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Abstract

OpenFlow provides a protocol for updating flow tables in switchesst
currentOpenFlowdeployments rely on a singt®ntroller to control all switches.
However, as the number and size of production networks deploying OpenFlow
increases, relying on a single controller for the entire network might not be
feasible for several reasons. First, the amount of control tregftreed towards
the centralized controller grows with the number of switches. Second, since the
system is bound by the processing power of the controller, low setup times can
grow significantly as demand grows with the size of the networlalllyisingle
controller architecture has zero fault tolerance which makes Hdeat for large
enterprise level deployments this thesisthe existing work that has been done
to build scalable and fault tolerant controlléras been exploredifter learning
and uneérstanding different systesrwe havebuilt our own database backed
scalable and fault tolerant controller. The databasewhatised for this purpose
is Titan Graph database, with a Cassandra bacléewrdstom version of a simple
switch applicatiorwas bult to demonstrate the scalability and fault tolerance of
our architectureSome performance comparisohstween ouwersion of simple
switch and the original versiomere also carried ouEinally in this thesisome

futureenhancementhat we would likdo implementare outlined
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Chapter 1 Software Defined Networking

1.1 Introduction

The simplicity inthent er net 6 s d etemanpdoushnaovatidne d t o
in the internet, but the network itself remains quite hard to change and
surprisingly difficult to manage. The root cause of this problem in a traditional
network lies primarily in the complicated control plane running on top of all
switches and routers throughout the network. These networking devices are
manufactured by different network vendors and used proprietary protocols to
control the data plane. In these devices, proprietary firmware on the control plane
of the switch determes where packets of data are forwarded by the data plane.
Distributed optimization of network control was inherently difficult since control

plane was a part of individual network devices.

Software Defined Networking (SDN) is a relatively new approach to
computer networking which evolved from some preliminary research and work
done at UC Berkeley and Stanford University in 2005. SDN introduces a layer of
software between bare metal network components and the network administrators
who configure and set the This software layer gives network administrators an
opportunity to make their network device adjustments through a software
interface instead of having to manually configure hardware and actually
physically access network devices giving them a \gwgd control over their
networls. This is achieved by decoupling the system that makes decisions about
where traffic is sent (the control plane) from the underlying systems that forwards

traffic to the selected destination (the data plaB®)N adheres to open standards
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and is vendeneutral, i.eit can theoretically operate with any vendor's network
hardware. This gives organizations the ability to avoid vendoritoédr a host of

network products.

Most current SDN deployments howevenrmently rely on a single SDN
controller. However, as the number and size of production networks deploying
OpenFlow increases, relying on a single controller for the entire network might
not be feasible for several reasons. First, the amount of contifi¢ ttastined
towards the centralized controller grows with the number of switches. Second,
since the system is bound by the processing power of that single controller, low
setup times can grow significantly as demand grows with the size of the network
This clearly introduces a serious limitation on the scalability and fault tolerance of
the controller. We aspire to design and build an open source, database backed
scalable and fault tolera@penFlowcontroller. Our controller is intended to be

used for raid prototyping and research environments.

1.2 Software Defined Networking

Traditional networking devices such as switches and routers can be
divided into three different logical planes. They are the data plane, control plane
and management plane. Datan@ refers to the hardware part where the packet
forwarding takes place, and control plane refers to the part that implements the
routing protocol. Typically in networking devices, control plane is implemented in
proprietary firmware developed by equipmeahdors. Management plane is used

for network monitoring and controlling purposes

Software Defined Networking is a new and emerging network architecture
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which separates data and control plane in a networking device, and makes the
control plane indepemmt and programmable. The separation of the control plane
from the data plane abstracts the network infrastructure from the applications and
treats network as a virtual entity. In this thesis the focus will be mainly on the data
and the control plane of tveorking devices. Figure 1.1 shows the data and control

plane of a traditional networking device.

CONTROL PLANE

CPU

ARP, Routing Protocol
MAC Learning

Memory

Routing Information
Base

DATA PLANE

-

Forwarding Information
Base

Ingress
Interface

Egress

—_— —_—

Interface
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Figure 1.1 Data and Control plane in traditional networking hardware

1.3 Architecture of Software DefinedNetworks

A Software Defined Network can be logically divided into three
different layers. The infrastructure layer refers to the actual forwarding hardware.
This layer consists of network devices such as Layer 2 switches in a LAN centric
environment. The control layer, also known as the SDN controller is where the
real intelligence of a Software Defined Network is situated. This layer implements
the basic network services which can be used by various networking applications
in the applicabn layer. The switches that are located in the infrastructure layer

are not traditional network switches. These switches need to support some
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mechanism whereby the control layer can talk to and program the switches in the
infrastructure layer.

The Figure 1.2 depicts the architecture of a Software Defined Network.

APPLICATION LAYER | [

Business Applications

API

SDN | ;
Control ‘ :
Software Network Services | ‘

Control Data Plane interface

(e.g., OpenFlow)
INFRASTRUCTURE LAYER

Network Device Network Device Network Device
Network Device Network Device

CONTROL LAYER

Figure 1.2 Architecture of a Software Defined Network [1]

In a Software Defined Network (SDN) architecture, southbound
application program interfaces (APkE)e used to communicate between SN
Controllerand the switchesf the network. They can be open or proprietary. The

most popular and well known southbound interface is the OpenFlow protbeol.

northbound application programming interface (APIl) onSCN control

layer enables apptation layer to program the network and request services from

it. The NorthboundAPI is evolving rapidly but currently there are no standards

for it. Each OpenFlow controller provides their own set of interfaces.

The control plane can have one or moretad nodesThe nodes in control
layer are called as SDN controllers (commonly OpenFlow controllers) and they send
routing and switching information to the data plane nodes that they control. After

receiving the information from controller, the networkimigvices update their


https://www.sdncentral.com/flow/sdn-software-defined-networking/?utm_source=pink_ball&utm_medium=link&utm_campaign=links&utm_content=sdn-software-defined-networking
https://www.sdncentral.com/term/application-programmatic-interface-api/
https://www.sdncentral.com/sdn-controllers/
https://www.sdncentral.com/sdn-controllers/
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forwarding table according to the information that they receive from 8@EN

controller.

1.4The OpenFlow protocol

As mentioned in the above section OpenFlow protocol is the most popular
and widely accepted protocol for the southbound Application Programming
Interface. OpenFlow protocol intends to provide access to the data plane of the
switches. It does this by spegiig a language that a switch can recognize and use
to update its forwarding tables. OpenFlow is a language for generically defining
characteristics of a particular flow of traffic and a set of actions to be executed

when the switclencounters packets thattches such characteristics.

The actual mechanisms used to program flows into switch hardware vary
greatly depending on the vendor of the particular hardware. Instead, OpenFlow
provides a way to describe desired flow state within an agent runningylocall
the forwarding device. All switches that are OpenFlow enabled will have the
OpenFlow agent that will interpret the OpenFlow commands. The OpenFlow
specification also includes ways for the OpenFlow controller, which is remote and
located in the controplane to make modifications to this information. The
OpenFlow agent, armed with the flow information programmed into it by a
controller, acts like the control plane on traditional switches. The only difference
is that it does not have to run routing puaits, or make decisions locally. All the
decisions are made by the remote OpenFlow controller and the OpenFlow agent
stores these OpenFlow entries, and pushes them into the flow tables on the
hardware deviceThe following Figure 1.3 shows an idealized @pdéow switch

where the flow table is controlled by a remote OpenFlow controller. [2]
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Figure 1.3 Idealized OpenFlow Switch [2]

The OpenFlow controller has a unified view of the whole network. It runs
the routing or switching protocols to collect the relevant routing or switching
information. There are two different ways in which the OpenFlow controller can

program the switches e network.

The first packet of each neflow can trigger the controller to insert flow
entries down to the switches atfie switch makes efficient use of flow table
where every flow needs small additional flow setup tifflee other approach is
that theflow tables in switch can be prepopulated by the OpenFlow controller
ahead of time for all traffic matches that could come into the swBBgh
predefining allthe flows and actions ahead of time in the switch flow tables, the
packetscan be forwarded atnle rate as thisapproachdoesnot require any

additional flow setup time per individual flow. However this approach often
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requres aggregated avildcardrules.

1.4.1 Types of OpenFlow messages

OpenFlowprotocol supports three types of messages #ratexchanged
between the switch and the OpenFlow controller: trodier-to-switch,

asynchronous and symmetric messagesateadiscussed briefly herel[3

The controllefto-switch messages are initiated by the controller and may
not always require a respsm from the switch. These messages are used to
configure the switch, manage the switch's flow table and acquire information
about the flow table state or the capabilities supported bgwiteh at any given
time. Examples of this type of messages Beatres, Config Modify-State,

ReadState, PackeDut, Barrier, RoleRequest and Asynchrone@onfiguration.

The asynclonous messages are sent withsalicitation from the switch
to the cotroller and denote a change in theitstv or network stateOne ofthe
most important asynchronousessagess the packetin messageThe packein
message is a way for the switch to send a captured packet to the controller. There
are two reasons why this might happen; there could be an explicit action as a
result of a match asking for this behaviour, or from a miss in the match tabtes,
ttl error. The OpenFlow controller can then examine gheket headers in the
packetin messages andan program the switches to take appropriate action

Some otheasynchronous messagaslude flow removed angort staus

Symmetric messagesre messages that argent without solicitation in

either direction between theontroller and the switchesThese messages are
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typically used to assist or diagnose problems inctivenection between the switch

and the controller. Some examplessgfnmetric mesages are Helld:cho and
Experimentemessages.

1.4.2 Connection establishment between switch and the OpenFlow
controller

A switch that is configured in OpenFlow mode typically initiates the
connection to the OpenFlow controller. It does this by sendi@f sync
messages to the OpenFlow controller IP addresses (which is configured into the
switch onstartup) to its default port 6633After TCP handshake is completed
between the switch and the controller the connection is two Ralowing the
TCP handshake process a set of messages are exchanged between the controller

and the switch such as Features Request, Features Reply and Set Config.

Even though the normal mode is for the OpenFlow switches to initiate the
TCP connection tdOpenFlow controller, it is common for some switches to
implement what is referred to as passive ports where the switch itself would listen
to a connection initiated from another device. This feature is typically used for
troubleshooting. There are somarooand line tools that are intéed to be used
this way(for e.g.dpctl). Froma computemwith dpctl installeda connection to the
OpenFlow switchcan be initiated An OpenFlow switch with passive ports
enabled will acget such a connection from the comgutThis command line
utility allows the user to dump the contents of the OpenFlow table on to the
switch. It can also be used to interrogate the switch in terms of its capabilities. It

can even be used to install entries in the OpenFlow table on thé.switc
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1.4.3 The OpenFlow table

The OpenFlow table is a das&ructure that resides on the high speed data
plane of the OpenFlow switchts contents decide the forwarding and packet
handling behaviour of the OpenFlow switch. OpenFlow table contains one or
more flow entries. Each flow entry has a set of components which include Header
Fields, Actions, Priorities, Counters and Timek$eade Fields are used to
identify which packets to perform the actions on. These consist of the ingress port
and packet headerActions are the set of actions that are applied on the matched
packetsThe priority field matches the precedence of the flow eftng counters
are updated when the packets are matcA@meouts refer to the maximum
amount of time or idle time before the flow is expired by the swhctiow table
entry is identified by its match fields and priority: the match fields and priority
taken together identify a unique flow entry in the flow table. The flow entry that
wildcards all fields (all fields omitted) and has priority equal to O is called the
tablemiss flow entry[3]. There are two flow expiry mechanism supported by
OpenFlow.This can be done either at the request of the controller or by the flow
expiry mechanism of the OpenFlow switdthe switch flow expiry mechanism is
based on the state and configuration of the flow entEash flow entry has an
idle timeout and a hard timeoassociated with itldle timeout is the inactivity
timeout. If there are no packets matching the flow entry for this timeout period the
flow gets deletedin case hard timeout is sdhe flow gets deletk after the
timeout period even if there are packehatching the flow entry during that

period.
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Chapter 2 Related Work

2.1 Introduction

This chapter explores thgreviouswork that this project is based upon. It
discusses in detail the various approaches st been explored beforeAs
explained in the previous chapt&penFlow provides a protocol for dgting
flow tables in switches. bkt of the current deployments rely on a single
controller to control althe switchesin the topology However, as the number and
size of production networks deploying OpenFlow increassdging on a single
controller for the entire network might not be feasible for several reasons. First,
the amount of control traffic destined towards the centralized controller grows
with the number of switches. Sew, since the system is bouiny the pocessing
power of the OpenFlow controller, low setup times can grow significantly as
demand grows with thsize of the network. Finallsingle controller architecture
has zero fault tolerance which makes it unsuitable for large enterprise level
deploymerdg. There has been several proposals in the acaditmiature to
achieve redundant alistributed controllers some of which are quite complex. We
will have a detailed look into some of these in the following sectibims focus of
the following sections will be on the architecture of the system with a focus on

how it implements scalability and fault tolerance.

2.2 Distributed OpenFlow controller using ccordination
framework

Vol kan Y a 74 diseusses theasdl foriardistributed OpenFlow

controller in real world data centres. The real world data centres need to handle
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around a 150 million flows per second. But todays OpenFlow controllers are
known to handle around 6 million flows per second using a high edidaded
server with 4 coresThis clearly indicates thaeither distributed controller
architectureor an appropriate main frame computer with sufficiently many cores

is requiredo achieve the required scalability and reliabilj4).

The authors [4] have decided to approach the problem using
distributedclusterarchitecture for OpenFlow controllerShe flow on impact of
thedistributed clustedesign is thait is inherently scalable and fault tolerant. We
can add more OpenFlow controller nodes e tluster when the requirement
arises and the presence of multiple nodes offers more reliability and fault

tolerance than using a single mfiame computer.

-

Figure 2.1 Distributed OpenFlow Controller Architecture [4]
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From Figure 2.1, it would become clear that some kind of coordination
framework is required to enable the coordination between multiple instances of
the OpenFlow controllers in the cluster. They have decided to use JGroups [5]
membership notifications andhfrastructure to enable the clusters in the
distributed framework to communicate with each other. JGroups is a mature,

robust and flexible group communication library.

The multiple controllers in the distributed cluster elect a master controller
among hemselves. This master controller maintains the global controller to
switch mapping of the networKhis master node is periodically monitored by the
other node in the cluster. If the master node is found to be inaccessible it is
immediately replaced by enof the other nodes in the clustéhis mechanism

avoids the exposure of a single point of failure.

The cluster of controller presents the applications running on top of them,
a view as if it were a single centralized controller. In other words thelsesi and
the applications are unaware of the switch to controller mapping in the network.
This makes it easier for the switch to controller assignments and reassignments to
happen seamlessly when new controller are added or for proper load balancing.

Thisfeature makes the above architecture scalable.

2.3HyperFlow — A distributed control plane for
OpenFlow

Amin Tootoonchian and YashaGanjali [6] discuss HyperFlow a
distributed event based control plane for OpenFlow which allows the network

operators to deploy any number of OpenFlow controllers in their networks.
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HyperFlow keeps network control logically centralized and provides scalability to
the network [6]. All controllers in the distributed control plane share the same

consistent network wide view and serve the switches connected to it locally
without needing to contact other controllers. This helps to minimize flow setup

times.

m ctrl; ctrl,

Figure 2.2 High-level Overview of HyperFlow

A HyperFlow based network is composed of OpenFlow switches, NOX
controllers each running an instance of the HyperFlow controller application and
an event propagation sgst for crosscontroller communication. All the
controllers have a consistent netwavide view and run as if they are controlling
the whole network. All instances of the NOX controller run the exact same
controller software and set of applications. Eachictwis connected to the closest

controller in its proximity. If that controller fails, then the switches that were



Chapter Related Work

connected to that controller must be reconfigured to connect to a nearby
controller. Each controller directly manages the switches condettat. Each
controller can also indirectly query as well as program the switches connected to
other controllers by communicating with other controllers. Figure 2.2 illustrates

the highlevel view of the system.

In Figure 2.2,each controller runs NOX h the HyperFlow application
atop, subscribes to the control, data, and its own channel in the publish/subscribe
system (depicted with a cloud). Events are published to the data channel and
periodic controller advertisements are sent to the control cha@oesitrollers
directly publish the commands targeted to a controller to its channel. Replies to

the commands are published in the source contr{fer.

HyperHow achieves a networkide view for all the controller
instancs in the cluster. This is achieved because the HyperFlow controller
application running on each instance of the OpenFlow controller selectively
publishes events that change theestt the system through a publishbscribe
mechanism. The other controllers the systenreplay the published events to
reconstruct the state of the network. Sittoese state synchronisations is done by
the HyperFlow controller application, individual applications such as routing and

loadbalancing does not need to do statechyonisation.

2.40nix: A Distributed Control Platform for Large -scale
Production Networks

Teemu Koponen et.dl7] discusses @ix, a distributed control platform

designed for large scale production netwoi®six provides useful and general
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API for network control that allows scalable applications developmenix&Os

API contains a data model that represents the network infrastruictuhe Onix
platform the controller consists oNetwork Information Bse Switch
import/exportandDistribution impat/export Network Information Base (NIBis

a data structure that tracks the network stdtB. stores the graph of all network
entities within the topologyNIB stores a collection of network emés as key
value pairs ands identified by a flat,128-bit, global identifier.The NIB is at the
heart of the Onix control model and basis for its distribution madd#. is
decentralized and distributed over several Onix notles.controller programmer
manages the network by reading and writing to thB. Mla change is made to a
local NIB instance on one of the Onix nodes, then these maodifications are
propagated to other NIB on other Onix nod8he switch import/export
componentinterpres the instructions from the Onirode and configures the
switches The distribution import/expo t component makes the

consistent with each other.

Server 1 Server N
I Network Control Logic l | Network Control Logic l
NIB NIB

F— Onix —

Switch Import / Export

lSwitchlmport/Export.l Distribution |/ E I‘-----»i Distribution | / E |

‘;’.:{giﬁgg:'i:;::::::3:'svf:l\'=:::::::::R:::::g:}__;_::gl e -~ : ""I
wive S adiee . 2 o ~ e .
Management Connectivity Network Infrastructure
Managed Physical Network Infrastructure
;r.;;""vv\rwvvwv'vvw-mvvw"mmw ;r-vt'mvwwvvkuwvvvwvvvw WY
) S SUSS e Sy S SeNS 8 s s S e e
LRSS AMMARAAN. LXRC T TY T rY fesAmARAABBNRA MALMARARAANANLASS S,

Figure 2.3 The components in an Onix Controlled Network [7]
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Figure 2.3shows four components in an Onix controlled network. They
are managed physical infrastructure, connectivitjrastructure, Onix, and the
control logic implemented by the management application. This figure depicts two
Onix instances coordinating and sharin@ (the dasbedarrow) their views of the
underlying network state, and offering the control logic a read/write interface to

that state[7]

Onix developers haveroposed some strategies to make the architecture
more scalable. The easiest approach seems to be partitioning the workload of the
controller. SinceNIB is decentralized ahdistributed over multiple Onirodes,
each @ix instances might take differentstes. Another approach is for the
application to aggregate a topology as a single logical node and use that as the unit
of event dissemination between instances. For example, the topology can be
divided into logical areasnd each area can be managed byistirtt Onix
instance.The lastapproachis consistency and durability. To distributee NIB
with consistency, theuahorssuggestwo methodswhich developers can choose
Onix offers a replicated transactional database and, for volatile state thates

tolerant of inconsistencies, a memdrgsed ondop DHT.

To handle reliability issues and to make the aedtitre more fault
tolerant, Onixsuggests some methods. To ldedh link failure issues, Onix
pr ovi delsonefoPthedsixinstances fiathe controller pogram can make
the running Onixnstances to take over the responsibilities of the failed instance.
Or a more reliable option would be to have each network elelpeemanaged by

more than one Onikstance.
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2.5 ONOS- A database backd distributed OpenFlow
controller

Pankaj Berde et.al [8] discu©SNOS which uses a database backed
approach to build a system that run across multiple servers to support scalability
and fault tolerance. ONOS maintains a global network view to managehanel
network state across ONOS servers in a cluster. Each of the network elements
such as switch pbrand host is modelled using aagh database (Titan Graph

database) which is backed by Cassandraviadye store to make it distributed.

Application Application Application
:g -------- Blueprints API ======-—-
7] ( ] )
'E; 5 Network View
x 2 Graph Database
E % (Titan)
- @_ Distributed Key-Value Store
ﬁ (Cassandra)
= [ OF Manager OF Manager OF Manager A
) {Flmdllght) (Flmdllght (Floodlight) |
# A}
” # J‘ ‘ v
Vo *‘E’ o e P P 2

Figure 2.4 ONOS Architecture Diagram [8]

As mentioned above the global network view is implemented on the Titan
Graph database. ABNOS runs on multiple serversach instance of ONOS is the
master controller for a sultsef switchesin the topology As the data plane
capacity grows or demand on the control plane increases, additional instances can

be added to the ONOS cluster to distribute the control plane workload.
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The distributed mchitecture of ONOS allowghe systemto cortinue
operating when a®@NOS instance fails by redistributing work to other remaining
instances.ONOS also allowsus to have a single running controller with a
redundant controller waiting to take over in case the primary controller Aails.
switch has the option taonnectto multiple ONOS instances, but onbne
instance is chosen as thestercontrollerfor each switch. The master instance
alone is responsible faontrollingand programming the switch. When an ONOS
instancefails, the remainingnstances elect a new master for eacthefswitches
that were previously controlled by the failed instafdeey use a consensus based
leader election to make sure that at most one ONOS instance is in charge of each
switch. They have usedookeeperto manage switckto-controller mastership,

including detecting and reacting to instance failure.
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Chapter 3 Our Proposal

3.1 Introduction

We propose to investigate the feasibility of using a database backed
controller architecture to build redundant and distributed OpenFlow controllers. In
this architecture the controllers would be essentially stateless with the state
information beng stored in a database server. Even though this makes the
database server the single point of failure, it is easier to replicate databases across
multiple servers and then to distribute the load using load balancers keeping the
controller stateless. Thiapproach localises the decision making process to a
single point, i.e. database server, allowing multiple controllers to control the
whole network or parts thereofhe different OpenFlow controllers controlling
the network will be connected to the same database sefwer. multiple
OpenFlow controllers controlling different parts of the network can communicate

among each other by means ghublish subscribe framewar

3.2Choice of database

ONOS has used a graph datab&serepresenting the network
elementsn the topology It wasdecided to adopt this idesincegraph databases
which primarily represents information in terms of a set of vertices and indicates
the relationship among them by the edges connecting the veleicds itselivery
beautifully to represendifferent network elements in a network topologye
graph database that was chosenlde used was Titan Graph DB Titan is a
distributed, reattime, scalable transactional graph database developed

by Aurelius. Titan leverages varioudasage backends for persistence including
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CassandrahbaseandHazelcastcachén this projectCassandravas chosen as the
databasdackendlIf Titan was compdtely removed, then the data would have to
be written directly to Cassandra's kesluestorerather thanto Titan's
graphdatamodel.A schanawould have to be defined for tlapplicationdatain
Cassandradatamodel. But Titan Graph DB providesdatamodel thatfits well

for the networkorienteddatathat the application uses$dence theapplication
running on the OpenFlow controller will not store data in Cassandra directly; all

database access goes through Titan.

Titan exposes a graph data mipdéhere everything is dier a vertex or an
edge. A graph schema for its data needs to be defaredl the data has to be
written to Titan. Titan stores this graph model in Cassandra'sviiere store
underneath. The details of how Titan stores data @ Kéyvalue store are

abstracted completely from application running on the OpenFlow controller.

SinceTitan Graph DBbacked by Cassandraimplemented in Java and
run asa Java Virtual Machinesome mechanisnis required to allow the
application, written in pythgnto store and retrieve data from Titan. Blueprints
APl is an opersource community developed Java interface for graph databases

that expose a property graph data model.

A property graph is a graph with the following elenserit has a set of

20

vertices and a set of edges. Each vertex in the set has a unique identifier, a set of

outgoing and incoming edges. Each vertex also has a collection of properties

defined by a map from key to valugach edge in the edge set has a umiguan

outgoing tail vertex, an incoming head vertex, and a label that denotes the type of
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relationship between the two vertices. Each edge also has a collection of
properties defined by a map from key to value. Titan natively implements

Blueprints API vhich means blueprints is the core interface for Titan.

Bulbs is an opersource Python persistence framework for graph
databases. lits like an ORM forgraphs, but instead of SQL, uses the graph
travesal languagé&sremlinto query the databaseGroovy is a programming
language and Gremlin Groovy is a graph traversal language built on top of it
using groovy's metprogramming facilitiesBulbs can connect to several graph
database servers, Inding Neo4j Server and Rexster serv@exster server that
runs inside Titan Graph DB hosts Blueprints implementations and exposes
elements of that APl (an@remlin) over REST using JSONhe gaph model

programmedinto the Titan Graph DB will be written to Cassandra backend.

Figure 3.1shows howthe python application can communicate with the

Titan Graph database with Cassandra backend.

Python Gremlin over REST

Application > Rexster Titan Cassandra
(Bulbs)

Figure 3.1 Python application communicating with Titan Graph database

In the Figure 3.1, Cassandrais used as the underlying data
storage.Titan provides graph database functionality on edpgCassandreRexster
exposes the Titan graph to remote applications via the network. All three of these

systems run within the same JVM so calls between them are performant.


http://gremlin.tinkerpop.com/
http://cassandra.apache.org/
http://titan.thinkaurelius.com/
http://rexster.tinkerpop.com/
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from bulbs.titan import Graph,Config

config = Config('http:// /192 168.241.131:8182 /graph=s/graph")

g = Graph({config)

awitch = g.wvertices.create (name="zswitch™)
device = g.vertices.create (name="device"}
g.edges.create(switch, "connected to", dewvice)

Figure 3.2 Creating vertices and edges onifan DB from Bulbs

3.3 Choice of OpenFlow controller

The OpenFlow controllechosen for this projeds the Ru OpenFlow
controller that is written in PythonVhen different OpenFlow controtke were
considered the decision to gavith an OpenFlow controller implemented in
Pythonwas madesince it would be easier to prototyfie application.The two
such OpenFlow controllers considered wd?ex and Ryu. The reason for
choosing Ryu over Pox wahat, at that point Ryu already had implenbeth
OpenFlow 1.3. Even though this thedid not use any features of Qpdow 1.3
per se, it would be useful in case it wheidal to extend this project to add more
features. Also the documentation available fguRas very good and so was the

support via mailing lists.

3.4 Choice of publish subscribe framework

As mentioned in the above sectsahe communication étween multife
instances of RyuOpenFlow controllers idacilitated by means of gpublish
subscribe frameworkrhe following tiree publish subscribe librag ActiveMQ,

RabbitMQ and Zerol) were consideredRabbitMQ is one of the leading

22
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implementation of the AMQRprotocol [10]. Therefore, it implemnts broker
architecture, meaning that messages are queued on a central node before being
sent to clients. This approach makes RabbitMQ very easy to use and.deploy
However, it 880 makes it less scalable and slolwecase the central node adds
latency and message envelopes are quite AitjveMQ can be deployed with

both broker and P2P topologies. Like RabbitMQ,igt easier to implement

advanced scenarios but usually at the cost of raw performance

ZeroMQ is a lightveight message orientated socket implementation. It is
also suitable for inteprocess asynchronous programming. It is faster than TCP. It
carries messages across inproc, IPC, TCP and multicast. It can cortoedtuia
fanout, publish subscribe, pipelimend request reply. We use publish subscribe
mechanism in ZeroMQ for communicating between multiple instances of
OpenFlow controllersZeroMQ is a very lightweight brokerless messaging system
specially designed for high throughput/low latency scenariosadckd features
have to be implemented by the user by combining different features such as
sockets and deviceK. certainly looks like ZeroMQ would be ideal candidate for

our needs.

Around October last year, while pondering over the best mechanism to
enale communication between multiple Ryu instanses,came across a study
conducted byAdina Mihailescuwhere he compares and benchmarks different

message brokers.


http://twitter.com/acm1107

Chapter 30ur Proposal 24

Broker to be benchmarked (ActiveMQ, ...) ‘

Enqueue Dequeue

=) ®

O ‘

Enqueuer ‘ ‘ Dequeuer

Read messag rite messages

L =S Rails application |
Store timings Store timings

Generate
Dis

sages
timings

messages_to_enqueue
messages_dequeued
timings

Figure 3.3 Setup to benchmark different message brokergl0]

The setup used for test is described in the above diagram. Since the different
brokers were using different protocokhey have builta little Rails application
piloting a bnary that was able to enqueue/dequiteins taken from a MySQL
databaseThe test done odifferent brokers withmultiple message sizes and the
results are published in1(Q]. The message brokers that gtasted and
benchmarked wereActiveMQ, RabbitMQ, HornetQ, Appolld, QPID and
ZeroMQ. Since ZeroM did not have a message brokan, inmemory broker
without persistencevas implementedor ZeroMQ. Thedetails of the study are
available at [10]. The conclusion of the study was #&bMQ outperforms all

other messaging systems.nlgss there is aneed for complex broker
featuresZeroMQ is a perfect message dispatcher among processes. This study
confirmedthat ZeroMQ hasow latencyandhigh throughput advantagever other
messaging systemBecause of tis ZeroMQ has been used for communication

between multiple Ryu instances.
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3.5Choice of network simulator

To test the application, some mechanism is required to simulate the
OpenFlow switches and hosMininet is anetwork emulator. It runs a collection
of endhosts, switches, routers, and links on a single Linux kernel. It uses
lightweight virtualization to make a single system look like a complete network,
running the same kernel, system, and user code. A Mininet ébavés just like
a real machineand allows users tsshinto it. The user carstart upsshdand
bridge the network tthe hostand run arbitrary programscluding anything that
is installed on the underlying Linux system. The progrémasthe uses run can
send packets through whateses like a reakthernet interface, with a given link
speed and delay. Packets get processed by what looks likeethexakt switch,
router, or middle box, with a given amount of queueibgises openvswitch to
simulate the switches that support OpemFl In fact Mininet is the déacto
standard when it comes to OpenFlow network simulatdisinet was usedo

simulate our network.

3.6 Proposed Architecture

The following Figure 3.4 diagrammatically represents our proposed
architecturelt showsthreeinstances of Ryu Operndw controller each controlling
three network switches. The network wide topology as well as other associated
information will be stored in the database server running Titan Graph database

that is backed by Cassandra keajue store.
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I TITAN Graph Database |

| Cassandra Key-value Store I

RYU INSTANCE 1 G RYU INSTANCE 2 4m===b  RYU INSTANCE 3
V=

=

Figure 3.4 Proposed Architecture

The OpenFlow controller instances themselves can talk to each other using
the ZeroMQ message queuefhe messages queues are diagrammatically

represented using blue double directional arrows.
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Chapter 4 Demonstration of our Architecture

4.1 Introduction

To demonstrate our scalable fault tolerant architecirareusing an L2
switch application running on Ry@WpenFlow controllerAs mentionedin the
previous chapterRyu OpenFlow controllerapplication will store network
topology data in a grap data model. We use \&ery basic model where each
network element such as switch, port, devetc. are represented using a vertex.
Edgesare placedetween the elements where they are relagdports have an
edge to the switcthatthey are on and ports have edges between them if they are

connected by a link in the network.

One thihg to note is that the network is eventually consistent anyway.
Even if Ryuapplicationtried to implement a strongly consistent data store, it
would still be behind events that are actuélappening in the network. So Ryu
could think a switch is present even though in the network it has just disappeared.
In this case the application has to handle what happens when the switch goes
away. Using an eventually consistent data store doeseally fundamentally
change the natarofthe data. What it means is that tygplicationhas to be aware
that two different instances may have slightly different views of the data at each

point in time.

4.2 Data Modelling

To efficiently model network tagogy and the flow informatignfive

different types of verticeare usedn our data modellingThis idea wadorrowed
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from ONOS. Thefive vertices usedre
1. switch
2. port
3. device
4. flow_entry

5. flow

FLOW_ENTRY FLOW_ENTRY

|

"link"

P1 7 P2 P2 P1

H1

Figure 4.1 Representation of a graphical model of a part of network topology

In the above diagram all the boxes represents vertices. The edges are
represented by Aincoming / bluHaptdjisngo arr
connected tdPortl of S1 (Switch 1) andH4 (Host 4) is connected ort 1 0fS4

(Switch 4). Port 2 of S1 andd@re physically connected.

Some gneral rules that have been followéor data modellingare

explained below Swi t c hes wi || have an Afout goi ng
Consequenthypor t s wi | | have an fAincomingo edge
belongsHost s/ Devi ces wi l |l have an #fAincoming

which it is connected-low_ent y  wi | | have donthe8vwitchtog oi ngo
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which it is supposed to be installe@onsequently switches will have an

Ai ncomingo edge.from the flow_entry

In Figure 4.1,the links between the ports of different switching devices
falls outside the purview of the OpenFlow protocol. That information can be
obtained using Link Layer DiscomeProtocol (LLDP). In the above diagram P2
on S1 will have an outgoing edge to P2 on Sinilarly P2 on S4 will have an
outgoing edge to P2 on S1.These two edge

physical link between the twawitching devices.

The dtributes of the vertices listed aboaee explained in the following
section This will give an idea about how thabove vertices are stored in the

graph @Gtabase.

4.2.1Port

The port vertex is created for each port/interfacehe switches. The key
that isused to uniquely identify a port is a combination of the data path identifier
of the switch with the port number appended to it. This will help to keep the port
identifier unique across the network. In aduitto the port idthe port number
andstateof the portare also storedrhis information is obtained from OpenFlow
Port Status message. We also store a human readable descriptive field-(e.g. s1
ethl) that helps to uniquely identify a port in the topology. This information can
be used for a huam readable output if the need arises. We also use a descriptive
field called® t y whech for port is‘Po r tThis. will help to differentiate a port
vertex from other types of verticeShe following table shows an example port

vertex with sample values.
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Attributes Sample Values
desc sl-ethl
port_id 00-00-00:00:00-00-02:011
state ACTIVE
number 1
tvpe Port

Table 4.1 Port vertex

4.2.2Switch

The switch vertex as the name implies is created for each sinititte
topology. The key that igsal to identify a switch is the data path identifidpid)
of the switch. We al so st offigdd(inhthiecaset at e o
O0Bi t cho) to identify switch Belewtableces f r c

shows an example switslertex with sample values.

Attributes Sample Values
state ACTIVE
dpid 00:00:00:00:00-00:02:02
type Switch

Table 4.2 Switch vertex

4.2.3Device

The device vertex as the name implies is created for each deeidee is
any kind of endpoint sending packets on the network. In minineethidl be the
hosts inthe network. Devices are tracktéased on packets observed in pagket
messages by the controller. When the controller sees a packeatecords the in
port, sourcemac addresand source IP address if it is an ARP packet. All this

information constitutes a device.
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The above three types of vertices are witan be describe as
fundamental vertices. These vertices mirror the network topology of the
underlying network. We use two mere vertex types to store some additional
information that will enable us to forward p&tkrom one host to another host via
a series of switches across the network. These vertices are created after computing
the path between the host (device) vertices on the netBetéw table shows an

example device vertex with sample values.

Attributes | Sample Values
state ACTIVE

dl_addr 00:00:00:00:00:01
type device

Table 4.3 Device vertex

4.2.4Flow

This vertex type is created after computing the path between different pairs
of source and destination hosts. We store the source and destination mac addresses
of the communicatingosts. We also store the source switch (i.e. the switch which
is connected to the source host) and destination switch (i.e. the switch which is
connected to the destination host) and the ports on those switches, source port that
is connected to the sourdevice on the source switch and destination port on the
destination switch that is connected to the destination device. We also store the
path summary of the path that connects the source and destination devices. As in
case of other types of verticelsetype field on this type of vertices have the value
6fl owé and can be used to distinguish th
vertex gives a snapshot of the communication path between source and destination

hosts that communicate with each othHne following table shows an example
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flow vertex with sample values.

Attributes Sample Values
matchSrcMac 00:00:00-00:00-01
matchDstMac 00-00:00:00:00-04
src_port 1
dst_port 1
type flow
src_switch 00-:00-00:00:00-00:02:01
dst_switch 00:00:00:00:00:00:02:04
data path_summary 1/00:00:00:00:00:00:02:01/2;

- *12/00-00:00:00:00:00:02:04/1

Table 4.4 Flow vertex

4.2.5Flow_entry

This type of vertex is created for every flow entry that is to be
programmed into the switchef.hi s vertex has o6flow_entry
stores the data path identifi@apid) of the switch into which the flow is to be
programmed and also contains actions that is a part of the OpenFlow flow
modi fication messagenputn pardtid@ i @amd itthetd®d
porWeb.al so store the 6fl oBelowtallersipowsad 6 f or

example flow_entry vertex with sample values

Attributes Sample Values
switch_dpid 00-:00:00:00-:00:00:02:05
actionQuputPort |1
switch_state FE SWITCH UPDATED
matchInPort 2
flow entry id  |Oxdee30a9400000012
type flow entry
actions [[tvpe=ACTION OUTPUTaction=[port=1 maxl.en=0]];]

Table 4.5 Flow_entry vertex
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4.3 Demonstrating fault toleranceand scalability

4.3.1System setup

The basic setup used for the demonstration of scalability and fault
tolerance is described hele have two server r (i varrtywal
and -sieygandar yo r uQ@penFlovw cortrollers Bdthy ai these
OpenFlow controllers are backed by the same Titan Gdapdbase running on
another virtual machineThe machines ryprimary and ryesecondary havéP
addresses 192.169.10.1 and 192.168.10.2 respectidslymentioned bove
mininetis usedto simulate the network topolog¥he mininet runs on the virtual
mac hi n-@ r ifmaTe topology usd for demonstration contains six
switches andix host devicesThe switches are numbered sequentially as s1, s2,
s3, s4, sb and s6. The hosts connected to those switches are similarly numbered as
hl, h2, h3, h4, h5 and h&he hosts have IP addresses assigned from 10.0.0.0/24
subnet with the last octet representingitihost number. For e.g. h1l will have an
IP address of 10.0.0.1, h2 will have an IP address of 10.0.0.2 and Netaork

topology useds represented below.

hl --- (ethl) =1 (eth2) --- (eth2) =4 (ethl) --- h4
h2 --- (ethl) s2 (eth2) --- (eth2) s5 (ethl) --- h5
n3 --- (ethl) =3 (eth2) --- (eth2) =6 (ethl) --- hé

Figure 4.2 Representation of the network topology

On startup all the switches in the topology connects to bRtu OpenFlow
controllers. Even thoughall the switches connect to both the controllexach
switch in the topology can elect one of thenirollers as the master controller.
This is done by per switch master election using-w®cdl setcontroller

command.
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4.3.2 Ryu simple switch application

To demonstrate scalability and fault tolergndbe simple switch
application that is bundled withyR controllerhas been taken and modifiedn
switch start up the apgftion createport vertices and switch vertices on the
Titan Graph databas&he information about switches and ports can be obtained
via the OpenFlow protocol. The connection between the switches however falls
outside the purview of the OpenFlow protocol. To understand the connection
between the switchekink Layer Discovery Primcol (LLDP)has been use@his
was not originally a part of simple switch applicatiovihen theswitches receive
a packetin message itirst creates a device vertex for the hosts that are trying to
communicate. It also implements some basic switchiggridhm andcreates the
flow entry and flow verticedor all the flows that it computesThe flow entry
verticesfor each switchwill correspond to the entries of the flow table on the
switches.When a flow entry is removed, either by the controller othzy flow
expiry mechanisnin the switches, the switch will send a flow removed message
to the controller. On receiving this messagedbmtroller applicatiorwill remove
the corresponding flow entry verted update the flow vertex the database.
This operation is critical since the database should reflect that updated state of the
network. Another modificationmade to the sinlp switch application is the
addition oftwo different modes for its operation, proactive mode and reactive
mode. In reactive mde, the simple switch application responds to a paoket
message from the switch by pushing down appropriate-fimgd messages down
to the switchln proactivemodest he user spe<diof opsidNLi [Tdiw
contains the source mac addresses and the destination mac addresses of the host
devices in the network topology that the user wants to conrneealso contains

source dpid and the destination dpid tbé switches towhich the hosts are
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connected and the respective tpmumbersFor e.g if the user wants to establish
communication between hl and h4, h2 and h5, h3 anthén@iser will use the

following file.

$=zrcdpid $=zrcport #d=stdpid #dstport #srcmac #dstmac

srocdpid 00:00:00:00:00:00:00:01 srcport 1 dstdpid 00:00:00:00:00:00:00:04%
destport 1 srcmac 00:00:00:00:00:01 dstmac 00:00:00:00:00:04

srodpid 00:00:00:00:00:00:00:02 srcport 1 dstdpid 00:00:00:00:00:00:00:05%
destport 1 srcmac 00:00:00:00:00:02 dstmac 00:00:00:00:00:05%

srodpid 00:00:00:00:00:00:00:03 srcport 1 dstdpid 00:00:00:00:00:00:00:06%
dstport 1 srcmac 00:00:00:00:00:03 dstmac 00:00:00:00:00:06

Figure 4.3 Path configuration file for proactive mode

If the simple switch application is started in proactive mode, it wilgpogram

the flows corresponding to the source and destination mac addresses mentioned in
the files. Howeveliit will also respond appropriately to any packetmessages

that may be sent to the controller. The reason for modifying the application to
support proactive mode is that it is much easier to demonstrate our scalable
application in that modelt should be mentioned that the same copy of the

application is running on all instances of Ryu controller.

4.3.3Communication between Ryu instances

For demonstratingcalability communication between the Ryu controller
instance needs to be establishetlhe svitches in the underlying topology can
choose either of the two controllers as its master. The application running on
either of these controllers should be agnostic of this choice. In other words each
application behaves as if it controls the entire topplétpwever only the master
controler for a switch can program thswvitch. We provide ZeroMQ mechanism
to allow the Ryu instances to communicate among each other. This is a low

latency high throughput messaging mechanism for communication. If the Ryu
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application has messages that it wants to push down to the switches for which it is
not the master controller the message is pushed via ZeroMQ to the other controller

and that controller pushes down the messages to the corresponding switches.

4.3.4Demongrati on of fault tolerance

For demonstratindgault tolerancethe modified simple switch application
described abovlas been usedVe start the application dmoth Ryu OpenFlow
controlles as shown below

$ ry-manager simple_switch.py

Figure 44 showsthat six switches in the network topology is connected to

both the Ryu OpenFlow controllers.

TITAN GRAPH DATABASE

o Primary Controller :{192.168.10.1

> [ secontuy Controle 192168102

RYU OPENFLOW CONTROLLER RYU OPENFLOW CONTROLLER

Primary Controller J192.168.10.0 / 3 s A
mary N/ : | primary Controler 152.168.10.1 |

Secondary Controller :{192.168.10.2 ,
L secondury Controier [152.168.102

Primary Controller :{192.168.10.1 |

[ seconday Contrler 15216810 |

Primary Controller :/192.168.10.1 |

Secondary Controller :{192.168.10.2 |

Figure 4.4 Network topology is controlled by two RYU controllers



Chapter Demonstration of our Architecture 37
The Ryu controll er runni-pgi @R ytohe
address- 192.168.10.1)s designated as the master controller for all the switches.
This has been shown by red lines connecting the switches to the contiroliee.
initial state wherthe switch flow tables are empty,a ping testis tried between
the connected pairs of hosis shown in the network topology representation
Figure 4.2,the switches in thelata pathwill send a packein message to the
controller and the simple switcapplication running on the master controller will
respond by pushing down the appropriate flow modification message down to the
switches. Once the flow tables in the switches are populated by the correct flows
the connected pairs of hosts will be aldedmmunicate with each other.
Now | et us assume a s eeanamrairog owlgeorees

for some reasorthis scenario is shown in Figure 4&low.

TITAN GRAPH DATABASE

«——» |Primary Controller: [192.168.102 |

- —— - ]

RYU OPENFLOW CONTROLLER

192.168.10.2

RYU OPENFLOW CONTROLLER

ntroller : |192.168.10.2

SW6

5‘
|Primary Controller :

Figure 4.5 One instance of RYU ontroller takes over all the switches

Since all the six switches in the topology had designated the Ryu

controller -puinmangooas irlye@ei r master, t

Vi

tdh

he
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Argyecondaryo cannot program those switch
secondaryo to take over the switches in
as their master. This can be done by each switch in the topology by aifoér s

master election as shown Figure 4.6 The switches are named sequentially as

sl, s2, s3,4 sbands6.We canuse ove s c t |  {cantoolled ®mmnsaedtto
designate the Ryu ecerctornadlalre/ro rassn rnnihreg roma

as showrbelow.

£ ovs-vsctl set-controller =1 "top: 192.168.10.2:6633"
£ ogvs-vsctl set-controller 32 "top: 192.168.10.2:6633"
£ ovs-vsctl set-controller =23 "teop: 192.168.10.2:6633"
£ ovs-vsctl set-controller =4 "tcop: 192.168.10.2:6633"
£ ovs-vsctl set-controller =5 "top: 192.168.10.2:6633"
£ ogvs-vsctl set-controller s6 "tcp: 192.168.10.2:6633"

Figure 4.6 Script to change the master controller of the switches

Once all the switches in the topologg s chosen Ryu controll er

secondaryo as their master then the si my

o

secondary can cothé¢topolbgy.al | t he switches
We can easily verify this by clearing all the contents of the flow tables in
all the switchess shown in Figure 4.dnd tha trying to ping between connected

pairs of hosts.

for i in "sudo ove-wvsctl list-br~
do sudo ovs—-ofctl del-flows %i ;
done

Figure 4.7 Script to clear the flow table in the switches

If a ping test is triedbetween the connected pairs of hpdten as

described above the switches in the data path will send packetssages to the
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Ryu controller that is the master, which is now the Ryu controller running on
Argyecondaryo virtual machi ne.

The simple switch application running on Ryu master controller in turn
will respond by pushing down the appropriate flow modification messages d

to the switches and the switches will be able to communicate between each other.

4.3.5Demonstration of scalability

«—»|_Primary Controller |
<«— | Secondary Controller

TITAN GRAPH DATABASE

RYU OPENFLOW CONTROLLER

RYU OPENFLOW CONTROLLER

Primary Controller:  |192.168.10.1
Secondary Controller: |192.168.10.2

Primary Controller:  [192.168.10.2
Secondary Controller : 1192.168.10.1

[Primary Controller:  [192.168.10.1

Primary Controller:  192.168.10.2
{Secondary Controller: 192.168.10.2

Secondary Controller: {192.168.10.1

Primary Controller:  192.168.10.1 /s d IPrima Controller: [192.168.10.2|
Secondary Controller: |192.168.10.2 |SeconZawCon(roller: 11924168.10.1|
Figure 4.8 Configuration for demonstration of scalability

The setup that wassal for the demonstration of atability is shown in
Figure 4.8 On switchstart upall the switches establish connection with both the
controllers.The switches s1, s2 and s3 chooses the Ryu controller running on
Arypoi maryo as t hei switchess4 s and € chaosesthé | er an
Ryu controll ersecommiamyooms it hwior this mast er

experiment, the modified version &yu simple switch apptationis startedin
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proactive mode on on-pr oma itie@dthem@achne nes s a
the user can choose to run the custom simple switch application in normal mode.
$ ryrmanager simple_switch.py path_file.txt
This pathfile contains the source and destination ®Addresses of the hosts that
needso communicate It also contains thdata pathdentifiers of the switches to
which the hosts are connected as well as the ports on the switches on which the

hosts are connectedn entry in the path file will look as below.

#=rcdpid #=rcport #dstdpid #dstport #=rcmac #dstmac
srodpid 00:00:00:00:00:00:02:01 srcport 1 dstdpid 00:00:00:00:00:00:02:04%
destport 1 srcmac 00:00:00:00:00:01 dstmac 00:00:00:00:00:04

Figure 4.9 Entry in the path configuration file

Based on this information our custom simple switch application will create
switch, port, device, flow and flow_entry vertices in the Titan Graph datablase.
will also try to push downhie flow modification messages to the switches based
on the flow_entryvertices it has already computed and stored in gfagph
database. Now as explained ahdvéh e Ry u OpenFl ow controll e
primaryo i s the mast eitches mnhe topologyeThe f or o]
other three switches are conseobhddrpy. t
This means that this controller can only push down flows to the switches for
which it is the master controller. The other flow mod messages evidkeht to the
controller rrsuencnonmndgarym fursyuwmg the Zer oMQ
framework. Onreceiving theflow modification messages the custom simple
switch appli-satcomdarom fpruysthes down t he

corresponding switches.
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Chapter 5 Performance Measurements

5.1 Introduction

In this chapterthe performance of the system that we bigilmeasured.
The application used for demonstration of scalability and fault toleremee
modified version bsimple switch applicationhat is packaged with Ryu source
code. We have taken that application ateveloped it into a database backed
scalable and faulblerant application.tlwould be interesting to take the original
version of simple switch as the benchiknagainst whictthe modified application
will be compared It has to be kept in mind that thmodified version of the
application doesffer a lot of features such as scalability and fault tolerance that

is not awailable in the original version.

5.2 Methodology

The methodology that waslopedfor testing theapplication is as follows.
Firstly two different mininet topologies will be define@hese topologies will be
connected to Ryu OpenFlow controller. There aredldifferent cases that have
to beconsideed In the first case the Ryu OpenFlow controller will be running the
original simple witch application. In the second case Ryu OpenFlow controller
will be running our version of the simple switch application. In this case there will
be only one instance of the Ryu OpenFlow controller running. In the third and
final case the network topolggwill be connected tdawo different instances of
Ryu OpenFlow controller running our version of simple switch application. In this
case half the switches in the topology will be mastered by the first instance of Ryu

and the other half will be mastered tine other instance of Ryu controller. In all



Chaper 5Performance Measurements 42

the six cases, i.e. two different netkdopologies connected agairtetee cases

of controler application, thenethod use was tomeasure the time taken for a

simple pingall tesbn each otopologyusing time commandThis does a simple

ping between all the hostf.ther e are O6nd hosts in the
ping the other f1 hosts.Once the pingall test is completed the network is fully
programmed and all the hesh the topology will be able to talk to each other.

This test gives an accurate measure of the time taken to program the switches in
the topology.The time commandhas been usetb measure the time taken to

complete the pingall test.

5.3Network topologies

The first topology that will beonsideedis a tree topology. Mininet has
the option tocreate areetopologyof a specified depthwhere each leaf switch
has 6énd hosts connected FRFooexample tofaméh i s
mininet topology with a binary tree of depth 3, arfdnout factor of 4, the

following command is used.

£zudo mn —--topo tree,depth=3, fanout=4 —--mac --switch owvsk\
——controller remote,ip=19%2.168.241.131

Figure 5.1 Creating tree topology with depth 3 and fanout 4

This topology will have a total d®4 (4 3 = 64)hostsin the topology.
This topology will be arranged in a tree with a depth of 3. The first level will have
a single switch. The second level will have 4 switches and the third level will have

16 switches bringing the total number of switches to 21.

c al
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The second topology thawill be consideed is a linear topology. The
topology contains 32 switches and 32 hosts, one hosts connected to each switch.

The switches are connected in a linear fashi@anlaunch this mininet topology,

the following command is used.

£ sudo mn --topo linear,32 --mac —-arp —-switch owvsk\
—controller, remote,ip=1982.168.241.131

Figure 5.2 Creating linear topology with 32 switches

5.4 Results
Original Simple Custom Simple Custom Simple Switch
Switch Switch(Single Node) (Two Nodes)
Tree topology 67.32 seconds 565.488 seconds 787.644 seconds
Linear toplogy 17.53 seconds 138.487 seconds 213.744 seconds

Table 5.1 Performance measurements

As it can be sea from Table 5.1 the custom version of simple
switch does incur some cost during the flow programming phase. Thec@&ise
of additional overheadlue tocreating device, flow and flow_entry vertices in
Titan Graph databasi thedemonstration setuphe Titan Graph database is run
on the same virtual machine as the primary Ryu controller. The creation of
vertices and edges on the Titara@h database is a blocking call. Let us consider
creating two vertices and an edge mecting those vertices as the basic unit of
operation in agraph database.iffie taken for that operatiomas measuredsing

the ime command. The values obtairee@ shownn Figure 5.3

real Oml.654s
user BmB.639s
SyS Ome.017s

Figure 5.3 Time measured for creating two vertices and one edge
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The total amount of CPU time comes to about 0.056 seconds. The rest of the time
(1.598 seconds) is spent by the process in a blocked state. This can be speeded up
significantly if the databasess movedto a dedicated database serwlso the

bulbs interfacaes usedo create vertices and edgeshe application. This method

is described irFigure 3.2. ltcanbe seen that the methotias thredunction calls

which in turnaretranslated tadhreeREST API calls to the Rexster servéhe

three function call can be reduced to a single call by wsp@rametrized Gremlin

script This approactnas been known to impre the performance timdue to the
following reasons. There would be a single RESHI A&all instead of three. A
batched transaction of three inserts with a single commit instead of three commits
in the above case. The parameterized script would be compiled and thus cached.
This is important as ampiling is quite expensiveThe differencein the
programming time between our simple switch running on one Ryu instance and
the one running on two Ryu instances can be explained by the latency incurred in
pushing out flow modification messages across different Ryu instances via
ZeroMQ. Consideringthat our architecture brings the double advantage of
scalability as well as fault tolerance to the system, the overhead incurred by our

version of simple switch can be justified.
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Chapter 6 Future Improvements

6.1 Introduction

While investigating different open source OpenFlow controllers, it was
realized that there was not a single opeuarce OpenFlow controller available a
that time, which was datababacked having features like scalability and fault
tolerance. This led to the idea of designing and building a database backed open
source controller that is scalable and fault tolertifitas to be noted that, ONOS,
which is a database backed scalable and fault tolerant open source OpenFlow
controller was not officially released until December 20B# this time, the
majority of work related to thigprojectwas complete. This projectsal uses an
existing controller that is popular for prototyping OpenFlow applications, rather
than create a new one as ONOS has. The study was done on several related works
on scalable and fault tolerant controllers. The works that were investigated include
Onix, ONOS and HyperFlow. After understanding the existing work that has been
done, the decision to design and build our own version of a database backed

scalable and fault tolerant OpenFlow controller was taken.

This project was implemented entirelying open source tools and

libraries. The details of the tools and libraries used are furnished in the following

table.
Tool / Library Description License
Database Titan Graph datahase backed by Cassandra key vahe store Apache 2.0
Controller Python hased Ryu Openflow controller Apache 2.0
Framework Bulbs (Python peristence framework for graph database) BSD License
Messaging ZeroMQ messaging library GNU Lesser General
Library - used for communication between different Ryu instances Public Licence v3

Table 6.1 Open source tools and libraries used
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Using the software mentioned in Talfld,a database backed scalable and
fault tolerant OpenFlow controller was built. To demonstrate that the design is
both scalable and fault tolerant, custom developed version of L2 switch
application was used. After demonstrating the features of the désegdecision
was made to do some performance measurements of the designed controller (both
single node and multi node versions) connected to different network topologies.
The benchmark used for the comparison was the performance of original L2

switch apftication that is shipped with Ryu OpenFlow controller.

In thefollowing sections, some suggestion for future improvements and a

roadmap that this project should take are presented.

6.2 Separation of Topology Discovery

In the current implementatigntopology discovery and creating the
topology graph of the network elements is clubbed with the Layer 2 switching
application. Ideally this functionality alone should have been a separate
application. If that is the casthenthe network graph building afipation can be
run alongwith Layer 2 switching applicationr in conjunctionwith any other

application.

6.3 Web Interface for Network Topology

Since the Titan Graph DB builds the networkdimgy graph it would
be nice ifthe usercan seea visual representation of the same. It would be nice to
use the d3 Java Script library for the graphical representation and then serve the
web pages using Django frameworRnother alternative would be to use

KeyLines whichis a fully-featured Software De&opment Kit for building graph
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visualization software.

6.4 Rest API for switch to controller mapping

Since the mapping of switches to contadl are dynamic and can change,
it would be nice texpose a REST API that the user can use to know thenturr
switch to controller mapping. It would display the list of controllers and the

switches that are controlled by the controller.

6.5 Coordination for distributed systems

Zookeepers a coordination system for distributed systems. It is
commonly used to implement coordination mechanisms such as locks and leader
electionsWe can usdt to manage the assignmesftswitches to controllers. Our
fault tolerance modeds describedin chaper 4 allows a svtch to connect to
multiple RYU instances, and the instances have to work out amongst themselves
which one is the master controller for that switch. This coordination is
implemented using a leader electionZookeeper When a switch coretts to a
set of controllers, each of tleentrollerswill contend in the leader election to try
and take control of the switch. One instance will become the leader and will
become master for the switch. If the master instance Ziekeepercan detect

this and leadershiwill be assigned to one of the other instances.

6.6 Replication of Cassandra nodes

The current architecture has only a single instance of Cassandra. This
exposes a single point of failure. Sénone of the main drivers of tlaechitecture

is to make the systenadlt tolerantthe Cassandrean be configured to ke multi
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node cluster. During thiaitial design phasécuswas not given fothis particular
issue since this issue is already known and has adeellmented soluin. Now
that the basic architecture, that provides scalability and fault tolerance has been
implemented it would make sense to implement this feature for the sake of

completeness.
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