

A Scalable and Fault Tolerant OpenFlow

Controller

A report submitted in fulfilment

of the requirements for the degree

of

Masters in Computer Science

at

The University of Waikato

by

Karthik Neelakanta Sharma

The supervisor for this thesis is Dr Richard Nelson

2015

Abstract

OpenFlow provides a protocol for updating flow tables in switches. Most

current OpenFlow deployments rely on a single controller to control all switches.

However, as the number and size of production networks deploying OpenFlow

increases, relying on a single controller for the entire network might not be

feasible for several reasons. First, the amount of control traffic destined towards

the centralized controller grows with the number of switches. Second, since the

system is bound by the processing power of the controller, low setup times can

grow significantly as demand grows with the size of the network. Finally single

controller architecture has zero fault tolerance which makes it non-ideal for large

enterprise level deployments. In this thesis, the existing work that has been done

to build scalable and fault tolerant controllers has been explored. After learning

and understanding different systems we have built our own database backed

scalable and fault tolerant controller. The database that was used for this purpose

is Titan Graph database, with a Cassandra backend. A custom version of a simple

switch application was built to demonstrate the scalability and fault tolerance of

our architecture. Some performance comparisons between our version of simple

switch and the original version were also carried out. Finally in this thesis some

future enhancements that we would like to implement are outlined.

Acknowledgements

I would like to take the time to thank the following people for their

guidance and support during this project: Richard Nelson, for his supervision of

this project, Umesh Krishnaswamy and Jonathan Hart, for their continued

patience with my enquiries about ONOS, James Thornton and Stephen Mallette

for answering my questions on Bulbs, Stephen Donnelly and Stuart Wilson for

supporting me during this thesis and last but not least to my wife Kanchana for

her unconditional support during my thesis.

Contents

 1 SOFTWARE DEFINED NETWORKING .. 1

1.1 Introduction ... 1

1.2 Software Defined Networking .. 2

1.3 Architecture of Software Defined Networks ... 3

1.4 The OpenFlow protocol .. 5

1.4.1 Types of OpenFlow messages .. 7

1.4.2 Connection establishment between switch and the OpenFlow controller 8

1.4.3 The OpenFlow table ... 9

 2 RELATED WORK ... 10

2.1 Introduction ... 10

2.2 Distributed OpenFlow controller using co-ordination framework 10

2.3 HyperFlow ς A distributed control plane for OpenFlow .. 12

2.4 Onix: A Distributed Control Platform for Large-scale Production Networks 14

2.5 ONOS ς A database backed distributed OpenFlow controller ... 17

 3 OUR PROPOSAL ... 19

3.1 Introduction ... 19

3.2 Choice of database ... 19

3.3 Choice of OpenFlow controller ... 22

3.4 Choice of publish subscribe framework .. 22

3.5 Choice of network simulator .. 25

3.6 Proposed Architecture .. 25

 4 DEMONSTRATION OF OUR ARCHITECTURE ... 27

4.1 Introduction ... 27

4.2 Data Modelling ... 27

4.2.1 Port .. 29

4.2.2 Switch ... 30

4.2.3 Device... 30

4.2.4 Flow .. 31

Contents v

4.2.5 Flow_entry ... 32

4.3 Demonstrating fault tolerance and scalability .. 33

4.3.1 System setup .. 33

4.3.2 Ryu simple switch application .. 34

4.3.3 Communication between Ryu instances .. 35

4.3.4 Demonstration of fault tolerance .. 36

4.3.5 Demonstration of scalability .. 39

 5 PERFORMANCE MEASUREMENTS ... 41

5.1 Introduction ... 41

5.2 Methodology .. 41

5.3 Network topologies .. 42

5.4 Results .. 43

 6 FUTURE IMPROVEMENTS ... 45

6.1 Introduction ... 45

6.2 Separation of Topology Discovery .. 46

6.3 Web Interface for Network Topology ... 46

6.4 Rest API for switch to controller mapping .. 47

6.5 Coordination for distributed systems ... 47

6.6 Replication of Cassandra nodes .. 47

REFERENCES .. 49

List of Figures

 1.1 Data and Control plane in traditional networking hardware 3

 1.2 Architecture of a Software Defined Network [1] ... 4

 1.3 Idealized OpenFlow Switch [2] ... 6

 2.1 Distributed OpenFlow Controller Architecture [4] .. 11

 2.2 High-level Overview of HyperFlow .. 13

 2.3 The components in an Onix Controlled Network [7]..................................... 15

 2.4 ONOS Architecture Diagram [8] ... 17

 3.1 Python application communicating with Titan Graph database 21

 3.2 Creating vertices and edges on Titan DB from Bulbs.................................... 22

 3.3 Setup to benchmark different message brokers [10] 24

 3.4 Proposed Architecture .. 26

 4.1 Representation of a graphical model of a part of network topology 28

 4.2 Representation of the network topology .. 33

 4.3 Path configuration file for proactive mode .. 35

 4.4 Network topology is controlled by two RYU controllers 36

 4.5 One instance of RYU controller takes over all the switches 37

 4.6 Script to change the master controller of the switches 38

 4.7 Script to clear the flow table in the switches.. 38

 4.8 Configuration for demonstration of scalability .. 39

 4.9 Entry in the path configuration file .. 40

 5.1 Creating tree topology with depth 3 and fanout 4 .. 42

 5.2 Creating linear topology with 32 switches ... 43

 5.3 Time measured for creating two vertices and one edge 43

List of Tables

 4.1 Port vertex .. 30

 4.2 Switch vertex .. 30

 4.3 Device vertex ... 31

 4.4 Flow vertex .. 32

 4.5 Flow_entry vertex .. 32

 5.1 Performance measurements ... 43

 6.1 Open source tools and libraries used .. 45

1

Chapter 1 Software Defined Networking

1.1 Introduction

The simplicity in the internetôs design has led to a tremendous innovation

in the internet, but the network itself remains quite hard to change and

surprisingly difficult to manage. The root cause of this problem in a traditional

network lies primarily in the complicated control plane running on top of all

switches and routers throughout the network. These networking devices are

manufactured by different network vendors and used proprietary protocols to

control the data plane. In these devices, proprietary firmware on the control plane

of the switch determines where packets of data are forwarded by the data plane.

Distributed optimization of network control was inherently difficult since control

plane was a part of individual network devices.

Software Defined Networking (SDN) is a relatively new approach to

computer networking which evolved from some preliminary research and work

done at UC Berkeley and Stanford University in 2005. SDN introduces a layer of

software between bare metal network components and the network administrators

who configure and set them. This software layer gives network administrators an

opportunity to make their network device adjustments through a software

interface instead of having to manually configure hardware and actually

physically access network devices giving them a very good control over their

networks. This is achieved by decoupling the system that makes decisions about

where traffic is sent (the control plane) from the underlying systems that forwards

traffic to the selected destination (the data plane). SDN adheres to open standards

Chapter 1 Software Defined Networking 2

and is vendor-neutral, i.e. it can theoretically operate with any vendor's network

hardware. This gives organizations the ability to avoid vendor lock-in for a host of

network products.

Most current SDN deployments however currently rely on a single SDN

controller. However, as the number and size of production networks deploying

OpenFlow increases, relying on a single controller for the entire network might

not be feasible for several reasons. First, the amount of control traffic destined

towards the centralized controller grows with the number of switches. Second,

since the system is bound by the processing power of that single controller, low

setup times can grow significantly as demand grows with the size of the network.

This clearly introduces a serious limitation on the scalability and fault tolerance of

the controller. We aspire to design and build an open source, database backed

scalable and fault tolerant OpenFlow controller. Our controller is intended to be

used for rapid prototyping and research environments.

1.2 Software Defined Networking

Traditional networking devices such as switches and routers can be

divided into three different logical planes. They are the data plane, control plane

and management plane. Data plane refers to the hardware part where the packet

forwarding takes place, and control plane refers to the part that implements the

routing protocol. Typically in networking devices, control plane is implemented in

proprietary firmware developed by equipment vendors. Management plane is used

for network monitoring and controlling purposes.

Software Defined Networking is a new and emerging network architecture

Chapter 1 Software Defined Networking 3

which separates data and control plane in a networking device, and makes the

control plane independent and programmable. The separation of the control plane

from the data plane abstracts the network infrastructure from the applications and

treats network as a virtual entity. In this thesis the focus will be mainly on the data

and the control plane of networking devices. Figure 1.1 shows the data and control

plane of a traditional networking device.

Figure 1.1 Data and Control plane in traditional networking hardware

1.3 Architecture of Software Defined Networks

 A Software Defined Network can be logically divided into three

different layers. The infrastructure layer refers to the actual forwarding hardware.

This layer consists of network devices such as Layer 2 switches in a LAN centric

environment. The control layer, also known as the SDN controller is where the

real intelligence of a Software Defined Network is situated. This layer implements

the basic network services which can be used by various networking applications

in the application layer. The switches that are located in the infrastructure layer

are not traditional network switches. These switches need to support some

Chapter 1 Software Defined Networking 4

mechanism whereby the control layer can talk to and program the switches in the

infrastructure layer.

 The Figure 1.2 depicts the architecture of a Software Defined Network.

Figure 1.2 Architecture of a Software Defined Network [1]

In a Software Defined Network (SDN) architecture, southbound

application program interfaces (APIs) are used to communicate between the SDN

Controller and the switches of the network. They can be open or proprietary. The

most popular and well known southbound interface is the OpenFlow protocol. The

northbound application programming interface (API) on a SDN control

layer enables application layer to program the network and request services from

it. The Northbound API is evolving rapidly but currently there are no standards

for it. Each OpenFlow controller provides their own set of interfaces.

The control plane can have one or more control nodes. The nodes in control

layer are called as SDN controllers (commonly OpenFlow controllers) and they send

routing and switching information to the data plane nodes that they control. After

receiving the information from controller, the networking devices update their

https://www.sdncentral.com/flow/sdn-software-defined-networking/?utm_source=pink_ball&utm_medium=link&utm_campaign=links&utm_content=sdn-software-defined-networking
https://www.sdncentral.com/term/application-programmatic-interface-api/
https://www.sdncentral.com/sdn-controllers/
https://www.sdncentral.com/sdn-controllers/

Chapter 1 Software Defined Networking 5

forwarding tables according to the information that they receive from the SDN

controller.

1.4 The OpenFlow protocol

As mentioned in the above section OpenFlow protocol is the most popular

and widely accepted protocol for the southbound Application Programming

Interface. OpenFlow protocol intends to provide access to the data plane of the

switches. It does this by specifying a language that a switch can recognize and use

to update its forwarding tables. OpenFlow is a language for generically defining

characteristics of a particular flow of traffic and a set of actions to be executed

when the switch encounters packets that matches such characteristics.

The actual mechanisms used to program flows into switch hardware vary

greatly depending on the vendor of the particular hardware. Instead, OpenFlow

provides a way to describe desired flow state within an agent running locally on

the forwarding device. All switches that are OpenFlow enabled will have the

OpenFlow agent that will interpret the OpenFlow commands. The OpenFlow

specification also includes ways for the OpenFlow controller, which is remote and

located in the control plane to make modifications to this information. The

OpenFlow agent, armed with the flow information programmed into it by a

controller, acts like the control plane on traditional switches. The only difference

is that it does not have to run routing protocols, or make decisions locally. All the

decisions are made by the remote OpenFlow controller and the OpenFlow agent

stores these OpenFlow entries, and pushes them into the flow tables on the

hardware device. The following Figure 1.3 shows an idealized OpenFlow switch

where the flow table is controlled by a remote OpenFlow controller. [2]

Chapter 1 Software Defined Networking 6

Figure 1.3 Idealized OpenFlow Switch [2]

 The OpenFlow controller has a unified view of the whole network. It runs

the routing or switching protocols to collect the relevant routing or switching

information. There are two different ways in which the OpenFlow controller can

program the switches in the network.

The first packet of each new flow can trigger the controller to insert flow

entries down to the switches and the switch makes efficient use of flow table

where every flow needs small additional flow setup time. The other approach is

that the flow tables in switch can be prepopulated by the OpenFlow controller

ahead of time for all traffic matches that could come into the switch. By

predefining all the flows and actions ahead of time in the switch flow tables, the

packets can be forwarded at line rate as this approach does not require any

additional flow setup time per individual flow. However this approach often

Chapter 1 Software Defined Networking 7

requires aggregated or wildcard rules.

1.4.1 Types of OpenFlow messages

OpenFlow protocol supports three types of messages that are exchanged

between the switch and the OpenFlow controller: controller-to-switch,

asynchronous and symmetric messages that are discussed briefly here [3].

The controller-to-switch messages are initiated by the controller and may

not always require a response from the switch. These messages are used to

configure the switch, manage the switch's flow table and acquire information

about the flow table state or the capabilities supported by the switch at any given

time. Examples of this type of messages are Features, Config, Modify-State,

Read-State, Packet-Out, Barrier, Role-Request and Asynchronous-Configuration.

The asynchronous messages are sent without solicitation from the switch

to the controller and denote a change in the switch or network state. One of the

most important asynchronous messages is the packet-in message. The packet-in

message is a way for the switch to send a captured packet to the controller. There

are two reasons why this might happen; there could be an explicit action as a

result of a match asking for this behaviour, or from a miss in the match tables, or a

ttl error. The OpenFlow controller can then examine the packet headers in the

packet-in messages and can program the switches to take appropriate action.

Some other asynchronous messages include flow removed and port status.

Symmetric messages are messages that are sent without solicitation in

either direction between the controller and the switches. These messages are

Chapter 1 Software Defined Networking 8

typically used to assist or diagnose problems in the connection between the switch

and the controller. Some examples of symmetric messages are Hello, Echo and

Experimenter messages.

1.4.2 Connection establishment between switch and the OpenFlow

controller

A switch that is configured in OpenFlow mode typically initiates the

connection to the OpenFlow controller. It does this by sending TCP sync

messages to the OpenFlow controller IP addresses (which is configured into the

switch on start-up) to its default port 6633. After TCP handshake is completed

between the switch and the controller the connection is two way. Following the

TCP handshake process a set of messages are exchanged between the controller

and the switch such as Features Request, Features Reply and Set Config.

 Even though the normal mode is for the OpenFlow switches to initiate the

TCP connection to OpenFlow controller, it is common for some switches to

implement what is referred to as passive ports where the switch itself would listen

to a connection initiated from another device. This feature is typically used for

troubleshooting. There are some command line tools that are intended to be used

this way (for e.g. dpctl). From a computer with dpctl installed, a connection to the

OpenFlow switch can be initiated. An OpenFlow switch with passive ports

enabled will accept such a connection from the computer. This command line

utility allows the user to dump the contents of the OpenFlow table on to the

switch. It can also be used to interrogate the switch in terms of its capabilities. It

can even be used to install entries in the OpenFlow table on the switch.

Chapter 1 Software Defined Networking 9

1.4.3 The OpenFlow table

The OpenFlow table is a data-structure that resides on the high speed data

plane of the OpenFlow switch. Its contents decide the forwarding and packet

handling behaviour of the OpenFlow switch. OpenFlow table contains one or

more flow entries. Each flow entry has a set of components which include Header

Fields, Actions, Priorities, Counters and Timers. Header Fields are used to

identify which packets to perform the actions on. These consist of the ingress port

and packet headers. Actions are the set of actions that are applied on the matched

packets. The priority field matches the precedence of the flow entry. The counters

are updated when the packets are matched. Timeouts refer to the maximum

amount of time or idle time before the flow is expired by the switch. A flow table

entry is identified by its match fields and priority: the match fields and priority

taken together identify a unique flow entry in the flow table. The flow entry that

wildcards all fields (all fields omitted) and has priority equal to 0 is called the

table-miss flow entry [3]. There are two flow expiry mechanism supported by

OpenFlow. This can be done either at the request of the controller or by the flow

expiry mechanism of the OpenFlow switch. The switch flow expiry mechanism is

based on the state and configuration of the flow entries. Each flow entry has an

idle timeout and a hard timeout associated with it. Idle timeout is the inactivity

timeout. If there are no packets matching the flow entry for this timeout period the

flow gets deleted. In case hard timeout is set, the flow gets deleted after the

timeout period even if there are packets matching the flow entry during that

period.

10

Chapter 2 Related Work

2.1 Introduction

This chapter explores the previous work that this project is based upon. It

discusses in detail the various approaches that have been explored before. As

explained in the previous chapter, OpenFlow provides a protocol for updating

flow tables in switches. Most of the current deployments rely on a single

controller to control all the switches in the topology. However, as the number and

size of production networks deploying OpenFlow increases, relying on a single

controller for the entire network might not be feasible for several reasons. First,

the amount of control traffic destined towards the centralized controller grows

with the number of switches. Second, since the system is bound by the processing

power of the OpenFlow controller, low setup times can grow significantly as

demand grows with the size of the network. Finally single controller architecture

has zero fault tolerance which makes it unsuitable for large enterprise level

deployments. There has been several proposals in the academic literature to

achieve redundant or distributed controllers some of which are quite complex. We

will have a detailed look into some of these in the following sections. The focus of

the following sections will be on the architecture of the system with a focus on

how it implements scalability and fault tolerance.

2.2 Distributed OpenFlow controller using co-ordination

framework

Volkan Yazēcē et.al in [4] discusses the need for a distributed OpenFlow

controller in real world data centres. The real world data centres need to handle

Chapter 2 Related Work 11

around a 150 million flows per second. But todays OpenFlow controllers are

known to handle around 6 million flows per second using a high end dedicated

server with 4 cores. This clearly indicates that either distributed controller

architecture or an appropriate main frame computer with sufficiently many cores

is required to achieve the required scalability and reliability. [4]

 The authors [4] have decided to approach the problem using

distributed cluster architecture for OpenFlow controllers. The flow on impact of

the distributed cluster design is that it is inherently scalable and fault tolerant. We

can add more OpenFlow controller nodes to the cluster when the requirement

arises and the presence of multiple nodes offers more reliability and fault

tolerance than using a single main-frame computer.

Figure 2.1 Distributed OpenFlow Controller Architecture [4]

Chapter 2 Related Work 12

From Figure 2.1, it would become clear that some kind of coordination

framework is required to enable the coordination between multiple instances of

the OpenFlow controllers in the cluster. They have decided to use JGroups [5]

membership notifications and infrastructure to enable the clusters in the

distributed framework to communicate with each other. JGroups is a mature,

robust and flexible group communication library.

The multiple controllers in the distributed cluster elect a master controller

among themselves. This master controller maintains the global controller to

switch mapping of the network. This master node is periodically monitored by the

other node in the cluster. If the master node is found to be inaccessible it is

immediately replaced by one of the other nodes in the cluster. This mechanism

avoids the exposure of a single point of failure.

 The cluster of controller presents the applications running on top of them,

a view as if it were a single centralized controller. In other words the switches and

the applications are unaware of the switch to controller mapping in the network.

This makes it easier for the switch to controller assignments and reassignments to

happen seamlessly when new controller are added or for proper load balancing.

This feature makes the above architecture scalable.

2.3 HyperFlow – A distributed control plane for

OpenFlow

Amin Tootoonchian and Yashar Ganjali [6] discuss HyperFlow a

distributed event based control plane for OpenFlow which allows the network

operators to deploy any number of OpenFlow controllers in their networks.

Chapter 2 Related Work 13

HyperFlow keeps network control logically centralized and provides scalability to

the network. [6]. All controllers in the distributed control plane share the same

consistent network wide view and serve the switches connected to it locally

without needing to contact other controllers. This helps to minimize flow setup

times.

Figure 2.2 High-level Overview of HyperFlow

A HyperFlow based network is composed of OpenFlow switches, NOX

controllers each running an instance of the HyperFlow controller application and

an event propagation system for cross-controller communication. All the

controllers have a consistent network-wide view and run as if they are controlling

the whole network. All instances of the NOX controller run the exact same

controller software and set of applications. Each switch is connected to the closest

controller in its proximity. If that controller fails, then the switches that were

Chapter 2 Related Work 14

connected to that controller must be reconfigured to connect to a nearby

controller. Each controller directly manages the switches connected to it. Each

controller can also indirectly query as well as program the switches connected to

other controllers by communicating with other controllers. Figure 2.2 illustrates

the high-level view of the system.

In Figure 2.2, each controller runs NOX with the HyperFlow application

atop, subscribes to the control, data, and its own channel in the publish/subscribe

system (depicted with a cloud). Events are published to the data channel and

periodic controller advertisements are sent to the control channel. Controllers

directly publish the commands targeted to a controller to its channel. Replies to

the commands are published in the source controller. [6]

 HyperFlow achieves a network-wide view for all the controller

instances in the cluster. This is achieved because the HyperFlow controller

application running on each instance of the OpenFlow controller selectively

publishes events that change the state of the system through a publish subscribe

mechanism. The other controllers in the system replay the published events to

reconstruct the state of the network. Since these state synchronisations is done by

the HyperFlow controller application, individual applications such as routing and

load balancing does not need to do state synchronisation.

2.4 Onix: A Distributed Control Platform for Large -scale

Production Networks

Teemu Koponen et.al [7] discusses Onix, a distributed control platform

designed for large scale production networks. Onix provides useful and general

Chapter 2 Related Work 15

API for network control that allows scalable applications development. Onixôs

API contains a data model that represents the network infrastructure. In the Onix

platform the controller consists of Network Information Base, Switch

import/export and Distribution import/export. Network Information Base (NIB) is

a data structure that tracks the network state. NIB stores the graph of all network

entities within the topology. NIB stores a collection of network entities as key

value pairs and is identified by a flat, 128-bit, global identifier. The NIB is at the

heart of the Onix control model and basis for its distribution model. NIB is

decentralized and distributed over several Onix nodes. The controller programmer

manages the network by reading and writing to the NIB. If a change is made to a

local NIB instance on one of the Onix nodes, then these modifications are

propagated to other NIB on other Onix nodes. The switch import/export

component interprets the instructions from the Onix node and configures the

switches. The distribution import/export component makes the different NIBôs

consistent with each other.

Figure 2.3 The components in an Onix Controlled Network [7]

Chapter 2 Related Work 16

Figure 2.3 shows four components in an Onix controlled network. They

are managed physical infrastructure, connectivity infrastructure, Onix, and the

control logic implemented by the management application. This figure depicts two

Onix instances coordinating and sharing (via the dashed-arrow) their views of the

underlying network state, and offering the control logic a read/write interface to

that state. [7]

Onix developers have proposed some strategies to make the architecture

more scalable. The easiest approach seems to be partitioning the workload of the

controller. Since NIB is decentralized and distributed over multiple Onix nodes,

each Onix instances might take different tasks. Another approach is for the

application to aggregate a topology as a single logical node and use that as the unit

of event dissemination between instances. For example, the topology can be

divided into logical areas and each area can be managed by a distinct Onix

instance. The last approach is consistency and durability. To distribute the NIB

with consistency, the authors suggest two methods which developers can choose.

Onix offers a replicated transactional database and, for volatile state that is more

tolerant of inconsistencies, a memory-based one-hop DHT.

To handle reliability issues and to make the architecture more fault

tolerant, Onix suggests some methods. To deal with link failure issues, Onix

provides APIôs. If one of the Onix instances fail the controller program can make

the running Onix instances to take over the responsibilities of the failed instance.

Or a more reliable option would be to have each network element be managed by

more than one Onix instance.

Chapter 2 Related Work 17

2.5 ONOS – A database backed distributed OpenFlow

controller

Pankaj Berde et.al [8] discuss ONOS which uses a database backed

approach to build a system that run across multiple servers to support scalability

and fault tolerance. ONOS maintains a global network view to manage and share

network state across ONOS servers in a cluster. Each of the network elements

such as switch port and host is modelled using a graph database (Titan Graph

database) which is backed by Cassandra key-value store to make it distributed.

Figure 2.4 ONOS Architecture Diagram [8]

As mentioned above the global network view is implemented on the Titan

Graph database. As ONOS runs on multiple servers, each instance of ONOS is the

master controller for a subset of switches in the topology. As the data plane

capacity grows or demand on the control plane increases, additional instances can

be added to the ONOS cluster to distribute the control plane workload.

Chapter 2 Related Work 18

The distributed architecture of ONOS allows the system to continue

operating when an ONOS instance fails by redistributing work to other remaining

instances. ONOS also allows us to have a single running controller with a

redundant controller waiting to take over in case the primary controller fails. A

switch has the option to connect to multiple ONOS instances, but only one

instance is chosen as the master controller for each switch. The master instance

alone is responsible for controlling and programming the switch. When an ONOS

instance fails, the remaining instances elect a new master for each of the switches

that were previously controlled by the failed instance. They use a consensus based

leader election to make sure that at most one ONOS instance is in charge of each

switch. They have used Zookeeper to manage switch-to-controller mastership,

including detecting and reacting to instance failure.

19

Chapter 3 Our Proposal

3.1 Introduction

 We propose to investigate the feasibility of using a database backed

controller architecture to build redundant and distributed OpenFlow controllers. In

this architecture the controllers would be essentially stateless with the state

information being stored in a database server. Even though this makes the

database server the single point of failure, it is easier to replicate databases across

multiple servers and then to distribute the load using load balancers keeping the

controller stateless. This approach localises the decision making process to a

single point, i.e. database server, allowing multiple controllers to control the

whole network or parts thereof. The different OpenFlow controllers controlling

the network will be connected to the same database server. The multiple

OpenFlow controllers controlling different parts of the network can communicate

among each other by means of a publish subscribe framework.

3.2 Choice of database

 ONOS has used a graph database for representing the network

elements in the topology. It was decided to adopt this idea, since graph databases,

which primarily represents information in terms of a set of vertices and indicates

the relationship among them by the edges connecting the vertices, lends itself very

beautifully to represent different network elements in a network topology. The

graph database that was chosen to be used was Titan Graph DB. Titan is a

distributed, real-time, scalable transactional graph database developed

by Aurelius. Titan leverages various storage backends for persistence including

Chapter 3 Our Proposal 20

Cassandra, hbase and Hazelcastcache. In this project Cassandra was chosen as the

database backend. If Titan was completely removed, then the data would have to

be written directly to Cassandra's key-value store rather than to Titan's

graph data model. A schema would have to be defined for the applications data in

Cassandra's data model. But Titan Graph DB provides a data model that fit s well

for the network-oriented data that the application uses. Hence the application

running on the OpenFlow controller will not store data in Cassandra directly; all

database access goes through Titan.

Titan exposes a graph data model, where everything is either a vertex or an

edge. A graph schema for its data needs to be defined, and the data has to be

written to Titan. Titan stores this graph model in Cassandra's key-value store

underneath. The details of how Titan stores data in the key-value store are

abstracted completely from application running on the OpenFlow controller.

 Since Titan Graph DB backed by Cassandra is implemented in Java and

run as a Java Virtual Machine, some mechanism is required to allow the

application, written in python, to store and retrieve data from Titan. Blueprints

API is an open-source community developed Java interface for graph databases

that expose a property graph data model.

A property graph is a graph with the following elements. It has a set of

vertices and a set of edges. Each vertex in the set has a unique identifier, a set of

outgoing and incoming edges. Each vertex also has a collection of properties

defined by a map from key to value. Each edge in the edge set has a unique id, an

outgoing tail vertex, an incoming head vertex, and a label that denotes the type of

Chapter 3 Our Proposal 21

relationship between the two vertices. Each edge also has a collection of

properties defined by a map from key to value. Titan natively implements

Blueprints API which means blueprints is the core interface for Titan.

Bulbs is an open-source Python persistence framework for graph

databases. It is like an ORM for graphs, but instead of SQL, it uses the graph-

traversal language Gremlin to query the database. Groovy is a programming

language and Gremlin Groovy is a graph traversal language built on top of it

using groovy's meta-programming facilities. Bulbs can connect to several graph-

database servers, including Neo4j Server and Rexster server. Rexster server that

runs inside Titan Graph DB hosts Blueprints implementations and exposes

elements of that API (and Gremlin) over REST using JSON. The graph model

programmed into the Titan Graph DB will be written to Cassandra backend.

Figure 3.1 shows how the python application can communicate with the

Titan Graph database with Cassandra backend.

Figure 3.1 Python application communicating with Titan Graph database

In the Figure 3.1, Cassandra is used as the underlying data

storage. Titan provides graph database functionality on top of Cassandra. Rexster

exposes the Titan graph to remote applications via the network. All three of these

systems run within the same JVM so calls between them are performant.

http://gremlin.tinkerpop.com/
http://cassandra.apache.org/
http://titan.thinkaurelius.com/
http://rexster.tinkerpop.com/

Chapter 3 Our Proposal 22

Figure 3.2 Creating vertices and edges on Titan DB from Bulbs

3.3 Choice of OpenFlow controller

The OpenFlow controller chosen for this project is the Ryu OpenFlow

controller that is written in Python. When different OpenFlow controllers were

considered, the decision to go with an OpenFlow controller implemented in

Python was made, since it would be easier to prototype the application. The two

such OpenFlow controllers considered were Pox and Ryu. The reason for

choosing Ryu over Pox was that, at that point Ryu already had implemented

OpenFlow 1.3. Even though this thesis did not use any features of OpenFlow 1.3

per se, it would be useful in case it was decided to extend this project to add more

features. Also the documentation available for Ryu was very good and so was the

support via mailing lists.

3.4 Choice of publish subscribe framework

 As mentioned in the above sections the communication between multiple

instances of Ryu OpenFlow controllers is facilitated by means of a publish

subscribe framework. The following three publish subscribe libraries ActiveMQ,

RabbitMQ and ZeroMQ were considered. RabbitMQ is one of the leading

Chapter 3 Our Proposal 23

implementation of the AMQP protocol [10]. Therefore, it implements broker

architecture, meaning that messages are queued on a central node before being

sent to clients. This approach makes RabbitMQ very easy to use and deploy.

However, it also makes it less scalable and slower because the central node adds

latency and message envelopes are quite big. ActiveMQ can be deployed with

both broker and P2P topologies. Like RabbitMQ, it is easier to implement

advanced scenarios but usually at the cost of raw performance.

 ZeroMQ is a lightweight message orientated socket implementation. It is

also suitable for inter-process asynchronous programming. It is faster than TCP. It

carries messages across inproc, IPC, TCP and multicast. It can connect N-to-N via

fanout, publish subscribe, pipeline and request reply. We use publish subscribe

mechanism in ZeroMQ for communicating between multiple instances of

OpenFlow controllers. ZeroMQ is a very lightweight brokerless messaging system

specially designed for high throughput/low latency scenarios. Advanced features

have to be implemented by the user by combining different features such as

sockets and devices. It certainly looks like ZeroMQ would be ideal candidate for

our needs.

Around October last year, while pondering over the best mechanism to

enable communication between multiple Ryu instances, we came across a study

conducted by Adina Mihailescu where he compares and benchmarks different

message brokers.

http://twitter.com/acm1107

Chapter 3 Our Proposal 24

Figure 3.3 Setup to benchmark different message brokers [10]

The setup used for test is described in the above diagram. Since the different

brokers were using different protocols, they have built a little Rails application

piloting a binary that was able to enqueue/dequeue items taken from a MySQL

database. The test done on different brokers with multiple message sizes and the

results are published in [10]. The message brokers that got tested and

benchmarked were ActiveMQ, RabbitMQ, HornetQ, Appollo1, QPID and

ZeroMQ. Since ZeroMQ did not have a message broker, an in-memory broker

without persistence was implemented for ZeroMQ. The details of the study are

available at [10]. The conclusion of the study was that ZeroMQ outperforms all

other messaging systems. Unless there is a need for complex broker

features, ZeroMQ is a perfect message dispatcher among processes. This study

confirmed that ZeroMQ has low latency and high throughput advantage over other

messaging systems. Because of this ZeroMQ has been used for communication

between multiple Ryu instances.

Chapter 3 Our Proposal 25

3.5 Choice of network simulator

To test the application, some mechanism is required to simulate the

OpenFlow switches and hosts. Mininet is a network emulator. It runs a collection

of end-hosts, switches, routers, and links on a single Linux kernel. It uses

lightweight virtualization to make a single system look like a complete network,

running the same kernel, system, and user code. A Mininet host behaves just like

a real machine and allows users to ssh into it. The user can start up sshd and

bridge the network to the host and run arbitrary programs, including anything that

is installed on the underlying Linux system. The programs that the users run can

send packets through what seems like a real ethernet interface, with a given link

speed and delay. Packets get processed by what looks like a real ethernet switch,

router, or middle box, with a given amount of queueing. It uses openvswitch to

simulate the switches that support OpenFlow. In fact Mininet is the de-facto

standard when it comes to OpenFlow network simulators. Mininet was used to

simulate our network.

3.6 Proposed Architecture

The following Figure 3.4 diagrammatically represents our proposed

architecture. It shows three instances of Ryu OpenFlow controller each controlling

three network switches. The network wide topology as well as other associated

information will be stored in the database server running Titan Graph database

that is backed by Cassandra key-value store.

Chapter 3 Our Proposal 26

Figure 3.4 Proposed Architecture

The OpenFlow controller instances themselves can talk to each other using

the ZeroMQ message queues. The messages queues are diagrammatically

represented using blue double directional arrows.

27

Chapter 4 Demonstration of our Architecture

4.1 Introduction

To demonstrate our scalable fault tolerant architecture we are using an L2

switch application running on Ryu OpenFlow controller. As mentioned in the

previous chapter Ryu OpenFlow controller application will store network

topology data in a graph data model. We use a very basic model where each

network element such as switch, port, device etc. are represented using a vertex.

Edges are placed between the elements where they are related, e.g. ports have an

edge to the switch that they are on and ports have edges between them if they are

connected by a link in the network.

 One thing to note is that the network is eventually consistent anyway.

Even if Ryu application tried to implement a strongly consistent data store, it

would still be behind events that are actually happening in the network. So Ryu

could think a switch is present even though in the network it has just disappeared.

In this case the application has to handle what happens when the switch goes

away. Using an eventually consistent data store does not really fundamentally

change the nature of the data. What it means is that the application has to be aware

that two different instances may have slightly different views of the data at each

point in time.

4.2 Data Modelling

To efficiently model network topology and the flow information, five

different types of vertices are used in our data modelling. This idea was borrowed

Chapter 4 Demonstration of our Architecture 28

from ONOS. The five vertices used are

1. switch

2. port

3. device

4. flow_entry

5. flow

Figure 4.1 Representation of a graphical model of a part of network topology

 In the above diagram all the boxes represents vertices. The edges are

represented by ñincoming / outgoingò arrows. The diagram shows H1 (Host 1) is

connected to Port1 of S1 (Switch 1) and H4 (Host 4) is connected to Port 1 of S4

(Switch 4). Port 2 of S1 and S4 are physically connected.

Some general rules that have been followed for data modelling are

explained below. Switches will have an ñoutgoingò edge to all its ports.

Consequently ports will have an ñincomingò edge from the switch to which it

belongs. Hosts/Devices will have an ñincomingò edge from the switch port to

which it is connected. Flow_entry will have an ñoutgoingò edge to the switch on

Chapter 4 Demonstration of our Architecture 29

which it is supposed to be installed. Consequently switches will have an

ñincomingò edge from the flow_entry.

In Figure 4.1, the links between the ports of different switching devices

falls outside the purview of the OpenFlow protocol. That information can be

obtained using Link Layer Discovery Protocol (LLDP). In the above diagram P2

on S1 will have an outgoing edge to P2 on S4. Similarly P2 on S4 will have an

outgoing edge to P2 on S1.These two edges will be labelled as ñlinkò to denote

physical link between the two switching devices.

The attributes of the vertices listed above are explained in the following

section. This will give an idea about how the above vertices are stored in the

graph database.

4.2.1 Port

The port vertex is created for each port/interface on the switches. The key

that is used to uniquely identify a port is a combination of the data path identifier

of the switch with the port number appended to it. This will help to keep the port

identifier unique across the network. In addition to the port id, the port number

and state of the port are also stored .This information is obtained from OpenFlow

Port Status message. We also store a human readable descriptive field (e.g. s1-

eth1) that helps to uniquely identify a port in the topology. This information can

be used for a human readable output if the need arises. We also use a descriptive

field called ‘type’ which for port is ‘Port’. This will help to differentiate a port

vertex from other types of vertices. The following table shows an example port

vertex with sample values.

Chapter 4 Demonstration of our Architecture 30

Table 4.1 Port vertex

4.2.2 Switch

The switch vertex as the name implies is created for each switch in the

topology. The key that is used to identify a switch is the data path identifier (dpid)

of the switch. We also store the state of the switch and the ótypeô field (in this case

óSwitchô) to identify switch vertices from other types of vertices. Below table

shows an example switch vertex with sample values.

Table 4.2 Switch vertex

4.2.3 Device

The device vertex as the name implies is created for each device. Device is

any kind of endpoint sending packets on the network. In mininet these will be the

hosts in the network. Devices are tracked based on packets observed in packet-in

messages by the controller. When the controller sees a packet-in, it records the in

port, source mac address and source IP address if it is an ARP packet. All this

information constitutes a device.

Chapter 4 Demonstration of our Architecture 31

The above three types of vertices are what can be described as

fundamental vertices. These vertices mirror the network topology of the

underlying network. We use two mere vertex types to store some additional

information that will enable us to forward packet from one host to another host via

a series of switches across the network. These vertices are created after computing

the path between the host (device) vertices on the network. Below table shows an

example device vertex with sample values.

Table 4.3 Device vertex

4.2.4 Flow

This vertex type is created after computing the path between different pairs

of source and destination hosts. We store the source and destination mac addresses

of the communicating hosts. We also store the source switch (i.e. the switch which

is connected to the source host) and destination switch (i.e. the switch which is

connected to the destination host) and the ports on those switches, source port that

is connected to the source device on the source switch and destination port on the

destination switch that is connected to the destination device. We also store the

path summary of the path that connects the source and destination devices. As in

case of other types of vertices, the type field on this type of vertices have the value

óflowô and can be used to distinguish this from other types of vertices. The flow

vertex gives a snapshot of the communication path between source and destination

hosts that communicate with each other. The following table shows an example

Chapter 4 Demonstration of our Architecture 32

flow vertex with sample values.

Table 4.4 Flow vertex

4.2.5 Flow_entry

This type of vertex is created for every flow entry that is to be

programmed into the switches. This vertex has óflow_entryô in the type field. It

stores the data path identifier (dpid) of the switch into which the flow is to be

programmed and also contains actions that is a part of the OpenFlow flow

modification message. In addition it stores the óinput portô and the óaction output

portô. We also store the óflow_entry_idô for each flow entry. Below table shows an

example flow_entry vertex with sample values.

Table 4.5 Flow_entry vertex

Chapter 4 Demonstration of our Architecture 33

4.3 Demonstrating fault tolerance and scalability

4.3.1 System setup

The basic setup used for the demonstration of scalability and fault

tolerance is described here. We have two servers (virtual machines) ñryu-primaryò

and ñryu-secondaryò running two Ryu OpenFlow controllers. Both of these

OpenFlow controllers are backed by the same Titan Graph database running on

another virtual machine. The machines ryu-primary and ryu-secondary have IP

addresses 192.169.10.1 and 192.168.10.2 respectively. As mentioned above

mininet is used to simulate the network topology. The mininet runs on the virtual

machine ñryu-primaryò. The topology used for demonstration contains six

switches and six host devices. The switches are numbered sequentially as s1, s2,

s3, s4, s5 and s6. The hosts connected to those switches are similarly numbered as

h1, h2, h3, h4, h5 and h6. The hosts have IP addresses assigned from 10.0.0.0/24

subnet with the last octet representing their host number. For e.g. h1 will have an

IP address of 10.0.0.1, h2 will have an IP address of 10.0.0.2 and so on. Network

topology used is represented below.

Figure 4.2 Representation of the network topology

On start-up all the switches in the topology connects to both Ryu OpenFlow

controllers. Even though all the switches connect to both the controllers, each

switch in the topology can elect one of the controllers as the master controller.

This is done by per switch master election using ovs-vsctl set-controller

command.

Chapter 4 Demonstration of our Architecture 34

4.3.2 Ryu simple switch application

To demonstrate scalability and fault tolerance, the simple switch

application that is bundled with Ryu controller has been taken and modified. On

switch start up the application creates port vertices and switch vertices on the

Titan Graph database. The information about switches and ports can be obtained

via the OpenFlow protocol. The connection between the switches however falls

outside the purview of the OpenFlow protocol. To understand the connection

between the switches, Link Layer Discovery Protocol (LLDP) has been used. This

was not originally a part of simple switch application. When the switches receive

a packet-in message it first creates a device vertex for the hosts that are trying to

communicate. It also implements some basic switching algorithm and creates the

flow entry and flow vertices for all the flows that it computes. The flow entry

vertices for each switch will correspond to the entries of the flow table on the

switches. When a flow entry is removed, either by the controller or by the flow

expiry mechanism in the switches, the switch will send a flow removed message

to the controller. On receiving this message the controller application will remove

the corresponding flow entry vertex and update the flow vertex in the database.

This operation is critical since the database should reflect that updated state of the

network. Another modification made to the simple switch application is the

addition of two different modes for its operation, proactive mode and reactive

mode. In reactive mode, the simple switch application responds to a packet-in

message from the switch by pushing down appropriate flow-mod messages down

to the switch. In proactive mode, the user specifies a file with ó-fô option. This file

contains the source mac addresses and the destination mac addresses of the host

devices in the network topology that the user wants to connect. It also contains

source dpid and the destination dpid of the switches to which the hosts are

Chapter 4 Demonstration of our Architecture 35

connected and the respective port numbers. For e.g. if the user wants to establish

communication between h1 and h4, h2 and h5, h3 and h6 the user will use the

following file.

Figure 4.3 Path configuration file for proactive mode

If the simple switch application is started in proactive mode, it will pre-program

the flows corresponding to the source and destination mac addresses mentioned in

the files. However it will also respond appropriately to any packet-in messages

that may be sent to the controller. The reason for modifying the application to

support proactive mode is that it is much easier to demonstrate our scalable

application in that mode. It should be mentioned that the same copy of the

application is running on all instances of Ryu controller.

4.3.3 Communication between Ryu instances

For demonstrating scalability, communication between the Ryu controller

instances needs to be established. The switches in the underlying topology can

choose either of the two controllers as its master. The application running on

either of these controllers should be agnostic of this choice. In other words each

application behaves as if it controls the entire topology. However, only the master

controller for a switch can program that switch. We provide ZeroMQ mechanism

to allow the Ryu instances to communicate among each other. This is a low

latency high throughput messaging mechanism for communication. If the Ryu

Chapter 4 Demonstration of our Architecture 36

application has messages that it wants to push down to the switches for which it is

not the master controller the message is pushed via ZeroMQ to the other controller

and that controller pushes down the messages to the corresponding switches.

4.3.4 Demonstrati on of fault tolerance

For demonstrating fault tolerance the modified simple switch application

described above has been used. We start the application on both Ryu OpenFlow

controllers as shown below

 $ ryu-manager simple_switch.py

Figure 4.4 shows that six switches in the network topology is connected to

both the Ryu OpenFlow controllers.

Figure 4.4 Network topology is controlled by two RYU controllers

Chapter 4 Demonstration of our Architecture 37

The Ryu controller running on the Virtual Machine ñryu-primaryò (IP

address - 192.168.10.1) is designated as the master controller for all the switches.

This has been shown by red lines connecting the switches to the controller. In the

initial state when the switch flow tables are empty, if a ping test is tried between

the connected pairs of hosts as shown in the network topology representation in

Figure 4.2, the switches in the data path will send a packet-in message to the

controller and the simple switch application running on the master controller will

respond by pushing down the appropriate flow modification message down to the

switches. Once the flow tables in the switches are populated by the correct flows

the connected pairs of hosts will be able to communicate with each other.

Now let us assume a scenario where the server ñryu-primaryò goes down

for some reason. This scenario is shown in Figure 4.5 below.

Figure 4.5 One instance of RYU controller takes over all the switches

Since all the six switches in the topology had designated the Ryu

controller running on ñryu-primaryò as their master, the Ryu controller running on

Chapter 4 Demonstration of our Architecture 38

ñryu-secondaryò cannot program those switches. For the Ryu controller on ñryu-

secondaryò to take over the switches in the topology the switches have to elect it

as their master. This can be done by each switch in the topology by a per switch

master election as shown in Figure 4.6. The switches are named sequentially as

s1, s2, s3, s4, s5 and s6. We can use ovs-vsctl toolôs set-controller command to

designate the Ryu controller running on ñryu-secondaryò as their master controller

as shown below.

Figure 4.6 Script to change the master controller of the switches

Once all the switches in the topology has chosen Ryu controller running on ñryu-

secondaryò as their master then the simple switch application running on ñryu-

secondaryò can control all the switches in the topology.

We can easily verify this by clearing all the contents of the flow tables in

all the switches as shown in Figure 4.7 and then trying to ping between connected

pairs of hosts.

Figure 4.7 Script to clear the flow table in the switches

If a ping test is tried between the connected pairs of hosts, then as

described above the switches in the data path will send packet-in messages to the

Chapter 4 Demonstration of our Architecture 39

Ryu controller that is the master, which is now the Ryu controller running on

ñryu-secondaryò virtual machine.

The simple switch application running on Ryu master controller in turn

will respond by pushing down the appropriate flow modification messages down

to the switches and the switches will be able to communicate between each other.

4.3.5 Demonstration of scalability

Figure 4.8 Configuration for demonstration of scalability

 The setup that was used for the demonstration of scalability is shown in

Figure 4.8. On switch start up all the switches establish connection with both the

controllers. The switches s1, s2 and s3 chooses the Ryu controller running on

ñryu-primaryò as their master controller and switches s4, s5 and s6 chooses the

Ryu controller running on ñryu-secondaryò as their master controller. For this

experiment, the modified version of Ryu simple switch application is started in

Chapter 4 Demonstration of our Architecture 40

proactive mode on one of the machines say ñryu-primaryò. On the other machine

the user can choose to run the custom simple switch application in normal mode.

$ ryu-manager simple_switch.py ïf path_file.txt

This path file contains the source and destination MAC addresses of the hosts that

needs to communicate. It also contains the data path identifiers of the switches to

which the hosts are connected as well as the ports on the switches on which the

hosts are connected. An entry in the path file will look as below.

Figure 4.9 Entry in the path configuration file

Based on this information our custom simple switch application will create

switch, port, device, flow and flow_entry vertices in the Titan Graph database. It

will also try to push down the flow modification messages to the switches based

on the flow_entry vertices it has already computed and stored in the graph

database. Now as explained above, the Ryu OpenFlow controller running on ñryu-

primaryò is the master controller for only three switches in the topology. The

other three switches are controlled by the controller running on ñryu-secondaryò.

This means that this controller can only push down flows to the switches for

which it is the master controller. The other flow mod messages will be sent to the

controller running on ñryu-secondaryò using the ZeroMQ publish subscribe

framework. On receiving the flow modification messages the custom simple

switch application on ñryu-secondaryò pushes down the messages to the

corresponding switches.

41

Chapter 5 Performance Measurements

5.1 Introduction

In this chapter, the performance of the system that we built is measured.

The application used for demonstration of scalability and fault tolerance is a

modified version of simple switch application that is packaged with Ryu source

code. We have taken that application and developed it into a database backed

scalable and fault tolerant application. It would be interesting to take the original

version of simple switch as the benchmark against which the modified application

will be compared. It has to be kept in mind that the modified version of the

application does offer a lot of features such as scalability and fault tolerance that

is not available in the original version.

5.2 Methodology

The methodology that was adopted for testing the application is as follows.

Firstly two different mininet topologies will be defined. These topologies will be

connected to Ryu OpenFlow controller. There are three different cases that have

to be considered. In the first case the Ryu OpenFlow controller will be running the

original simple switch application. In the second case Ryu OpenFlow controller

will be running our version of the simple switch application. In this case there will

be only one instance of the Ryu OpenFlow controller running. In the third and

final case the network topology will be connected to two different instances of

Ryu OpenFlow controller running our version of simple switch application. In this

case half the switches in the topology will be mastered by the first instance of Ryu

and the other half will be mastered by the other instance of Ryu controller. In all

Chapter 5 Performance Measurements 42

the six cases, i.e. two different network topologies connected against three cases

of controller application, the method used was to measure the time taken for a

simple pingall test on each of topology using time command. This does a simple

ping between all the hosts. If there are ónô hosts in the network, each host will

ping the other n-1 hosts. Once the pingall test is completed the network is fully

programmed and all the hosts in the topology will be able to talk to each other.

This test gives an accurate measure of the time taken to program the switches in

the topology. The time command has been used to measure the time taken to

complete the pingall test.

5.3 Network topologies

The first topology that will be considered is a tree topology. Mininet has

the option to create a tree topology of a specified depth, where each leaf switch

has ónô hosts connected to it. ônô is called the fanout factor. For example, to launch

mininet topology with a binary tree of depth 3, and fanout factor of 4, the

following command is used.

Figure 5.1 Creating tree topology with depth 3 and fanout 4

This topology will have a total of 64 (4 ^3 = 64) hosts in the topology.

This topology will be arranged in a tree with a depth of 3. The first level will have

a single switch. The second level will have 4 switches and the third level will have

16 switches bringing the total number of switches to 21.

Chapter 5 Performance Measurements 43

The second topology that will be considered is a linear topology. The

topology contains 32 switches and 32 hosts, one hosts connected to each switch.

The switches are connected in a linear fashion. To launch this mininet topology,

the following command is used.

Figure 5.2 Creating linear topology with 32 switches

5.4 Results

Table 5.1 Performance measurements

 As it can be seen from Table 5.1, the custom version of simple

switch does incur some cost during the flow programming phase. This is because

of additional overhead due to creating device, flow and flow_entry vertices in

Titan Graph database. In the demonstration setup, the Titan Graph database is run

on the same virtual machine as the primary Ryu controller. The creation of

vertices and edges on the Titan Graph database is a blocking call. Let us consider

creating two vertices and an edge connecting those vertices as the basic unit of

operation in a graph database. Time taken for that operation was measured using

the time command. The values obtained are shown in Figure 5.3

Figure 5.3 Time measured for creating two vertices and one edge

Chapter 5 Performance Measurements 44

The total amount of CPU time comes to about 0.056 seconds. The rest of the time

(1.598 seconds) is spent by the process in a blocked state. This can be speeded up

significantly if the database is moved to a dedicated database server. Also the

bulbs interface is used to create vertices and edges in the application. This method

is described in Figure 3.2. It can be seen that the method has three function calls

which in turn are translated to three REST API calls to the Rexster server. The

three function call can be reduced to a single call by using a parametrized Gremlin

script. This approach has been known to improve the performance time due to the

following reasons. There would be a single REST API call instead of three. A

batched transaction of three inserts with a single commit instead of three commits

in the above case. The parameterized script would be compiled and thus cached.

This is important as compiling is quite expensive. The difference in the

programming time between our simple switch running on one Ryu instance and

the one running on two Ryu instances can be explained by the latency incurred in

pushing out flow modification messages across different Ryu instances via

ZeroMQ. Considering that our architecture brings the double advantage of

scalability as well as fault tolerance to the system, the overhead incurred by our

version of simple switch can be justified.

45

Chapter 6 Future Improvements

6.1 Introduction

While investigating different open source OpenFlow controllers, it was

realized that there was not a single open source OpenFlow controller available at

that time, which was database backed having features like scalability and fault

tolerance. This led to the idea of designing and building a database backed open

source controller that is scalable and fault tolerant. It has to be noted that, ONOS,

which is a database backed scalable and fault tolerant open source OpenFlow

controller was not officially released until December 2014. By this time, the

majority of work related to this project was complete. This project also uses an

existing controller that is popular for prototyping OpenFlow applications, rather

than create a new one as ONOS has. The study was done on several related works

on scalable and fault tolerant controllers. The works that were investigated include

Onix, ONOS and HyperFlow. After understanding the existing work that has been

done, the decision to design and build our own version of a database backed

scalable and fault tolerant OpenFlow controller was taken.

This project was implemented entirely using open source tools and

libraries. The details of the tools and libraries used are furnished in the following

table.

Table 6.1 Open source tools and libraries used

Chapter 6 Future Improvements 46

Using the software mentioned in Table 6.1, a database backed scalable and

fault tolerant OpenFlow controller was built. To demonstrate that the design is

both scalable and fault tolerant, custom developed version of L2 switch

application was used. After demonstrating the features of the design, the decision

was made to do some performance measurements of the designed controller (both

single node and multi node versions) connected to different network topologies.

The benchmark used for the comparison was the performance of original L2

switch application that is shipped with Ryu OpenFlow controller.

In the following sections, some suggestion for future improvements and a

roadmap that this project should take are presented.

6.2 Separation of Topology Discovery

 In the current implementation, topology discovery and creating the

topology graph of the network elements is clubbed with the Layer 2 switching

application. Ideally this functionality alone should have been a separate

application. If that is the case, then the network graph building application can be

run along with Layer 2 switching application or in conjunction with any other

application.

6.3 Web Interface for Network Topology

 Since the Titan Graph DB builds the network topology graph it would

be nice if the user can see a visual representation of the same. It would be nice to

use the d3 Java Script library for the graphical representation and then serve the

web pages using Django framework. Another alternative would be to use

KeyLines, which is a fully-featured Software Development Kit for building graph

Chapter 6 Future Improvements 47

visualization software.

6.4 Rest API for switch to controller mapping

Since the mapping of switches to controllers are dynamic and can change,

it would be nice to expose a REST API that the user can use to know the current

switch to controller mapping. It would display the list of controllers and the

switches that are controlled by the controller.

6.5 Coordination for distributed systems

Zookeeper is a coordination system for distributed systems. It is

commonly used to implement coordination mechanisms such as locks and leader

elections. We can use it to manage the assignment of switches to controllers. Our

fault tolerance model as described in chapter 4, allows a switch to connect to

multiple RYU instances, and the instances have to work out amongst themselves

which one is the master controller for that switch. This coordination is

implemented using a leader election in Zookeeper. When a switch connects to a

set of controllers, each of the controllers will contend in the leader election to try

and take control of the switch. One instance will become the leader and will

become master for the switch. If the master instance dies, Zookeeper can detect

this and leadership will be assigned to one of the other instances.

6.6 Replication of Cassandra nodes

The current architecture has only a single instance of Cassandra. This

exposes a single point of failure. Since one of the main drivers of the architecture

is to make the system fault tolerant, the Cassandra can be configured to be a multi

Chapter 6 Future Improvements 48

node cluster. During the initial design phase focus was not given for this particular

issue since this issue is already known and has a well-documented solution. Now

that the basic architecture, that provides scalability and fault tolerance has been

implemented it would make sense to implement this feature for the sake of

completeness.

49

References

1. Software-Defined Networking: The New Norm for Networks. Available

at: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/white-papers/wp-sdn-newnorm.pdf

2. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,

Rexford, J., Shenker, S., Turner, J. (2008). OpenFlow: enabling innovation

in campus networks. SIGCOMM Comput. Commun. Rev., 38 (2), 69ï74.

3. OpenFlow Switch Specification v1.3.1. Available

at:https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf

4. Volkan Yazēcē1, M. Oĵuz Sunay1, Ali ¥. Ercan1. Controlling a Software-

Defined Network via Distributed Controllers

5. B. Ban, ñDesign and Implementation of a Reliable Group Communication

Toolkit for Kava,ò

6. Amin Tootoonchian, Yashar Ganjali HyperFlow: A Distributed Control

Plane for OpenFlow

7. Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon

Poutievskiy,Min Zhuy, Rajiv Ramanathan, Yuichiro Iwataz, Hiroaki

Inouez, Takayuki Hamaz, Scott Shenker. Onix: A Distributed Control

Platform for Large- scale Production Networks

8. Pankaj Berde†, Matteo Gerola‡, Jonathan Hart†, Yuta

Higuchi§,Masayoshi Kobayashi§, Toshio Koide§, Bob Lantz†, Brian

OôConnor†, Pavlin Radoslavov†, William Snow†, Guru Parulkar†. ONOS:

Towards an Open, Distributed SDN OS

9. http://www.amqp.org/sites/amqp.org/files/amqp.pdf

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
http://www.amqp.org/sites/amqp.org/files/amqp.pdf

References 50

10. http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-

activemq-rabbitmq-hornetq-qpid-apollo/

http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/
http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter 1 Software Defined Networking
	1.1 Introduction
	1.2 Software Defined Networking
	1.3 Architecture of Software Defined Networks
	1.4 The OpenFlow protocol
	1.4.1 Types of OpenFlow messages
	1.4.2 Connection establishment between switch and the OpenFlow controller
	1.4.3 The OpenFlow table

	Chapter 2 Related Work
	2.1 Introduction
	2.2 Distributed OpenFlow controller using co-ordination framework
	2.3 HyperFlow – A distributed control plane for OpenFlow
	2.4 Onix: A Distributed Control Platform for Large-scale Production Networks
	2.5 ONOS – A database backed distributed OpenFlow controller

	Chapter 3 Our Proposal
	3.1 Introduction
	3.2 Choice of database
	3.3 Choice of OpenFlow controller
	3.4 Choice of publish subscribe framework
	3.5 Choice of network simulator
	3.6 Proposed Architecture

	Chapter 4 Demonstration of our Architecture
	4.1 Introduction
	4.2 Data Modelling
	4.2.1 Port
	4.2.2 Switch
	4.2.3 Device
	4.2.4 Flow
	4.2.5 Flow_entry

	4.3 Demonstrating fault tolerance and scalability
	4.3.1 System setup
	4.3.2 Ryu simple switch application
	4.3.3 Communication between Ryu instances
	4.3.4 Demonstration of fault tolerance
	4.3.5 Demonstration of scalability

	Chapter 5 Performance Measurements
	5.1 Introduction
	5.2 Methodology
	5.3 Network topologies
	5.4 Results

	Chapter 6 Future Improvements
	6.1 Introduction
	6.2 Separation of Topology Discovery
	6.3 Web Interface for Network Topology
	6.4 Rest API for switch to controller mapping
	6.5 Coordination for distributed systems
	6.6 Replication of Cassandra nodes

	References

