o
su

re

C
ry

p
to

gr
ap

h
ic

 Is
su

es

P
at

h
 T

ra
ve

rs
al

C
ro

ss
 S

it
e

R
e

q
u

e
st

 F
o

rg
er

y

O
th

er

A
u

th
en

ti
ca

ti
o

n
 Is

su
es

C
re

d
en

ti
al

s
M

an
ag

em
en

t

N
u

m
e

ri
c

Er
ro

rs

Li
n

k
Fo

llo
w

in
g

C
o

d
e

 In
je

ct
io

n

R
ac

e
 C

o
n

d
it

io
n

s

D
e

si
gn

 E
rr

o
r

O
S

C
o

m
m

an
d

 In
je

ct
io

n

Fo
rm

at
 S

tr
in

g
V

u
ln

er
ab

ili
ty

C
o

n
fi

gu
ra

ti
o

n

N
o

t
in

 C
W

E

Pareto Chart of Flaws by Report Frequency

Frequency

Percentage

Figure 2.4: Pareto Chart for 2014 reported vulnerabilities

much pervasive and are frequently being exploited by adversaries. Sec-

ondly, a majority of the most dangerous software errors are those which are

found within web applications. And finally, the frequency of attacks on web

applications have been and are continuing to increase. Moreover, there is

significant overlap with the exposures referred to by the CWE and OWASP,

indicating there is consensus on the need to address such exposures.

2.7 Conclusion

Our findings on traditional assessment and exploitation tools show that a

large majority of them are not user-centric. This is due to the fact that

many are terminal-based tools and require input from other vulnerability

assessment tools to be used effectively. And therefore, are not considered

stand-alone solutions to many of the weaknesses and exposures outlined by

Mitre’s CWE. Moreover, our findings show that vulnerability assessment is

often decoupled from exploitation methods which suggests a missing link

between the two exercises.

27

Furthermore, the data from the CWE list, which shares similarities with

the OWASP list, emphasises the need to address vulnerabilities that are ex-

ploited through poor or non-existing input validation which are commonly

used by attackers. In Section 4 we describe our techniques for detecting

critical vulnerabilities in web applications.

3
Designing for Users

Developing an application that is user-centric is a key element to the design

of Escrow. If Escrow was merely a command line based tool like many

tools surveyed in Chapter 2, then it may be difficult to use for ordinary

users who do not have experience running applications from the terminal.

Furthermore, if the design was strictly terminal based it would be difficult

for the application to visualise what is really going on with the vulnerable

web page and the application would have no way to render the Hyper Text

Markup Language (HTML).

In this chapter we sought to find out what makes a security software user-

centric and conducted a click study of 16 popular anti-virus tools. We present

our findings from our click study conducted to ascertain whether a reduc-

tion in the number of clicks required to perform a task is correlated to mar-

ket share value. We review gaps identified in Chapter 2, and provide a

rationale for the design decisions made throughout the development pro-

cess.

29

3.1 Click Study

In the field of Human Computer Interaction and Usability, numerous inter-

face usability studies have been conducted in the past attempting to ascer-

tain whether usability is correlated with the number of a clicks required to

perform a given task. One such example is the three-click rule [33] which

states that no page on a website should be more than three clicks away. In

1999, Amazon were granted a patent for submission entitled ”A Method

and System for Placing a Purchase Order Via a Communications Network”

[15] which describes an online system allowing customers to make a pur-

chase from their website with a single mouse click.

OPSWAT [5], a company known for releasing periodic market share reports

for several sectors of the security industry published a report on January

2014 on the world-wide market for anti-virus products and vendors. The

16 anti-virus applications were chosen based on this report in which appli-

cations were ranked based on their market share value. As such, the focus

for this study is to test the top anti-virus products outlined in the OPSWAT

report in terms of usability, specifically the amount of clicks required to per-

form tasks. The vendors that were tested in this study are given in Table 3.1.

For the purposes of this study, it was chosen to measure two common activ-

ities associated with anti-virus products in Table 3.1, namely (1) performing

a quick scan on a computer system and (2) performing a full scan on a par-

ticular directory or drive.

The following metrics were recorded:

• Number of clicks to perform a quick computer virus scan.

• Number of clicks to perform a scan on a particular directory or disk

drive.

Based on these two activities, we make note of the minimum, maximum and

30

Table 3.1: Anti-virus vendors by market share

Product Name Market Share Min Clicks Max Clicks Average Clicks Min Windows Max Windows

Microsoft Security Essentials 16.30% 1 4 2.5 0 1

avast! Free Antivirus 13.20% 1 6 3.5 0 1

Windows Defender 6.20% 1 4 2.5 0 1

Avira Free Antivirus 5.00% 1 4 2.5 1 3

AVG Anti-Virus Free Edition 4.80% 1 4 2.5 0 0

ESET Smart Security 4.60% 2 4 3 0 1

Malwarebytes Anti-Malware Pro 4.20% 1 5 3 0 0

AVG Internet Security 3.30% 1 4 2.5 0 0

Kaspersky Internet Security 3.30% 2 6 4 1 2

Norton Internet Security 3.10% 2 5 3.5 0 1

ESET NOD32 Antivirus 2.80% 2 4 3 0 1

COMODO Antivirus 2.70% 2 6 4 2 2

McAfee VirusScan 2.50% 2 11 6.5 1 4

Norton 360 2.30% 3 7 5 2 4

Symantec Endpoint Protection 1.90% 2 12 7 1 2

average number of clicks required performing such activities, and compare

the average number of clicks with the associated products’ market share.

0

1

2

3

4

5

6

7

8

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

A
ve

ra
ge

 N
u

m
b

e
r

o
f

C
lic

ks

M
ar

ke
t

Sh
ar

e
 P

e
rc

e
n

ta
ge

Anti-Virus Click Study

Market Share

Average Clicks

Figure 3.1: Pareto chart representing market share and average clicks

The click study results (see Figure 3.1) show that anti-virus products with

a dominant share of the market require a less amount of average clicks to

perform tasks, compared with products whose market share is subordinate.

31

Based on these findings, it was chosen that the design of Escrow was to

be modeled on this principle: The less amount of clicks it takes to perform

an action, the better. Of course this does not hold true for all applications

and circumstances (ie. performing a task that requires specific parameter

settings), but the idea for our design is to support both kinds of users: Those

who want to perform a ”quick” scan on their web applications, and those

who want the option of performing more detailed tasks suitable to their

needs.

3.2 Addressing Gaps Identified

Our findings suggest a need for a user-centric vulnerability assessment and

exploitation framework that encompasses both the detection and exploita-

tion of vulnerabilities. In doing so, the average IT user, security practitioner

and pentester can find out more about the state of security on their web

servers, while illustrating a proof of concept for the exposures within their

organisation. In Table 3.2 we give an overview of some of the key features

that a web application auditing framework ought to include and compare

how our proposed Escrow framework stacks up with the current state-of-

the-art solutions. (curious readers might want to look at Chapters 4 and 5

for an in-depth view of modules included in our framework).

3.3 Proposed Framework

As previously stipulated, vulnerability assessment - the process in which

exposures of an organisation are discovered, and penetration testing - the

leveraging of weaknesses and exposures, are often seen as two exclusive

exercises, both in theory and in practice.

Combining the two practices into a single interconnected system will pro-

vide both the traditional user and penetration tester an understanding of

32

Table 3.2: Toolkit comparison table

Escrow SQLNinja SQLMap
Burp

Suite
Xenotix

OWASP

ZAP
V1P3R Pixy

V
u

ln
er

ab
il

it
y

 A
ss

es
sm

en
t

Can crawl web

pages with

provided seed

URL

Can perform static

source code

analysis

Supports SQL or

OS injection

detection

Supports XSS

detection

P
en

et
ra

ti
o

n
 T

es
ti

n
g

Supports HTTP

GET & POST

request scanning

Supports database

traversal

Supports payload

obfuscation

Provides browser

proof of concept

F
ea

tu
re

s

Provides a user-

centric GUI

Provides

accountability

system

Provides

extensibility for

detection modules

Cross-platform

support

Programming

development used
Java C Python Java C# Java Java Java

the implications of exposures within their organisation, and the impact it

might have if exploited. The framework proposed seeks to merge the two

activities as shown in Figure 3.2.

33

Vulnerability
Assessment

Penetration
Testing

Exposure Information

The Escrow Framework

Information
Gathering

Fingerprinting

Sensitive
Data /

Command
Execution

Proof of
Concept

Figure 3.2: Proposed Escrow Framework

3.4 Design Decisions

The main panel is divided into two panes. The standard pane and the ad-

vanced pane. The standard pane, whose design was influenced by results

from the click study in Section 3.1, is the focus for this section. It is com-

prised of three separate panels. The input panel appears on top and con-

tains textboxes and advanced features available from the drop down arrow.

The results panel which consists of a table where scan results are presented.

The markup panel is found below the results panel and has its own tabbed

pane - one for displaying a rendered HTML preview of the current page,

and one for displaying raw HTML (markup). This section describes each of

these panels with the exception of the advanced panel which is described in

an earlier published version of this work [2].

3.4.1 Input Panel

As shown in Figure 3.3, the input panel is comprised of input textboxes,

radiobuttons, comboboxes and buttons. Its primary role is to take input

from the user and to pass that data to the application. The start URL text

34

field is positioned at the top of the pane for simplicity (ie. if a user wishes

to perform a quick scan). While other features and settings are tucked away

in the same pane, they can be made visible by pressing the arrow-down

button and conversely made hidden again by pressing the arrow-up button

(see Figure 3.3). This was done so as to preserve screen real estate. If a user

wishes to perform a quick scan, they need only input a FQDN into the Start

URL text field and press the search button (or enter).

Figure 3.3: Standard pane input panel

The remaining combobox, textbox and radio buttons take input parameters

from the user which can be specified before conducting a quick scan. A

user can manually specify the maximum amount of pages the scanner can

visit by entering an unsigned integer into the combobox (or selecting a pre-

defined value from the dropdown menu), and also constrain their search to

a particular domain. For instance, if a user wishes only to scan URL’s per-

taining to waikato.ac.nz, then selecting the ”Constrain scan to to top URL”

button would match the following URL’s:

waikato.ac.nz

cs.waikato.ac.nz

math.waikato.ac.nz

waikato.ac.nz/enrol

But not these:

waikato.com

waikato.co.nz

waikato.nz

35

Using this method, the scanner will perform as expected and visit pages

that originate from the seed URL and all subsequent subdomains.

3.4.2 Results Panel

As shown in Figure 3.4, the results panel consists of a dynamic table where

scan results are presented to the user. During the scanning phase, the panel

will report URL’s and the type of vulnerability that was found on that page.

The pane itself is active and listens for mouse click events.

For instance, if a user is to click on a URL within the table component, the

results panel will send a message to the markup panel along with the URL to

do further processing (more on this in the next subsection). If a user wants

to find our more about the vulnerability and how to go about seeing the

impact it might have, they need only click the ”?” row on the next column

to examine a brief synopsis for that vulnerability.

Figure 3.4: Standard pane results panel: vulnerable URL’s table

As shown in Figure 3.5, the synopsis panel was designed to provide more

information regarding vulnerabilities detected during and after the scan-

ning phase. When the ”?” button is pressed, a new dialogue box will open

36

providing the following details:

• The vulnerability detected

• The location within the web application where the vulnerability was

found

• The fingerprint parameter (in Figure 3.5 the parameter is hex encoded

• The CWE identifier

• The impact the vulnerability may have on the web application

The dialog box method was chosen over creating a new synopsis pane,

mostly for the purposes of saving on screen real estate and convenience.

And by doing so, the user can be informed about the state of their web appli-

cation security and prioritise the remediation process based on vulnerability

severity, without obstructing the scanning panel. Moreover, additional in-

formation is provided including CWE information should the user want to

find out more about the detected vulnerability (see Figure 3.5).

Figure 3.5: Vulnerability synopsis dialog box

37

3.4.3 Preview Panel

The preview pane is made up of two separate panels, namely the rendered

HTML pane and the raw HTML pane. As shown in Figure 3.6, the rendered

version of the web page is presented to the user upon clicking the URL in the

results pane. The purpose for this pane is to illustrate to the user what the

application sees. For instance, in Figure 3.6 the termsofservice.php page

which is susceptible to Operating System Command Injection is shown in

the preview pane as Escrow has identified an injection vulnerability which

is shown by reading the /etc/passwd file from the remote server.

Figure 3.6: Rendered HTML pane

Similarly, if the user wishes to preview the raw HTML, this can be done

by clicking the markup tab in the preview pane. This is the equivalent of

the ”view source” command one might expect to find in the common web

browser (Firefox, Internet Explorer, Chrome etc.), as shown in Figure 3.7.

The rationale for providing both the rendered and raw HTML is to illus-

trate to the user what the application sees when vulnerabilities are identi-

fied. The rendered version of the page is what one might expect to see using

a traditional web browser with javascript disabled. This is done so that Es-

crow itself is not susceptible to client side attack vectors. The raw HTML is

38

Figure 3.7: Raw HTML pane

the source code that Escrow analyses when fingerprinting web applications.

As illustrated in Figure 3.7, Escrow has successfully identified an Operating

System Command Injection vulnerability by ”catting” out the /etc/passwd

directory and using regular expressions to match for a specific user pattern

found within that file.

3.5 Feature Design

In this section we describe two additional panels relating to additional fea-

tures provided in our toolkit, namely the authentication and settings panels.

Because Escrow is inherently a web application security tool equipped with

working exploit modules, we were weary during the design phase of the

toolkit itself going rogue. That is to say, obtained and used by malicious

users and in the worst case, spread throughout an underground market

place.

This brings our attention to the authentication panel, the design of which

is covered in this section, while implementation details are covered later in

this work. This section also describes the settings panel wherein users can

39

specify personal preferences relating to their scans.

3.5.1 Authentication Panel

The purpose of the authentication panel is to have users verify themselves

before using the toolkit and therefore was an integral part of the design.

When the application is executed, an authentication panel will prompt the

user for their credentials (these are given to verified users and other re-

searchers while the toolkit is in its preliminary stages). Escrow will then

communicate with a remote server verifying whether the provided creden-

tials are indeed correct. When a user has been verified, the application will

alert the user via a dialog box popup screen (see Figure 3.8). Once the user

has clicked the OK button, the main panel will then be presented to them.

Figure 3.8: Authentication panel

3.5.2 Settings Panel

The settings panel is divided up into three categories: Vulnerabilities, Thread-

ing and Web form options (see Figure 3.9). By design, we have chosen to

include in the vulnerabilities category some default options for when users

want to perform a quick scan. For instance, we have set SQL and XSS de-

tection to be on by default, multi-threading off and HTTP form fuzzing off.

However, users are free to customise their scans to their needs. It may be

asked why not have such options on by default? Our rationale for this is

that if multi-threading is on by default, the web server may not be able to

handle multiple requests at one time, a consequence of which may be server

40

overloading or denial of service. Similarly, for HTTP form fuzzing (POST

requests fuzzing), it might be the case that the web form itself is part of

a blogging or comment system, and therefore any parameters that we test

for in forms may show up in the web application. For some cases (ie. an

exhaustive scan) such options may be desirable and enabled by the user

through the settings panel.

Figure 3.9: Settings panel

3.6 Summary

We conducted a usability study to ascertain whether the number of clicks

required to perform tasks is correlated to the market share of the applica-

tion. The study concluded with the profound notion that there was indeed a

correlation between usability and market share, which formed the basis for

the user-centric design of the Escrow framework. The design of Escrow is

built on the principle that users prefer to use applications where performing

complex tasks are trivial (ie. scanning a system for viruses and malware).

This is now an integral part of the design process which facilitates scanning

an entire web application with a single mouse-click, and thus empowering

non-technical users to engage in activities previously done only by security

41

professionals.

4
Detecting Web Application

Vulnerabilities

Effectively detecting web application security vulnerabilities using active

assessment methods is essential to the success of any scanning toolkit. If

a scanning system relies only on HTTP status code inference and passive

analysis for detecting vulnerabilities then it would be difficult for the users

of that system to say with confidence that the application they are testing is

secure. For instance, an attacker of a web server is going to be actively look-

ing for vulnerabilities and attempting to exploit them on the target system,

and if the assessment toolkits are not replicating the real threat, this would

facilitate a false sense of security for the organisation. This section gives

a description of common vulnerabilities and describes the techniques used

within the Escrow system to fingerprint for some of the most common and

dangerous ones described by the CWE, in particular: SQL injection, Cross

Site Scripting, File Inclusion, OS Command Injection and Shellshock.

43

4.1 SQL Injection

SQL injection is a code injection technique, used to attack data-driven appli-

cations, in which malicious SQL statements are inserted into an entry field

for execution (e.g. to dump the database contents to the attacker) [25]. SQL

injection occurs when user input is not filtered for escape characters and is

then passed into a SQL statement. This results in the potential manipulation

of the statements performed on the database by the end-user of the applica-

tion. To detect for SQL injection, the application looks for specific parameter

values that take part in queries. For instance, this could be a GET parameter

value that is part of a url (http://targetsite.co.nz/catalog?productid=999),

which may take the form of SELECT * FROM products WHERE productid

= 999. Similarly, POST parameters are tested in the same way but are not

visible in the URL field.

Figure 4.1: Identified injection error in page source

At this point, the application will then send a specific crafted parameter

value that manipulates the query which is executed by the database. Con-

sequently, if the web application does not sanitise the input, the malformed

query will cause the application to throw an error message. Our approach

is to scan the web pages source code and compare it against a list of known

database errors. These errors are given in Table 4.1.

44

Table 4.1: Database error list

No Error

1 mysql num rows()

2 mysql fetch array()

3 FetchRow()

4 GetArray()

5 mysql numrows()

6 mysql fetch object()

7 mysql fetch assoc()

8 include()

9 Syntax error

10 mysql fetch row()

11 Invalid Querystring

12 error in your SQL syntax

13 Microsoft OLE DB Provider for

ODBC Drivers error

14 Server Error in ’/’ Application

When we find a successful match, we can say with high confidence that SQL

Injection is possible. One advantage of scanning in this way is that we do

not require rendering a page in a browser, thus eliminating significant over-

head. In addition, many of the errors that we scan for exist only in the page

source of the site and not in the rendered version. Therefore, systematically

scanning in this way is more effective and eliminates the need for manual

analysis of a rendered web page. A successful detection of SQL detection is

given in Figure 4.1.

45

4.2 Cross Site Scripting

The OWASP defines Cross-Site Scripting (XSS) attacks as a type of injection

in which malicious scripts are injected into otherwise benign and trusted

web sites [29]. XSS attacks occur when an attacker uses a web application

to send malicious code, generally in the form of a browser side script, to

a different end user. Flaws that allow these attacks to succeed are quite

widespread and occur anywhere a web application uses input from a user

within the output it generates without validating or encoding it.

Figure 4.2: Identified cross site scripting error in page source

XSS attacks are generally categorised into two groups: Reflective XSS and

Persistent XSS (sometimes referred to as Stored XSS). The definitions are

given below.

Reflective XSS: Reflected attacks are those where the injected script is re-

flected off the web server, such as in an error message, search result, or any

other response that includes some or all of the input sent to the server as

part of the request.

Stored XSS attacks are those where the injected script is permanently stored

on the target servers, such as in a database, in a message forum, visitor log,

comment field, etc. The victim then retrieves the malicious script from the

server when it requests the stored information.

To test for XSS vulnerabilities, we inject parameters with simple script code

46

and verify whether the web server will respond with an HTTP response that

could be executed by a browser. For instance, we could test a parameter

with "><script>alert(1)</script> and check to see whether the rendered

javascript code appears within the HTML. If the attack is successful, the

browser will return an alert popup message containing the character ”1”.

As Figure 4.2 illustrates, the name parameter has been injected with the

value "><script>alert(1)</script> and is reflected back to the client in

the HTTP response, and is therefore indicative of XSS.

Likewise, persistent XSS is fingerprinted using the same method. However,

the implications of persistent XSS are much more serious. Consider the sce-

nario where a web application input form takes input from the user whose

comments are stored in a backend database (a comment section on a blog for

example). If the user input is not sanitised, the attacker is free to inject in his

own arbitrary javascript code which the application will then execute when

a user requests that page. Persistent XSS in this example can easily lead to

token stealing, denial of service and website defacement and is therefore

considered more dangerous than reflective.

4.3 File Inclusion

A file inclusion vulnerability is one that allows an attacker, by making use

of the include function, to read arbitrary files from a remote system. Web

developers often use the include functionality provided in some major web

programming languages to include code or data that is common to most

files within an application. For example, menus, headers and footers are

used frequently within a web application across various web pages within

an application, and instead of re-writing the code for every new web page

created, developers make use of the include functionality which essentially

embeds the file within the web page using the include statement.

File inclusion vulnerabilities are generally categorised into two groups: LFI

47

and Remote File Inclusion (RFI). The definitions of each are given below:

Remote File Inclusion: It allows an attacker to include in a remote file,

usually through a script on the web server. The vulnerability occurs due to

unsanitised user input.

Local File Inclusion: Similar to the RFI vulnerability except instead of in-

cluding in remote files, only files that are local to be the webserver can be

included. The vulnerability occurs due to unsanitised user input.

Because an attacker can leverage RFI by including in their own webshell

(typically a PHP backdoor), RFI is considered more dangerous compared

with LFI. A PHP backdoor may be as simple as a PHP file file that takes a

command via the ”cmd” parameter and passes it to system to be executed.

If an attacker had such a file on a remote web server and discovered an RFI

vulnerability on another web server, the attacker would be free to include

their own PHP code like so:

http://target.co.nz/?page=http://attacker.com/shell.

An example PHP backdoor script is given below.

<?php

if(isset($_REQUEST['cmd'])){

$cmd = ($_REQUEST["cmd"]);

system($cmd);

echo "</pre >$cmd <pre >";

die;

}

?>

To test for file inclusion vulnerabilities, we check for the possibility for the

inclusion of local files on the webserver. Depending on the type of server we

are fingerprinting (Microsoft IIS, Apache etc), we fingerprint the application

with different include values. For example, if the web server is running on

Apache, the fingerprinting method looks for the possibility of including in

the /etc/passwd file. The purpose of including the passwd file is because

48

its globally readable by all users, and is therefore an excellent candidate

to fingerprint a Linux based file system. Whereas if the server were run-

ning a Microsoft Windows Server variant, it would be nonsensical to test

for local files that exist only on Linux distributions. Instead, a practical ap-

proach would be to test the file that is common to most Microsoft Windows

variants. For instance, \Windows\system.ini for Microsoft Windows and

/etc/passwd, /proc/self/environ for Linux based. A successful detection

file inclusion is given in Figure 4.3 which illustrates the /etc/passwd file

included into the webpage.

Figure 4.3: Identified file inclusion error in rendered page view

4.4 Operating System Command Injection

The OWASP defines Operating System (OS) Command Injection a type of

attack where an application passes unsafe user supplied data (forms, cook-

ies, HTTP headers etc.) to a system shell. In this attack, the attacker-supplied

operating system commands are usually executed with the privileges of

the vulnerable application [30]. In fact, OS Command Injection has been

identified in several high profile router vendors including Netgear [10] and

Linksys [9]. The most common attack vectors are usually through a user-

supplied input form for the purposes of ping and traceroute tests. However,

because the input is not sanitised it is possible to chain commands together

using special characters (using pipe, ampersand, semicolon etc.).

A typical vulnerable PHP script is given below:

49

<?php

if(isset($_REQUEST['address '])){

$cmd = ($_REQUEST["address"]);

system("ping " . $cmd);

echo "</pre >$cmd <pre >";

die;

}

?>

From the above code snippet, one can observe the address parameter be-

ing passed directly into a system shell without any input validation used.

And because of this fact, an attacker is able to leverage the vulnerability

by passing in their own commands. To test for OS Command Injection,

we again fingerprint on the Microsoft Windows and Linux globally read-

able files, /etc/passwd and \Windows\system.ini. However, it is important

to note that fingerprinting the two operating system’s requires a different

set of commands and chaining syntax. For example, if the underlying sys-

tem is Linux based, we can verify the vulnerability by ”catting” out the

/etc/passwd file, whereas on a Microsoft Windows system, we would ver-

ify by ”typing” out the \Windows\system.ini file. A successful detection file

operating system command injection is given in Figure 4.4 which illustrates

the /etc/passwd file read via the ”cat” command.

Figure 4.4: Identified operating system command injection in page source

50

4.5 Shellshock

Disclosed on September 24 2014 by Stephanie Chazelas, Shellshock, also

known as bashdoor, is a vulnerability in the widely used Unix bourne-

again (bash) shell [32]. Although Shellshock is inherently a vulnerability

that resides in the bash interpreter, numerous technologies rely on pass-

ing variables to bash and are subsequently vulnerable if bash has not been

patched. Such examples include telnet, Secure Shell (SSH), Dynamic Host

Configuration Protocol (DHCP) servers and web applications. Certain web

server configurations allow the passing of environment variables through

cgi scripts, and as such, it is possible to detect for and exploit Shellshock via

a crafted HTTP request to a cgi script running on a linux based operating

system.

Unlike previous vulnerabilities covered in this chapter, Shellshock is lever-

aged through HTTP header fields. The header fields that are passed to bash

as environment variables are Referrer, Cookie and User-Agent. Because the

Escrow framework is built with a custom HTTP class, developers are free

to craft their own HTTP GET and POST requests. This allows for easy de-

tection for the Shellshock vulnerability. And although there is no OWASP

classification for Shellshock, if susceptible to the bug, a web server running

cgi-scripts could give an attacker an entry point to the system by leverag-

ing remote code execution. This fact, coupled with the ease of detection,

highlights the risk that Shellshock poses to web application servers.

To detect for Shellshock, the application looks for cgi scripts running on the

web server. Therefore, scripts that are running in the cgi-bin directory are

good candidates to test for the flaw. A typical HTTP request header for

fingerprinting Shellshock is given in Listing 4.1.

51

Listing 4.1: Typical HTTP request header (truncated)

GET /cgi -bin -sdb/printenv HTTP /1.1

Host: targetsite.com

User -Agent: () { :;}; /read passwd file

Accept: text/html ,application/xhtml+xml

Accept -Language: en-us,en;q=0.5

Accept -Encoding: gzip ,deflate

Accept -Charset: ISO -8859-1,utf -8;q=0.7

Keep -Alive: 300

Connection: keep -alive

Cookie: PHPSESSID=r2t5uvjq435r4q7ib3vtd

Pragma: no-cache

Cache -Control: no-cache

If the HTTP response source code contains the output from /etc/passwd,

we can assume that Shellshock has successfully been detected and the web

server is indeed vulnerable to the bug. And as Figure 4.5 shows, Shellshock

is successfully detected on the uptime script that resides in the cgi-bin di-

rectory.

Figure 4.5: Identified Shellshock vulnerability in page source

5
Exploiting Vulnerabilities

We now describe how detected vulnerabilities are leveraged within the Es-

crow framework. Our rationale for this is to demonstrate the impact that a

vulnerability has on a remote web server. One of the key problems in risk

assessment is the inability to quantify the impact that a vulnerability poses

to an organisation. As such, if we can demonstrate the impact of vulnera-

bilities (for example remote code execution, loss of sensitive data, unautho-

rised access to a file system), we can move a step closer to achieving true

risk potential. Moreover, if we can transform data in a way that manage-

ment can understand (ie. by illustrating the impact of vulnerabilities and

showing what the risks are), it makes for a strong argument the need for the

investment in a robust security programme.

5.1 Using the Explore Feature

Exploring vulnerabilities is achieved through the Advanced Vulnerability Di-

alog Box in which users can opt to see what are the implications of that vul-

53

Figure 5.1: Advanced dialog box - Explore

nerbility (see Figure 5.1). From here, they can choose to leverage the vulner-

ability by clicking on the ”Explore Flaw” button. The explore button will

then engage the penetration testing component which aims to exploit the

vulnerability. In the next Subsections, we describe how the vulnerabilities

are exploited using the Escrow framework to demonstrate true risk poten-

tial.

5.1.1 File Inclusion Proof of Concept

In Section 4 we demonstrated how RFI vulnerabilities can be leveraged to

obtain command execution on a remote server. But most LAMP (Linux,

Apache, MySQL and PHP) stacks do not have this feature enabled by de-

fault for security reasons. This does not hold true for LFI which, unlike RFI,

is enabled by default. LFI is not in the OWASP top ten list, nor is it listed

by Mitre’s CWE. Therefore, it could be argued that an LFI vulnerability is

not a critical vulnerability in terms of web application security. This sub-

section aims to demistify some of the common misconceptions of LFI and

54

demonstrate how the vulnerability can be leveraged to achieve remote code

execution.

The Escrow framework is well equipped to deal with RFI and LFI detec-

tion by fingerprinting on globally readable files. The RFI module provides

functionality for a remote PHP script to be ”included” into the remote web

application with a single mouse click. LFI exploitation on the other hand

requires a more intricate process.

The method described here is to inject PHP code into HTTP header fields

(eg. User-Agent) which are stored as text in Apache’s access log file. If an

attacker can infer the default location of the log file, he may leverage an LFI

to include the file on the vulnerable page. And with a crafted User-Agent

field containing PHP code embedded in the access file, the attacker is free to

execute arbitrary commands on the remote machine running with the same

privileges as the web server.

Figure 5.2: Remote code execution through LFI

55

In Figure 5.2 we demonstrate how through leveraging LFI we can success-

fully execute commands on the remote machine by including the access log

file which is local to the web server. This is achieved by poisoning the de-

fault access log file with PHP code, and including the file through a web

page with an LFI vulnerability. In Figure 5.2, one can observe entries in the

log file, followed by a file listing (using ls -l ../) one level up from the current

directory, demonstrating remote code execution.

5.1.2 Cross Site Scripting Proof of Concept

In Section 4 we described how reflective and persistent XSS can have seri-

ous implications on web servers such as defacement, denial of service and

session hijacking to name a few. Needless to say if one is susceptible to

this kind of attack, they ought to remediate the vulnerability swiftly. This

subsection illustrates how an XSS vulnerability can be leveraged within the

Escrow framework by using the explore feature.

Figure 5.3: Cross Site Scripting vulnerability - proof of concept

As illustrated in Figure 5.3, the nature of XSS enables an attacker to run

their own javascript code to take control of an unsuspecting user’s browser.

When a user wishes to explore an XSS vulnerability, the Escrow framework

will inject javascript code into the unsanitised form that echoes out the ses-

56

sion ID of the user who visits the page, illustrating the dangers of the vul-

nerability.

Should an unsuspecting user clicks on a link that contains XSS, there exists

the possibility that an attacker will steal the session ID and impersonate the

user on the web application. And in so doing, give the attacker full control

over the current users’ session. The PHPSESSID in Figure 5.3 is the result

of the document.cookie being echoed out on the document. In a real attack

scenario, the document.cookie would be sent to a server controlled by an

attacker, rather than being echoed on the document itself. At the time of

writing, Cross Site Scripting is the most reported flaw to Mitre’s CWE and

sits at number three on the OWASP top ten list.

5.1.3 Shellshock & Command Injection Proof of Concept

Shellshock is a vulnerability that resides in the bash interpreter which can

be leveraged through web application attack vectors. As previously stip-

ulated, by spoofing an HTTP header field on a cgi script, an unpatched

version of bash running on a web server can lead to full system compro-

mise if left unresolved. The fingerprinting process described in Section ??

involves Escrow using remote code execution through an HTTP User-Agent

to execute commands on the web server.

Likewise, for OS Command Injection, the fingerprinting process involves

Escrow executing commands directly on the web server. In both instances,

we take an innocuous approach by simply reading the passwd file. The ra-

tionale for this is not because the passwd file itself is of interest to us, but

rather it is an excellent candidate for code execution verification from a code

analysis perspective. And therefore, we can write expressions to match for

common patterns within the file to validate the existence of vulnerabilities.

57

5.1.4 SQL Injection Proof of Concept

The fact that SQL Injection is ranked number 1 on the OWASP top ten list

comes as little surprise when we consider the implications of it. In many

cases, SQL Injection has in the past been responsible for numerous large

scale data breaches. From the Sony Playstation Network breach to Adobe,

it has been proven to be a popular attack vector for cyber criminals. And as

we argued previously, if we had the capabilities to detect effectively the ex-

istence of SQL Injection, perhaps many large scale data breaches mentioned

earlier could have been avoided.

When we choose to explore an SQL Injection vulnerability in Escrow, we

can enumerate the back-end database along with its corresponding tables

and columns. So if we are presented with a scenario in which we are re-

quired to obtain sensitive data from the organisation, leveraging SQL In-

jection is proven to be quite an effective method for doing that. Providing

true risk demonstration using this method requires storing information ex-

tracted from the remote server. As such, data obtained from the remote

server can be saved in HTML format for further analysis (see Figure 5.4).

Figure 5.4: Extracted database information stored in HTML document

6
Implementation Details

In this chapter we describe the implementation details for some of the addi-

tional components of our proposed framework. We first describe how using

the Model View Controller (MVC) framework provides us with a platform

on which additional modules can easily be implemented, and elaborate on

some of the other advantages of MVC and how this empowers users to

write their own detection modules. We then describe how the scanner mod-

ule works by implementing a simple web crawler for which an algorithm is

presented. And finally we present the accountability component will allows

for tracking of user activities and tool usage.

6.1 Model View Controller

MVC is a software architectural pattern for implementing user interfaces

on which the Escrow framework is developed. It divides a given software

application into three interconnected parts, so as to separate internal repre-

sentations of information from the ways that information is presented to, or

59

accepted from the user [35]. A typical MVC diagram illustrating the con-

nectivity between the three parts are given in Figure 6.1.

Figure 6.1: Typical collaboration of the MVC components

Our rationale for using the MVC design pattern is for ease of extensibility

and management. Our proposed toolkit is developed with other developers

in mind, and therefore providing a platform for anyone to write their own

detection modules while maintaining separation between logic from view

is an important design choice, one that is integral to the MVC framework.

Moreover, without such a framework in place, managing an ever-growing

codebase becomes more complex and therefore less maintainable. The in-

herent separation of business logic from the presentation layer makes the

codebase for our solution much more manageable, re-usable and maintain-

able.

60

6.2 Writing a Detection Module

Writing a detection module is simple within the Escrow framework, but re-

quires modification of the codebase itself. At this stage, users will require

some knowledge of the Java programming language before writing their

own modules. However, the option for incorporating the Lua scripting lan-

guage [18] as a feature for additional detection modules is being discussed

which ought to simplify the process, and open up contributions from the

public and open source communities. This section demonstrates what needs

to be considered when writing a detection module. These are given below:

• The parameters to test for: HTTP request headers, GET or POST.

• The encoding technique: UTF7, UTF8, URL encoding, base64, hex.

• The fingerprinting method: If we find a parameter to test for, what

particular payload will yield results for detecting that vulnerability.

(Note: Microsoft Windows and Linux servers in many cases differ

with respect to fingerprinting methods)

• The matched expression: What pattern are we looking for if we are

successful in leveraging a vulnerability.

• The impact: What potential ramifications, if any, does this vulnerabil-

ity have on an organisation.

Because Escrow implements its own custom HTTP class (see subsection 6.2.1),

users have the freedom to manipulate all parameters associated with send-

ing requests. This includes GET and POST parameters, and HTTP header

fields (for example, Host, User-Agent and Cookie parameters). Further, users

can choose how they want the application to respond when attempting to

leverage a vulnerability. For instance, if a user is attempting to fuzz the ap-

plication and the remote server is redirecting their every request, a user can

61

customise their code within the framework and choose not to follow redi-

rects. The ability to customise HTTP requests to the needs of the user while

facilitating public contribution to the vulnerability detection modules, are

some of the main contributions to this work.

Figure 6.2: Calling our detection modules within the application

As illustrated in Figure 6.2, the detection modules are called sequentially

when they are enabled from the Settings Panel. The modules are then ac-

tivated when the scanning criteria are met. For example, when a GET or

POST parameter has been identified in the original source code of the web

page. Our rationale for this is for efficiency reasons. If we do not specify

a criteria before unloading the modules, then each and every page will be

tested for vulnerabilities which is nonsensical. Rather, our approach is to

only scan those pages that are of interest to us. Similarly, for detecting the

Shellshock vulnerability we would scan for default scripts that reside in the

cgi-bin directory unless a user wishes to specify some other criteria (details

are covered in Section 4).

62

6.2.1 HTTP Class

The HTTP class implemented in the Escrow framework supports manipula-

tion of HTTP header fields, GET and POST requests. The fact that users can

customise their own header fields allows the Escrow framework to perform

just as a browser would, but with the additional options sent by browsers

on the user’s behalf. These include Host, Referrer and User-Agent fields. As

Figure 6.3 illustrates, the fields are then populated and sent to the remote

server via GET or POST requests whose response source code can then be

analysed.

Figure 6.3: POST method in HTTP class

The ability to emulate a browser is one key aspect of effective vulnera-

bility assessment. This is in part because many web applications deliver

content to an application (such as a browser) based on User-Agent values.

This is why mobile phones are often served pages that are different to what

one would expect from traditional desktop browsers. For the same reason,

many applications will block non-standard browsers as these are often con-

sidered as bots. The design of our class is to emulate our requests so they

appear as though they originate from a commonly used desktop browser.

63

6.3 How the Crawler Works

To assess pages within a web application, the software first must crawl the

web application while maintaining a list of URL’s to visit. The crawler

that Escrow implements is inspired by Schildt and Holmes web crawler de-

scribed in their book The Art of Java [36]. The crawling process in our frame-

work is synonymous with traditional web crawling methods in which given

a seed URL, visit all anchor tags denoted by a href and adhere to the HTTP

Request For Comments (RFC) [20]. However, because a crawler by itself

does not scan a web application for vulnerabilities, we have developed a

method for scanning pages that are of interest to the vulnerability assess-

ment process. A simplified version for the scanning algorithm is presented

in Algorithm 6.1.

6.3.1 How to Exclude Pages

Given the dynamic nature of web applications, it may not be necessary to

scan the entire application for vulnerabilities, instead it may be desirable to

exclude a particular URL or path. Consider the scenario in which a calendar

is present within a web app: A web crawler does not understand that a cal-

endar is a dynamic object and that every date in the calendar may generate

a new URL for the crawler to visit. In this case, the crawler will continue

to visit every single page of the calendar ad infinitum, or until the scanner

has exhausted its memory. This is probably not what the user expects from

the crawler when auditing their web application, rather they might want to

exclude scanning paths which contain the word ”calendar” in them.

There are other such scenarios in which having the ability to exclude paths

might be desirable. For example, pages which contain downloadable exe-

cutable files, PDF’s, mp3, media files, sensitive directories etc., all of which

can be excluded by specifying a string value in the URL’s to ignore field

64

Algorithm 6.1 Scanning algorithm

1: procedure SCAN(x,y)

2: userSettings = getUserSettings()

3: toCrawlList.add(seedUrl)

4: while (toCrawlList > 0 and crawling == true) do

5: url = toCrawlList.getNext()

6: pageSource = downloadPage(url)

7: links = retrieveLinks(pageSource)

8: toCrawlList.addAll(links)

9: if (scanning criteria is met) then

10: for (vulnsToScanFor as vuln in userSettings) do

11: if (checkforVuln(vuln, url, pageSource)) then

12: update view with URL and vulnType

13: end if

14: end for

15: end if

16: end while

17: end procedure

65

as shown in Figure 6.4. The exclude feature is achieved by the application

splitting the input field text string delineated by a comma value (,) and then

checking to see if URL’s match those values we want to exclude.

Figure 6.4: URL’s to ignore panel

6.3.2 Multi-threaded Scanning

To achieve high throughput scanning, the scanner was re-written to support

the use of threading. In so doing, the speed at which the scanner runs is

significantly increased as it allows for concurrent HTTP requests to be sent

within the application. With the single threaded model, every HTTP request

had to be acknowledged and therefore the scanner would have to wait for

and process an HTTP response before moving on to the next URL in the

list which, in some cases, would prove to be a time consuming exercise.

Furthermore, the user is free to choose the number of threads they wish to

initiate which gives them control over the speed at which they run their

scans (in some cases it may be desirable to scan at a slower rate to avoid

detection, reduce noise or improve accuracy). This is achieved through the

Settings Panel, in which users can specify a non-negative integer from a

drop-down menu (see Section 3).

Table 6.1: Speed comparison of single thread vs multi-threads

Parameter Escrow (1 Thread) Escrow (30 Threads)

Number of Pages 50 50

Average Time (seconds) 90 6

Server Remote Web App Remote Web App

66

Table 6.1 illustrates the performance difference using multiple threads (in

this case we are using 30). The time taken to scan 50 pages on a remote

web application is significantly lower compared with using a single thread.

In fact, multi-threaded HTTP requests is shown to be 15 times faster as op-

posed to using a single thread and visiting each page in a sequential manner.

It is noteworthy to mention, however, when scanning using a high number

of threads there exists a trade-off between accuracy and performance. So in

some cases, where accuracy is paramount, it may be desirable for the user

to specify a lower-bound when using threads.

6.4 User Accountability

The target audience for the toolkit developed throughout this process are

users who seek to improve the security of their web applications. However,

given the nature of this tool, it could be easily be misused by adversaries

for malicious intent and as such, measures are put in place that ensure only

authorised users have access to it. This is achieved by the setup of a remote

centralised server with which Escrow communicates. Each time a user at-

tempts to authenticate, communication is established and credentials are

sent to the server over Hypertext Transfer Protocol Secure (HTTPS) to pre-

vent eavesdropping and increase security. Moreover, to improve user expe-

rience, data is also collected which will help the development process and

provide us with important data about how the toolkit is being used. The

following data is collected and sent to the remote server:

• Authentication credentials

• What sites users are scanning along with the timestamp

• What vulnerabilities they are scanning for

• The MAC address for the users PC

• The PC name

67

• The public IP address of the user

• The IP geo-location data

Figure 6.5: User information stored in database

With the above information collected, we can ensure users are who they say

they are, and from what device they are accessing our tool (see Figures 6.5

and 6.6). In the case where a users credentials are stolen or passed to an

individual who should not have access, we can deduce from the data col-

lected (PC name, MAC address, IP geo-location data) whether that person

is in fact who they claim to be, and therefore ensuring accountability.

Figure 6.6: Site info stored in database

7
Results and Validation

The validation of our application is divided up into two separate categories.

First, our goal is to assess the accuracy of the detection modules and their

coverage. To achieve this, we set out to implement a custom web application

testbed against which our detection modules are tested. The testbed itself is

inspired by Adam Doupe’s WackoPicko application in his paper Why Johnny

can’t pentest: An analysis of black-box web vulnerability scanners [11]. It has

been used extensively in the past to verify the accuracy and coverage of

vulnerability scanners, and thus is an excellent resource for verifying both

open-source and commercial based web application security scanners.

Secondly, our goal is to assess the applicability of our application against

real-word web applications. The purpose of doing this is to verify whether

our approach is effective with respect to public facing web servers on the

Internet. Validation against a web application testbed is indicative of the

accuracy of our application. However, it does not necessarily provide ob-

jective proof for the effectiveness of our approach. Thus, in the second phase

of this study we present our findings from our analysis of several live web

69

applications. The results of this study are testament to the success of our

implementation which are given in the forthcoming sections.

7.1 Vulnerable Web Application

As previously stipulated, we chose to implement a custom testbed that

draws on some of the vulnerabilities that WackoPicko uses for verification.

WackoPicko consists of multiple vulnerabilities including injection and XSS.

The full list of vulnerabilities can be found in their paper [11].

The Escrow framework in its current state is only concerned with vulnera-

bilities described as critical. In the context of our proposed framework, we

define critical vulnerabilities as those which can readily lead to data-loss,

system compromise and remote code execution on web applications, and

are verifiable by an automated scanning system. At the time of writing,

we have implemented into our framework five detection modules for the

following vulnerabilities:

• Cross Site Scripting

• SQL Injection

• Local / Remote File Inclusion

• Operating System Command Injection

• Shellshock

This list is by no means a complete one, and future versions will look at

expanding the scope of vulnerabilities to include those which are consid-

ered of low and medium concern. However, given the time-frame for this

research, the current list is an appreciable starting point.

70

7.1.1 Testbed Validation

In this subsection we assess how effective our detection modules are by run-

ning our scanner against a web application testbed. The testbed was recon-

structed to only incorporate those vulnerabilities that we describe as critical.

Moreover, at the time of writing the Escrow framework does not have a sys-

tem in place for its users to authenticate to a remote server. Therefore, the

vulnerabilities that are detected are only those which are accessible without

requiring authentication.

Table 7.1: OWASP scoring system results

Vulnerability OWASP Rank CWE Score CWE Classifiers Detected

Injection (SQL and OS Command) 1 93.8
CWE-89

CWE-78
Yes

Broken Authentication and Session Management 2 76.9
CWE-306

CWE-307
No

Cross Site Scripting 3 77.7 CWE-79 Yes

Insecure Direct Object References 4 76.8
CWE-862

CWE-863
Yes

Security Misconfiguration 5 73.1
CWE-250

CWE-732
No

Sensitive Data

Exposure
6 N/A N/A Yes

Missing Function Level Access Control 7 N/A N/A No

Cross Site Request Forgery 8 70.1 CWE-352 Yes

Using Components with Known Vulnerabilities 9 N/A N/A No

Unvalidated Redirects and Forwards 10 61.1 CWE-601 No

As Table 7.1 illustrates, our detection modules successfully identified five of

the top ten vulnerabilities in OWASP’s classification. Included in our list are

vulnerabilities that fall under multiple categories. For instance, we included

Cross Site Request Forgery (CSRF) because XSS is usually the vulnerability

leveraged to achieve CSRF exploitation. Likewise, for the category Sensi-

tive Data Exposure, this also includes vulnerabilities such as injection flaws

(SQL, OS Command). And for the category Insecure Direct Object References

we have placed LFI into this group as it is often leveraged through path

71

traversal (this is a form of referencing objects).

Not officially detected in our framework with respect to the OWASP list

are the categories that we deem as vague or have no correspondence to

a particular class of vulnerability. This is to say the categories for which

there is no explicit vulnerability mapping. This includes categories such as

Components with Known Vulnerabilities; Missing Function Level Access Control;

Broken Authentication and Session Management and Security Misconfiguration.

The OWASP list gives us a good overview on what are most common vul-

nerabilities that we ought to look out for when developing web applica-

tions. However, many of the categories in the list do not directly map on

to vulnerabilities that we observe in the wild. In contrast, the top four soft-

ware errors from the CWE most dangerous list provides us with specific

categories in which vulnerabilities exist (see Table 7.2).

Table 7.2: CWE - Top 4 results

Vulnerability Rank CWE Identifier CWSS Score Detected

SQL Injection - Improper Neutralization of Special

Elements used in an SQL Command
1 CWE-89 93.8 Yes

OS Command Injection - Improper Neutralization of

Special Elements used in an OS Command
2 CWE-78 83.3 Yes

Buffer Overflow - Buffer Copy without Checking

Size of Input
3 CWE-120 79 No

Cross Site Scripting - Improper Neutralization of

Input During Web Page Generation
4 CWE-79 77.7 Yes

We observe that our detection modules cover three out of four of the most

dangerous software errors as per the CWE list. This fact, coupled with our

OWASP findings show that we are in fact addressing the top flaws with

respect to web application security.

72

7.1.2 Comparison With State-Of-The-Art

In this subsection we compare the effectiveness of our scanner with two

widely used web application security scanners, namely (1) Burp Suite and

(2) OWASP ZAP. The two aforementioned tools will be evaluated against

the web application testbed for six variations of vulnerabilities. In particu-

lar, we seek to measure their abilities for detecting the top flaws (see CWE

list in Table 7.2) under the following conditions:

• All pages to be scanned will be accessible by the scanners without

authentication.

• The vulnerabilities will be detected through GET and POST parame-

ters.

• The web application security scanners will have all detection features

enabled.

• The vulnerabilities that are tested are the top four flaws on the CWE

most dangerous list.

Under the above conditions, we found that although Burp is excellent toolkit

for manual web application security assessment, its scanning module lacks

the functionality to detect for vulnerabilities through HTTP POST parame-

ters (unlike GET parameters, POST parameters are included in the body of

the request rather than the URL). As a result, almost half the vulnerabilities

that exist within the testbed were missed by Burp. It is worth mentioning

that Burp does in fact provide functionality for POST request tampering,

howver, this feature is not implemented in its scanning module.

In contrast to Burp, OWASP ZAP does in fact support detection through

POST parameters and therefore has better vulnerability assessment cover-

age. Regarding the top four CWE most dangerous list, however, ZAP was

unable to detect for OS command injection on the web application testbed.

73

This observation was true for both variations of vulnerabilities leveraged

through HTTP requests (GET and POST).

0

1

2

3

4

5

6

7

Escrow OWASP ZAP Burp Suite

Top CWE Flaws Detected

Escrow

OWASP ZAP

Burp Suite

Figure 7.1: Comparison of most dangerous vulnerabilities detected by tool

With respect to the top four most dangerous list, we found that Escrow was

able to detect for all six variations of vulnerabilities (ie. XSS, OS command

and SQL injection). These results are largely based on the fact that Escrow

and ZAP provide POST request scanning and therefore have greater cover-

age than tools that do not support it. And although this research is focused

on active vulnerability assessment of web applications, notably both Burp

and ZAP support passive scanning as well as active.

7.2 Summary

We set out to verify our detection modules against the top vulnerabilities

in web application security by running them against a vulnerable testbed.

What we found was that the vulnerabilities we detect for address the most

critical software errors with respect to the OWASP and CWE lists. And

consistent with the pareto principle, we are essentially addressing 80% of

the causes for exposures in an organisation by focusing on just the top 20%

74

of vulnerabilities.

7.3 Live Sites Validation

In Section 7.1 we validated our scanner on a vulnerable web application.

But to determine whether the methods described in this thesis are applica-

ble to the real-world, validation on actual public facing web applications is

required. For this study we were granted permission by the University of

Waikato’s Technical Support Group (TSG) for assessing several web appli-

cations that were maintained by the University.

7.3.1 Method

The study was administered from a black-box perspective over the web.

This is to say from a viewpoint from outside the local network. And due to

the size of some of the sites we scanned, it was chosen to scan a maximum of

1000 pages. Because the web servers were live and utilised by students and

staff on a daily basis, it was chosen to run the scanner in single-threaded

mode so as to not overload the server with requests.

The vulnerabilities that we scan for on the live sites are SQL Injection, XSS,

LFI and RFI, OS Command Injection and Shellshock. And as we have seen

in this chapter, much of these are described as critical web application vul-

nerabilities by OWASP and Mitre.

7.3.2 Results

Our findings for the vulnerability assessment are as follows. The first two

sites we scanned we successfully detected multiple XSS vulnerabilities within

a short space of time (see Figure 7.2). This was detected by Escrow tamper-

ing a form input parameter, the values of which were then echoed back to the

user by the web application. We then verified the results using the explore

75

feature which demonstrates the impact of the vulnerabilities by leveraging

XSS on the vulnerable page (see Figure 7.3).

Figure 7.2: Cross Site Scripting vulnerabilities detected in first web applica-

tion

Figure 7.3: Cross Site Scripting proof of concept in first web application

The third site scanned we were able to successfully identify OS Command

Injection on one of the pages. The vulnerability was detected through the

Escrow framework which fingerprinted successfully on the passwd file by

76

Figure 7.4: Cross Site Scripting proof of concept in second web application

chaining together the original shell command with our own one (in this in-

stance we simply read the passwd file from the web server). The vulnerabil-

ity exists due to unsanitised input from a script that takes a filename param-

eter which then is passed into a shell execution function. The fact that the

parameter is not sanitised before being passed to the function means that

an adversary can inject their own arbitrary commands, and consequently,

obtain shell access to the vulnerable web server. An HTML preview of the

successful fingerprint is given in Figure 7.5.

Figure 7.5: Operating System Command Injection proof of concept

8
Conclusion

Our proposed framework addresses the critical gaps in traditional web ap-

plication security assessments. It achieves this by integrating components

from vulnerability assessment and penetration testing techniques and com-

bines them into a single user-centric GUI-based solution. The GUI was in-

fluenced by a usability study conducted in this thesis, and empowers users

to assess the security of their systems with a single mouse-click. Our frame-

work is equipped with a development environment which facilitates con-

tribution from users to write their own detection modules, and provides

an accountability system for tracking user activities and usage. Putting it

all together we have developed a user-centric web application security so-

lution which addresses the critical vulnerabilities outlined by the OWASP

and Mitre’s CWE list, and provides a proof of concept for the exposures that

it detects.

78

8.1 Contributions

In this thesis we have introduced a framework that empowers end-users

and security specialists to automate the detection and exploitation of vul-

nerabilities in web applications. We have achieved this by integrating web

crawling techniques with proof of concept vulnerability assessment mod-

ules that illustrate to users the implications of exposures in their systems.

We have designed a user-centric GUI that allows users to perform effective

scanning on their web applications with a single mouse-click. The design

was influenced by a study we conducted on the top anti-virus applications

which showed correlation between usability and market share value.

As part of the framework we have implemented it using MVC principles

so that detection modules can be introduced and extended by both users

and developers. We have demonstrated how the modules work by eval-

uating them on a vulnerable testbed which includes critical vulnerabilities

leading to data loss and remote code execution. We have also provided a

rationale for the currently implemented modules by surveying data from

Mitre’s CWE and the OWASP organisation.

We have developed an accountability system into the framework that em-

powers administrators to know how the application is being used. This also

includes an authentication system which gives administrators control over

who is using the application, and ensures it is used for its intended purpose.

8.2 Future Work

Although the foundation for the framework has been laid, there is still many

extensions we would like to see implemented in future versions.

79

8.2.1 Detecting low and medium vulnerabilities

At the time of writing, our framework is only concerned with critical vul-

nerabilities which allowed us to focus our scope for this research. But to

achieve a robust all-inclusive framework we would need to include finger-

printing methods for detecting low and medium severity vulnerabilities. In

some cases these vulnerabilities can be used in conjunction with other attack

vectors leading to exposures of high severity. Therefore, this functionality

ought to be a priority for future work.

8.2.2 Reporting feature

Although our framework provides details about vulnerabilities on the main

GUI, there is no functionality to store information retrieved from the scan. It

would be desirable to have the ability to store scan information for reporting

purposes, and for later analysis. The reporting functionality should be in a

parsable format like XML or HTML on which users could perform a diff

on multiple scans and identify what vulnerabilities have been fixed, if any,

since the previous scan.

8.2.3 Deep vulnerability scanning

Presently, when a user runs a scan on a web application, the scanner will

crawl pages while maintaining a list of URL’s to visit later. However, if

a user wishes to assess parts of a web application that require authentica-

tion, he must first identify his session ID and pass it directly to the HTTP

class. However, the logical thing to do would be to provide functionality

within the application (through an alert dialog box) for users to authenti-

cate through HTTP forms or HTTP basic authentication. This way the user

does not need to modify the codebase and the scanner can visit those hard

to reach pages for which the authenticated user has access.

80

8.2.4 Migrating to the cloud

An early design choice was made to implement our proof of concept design

using Java which support multiple operating system environments. Despite

this, many security services are now migrating to the cloud. If the decision

is made to migrate to a web service in the cloud we can guarantee that all

users will be able to take advantage of this offering, without the need for

client-side run-time environments. This would also make it easier for ad-

ministrators to schedule scanning on their web servers and prioritise their

risks and exposures accordingly.

8.2.5 Intercepting proxy support

Unfortunately our solution does not support intercepting proxy functional-

ity at the time of writing, but this functionality would give users the abil-

ity to see what the HTTP requests and responses look like between client

and server. One approach is the one used by Burp [38], which provides an

environment for users to intercept requests and modify content on the fly

before sending it back to the requesting application. This feature would be

incredibly useful for users and empowers them to discover vulnerabilities

themselves.

8.2.6 Detecting vulnerabilities in other protocols

Presently our solution as a web vulnerability assessment toolkit only ad-

dresses the HTTP and HTTPS protocols. Despite this, many users have

asked whether our detection and exploitation framework addresses security

exposures in other protocols such as SSH and FTP. This functionality would

be a welcome addition to the framework wherein users could write their

own fingerprinting and detection modules for services other than HTTP

and HTTPS.

81

8.2.7 CIDR notation support

In Escrow users can specify an FQDN such as http://mysite.co.nz which

will then be scanned for vulnerabilities. However, given a scenario in which

a user wants to know the current web applications running on their lo-

cal network, support for Classless Inter-Domain Routing (CIDR) notation

would be a welcome addition. This way a user could simply specify an

address range such as 192.168.1.0/24 and have the scanner return a list

of web application servers running on their network which can then be as-

sessed for vulnerabilities.

8.2.8 Scripting support

Currently if a user wishes to write a detection module they must modify the

code base which might seem quite daunting for first-time users. A better ap-

proach would be to integrate a scripting language (such as LUA or python)

wherein users could write their modules according to a specific template.

This way the scripts that users write can simply be called in from the frame-

work and have the scanner load them into its detection or exploitation en-

gine. This would also open up contributions from communities who might

want to share their scripts with each other, and discard the need to modify

the original code base.

Appendices

A
Top 40 Most Dangerous Software

Errors

84

Table A.1: Top 40 most dangerous software errors

Rank Score ID Name

[1] 93.8 CWE-89
Improper Neutralization of Special Elements used in an SQL Command

(’SQL Injection’)

[2] 83.3 CWE-78
Improper Neutralization of Special Elements used in an OS Command

(’OS Command Injection’)

[3] 79 CWE-120 Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)

[4] 77.7 CWE-79
Improper Neutralization of Input During Web Page Generation

(’Cross-site Scripting’)

[5] 76.9 CWE-306 Missing Authentication for Critical Function

[6] 76.8 CWE-862 Missing Authorization

[7] 75 CWE-798 Use of Hard-coded Credentials

[8] 75 CWE-311 Missing Encryption of Sensitive Data

[9] 74 CWE-434 Unrestricted Upload of File with Dangerous Type

[10] 73.8 CWE-807 Reliance on Untrusted Inputs in a Security Decision

[11] 73.1 CWE-250 Execution with Unnecessary Privileges

[12] 70.1 CWE-352 Cross-Site Request Forgery (CSRF)

[13] 69.3 CWE-22
Improper Limitation of a Pathname to a Restricted Directory

(’Path Traversal’)

[14] 68.5 CWE-494 Download of Code Without Integrity Check

[15] 67.8 CWE-863 Incorrect Authorization

[16] 66 CWE-829 Inclusion of Functionality from Untrusted Control Sphere

[17] 65.5 CWE-732 Incorrect Permission Assignment for Critical Resource

[18] 64.6 CWE-676 Use of Potentially Dangerous Function

[19] 64.1 CWE-327 Use of a Broken or Risky Cryptographic Algorithm

[20] 62.4 CWE-131 Incorrect Calculation of Buffer Size

85

Table A.2: Top 40 most dangerous software errors (continued)

Rank Score ID Name

[21] 61.5 CWE-307 Improper Restriction of Excessive Authentication Attempts

[22] 61.1 CWE-601 URL Redirection to Untrusted Site (’Open Redirect’)

[23] 61 CWE-134 Uncontrolled Format String

[24] 60.3 CWE-190 Integer Overflow or Wraparound

[25] 59.9 CWE-759 Use of a One-Way Hash without a Salt

[26] N/A CWE-770 Allocation of Resources Without Limits or Throttling

[27] N/A CWE-129 Improper Validation of Array Index

[28] N/A CWE-754 Improper Check for Unusual or Exception Conditions

[29] N/A CWE-805 Buffer Access with Incorrect Length Value

[30] N/A CWE-838 Inappropriate Encoding for Output Context

[31] N/A CWE-330 Use of Insufficiently Random Values

[32] N/A CWE-822 Untrusted pointer Dereference

[33] N/A CWE-362
Concurrent Execution using Shared Resource with Improper

Synchronization Race Condition

[34] N/A CWE-212 Improper Cross-boundary Removal of Sensitive Data

[35] N/A CWE-681 Incorrect Conversion between Numeric Types

[36] N/A CWE-476 NULL Pointer Dereference

[37] N/A CWE-841 Improper Enforcement of Behavioral Workflow

[38] N/A CWE-772 Missing Release of Resource after Effective Lifetime

[39] N/A CWE-209 Information Exposure Through an Error Message

[40] N/A CWE-825 Expired Pointer Dereference

B
Vulnerability Statistics for 2014

87

Table B.1: Vulnerability statistics for 2014

Name CWE-ID % of Total Number of Vulnerabilities Reported Year

Insufficient Information No Mapping 16.38 180 2014

Cross Site Scripting CWE-79 15.56 171 2014

Permissions/Privileges/Access Control CWE-264 12.28 135 2014

Buffer Errors CWE-119 10.86 119 2014

Input Validation CWE-20 10 110 2014

SQL Injection CWE-89 4.28 47 2014

Resource Management Errors CWE-399 4 44 2014

Information Leak/Disclosure CWE-200 3.82 42 2014

Cryptographic Issues CWE-310 3.28 36 2014

Path Traversal CWE-22 3 33 2014

Cross Site Request Forgery CWE-352 2.91 32 2014

Other No Mapping 2.55 28 2014

Authentication Issues CWE-287 2.37 26 2014

Credentials Management CWE-255 2.37 26 2014

Numeric Errors CWE-189 2.37 26 2014

Link Following CWE-59 1.18 13 2014

Code Injection CWE-94 1 11 2014

Race Conditions CWE-362 0.73 8 2014

Design Error No Mapping 0.55 6 2014

OS Command Injection CWE-78 0.45 5 2014

Format String Vulnerability CWE-134 0.27 3 2014

Configuration CWE-16 0.18 2 2014

Not in CWE No Mapping 0 0 2014

C
Overall CWE Results over 6 Years

89

Table C.1: Overall CWE results over 6 years

Flaw Total 2008 2009 2010 2011 2012 2013

Authentication Issues 2.59% 3.66% 1.62% 1.33% 1.87% 2.06%

692 146 210 75 55 99 107

Buffer Errors 10.01% 9.84% 11.55% 15.95% 13.71% 14.64%

3810 564 564 536 662 725 759

Code Injection 5.66% 5.64% 5.65% 2.43% 2.59% 2.64%

1279 319 323 262 101 137 137

Configuration 0.64% 0.98% 0.52% 0.84% 0.59% 0.50%

208 36 56 24 35 31 26

Credentials Management 0.92% 1.17% 1.14% 0.92% 0.98% 1.72%

351 52 67 53 38 52 89

Cross Site Request Forgery 1.38% 1.97% 1.62% 1.33% 2.89% 2.31%

594 78 113 75 55 153 120

Cross Site Scripting (XSS) 14.03% 14.32% 12.80% 10.94% 13.61% 11.88%

3995 790 821 594 454 720 616

Cryptographic Issues 0.80% 1.62% 1.47% 1.49% 1.80% 2.47%

491 45 93 68 62 95 128

Design Error 2.33% 0.68% 1.96% 1.30% 1.68% 0.66%

438 131 39 91 54 89 34

Format String Vulnerability 0.43% 0.49% 0.32% 0.24% 0.21% 0.17%

97 24 28 15 10 11 9

Information Leak Disclosure 3.41% 2.83% 3.43% 7.16% 4.10% 4.82%

1277 192 162 159 297 217 250

90

Table C.2: Overall CWE results over 6 years (continued)

Flaw Total 2008 2009 2010 2011 2012 2013

Input Validation 6.85% 5.46% 6.53% 9.25% 7.00% 9.60%

2254 386 313 303 384 370 498

Insufficient Information 8.77% 9.84% 12.70% 13.76% 15.35% 17.99%

3963 494 564 589 571 812 933

Link Following 3.09% 0.56% 0.54% 0.82% 0.32% 0.35%

300 174 32 25 34 17 18

Not in CWE 0.00% 0.00% 0.02% 0.00% 0.04% 0.00%

3 0 0 1 0 2 0

Numeric Errors 2.82% 2.76% 3.47% 3.16% 2.87% 2.83%

908 159 158 161 131 152 147

OS Command Injection 0.05% 0.31% 0.28% 0.34% 0.26% 0.66%

96 3 18 13 14 14 34

Other 1.07% 4.17% 4.74% 3.23% 4.97% 1.99%

1019 60 239 220 134 263 103

Path Traversal 6.25% 5.57% 5.88% 2.53% 2.53% 1.99%

1270 352 319 273 105 118 103

Permission/Privilege/Access Control 7.97% 7.61% 7.67% 6.82% 11.42% 11.09%

2703 449 436 356 283 604 575

Race Conditions 0.41% 0.61% 0.69% 0.41% 1.30% 1.21%

239 23 35 32 17 69 63

Resource Management Errors 5.50% 4.19% 5.20% 9.08% 6.01% 5.82%

1788 310 240 241 377 318 302

SQL Injection 19.39% 16.54% 11.10% 6.96% 4.48% 2.80%

3226 1092 948 515 289 237 145

D
Top Flaws Over 6 Years

Table D.1: Top flaws over 6 years

Flaw Total 2008 2009 2010 2011 2012 2013

Cross Site Scripting (XSS) 14.03% 14.32% 12.80% 10.94% 13.61% 11.88%

3995 790 821 594 454 720 616

Insufficient Information 8.77% 9.84% 12.70% 13.76% 15.35% 17.99%

3963 494 564 589 571 812 933

Buffer Errors 10.01% 9.84% 11.55% 15.95% 13.71% 14.64%

3810 564 564 536 662 725 759

SQL Injection 19.39% 16.54% 11.10% 6.96% 4.48% 2.80%

3226 1092 948 515 289 237 145

Permission/Privilege/Access Control 7.97% 7.61% 7.67% 6.82% 11.42% 11.09%

2703 449 436 356 283 604 575

E
Pareto Chart Input Data (2014

Reported Flaws)

93

Table E.1: Pareto chart input data (2014 reported flaws)

S. No. Vulnerability Frequency Cumulative Frequency Percentage

1 Insufficient Information 180 180 16.30%

2 Cross Site Scripting 171 351 31.80%

3 Access Control 135 486 44.10%

4 Buffer Errors 119 605 54.90%

5 Input Validation 110 715 64.80%

6 SQL Injection 47 762 69.10%

7 Resource Management Errors 44 806 73.10%

8 Information Leak/Disclosure 42 848 76.90%

9 Cryptographic Issues 36 884 80.10%

10 Path Traversal 33 917 83.10%

11 Cross Site Request Forgery 32 949 86.00%

12 Other 28 977 88.60%

13 Authentication Issues 26 1003 90.90%

14 Credentials Management 26 1029 93.30%

15 Numeric Errors 26 1055 95.60%

16 Link Following 13 1068 96.80%

17 Code Injection 11 1079 97.80%

18 Race Conditions 8 1087 98.50%

19 Design Error 6 1093 99.10%

20 OS Command Injection 5 1098 99.50%

21 Format String Vulnerability 3 1101 99.80%

22 Configuration 2 1103 100.00%

23 Not in CWE 0 1103 100.00%

Sub Total 1103

Bibliography

[1] ABRAHAM, A. Detecting and Exploiting XSS with Xenotix XSS Exploit
Framework.

[2] BADEN DELAMORE, RYAN K.L. KO. Escrow: A Large-Scale Web Vul-
nerability Assessment Tool. In Proceedings of the 6th IEEE International
Symposium on UbiSafe Computing, held in conjunction with the 13th IEEE
International Conference on Trust, Security, and Privacy in Computing and
Communications (IEEE TrustCom-14) (Beijing, China, September 2014).

[3] BAKER, L. B., AND FINKLE, J. Sony PlayStation suffers massive data
breach. Reuters (Apr. 2011).

[4] BENNETTS, S., AND NEUMANN, A. Owasp zed attack proxy project.
2013.

[5] BENNY CZARNY. OPSWAT: Antivirus and Threat Report.

[6] BERNARDO DAMELE, A., AND STAMPAR, M. Sqlmap automatic sql
injection and database takeover tool, 2012.

[7] CHRISTEY, S., KENDERDINE, J., MAZELLA, J., AND MILES, B. Com-
mon Weakness Enumeration.

[8] CIAMPA, A., VISAGGIO, C. A., AND DI PENTA, M. A heuristic-based
approach for detecting sql-injection vulnerabilities in web applications.
In Proceedings of the 2010 ICSE Workshop on Software Engineering for Se-
cure Systems (New York, NY, USA, 2010), SESS ’10, ACM, pp. 43–49.

[9] CISCO SECURITY. Linksys Router Command Injection Vulnerability.

[10] DANIEL SAUDER, P. U. Netgear D6300B Command Injection / Mis-
configuration.

[11] DOUPÉ, A., COVA, M., AND VIGNA, G. Why Johnny can’t pentest: An
analysis of black-box web vulnerability scanners. In Detection of Intru-
sions and Malware, and Vulnerability Assessment. Springer, 2010, pp. 111–
131.

95

[12] FINKLE, J. Trove of adobe user data found on web after breach: secu-
rity firm. Reuters (Nov. 2013).

[13] GOODIN, D. PlayStation Network breach will cost Sony $171m.

[14] GREGG KEIZER. Adobe hack shows subscription software vendors lu-
crative targets.

[15] HARTMAN, P., BEZOS, J. P., KAPHAN, S., AND SPIEGEL, J. Method and
system for placing a purchase order via a communications network,
Sept. 1999.

[16] HEYDON, A., AND NAJORK, M. Mercator: A scalable, extensible web
crawler. World Wide Web 2, 4 (1999), 219–229.

[17] HUANG, Y.-W., HUANG, S.-K., LIN, T.-P., AND TSAI, C.-H. Web
application security assessment by fault injection and behavior moni-
toring. In Proceedings of the 12th international conference on World Wide
Web (2003), ACM, pp. 148–159.

[18] IERUSALIMSCHY, R., DE FIGUEIREDO, L. H., AND CELES FILHO, W.
Lua-an extensible extension language. Softw., Pract. Exper. 26, 6 (1996),
635–652.

[19] JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E. Pixy: a static analy-
sis tool for detecting web application vulnerabilities. In Security and
Privacy, 2006 IEEE Symposium on (May 2006), pp. 6 pp.–263.

[20] LEACH, P. J., BERNERS-LEE, T., MOGUL, J. C., MASINTER, L., FIELD-
ING, R. T., AND GETTYS, J. Hypertext transfer protocol – HTTP/1.1
RFC2616.

[21] LEWIS, D. iCloud data breach: Hacking and celebrity photos.

[22] MARTIN, B., BROWN, M., PALLER, A., KIRBY, D., AND CHRISTEY, S.
CWE/SANS Top 25 Most Dangerous Software Errors. MITRE, SANS
(2010).

[23] MARTIN, R. A., AND BARNUM, S. Common weakness enumeration
(cwe) status update. ACM SIGAda Ada Letters 28, 1 (2008), 88–91.

[24] MCBRIDE, S., AND ORESKOVIC, A. Snapchat breach exposes flawed
premise, security challenge. Reuters (Oct. 2014).

[25] MICROSOFT TECHNET. Microsoft - SQL Injection.

96

[26] MILLER, D., AND PEARSON, B. Security information and event manage-
ment (SIEM) implementation. McGraw-Hill, 2011.

[27] NICO AND ICESURFER. SQLNinja - An SQL Server Takeover Tool.

[28] NIST, AND AROMS, E. NIST Special Publication 800-94 Guide to Intrusion
Detection and Prevention Systems (IDPS). CreateSpace, Paramount, CA,
2012.

[29] OWASP. Open Web Application Security Project - Cross Site Scripting.

[30] OWASP. Open Web Application Security Project - OS Command In-
jection.

[31] OWASP, T. 10 2010. The Ten Most Critical Web Application Security Risks
(2010).

[32] PERLROTH, N. Security Experts Expect Shellshock Software Bug in
Bash to Be Significant. The New York Times (Sept. 2014).

[33] PORTER, J. Testing the three-click rule. User Interface Engineering (2003).

[34] RAHIMI, M. I. Web application firewall. PhD thesis, Universiti Teknologi
MARA, 2006.

[35] REENSKAUG, T. The dci architecture: A new vision of object-oriented
programming.

[36] SCHILDT, H., AND HOLMES, J. The Art of Java, 1 edition ed. McGraw-
Hill Osborne Media, New York, July 2003.

[37] SINGH, A. Metasploit Penetration Testing Cookbook. Packt Publishing
Ltd, 2012.

[38] STUTTARD, D. Burp Suite: Toolkit for Web Application Security Test-
ing.

	Introduction
	Goal and Objectives
	Scope
	Key Contributions
	Document Structure

	Related Work
	Vulnerability Detection
	Intercepting Proxies
	Web Application Injection
	Summary of Existing Toolkits
	Common Weaknesses and Exposures
	Summary of CWE Findings
	Conclusion

	Designing for Users
	Click Study
	Addressing Gaps Identified
	Proposed Framework
	Design Decisions
	Input Panel
	Results Panel
	Preview Panel

	Feature Design
	Authentication Panel
	Settings Panel

	Summary

	Detecting Web Application Vulnerabilities
	SQL Injection
	Cross Site Scripting
	File Inclusion
	Operating System Command Injection
	Shellshock

	Exploiting Vulnerabilities
	Using the Explore Feature
	File Inclusion Proof of Concept
	Cross Site Scripting Proof of Concept
	Shellshock & Command Injection Proof of Concept
	SQL Injection Proof of Concept

	Implementation Details
	Model View Controller
	Writing a Detection Module
	HTTP Class

	How the Crawler Works
	How to Exclude Pages
	Multi-threaded Scanning

	User Accountability

	Results and Validation
	Vulnerable Web Application
	Testbed Validation
	Comparison With State-Of-The-Art

	Summary
	Live Sites Validation
	Method
	Results

	Conclusion
	Contributions
	Future Work
	Detecting low and medium vulnerabilities
	Reporting feature
	Deep vulnerability scanning
	Migrating to the cloud
	Intercepting proxy support
	Detecting vulnerabilities in other protocols
	CIDR notation support
	Scripting support

	Appendices
	Top 40 Most Dangerous Software Errors
	Vulnerability Statistics for 2014
	Overall CWE Results over 6 Years
	Top Flaws Over 6 Years
	Pareto Chart Input Data (2014 Reported Flaws)
	References

