The role of halloysite morphology on undrained shear strength and sensitivity of volcanic ashes in New Zealand

Kluger, M.O.¹ Seibel, D.¹ Moon, V.² Kreiter, S.¹ Hepp, D.A.¹ De Lange, W.² Jorot, E.³ Mörz, T.¹

¹ Marine Center of Environmental Science, University of Bremen, Germany
² Department of Earth and Ocean Sciences, University of Waikato, New Zealand
³ School of Civil Engineering & Geosciences, Newcastle University, United Kingdom

Introduction

Large areas of the North Island of New Zealand are covered by thick Pleistocene pyroclastic deposits that are often prone to coastal landslides. In the Tauranga region (Fig. 1a) some landslides are associated with the Pahoa Tephras, a sequence of highly weathered sensitive rhyolitic ashes containing high amounts of the clay mineral halloysite (Moon et al., 2013, 2015). Halloysite is a phyllosilicate that forms under Si-rich conditions and exhibits different morphologies, with tubes, plates, spheres, and spheroids being the most prominent (Joussen et al., 2005). In 1979, a major landslide occurred at Bramley Drive, Omokoroa. It has since reactivated in 2011 and 2012 (Fig. 1b). The slide plane most likely involves a weathered highly sensitive silt layer at around 23 m depth with a high concentration of halloysite (Staiborn, 2015), that is composed almost entirely of spheres (Smalley et al., 1980). Previously, the effect of halloysite morphologies on sensitivity has only been studied on single outcrop samples (Jacquet, 1990, Cunningham, 2012). No systematic correlation of halloysite morphologies with soil sensitivity has yet been conducted along depth profiles. Therefore, in this study an entire sediment core from the Bramley Drive landslide is analyzed to quantify the effect of halloysite morphology and particle size on sensitivity, respectively.

Methods

The sensitivity \(S = \frac{s_s}{s_f} \) was measured in 24 depths of core Omokoroa (Fig. 1a) by laboratory vane shear (Genske, 2006) in undisturbed (\(s_f \)) and remolded (\(s_s \)) material. Remolding was achieved by putting the sample in a plastic bag and shearing it for 10 minutes (Jacquet, 1990). From some depths samples were collected for X-ray diffraction (XRD) and Scanning Electron Microscopic (SEM) analyses. XRD tests were performed by Bastian Staiborn at Waikato University, New Zealand. XRD-quantifications were undertaken afterwards by Dr. Christoph Vogt at the University of Bremen, Germany, using QUAX (Vogt et al., 2002). SEM-samples were shock-frozen in liquid nitrogen and freeze-dried to preserve the nanostructure of halloysite matrix (Reed, 2005). From SEM-photographs the fraction of the different halloysite morphologies were quantified using point counting (Webel, 1999).

Results

The Pahoa Tephras are characterized by high halloysite concentration of up to 40 wt.% (Fig. 2b). The relative amount of halloysite tubes decreases with depth, while halloysite spheres increase in abundance until a highly sensitive silt at 23 m where they predominate (Fig. 2c,d). In this interval the particle size of spheres reaches its maximum (Fig. 2e). Cross plots point out that sensitivity arises from low concentration of tubes and high amount of spheres, respectively (Fig. 4a). The sensitivity highly depends on the remolded shear strength whereas it shows no correlation with undisturbed shear strength (Fig. 4b).

Conclusion

- The Pahoa Tephras have a consistently high halloysite concentration.
- The morphological composition of halloysite has strong influence on soil sensitivity (Fig.3).
- The high sensitivity correlates with a combination of low tube and high sphere concentration.
- The sensitivity arises from low remolded shear strength rather than high undisturbed strength.
- The diameter of halloysite spheres increases with sensitivity. An influence of tube length, however, was not observed.