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Abstract  

 

OpenFlow provides a protocol for updating flow tables in switches. Most 

current OpenFlow deployments rely on a single controller to control all switches. 

However, as the number and size of production networks deploying OpenFlow 

increases, relying on a single controller for the entire network might not be 

feasible for several reasons. First, the amount of control traffic destined towards 

the centralized controller grows with the number of switches. Second, since the 

system is bound by the processing power of the controller, low setup times can 

grow significantly as demand grows with the size of the network. Finally single 

controller architecture has zero fault tolerance which makes it non-ideal for large 

enterprise level deployments. In this thesis, the existing work that has been done 

to build scalable and fault tolerant controllers has been explored. After learning 

and understanding different systems we have built our own database backed 

scalable and fault tolerant controller. The database that was used for this purpose 

is Titan Graph database, with a Cassandra backend. A custom version of a simple 

switch application was built to demonstrate the scalability and fault tolerance of 

our architecture. Some performance comparisons between our version of simple 

switch and the original version were also carried out. Finally in this thesis some 

future enhancements that we would like to implement are outlined. 
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Chapter 1 Software Defined Networking  

1.1 Introduction  

 

The simplicity in the internetôs design has led to a tremendous innovation 

in the internet, but the network itself remains quite hard to change and 

surprisingly difficult to manage. The root cause of this problem in a traditional 

network lies primarily in the complicated control plane running on top of all 

switches and routers throughout the network. These networking devices are 

manufactured by different network vendors and used proprietary protocols to 

control the data plane. In these devices, proprietary firmware on the control plane 

of the switch determines where packets of data are forwarded by the data plane. 

Distributed optimization of network control was inherently difficult since control 

plane was a part of individual network devices. 

 

Software Defined Networking (SDN) is a relatively new approach to 

computer networking which evolved from some preliminary research and work 

done at UC Berkeley and Stanford University in 2005. SDN introduces a layer of 

software between bare metal network components and the network administrators 

who configure and set them.  This software layer gives network administrators an 

opportunity to make their network device adjustments through a software 

interface instead of having to manually configure hardware and actually 

physically access network devices giving them a very good control over their 

networks. This is achieved by decoupling the system that makes decisions about 

where traffic is sent (the control plane) from the underlying systems that forwards 

traffic to the selected destination (the data plane). SDN adheres to open standards 
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and is vendor-neutral, i.e. it can theoretically operate with any vendor's network 

hardware. This gives organizations the ability to avoid vendor lock-in for a host of 

network products.  

 

Most current SDN deployments however currently rely on a single SDN 

controller. However, as the number and size of production networks deploying 

OpenFlow increases, relying on a single controller for the entire network might 

not be feasible for several reasons. First, the amount of control traffic destined 

towards the centralized controller grows with the number of switches. Second, 

since the system is bound by the processing power of that single controller, low 

setup times can grow significantly as demand grows with the size of the network. 

This clearly introduces a serious limitation on the scalability and fault tolerance of 

the controller. We aspire to design and build an open source, database backed 

scalable and fault tolerant OpenFlow controller. Our controller is intended to be 

used for rapid prototyping and research environments. 

1.2 Software Defined Networking 

 

Traditional networking devices such as switches and routers can be 

divided into three different logical planes. They are the data plane, control plane 

and management plane. Data plane refers to the hardware part where the packet 

forwarding takes place, and control plane refers to the part that implements the 

routing protocol. Typically in networking devices, control plane is implemented in 

proprietary firmware developed by equipment vendors. Management plane is used 

for network monitoring and controlling purposes.  

 

Software Defined Networking is a new and emerging network architecture 
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which separates data and control plane in a networking device, and makes the 

control plane independent and programmable. The separation of the control plane 

from the data plane abstracts the network infrastructure from the applications and 

treats network as a virtual entity. In this thesis the focus will be mainly on the data 

and the control plane of networking devices. Figure 1.1 shows the data and control 

plane of a traditional networking device. 

 

 

Figure 1.1 Data and Control plane in traditional networking hardware 

 

1.3 Architecture of Software Defined Networks 

                 A Software Defined Network can be logically divided into three 

different layers. The infrastructure layer refers to the actual forwarding hardware. 

This layer consists of network devices such as Layer 2 switches in a LAN centric 

environment. The control layer, also known as the SDN controller is where the 

real intelligence of a Software Defined Network is situated. This layer implements 

the basic network services which can be used by various networking applications 

in the application layer. The switches that are located in the infrastructure layer 

are not traditional network switches. These switches need to support some 
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mechanism whereby the control layer can talk to and program the switches in the 

infrastructure layer.  

 The Figure 1.2 depicts the architecture of a Software Defined Network.

 

Figure 1.2 Architecture of a Software Defined Network [1] 

             

In a Software Defined Network (SDN) architecture, southbound 

application program interfaces (APIs) are used to communicate between the SDN 

Controller and the switches of the network. They can be open or proprietary. The 

most popular and well known southbound interface is the OpenFlow protocol. The 

northbound application programming interface (API) on a SDN control 

layer enables application layer to program the network and request services from 

it. The Northbound API is evolving rapidly but currently there are no standards 

for it. Each OpenFlow controller provides their own set of interfaces.  

The control plane can have one or more control nodes. The nodes in control 

layer are called as SDN controllers (commonly OpenFlow controllers) and they send 

routing and switching information to the data plane nodes that they control. After 

receiving the information from controller, the networking devices update their 

https://www.sdncentral.com/flow/sdn-software-defined-networking/?utm_source=pink_ball&utm_medium=link&utm_campaign=links&utm_content=sdn-software-defined-networking
https://www.sdncentral.com/term/application-programmatic-interface-api/
https://www.sdncentral.com/sdn-controllers/
https://www.sdncentral.com/sdn-controllers/
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forwarding tables according to the information that they receive from the SDN 

controller. 

1.4 The OpenFlow protocol 
 

As mentioned in the above section OpenFlow protocol is the most popular 

and widely accepted protocol for the southbound Application Programming 

Interface. OpenFlow protocol intends to provide access to the data plane of the 

switches. It does this by specifying a language that a switch can recognize and use 

to update its forwarding tables. OpenFlow is a language for generically defining 

characteristics of a particular flow of traffic and a set of actions to be executed 

when the switch encounters packets that matches such characteristics. 

 

The actual mechanisms used to program flows into switch hardware vary 

greatly depending on the vendor of the particular hardware. Instead, OpenFlow 

provides a way to describe desired flow state within an agent running locally on 

the forwarding device. All switches that are OpenFlow enabled will have the 

OpenFlow agent that will interpret the OpenFlow commands. The OpenFlow 

specification also includes ways for the OpenFlow controller, which is remote and 

located in the control plane to make modifications to this information. The 

OpenFlow agent, armed with the flow information programmed into it by a 

controller, acts like the control plane on traditional switches. The only difference 

is that it does not have to run routing protocols, or make decisions locally. All the 

decisions are made by the remote OpenFlow controller and the OpenFlow agent 

stores these OpenFlow entries, and pushes them into the flow tables on the 

hardware device. The following Figure 1.3 shows an idealized OpenFlow switch 

where the flow table is controlled by a remote OpenFlow controller. [2] 
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Figure 1.3 Idealized OpenFlow Switch [2] 

 

       The OpenFlow controller has a unified view of the whole network. It runs 

the routing or switching protocols to collect the relevant routing or switching 

information. There are two different ways in which the OpenFlow controller can 

program the switches in the network.  

 

The first packet of each new flow can trigger the controller to insert flow 

entries down to the switches and the switch makes efficient use of flow table 

where every flow needs small additional flow setup time. The other approach is 

that the flow tables in switch can be prepopulated by the OpenFlow controller 

ahead of time for all traffic matches that could come into the switch. By 

predefining all the flows and actions ahead of time in the switch flow tables, the 

packets can be forwarded at line rate as this approach does not require any 

additional flow setup time per individual flow. However this approach often 
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requires aggregated or wildcard rules.  

1.4.1 Types of OpenFlow messages 

OpenFlow protocol supports three types of messages that are exchanged 

between the switch and the OpenFlow controller: controller-to-switch, 

asynchronous and symmetric messages that are discussed briefly here [3].  

 

The controller-to-switch messages are initiated by the controller and may 

not always require a response from the switch. These messages are used to 

configure the switch, manage the switch's flow table and acquire information 

about the flow table state or the capabilities supported by the switch at any given 

time. Examples of this type of messages are Features, Config, Modify-State, 

Read-State, Packet-Out, Barrier, Role-Request and Asynchronous-Configuration. 

 

The asynchronous messages are sent without solicitation from the switch 

to the controller and denote a change in the switch or network state. One of the 

most important asynchronous messages is the packet-in message. The packet-in 

message is a way for the switch to send a captured packet to the controller. There 

are two reasons why this might happen; there could be an explicit action as a 

result of a match asking for this behaviour, or from a miss in the match tables, or a 

ttl error. The OpenFlow controller can then examine the packet headers in the 

packet-in messages and can program the switches to take appropriate action. 

Some other asynchronous messages include flow removed and port status.  

 

Symmetric messages are messages that are sent without solicitation in 

either direction between the controller and the switches. These messages are 
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typically used to assist or diagnose problems in the connection between the switch 

and the controller. Some examples of symmetric messages are Hello, Echo and 

Experimenter messages. 

1.4.2 Connection establishment between switch and the OpenFlow 

controller  

  

A switch that is configured in OpenFlow mode typically initiates the 

connection to the OpenFlow controller. It does this by sending TCP sync 

messages to the OpenFlow controller IP addresses (which is configured into the 

switch on start-up) to its default port 6633. After TCP handshake is completed 

between the switch and the controller the connection is two way. Following the 

TCP handshake process a set of messages are exchanged between the controller 

and the switch such as Features Request, Features Reply and Set Config. 

 

 Even though the normal mode is for the OpenFlow switches to initiate the 

TCP connection to OpenFlow controller, it is common for some switches to 

implement what is referred to as passive ports where the switch itself would listen 

to a connection initiated from another device. This feature is typically used for 

troubleshooting. There are some command line tools that are intended to be used 

this way (for e.g. dpctl). From a computer with dpctl installed, a connection to the 

OpenFlow switch can be initiated. An OpenFlow switch with passive ports 

enabled will accept such a connection from the computer. This command line 

utility allows the user to dump the contents of the OpenFlow table on to the 

switch. It can also be used to interrogate the switch in terms of its capabilities. It 

can even be used to install entries in the OpenFlow table on the switch. 
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1.4.3 The OpenFlow table 

 

The OpenFlow table is a data-structure that resides on the high speed data 

plane of the OpenFlow switch. Its contents decide the forwarding and packet 

handling behaviour of the OpenFlow switch. OpenFlow table contains one or 

more flow entries. Each flow entry has a set of components which include Header 

Fields, Actions, Priorities, Counters and Timers. Header Fields are used to 

identify which packets to perform the actions on. These consist of the ingress port 

and packet headers. Actions are the set of actions that are applied on the matched 

packets. The priority field matches the precedence of the flow entry. The counters 

are updated when the packets are matched. Timeouts refer to the maximum 

amount of time or idle time before the flow is expired by the switch. A flow table 

entry is identified by its match fields and priority: the match fields and priority 

taken together identify a unique flow entry in the flow table. The flow entry that 

wildcards all fields (all fields omitted) and has priority equal to 0 is called the 

table-miss flow entry [3]. There are two flow expiry mechanism supported by 

OpenFlow. This can be done either at the request of the controller or by the flow 

expiry mechanism of the OpenFlow switch. The switch flow expiry mechanism is 

based on the state and configuration of the flow entries. Each flow entry has an 

idle timeout and a hard timeout associated with it. Idle timeout is the inactivity 

timeout. If there are no packets matching the flow entry for this timeout period the 

flow gets deleted. In case hard timeout is set, the flow gets deleted after the 

timeout period even if there are packets matching the flow entry during that 

period. 
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Chapter 2 Related Work 

2.1 Introduction 

This chapter explores the previous work that this project is based upon. It 

discusses in detail the various approaches that have been explored before. As 

explained in the previous chapter, OpenFlow provides a protocol for updating 

flow tables in switches. Most of the current deployments rely on a single 

controller to control all the switches in the topology. However, as the number and 

size of production networks deploying OpenFlow increases, relying on a single 

controller for the entire network might not be feasible for several reasons. First, 

the amount of control traffic destined towards the centralized controller grows 

with the number of switches. Second, since the system is bound by the processing 

power of the OpenFlow controller, low setup times can grow significantly as 

demand grows with the size of the network. Finally single controller architecture 

has zero fault tolerance which makes it unsuitable for large enterprise level 

deployments. There has been several proposals in the academic literature to 

achieve redundant or distributed controllers some of which are quite complex. We 

will have a detailed look into some of these in the following sections. The focus of 

the following sections will be on the architecture of the system with a focus on 

how it implements scalability and fault tolerance. 

2.2 Distributed OpenFlow controller using co-ordination 

framework 
 

Volkan Yazēcē et.al in [4] discusses the need for a distributed OpenFlow 

controller in real world data centres. The real world data centres need to handle 
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around a 150 million flows per second. But todays OpenFlow controllers are 

known to handle around 6 million flows per second using a high end dedicated 

server with 4 cores. This clearly indicates that either distributed controller 

architecture or an appropriate main frame computer with sufficiently many cores 

is required to achieve the required scalability and reliability. [4] 

 

 The authors [4] have decided to approach the problem using 

distributed cluster architecture for OpenFlow controllers. The flow on impact of 

the distributed cluster design is that it is inherently scalable and fault tolerant. We 

can add more OpenFlow controller nodes to the cluster when the requirement 

arises and the presence of multiple nodes offers more reliability and fault 

tolerance than using a single main-frame computer. 

 

Figure 2.1 Distributed OpenFlow Controller Architecture [4]  
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From Figure 2.1, it would become clear that some kind of coordination 

framework is required to enable the coordination between multiple instances of 

the OpenFlow controllers in the cluster. They have decided to use JGroups [5] 

membership notifications and infrastructure to enable the clusters in the 

distributed framework to communicate with each other. JGroups is a mature, 

robust and flexible group communication library.  

 

The multiple controllers in the distributed cluster elect a master controller 

among themselves. This master controller maintains the global controller to 

switch mapping of the network. This master node is periodically monitored by the 

other node in the cluster. If the master node is found to be inaccessible it is 

immediately replaced by one of the other nodes in the cluster. This mechanism 

avoids the exposure of a single point of failure. 

 

 The cluster of controller presents the applications running on top of them, 

a view as if it were a single centralized controller. In other words the switches and 

the applications are unaware of the switch to controller mapping in the network. 

This makes it easier for the switch to controller assignments and reassignments to 

happen seamlessly when new controller are added or for proper load balancing. 

This feature makes the above architecture scalable. 

2.3 HyperFlow – A distributed control plane for 

OpenFlow 
 

Amin Tootoonchian and Yashar Ganjali [6] discuss HyperFlow a 

distributed event based control plane for OpenFlow which allows the network 

operators to deploy any number of OpenFlow controllers in their networks. 
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HyperFlow keeps network control logically centralized and provides scalability to 

the network. [6]. All controllers in the distributed control plane share the same 

consistent network wide view and serve the switches connected to it locally 

without needing to contact other controllers. This helps to minimize flow setup 

times.  

  

 

Figure 2.2 High-level Overview of HyperFlow 

 

A HyperFlow based network is composed of OpenFlow switches, NOX 

controllers each running an instance of the HyperFlow controller application and 

an event propagation system for cross-controller communication. All the 

controllers have a consistent network-wide view and run as if they are controlling 

the whole network. All instances of the NOX controller run the exact same 

controller software and set of applications. Each switch is connected to the closest 

controller in its proximity. If that controller fails, then the switches that were 



Chapter 2 Related Work  14 

connected to that controller must be reconfigured to connect to a nearby 

controller.  Each controller directly manages the switches connected to it. Each 

controller can also indirectly query as well as program the switches connected to 

other controllers by communicating with other controllers. Figure 2.2 illustrates 

the high-level view of the system. 

 

In Figure 2.2, each controller runs NOX with the HyperFlow application 

atop, subscribes to the control, data, and its own channel in the publish/subscribe 

system (depicted with a cloud). Events are published to the data channel and 

periodic controller advertisements are sent to the control channel. Controllers 

directly publish the commands targeted to a controller to its channel. Replies to 

the commands are published in the source controller. [6] 

 

 HyperFlow achieves a network-wide view for all the controller 

instances in the cluster. This is achieved because the HyperFlow controller 

application running on each instance of the OpenFlow controller selectively 

publishes events that change the state of the system through a publish subscribe 

mechanism. The other controllers in the system replay the published events to 

reconstruct the state of the network. Since these state synchronisations is done by 

the HyperFlow controller application, individual applications such as routing and 

load balancing does not need to do state synchronisation. 

2.4 Onix: A Distributed Control Platform for Large -scale 

Production Networks 
 

Teemu Koponen et.al [7] discusses Onix, a distributed control platform 

designed for large scale production networks. Onix provides useful and general 
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API for network control that allows scalable applications development. Onixôs 

API contains a data model that represents the network infrastructure. In the Onix 

platform the controller consists of Network Information Base, Switch 

import/export and Distribution import/export. Network Information Base (NIB) is 

a data structure that tracks the network state. NIB stores the graph of all network 

entities within the topology. NIB stores a collection of network entities as key 

value pairs and is identified by a flat, 128-bit, global identifier. The NIB is at the 

heart of the Onix control model and basis for its distribution model. NIB is 

decentralized and distributed over several Onix nodes. The controller programmer 

manages the network by reading and writing to the NIB. If a change is made to a 

local NIB instance on one of the Onix nodes, then these modifications are 

propagated to other NIB on other Onix nodes. The switch import/export 

component interprets the instructions from the Onix node and configures the 

switches. The distribution import/export component makes the different NIBôs 

consistent with each other. 

 

Figure 2.3 The components in an Onix Controlled Network [7] 
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Figure 2.3 shows four components in an Onix controlled network. They 

are managed physical infrastructure, connectivity infrastructure, Onix, and the 

control logic implemented by the management application. This figure depicts two 

Onix instances coordinating and sharing (via the dashed-arrow) their views of the  

underlying network state, and offering the control logic a read/write interface to 

that state. [7] 

 

Onix developers have proposed some strategies to make the architecture 

more scalable. The easiest approach seems to be partitioning the workload of the 

controller. Since NIB is decentralized and distributed over multiple Onix nodes, 

each Onix instances might take different tasks. Another approach is for the 

application to aggregate a topology as a single logical node and use that as the unit 

of event dissemination between instances. For example, the topology can be 

divided into logical areas and each area can be managed by a distinct Onix 

instance. The last approach is consistency and durability. To distribute the NIB 

with consistency, the authors suggest two methods which developers can choose. 

Onix offers a replicated transactional database and, for volatile state that is more 

tolerant of inconsistencies, a memory-based one-hop DHT. 

 

To handle reliability issues and to make the architecture more fault 

tolerant, Onix suggests some methods. To deal with link failure issues, Onix 

provides APIôs. If one of the Onix instances fail the controller program can make 

the running Onix instances to take over the responsibilities of the failed instance. 

Or a more reliable option would be to have each network element be managed by 

more than one Onix instance.  
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2.5 ONOS – A database backed distributed OpenFlow 

controller  
 

Pankaj Berde et.al [8] discuss ONOS which uses a database backed 

approach to build a system that run across multiple servers to support scalability 

and fault tolerance. ONOS maintains a global network view to manage and share 

network state across ONOS servers in a cluster.  Each of the network elements 

such as switch port and host is modelled using a graph database (Titan Graph 

database) which is backed by Cassandra key-value store to make it distributed. 

 

 

Figure 2.4 ONOS Architecture Diagram [8] 

 

As mentioned above the global network view is implemented on the Titan 

Graph database. As ONOS runs on multiple servers, each instance of ONOS is the 

master controller for a subset of switches in the topology. As the data plane 

capacity grows or demand on the control plane increases, additional instances can 

be added to the ONOS cluster to distribute the control plane workload. 
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The distributed architecture of ONOS allows the system to continue 

operating when an ONOS instance fails by redistributing work to other remaining 

instances. ONOS also allows us to have a single running controller with a 

redundant controller waiting to take over in case the primary controller fails. A 

switch has the option to connect to multiple ONOS instances, but only one 

instance is chosen as the master controller for each switch. The master instance 

alone is responsible for controlling and programming the switch. When an ONOS 

instance fails, the remaining instances elect a new master for each of the switches 

that were previously controlled by the failed instance. They use a consensus based 

leader election to make sure that at most one ONOS instance is in charge of each 

switch. They have used Zookeeper to manage switch-to-controller mastership, 

including detecting and reacting to instance failure. 
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Chapter 3 Our Proposal 

3.1 Introduction 

        We propose to investigate the feasibility of using a database backed 

controller architecture to build redundant and distributed OpenFlow controllers. In 

this architecture the controllers would be essentially stateless with the state 

information being stored in a database server. Even though this makes the 

database server the single point of failure, it is easier to replicate databases across 

multiple servers and then to distribute the load using load balancers keeping the 

controller stateless. This approach localises the decision making process to a 

single point, i.e. database server, allowing multiple controllers to control the 

whole network or parts thereof. The different OpenFlow controllers controlling 

the network will be connected to the same database server. The multiple 

OpenFlow controllers controlling different parts of the network can communicate 

among each other by means of a publish subscribe framework. 

3.2 Choice of database 
 

 ONOS has used a graph database for representing the network 

elements in the topology. It was decided to adopt this idea, since graph databases, 

which primarily represents information in terms of a set of vertices and indicates 

the relationship among them by the edges connecting the vertices, lends itself very 

beautifully to represent different network elements in a network topology. The 

graph database that was chosen to be used was Titan Graph DB. Titan is a 

distributed, real-time, scalable transactional graph database developed 

by Aurelius. Titan leverages various storage backends for persistence including 
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Cassandra, hbase and Hazelcastcache. In this project Cassandra was chosen as the 

database backend. If Titan was completely removed, then the data would have to 

be written directly to Cassandra's key-value store rather than to Titan's 

graph data model. A schema would have to be defined for the applications data in 

Cassandra's data model. But Titan Graph DB provides a data model that fit s well 

for the network-oriented data that the application uses. Hence the application 

running on the OpenFlow controller will not store data in Cassandra directly; all 

database access goes through Titan.  

 

Titan exposes a graph data model, where everything is either a vertex or an 

edge. A graph schema for its data needs to be defined, and the data has to be 

written to Titan. Titan stores this graph model in Cassandra's key-value store 

underneath. The details of how Titan stores data in the key-value store are 

abstracted completely from application running on the OpenFlow controller. 

 

   Since Titan Graph DB backed by Cassandra is implemented in Java and 

run as a Java Virtual Machine, some mechanism is required to allow the 

application, written in python, to store and retrieve data from Titan. Blueprints 

API is an open-source community developed Java interface for graph databases 

that expose a property graph data model.  

 

A property graph is a graph with the following elements. It has a set of 

vertices and a set of edges. Each vertex in the set has a unique identifier, a set of 

outgoing and incoming edges. Each vertex also has a collection of properties 

defined by a map from key to value. Each edge in the edge set has a unique id, an 

outgoing tail vertex, an incoming head vertex, and a label that denotes the type of 
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relationship between the two vertices. Each edge also has a collection of 

properties defined by a map from key to value. Titan natively implements 

Blueprints API which means blueprints is the core interface for Titan. 

 

Bulbs is an open-source Python persistence framework for graph 

databases. It is like an ORM for graphs, but instead of SQL, it uses the graph-

traversal language Gremlin to query the database.  Groovy is a programming 

language and Gremlin Groovy is a graph traversal language built on top of it 

using groovy's meta-programming facilities. Bulbs can connect to several graph-

database servers, including Neo4j Server and Rexster server. Rexster server that 

runs inside Titan Graph DB hosts Blueprints implementations and exposes 

elements of that API (and Gremlin) over REST using JSON. The graph model 

programmed into the Titan Graph DB will be written to Cassandra backend. 

 

Figure 3.1 shows how the python application can communicate with the 

Titan Graph database with Cassandra backend.  

 

Figure 3.1 Python application communicating with Titan Graph database 

 

In the Figure 3.1, Cassandra is used as the underlying data 

storage. Titan provides graph database functionality on top of Cassandra. Rexster 

exposes the Titan graph to remote applications via the network. All three of these 

systems run within the same JVM so calls between them are performant. 

http://gremlin.tinkerpop.com/
http://cassandra.apache.org/
http://titan.thinkaurelius.com/
http://rexster.tinkerpop.com/
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Figure 3.2 Creating vertices and edges on Titan DB from Bulbs 

 

3.3 Choice of OpenFlow controller 
 

The OpenFlow controller chosen for this project is the Ryu OpenFlow 

controller that is written in Python. When different OpenFlow controllers were 

considered, the decision to go with an OpenFlow controller implemented in 

Python was made, since it would be easier to prototype the application. The two 

such OpenFlow controllers considered were Pox and Ryu. The reason for 

choosing Ryu over Pox was that, at that point Ryu already had implemented 

OpenFlow 1.3. Even though this thesis did not use any features of OpenFlow 1.3 

per se, it would be useful in case it was decided to extend this project to add more 

features. Also the documentation available for Ryu was very good and so was the 

support via mailing lists.  

 

3.4 Choice of publish subscribe framework 
 

 As mentioned in the above sections the communication between multiple 

instances of Ryu OpenFlow controllers is facilitated by means of a publish 

subscribe framework. The following three publish subscribe libraries ActiveMQ, 

RabbitMQ and ZeroMQ were considered. RabbitMQ is one of the leading 
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implementation of the AMQP protocol [10]. Therefore, it implements broker 

architecture, meaning that messages are queued on a central node before being 

sent to clients. This approach makes RabbitMQ very easy to use and deploy. 

However, it also makes it less scalable and slower because the central node adds 

latency and message envelopes are quite big. ActiveMQ can be deployed with 

both broker and P2P topologies. Like RabbitMQ, it is easier to implement 

advanced scenarios but usually at the cost of raw performance.  

 

 ZeroMQ is a lightweight message orientated socket implementation. It is 

also suitable for inter-process asynchronous programming. It is faster than TCP. It 

carries messages across inproc, IPC, TCP and multicast. It can connect N-to-N via 

fanout, publish subscribe, pipeline and request reply. We use publish subscribe 

mechanism in ZeroMQ for communicating between multiple instances of 

OpenFlow controllers. ZeroMQ is a very lightweight brokerless messaging system 

specially designed for high throughput/low latency scenarios. Advanced features 

have to be implemented by the user by combining different features such as 

sockets and devices. It certainly looks like ZeroMQ would be ideal candidate for 

our needs. 

 

Around October last year, while pondering over the best mechanism to 

enable communication between multiple Ryu instances, we came across a study 

conducted by Adina Mihailescu where he compares and benchmarks different 

message brokers.  

http://twitter.com/acm1107
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Figure 3.3 Setup to benchmark different message brokers [10] 

 

The setup used for test is described in the above diagram. Since the different 

brokers were using different protocols, they have built a little Rails application 

piloting a binary that was able to enqueue/dequeue items taken from a MySQL 

database. The test done on different brokers with multiple message sizes and the 

results are published in [10]. The message brokers that got tested and 

benchmarked were ActiveMQ, RabbitMQ, HornetQ, Appollo1, QPID and 

ZeroMQ. Since ZeroMQ did not have a message broker, an in-memory broker 

without persistence was implemented for ZeroMQ.  The details of the study are 

available at [10]. The conclusion of the study was that ZeroMQ outperforms all 

other messaging systems. Unless there is a need for complex broker 

features, ZeroMQ is a perfect message dispatcher among processes. This study 

confirmed that ZeroMQ has low latency and high throughput advantage over other 

messaging systems. Because of this ZeroMQ has been used for communication 

between multiple Ryu instances. 
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3.5 Choice of network simulator 
 

To test the application, some mechanism is required to simulate the 

OpenFlow switches and hosts. Mininet is a network emulator. It runs a collection 

of end-hosts, switches, routers, and links on a single Linux kernel. It uses 

lightweight virtualization to make a single system look like a complete network, 

running the same kernel, system, and user code. A Mininet host behaves just like 

a real machine and allows users to ssh into it. The user can start up sshd and 

bridge the network to the host and run arbitrary programs, including anything that 

is installed on the underlying Linux system. The programs that the users run can 

send packets through what seems like a real ethernet interface, with a given link 

speed and delay. Packets get processed by what looks like a real ethernet switch, 

router, or middle box, with a given amount of queueing. It uses openvswitch to 

simulate the switches that support OpenFlow. In fact Mininet is the de-facto 

standard when it comes to OpenFlow network simulators. Mininet was used to 

simulate our network. 

 

3.6 Proposed Architecture 
 

The following Figure 3.4 diagrammatically represents our proposed 

architecture. It shows three instances of Ryu OpenFlow controller each controlling 

three network switches. The network wide topology as well as other associated 

information will be stored in the database server running Titan Graph database 

that is backed by Cassandra key-value store. 
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Figure 3.4 Proposed Architecture 

 

The OpenFlow controller instances themselves can talk to each other using 

the ZeroMQ message queues. The messages queues are diagrammatically 

represented using blue double directional arrows.  
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Chapter 4 Demonstration of our Architecture 

4.1 Introduction  

To demonstrate our scalable fault tolerant architecture we are using an L2 

switch application running on Ryu OpenFlow controller. As mentioned in the 

previous chapter Ryu OpenFlow controller application will store network 

topology data in a graph data model. We use a very basic model where each 

network element such as switch, port, device etc. are represented using a vertex. 

Edges are placed between the elements where they are related, e.g. ports have an 

edge to the switch that they are on and ports have edges between them if they are 

connected by a link in the network.  

 

        One thing to note is that the network is eventually consistent anyway. 

Even if Ryu application tried to implement a strongly consistent data store, it 

would still be behind events that are actually happening in the network. So Ryu 

could think a switch is present even though in the network it has just disappeared. 

In this case the application has to handle what happens when the switch goes 

away. Using an eventually consistent data store does not really fundamentally 

change the nature of the data. What it means is that the application has to be aware 

that two different instances may have slightly different views of the data at each 

point in time. 

4.2 Data Modelling 
 

To efficiently model network topology and the flow information, five 

different types of vertices are used in our data modelling. This idea was borrowed 
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from ONOS.  The five vertices used are  

1. switch 

2. port 

3. device  

4. flow_entry 

5. flow 

 

 

 

 

Figure 4.1 Representation of a graphical model of a part of network topology 

 

 In the above diagram all the boxes represents vertices. The edges are 

represented by ñincoming / outgoingò arrows. The diagram shows H1 (Host 1) is 

connected to Port1 of S1 (Switch 1) and H4 (Host 4) is connected to Port 1 of S4 

(Switch 4). Port 2 of S1 and S4 are physically connected.  

 

Some general rules that have been followed for data modelling are 

explained below. Switches will have an ñoutgoingò edge to all its ports. 

Consequently ports will have an ñincomingò edge from the switch to which it 

belongs. Hosts/Devices will have an ñincomingò edge from the switch port to 

which it is connected. Flow_entry will have an ñoutgoingò edge to the switch on 
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which it is supposed to be installed. Consequently switches will have an 

ñincomingò edge from the flow_entry. 

 

In Figure 4.1, the links between the ports of different switching devices 

falls outside the purview of the OpenFlow protocol. That information can be 

obtained using Link Layer Discovery Protocol (LLDP). In the above diagram P2 

on S1 will have an outgoing edge to P2 on S4. Similarly P2 on S4 will have an 

outgoing edge to P2 on S1.These two edges will be labelled as ñlinkò to denote 

physical link between the two switching devices. 

 

The attributes of the vertices listed above are explained in the following 

section. This will give an idea about how the above vertices are stored in the 

graph database. 

 

4.2.1 Port 

 

The port vertex is created for each port/interface on the switches. The key 

that is used to uniquely identify a port is a combination of the data path identifier 

of the switch with the port number appended to it. This will help to keep the port 

identifier unique across the network. In addition to the port id, the port number 

and state of the port are also stored .This information is obtained from OpenFlow 

Port Status message. We also store a human readable descriptive field (e.g. s1-

eth1) that helps to uniquely identify a port in the topology. This information can 

be used for a human readable output if the need arises. We also use a descriptive 

field called ‘type’ which for port is ‘Port’. This will help to differentiate a port 

vertex from other types of vertices. The following table shows an example port 

vertex with sample values. 
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Table 4.1 Port vertex 

 

4.2.2 Switch 

 

The switch vertex as the name implies is created for each switch in the 

topology. The key that is used to identify a switch is the data path identifier (dpid) 

of the switch. We also store the state of the switch and the ótypeô field (in this case 

óSwitchô) to identify switch vertices from other types of vertices. Below table 

shows an example switch vertex with sample values. 

 

Table 4.2 Switch vertex 

 

4.2.3 Device 

 

The device vertex as the name implies is created for each device. Device is 

any kind of endpoint sending packets on the network. In mininet these will be the 

hosts in the network. Devices are tracked based on packets observed in packet-in 

messages by the controller. When the controller sees a packet-in, it records the in 

port, source mac address and source IP address if it is an ARP packet. All this 

information constitutes a device. 
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The above three types of vertices are what can be described as 

fundamental vertices. These vertices mirror the network topology of the 

underlying network. We use two mere vertex types to store some additional 

information that will enable us to forward packet from one host to another host via 

a series of switches across the network. These vertices are created after computing 

the path between the host (device) vertices on the network. Below table shows an 

example device vertex with sample values. 

 

Table 4.3 Device vertex 

 

 

4.2.4 Flow 

 

This vertex type is created after computing the path between different pairs 

of source and destination hosts. We store the source and destination mac addresses 

of the communicating hosts. We also store the source switch (i.e. the switch which 

is connected to the source host) and destination switch (i.e. the switch which is 

connected to the destination host) and the ports on those switches, source port that 

is connected to the source device on the source switch and destination port on the 

destination switch that is connected to the destination device. We also store the 

path summary of the path that connects the source and destination devices. As in 

case of other types of vertices, the type field on this type of vertices have the value 

óflowô and can be used to distinguish this from other types of vertices. The flow 

vertex gives a snapshot of the communication path between source and destination 

hosts that communicate with each other. The following table shows an example 
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flow vertex with sample values. 

 
Table 4.4 Flow vertex 

 

4.2.5 Flow_entry 

 

This type of vertex is created for every flow entry that is to be 

programmed into the switches. This vertex has óflow_entryô in the type field. It 

stores the data path identifier (dpid) of the switch into which the flow is to be 

programmed and also contains actions that is a part of the OpenFlow flow 

modification message. In addition it stores the óinput portô and the óaction output 

portô. We also store the óflow_entry_idô for each flow entry. Below table shows an 

example flow_entry vertex with sample values. 

 

Table 4.5 Flow_entry vertex 
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4.3 Demonstrating fault tolerance and scalability 
 

4.3.1 System setup 

 

The basic setup used for the demonstration of scalability and fault 

tolerance is described here. We have two servers (virtual machines) ñryu-primaryò 

and ñryu-secondaryò running two Ryu OpenFlow controllers. Both of these 

OpenFlow controllers are backed by the same Titan Graph database running on 

another virtual machine. The machines ryu-primary and ryu-secondary have IP 

addresses 192.169.10.1 and 192.168.10.2 respectively. As mentioned above 

mininet is used to simulate the network topology. The mininet runs on the virtual 

machine ñryu-primaryò. The topology used for demonstration contains six 

switches and six host devices. The switches are numbered sequentially as s1, s2, 

s3, s4, s5 and s6. The hosts connected to those switches are similarly numbered as 

h1, h2, h3, h4, h5 and h6. The hosts have IP addresses assigned from 10.0.0.0/24 

subnet with the last octet representing their host number. For e.g. h1 will have an 

IP address of 10.0.0.1, h2 will have an IP address of 10.0.0.2 and so on. Network 

topology used is represented below. 

 

Figure 4.2 Representation of the network topology 

              

On start-up all the switches in the topology connects to both Ryu OpenFlow 

controllers.  Even though all the switches connect to both the controllers, each 

switch in the topology can elect one of the controllers as the master controller. 

This is done by per switch master election using ovs-vsctl set-controller 

command. 



Chapter 4 Demonstration of our Architecture  34 

4.3.2 Ryu simple switch application 

 

To demonstrate scalability and fault tolerance, the simple switch 

application that is bundled with Ryu controller has been taken and modified. On 

switch start up the application creates port vertices and switch vertices on the 

Titan Graph database. The information about switches and ports can be obtained 

via the OpenFlow protocol. The connection between the switches however falls 

outside the purview of the OpenFlow protocol. To understand the connection 

between the switches, Link Layer Discovery Protocol (LLDP) has been used. This 

was not originally a part of simple switch application. When the switches receive 

a packet-in message it first creates a device vertex for the hosts that are trying to 

communicate. It also implements some basic switching algorithm and creates the 

flow entry and flow vertices for all the flows that it computes. The flow entry 

vertices for each switch will correspond to the entries of the flow table on the 

switches. When a flow entry is removed, either by the controller or by the flow 

expiry mechanism in the switches, the switch will send a flow removed message 

to the controller. On receiving this message the controller application will remove 

the corresponding flow entry vertex and update the flow vertex in the database. 

This operation is critical since the database should reflect that updated state of the 

network. Another modification made to the simple switch application is the 

addition of two different modes for its operation, proactive mode and reactive 

mode. In reactive mode, the simple switch application responds to a packet-in 

message from the switch by pushing down appropriate flow-mod messages down 

to the switch. In proactive mode, the user specifies a file with ó-fô option. This file 

contains the source mac addresses and the destination mac addresses of the host 

devices in the network topology that the user wants to connect.  It also contains 

source dpid and the destination dpid of the switches to which the hosts are 
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connected and the respective port numbers. For e.g. if the user wants to establish 

communication between h1 and h4, h2 and h5, h3 and h6 the user will use the 

following file. 

 

Figure 4.3 Path configuration file for proactive mode 

 

If the simple switch application is started in proactive mode, it will pre-program 

the flows corresponding to the source and destination mac addresses mentioned in 

the files. However it will also respond appropriately to any packet-in messages 

that may be sent to the controller.  The reason for modifying the application to 

support proactive mode is that it is much easier to demonstrate our scalable 

application in that mode. It should be mentioned that the same copy of the 

application is running on all instances of Ryu controller.  

 

4.3.3 Communication between Ryu instances 

 

For demonstrating scalability, communication between the Ryu controller 

instances needs to be established. The switches in the underlying topology can 

choose either of the two controllers as its master. The application running on 

either of these controllers should be agnostic of this choice. In other words each 

application behaves as if it controls the entire topology. However, only the master 

controller for a switch can program that switch. We provide ZeroMQ mechanism 

to allow the Ryu instances to communicate among each other.  This is a low 

latency high throughput messaging mechanism for communication. If the Ryu 
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application has messages that it wants to push down to the switches for which it is 

not the master controller the message is pushed via ZeroMQ to the other controller 

and that controller pushes down the messages to the corresponding switches. 

 

4.3.4 Demonstrati on of fault tolerance 

 

For demonstrating fault tolerance the modified simple switch application 

described above has been used. We start the application on both Ryu OpenFlow 

controllers as shown below 

 $ ryu-manager simple_switch.py 

Figure 4.4 shows that six switches in the network topology is connected to 

both the Ryu OpenFlow controllers.  

 

Figure 4.4 Network topology is controlled by two RYU controllers 
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The Ryu controller running on the Virtual Machine ñryu-primaryò (IP 

address - 192.168.10.1) is designated as the master controller for all the switches. 

This has been shown by red lines connecting the switches to the controller.  In the 

initial state when the switch flow tables are empty, if a ping test is tried between 

the connected pairs of hosts as shown in the network topology representation in 

Figure 4.2, the switches in the data path will send a packet-in message to the 

controller and the simple switch application running on the master controller will 

respond by pushing down the appropriate flow modification message down to the 

switches.  Once the flow tables in the switches are populated by the correct flows 

the connected pairs of hosts will be able to communicate with each other.  

Now let us assume a scenario where the server ñryu-primaryò goes down 

for some reason. This scenario is shown in Figure 4.5 below.  

 

Figure 4.5 One instance of RYU controller takes over all the switches 

 

Since all the six switches in the topology had designated the Ryu 

controller running on ñryu-primaryò as their master, the Ryu controller running on 
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ñryu-secondaryò cannot program those switches. For the Ryu controller on ñryu-

secondaryò to take over the switches in the topology the switches have to elect it 

as their master. This can be done by each switch in the topology by a per switch 

master election as shown in Figure 4.6. The switches are named sequentially as 

s1, s2, s3, s4, s5 and s6. We can use ovs-vsctl toolôs set-controller command to 

designate the Ryu controller running on ñryu-secondaryò as their master controller 

as shown below. 

 

Figure 4.6 Script to change the master controller of the switches 

 

Once all the switches in the topology has chosen Ryu controller running on ñryu-

secondaryò as their master then the simple switch application running on ñryu-

secondaryò can control all the switches in the topology. 

 

We can easily verify this by clearing all the contents of the flow tables in 

all the switches as shown in Figure 4.7 and then trying to ping between connected 

pairs of hosts. 

 

Figure 4.7 Script to clear the flow table in the switches 

 

If a ping test is tried between the connected pairs of hosts, then as 

described above the switches in the data path will send packet-in messages to the 
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Ryu controller that is the master, which is now the Ryu controller running on 

ñryu-secondaryò virtual machine.  

The simple switch application running on Ryu master controller in turn 

will respond by pushing down the appropriate flow modification messages down 

to the switches and the switches will be able to communicate between each other. 

4.3.5 Demonstration of scalability 

 

 

Figure 4.8 Configuration for demonstration of scalability  

 

  The setup that was used for the demonstration of scalability is shown in 

Figure 4.8. On switch start up all the switches establish connection with both the 

controllers. The switches s1, s2 and s3 chooses the Ryu controller running on  

ñryu-primaryò as their master controller and switches  s4, s5 and s6 chooses the 

Ryu controller running on ñryu-secondaryò as their master controller. For this 

experiment, the modified version of Ryu simple switch application is started in 
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proactive mode on one of the machines say ñryu-primaryò. On the other machine 

the user can choose to run the custom simple switch application in normal mode.   

$ ryu-manager simple_switch.py ïf path_file.txt 

This path file contains the source and destination MAC addresses of the hosts that 

needs to communicate.  It also contains the data path identifiers of the switches to 

which the hosts are connected as well as the ports on the switches on which the 

hosts are connected. An entry in the path file will look as below. 

 

 

Figure 4.9 Entry in the path configuration file  

 

Based on this information our custom simple switch application will create 

switch, port, device, flow and flow_entry vertices in the Titan Graph database.   It 

will also try to push down the flow modification messages to the switches based 

on the flow_entry vertices it has already computed and stored in the graph 

database. Now as explained above, the Ryu OpenFlow controller running on ñryu-

primaryò is the master controller for only three switches in the topology. The 

other three switches are controlled by the controller running on ñryu-secondaryò. 

This means that this controller can only push down flows to the switches for 

which it is the master controller. The other flow mod messages will be sent to the 

controller running on ñryu-secondaryò using the ZeroMQ publish subscribe 

framework. On receiving the flow modification messages the custom simple 

switch application on ñryu-secondaryò pushes down the messages to the 

corresponding switches.  
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Chapter 5 Performance Measurements 

5.1 Introduction  

In this chapter, the performance of the system that we built is measured. 

The application used for demonstration of scalability and fault tolerance is a 

modified version of simple switch application that is packaged with Ryu source 

code. We have taken that application and developed it into a database backed 

scalable and fault tolerant application. It would be interesting to take the original 

version of simple switch as the benchmark against which the modified application 

will be compared. It has to be kept in mind that the modified version of the 

application does offer a lot of features such as scalability and fault tolerance that 

is not available in the original version. 

 

5.2 Methodology 
 

The methodology that was adopted for testing the application is as follows. 

Firstly two different mininet topologies will be defined. These topologies will be 

connected to Ryu OpenFlow controller. There are three different cases that have 

to be considered. In the first case the Ryu OpenFlow controller will be running the 

original simple switch application. In the second case Ryu OpenFlow controller 

will be running our version of the simple switch application. In this case there will 

be only one instance of the Ryu OpenFlow controller running. In the third and 

final case the network topology will be connected to two different instances of 

Ryu OpenFlow controller running our version of simple switch application. In this 

case half the switches in the topology will be mastered by the first instance of Ryu 

and the other half will be mastered by the other instance of Ryu controller. In all 
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the six cases, i.e. two different network topologies connected against three cases 

of controller application, the method used was to measure the time taken for a 

simple pingall test on each of topology using time command. This does a simple 

ping between all the hosts. If there are ónô hosts in the network, each host will 

ping the other n-1 hosts. Once the pingall test is completed the network is fully 

programmed and all the hosts in the topology will be able to talk to each other. 

This test gives an accurate measure of the time taken to program the switches in 

the topology. The time command has been used to measure the time taken to 

complete the pingall test. 

 

5.3 Network topologies 
 

The first topology that will be considered is a tree topology. Mininet has 

the option to create a tree topology of a specified depth, where each leaf switch 

has ónô hosts connected to it. ônô is called the fanout factor. For example, to launch 

mininet topology with a binary tree of depth 3, and fanout factor of 4, the 

following command is used.  

 

Figure 5.1 Creating tree topology with depth 3 and fanout 4 

 

This topology will have a total of 64 (4 ^3 = 64) hosts in the topology. 

This topology will be arranged in a tree with a depth of 3. The first level will have 

a single switch. The second level will have 4 switches and the third level will have 

16 switches bringing the total number of switches to 21. 
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The second topology that will be considered is a linear topology. The 

topology contains 32 switches and 32 hosts, one hosts connected to each switch. 

The switches are connected in a linear fashion. To launch this mininet topology, 

the following command is used. 

 

Figure 5.2 Creating linear topology with 32 switches 

 

5.4 Results 
 

 

Table 5.1 Performance measurements 

 

 As it can be seen from Table 5.1, the custom version of simple 

switch does incur some cost during the flow programming phase. This is because 

of additional overhead due to creating device, flow and flow_entry vertices in 

Titan Graph database. In the demonstration setup, the Titan Graph database is run 

on the same virtual machine as the primary Ryu controller. The creation of 

vertices and edges on the Titan Graph database is a blocking call. Let us consider 

creating two vertices and an edge connecting those vertices as the basic unit of 

operation in a graph database. Time taken for that operation was measured using 

the time command. The values obtained are shown in Figure 5.3 

 

Figure 5.3 Time measured for creating two vertices and one edge 
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The total amount of CPU time comes to about 0.056 seconds. The rest of the time 

(1.598 seconds) is spent by the process in a blocked state. This can be speeded up 

significantly if the database is moved to a dedicated database server. Also the 

bulbs interface is used to create vertices and edges in the application. This method 

is described in Figure 3.2. It can be seen that the method has three function calls 

which in turn are translated to three REST API calls to the Rexster server. The 

three function call can be reduced to a single call by using a parametrized Gremlin 

script. This approach has been known to improve the performance time due to the 

following reasons. There would be a single REST API call instead of three. A 

batched transaction of three inserts with a single commit instead of three commits 

in the above case. The parameterized script would be compiled and thus cached. 

This is important as compiling is quite expensive. The difference in the 

programming time between our simple switch running on one Ryu instance and 

the one running on two Ryu instances can be explained by the latency incurred in 

pushing out flow modification messages across different Ryu instances via 

ZeroMQ. Considering that our architecture brings the double advantage of 

scalability as well as fault tolerance to the system, the overhead incurred by our 

version of simple switch can be justified. 
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Chapter 6 Future Improvements 

6.1 Introduction  

While investigating different open source OpenFlow controllers, it was 

realized that there was not a single open source OpenFlow controller available at 

that time, which was database backed having features like scalability and fault 

tolerance. This led to the idea of designing and building a database backed open 

source controller that is scalable and fault tolerant. It has to be noted that, ONOS, 

which is a database backed scalable and fault tolerant open source OpenFlow 

controller was not officially released until December 2014. By this time, the 

majority of work related to this project was complete. This project also uses an 

existing controller that is popular for prototyping OpenFlow applications, rather 

than create a new one as ONOS has. The study was done on several related works 

on scalable and fault tolerant controllers. The works that were investigated include 

Onix, ONOS and HyperFlow. After understanding the existing work that has been 

done, the decision to design and build our own version of a database backed 

scalable and fault tolerant OpenFlow controller was taken.  

 

This project was implemented entirely using open source tools and 

libraries. The details of the tools and libraries used are furnished in the following 

table. 

 

Table 6.1 Open source tools and libraries used 
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Using the software mentioned in Table 6.1, a database backed scalable and 

fault tolerant OpenFlow controller was built. To demonstrate that the design is 

both scalable and fault tolerant, custom developed version of L2 switch 

application was used. After demonstrating the features of the design, the decision 

was made to do some performance measurements of the designed controller (both 

single node and multi node versions) connected to different network topologies. 

The benchmark used for the comparison was the performance of original L2 

switch application that is shipped with Ryu OpenFlow controller. 

 

In the following sections, some suggestion for future improvements and a 

roadmap that this project should take are presented. 

6.2 Separation of Topology Discovery 
 

     In the current implementation, topology discovery and creating the 

topology graph of the network elements is clubbed with the Layer 2 switching 

application. Ideally this functionality alone should have been a separate 

application. If that is the case, then the network graph building application can be 

run along with Layer 2 switching application or in conjunction with any other 

application. 

6.3 Web Interface for Network Topology  
 

        Since the Titan Graph DB builds the network topology graph it would 

be nice if the user can see a visual representation of the same. It would be nice to 

use the d3 Java Script library for the graphical representation and then serve the 

web pages using Django framework. Another alternative would be to use 

KeyLines, which is a fully-featured Software Development Kit for building graph 
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visualization software.  

6.4 Rest API for switch to controller mapping 
    

Since the mapping of switches to controllers are dynamic and can change, 

it would be nice to expose a REST API that the user can use to know the current 

switch to controller mapping. It would display the list of controllers and the 

switches that are controlled by the controller. 

6.5 Coordination for distributed systems 
 

Zookeeper is a coordination system for distributed systems. It is 

commonly used to implement coordination mechanisms such as locks and leader 

elections. We can use it to manage the assignment of switches to controllers. Our 

fault tolerance model as described in chapter 4, allows a switch to connect to 

multiple RYU instances, and the instances have to work out amongst themselves 

which one is the master controller for that switch. This coordination is 

implemented using a leader election in Zookeeper. When a switch connects to a 

set of controllers, each of the controllers will contend in the leader election to try 

and take control of the switch. One instance will become the leader and will 

become master for the switch. If the master instance dies, Zookeeper can detect 

this and leadership will be assigned to one of the other instances.  

6.6 Replication of Cassandra nodes 
 

The current architecture has only a single instance of Cassandra. This 

exposes a single point of failure. Since one of the main drivers of the architecture 

is to make the system fault tolerant, the Cassandra can be configured to be a multi 
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node cluster. During the initial design phase focus was not given for this particular 

issue since this issue is already known and has a well-documented solution. Now 

that the basic architecture, that provides scalability and fault tolerance has been 

implemented it would make sense to implement this feature for the sake of 

completeness. 
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