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Abstract. Suppose E is an elliptic curve over �, and p > 3 is a split multiplicative
prime for E. Let q �= p be an auxiliary prime, and fix an integer m coprime to pq. We
prove the generalised Mazur–Tate–Teitelbaum conjecture for E at the prime p, over
number fields K ⊂ �

(
μq∞ , q∞√

m
)

such that p remains inert in K ∩ �(μq∞ )+. The proof
makes use of an improved p-adic L-function, which can be associated to the Rankin
convolution of two Hilbert modular forms of unequal parallel weight.
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1. Introduction. Let E denote a modular elliptic curve defined over the rationals
of conductor NE . The behaviour of its Hasse–Weil L-function L(E, s) at s = 1 is
a fundamental topic in modern number theory. Thanks to the efforts of Birch
and Swinnerton-Dyer, there are some deep conjectures describing both the order
of vanishing at s = 1 for these L-functions, and also a detailed formula predicting
their leading terms. Despite much strong progress over the last thirty years, the
original conjectures themselves remain unproven (except for curves whose analytic rank
is ≤ 1).

Assume p is a prime number. We fix once and for all embeddings τp : � ↪→ �p

and τ∞ : � ↪→ �, which enable us to view L-values both p-adically and over �. In an
attempt to understand these questions from a non-Archimedean standpoint, Mazur et
al. [13, 21] constructed p-adic avatars of the classical complex L-series. For almost all
primes, the order of vanishing of the p-adic L seems to agree with that of its complex
cousin. However, in 1986, Mazur, Tate and Teitelbaum [14] discovered if p is a prime of
split multiplicative reduction, the p-adic avatar vanishes at s = 1 regardless of how the
classical L-function behaves there. Based on extensive calculation, they conjectured
a derivative formula at s = 1, involving a mysterious L-invariant term defined via
Iwasawa’s logarithm (normalised so that logp(p) = 0).

Throughout we suppose E has split multiplicative reduction at a prime p �= 2. As
a local G�p -module, the elliptic curve admits the rigid-analytic parametrisation

E
(
�p

) ∼= �
×
p

/
q�

E,p where qE,p ∈ �×
p denotes the Tate period of E.

From the above discussion, the p-adic L-function for E over � has a trivial zero
caused by the vanishing of the p-Euler factor

(
1 − ap(E)−1

)
whenever ap(E) = +1.

Greenberg and Stevens [7, Theorem 1.3] managed to prove the derivative formula at
the central point s = 1 through an ingenious application of Hida theory [8–10].
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In 2009, Mok [15, Theorem 1.1] extended the method to include totally real fields
F , provided E has split multiplicative reduction at only a single place of F above p.
Recently, Spieß [19, Theorem 5.10] has further developed work on the totally real case,
and can now remove Mok’s restriction that the elliptic curve be split multiplicative at
only a single place.

In this paper, we treat a complementary scenario to those considered in [7,15,19].
The main goal is to establish a higher derivative formula for the p-adic L-function over
number fields which are not totally real, yet lie in a false Tate curve extension. One now
fixes an auxiliary prime number q �= p, and a q-power free integer m > 1.

Here, we will prove the exceptional zero conjecture over Ln = �
(
μqn ,q

n√
m
)
.

In particular, these are non-abelian field extensions of �, whose Galois group is
isomorphic to (�/qn�) � (�/qn�)×. Let us also set Kn = �(μqn ) and Fn = Kn ∩ �.
One imposes the following four hypotheses on p, q,m, n and E:

(1.1.1) E is semistable over the extension F1 = �(μq)+;
(1.1.2) E/F1 has good reduction at the prime above q;
(1.1.3) the positive integer m is coprime to q · NE ;
(1.1.4) the prime number p remains inert in �[μqn ] ∩ �.

We will first attach a p-adic L-function to E over the number field �
(
μqn , qn√

m
)

by
using the factorisation of L(E/Ln, s) into a product of its various Artin twists. For each
finite order character φ : �×

p −→ �×, one considers a multiplier term

Mp(Ln, φ) :=
∏
ρ

(
ε-factor of ρ ⊗ φ

)m(ρ)
, (see Definition 6.7)

where the product ranges over all the irreducible representations ρ of Gal(Ln/�), and
m(ρ) counts the total number of copies of ρ inside the regular representation. (If φ is
trivial then Mp(Ln, 1) is just the square root of the discriminant.)

THEOREM 1.1. There exists a bounded measure dμ(p)
E/Ln

defined on �×
p , interpolating

∫
x∈�×

p

φ(x) · dμ(p)
E/Ln

(x) = Mp(Ln, φ) × L
(
E/Ln, φ

−1, 1
)(

�+
E�

−
E

)[Ln:�]/2

at almost all finite order characters φ �= 1, whilst
∫

x∈�×
p

dμ(p)
E/Ln

(x) = 0 when φ = 1.

Here, the transcendental numbers�±
E denote real/imaginary Néron periods for E. The

analytic p-adic L-function is constructed via the Mazur–Mellin transform

Lp
(
E/Ln, s

)
:=

∫
x∈�×

p

exp
(
(s − 1) log x

) · dμ(p)
E/Ln

(x)

and clearly vanishes at the point s = 1 because μ(p)
E/Ln

(�×
p ) = 0. The purpose of this

article, therefore, is to recover as much of this missing L-value as possible.
Let ep = ep(Ln) denote the number of places for �

(
μqn , qn√

m
)

lying above p. Since
the prime p was assumed to be inert in the totally real subfield Fn = Kn ∩ �, the positive
integer ep(Ln) must divide into the index [Ln : Fn] = 2 × qn; henceforth, we shall denote
by qn0 the largest power of q dividing ep(Ln).
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THEOREM 1.2. Under these hypotheses, orders=1
(
Lp(E/Ln, s)

) ≥ ep(Ln) .

If �Ln/� is the regular representation for Gal(Ln/�), it will be shown later that∏n0
t=0

(
1 − X [Ft:�]

)[Kt:�]
divides the characteristic polynomial of �Ln/�

(
Frob−1

p

)
. Thus,

one can replace the characteristic polynomial by

Ep
(
�Ln/�,X

)
:= det

(
1 − X ·�Ln/�

(
Frob−1

p

)) ×
n0∏

t=0

(
1 − X [Ft:�])−[Kt:�]

which again has rational integer coefficients, yet is always non-zero at X = 1.
THEOREM 1.3. If p ≥ 5 remains inert in Kn, there is an exceptional zero formula

1
ep!

· dep Lp
(
E/Ln, s

)
dsep

∣∣∣∣∣
s=1

= Lp(E/Ln) × Ep
(
�Ln/�, 1

) ×
√

disc(Ln) · L
(
E/Ln, 1

)(
�+

E�
−
E

)[Ln:�]/2

where the L-invariant equals
∏n0

t=1[Ft : �](q−1)qt−1× (
logp(qE,p)
ordp(qE,p) )

ep.

This definition of Lp(E/Ln) above is compatible with those proposed in [12, 15].
Furthermore, the quantity logp(qE,p) �= 0 by the main result of [1] hence theL-invariant
term is non-vanishing. We therefore directly obtain the following:

COROLLARY 1.4. Assuming p ≥ 5 remains inert in Kn, one deduces that
(a) If L

(
E/Ln, 1

) = 0 then orders=1
(
Lp(E/Ln, s)

)
> ep(Ln);

(b) If L
(
E/Ln, 1

) �= 0, then orders=1
(
Lp(E/Ln, s)

) = ep(Ln).

We conjecture analogues of Theorem 1.3 and Corollary 1.4 hold if p splits in Kn/Fn,
but are unable to prove it with the deformation techniques presented in this paper.
(The author hopes to return to the situation where p splits in future work.)

REMARKS.
(a) It is natural to ask if these formulae over Ln = �

(
μqn , qn√

m
)

can be derived
from the existing results of Mok and Spieß? The answer is negative as the largest
real subfield inside Ln is precisely Fn = �(μqn )+, and the number field Fn( qn√

m)
will never be totally real (nor is it even Galois over �).

(b) While throughout one has assumed that q �= p, the situation where q = p has
been addressed by Lei and the author in [4]. The p-adic L-functions constructed
in [4, Theorems 1 and 4] also exhibit exceptional zeroes, and moreover satisfy
various p-power congruences predicted by a non-commutative Iwasawa Main
Conjecture.

(c) A worthwhile project would be to extend Theorem 1.3 to establish a derivative
formula in the q = p situation, then verify the p-power congruences numerically.

These derivative formulae are built out of a more technical result, which holds for the
Artin twists of an elliptic curve E that is semistable over a totally real field F in which
the prime p is inert. Let K/F denote a CM extension of number fields, and define
ρ := IndF

K (	) for some non-cyclotomic character 	/K such that ρ∗ ∼= ρ. One writes
εF (ρ) to indicate the ε-factor associated to the Artin representation ρ, which itself can
be decomposed into a product of local terms.

The work of Hida and Panchiskin [8, 16, 17] on Rankin convolutions allows the
construction of a p-adic L-function, Lp(E, ρ, s), interpolating cyclotomic φ-twists of
the complex L-series associated to the motive h1(E) ⊗ Ind�

K (	).
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THEOREM 1.5. Assuming the p-adic L-function has an exceptional zero at s = 1,

dLp(E, ρ, s)
ds

∣∣∣∣
s=1

= −2 · εF (ρ) · dαp(k)
dk

∣∣∣∣
k=2

× (
1 − βp(ρ)

) · L(E, ρ, 1)(
�+

E�
−
E

)[F :�]
,

where the ideal p = p · OF , the local L-factor at p is Lp(ρ,X) = (1 − X)
(
1 − βp(ρ)X

)
,

and αp(k) denotes the pth eigenvalue (at weight k) of the Hida family lifting E/F .

This formula gives a ρ-twisted generalisation of the results in [7,15,19] over real number
fields (a more detailed version is stated as Theorem 6.2 later in the article).

EXAMPLE 1.6. We now study in detail the modular elliptic curve

E = 525B1 : y2 + xy = x3 + x2 + 25x

with split multiplicative reduction at 7, non-split multiplicative reduction at 3, and
potential good reduction at 5. Let E† = E ⊗ (−

5 ) denote the twist of E by the quadratic
character of conductor 5, which has a minimal Weierstrass equation

E† = 21A4 : y2 + xy = x3 + x.

Put q = 5, m = 2, n = 1 and consider the non-abelian extension L1 = �
(
μ5,

5
√

2
)
.

The prime p = 7 remains inert in K = �(μ5), and over the real subfield F = �(μ5)+

the twisted curve E† also has split multiplicative reduction at the prime above 7. The
Hasse–Weil L-function for E over L1 decomposes into a product

L
(
E/L1, s

) = L(E, s) × L(E†, s) × L(E ⊗ θ5, s) × L(E† ⊗ θ5, s) ×
(

L
(
E, ρ, s

))4

where θ5 denotes the Teichmüller character modulo 5, and ρ indicates the unique
irreducible Artin representation of degree 4 factoring through L1/�.

Since E ∼= E† over all three number fields F,K,L1 clearly E satisfies each of the
Hypotheses (1.1.1)–(1.1.4) mentioned at the beginning of the Introduction. Moreover,
the ideal 7 · OK splits completely inside L1/K , so applying Theorem 1.3

1
5!

· d5L7
(
E/L1, s

)
ds5

∣∣∣∣∣
s=1

= L7(E/L1) × E7
(
�L1/�, 1

) ×
√

disc(L1) · L
(
E/L1, 1

)(
�+

E�
−
E

)10 ,

where disc(L1) = 216 · 523 and L7(E) = 24
(

log7(qE,7)
ord7(qE,7)

)5
= 16

(
4 × 7 + 4 × 72 + . . . )5

.

Using the MAGMA package, the LSeries function determines numerically that

L(E/K, 1) = 2.12709564136 . . . and L(E, ρ, 1) = 1.70167651313 . . .

in which case L
(
E/L1, 1

) �= 0. By Corollary 1.4(b), the orders=1L7
(
E/L1, s

) = 5.
Here is a brief plan of the paper. We begin by recalling the theory of p-adic families

of Hilbert modular forms, and their behaviour at classical points in weight space. In
Section 3, we construct a �-adic HMF interpolating the product of a weight (l, . . . , l)
cusp form gl with an Eisenstein series of variable weight. After working out its fk-
isotypic projection, one can associate an improved p-adic L-function in Section 4 which
is the natural generalisation of [7, Proposition 5.8] to Rankin convolution L-functions
(the existence of such functions over general number fields was raised in [3, 4.17]).
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Finally, in Sections 5 and 6, we extend this construction to a two-variable deformation
ring. The exceptional zero formula follows from a functional equation for the measure
interpolating L

(
fk, g1, s

)
at pairs (k, s), where k ∈ �≥2 and s ∈ {1, . . . , k − 1}.

2. Preliminaries on Hilbert modular forms. We start by collecting together the
various definitions needed from the theory of Hilbert modular forms (HMFs for
short). Our approach requires us to construct measures on �×

p × �p, whose values lie
inside deformations of these vector spaces. The main sources of reference are [16–18]
and for the p-adic theory [9, 10, 22].

2.1. Modular forms over totally real fields. Let F be a totally real field of degree
n = [F : �], and write d for it’s different. One may then interpret GL2(F) as a group
G� of rational points for an associated �-subgroup inside GL2n(�). Its adèlisation G�

corresponds to the product

GL2(�F ) = GL2(�)n × GL2(F̂) where F̂ := F ⊗ (
lim←−

m

�/m�
)
.

The subgroup GL+
2 (�)n comprising vectors v = (

v1, . . . , vn
)

with vj = ( αj βj

γj δj
) and

αjδj > βjγj for all j ≤ n, acts naturally on n-copies of the upper half-plane H. If i =
(i, . . . , i), there is an isomorphism

{
v ∈ GL+

2 (�)n
∣∣ v · i = i

} /
�n

+ ∼= SO(2)n and this
quotient is maximally compact within GL2(�)n

/
�n

+.

REMARKS.
(a) For any element v ∈ GL+

2 (�)n and function f : Hn −→ �,(
f
∣∣
kv

)
(z) := N

(
γjzj + δj

)−k × f (v · z) · N (
det(v)

)k/2
at integers k > 0

where the norm of an n-tuple z = (z1, . . . , zn) is given by N (z) = z1 × · · · × zn.
(b) Let c be an ideal ofOF ; one has localisations cp = c · OF,p and dp = d · OF,p. We

define open subgroups Wc ⊂ G� by the product Wc := GL+
2 (�)n × ∏

p W (p),
with each local factor consisting of matrices

W (p)

=
{(

a b
c d

)
∈ GL2(Fp)

∣∣∣∣ b ∈ d−1
p , c ∈ dpcp, a, d ∈ OF,p, ad − bc ∈ O×

F,p

}
.

(c) If ĥF = #Clnw(OF ) denotes the narrow class number of F , one can always
choose ideles t1, . . . , tĥF

∈ �×
F so that their associated OF -ideals t̃1, . . . , t̃ĥF

form
a complete set of representatives for Clnw(OF ). By the approximation theorem

G� =
⋃
λ

G� · xλ · Wc =
⋃
λ

G� · (x−1
λ

)ι · Wc,

where the elements xλ = ( 1 0
0 tλ

), and the involution ι : ( a b
c d

) �→ ( d −b
−c a

).

DEFINITION 2.1. Fix a weight k > 0, an ideal c, and a Hecke character ψ mod c.
Then, a Hilbert automorphic form f : G� −→ � of parallel weight (k, . . . , k), level c

and character ψ satisfies:
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(i) f(sgx) = ψ(s) · f(x) for all x ∈ G�, s ∈ �×
F and g ∈ G�;

(ii) f(xw) = ψ(wι) · f(x) for every w ∈ Wc with w∞ = 1;

(iii) f
(
xr(θ )

) = f(x) · exp
(
ik{θ}) where r(θ ) = (. . . , ( cos θj sin θj

− sin θj cos θj
), . . . ).

DEFINITION 2.2. An automorphic form f : G� −→ � is cuspidal provided∫
�F/F

f
((

1 t
0 1

)
· g

)
· dt = 0 at each element g ∈ G�.

If f satisfies the condition that for any x ∈ G� with Archimedean component x∞ = 1,
there exists hx : Hn −→ � such that f(xy) = (

hx
∣∣
kv

)
(i) for all vectors v ∈ GL+

2 (�)n

with each hx holomorphic at the cusps, then f is called a Hilbert modular form of
holomorphic type.

REMARK. One writes Mk(c, ψ) to denote the space of HMFs of holomorphic type, and
similarly the notation Sk(c, ψ) indicates the vector subspace of cusp forms. Setting fλ =
h(x−1

λ )ι , then fλ(z) ∈ Mk(�λ(c), ψ), where at each λ ∈ {1, . . . , ĥF } one defines �λ(c) :=
xλ · W (c) · (x−1

λ )ι ∩ G� to be the congruence modular subgroup of level c (lying inside
the �-group G

+
� consisting of totally positive matrices).

The map f �→ (
f1, . . . , fĥF

)
yields an isomorphism Mk(c, ψ) ∼= ⊕

λMk
(
�λ(c), ψ

)
.

Consequently for all γ ∈ �λ(c), one has fλ
∣∣
kγ = ψ(γ )fλ, and moreover

fλ(z) =
∑
ξ

aλ(ξ )eF (ξz) with eF (z) := exp
(
2π iTr(z)

)
,

the sum being taken over the totally positive elements ξ � 0 and also ξ = 0.
Normalising the standard additive character χF : �F → �× by χF (x∞) = eF (x∞), then
the adèlic expansion

f
((

y x
0 1

))
= ∣∣y∣∣k/2

�F
×

∑
ξ�0

C
(
ξyOF , f

)
χF

(
ξx

)
eF

(
ξ iy∞

) + ∣∣y∣∣k/2
�F

C0
(
yOF , f

)
has Fourier coefficients

C(n, f) =
{

aλ(ξ ) · NF/� (̃tλ)−k/2 if n = ξ̃ t−1
λ is integral,

0 otherwise.

In particular, if f ∈ Sk(c, ψ) then the constant term C0
(
yOF , f

)
is identically zero.

Fix a Hilbert modular form f ∈ Mk(c, ψ), and also an auxiliary OF -ideal q.
Throughout, ψ∗ will denote the ideal character associated to ψ (although for reasons
of space, we shall sometimes drop the ∗ superscript, provided the context is clear).

DEFINITION 2.3.
(i) The Hecke operator Uq ∈ End�

(
Mk(c, ψ)

)
is defined to be

f(x)
∣∣∣Uq = NF/�(q)k/2−1

∑
v∈OF/q

f
(

x
(

1 v

0 q

))
with q ∈ �×

F satisfying q̃ = q.
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(ii) The degeneracy map Vq : Mk(c, ψ) → Mk(cq, ψ) is given by

f(x)
∣∣∣Vq = NF/�(q)−k/2 × f

(
x
(

q 0
0 1

))
where once again q̃ = q.

The action of Uq and Vq on the Fourier coefficients of f is explicitly described by the
twin formulae C

(
n, f

∣∣Uq

) = C(qn, f) and C
(
n, f

∣∣Vq

) = C(q−1n, f), respectively. More
generally, one has Hecke operators T ′

c(q) ∈ End�

(
Mk(c, ψ)

)
which act on each of the

coefficients through C
(
n, f

∣∣T ′
c(q)

) = ∑
q+n⊂b NF/�(b)k−1 · ψ∗(b) · C

(
b−2qn, f

)
.

We adopt the convention that ‘n(f)’ always refers to the exact conductor of f.
Assuming that c ⊂ n(f), Shimura’s J-operator [18, Section 2] is obtained via the rule

(
f
∣∣Jc

)
(x) = ψ

(
det(x)−1) · f

(
xb0

)
such that b0 = ( 0 1

c0 0
) ∈ G�̂ with c̃0 = cd2.

It has the property that f
∣∣Jc ∈ Mk

(
c, ψ−1

)
. Furthermore, if f is a primitive Hecke

eigenform of level c = n(f), then f
∣∣Jn(f) = � (f) × f# where f# denotes the eigenform

with conjugate coefficients, and the pseudo-eigenvalue � (f) has absolute value one.

EXAMPLE 2.4. Let η be a finite order character over F of conductor equal to mη.
Then, its associated Gauss sum is given by

τF (η) =
∑

x∈m−1
η d−1

/
d−1

sign
(
η(x∞)

) · η∗(xmηd
) · eF (x).

The twist of f by η is the unique Hilbert modular form f ⊗ η ∈ Mk
(
cm2

η, ψη
2
)

satisfying
C
(
n, f ⊗ η

) = η∗(n) · C
(
n, f

)
at all ideals n with n + c = OF .

Moreover, if f ∈ Sk(c, ψ) is a primitive cusp form of conductor c coprime to mη

then f ⊗ η will also be a primitive HMF of conductor cm2
η, in which case

f ⊗ η

∣∣∣Jcm2
η

= � (f ⊗ η) × (
f# ⊗ η−1) ∈ Sk

(
cm2

η, ψ
−1η−2)

with twisted pseudo-eigenvalue�
(
f ⊗ η

) = ψ∗(mη) η∗(c) · τF (η)2 NF/�(mη)−1 ×� (f).

2.2. Klingen–Eisenstein series and their holomorphic projection. We shall now
relax the condition that these Hilbert modular forms be holomorphic. One writes
M∞

k

(
c, ψ

)
(resp. S∞

k

(
c, ψ

)
) to denote the space of C∞-modular forms (resp. the

subspace of cusp forms) of weight (k, . . . , k), level c and character ψ .
A plentiful supply of real-analytic modular forms is given by Eisenstein series.

Fix a positive integer m, and also two fractional ideals a, b. Let η denote any Hecke
character modulo e satisfying η∗(x · OF

) = signN (x)m for all x ≡ 1 mod×e. Providing
that Re(s) > 2 − m, one then defines

�q
m

(
z, s ; a, b ; η

)
:= (2π i)−{q} · (z − z)−q

×
∑
c,d

signN (d)mη∗(db−1)
(

cz + d
cz + d

)q

N (cz + d)−m
∣∣∣N (cz + d)

∣∣∣−2s

∞
,
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where q = (q1, . . . , qn) ∈ �n, {q} = q1 + . . . qn, and the sum is over representatives
(c, d) ∈ a × b under the equivalence (c, d) ∼ (uc, ud) with u ∈ O×

F . In a similar way,

�q
m

(
z, s ; a, b ; η

)
:= (2π i)−{q} · (z − z)−q

×
∑
c,d

signN (c)mη∗(ca−1)
(

cz + d
cz + d

)q

N (cz + d)−m
∣∣∣N (cz + d)

∣∣∣−2s

∞
.

Both �
q
m and �

q
m extend naturally to yield C∞-functions on the adelisation of

GL2, first by putting �
q
m
(
s ; a, b ; η

)
λ
(z) = N (̃tλ)s+m/2 · N (y)s × �

q
m
(
z, s ; t̃λda, b ; η

)
and secondly �

q
m
(
s ; a, b ; η

)
λ
(z) = N (̃tλ)−s−m/2 · N (y)s × �

q
m
(
z, s ; a, t̃−1

λ d−1b ; η
)
.

LEMMA 2.5 ([18, p 672]). If �q
m(z, s) = π−nsym+s ∏n

ν=1 �(s + m + qν), then

�q
m(z, 1 − m − s) · �q

m

(
1 − m − s; a, b; η

)
= τF (η) · N (

dabe
)m+2s−1 ×�q

m(z, s) · �q
m

(
s; a, be; η−1).

As a corollary, the definition of the J-operator yields the functional equation

�q
m

(
s; a, b; η

)∣∣∣Jq = (−1)m[F :�] · N (qd2)−s−m/2 × �q
m

(
s; b, aq−1; η

)
.

Write DF = N (d) for the discriminant of the real field F , and suppose that e �= OF .

PROPOSITION 2.6 ([17, Proposition 4.2]). Assuming s ∈ � satisfies s ≤ qν at every
ν,

�q
m

(
z, 0; OF , t̃−1

λ d−1; η
)

= (−2π i)[F :�](m+2s)(−1)[F :�]s+{q}
√

DF · N (̃tλ)
∏
ν �(s + m + qν)

× (4πy)−q
∑

0�ξ ∈̃tλ

Aλ(ξ, s, y, η) eF (ξz),

where each real-analytic Fourier coefficient Aλ(ξ, s, y, η) equals

∑
ξ̃=̃b×̃c,

b∈̃tλ, c∈OF

signN (̃b)m−1 · N (̃b)m+2s−1 · η∗ (̃c) ×
[F :�]∏
ν=1

W
(
4πξνyν,m + s + qν, s − qν

)

and the Whittaker function W (y, α, β) :=
∫ ∞

0
(u + 1)α−1uβ−1e−yudu.

The presence of this unpleasant quotient in the Fourier expansion above suggests
some renormalisation is required. Let η �= 1 denote a Hecke character modulo e. The
Eisenstein series we will examine in detail is precisely

Em(s, η; e) := 2−[F :�] · √
DF · �(m + s)[F :�]

(−4π )−s[F :�](−2π i)[F :�](m+2s)
× �0

m

(
s; OF ,OF ; η

)
.

NOTATION. In the special case where p is a prime of OF and η′ denotes the character
associated to η modulo pne, one writes Ẽm(s, η; epn) in the place of Em(s, η′; epn). In
particular, the Fourier development of Ẽm arising from Proposition 2.6 exhibits rather
nice p-adic interpolation properties over weight-space, whilst Em does not.
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In the confines of this paper, a good reason to study Em(s, η; e) ∈ M∞
k (e, η) is

that it naturally appears in an integral expression for the Rankin–Selberg L-function.
Assume that f ∈ Mk(c, ψ) and g ∈ Ml(c, θ ) are two holomorphic modular forms. Their
convolution L-function is defined by the summation

L(s, f, g) =
∑
m

C(m, f) C(m, g) · N (m)−s for Re(s) � 0,

with a meromorphic continuation to the whole of �.
DEFINITION 2.7. The completed Rankin–Selberg L-function is equal to

D(c)(s, f, g) := (2π )−2[F :�]s�(s)[F :�]�(s + 1 − l)[F :�] · ζ (c)
F (2s + 2 − k − l, ψθ )

×L(s, f, g),

with ζ (c)
F (s, ψθ ) = ∑

m+c=OF
(ψθ )∗(m) · N (m)−s denoting the twisted zeta-function.

Whenever the ideal c is the least common multiple of the conductors of f and g, then
we just drop the superscript (c) from the notation altogether.

REMARKS.
(a) The Petersson inner product of F ∈ S∞

k (c, ψ) and G ∈ M∞
k (c, ψ) is given by

the complex integral

〈
F,G

〉
c

=
ĥF∑
λ=1

∫
�λ(c)\H[F :�]

Fλ(z) · Gλ(z) · N (y)k dμ∞(z)

upon selecting the hyperbolic metric dμ∞(z) = ∏[F :�]
ν=1 y−2

ν · dxνdyν .
(b) Provided k > l, one has the following integral representation

D(c)(s, f, g) = √
DF

(
�(s + 1 − l)

π s

)[F :�]

×
〈
f#, g · �0

k−l

(
s − k + 1; c,OF ; ψθ−1)〉

c

which was established by Shimura in [18, equation (4.32)].
(c) In general, the product g · �0

k−l

(
s − k + 1; c,OF ; ψθ−1

)
is only real-analytic,

with moderate growth as a C∞-modular form. It follows that the inner product
above must then be equal to 〈f#, Hol(g · �0

k−l(s − k + 1; c,OF ; ψθ−1))〉c.
(d) Here, the holomorphic projection operator sends G = (

G1, . . . ,GĥF

)∈
M∞

k (c, ψ) with Gλ = ∑
ξ aλ(ξ, y) eF (ξx), to a holomorphic modular form

Hol(G) ∈ Mk(c, ψ) under the condition that Hol(G)λ = ∑
0�ξ ∈̃tλ aλ(ξ ) eF (ξz)

where

aλ(ξ ) := (4π )[F :�](k−1)N (ξ )k−1

�(k − 1)[F :�]
×

∫
�

[F :�]
+

aλ(ξ, y) eF (iξy) · yk−2 dy.

(This property that G has moderate growth is discussed at length in [17, Section
4.6].)

2.3. Controlling analytic families of HMFs. Before we can proceed further, let
us recall some basic notions from measure theory. Fix a prime p �= 2 and a tame
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level n coprime to p · OF . The narrow ray class group of conductor npr is by definition
Clnw

F

(
npr

) = F×∖
�×

F

/
F+

∞ · (Ô×
F ∩ W1,npr

)
. Taking the inverse limit over r, one obtains

a decomposition

ZF (n) := lim←−
r

Clnw
F

(
npr) = WF (n) × ZF (n)tors,

where WF (n) is free over �p and #ZF (n)tors < ∞. For each integer r ≥ 1, define

ZF,r(n) = Ker
(
ZF (n) → Clnw

F (npr)
)

and WF,r(n) = WF (n) ∩ ZF,r(n).

We now explain how to make power series rings out of these various profinite groups.

NOTATIONS.
(a) Let O be a finite extension of �p; one considers Iwasawa algebras

AF = lim←−
r

O
[
ZF (n)/ZF,r(n)

]
and �F = lim←−

r

O
[
WF (n)/WF,r(n)

]
.

Clearly, AF = �F
[
ZF (n)tors

]
, and �F is a power series ring in d = 1 + δF,p

variables where δF,p denotes the ‘defect term’ in Leopoldt’s conjecture for the
pair (F, p).

(b) For an ideal l coprime to np, let [l] be the corresponding group element of AF , and
likewise 〈[l]〉 refers to the group element in �F under the natural projection.

(c) Write Fcpr
for the maximal abelian extension of F unramified outside npr · ∞.

Class field theory furnishes us with an isomorphism Clnw
F (npr)

∼−→ Gal(Fcpr
/F)

by explicitly sending the class of a to the Artin symbol (a,Fcpr

F ) ∈ Gal(Fcpr
/F). Passing

to the inverse limit again,

AF ∼= O
[[

Gal
(
Fcp∞

/F
)]]

where the Lie extension Fcp∞ =
⋃
r≥1

Fcpr
.

Over the field of rational numbers Z�(1) ∼= �×
p and Z�(1)tors

∼= 	×
p , so we denote

by ω� : Z�(1) � 	×
p and 〈·〉� : Z�(1) � W�(1) ∼= 1 + p�p the two projection maps.

Analogously, we will write ωF and 〈·〉F for the composition of the above projections
with the norm homomorphism N : ZF (npr) → Z�(1) = �×

p .

LEMMA 2.8.
(i) There is an isomorphism Meas(ZF (n),O)

∼−→ �F [ZF (n)tors] which at each
character θ : ZF (n)tors → �×

p , sends

dμ �→
∫

g∈ZF (n)
θ (g) wg

1 . . . w
g
d · dμ(g) ∈ A(θ)

F

whereWF (n) ∼= �p · {w1, . . . , wd
}
;

(ii) if Twj : AF → AF corresponds to the operation mapping dμ �→ Nxj
p · dμ with

Nxp the Tate character, then the twist operator Twj ∈ AutO
(
AF

)
for all j ∈ �.

Proof. See for instance [21] which contains an argument for h-admissible
measures. �
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EXAMPLE 2.9. If ε is a finite order character of WF (n) and k ≥ 2 an integer weight,
we write Pk,ε ∈ HomO

(
�F ,�p

) = Spec
(
�F

)
(�p) for the specialisation extending the

map
〈
[l]

〉 �→ ε(l)〈l〉k−2
F (such homomorphisms are designated ‘classical points’). Assume

the ideal c ⊂ n, and that φ is a Hecke character modulo cpr for some r ≥ 0. The work
of Deligne–Ribet [6] implies the existence of a p-adic zeta-function1

ζ
(c)
F,p-adic

(
φ
) ∈ � ⊗�F

{ 1
wi − 1

∣∣∣ i = 1, . . . , d
}

⊂ Q�F := Frac(�F )

interpolating Pk′+2,ε(ζ
(c)
F,p-adic(φ))= τp(ζ (cp)

F (1 − k′, εφω2−k′
F )) at integers k′ > 0. As the

action of Twj extends to pseudo-measures, then Tate twisting j-times:

Pk,ε ◦ Twj

(
ζ

(c)
F,p-adic

(
φω

j−2
F

)) = ζ
(cp)
F

(
3 − k − j, εφω2−k

F

)
for all weights k > 2 − j.

We conclude the background section with a discussion of Hida’s deformation
theory. First, endow hk(np∞,O) = lim←−r

hk(npr,O) with its naturalAF -algebra structure
by sending each group element [l] to the diamond operators < l >k ∈ hk(npr,O). In
fact, hk(np∞,O) is independent of the weight k ≥ 2, hence one writes h(n,O) for the
universal p-adic Hecke algebra of tame level n.

If Sk(np∞,O) = ⋃
r≥1 Sk(npr,O), then its p-adic completion Sk(np∞,O) is a

module over AF again, independent of k ≥ 2 (which we drop from the notation).
Moreover, there is a perfect pairing [−,−]np∞,O : h(n,O) × S(np∞,O) −→ O, which is
the natural extension of the dualities hk(npr,O) ∼= Sk(npr,O)∗ at the finite levels.

DEFINITION 2.10.
(i) If M is an h(n,O)-module, then Mord will denote the largest direct summand

of M upon which the Hecke operators Up are invertible for all p|p, i.e. Mord :=
M|eord cut out by the idempotent eord = limn→∞(Up·OF )n!.

(ii) For a normalised ordinary eigenform f ∈ Sk(npr, ψ), its p-stablisation equals

f(0) := f
∣∣∣∣∏

p|p

(
1 − βp(f) · Vp

)
,

where by convention αp(f) (resp. βp(f)) denotes the p-unit (resp. non p-unit) root
of the characteristic polynomial X2 − C(p, f)X + ψ∗(p)N (p)k−1.

For simplicity, let us now abbreviate the �p-free subgroup WF (n) using � instead.

Assuming that ε : � → �
×
p is any character of finite order and the weight k ≥ 2, then

Ker
(
Pk,ε

)
will be a prime ideal of �F . The following results are fundamental.

THEOREM 2.11 ([10, Corollary 4.21] and [9, Theorem 3.4]). If the prime p � 3DF ,
then:

(a) the O-algebra hord(n,O) is a finite and free algebra over �F ;
(b) at all classical points Pk,ε ∈ Spec(�F )alg, one has isomorphisms

hord(n,O)
/

Pk,ε · hord(n,O) ∼= hord
k (npr, ε;O),

where r denotes any integer for which WF,r(n) ⊂ Ker(ε).

1Skipping ahead a section, we shall need this element Twj
(
ζ

(c)
F,p−adic(φωj−2

F )
)

for the demonstration of

Proposition 3.1, wherein we make a precise choice of Tate twist j = 2 − l and character φ = ψη−1.
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Alternatively, if p = 3 or p
∣∣DF , both (a) and (b) hold upon replacing O by Frac(O).

We will now explain how to find a basis of primitive forms in the �-adic setting.
Consider a �F -algebra homomorphism λ : hord(n,O) −→ Q�F ; the fraction field of
Im(λ) is a finite extension of Q�F , and let 
 be the integral closure of �F in this finite
extension. By Theorem 2.11(a), the homomorphism λ will take values in 
.

REMARK. The set of algebraic specialisations Spec(
)alg ⊂ Spec(
) consists of points
P : 
 → �p such that P

∣∣
�F

= Pk,ε for some ε : � → �
×
p and integer weight k ≥ 2. Each

composition λP = P ◦ λ : hord(n,O) −→ �p factorises through hord
k (npr, ε;O) due to

Theorem 2.11(b), hence it must correspond to a classical cusp form.

THEOREM 2.12. Let f ∈ Sord
k (npr, ε;O) denote an ordinary cuspidal eigenform. Then,

there exists λ : hord(n,O) −→ 
 and a point P ∈ Spec(
)alg of type (k, ε) such that λP

corresponds to f. Furthermore, if f is a p-ordinary newform, then the localised algebra 
P

is étale over �F,Pk,ε .

Proof. We refer the reader to the [9, Theorem 3.6] and [15, Proof of
Theorem 4.4]. �

DEFINITION 2.13.
(i) An 
-adic Hilbert modular form F of tame level equal to n is a collection of


-adic coefficients C(m,F), C0(m,F) indexed by ideals m ⊂ OF , such that there
is a Zariski dense subset of points P ∈ Spec(
)alg with P

∣∣
�F

= Pk,ε and Hilbert

modular forms FP ∈ Mk
(
npr, ε;O[ε]

)
, satisfying

P
(
C(m,F)

) = C(m,FP
)

and P
(
C0(m,F)

) = C0(m,FP
)

at every OF -ideal m.

(ii) The module of 
-adic modular forms of tame level n is denoted by M(n, 
);
similarly, S(n, 
) denotes the 
-submodule, consisting of those elements F
whose specialisations yield cusp forms at a Zariski dense subset of points
P ∈ Spec(
)alg.

As usual, Mord(n, 
) = M(n, 
)
∣∣eord and Sord(n, 
) = S(n, 
)

∣∣eord will indicate their
ordinary components. In particular, there is a natural duality

Sord(n, 
) ∼= Hom�F

(
hord(n,O), 


)
which allows one to interpret 
-adic cusp forms F as �F -algebra homomorphisms
λF : hord(n,O) −→ 
, and vice versa of course. Assuming the coefficient ring O is
sufficiently large with O = 
 ∩ �p, the space Sord(n, 
) is completely diagonalisable
under the Hecke algebra (which means that a basis of primitive forms can be found).

EXAMPLE 2.14. Let E be a modular elliptic curve over � with good ordinary or
bad multiplicative reduction at p, and let fE denote its associated newform. Assuming
F is a solvable extension, then there must exist a cuspidal eigenform BC(fE) ∈ S2(nE, 1)
which is the base-change of fE over F .

From the Control Theorem 2.12, such a form lifts to a family F ∈ Sord
(
nE, 


)
with the interpolation property that P(F) ∈ Sord

k (nEp∞, εω2−k
F ) when P|�F = Pk,ε .

In particular, at weight 2 and the trivial character, P(F) = BC(fE)(0) will be the p-
stablisation of fE over the extension F ; as a corollary, L(P(F), s) = L(E/F, s) if one
ignores the Euler factors at the primes dividing p.
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EXAMPLE 2.15. Another nice specimen arises from the�-adic Eisenstein measure.
Let θ1, θ2 be two characters of ZF (n)tors whose conductors divide into np∞, and such
that θ1θ2

∣∣
F⊗�

= 1. Then, there exists a unique E(θ1, θ2) ∈ Mord
(
n,�F

) ⊗�F Q�F with
the property that Pk,ε

(
E(θ1, θ2)

)
is equal to the p-adic HMF

τp

⎛⎝θ((−1)∞
)
Dk−1/2

F �(k)[F :�]τF (θ )

N (nθ )(−2π i)k[F :�]

∣∣∣∣∣
θ=εθ2ω

k−2
F

× Ek
(
θ1, εθ2ω

k−2
F

)(0)

⎞⎠ ,
where the (non-p-stabilised) Eisenstein series Ek(θ1, θ2) is given in [22, Proposition
1.3.1]. We shall write Mord,†(n, 
) = Mord(n, 
) ⊗�F Q�F to indicate the space of 
-adic
modular forms admitting poles, and likewise Sord,†(n, 
) = Sord(n, 
) ⊗�F Q�F .

REMARK. Our initial hope had been to exploit properties of these elements E(θ1, θ2)
to construct a two-variable p-adic L-function, interpolating twists of elliptic curves.
Unfortunately, the integral expressions for the associated Rankin–Selberg L-function
involve Hilbert modular forms which are non-holomorphic outside the line s = k − 1,
and the E(θ1, θ2)’s do not interpolate outside this line (this is a potential disaster!). The
salvage is to instead try to construct by hand an 
-adic modular form, H± say, which
glues together the holomorphic projections of these C∞-functions.

3. Projecting Hol(GẼ) as the weight of Ẽ varies. Let F be a totally real field in
which the prime p ≥ 3 is inert; we shall write p for the unique ideal of OF lying above
p. Recall that � = �F is isomorphic to a power series ring in 1 + δF,p variables, where
δF,p was the defect term of Leopoldt (in particular, it is conjectured that δF,p = 0 for all
totally real F and primes p, and the result is certainly known for real abelian extensions
of �).

Lastly, pick a Hilbert modular cusp form Gl ∈ Sl
(
cpn, η

)
of parallel weight l ≥ 1,

nebentypus η, and level cpn with n > 0. We can deform Gl along the weight-axis by
multiplying it with an appropriate �F -adic Eisenstein series.

PROPOSITION 3.1. For a fixed finite order character ψ mod cpn and integer r ≥
0, there exist pairs of Hilbert modular forms H±

pn,r = H±
pn,r

(
Gl, cp

n, ψ
) ∈ Sord,†(c,�)

interpolating the data

Pk,ε
(
H±

pn,r

) = Hol
(
Gl × Ẽk−l

(
r − (k − l − 1), ψη−1ω2−k

F ε; cpn))ord

for every finite order character ε : � → �
×
p such that ε �= ωk−2

F ψ−1η, and at all parallel
weights k ≥ r + l + 1 satisfying the parity condition (−1)k−l−1 = ±1.

In fact, if δF,p = 0, then the forms H±
pn,r are uniquely determined by the above

interpolation formula, as a consequence of the Zariski density of each ±-subset

Spec(�)±alg :=
{

Pk,ε such that (−1)k−l−1 = ±1 and ε ∈ Hom
(
�,�

×
p

)
tors

}
within the full set of �-adic specialisations (note the mapping [w] �→ [w]2 induces an
automorphism of � ∼= �p[[1 + p�p]] as p �= 2, so the even/odd weights are dense).
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Proof when r �= 0 To establish existence of these HMFs, for every λ ∈ {1, . . . , ĥF }
we shall define universal ξ -expansions(

H±
pn,r

)
λ

:= (−1)r[F :�] ×
∑

0�ξ ∈̃tλ

lim
N→∞

(
CN!,±(

ξ̃ t−1
λ ,H±

pn,r

)
λ

)
× eF (ξz),

where each ξ -coefficient is approximated by the finite sum

CN!,±(
ξ̃ t−1
λ ,H±

pn,r

)
λ

=
∑

pN!ξ=ξ1+ξ2

C(ξ1̃t−1
λ ,Gl)

∑
ξ̃2=̃b×̃c, b∈̃tλ
c∈OF −p

(
(−1)[F :�]signN (̃b)

) 1∓1
2

× N (̃tλ)−1N
(̃
c−1̃b̃t−1

λ

)r × (
ψη−1)∗

(̃c) N (̃c)1−l × 〈
[̃c]

〉
.

The truth of the proposition will follow, provided we can establish:

(3.1.1) C±(
ξ̃ t−1
λ ,H±

pn,r

)
λ

= limN→∞ CN!,±(
ξ̃ t−1
λ ,H±

pn,r

)
λ

converges inside of �;

(3.1.2) If Pk,ε ∈ Spec(�)±alg, then (−1)r[F :�]N (̃tλ)k/2 × Pk,ε

(
C±(

ξ̃ t−1
λ ,H±

pn,r

)
λ

)
is the ξ -coefficient of Hol(Gl × Ẽk−l(r − (k − l − 1), ψη−1ω2−k

F ε; cpn))ord
λ ;

(3.1.3) H±
pn,r = ∑ĥF

λ=1(H±
pn,r)λ belongs to the space of cusp forms Sord(c,�).

Let us prove these statements in order. Following Panchiskin [16, 17], we first give the
Fourier expansion for the holomorphic projection of Gl(z) · Ẽk−l( − , − ; cpn).

Let θ denote a (not necessarily primitive) character factoring through Gal
(
Fcpn

/F
)
;

attached to θ �= 1, we consider the normalised Eisenstein series

Ek−l
(
s, θ ; cpn) = 2−[F :�] × D1/2

F × �(k − l + s)[F :�]

(−4π )−s[F :�] × (−2π i)[F :�](k−l+2s)
× �0

k−l

(
s;OF ,OF ; θ

)
.

Using the development of �0
m(s; −)λ given in Section 2 and putting m = k − l, one

obtains

Ek−l
(
s, θ ; cpn)

λ
= N (̃tλ)−s−(k−l)/2−1(4π )[F :�]s(Ny)s

∑
ξ = 0, or

0�ξ ∈̃tλ

Aλ(ξ, s, y, θ ) × eF (ξz)

at every component λ ∈ {1, . . . , ĥF }, with real-analytic coefficients (for ξ � 0):

Aλ(ξ, s, y, θ ) =
∑
ξ̃=̃b×̃c,

b∈̃tλ, c∈OF

signN (̃b)k−l−1N (̃b)k−l+2s−1θ∗(̃c)
∏
ν

W
(
4πξνyν, k − l + s, s

)
.

�
REMARKS.
(i) If s = 0, then Ek−l

(
0, θ ; cpn

)
is a holomorphic modular form, and its Fourier

expansion was computed by Klingen (e.g. see [18, Section 3] or [15, equation
(3.14)]). However, if s �= 0, then Ek−l

(
s, θ ; cpn

)
will unfortunately be non-

holomorphic in z; consequently, for s < 0, the function Gl(z) × Ek−l
(
s, θ ; cpn

)
is only real-analytic.
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(ii) If θp denotes the Hecke character satisfying

θ∗
p(y) = { θ∗(y) if p + y = OF

0 if p + y �= OF
,

then Ẽk−l(s, θ ; cpn) = Ek−l(s, θp; cpn); it follows that the corresponding Fourier
coefficients Ãλ(ξ, s, y, θ ) for Ẽk−l differ from theAλ(ξ, s, y, θ )’s in that their sum instead
involves ideal-decompositions ξ̃ = b̃ × c̃, b ∈ t̃λ which omit those c ∈ p.

Multiplying our ξ -development of the C∞-modular form Ẽk−l(s, θ ; cpn)|s=r−(k−l−1)

together with the expansion Gl(z)λ = N (̃tλ)l/2 ∑
0�ξ ∈̃tλ C(ξ̃ t−1

λ ,Gl) × eF (ξz):

(
Gl × Ẽk−l

(
r − (k − l − 1), θ ; cpn))

λ

= N (̃tλ)−s−k/2+l
∑

0�ξ ∈̃tλ

∑
ξ=ξ1+ξ2

C
(
ξ1̃t−1

λ ,Gl
) ×

∑
ξ̃2=̃b×̃c, b∈̃tλ
c∈OF −p

signN (̃b)k−l−1

×N (̃b)k−l−1+2s × θ∗ (̃c) × (4π )[F :�]s(Ny)s
∏
ν

W
(
4πξ2,νyν, k − l + s, s

) × eF (ξz)

with the R.H.S. evaluated at the non-positive integer point s = r − (k − l − 1).

FACT: [17, p134]. If β ∈ −� ∪ {0}, then the Whittaker function

W (y, α, β) =
−β∑
j=0

(−1)j
(−β

j

)
�(α)

�(α − j)
y−β−j ;

in particular, this holds true when y = 4πξνyν , α = k − l + s and β = +s as above.
Now calculating the holomorphic projection,

Hol
(
Gl × Ẽk−l

(
r − (k − l − 1), θ ; cpn

))
λ
= N (̃tλ)k/2−r−1∑

0�ξ ∈̃tλ

∑
ξ=ξ1+ξ2

C
(
ξ1̃t−1

λ ,Gl
)

× ∑
ξ̃2=̃b×̃c, b∈̃tλ
c∈OF −p

signN (̃b)k−l−1N (̃b)2r−(k−l−1) θ∗(̃c)
∏
ν Ps(ξ2,ν , ξν)

∣∣∣
s=r−(k−l−1)

× eF (ξz),

where the polynomial Ps(ξ2,ν , ξν) = ∑−s
j=0(−1)j( −s

j
) �(r+1)
�(r+1−j)

�(k−1−j)
�(k−1) ξ

−s−j
2,ν ξ

j
ν belongs to

the two-variable ring �
[
ξ2,ν , ξν

]
.

REMARKS.

(a) Since Ps(ξ2,ν, ξν)|s=r−(k−l−1)≡ ξk−l−1−r
2,ν mod ξν · �[ξ2,ν , ξν ], there is a congru-

ence [17, equation (5.9)] on the level of ξ -expansions

Hol
(
Gl × Ẽk−l

(
r − (k − l − 1), θ ; cpn))

λ
≡

∑
0�ξ ∈̃tλ

δλ(ξ )eF (ξz) mod N (ξ ) · O�p

[[
ξ
]]
,
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where δλ(ξ ) = δλ(ξ,Gl, k, r, θ ) is defined by

δλ(ξ ) := N (̃tλ)k/2−r−1
∑

ξ=ξ1+ξ2

C
(
ξ1̃t−1

λ ,Gl
) × (−1)(k−l−1−r)[F :�] × N (ξ2)k−l−1−r

×
∑

ξ̃2=̃b×̃c, b∈̃tλ
c∈OF −p

signN (̃b)k−l−1 × N (̃b)2r−(k−l−1) × θ∗(̃c).

(b) Provided N > ĥF , then hitting Hol
(
. . .

)
λ

with the Up-operator N!-times:

Hol
(
Gl × Ẽk−l

(
r − (k − l − 1), θ ; cpn))

λ

∣∣∣∣UN!
p ≡

∑
0�ξ ∈̃tλ

δλ
(
pN!ξ

)
eF (ξz) mod N (p)N!.

(c) Lastly, a bare-hands calculation2 shows that

δλ
(
pN!ξ,Gl, k, r, θ

) ≡ (−1)r[F :�] × N (̃tλ)k/2−1 ×
∑

pN!ξ=ξ1+ξ2

C
(
ξ1̃t−1

λ ,Gl
)

×
∑

ξ̃2=̃b×̃c, b∈̃tλ
c∈OF −p

(
(−1)[F :�]signN (̃b)

)(k−l−1)N (̃c−1̃b̃t−1
λ )r

× θ∗ (̃c)N (̃c)k−l−1 mod N (p)N!.

An important corollary of (a)–(c) is that whenever (−1)k−l−1 = ±1,

δλ
(
pN!ξ,Gl, k, r, θ

) |θ=ψη−1ω2−k
F ε ≡ (−1)r[F :�]N (̃tλ)k/2Pk,ε

(
CN!,±(

ξ̃ t−1
λ ,H±

pn,r

)
λ

)
modulo N (p)N!, as each specialisation Pk,ε

(〈
[̃c]

〉) = ω2−k
F ε

(̃
c
)
N (̃c)k−2 for k ≥ 2.

For convenience, we will abbreviate Gl × Ẽk−l
(
r − (k − l − 1), θ ; cpn

)
by writing

GẼ. From its definition Hol
(
GẼ

)ord = limN→∞ Hol
(
GẼ

)∣∣∣UN!
p , whence

Hol
(
GẼ

)ord
λ

=
∑

0�ξ ∈̃tλ

N (̃tλ)k/2 lim
N→∞

C
(
pN!ξ̃ t−1

λ ,Hol(GẼ)
) × eF (ξz)

by (b)=
∑

0�ξ ∈̃tλ

lim
N→∞

δλ
(
pN!ξ

)
eF (ξz) at all components λ ∈ {

1, . . . , ĥF
}
.

The C(pN!ξ̃ t−1
λ ,Hol(GẼ))’s are Cauchy under the usual p-adic topology, therefore both

the sequences {δλ(pN!ξ )}N≥1 and {Pk,ε(CN!,±(ξ̃ t−1
λ ,H±

pn,r)λ)}N≥1 must also be Cauchy
(via the congruences on the previous page).

Under the diagonal embedding � ↪→ ⊕
Pk,ε∈Spec(�)±alg

�
/

Pk,ε if a �-adic sequence

were not Cauchy, it would also fail to be Cauchy modulo some Pk,ε ∈ Spec(�)±alg.

The contrapositive of this statement implies {CN!,±(ξ̃ t−1
λ ,H±

pn,r)λ}N≥1 is Cauchy; as

2The
(
(−1)[F :�]signN (̃b)

)(k−l−1) term is missing from [17, equation (5.9)]; however, the argument of
Panchiskin is not compromised in any way by its omission. In the �-adic setting, the presence of this
sign term forces a (hypothetical) single “Hpn,r” to split into a ‘+’-part and a ‘−’-part.
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� is complete, this sequence tends to a unique limit ‘C±(ξ̃ t−1
λ ,H±

pn,r)λ’ say, thereby
establishing assertion (3.1.1) in the process.

To prove (3.1.2), we simply note that if θ = ψη−1ω2−k
F ε �= 1, then

Hol
(
Gl × Ẽk−l

(
r − (k − l − 1), θ ; cpn))

λ

∣∣∣∣UN!
p ≡

∑
0�ξ ∈̃tλ

δλ
(
pN!ξ,Gl, k, r, θ

)
eF (ξz)

≡ (−1)r[F :�]N (̃tλ)k/2 ×
∑

0�ξ ∈̃tλ

Pk,ε

(
CN!,±(

ξ̃ t−1
λ ,H±

pn,r

)
λ

)
eF (ξz)

modulo N (p)N!; taking the limit as N → ∞, the L.H.S. tends to Hol(GẼ)ord
λ whilst the

R.H.S. tends to (−1)r[F :�]N (̃tλ)k/2 × ∑
0�ξ ∈̃tλ Pk,ε(C±(

ξ̃ t−1
λ ,H±

pn,r

)
λ
)eF (ξz).

Finally, the specialisation of H±
pn,r at any point Pk,ε ∈ Spec(�)±alg with k ≥ r +

l + 1 coincides with
∑ĥF

λ=1 Hol(GẼ)ord
λ ∈ Sord

k (cp∞, ψη−1ω2−k
F ε); it follows directly that

P(H±
pn,r) is a classical cusp form at a Zariski dense subset of points P ∈ Spec(�),

therefore assertion (3.1.3) is established too.

Proof when r = 0 The argument is exactly the same as for r �= 0, except that the
Fourier coefficient δλ(ξ ) = δλ(ξ,Gl, k, 0, θ ) requires the addition of the L-value

N (̃tλ)k/2−1 × 2−[F :�] · ζ (c)
F

(
1 − (k − l), θp

) × C
(
ξ̃ t−1
λ ,Gl

)
caused by an extra term in Hol

(
GẼ

)
which occurs only at r = 0 [16, equation

(5.7)]. Thus, we need to modify the definition of C±(ξ̃ t−1
λ ,H±

pn,r)λ by adding in the
factor

N (̃tλ)−1 × 2−[F :�] · Tw2−l

(
ζ

(c)
F,p-adic

(
ψη−1ω−l

F

)) × C
(
ξ̃ t−1
λ ,Gord

l

)
(the p-adic zeta-function ζ (c)

F,p-adic(ψη−1ω−l
F ) merely belongs to � ⊗�F { 1

[w]−1 }, which

explains why the family H±
pn,r lives inside Sord,†(c,�) precisely when r = 0). �

Recall that for x ∈ GL2(�F ), the trace mapping

TrcpN

cpm : Mk
(
cpN, ψ

) −→ Mk
(
cpm, ψ

)
sends h(x) �→

∑
w∈W

cpN \Wcpm

ψ(w−ι)h(xw).

The following (twisted) inner product will appear frequently when we calculate special
values for the improved p-adic L-function.

DEFINITION 3.2. For integers N ≥ m ≥ 1, we now introduce a �-bilinear pairing

∇cpN,m : Sk
(
cpm, ψ

) × Sk
(
cpN, ψ

) −→ �

by the rule ∇cpN,m

(
f, h

) = N
(
pN−m

)k/2−1×
〈
f#,TrcpN

cpm

(
h
∣∣JcpN

)〉
cpm

.

As the trace map satisfies TrcpN

cpm (h) = (−1)[F :�]kN (pN−m)1−k/2h|JcpN UN−m
p Jcpm , one

has an alternative definition

∇cpN,m

(
f, h

) = 〈
f#, h

∣∣UN−m
p

∣∣Jcpm

〉
cpm .
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Listed below are some basic properties, which shall certainly be required later on.

LEMMA 3.3.
(a) Under ∇ the Up-operator is self-adjoint, i.e. ∇cpN,m

(
f, h

∣∣Up

) = ∇cpN,m

(
f
∣∣Up, h

)
;

(b) if f ∈ Sk
(
cpm, ψ

)
and j > 0, then ∇cpN+j,m

(
f ,−)

∣∣∣
Sk(cpN ,ψ)

= ∇cpN,m

(
f
∣∣Uj

p,−
)
;

(c) if f is a p-stabilised newform and h ∈ Sk
(
cpN−1, ψ

)
, there is an equality

∇cpN,m

(
f, h

∣∣Vp

) = N (p)−k × ∇cpN,m

(
f
∣∣U∗

p, h
)
.

Proof. Because the operation ‘ − ∣∣Up

∣∣Jcpm ’ has the same effect as ‘ − ∣∣Jcpm

∣∣U∗
p ’,〈

f#, (h|Up)
∣∣UN−m

p

∣∣Jcpm

〉 = 〈
f#, h

∣∣UN−m
p

∣∣Jcpm

∣∣U∗
p

〉 = 〈
f#

∣∣U∗∗
p , h

∣∣UN−m
p

∣∣Jcpm

〉
.

However, f#
∣∣U∗∗

p = (
f|Up

)#
, so (a) follows from the alternative definition for ∇cpN,m .

Assertion (b) is an easy consequence of (a). It therefore remains to prove (c).

Let us decompose our cusp form as h = ∑
i cihi

∣∣Vai where the ci’s are scalars, each
hi ∈ Sk

(
bi, ψ

)
is a primitive eigenform, and the ideals ai, bi satisfy aibi

∣∣cpN−1. After
some algebraic manipulation

∇cpN,m

(
f, h

∣∣Vp

) =
∑

i

ci ∇cpN,m

(
f, hi

∣∣Vai

∣∣Vp

)
=

∑
i

N
(
pN−m)k/2−1ci

〈
f#, TrcpN

cpm

(
hi
∣∣Vpai

∣∣JcpN

)〉
cpm

=
∑

i

N
(
pN−m)k/2−1ci

〈
f#, hi

∣∣Vpai

∣∣JcpN

〉
cpN

=
∑

i

N
(
pN−m)k/2−1ci (−1)[F :�]k

〈
f#

∣∣JcpN , hi
∣∣Vpai

〉
cpN

=
∑

i

N
(
pN−m)k/2−1ci (−1)[F :�]k

〈
f#

∣∣JcpN , hi
∣∣Vai

〉
cpN

×�pai
ai

(s, hi)
∣∣∣
s=k
,

where the ratio of convolution L-functions

�pai
ai

(s, hi) := L
(
s,

(
f#

∣∣JcpN

)#
, hi

∣∣Vpai

)
L
(
s,

(
f#

∣∣JcpN

)#
, hi

∣∣Vai

) = αp

(
f#

∣∣JcpN

)
N (p)s

= αp

(
f
)

N (p)s
.

Reversing each of the steps in our algebraic manipulations:∑
i

N
(
pN−m)k/2−1ci (−1)[F :�]k

〈
f#

∣∣JcpN , hi
∣∣Vai

〉
cpN

= . . .

=
∑

i

ci ∇cpN,m

(
f, hi

∣∣Vai

) = ∇cpN,m

(
f, h

)
hence, part(c) follows immediately, and so does the lemma. �

Recall that we fixed the cusp form Gl ∈ Sl
(
cpn, η

)
at the very start of this section;

in addition, one now insists that Gl = gl

∣∣Vp for some cusp form gl ∈ Sl
(
cpm−1, η

)
. We

introduce a secondary modular form Fk,ε ∈ Sk
(
cpm, ψω2−k

F ε
)
, such that

(i) Fk,ε is a p-stablised newform;
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(ii) Fk,ε is ordinary at p; and
(iii) the parallel weight k is strictly greater than l.

Our aim is to calculate the Fk,ε-isotypic projection of the family lifting Hol(GẼ) (note
the specialisation of H±

pn,r at Pk,ε is a classical HMF with τp(�)-coefficients, and so it
may be paired against Fk,ε via the composition τ∞ ◦ τ−1

p ).

THEOREM 3.4. If H±
pn,r = H±

pn,r

(
Gl, cp

n, ψ
) ∈ Sord,†(c,�)

are the �F -adic HMFs
described in Proposition 3.2, then for all N > n and r ∈ {

0, . . . , k − l − 1
}

∇cpN,m

(
Fk,ε ,Pk,ε

(
H±

pn,r

)) =
(
N

(
cpm)

D2
F

)s+1− k+l
2 ×

(
2−k × ik−1

(−2π i)1−l

)[F :�]

×
(

1 − ψη−1ω2−k
F ε

(
p
)·∣∣αp

(
Fk,ε

)∣∣2
∞· N (p)−(s+1+r)

)
(

1 − ψη−1ω2−k
F ε

(
p
)· N (p)−(2s+2−k−l)

)
× N

(
p
)−l/2 × D

(
s, Fk,ε

∣∣∣UN−m
p , gl

∣∣∣Jcpm−1

)∣∣∣∣∣
s=l+r

,

where the sign ± is chosen to satisfy the parity condition (−1)k−l−1 = ±1.

Proof. Again abbreviating Ẽk−l
(
r − (k − l − 1), ψη−1ω2−k

F ε; cpn
)

simply by Ẽk−l,
we know from Proposition 3.1 that ∇cpN,m

(
Fk,ε ,Pk,ε(H±

pn,r)
)

must coincide with

∇cpN,m

(
Fk,ε , Hol

(
gl

∣∣Vp × Ẽk−l
)ord

)
. One now appeals to the following identity:

LEMMA 3.5. If gl ∈ Sl
(
cpm−1, η

)
and θ = ψη−1ω2−k

F ε �= 1, then

Hol
(
gl

∣∣Vp × Ẽk−l
)ord

= Hol
(
gl

∣∣Vp × Ek−l
)ord − θ∗(p)N (p)k−l−1−r × Hol

(
gl × Ek−l

)ord
∣∣∣Vp .

(In order not to interrupt the exposition, we defer its proof to Appendix A.)
Observe that Gl = gl

∣∣Vp and the form Fk,ε is p-ordinary; as a corollary

∇cpN,m

(
Fk,ε ,Pk,ε

(
H±

pn,r

)) = ∇cpN,m

(
Fk,ε ,Hol

(
Gl × Ek−l

))
− θ∗(p)N (p)k−l−1−r × ∇cpN,m

(
Fk,ε ,Hol

(
gl × Ek−l

)ord
∣∣∣Vp

)
.

The computation neatly subdivides into two separate problems.

Case I – Calculating ∇cpN,m

(
Fk,ε ,Hol

(
Gl × Ek−l

))
:

First setting h := Gl · Ek−l ∈ S∞
k

(
cpn, ψω2−k

F ε
)
, we have

∇cpN,m

(
Fk,ε ,Hol(h)

) = N
(
pN−m)k/2−1

〈
F#

k,ε ,TrcpN

cpm

(
Hol(h)

∣∣JcpN

)〉
cpm

= N
(
pN−m)k/2−1〈F#

k,ε , Hol(h)
∣∣JcpN

〉
cpN

= N
(
pN−m)k/2−1N

(
pN−n)k/2〈F#

k,ε ,Hol(h)
∣∣Jcpn

∣∣VpN−n

〉
cpN

upon using the standard identity − ∣∣
kJcpN = N

(
pN−n

)k/2 × ( − ∣∣
kJcpn

∣∣
kVpN−n

)
.
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Decomposing Hol(h)
∣∣Jcpn = ∑

i cihi
∣∣Vai into a finite sum of primitive eigenforms (c.f.

the proof of Lemma 3.3), the exact same method shows that〈
F#

k,ε , hi
∣∣Vai

∣∣VpN−n

〉
cpN〈

F#
k,ε , hi

∣∣Vai

〉
cpN

= L
(
s, Fk,ε , hi

∣∣Vaip
N−n

)
L
(
s, Fk,ε , hi

∣∣Vai

) ∣∣∣∣∣
s=k

= αp

(
Fk,ε

)N−n

N
(
pN−n

)k

and consequently,

∇cpN,m

(
Fk,ε ,Hol(h)

)
= N

(
p
)m−N+(n−m) k

2 ×
〈
F#

k,ε

∣∣∣UN−n
p , Hol(h)

∣∣∣Jcpn

〉
cpN
.

REMARKS

(a) Recall from Section 1, the Eisenstein series Ek−l, �0
k−l, �0

k−l are related by

Ek−l
(
s − k + 1, θ ; cpn)∣∣∣Jcpn = �

(1)
F (s) × �0

k−l

(
s − k + 1; OF ,OF ; θ

)∣∣∣Jcpn

= �
(1)
F (s) × N

(
cpnd2)s+1− k+l

2

×�0
k−l

(
s − k + 1; cpn,OF ; θ

)
,

where the complex factor �(1)
F (s) = 2−[F :�]×√

DF ×�(s−l+1)[F :�]

(−4π)−[F :�](s−k+1)×(−2π i)[F :�](2s+2−k−l) .

(b) It follows that if θ = ψη−1ω2−k
F ε �= 1, then

∇cpN,m

(
Fk,ε ,Hol(h)

)
= N

(
p
)m−N+(n−m) k

2 ×
〈
F#

k,ε

∣∣UN−n
p , h

∣∣Jcpn

〉
cpN

= N
(
p
)m−N+(n−m) k

2 × �
(1)
F (s) × N

(
cpnd2)s+1− k+l

2

×
〈
F#

k,ε

∣∣UN−n
p , Gl

∣∣Jcpn · �0
k−l

(
s − k + 1; cpn,OF ; θ

)〉
cpN

with the R.H.S. evaluated at the critical point s = l + r.
(c) Lastly, the inner products at level cpN can be shrunk down to level cpn via〈 (

F#
k,ε

)
λ

∣∣∣UN−n
p , . . .

〉
cpN

= ν∞
(
�λ(cpN)\h[F :�]

)
ν∞

(
�λ(cpn)\h[F :�]

) ×
〈 (

F#
k,ε

)
λ

∣∣∣UN−n
p , . . .

〉
cpn

= N (p)N−n ×
〈 (

F#
k,ε

)
λ

∣∣∣UN−n
p , . . .

〉
cpn
.

Note the Haar measure [18, 2.31] of a fundamental domain for �λ(n) is precisely

ν∞
(
�λ(n)\h[F :�]

)
= 2π−[F :�]D3/2

F ζF (2)
[
O×

F,+ :
(
O×

F

)2
]−1

N (n)
∏
q|n

(
1 + N (q)−1).

Conclusion: In summary, we have so far established

∇cpN,m

(
Fk,ε ,Hol(h)

)
= N

(
p
)(n−m)( k

2 −1) ×�(1)
F

(
l + r

) × N
(
cpnd2)r+1− k−l

2

×
〈
F#

k,ε

∣∣UN−n
p , Gl

∣∣Jcpn · �0
k−l

(
r − (k − l − 1); cpn,OF ; θ

)〉
cpn

which holds true for all integers r contained within the strip 0 ≤ r ≤ k − l − 1.
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We now exploit the following three key identities:

(3.4.1) Gl
∣∣Jcpn = N

(
pn−m

)l/2 × Gl
∣∣Jcpm

∣∣Vpn−m ;

(3.4.2) D(c)(s, f, g) = �
(2)
F (s) ×

〈
f#, g × �0

k−l

(
s − k + 1; cpn,OF ; θ

)〉
cpn

with the choice of �-factor �(2)
F (s) = √

DF × �(s − l + 1)[F :�] × π−[F :�]s ;

(3.4.3) For coprime OF -ideals a, b: D
(
s, f|Va, g|Vb

) = N (ab)−s · D
(
s, f|Ub, g|Ua

)
.

Applying the above sequentially,

∇cpN,m

(
Fk,ε ,Hol(h)

)
by (3.4.1)= N

(
p
)(n−m)( k+l

2 −1) ·�(1)
F

(
l + r

) · N (
cpnd2)r+1− k−l

2

×
〈
F#

k,ε

∣∣UN−n
p , Gl

∣∣Jcpm

∣∣Vpn−m · �0
k−l

(
r − (k − l − 1); cpn,OF ; θ

)〉
cpn

by (3.4.2)= N
(
p
)(n−m)( k+l

2 −1) ·�(1)
F

(
l + r

) · N (
cpnd2)r+1− k−l

2

× �
(2)
F

(
l + r

)−1 · D(c)
(

l + r, Fk,ε
∣∣UN−n

p , Gl
∣∣Jcpm

∣∣Vpn−m

)
by (3.4.3)= N

(
p
)(n−m)( k+l

2 −1) ·�(1)
F

(
l + r

) · N (
cpnd2)r+1− k−l

2

× �
(2)
F

(
l + r

)−1 · N (
pn−m)−(l+r) · D(c)

(
l + r, Fk,ε

∣∣UN−m
p , Gl

∣∣Jcpm

)
.

Cleaning up these extraneous factors, one arrives at the formula

(3.4.4) ∇cpN,m

(
Fk,ε ,Hol

(
Gl × Ek−l

))
= N

(
cpmd2)r+1− k−l

2 × �
(1)
F

(
l + r

)
�

(2)
F

(
l + r

) × D(c)
(

l + r, Fk,ε
∣∣UN−m

p , Gl
∣∣Jcpm

)
.

Lastly, the fact that Gl
∣∣Jcpm = gl

∣∣Vp

∣∣Jcpm = N (p)−l/2 × gl

∣∣Jcpm−1 implies

∇cpN,m

(
Fk,ε ,Hol

(
Gl × Ek−l

))
= N

(
cpmd2

)r+1− k−l
2 · �

(1)
F

(
l+r

)
�

(2)
F

(
l+r

) · N (p)−l/2 · D(c)
(

l + r,Fk,ε
∣∣UN−m

p , gl

∣∣Jcpm−1

)
and the calculation in Case I is complete.

(To deal with the second part of the computation, we will apply some formulae
derived in Lemma 3.3; this case is non-empty precisely when ψη−1ω2−k

F ε
(
p
) �= 0.)

Case II – Calculating θ∗(p)N (p)k−l−1−r × ∇cpN,m

(
Fk,ε ,Hol

(
gl × Ek−l

)ord
∣∣∣Vp

)
:

Exploiting the properties of our ∇-pairing,

∇cpN,m

(
Fk,ε ,Hol

(
gl × Ek−l

)ord
∣∣∣Vp

)
by 3.3(c)= N (p)−k × ∇cpN,m

(
Fk,ε

∣∣∣U∗
p ,Hol

(
gl × Ek−l

)ord
)

= N (p)−k αp(Fk,ε) × ∇cpN,m

(
Fk,ε ,Hol

(
gl × Ek−l

)ord
)

as Fk,ε ∈ Sord
k= N (p)−k αp(Fk,ε) × ∇cpN,m

(
Fk,ε ,Hol

(
gl × Ek−l

))
.
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We can now reduce most of Case II to the same computation outlined in Case I, by
exploiting equation (3.4.4) and replacing Gl with gl throughout – this yields

(3.4.4’) ∇cpN,m

(
Fk,ε ,Hol

(
gl × Ek−l

))
= N

(
cpmd2

)r+1− k−l
2 × �

(1)
F

(
l+r

)
�

(2)
F

(
l+r

) × D(c)
(

l + r, Fk,ε
∣∣UN−m

p , gl

∣∣Jcpm

)
.

On the other hand, gl

∣∣Jcpm = N (p)l/2 × gl

∣∣Jcpm−1

∣∣Vp, whence

D(c)
(

s, Fk,ε
∣∣UN−m

p , gl

∣∣Jcpm

)
= N (p)l/2 × D(c)

(
s, Fk,ε

∣∣UN−m
p , gl

∣∣Jcpm−1

∣∣Vp

)
by (2.4.3)= N (p)l/2 · αp(Fk,ε)

N (p)s
× D(c)

(
s, Fk,ε

∣∣UN−m
p , gl

∣∣Jcpm−1

)
and we therefore obtain

∇cpN,m

(
Fk,ε ,Hol

(
gl × Ek−l

)ord
∣∣∣Vp

)
= N (p)−k αp(Fk,ε) × N (p)l/2 · αp(Fk,ε)

N (p)l+r

× N
(
cpmd2)r+1− k−l

2 × �
(1)
F

(
l + r

)
�

(2)
F

(
l + r

) × D(c)
(

l + r, Fk,ε
∣∣UN−m

p , gl

∣∣Jcpm−1

)
.

As a direct consequence, one easily deduces that

θ∗(p)N (p)k−l−1−r × ∇cpN,m

(
Fk,ε ,Hol

(
gl × Ek−l

)ord
∣∣∣Vp

)
= θ∗(p) ·

∣∣∣αp

(
Fk,ε

)∣∣∣2

∞
· N (p)−(l+1+2r) × N

(
cpmd2)r+1− k−l

2

× �
(1)
F

(
l + r

)
�

(2)
F

(
l + r

) × N (p)−l/2 × D(c)
(

l + r, Fk,ε
∣∣UN−m

p , gl

∣∣Jcpm−1

)
which means the calculation in Case II is also complete.

Finally, it is a tedious but straightforward exercise to verify that the ratio

�
(1)
F

(
l + r

)
�

(2)
F

(
l + r

) =
(

2−(k−l+1)π l−1ik−l
)[F :�]

=
(

2−k × ik−1

(−2π i)1−l

)[F :�]

.

The theorem follows immediately upon combining Cases I and II together. �

4. Constructing the ‘Improved’ p-adic L-function. The deformation theory ideas
in [7, 15] (for F = � and F ⊂ �, respectively) carry over well to Rankin L-functions.
We shall examine in detail some useful consequences of the p-stabilised newform Fk,ε

varying inside an analytic family.
Let us now assume the cusp form gl is a primitive HMF of character η, of parallel

weight l > 0, and whose conductor n(gl) has tame part n(gl)
′, i.e. n(gl)

′ + p = OF . In
addition, suppose that the Hecke polynomial of gl at p factorises (over �) into

X2 − C(p, gl)X + η∗(p)N (p)l−1 = (
X − αp(gl)

) × (
X − βp(gl)

)
.
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Following the notation of [15, Section 5.1], one defines

g0
l := gl − βp(gl) × gl

∣∣Vp ∈ Sl
(
n(gl)p, η

)
and similarly,

g00
l := g0

l − αp(gl) × g0
l

∣∣Vp ∈ Sl
(
n(gl)p

2, η
)

(of course, these definitions depend on how we labelled the roots αp

(
gl

)
, βp

(
gl

)
).

LEMMA 4.1. Considering the four Hilbert cusp forms g00
l , g0

l , gl, g#
l in tandem, their

Rankin convolutions are related by the formulae

(a) D

(
s, Fk,ε

∣∣UN−m
p , g00

l

∣∣Jcpm−1

)
=

(
1 − αp(gl)

αp(Fk,ε)
N (p)s−l

)
× D

(
s, Fk,ε

∣∣UN−m
p , g0

l

∣∣Jcpm−1

)
;

(b) D

(
s, Fk,ε

∣∣UN−m
p , g0

l

∣∣Jcpm−1

)
=

(
1 − βp(gl)

αp(Fk,ε)
N (p)s−l

)
× D

(
s, Fk,ε

∣∣UN−m
p , gl

∣∣Jcpm−1

)
;

(c) D

(
s, Fk,ε

∣∣UN−m
p , gl

∣∣Jcpm−1

)
= N

(
cpm−1

n(gl)

) l
2 −s

·� (
gl
) · C

(
n(Fk,ε)′,Fk,ε

)
× αp

(
Fk,ε

)N−1−ordpn(gl ) · D

(
s, Fk,ε , g#

l

)
.

Here, we have written n(Fk,ε)′ to denote the prime-to-p part of the level of Fk,ε , and
have fixed the OF -ideal c := n(Fk,ε)′ × n(gl)

′ which is clearly coprime to p.

REMARK. The two Euler factors occurring in (a) and (b) vanish at s = l, under the
special circumstances that αp(gl) = αp(Fk,ε) and βp(gl) = αp(Fk,ε) respectively. In
particular, if s = l = 1 and Fk,ε is the weight k = 2 newform associated to a split
multiplicative elliptic curve defined over F , then we are in the precise situation covered
by the generalised Mazur–Tate–Teitelbaum conjecture.

Indeed, the vanishing of these rather innocuous Euler factors (when viewed as rigid
analytic functions over the weight-space), turns out to be the main building block in
deriving the exceptional zero formula.

The cautious reader will have spotted if the quantity C
(
n(Fk,ε)′,Fk,ε

)
is zero, then

the above lemma represents none other than the formula ‘0 = 0’ three times. To guard
against this eventuality, let us henceforth assume

HYPOTHESIS (SS). The Fourier coefficients C
(
n(Fk,ε)′,Fk,ε

) �= 0.
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Proof of Lemma 4.1. To show (a), we exploit the following basic identities

D
(
s, − , g00

l

∣∣Jcpm−1

) = D
(
s, − , g0

l

∣∣Jcpm−1

) − αp(gl)· D
(
s, − , g0

l

∣∣Vp

∣∣Jcpm−1

)
= N (p)l/2 · D

(
s, − , g0

l

∣∣Jcpm−2

∣∣Vp

) − αp(gl)N (p)−l/2 · D
(
s, − , g0

l

∣∣Jcpm−2

)
= N (p)l/2 ·

(
1 − αp(gl)

αp(Fk,ε)
N (p)s−l

)
· D

(
s, − , g0

l

∣∣Jcpm−2

∣∣Vp

)
=

(
1 − αp(gl)

αp(Fk,ε)
N (p)s−l

)
· D

(
s, − , g0

l

∣∣Jcpm−1

)
which can be deduced from equations (3.4.1) and (3.4.3). Part (b) follows similarly.

To establish statement (c), one already knows that

gl

∣∣∣Jcpm−1 = N
(

cpm−1

n(gl)

)l/2

× gl

∣∣∣Jn(gl )

∣∣∣V cpm−1
n(gl )

= N
(

cpm−1

n(gl)

)l/2

·� (
gl
) × g#

l

∣∣∣V cpm−1
n(gl )

,

where �
(
gl

)
denoted the pseudo-eigenvalue under Shimura’s J-operator; however,

D

(
s, Fk,ε

∣∣UN−m
p , g#

l

∣∣V cpm−1
n(gl )

)
= αp

(
Fk,ε

)m−1−ordpn(gl ) × C
(
n(Fk,ε)′,Fk,ε

)
×N

(
cpm−1

n(gl)

)−s

× D

(
s, Fk,ε

∣∣UN−m
p , g#

l

)
upon using (3.4.3) again, which implies (c) must also be true. �
We now shift attention to gluing this information together along points of Spec(�).
Choose any finite extension 
 of the algebra �F which is integrally closed in Q�F ,
and write O = 
 ∩ �p. Let λF : hord(

n(F),O
) ⊗�F 
 → 
 denote the homomorphism

corresponding to an 
-adic cusp form F ∈ Sord
(
n(F), 


)
; in particular, one knows each

specialisation P(F) is classical at points P ∈ Spec(
)alg by applying [10, 4.21].
Moreover, if λF is a primitive homomorphism, then the localisation 
P is étale

over �F,Pk,ε where P
∣∣
�F

= Pk,ε ; in fact, every specialisation P(F) will then be the
ξ -expansion of a p-stabilised newform Fk,ε = P(F) of tame level n(Fk,ε)′ = n(F).

Using [9, Corollary 3.7], one obtains a decomposition

hord(
n(F),O

) ⊗�F Q
 = Q
 ⊕ B

into a direct sum of algebras, and projection to the first factor is induced by λF . Under
the diagonal mapping

diag : hord(
n(F),O

) ⊗�F 
 −→ 
 ⊕ prB
(

hord(
n(F),O

) ⊗�F 

)
,

the cokernel is (by definition) the congruence module ‘C0(λF )’ introduced in [9]; it
detects mod P congruences between pairs λF1, λF2 : hord(

n(F),O
) ⊗�F 
 −→ 
. In a

similar vein, the differential module C1(λF ) := �1
hord/


⊗hord 
 measures the failure of

the component in hord(
n(F),O

)
containing λF , to be étale over �F .
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Hida has shown [9, Corollary 3.8] both C0(λF ) and C1(λF ) are torsion 
-
modules, with the supp
(C0(λF )) = supp
(C1(λF )). In addition, �1

hord/

⊗hord (
/P) =

0 at all points P ∈ Spec(
)alg since the specialisations 
P were étale over �F,Pk,ε .
As a corollary, the idempotent cutting out the first factor in the decomposition
hord(

n(F),O
) ⊗�F Q
 = Q
 ⊕ B can only have poles at non-arithmetic points.

REMARK. Defining �c
n(F)′ :=

{
ideal pairs (a, b) with n(gl)

′ ⊂ ab and b �= n(gl)
′
}

,

clearly there is an injection

π = ⊕(a,b)Va :
⊕

(a,b)∈�c

n(F)′

Sord(n(F)b, 

)
↪→ the old part of Sord(c, 
)

because the action of the Va’s extends 
-adically (provided a is coprime to pn(F)′).
Under the isomorphism Sord

(
c, 


) ∼= Hom�F

(
hord(

c,O
)
, 


)
, its dual π∗ induces

Q
 ⊕ B∣∣∣∣∣∣
hord(

c,O
) ⊗�F Q


π∗−→
⊕

(a,b)∈�c

n(F)′

hord(
n(F)b,O

) ⊗�F Q


proj−→ hord(
n(F),O

) ⊗�F Q
,

where ‘proj’ maps down to the summand involving the ideal pair (a, b) = (OF ,OF ).
The composition λF ◦ proj ◦ π∗ : hord(

c,O
) ⊗�F Q
 −→ Q
 factorises through a Hecke

algebra at level n(F) · p∞, so is imprimitive as an 
-algebra homomorphism (in fact the
P(F)’s will be oldforms at level c = n(F)′n(gl)

′ because n(gl)
′ �= OF ).

The corresponding idempotent tF ∈ hord(
c,O

) ⊗�F Q
 cuts out the F-isotypic
component from the old part of Sord

(
c, 


)
, and has no poles lying along Spec(
)alg.

Extending the perfect pairing [−,−]c,
 : hord(c,O) × Sord(c, 
) −→ 
 over Frac(
), we
now determine the image of

[
tF ,H±

pn,r

]
c,


∈ Q
 at its arithmetic specialisations.

DEFINITION 4.2. For all algebraic points P ∈ Spec(
)alg satisfying P
∣∣
�F

= Pk,ε , let
us denote the 
-adic period associated to λF at P by

�


(
λF ,P

) = C
(
n(Fk,ε)′,Fk,ε

)
Dk

F · (2k · i1−k
)[F :�]

· αp

(
Fk,ε

)m−1 · N (
pm)1−k/2 ·

〈
Fk,ε ,Fk,ε

〉
n(Fk,ε )

∇cpm,m

(
Fk,ε ,Fk,ε

) ,
where the eigenform Fk,ε = P(F), and the integer m ≥ ordpn(Fk,ε).

To see why this quantity is independent of m, it is enough to show for j > 0 that

∇cpm+j,m+j

(
Fk,ε ,Fk,ε

) = N
(
pj)1−k/2 × ∇cpm,m

(
Fk,ε

∣∣Uj
p ,Fk,ε

)
which we leave as an exercise for the reader.

The periods �


(
λF ,P

)
themselves are algebraic numbers; they are error terms

measuring discrepancies between the 
-adic deformation of the automorphic period,
and the original value

〈
Fk,ε ,Fk,ε

〉
. Not only do they appear in the two-variable p-

adic L-function (interpolating critical values of the whole family F), but also in the
one-variable L-functions interpolating F at a single fixed value s = l + r.
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PROPOSITION 4.3. If P ∈ Spec(
)alg with P
∣∣
�F

= Pk,ε and r ∈ {
0, . . . , k − l − 1

}
, then

each specialisation P([tF , H±
pn,r(gl|Vp, cp

n, ψ)]c,
) is equal to

(
N

(
cpm

)
D2

F

)r+1− k−l
2

N
(
p
)l/2N

(
pm

)1−k/2 ×
(

1 − ψη−1ω2−k
F ε

(
p
)·∣∣αp

(
Fk,ε

)∣∣2
∞· N (p)−(l+2r+1)

)
(

1 − ψη−1ω2−k
F ε

(
p
)· N (p)−(l+2r+2−k)

)
× αp

(
Fk,ε

)1−N × Dk
F ·�


(
λF ,P

)
C
(
n(Fk,ε)′,Fk,ε

) ×
D

(
l + r, Fk,ε

∣∣∣UN−m
p , gl

∣∣∣Jcpm−1

)
(− 2π i

)(1−l)[F :�] ·
〈
Fk,ε ,Fk,ε

〉
n(Fk,ε )

,

where again the sign ± is chosen so that (−1)k−l−1 = ±1.

Proof. The majority of the hard work was done in Section 3 (in particular, Theorem
3.4). We first remark that the pairing [tF ,−]c,
 respects specialisation along Spec(
)alg;
namely, at such arithmetic primes P, one has P([tF ,H]c,
) = [tP(F) ,P(H)]cp∞,O under
the QO-extension of the duality[−,−]

cp∞,O : hord
k

(
cp∞, ε;O

) × Sord
k

(
cp∞, ε;O

) −→ O.

Here, tP(F) ∈ hord
k

(
cp∞, ε; QO[ε]

)
denotes the Hecke idempotent which decomposes

hord
k

(
cp∞, ε; QO[ε]

) = QO[ε] ⊕ B, where projection to the first factor is λFk,ε ◦ proj. It
follows directly that

P
([

tF ,H±
pn,r

]
c,


)
=

[
tP(F) ,Pk,ε

(
H±

pn,r

)]
cp∞,O

=
〈
F#

k,ε ,Pk,ε
(
H±

pn,r

)∣∣JcpN

〉
cpN〈

F#
k,ε ,Fk,ε

∣∣JcpN

〉
cpN

provided the integer N is chosen sufficiently large.

Ensuring N > n ≥ m � 1, this last ratio can be rewritten in terms of ∇ via

P
([

tF ,H±
pn,r

]
c,


)
= ∇

cpN,m

(
Fk,ε ,Pk,ε (H±

pn ,r)
)

∇cpN,m

(
Fk,ε ,Fk,ε

)
by 3.3(b)= ∇cpN,m

(
Fk,ε ,Pk,ε (H±

pn ,r)
)

αp(Fk,ε )N−m·∇cpm,m

(
Fk,ε ,Fk,ε

) .
Plugging in the Definition 4.2 (which relates ∇cpm,m

(
Fk,ε ,Fk,ε

)
with �


(
λF ,P

)
) then

after some easy algebra, one deduces

P
([

tF ,H±
pn,r

]
c,


)
= Dk

F · (2k · i1−k
)[F :�]

C
(
n(Fk,ε)′,Fk,ε

) × αp

(
Fk,ε

)1−N · N (
pm)k/2−1

× �


(
λF ,P

)〈
Fk,ε ,Fk,ε

〉
n(Fk,ε )

× ∇cpN,m

(
Fk,ε ,Pk,ε

(
H±

pn,r

))
.

Now using Theorem 3.4 to evaluate ∇cpN,m

(
Fk,ε ,Pk,ε(H±

pn,r)
)
, the result follows. �
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It makes sense to shorten some of our notations; we shall introduce

H±
pn,r = H±

pn,r

(
gl

∣∣Vp, cp
n, ψ

)
,

H±,0
pn,r = H±

pn,r

(
g0

l

∣∣Vp, cp
n, ψ

)
and H±,00

pn,r = H±
pn,r

(
g00

l

∣∣Vp, cp
n, ψ

)
.

The following summarises the delicate effect switching amongst H±
pn,r,H±,0

pn,r,H±,00
pn,r has

on the specialisations of [tF , −]c,
 at arithmetic primes.

COROLLARY 4.4. If P ∈ Spec(
)alg with P
∣∣
�F

= Pk,ε and (−1)k−l−1 = ±1, then

(a) P
([

tF ,H±,00
pn,r

]
c,


)
=

(
1 − αp(gl)

αp(Fk,ε)
N (p)r

)
× P

([
tF ,H±,0

pn,r

]
c,


)
;

(b) P
([

tF ,H±,0
pn,r

]
c,


)
=

(
1 − βp(gl)

αp(Fk,ε)
N (p)r

)
× P

([
tF ,H±

pn,r

]
c,


)
;

(c) P
([

tF ,H±
pn,r

]
c,


)
= D2r+2+l

F · N
(
n(gl)

)l/2+rN
(
p
)r

N
(
c
)k/2−1

· � (gl)

αp

(
Fk,ε

)ordpn(gl )

×
(

1 − ψη−1ω2−k
F ε

(
p
)·∣∣αp

(
Fk,ε

)∣∣2
∞· N (p)−(l+2r+1)

)
(

1 − ψη−1ω2−k
F ε

(
p
)· N (p)−(l+2r+2−k)

)
× �


(
λF ,P

) ×
D

(
l + r, Fk,ε , g#

l

)
(− 2π i

)(1−l)[F :�] ·
〈
Fk,ε ,Fk,ε

〉
n(Fk,ε )

.

Proof. To show (c), one combines Proposition 4.3 with the formula in Lemma
4.1(c). To establish (b), one simply combines Proposition 4.3 for H±,0

pn,r with
Lemma 4.1(b). Lastly, to prove (a), one combines Proposition 4.3 for H±,00

pn,r with
Lemma 4.1(a). �
The final task in Section 4 is to interpret these results in a rigid-analytic context.
A crucial feature of the deformation rings we have been considering is that their
localisations at arithmetic primes tend to be unramified over the weight algebra.
Consequently, in some local neighbourhood, they behave like affinoid QO-algebras;
the underlying Galois representations also interpolate seamlessly over such rings. Fix a
base weight k0 ≥ 2 and character ε0. Write R for the subring of �p[[w − k0]] consisting
of formal power series with positive radius of convergence about k0.

The natural homomorphism Pk0,ε0 : �F −→ R, sending an element 〈[l]〉 to the
power series representingw �→ ε0([l])〈l〉w−k0

F , extends uniquely to give a mapping P̃k0,ε0 :

P−→ R; this follows because R is Henselian, and the localisation 
P is étale over
�F,Pk0 ,ε0

where P lies over Pk0,ε0 . Hitting the ξ -expansion ofF with the Mellin transform
P̃k0,ε0 , one may view its Fourier coefficients as rigid-analytic functions convergent on
some closed p-adic disk ‘�k0,ε0 ’ (centred at the point w = k0).

NOTATION. We also write F̃(w) for the image of the family F under P̃k0,ε0 , so that

F̃(k) = Fk,ε0 ∈ Sord
k

(
n(F)p∞, ψω2−k

F ε0
)

at all weights k ∈ �k0,ε0 ∩ �≥2,
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where ψ indicates the tame character associated to λF : hord(
n(F),O

) ⊗�F 
 −→ 
.
Similarly, one denotes by αp(F , w) the power series interpolating k �→ αp(Fk,ε0 ).

DEFINITION 4.5. For a fixed pair (k0, ε0) with k0 > l, and choosing ± = (−1)k0−l−1,
let us define functions on �k0,ε0 by

(i) L(00)
p,k0,ε0

(
F , r

)
:= Dl−2

F · N (p)−r × P̃k0,ε0

([
tF ,H±,00

pn,r

]
c,


)
;

(ii) L(0)
p,k0,ε0

(
F , r

)
:= Dl−2

F · N (p)−r × P̃k0,ε0

([
tF ,H±,0

pn,r

]
c,


)
;

(iii) Limp
p,k0,ε0

(
F , r

)
:= Dl−2

F · N (p)−r × P̃k0,ε0

([
tF ,H±

pn,r

]
c,


)
.

Note if r �= 0, then L(00)
p,k0,ε0

, L(0)
p,k0,ε0

and Limp
p,k0,ε0

are analytic functions on �k0,ε0 as each of

H±,00
pn,r ,H±,0

pn,r,H±
pn,r live in the space of�-adic cusp forms Sord

(
c,�F

)
. However, if r = 0,

then L(0)
p,k0,ε0

(
F , 0

)
and Limp

p,k0,ε0

(
F , 0

)
might inherit simple poles, due to the constant

term

2−[F :�] × Tw2−l

(
ζ

(c)
F,p-adic

(
ψη−1ω−l

F

))
associated to the�-adic family {Ẽk−l(0, θ ; cpn)}k∈�k0 ,ε0

. Since the zeta-functions ζ (c)
F

(
1 −

(k − l), θp
)

can only exhibit a pole where k − l = 0 and we know k0 > l, there exists
a (possibly smaller) neighbourhood ��

k0,ε0
⊂ �k0,ε0 upon which each of the functions

L(0)
p,k0,ε0

(
F , 0

)
and Limp

p,k0,ε0

(
F , 0

)
is rigid-analytic.

(Observe the function L(00)
p,k0,ε0

(
F , r

)
is rigid-analytic on �k0,ε0 even if r equals 0;

in fact, the additional term 2−[F :�] · ζ (c)
F

(
1 − (k − l), θp

) × C
(
ξ̃ t−1
λ , (g

00
l |Vp)ord

)
in the

ξ -expansion of H±,00
pn,0 is identically zero, because g00

l

∣∣Vp is killed by the Up-operator
whence (g00

l |Vp)ord = 0.)

THEOREM 4.6.

(a) If αp(gl) �= αp(Fk0,ε0 ) and βp(gl) �= αp(Fk0,ε0 ), then

L(00)
p,k0,ε0

(
F , 0

)∣∣∣∣
w=k0

=
(

1 − αp(gl)
αp(Fk0,ε0 )

)
·
(

1 − βp(gl)
αp(Fk0,ε0 )

)
×Limp

p,k0,ε0

(
F , 0

)∣∣∣∣
w=k0

;

(b) if αp(gl) = αp(Fk0,ε0 ) but βp(gl) �= αp(Fk0,ε0 ), then asw → k0 inside of �k0,ε0 , the

orderw=k0

(
L(00)

p,k0,ε0

(
F , 0

)) ≥ 1 and

d
dw

L(00)
p,k0,ε0

(
F , 0

)∣∣∣∣
w=k0

= α′
p(F , k0)

αp(Fk0,ε0 )
×

(
1 − βp(gl)

αp(Fk0,ε0 )

)
× Limp

p,k0,ε0

(
F , 0

)∣∣∣∣
w=k0

;
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(c) if both αp(gl) = βp(gl) = αp(Fk0,ε0 ), then again allowing w → k0 inside �k0,ε0 ,

the orderw=k0

(
L(00)

p,k0,ε0

(
F , 0

)) ≥ 2 and

d2

dw2
L(00)

p,k0,ε0

(
F , 0

)∣∣∣∣
w=k0

= 2 ·
(
α′

p(F , k0)

αp(Fk0,ε0 )

)2

× Limp
p,k0,ε0

(
F , 0

)∣∣∣∣
w=k0

.

Proof. By the first two parts in Corollary 4.4, for P ∈ Spec(
)alg with P
∣∣
�F

= Pk0,ε0 :

P
([

tF ,H±,00
pn,0

]
c,


)
=

(
1 − αp(gl)

αp(Fk0,ε0 )

)
·
(

1 − βp(gl)
αp(Fk0,ε0 )

)
× P

([
tF ,H±

pn,0

]
c,


)
.

Thus, assertion (a) follows immediately from Definition 4.5.
To establish statement (b), if we restrict to p-adic weights w ∈ ��

k0,ε0
then

P̃k0,ε0

([
tF ,H±,00

pn,0

]
c,


)
by 4.4(a)=

(
1 − αp(Fk0,ε0 )

αp(F , w)

)
× P̃k0,ε0

([
tF ,H±,0

pn,0

]
c,


)
.

Furthermore, the analytic function ϒ(w) = 1 − αp(Fk0 ,ε0 )
αp(F,w) admits the Taylor series

ϒ(w) = 0 × (
w − k0

)0 + α′
p(F , k0)

αp(Fk0,ε0 )
× (
w − k0

)1 + O
((
w − k0

)2
)

;

sinceϒ(w) has a zero of order ≥ 1 atw = k0, the second part of our theorem is a direct
consequence of the value for the linear term above.

Finally, to show (c) once more, we restrict to those w ∈ ��
k0,ε0

, in which case

P̃k0,ε0

([
tF ,H±,00

pn,0

]
c,


)
by 4.4(a,b)=

(
1 − αp(Fk0,ε0 )

αp(F , w)

)2

× P̃k0,ε0

([
tF ,H±

pn,0

]
c,


)
.

Clearly, ϒ(w)2 has a zero of order ≥ 2 at w = k0 with quadratic term
(
α′

p(F,k0)
αp(Fk0 ,ε0 )

)2
, and

the truth of assertion (c) is now evident. �

5. Measures associated to two-variable deformations. We consider the same
scenario as the previous two sections. Again, the primitive homomorphism λF :
hord(

n(F),O
) ⊗�F 
 → 
 corresponds to an 
-adic cusp form F ∈ Sord

(
n(F), 


)
, and

P ∈ Spec(
)alg ranges over the arithmetic specialisations. In due course, we will insist
that the primitive cusp form gl has parallel weight one; however, for the initial discussion
we can allow gl to be of positive weight (l, . . . , l).

It is worthwhile to remind the reader of the running assumption we made:

HYPOTHESIS (SS). The Fourier coefficients C
(
n(F),P(F)

)
are all non-zero.

In particular, the periods �


(
λF ,P

)
are non-vanishing at every P ∈ Spec(
)alg.

In Section 4, we showed that pairing the idempotent tF with the family H±
pn,r

produced a rigid analytic function, convergent on some p-adic neighbourhood �k0,ε0

of w = k0. We now wish to introduce a second cyclotomic variable, ‘s’ say, to
the deformation; the resulting two-variable power series will be analytic for all
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(s, w) ∈ �p × �k0,ε0 , and will satisfy a functional equation along its line of symmetry
s = w/2.

REMARKS.
(i) Those elements χ ∈ Homcont

(
Gal(Fab/F),�×

p

)
of finite order can be identified

with Hecke characters over F , via the sequence of maps

�×
F

CFT−→ Gal(Fab/F)
χ−→ τp

(
�

×) τ−1
p−→ �

× τ∞
↪→ �×,

where the symbol ‘CFT’ denotes the homomorphism of global class field
theory. We shall frequently jump between finite order Hecke characters χ , and
elements of the dual group Homcont

(
Gal(Fab/F),�×

p

)
tors, without any change

in notation.
(ii) The maximal abelian extension �ab of � is certainly contained inside of Fab;

one denotes by Nxp ∈ Homcont
(
Gal(Fab/F),�×

p

)
the mapping induced by

Gal(Fab/F)
rest
� Gal(�ab/F) ↪→ Gal(�ab/�) ∼=

∏
primes l

�×
l � �×

p ↪→ �×
p .

(iii) The special characters of the form χ · Nxj
p where χ has finite order and j ∈ �,

are p-adically dense inside Homcont
(
Gal(Fab/F),�×

p

)
.

Rather than considering all characters of Gal(Fab/F), let us instead restrict to the
cyclotomic part F∞ := ⋃

n≥1 F(μpn ). Its Galois group is an open subgroup of �×
p ,

i.e. Xp,F := Gal
(
F∞/F

) ∼= Gal
(
F∞/F

)
tors × (

1 + p�p
)

thence, the torsion subgroup of Xp,F above is finite, and of cardinality dividing p − 1
(finite order characters of Xp,F correspond to characters of the ideal group over F
whose conductors are powers of p = p · OF ).

DEFINITION 5.1. For r ≥ 0, we define Sord
(
c,�

)
-valued distributions dμ± = dμ±

gl ,r
on the p-adic Lie group Xp,F by∫

x∈Xp,F

χ (x) · dμ±
gl ,r

(x) := H±
pn,r

((
g00

l ⊗ χ
)∣∣Vp, cp

n, ψ
)
,

where the integer n � 0, and the homomorphisms χ ∈ Hom
(
Xp,F ,�

×
p

)
tors.

PROPOSITION 5.2.
(a) Each distribution dμ±

gl ,r
is a bounded measure on Xp,F ;

(b) the measures dμ±
gl ,r

are uniquely determined by the data in Definition 5.1;
(c) for all r ≥ 0, we have relations dμ±

gl ,r
= (−1)r[F :�]N (p)r × (

Nxp
)r · dμ±

gl ,0
.

Proof. Let us begin with some brief observations, concerning the twist of the cusp
form g00

l by an element χ ∈ Homcont
(
Xp,F ,�

×
p

)
tors of conductor pfχ , say.

(5.2.1) The (twisted) Hecke eigenform g00
l ⊗ χ is killed by the Up-operator;

(5.2.2)
(
g00

l ⊗ χ
)∣∣Vp belongs to Sl

(
n(gl)p

max{2fχ ,2}, ηχ2
)∣∣∣(1 − limN→∞ UN!

p

)
;

(5.2.3) C
(
ξ̃ t−1
λ , g

00
l ⊗ χ

) = 0 for all elements ξ � 0 such that ξ ∈ p.
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It follows that if the integer r = 0, there is no need to adjust the ξ -expansion of
H±

pn,0((g00
l ⊗ χ )|Vp, cp

n, ψ) by the additional factor

N (̃tλ)−1 × 2−[F :�] · Tw2−l

(
ζ

(c)
F,p-adic

(
ψη−1ω−l

F χ
−2)) × C

(
ξ̃ t−1
λ ,

(
g00

l ⊗ χ
∣∣Vp

)ord
)

because by (5.2.2) above, this term is identically zero anyway.
We now abbreviate the �-adic form H±

pn,r((g
00
l ⊗ χ )|Vp, cp

n, ψ) with H±,(χ)
pn,r .

Quoting verbatim from its definition (c.f. the demonstration of Proposition 3.1),(
H±,(χ )

pn,r

)
λ

:= (−1)r[F :�] ×
∑

0�ξ ∈̃tλ

lim
N→∞

(
CN!,±(

ξ̃ t−1
λ ,H

±,(χ)
pn,r

)
λ

)
× eF (ξz)

at all components λ ∈ {1, . . . , ĥF }, where each ξ -coefficient was the �-adic limit of

CN!,±
(
ξ̃ t−1
λ ,H

±,(χ)
pn,r

)
λ

= N (̃tλ)−1 ×∑
pN!ξ=ξ1+ξ2

C
(
ξ1̃t−1

λ ,
(
g00

l ⊗ χ
)∣∣Vp

)
×∑ξ̃2=̃b×̃c, b∈̃tλ

c∈OF −p

(
(−1)[F :�]signN (̃b)

) 1∓1
2 N

(̃
c−1̃b̃t−1

λ

)r× (
ψη−1χ−2

)∗
(̃c) N (̃c)1−l × 〈

[̃c]
〉
.

To prove 5.2(a)–(c), it is enough to prove analogous statements for the distributions
associated to each coefficient CN!,±(ξ̃ t−1

λ ,H
±,(χ)
pn,r ), then take the limit as N → ∞. The

following facts are deduced from (5.2.1–3), and also from the rules of twisting:

(5.2.4) if χ �= 1, then g00
l ⊗ χ coincides with gl ⊗ χ ;

(5.2.5) if χ �= 1, then C
(
ξ̃ t−1
λ , (g

00
l ⊗ χ )

∣∣Vp

) = χ∗(p−1ξ̃ t−1
λ

) · C
(
p−1ξ̃ t−1

λ , gl
)
;

(5.2.6) if χ = 1, then C
(
ξ̃ t−1
λ , (g

00
l ⊗ 1)

∣∣Vp

) =
{

C
(
p−1ξ̃ t−1

λ , gl

)
if ξ ∈ p, ξ �∈ p2

0 otherwise.

For instance, one can easily see that C
(
ξ1̃t−1

λ , (g
00
l ⊗ χ )

∣∣Vp

) = 0 unless ξ1 ∈ p − p2,
irrespective of whether χ is the trivial character or not. As a consequence, most of the
terms we are summing over in the expression defining CN!,±(

ξ̃ t−1
λ ,H

±,(χ)
pn,r

)
λ

are equal
to zero; in fact, we only need to sum over totally positive ξ1, ξ2 ∈ p − p2.

Exploiting the identities (5.2.5) and (5.2.6), one obtains the tidier expression

CN!,±
(
ξ̃ t−1
λ ,H

±,(χ)
pn,r

)
λ

= N (̃tλ)−1 ×∑
pN!−1ξ=ξ ′1+ξ ′2
p+ξ̃ ′

i =OF

χ∗(ξ ′
1̃t−1
λ

) · C
(
ξ ′

1̃t−1
λ , gl

)
×∑

ξ̃ ′2=̃b×̃c, pb∈̃tλ
c∈OF −p

(
(−1)[F :�]signN (p̃b)

) 1∓1
2 N

(̃
c−1p̃b̃t−1

λ

)r · (ψη−1χ−2
)∗

(̃c) N (̃c)1−l · 〈[̃c]
〉

after performing the twin substitutions ξ ′
1 = p−1ξ1 and ξ ′

2 = p−1ξ2.

Clearly, χ∗(ξ ′
1̃t−1
λ

) = χ∗(ξ ′
2̃t−1
λ

) = χ∗(̃b̃c̃t−1
λ

)
as χ has p-power conductor, thus the

preceding quantity equals

N (p)r
∑

pN!−1ξ=ξ ′1+ξ ′2
p+ξ̃ ′

i =OF

C
(
ξ ′

1̃t−1
λ , gl

) ∑
ξ̃ ′2=̃b×̃c, pb∈̃tλ

c∈OF −p

�N!,±(
b, c

) · χ∗(̃c−1̃b̃t−1
λ

)
N

(̃
c−1̃b̃t−1

λ

)r · 〈[̃c]
〉



32 DANIEL DELBOURGO

where �N!,±(
b, c

) = N (̃tλ)−1 ×
(

(−1)[F :�] · signN (p̃b)
) 1∓1

2 × (
ψη−1

)∗
(̃c) N (̃c)1−l will

be p-integral, and independent of both r and the ideal character χ∗.

At every component λ, one can define a distribution dνN!,±
r,λ = dνN!

r,λ

(
ξ,H±

pn,r

)
on

Xp,F through the integrals
∫

x∈Xp,F
χ (x) · dνN!,±

r,λ (x) := CN!,±(
ξ̃ t−1
λ ,H

±,(χ)
pn,r

)
λ
. Then, to

establish (a),(b) and (c) hold for the Sord
(
c,�

)
-valued distributions dμ±

gl ,r
, we reduce

the problem to showing similar properties hold for each of the dνN!,±
r,λ ’s.

(a) The boundedness of dνN!,±
r,λ : Identifying Xp,F with an open subgroup of �×

p , pick
any neighbourhood e + pt�p ⊂ Xp,F where gcd(e, p) = 1 and the integer t > 0. The
characteristic function of e + pt�p can be written as a summation

chare+pt�p (x) = 1
pt − pt−1

×
∑

χ :(�/pt�)×→�×
p

χ−1(e)χ (x)

whence∫
x∈e+pt�p

dνN!,±
r,λ (x) = N (p)r

∑
pN!−1ξ=ξ ′1+ξ ′2
p+ξ̃ ′

i =OF

C
(
ξ ′

1̃t−1
λ , gl

) ∑
ξ̃ ′2=̃b×̃c, pb∈̃tλ

c∈OF −p

�N!,±(
b, c

)

×
⎛⎝ 1

pt − pt−1
×

∑
χ :(�/pt�)×→�×

p

χ−1(e)χ∗(̃c−1̃b̃t−1
λ

)⎞⎠N
(̃
c−1̃b̃t−1

λ

)r · 〈[̃c]
〉
.

The bracketed term equals 1 or 0, depending on whether the image (under CFT) of
the idele associated to c̃−1̃b̃t−1

λ coincides with e modulo pt. Defining the constant

dp = dp(gl, r, λ) :=
∣∣∣N (p)

∣∣∣r

p
× max

ξ�0

∣∣∣C(
ξ̃ t−1
λ , gl

)∣∣∣
p

∈ p�

we conclude that
∫

x∈e+pt�p
dνN!,±

r,λ (x) ∈ d−1
p ·�F for all ξ , λ and e + pt�p ⊂ Xp,F .

(b) The uniqueness of dνN!,±
r,λ : It is a standard fact that a bounded measure is completely

determined by the integrals
∫
χ (x) · dν(x) at finite order characters χ , which means

there is nothing to prove here.

(c) Tate twisting dνN!,±
−,λ by

(
Nxp

)r: Replacing χ (x) instead with χ (x) · (Nxp
)

is
equivalent to sending χ∗(̃c−1̃b̃t−1

λ

) �→ χ∗(̃c−1̃b̃t−1
λ

) · N (̃
c−1̃b̃t−1

λ

)
in our expression for

CN!,±(
ξ̃ t−1
λ ,H

±,(χ)
pn,r

)
λ
. After some simple algebra, one deduces∫

x∈Xp,F

χ (x) · dνN!,±
r+1,λ(x) = N (p) ×

∫
x∈Xp,F

χ (x)
(
Nxp

) · dνN!,±
r,λ (x)

so that dμ±
gl ,r+1 = (−1)[F :�]N (p) × (

Nxp
) · dμ±

gl ,r
. The result follows by induction. �

The preparatory work is over. We can now define a two-variable p-adic L-function3

interpolating the standard versions of Panchiskin et al [2, 5, 16, 17] over Spec(
).

3In fact, our two-variable L-function on �k0,ε0 × �p is the rigid-analytic image, for the weight (l, . . . , l)
branch, of the element D ∈ 
⊗̂O described in [8, Theorem 5.1] up to some normalisations, of course.



EXCEPTIONAL ZEROES OF P-ADIC L-FUNCTIONS 33

Again fix a base weight k0 ≥ 2 and character ε0. Recall from the previous section, the
Mellin transform P̃k0,ε0 extended the mapping sending 〈[l]〉 to the Iwasawa function
representing w �→ ε0

(
[l]

)〈l〉w−k0
F , and converged on the disk �k0,ε0 ⊂ �p.

DEFINITION 5.3. For a finite order character χ of p-power conductor, one defines

Lp,k0,ε0

(
F , gl, χ ; w, s

)
:= P̃k0,ε0 ⊗ id

(∫
x∈Xp,F

〈
Nxp

〉s−l
χ (x) ·

[
tF , dμ±

gl ,0
(x)

]
c,


)

under the proviso the weight variable w ∈ �k0,ε0 , the cyclotomic variable s ∈ �p, and
the sign satisfies ±1 = (−1)k0−l−1.

Does this formula actually make sense?
First note that dμ±

gl ,0
is a bounded measure on Xp,F with values in Sord

(
c,�

)
,

therefore pairing it with tF yields a measure (on Xp,F ) taking values in 
 ⊗ �
[
1/p

]
.

We can certainly integrate special characters of the form
〈
Nxp

〉s−l
χ (x) against it; the

resulting integral of this function belongs to the affinoid algebra 
⊗̂O�p〈〈s〉〉. Lastly the
Mellin transform induces

P̃k0,ε0 ⊗ id : 
⊗̂O�p〈〈s〉〉 −→
{

f ∈ �p〈〈w, s〉〉
∣∣∣ f is rigid-analytic on �k0,ε0 × �p

}
so the answer is yes, this formula does make sense.

REMARK. The construction of the one-variable p-adic L-function is entirely similar.
One instead performs the integration

Lp
(
fk, gl, χ ; s

)
:=

∫
x∈Xp,F

〈
Nxp

〉s−l
χ (x) · dμPan

fk, g00
l

(x) ∈ �p〈〈s〉〉,

where ‘dμPan
fk, g00

l
’ denotes the bounded p-adic measure in [16, 17], interpolating the

algebraic part of D
(
s, fk, g00

l ⊗ χ
)

at its critical points s = l, . . . , k − 1.

THEOREM 5.4. For all integers k ≥ 2 satisfying k ∈ �k0,ε0 with k ≡ k0 ( mod 2), and
at all critical twists r ∈ {

0, . . . , k − l − 1
}
:

Lp,k0,ε0

(
F , gl, χ ; k, l + r

) = (−1)r[F :�] · D2r+2+l
F × η∗(pfχ,r

) × �
(
gl
)

× (
χω−r

F

)∗(
n(gl)

) · N
(
n(gl)

)r+1− k−l
2

N
(
n(F)

)k/2−1
× �


(
λF ,P

) × Eulp
(
k, l, r

)

× τ
(
χω−r

F

)2 · N (
pfχ,r

)l+2r−1

αp

(
Fk,ε0

)2fχ,r
×

D

(
l + r, Fk,ε0 , g#

l ⊗ (
χω−r

F

)−1
)

(− 2π i
)(1−l)[F :�] ·

〈
Fk,ε0 ,Fk,ε0

〉
n(Fk,ε0 )

,

where χω−r
F has conductor pfχ,r say, while the modified p-Euler factor is given by

Eulp
(
k, l, r

)
:=

(
1 − χω−r

F (p) αp(gl )
αp(Fk,ε0 ) N (p)r

)(
1 − χω−r

F (p) βp(gl )
αp(Fk,ε0 ) N (p)r

)
×

(
1−ψη−1χ−2ω2r+2−k

F ε

(
p

)
·
∣∣αp

(
Fk,ε

)∣∣2

∞·N (p)−(l+2r+1)

)
(

1−ψη−1χ−2ω2r+2−k
F ε

(
p

)
·N (p)−(l+2r+2−k)

) .
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Proof. We begin by pointing out that the constraint k ≡ k0 ( mod 2)
implies the parity condition ±1 = (−1)k0−l−1 = (−1)k−l−1 holds true, at all such
integers k. Focusing on the value s = l + r, the two-variable p-adic L-function
satisfies

Lp,k0,ε0

(
F , gl, χ ;w, l + r

) = P̃k0,ε0

(∫
x∈Xp,F

(
Nxp

)r
χω−r

F (x) ·
[
tF , dμ±

gl ,0
(x)

]
c,


)
by 4.2(c)= (−1)r[F :�]N (p)−r × P̃k0,ε0

(∫
x∈Xp,F

χω−r
F (x) ·

[
tF , dμ±

gl ,r
(x)

]
c,


)
by 4.1= (−1)r[F :�]N (p)−r × P̃k0,ε0

([
tF ,H±

pn,r

((
g00

l ⊗ χω−r
F

)∣∣Vp, cp
n, ψ

)]
c,


)
and furthermore,

P̃k0,ε0

([
tF ,H±

pn,r

((
g00

l ⊗ χω−r
F

)∣∣Vp, cp
n, ψ

)]
c,


) ∣∣∣∣∣
w=k

by 4.4(a,b,c)= D2r+2+l
F × Eulp(k, l, r) × N

(
n(gl )·p2fχ,r

)l/2+r
N
(
p

)r

N
(
c

)k/2−1

× �

(
gl⊗χω−r

F

)
·�


(
λF ,P

)
αp

(
Fk,ε0

)ordp

(
n(gl )·p2fχ,r

) ×
D

(
l+r, Fk,ε0 ,

(
gl⊗χω−r

F

)#
)

(
−2π i

)(1−l)[F :�]
·
〈
Fk,ε0 ,Fk,ε0

〉
n(Fk,ε0

)

.

However (through some low-brow computation), one finds that

(i) �
(
gl ⊗ χω−r

F

) = η∗(pfχ,r
) · (χω−r

F

)∗(
n(gl)

) · τ(χω−r
F

)2 · N (
pfχ,r

)−1×� (
gl
)
;

(ii) N
(
n(gl)

)l/2+r× N (c)1−k/2 = N
(
n(gl)

)l/2+r+1−k/2× N
(
n(F)

)1−k/2
.

The theorem follows upon plugging these two identities into the expression for

Lp,k0,ε0

(
F , gl, χ ;w, l + r

)∣∣∣
w=k

obtained on this page. �

5.1. The functional equation at parallel weight l = 1. At present, it is unclear how
to obtain a nice p-adic functional equation when the weight of gl is greater than 1, so we
are forced to make simplifying assumptions. Essentially, we will only treat the situation
where l = 1, and the primitive form g = g1 arises by inducing down a grössencharakter
over a CM extension K/F .

HYPOTHESIS (H1). F ∈ Sord
(
n(F), 


)
has square-free level n(F) as an OF -ideal.

HYPOTHESIS (H2). For all integer weights κ inside a disk � ⊂ �p containing 2, each
specialisation Fκ is the p-stabilisation for the base-change lift (from � to F) of a
classical Hecke eigenform fκ ∈ Snew

κ

(
�0(Np∞), ω2−κ

�

)
.

The advantage of assuming (H2) holds is to ensure whenever κ ≡ 2 ( mod p − 1),
the complex L-function for each form Fκ arises from a motive realisable over �. A
consequence of (H1) is that at weight two, the specialisation F2 is Steinberg at every
prime q dividing the tame level n(F); as a corollary C

(
n(F),F2

) = ±1. However,
C
(
n(F),Fκ

)
is a rigid-analytic function of κ, so it must be non-zero in a p-adic

neighbourhood of κ = 2. It follows that (H1) implies Hypothesis (SS). One can further
deduce C

(
n(F),Fκ

) = ±〈
N

(
n(F)

)〉κ/2−1
via [11, Proposition 5.2].
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Attached to the system {Fκ}κ∈�∩�≥2 , one has an analytic family (for κ ∈ �) of
representations πκ,ν : GF −→ GL2

(
Fν

)
, which are themselves restrictions of Deligne’s

Gal(�/�)-representations Vq(fκ ) associated to the classical forms fκ/� (up to
semisimplicity, the latter are uniquely determined by the condition that if a prime
l � pN, then both trace(Frob−1

l ) = al(fκ ) and det(Frob−1
l ) = ω2−κ

� (l)lκ−1). Let us denote
by ‘Vν(fκ )’ the underlying representation space for πκ,ν over Fν .

We now turn our attention to imposing suitable conditions on g ∈ S1
(
n(g), η

)
:

HYPOTHESIS (H3). There exists a CM extension K/F and a Hecke character 	/K , such
that g = gρ is the weight one primitive form associated to ρ = IndF

K

(
	/K

)
.

HYPOTHESIS (H4). The Artin representation ρ : GF → GL2(�) is isomorphic to its
contragredient i.e. ρ ∼= ρ∨, and therefore also gρ = g#

ρ on the level of HMF’s.

In terms of the corresponding OK -ideal character 	 ∗
/K , the normalised newform gρ

has nebentypus η = det(ρ) given by

η∗(a) = ϕK/F (a) ·	 ∗
/K

(
aOK

)
where ϕK/F (q) =

⎧⎨⎩
+1 if q splits in K/F
−1 if q is inert in K/F

0 if q ramifies in K/F .

Fixing a primitive cusp form f of parallel weight ≥ 2 and assuming that Re(s) � 0, its
ρ-twisted L-function is defined by the infinite product

L
(
f, ρ, s

)
:=

∏
finite primes q

det
(

1 − NF/�(q)−s · Frob−1
q

∣∣∣(Vν(f) ⊗Fν Vν(ρ)
)Iq

)
.

HYPOTHESIS (H5).
(
Vν(f) ⊗Fν Vν(ρ)

)Iq ∼= Vν(f)Iq ⊗Fν Vν(ρ)Iq for all primes q.

Upon multiplying L
(
f, ρ, s

)
through by the appropriate gamma factor at infinity, this

last assumption (H5) permits us to identify the ρ-twisted L-series attached to f with
the convolution D

(
s, f, gρ

)
(whose critical values were interpolated by dμ±

gρ ,0
). As the

latter extends to an entire function [18, Proposition 4.13], clearly so must L
(
f, ρ, s

)
.

REMARKS.
(i) Assuming f is a primitive HMF of scalar weight k with n(f) + p = OF , the

functional equation for the
(
ρ ⊗ χ−1ωr

F

)
-twisted L-series becomes

(5.2.7) D2s
F · (N (

n(f, ρ)
) · N (p)4fχ,r

)s/2 ·
(
�(s)
(2π )s

)2[F :�]

· L
(
f, ρ ⊗ χ−1ωr

F , s
)

= (−1)[F :�]k/2 · w∞(k) × χ−1ωr
F

(
n(f, ρ)

) × τ(χ−1ωr
F

)2 · τ(χω−r
F

)−2

× D2(k−s)
F · (N (

n(f, ρ)
) · N (p)4fχ,r

)(k−s)/2

×
(
�(k − s)
(2π )k−s

)2[F :�]

· L
(
f#, ρ∨ ⊗ χω−r

F , k − s
)
,

where n
(
f, ρ

)
is the F-conductor of the ν-adic system

{
Vν(f) ⊗Fν Vν(ρ)

}
ν∈SpecOF

.
(ii) The quantity w∞(k) is called the root number and is of absolute value one.

In the case where f is the base-change of a classical primitive form f over
� with rational coefficients and trivial character, plus given that the Artin
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representation Ind�
F

(
ρ
)

was self-dual, one can further say that the root number
w∞(k) ∈ {−1,+1}.

(iii) The rational integer valueN (n(f, ρ) × p4fχ,r ) above will coincide exactly with the
�-conductor of the twisted system {Vq(f ) ⊗�q

Vq(Ind�
F (ρ ⊗ χ−1ωr

F ))}q∈Spec�.
(iv) The support of the ideal n(gρ) is strictly contained in the support of n(f, ρ), as at

least one of �(f) = {
Vν(f)

}
ν∈SpecOF

and ρ : GF → GL2(�) is unramified at every

place of F . One then defines N = N(F , ρ) := n(f, ρ)
/
n(gρ)2, which depends

on {Fκ}κ∈�∩�≥2 but is independent of the initial choice for f = fk.

THEOREM 5.5. Restricting to weights k ∈ � ∩ �>2 satisfying k ≡ 2( mod p − 1):

Lp
(
F , gρ, χ ; k, 1 + r

) = wp(k) × χ−1(N) · 〈N〉k/2−1−r
F × Lp

(
F , gρ, χ−1; k, k − 1 − r

)
,

where wp(k) = (−1)[F :�]k/2 · w∞(k) · ωF
(
n(F , ρ)

)k/2−1 takes values inside {−1,+1}, and
is therefore locally constant.

Both Lp
(
F , gρ,− ; κ,−)

and
〈
N

〉κ/2−1−r
F are rigid-analytic in the variable κ ∈ �, hence

the functionwp(k) ∈ {−1,+1} extends continuously to weight k = 2 as well. To extract
data about the zeroes of Lp

(
F , gρ,−; k, s) at the point (k, s) = (2, 1), the functional

equation should involve (on both of its sides) the same p-adic L. Thus, we only need
focus upon the trivial χ -branch above.

COROLLARY 5.6. Under the additional assumption that χ is the trivial character,

Lp
(
F , gρ, 1; k, s

) = wp(2) × 〈
N

〉k/2−s
F × Lp

(
F , gρ, 1; k, k − s

)
for all weights k inside a sufficiently small p-adic neighbourhood of 2.

The demonstration of Theorem 5.5 will now occupy the remainder of this section.
Let us begin by obtaining a more succinct expression for the critical values of
Lp

(
F , gρ, χ ; k, s

)
; we explicitly relate these to the primitive Rankin L-function. Recall

also the epsilon factor of the Artin representation ρ : Gal(�/F) −→ GL2(�) can be
written as a product of local terms εF

(
ρ, s

) = ∏
places ν εFν

(
ρν, s

)
.

LEMMA 5.7. Noting each Fk is the p-stabilisation of a primitive cusp form fk say, the
special value Lp

(
F , gρ, χ ; k, 1 + r

)
equals

(−1)r[F :�] · i−[F :�] · η∗(pfχ,r
) × εF (ρ, 0) ·�


(
λF ,Pk

) × (
χω−r

F

)
N r(n(gρ)

)
× τ

(
χω−r

F

)2 · N (
p2fχ,r

)r · D2r+2
F

αp

(
Fk

)2fχ,r · N (
n(gρ)n(F)

) k−2
2

× Ep

(
k, r, χ

) ×
D

(
1 + r, fk , gρ ⊗ χ−1ωr

F

)
〈
Fk ,Fk

〉
n(Fk)

where the degree four p-Euler factor is given by

Ep

(
k, r, χ

) =
(

1 − χω−r
F (p)

αp(gρ)

αp(fk)
N (p)r

)(
1 − χω−r

F (p)
βp(gρ)

αp(fk)
N (p)r

)
×

(
1 − χ−1ωr

F (p)αp(gρ)βp(fk) N (p)−1−r
)(

1 − χ−1ωr
F (p)βp(gρ)βp(fk) N (p)−1−r

)
.

Proof. There are two possibilities to consider: the cusp form Fk is Steinberg at p,
or alternatively Fk is the p-stabilisation of a primitive form fk of exact level n(F). Let
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us deal with the latter possibility first, in other words

Fk = fk − βp

(
fk
) · fk

∣∣∣Vp where βp

(
fk
)

is the non-unit root of Frobenius.

We start by simplifying the factor Eulp
(
k, l, r

)
occurring in Theorem 5.4 (at l = 1). By

direct inspection, the ratio(
1 − η−1χ−2ω2r+2−k

F

(
p
)·∣∣αp

(
Fk

)∣∣2
∞· N (p)−(l+2r+1)

)(
1 − η−1χ−2ω2r+2−k

F

(
p
)· N (p)−(l+2r+2−k)

)
equals one because

∣∣αp(Fk)
∣∣2
∞ = αp

(
fk
) × βp

(
fk
) = N (p)k−1, whence

Eulp
(
k, 1, r

) =
(

1 − χω−r
F (p)

αp(gρ)

αp(fk)
N (p)r

)(
1 − χω−r

F (p)
βp(gρ)

αp(fk)
N (p)r

)
.

It is then a straightforward exercise to verify the identity

Eulp
(
k, 1, r

) · D

(
1 + r, Fk , gρ ⊗ (

χω−r
F

)−1
)

= Ep

(
k, r, χ

) · D

(
1 + r, fk, gρ ⊗ χ−1ωr

F

)
.

The interpolation formulae stated in our lemma are a simple consequence of the
corresponding formulae in Theorem 5.4 (with l = 1, ψ = 1 and gl = gρ = g#

ρ ), albeit
the � (gρ)-term will appear in place of the εF (ρ, 0)-factor.

Lastly, the following result allows us to replace the pseudo-eigenvalue of the Jn(gρ )-
operator, with the global epsilon factor associated to the representation ρ (note that
a classical Gauss sum can always be interpreted as the global ε-factor associated to a
one-dimensional GF -representation, i.e. to a Hecke character over F).

LEMMA B.1 εF (ρ) := εF (ρ, s)
∣∣∣
s=0

= i[F :�] · DF ·
√
N

(
n(gρ)

) × � (gρ).

To avoid interruption, the proof of this lemma has been left until Appendix B, wherein
a more detailed discussion of both local and global ε-factors is included.

The treatment of the case where fk is Steinberg at p follows very similar lines.
Here, we note that αp(Fk)2 = C(p, fk)2 = N (p)k−2; because αp(Fk) is a p-adic unit, this
situation can only occur at weight k = 2. It follows immediately that

Eulp
(
k, 1, r

)∣∣∣∣
(k,r)=(2,0)

= Eulp
(
2, 1, 0

) =
{

1 if χ �= 1
0 if χ = 1 = Ep

(
k, r, χ

)∣∣∣∣
(k,r)=(2,0)

and the remainder of the argument proceeds as in the non-Steinberg case. �
Returning to the proof of Theorem 5.5, we will establish the two-variable functional
equation at critical pairs (k, s), where fk is non-Steinberg at p and s ∈ {1, . . . , k − 1}.
Since this excludes at worst k = 2, and as the remaining weights (greater than two
and congruent to 2 modulo p − 1) are Zariski dense inside of the weight-space �, this
would be sufficient to prove the formula in general.

We start by supposing only that k is even. To be consistent with our earlier notation,
denote by pfχ,r the conductor of the Hecke character χωk−2−r

F over F . Assuming for
simplicity that both its numerator and denominator do not vanish, then applying
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Lemma 5.7 twice to the following quotient yields

Lp
(
F , gρ, χ−1; k, (k − r − 2) + 1

)
Lp

(
F , gρ, χ ; k, r + 1

)
= χ−2ω2r+2−k

F

(
n(gρ)

)
N

(
n(gρ)

)2r+2−k × η∗(pfχ,r
)

η∗(pfχ,r
) · αp

(
Fk

)2fχ,r−2fχ,r × Ep

(
k, k − r − 2, χ−1

)
Ep

(
k, r, χ

)
×D2(k−r−1)

F N
(
p2fχ,r

)k−r−2
τ
(
χ−1ω2+r−k

F

)2

D2(r+1)
F N

(
p2fχ,r

)r
τ
(
χω−r

F

)2 × D
(
k − 1 − r, fk, gρ ⊗ χωk−2−r

F

)
D

(
r + 1, fk, gρ ⊗ χ−1ωr

F

) .

However, if one now restricts to k ≡ 2( mod p − 1), thenχωk−2−r
F = (

χ−1ωr
F

)−1
whence

pfχ,r = pfχ,r . Furthermore, it is a tedious exercise canceling out Euler factors to deduce
Ep(k, k − r − 2, χ−1) = Ep(k, r, χ ), in which case

Lp
(
F , gρ, χ−1; k, k − 1 − r

)
Lp

(
F , gρ, χ ; k, r + 1

) = χ−2(n(gρ)
) · 〈n(gρ)

〉k−2−2r
F ×#k,r,

where #k,r := D2(k−r−1)
F N

(
p2fχ,r

)k−1−r
τ
(
χ−1ωr

F

)2

D2(r+1)
F N

(
p2fχ,r

)r+1
τ
(
χω−r

F

)2 · D
(
k − 1 − r, fk, gρ ⊗ χω−r

F

)
D

(
r + 1, fk, gρ ⊗ χ−1ωr

F

) .

Exploiting the fact D
(
s, fk, gρ ⊗ χ−1ωr

F

) = (
(2π )−s�(s)

)2[F :�] · L
(
fk, ρ ⊗ χ−1ωr

F , s
)
,

the complex functional equation (5.2.7) implies that

#k,r = (−1)[F :�]k/2 · w∞(k) · ωF
(
n(F , ρ)

)1−k/2 × χ(
n(F , ρ)

) · 〈n(F , ρ)
〉r+1−k/2
F

and the p-adic functional equation along (k, r + 1) ∈ � × �p follows readily.

REMARK. Conversely if one of Lp
(
F , gρ, χ−1; k, k − 1 − r

)
or Lp

(
F , gρ, χ ; k, 1 + r

)
does in fact vanish, so must other one (courtesy of the equation (5.2.7) again). Under
this scenario the desired identity

Lp
(
F , gρ, χ ; k, 1 + r

) = wp(k) × χ−1(N) · 〈N〉k/2−1−r
F × Lp

(
F , gρ, χ−1; k, k − 1 − r

)
is vacuously true, as it represents none other than ‘0 = 0’ in disguise.

6. An application to semistable elliptic curves. Let E be an elliptic curve over �,
and fE ∈ Snew

2

(
�0(NE)

)
its associated newform. We shall assume that E is semistable

over the totally real field F , in other words its F-conductor nE is a square-free ideal.
Lastly, we suppose E has split multiplicative reduction at the prime p, which yields a
Tate parametrisation E(Fp) ∼= F×

p /q
�
E,p.

Notice that fE is the weight two representative of some Hida family {f 0
κ }κ∈�∩�≥2 ;

in particular, f 0
κ has trivial character and �-coefficients whenever κ ≡ 2( mod p − 1).

Base-changing each one of these p-stabilised newforms f 0
κ /� up to the field F , one

obtains a family of HMF’s Fκ = BC(f 0
k ) ∈ Sord

k (nEp∞, ω2−κ
F ) with κ ∈ � ∩ �≥2. The

elliptic curve E was assumed to be semistable over F so the tame level of the 
-adic
cusp form F must be square-free, and Hypothesis (H1) is therefore satisfied. Similarly,
(H2) also trivially holds as this 
-adic form is constructed via base-change.
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At this stage, we shall still need to assume both the Hypotheses (H3) and (H4).
However, (H5) is true under the proviso that nE and n(gρ) are coprime OF -ideals, and
in Section 5 we already discussed at length why (H1) =⇒ (SS).

DEFINITION 6.1.

Lp(E, ρ ⊗ χ, s) := D−2
F · 〈F2 ,F2〉nE(
�+

E�
−
E

)[F :�]
× Lp

(
F , gρ, χ ; 2, s

)
i−[F :�] ·�


(
λF ,P2

) .
From our interpolation rules (see Lemma 5.7), if χ has conductor pfχ �= 1, then

Lp(E, ρ ⊗ χ, 1) = εF (ρ) × τ (χ )2 · detρ∗(pfχ
) · χ(

n(gρ)
) × L(E, ρ ⊗ χ−1, 1)(

�+
E�

−
E

)[F :�]

whilst at the trivial character,

Lp(E, ρ, 1) = εF (ρ) × (
1 − αp(gρ)

)(
1 − βp(gρ)

) × L(E, ρ, 1)(
�+

E�
−
E

)[F :�]
.

Precisely when either of αp(gρ) or βp(gρ) equals one, we have an exceptional zero.

Case I – The eigenvalue αp(gρ) = 1 but βp(gρ) �= 1:
This scenario is accessible using the method of Greenberg, Stevens et al [7, 15]. As a
general comment, the sign term ε∞,�(E, ρ) in the complex functional equation for the
Rankin L-function (attached to the pure motive h1(E) ⊗ Ind�

F (ρ) over �) is related to
its p-adic counterpart wp(2), via the simple formula

wp(2) = (−1)ep × ε∞,�(E, ρ),

where ep counts the multiplicity of 1 inside the Frob−1
p -eigenvalues

{
αp(gρ), βp(gρ)

}
. In

Case I, clearly ep = 1, therefore the complex and p-adic signs must be different.

THEOREM 6.2. The p-adic L-function vanishes at s = 1, with derivative formula

dLp(E, ρ, s)
ds

∣∣∣∣
s=1

= −2 × dαp(Fk)
dk

∣∣∣∣
k=2

· (1 − βp(gρ)
) × εF (ρ) · L(E, ρ, 1)(

�+
E�

−
E

)[F :�]
.

This is the ρ-twisted analogue of the results in [7, Theorem 1.3] and [15, Theorem
1.1]. Provided the derivative of αp(Fk) does not vanish at k = 2, one conjectures that

ordersp=1Lp(E, ρ, sp) ?= 1 + orders∞=1L(E, ρ, s∞), but its proof is a long way off.

Proof. First, if ε∞,�(E, ρ) = −1, then L(E, ρ, 1) = 0, so the right-hand side is
zero. On the other hand Lp(E, ρ, 1) = 0 and wp(2) = +1, hence the p-adic L-function
Lp(E, ρ, s) has a zero of order ≥ 2 at s = 1; the formula just collapses to ‘0 = 0’.

The interesting situation occurs when both ε∞,�(E, ρ) = +1 and wp(2) = −1.
Developing our two-variable L-function about (k, s) = (2, 1):

Lp
(
F , gρ, 1; k, s

) = 0 + c1(s − 1) + c2(k − 2) + higher order terms.

Moreover, Corollary 5.6 implies the above vanishes along the central line s = k/2, in
which case its Taylor series coefficients satisfy c1 = −2c2. Defining for the moment a
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temporary scalar c3 = i[F :�]·D−2
F ·〈F2 ,F2〉nE

�
(λF ,P2)·(�+
E�

−
E )[F :�] ∈ �×

p , we apply the reasoning

dLp(E, ρ, s)
ds

∣∣∣∣
s=1

= c3 × dLp
(
F , gρ, 1; 2, s

)
ds

∣∣∣∣∣
s=1

= c3 × c1

= −2c3 × c2 = −2c3 × ∂Lp
(
F , gρ, 1; k, s

)
∂k

∣∣∣∣∣
(k,s)=(1,2)

by 5.3&4.5(i)= −2c3 × DF · dL(00)
p,2 (F , 0)

dk

∣∣∣∣∣
k=2

by 4.6(b)= −2c3 × α′
p(F , 2)

αp(F , 2)
·
(

1 − βp(gρ)

αp(F , 2)

)
× DF · Limp

p,2 (F , 0)

∣∣∣∣
k=2
.

But DF · Limp
p,2 (F , 0)

∣∣∣
k=2

= εF (ρ) · L(E, ρ, 1) × (
i−[F :�] · D2

F ·�
(λF ,P2)
/〈F2 ,F2〉nE

)
whilst the eigenvalue αp(F , 2) = ap(E) = +1. The result follows immediately. �

Case II – The eigenvalues αp(gρ) = βp(gρ) = 1:
Unfortunately, this situation appears more complicated than the preceding scenario.
One can make progress towards proving a formula for the double derivative here, by
first establishing the correct lower bound in the order of vanishing.

THEOREM 6.3. The function Lp(E, ρ, s) has at least a double zero at s = 1.

Proof. As both of αp(gρ) and βp(gρ) equal one, clearlywp(2) = (−1)2 × ε∞,�(E, ρ).
If wp(2) = ε∞,�(E, ρ) = +1, then Lp(E, ρ, s) has even order of vanishing at s = 1;
however, Lp(E, ρ, 1) = 0 thence the order of vanishing must be ≥ 2.

Alternatively, if wp(2) = ε∞,�(E, ρ) = −1, it is enough to show that there is no
simple zero in the p-adic L-function at s = 1. By the reasoning employed earlier, the
Taylor series for Lp

(
F , gρ, 1; k, s

)
about (2, 1) had the form

Lp
(
F , gρ, 1; k, s

) = 0 + c1(s − 1) + c2(k − 2) + higher order terms,

and again c1 = −2c2 because the two-variable L-function vanishes along s = k/2.
Fixing the value s = 1 and using Theorem 4.6(c), its derivative with respect to k
must then vanish at weight two since L(00)

p,2 (F , 0) has at least a double zero there.
Consequently, c2 = 0 in which case c1 = 0, so Lp(E, ρ, s) cannot have a simple zero. �
Bearing in mind the expression we obtained for the double derivative with respect
to the weight variable k (c.f. Theorem 4.6), it is tempting to hope that the vanishing
along s = k/2 will yield an analogous formula for the cyclotomic variable s ∈ �p.
This is regrettably not the case. Indeed, the quadratic terms in the Taylor series for
Lp

(
F , gρ, 1; k, s

)
are of the form c4 × (k − 2)2 + c5 × (s − 1)2 + c6 × (k − 2)(s − 1),

and we lack derivative formulae along s = k/2 that would allow us to determine c6.

CONJECTURE 6.4.

d2Lp(E, ρ, s)
ds2

∣∣∣∣
s=1

= 8 ·
(

dαp(Fk)
dk

∣∣∣∣
k=2

)2

· εF (ρ) · L(E, ρ, 1)(
�+

E�
−
E

)[F :�]
.
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For instance, if the derivative of αp(Fk) is non-zero at k = 2 one speculates that there

should be a strict equality ordersp=1Lp(E, ρ, sp)
?= 2 + orders∞=1L(E, ρ, s∞), although

again its proof lies well beyond the reach of current technology.

6.1. Behaviour over the number fields �
(
μqn , qn√

m
)
. We shall conclude by

revisiting the situation first mentioned in the Introduction. Let us recall that q �= p
denoted an auxiliary prime, and E/� an elliptic curve. We consider fields Ln =
�

(
μqn , qn√

m
)
, Kn = �

(
μqn

)
and F = Fn = �

(
μqn

) ∩ �. Throughout, we assume the
prime p ≥ 5, and that p remains inert in Fn.

Let πn : Gal(Ln/Kn) −→ μqn denote the character sending σ �→ σ
(

qn√
m
)/

qn√
m.

The irreducible Artin representations factoring through Ln/� all have the form

ρt,� ⊗ ψ such that 0 ≤ t ≤ n, ρt,� = Ind�
Kt

(πt) and ψ : Gal(Kn/�) → �×.

Working over the totally real field F = Ft, the corresponding representations are ρ(&)
t :=

ρt ⊗& = IndFt
Kt

(
πt ⊗ ResKt (ψ)

)
with ρt = IndFt

Kt
(πt) and & = ResFt (ψ).

REMARK. A basic calculation shows ρt,� ⊗ ψ occurs inside the regular representation
of Gal(Ln/�) exactly (q − 1) · qt−1-times, which also coincides with its actual degree.
It follows that the Hasse–Weil L-function for E over �

(
μqn , qn√

m
)

splits into

L
(
E/Ln, s

) =
∏
θ

L
(
E, θ, s

) ×
n∏

t=1

∏
&:Gal(Fn/Ft)→�

×

(
L
(
E/Ft, ρ

(&)
t , s

))(q−1)qt−1

,

where θ ranges over Dirichlet characters whose conductors divide qn.

DEFINITION 6.5. The p-adic L-function for E over �
(
μqn , qn√

m
)

is given by

Lp
(
E/Ln, s

)
:=

∏
θ

L(θ)
p

(
E, s

) ×
n∏

t=1

∏
&:Gal(Fn/Ft)→�

×

(
Lp

(
E, ρ(&)

t , s
))(q−1)qt−1

which is an Iwasawa function defined at all points s ∈ �p.

The θ -twists are the p-adic L-functions (over �) of Mazur–Tate–Teitelbaum [14]; their
derivatives at s = 1 are described by the formula of Greenberg and Stevens. We are
left with the task of inputting the information from Theorems 6.2 and 6.3, in order to
bound below the order of vanishing for Lp

(
E/Ln, s

)
.

Let us first verify that our running assumptions are valid over these number
fields. We only need check Hypothesis (H4) at the orthogonal representations ρ(1)

t = ρt

because it is precisely these which exhibit the exceptional zeroes.

LEMMA 6.6. For all t ≤ n, Hypotheses (SS) and (H1)–(H5) hold over Ft.

Proof. Let us check through the conditions (H1)–(H5) carefully.
(i) The curve E will be semistable over F = Ft, hence the base-change of fE has

square-free conductor as an OFt -ideal, and (H1) must be true;
(ii) both (H2) and (H3) are automatic from the construction of {Fκ}κ≥2 and ρ(&)

t ;
(iii) the self-duality of ρ(1)

t = IndFt
Kt

(πt) follows because πt is orthogonal;
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(iv) since E has good reduction at the unique prime ideal of Ft lying above q, the
level n

(
gρt

)
is coprime to nE = nE/Ft so (H5) holds;

(v) finally, we have already seen that (H1) =⇒ (SS) for a sufficiently small p-adic
neighbourhood of k0 = 2 in weight-space.

�
Let φ be a Dirichlet character of conductor pfφ , which we interpret as a finite order
character of �×

p . By Mazur–Tate–Teitelbaum [14, Section 14], at all such characters φ
each individual θ -twist interpolates

L(θ)
p

(
E, φ, 1

) = θ (p)−fφ · τ�

(
θ−1φ

) · (1 − θ−1φ(p)
) · L

(
E, θ × φ−1, 1

)
�

sign(θ×φ)
E

which gives rise to a trivial p-adic zero when θ (p) = 1 and φ = 1�.
Let pt denote the OFt -ideal generated by p. Provided χ = ResFt (φ) �= 1Ft , then

Lp(E, ρ(&)
t ⊗ χ, 1) = εFt

(
ρ(&)

t

) · τFt (χ )2 · detρ(&)∗
t

(
p

fχ
t
) · χ(

n(g
ρ

(&)
t

)
)

·L
(
E, ρ(&)

t ⊗ χ−1, 1
)(

�+
E�

−
E

)[Ft:�]
;

alternatively, if ResFt (φ) = 1Ft , one has the interpolation

Lp(E, ρ(&)
t , 1) = εFt

(
ρ(&)

t

) ·
(

1 −&(
pt
)
αp(gρt

)
)(

1 −&(
pt
)
βp(gρt

)
)

· L
(
E, ρ(&)

t , 1
)(

�+
E�

−
E

)[Ft:�]

which itself yields a trivial p-adic zero when &−1
(
pt
) ∈ {

αp(gρt
), βp(gρt

)
}
.

DEFINITION 6.7. We define a p-adic multiplier Mp(Ln, φ) by the local factor

∏
θ

θ (p)−fφ · τ�

(
θ−1φ

) ×
n∏

t=1

∏
&

(
εFt

(
ρ(&)

t

)
τFt (χ )2 detρ(&)∗

t

(
p

fχ
t
)
χ
(
n(g

ρ
(&)
t

)
))(q−1)qt−1

,

where χ = ResFt (φ), and the right-hand product ranges over & : Gal(Fn/Ft) → �
×
.

Proof of Theorem 1.1. To prove this result, we multiply together our interpolation
formulae at φ above, first over the one-dimensional θ -twists, and secondly over all the
Artin twists ρ(&)

t . A little bookkeeping shows that

(i) L
(
E/Ln, φ, 1

) =
∏
θ

L
(
E, θφ, 1

) ×
n∏

t=1

∏
&

L
(
E, ρ(&)

t ⊗ ResFt (φ), 1
)(q−1)qt−1

(ii)
(
�+

E�
−
E

)[Ln:�]/2 =
∏
θ

�
sign(θ×φ)
E ×

n∏
t=1

∏
&

((
�+

E�
−
E

)[Ft:�]
)(q−1)qt−1

and the rest of the theorem follows readily. �
Proof of Theorem 1.2. Assume first that pn remains inert in the CM extension Kn/Fn;

it is an easy exercise to show for all t ≤ n, that each prime ideal pt ⊂ OFt cannot split
in Kt/Ft either. Let {P1, . . . ,Pep} denote the set of primes of Ln = �

(
μqn , qn√

m
)

lying
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above p, so that ep = [
�

(
μqn , qn√

m
)

: �
(
μqn

)]/[
�p

(
μqn , qn√

m
)

: �p
(
μqn

)] = qn0 say.
Only one of the θ -twists satisfies the exceptional zero condition (the branch θ = 1�),
whilst the Artin twists ρ(&)

t = ρt ⊗& do so precisely when 1 ≤ t ≤ n0 and & = 1Ft . We
immediately deduce

orders=1Lp
(
E/Ln, s

) ≥ orders=1Lp
(
E, s

) +
n0∑

t=1

(q − 1) qt−1 · orders=1Lp
(
E, ρt, s

)
which is bounded below by 1 + ∑n0

t=1(q − 1) qt−1 × 1 = qn0 = ep(Ln).
Conversely if pn splits in the CM extension Kn/Fn, each pt must split in Kt/Ft. In this

situation, there are precisely ep = 2 × qn0 primes of Ln lying above p. Moreover, θ (p) = 1
for exactly two choices of θ : the trivial character obviously, but also for the quadratic
character θ ′ of conductor q (as p splits in the associated quadratic extension). If we write
pt · OKt = ℘t · ℘t, then provided 1 ≤ t ≤ n0, both eigenvaluesαp(gρt

) = πt
(
Frob−1

℘t

)
and

βp(gρt
) = πt

(
Frob−1

℘t

)
will equal one. It follows that orders=1Lp

(
E/Ln, s

)
is bounded

below by

orders=1Lp
(
E, s

) + orders=1L(θ ′)
p

(
E, s

) +
n0∑

t=1

(q − 1) qt−1 · orders=1Lp
(
E, ρt, s

)
which upon applying Theorem 6.3, must itself be bounded below by the quantity
1 + 1 + ∑n0

t=1 (q − 1) qt−1 × 2 = 2 × qn0 = ep(Ln). �

Proof of Theorem 1.3. The task is to calculate the coefficient of (s − 1)ep(Ln)

occurring in the Taylor series expansion of Lp
(
E/Ln, s

)
about s = 1. Applying an

identical argument to the demonstration of 1.2 above, this coefficient is given by the
product

1
ep!

dep Lp
(
E/Ln, s

)
dsep

∣∣∣∣
s=1

= L′
p

(
E, 1

) ×
∏
θ �=1�

L(θ)
p

(
E, 1

) ×
n0∏

t=1

(
L′

p

(
E, ρt, 1

))(q−1)qt−1

×
n∏

t=n0+1

(
Lp

(
E, ρt, 1

))(q−1)qt−1

×
n∏

t=1

∏
& �=1Ft

(
Lp

(
E, ρ(&)

t , 1
))(q−1)qt−1

.

REMARKS.

(a) The term L′
p

(
E, 1

)
is computed via the Greenberg–Stevens formula.

(b) The terms L(θ)
p

(
E, 1

)
when θ �= 1� are already described on the previous page,

and so are the special values Lp
(
E, ρ(&)

t , 1
)

when either t > n0 or & �= 1Ft .
(c) Finally, if 1 ≤ t ≤ n0 and & = 1Ft then αp(gρt

) = 1 = −βp(gρt
) because the

local L-factor of ρt above p is
(
1 − πt(Frob−1

℘ )NKt/�(℘)−s
) = (

1 − NFt/�(p)−2s
)
;

Theorem 6.2 then allows us to obtain the derivative of Lp
(
E, ρt, s

)
at s = 1.

Combining these remarks (a)–(c) together, one then arrives at the formula

1
ep!

dep Lp
(
E/Ln, s

)
dsep

∣∣∣∣∣
s=1

= Lp(E/Ln) × Ep
(
p−s)∣∣∣

s=0
× Mp

(
Ln, 1

) · L
(
E/Ln, 1

)(
�+

E�
−
E

)[Ln:�]/2
,
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where the L-invariant term is defined by

Lp(E/Ln) = logp(qE,p)

ordp(qE,p)
×

n0∏
t=1

(
−2 × dαpt (Fk)

dk

∣∣∣∣
k=2

)(q−1)qt−1

.

If one sets d(t) = [
Kt : �

]
and d+(t) = [

Ft : �
]
, the rational polynomial Ep(X) equals

the product of
∏
θ �=1�

(
1 − θ−1(p)X

)
with

n∏
t=1

∏
&

(
1 −&(pt)βp(gρt

)Xd+(t))d(t) ×
n∏

t=1

∏
& �=1Ft or t>n0

(
1 −&(pt)αp(gρt

)Xd+(t))d(t)
.

The result will follow, providing one can establish:
(i) the multiplier Mp

(
Ln, φ

)
evaluated at φ = 1 returns the value

√
disc(Ln);

(ii) the derivative of αpt (Fk) at k = 2 is equal to − 1
2 × [Ft : �] × logp(qE,p)

ordp(qE,p) ;

(iii) Ep(X) agrees with the polynomial Ep
(
�Ln/�,X

)
given in the Introduction.

Working in reverse order, to show (iii) observe if t ≤ n0 then the factor
(
1 − Xd+(t)

)
occurs with multiplicity d(t) = [

Kt : �
]

inside of the det
(
1 − X ·�Ln/�(Frob−1

p )
)
. In

other words, the full product
∏n0

t=0

(
1 − Xd+(t)

)[Kt:�] · Ep(X) coincides with

∏
θ

(
1 − θ−1(p)X

) ×
n∏

t=1

∏
&

((
1 −&(pt)αp(gρt

)Xd+(t))(1 −&(pt)βp(gρt
)Xd+(t)))d(t)

which is precisely the characteristic polynomial of �Ln/�

(
Frob−1

p

)
, so we are done.

REMARK. Because Ft is a totally real field, we can use the result in [15, Proposition 8.7]
to find the derivative of the Hecke eigenvalue αpt (F , k) at the base weight k = 2. The
relevant formula one needs is

dαpt (Fk)
dk

∣∣∣∣
k=2

= −1
2

× [
KFt,pt : 	p

] × logp(qE,p)

ordp(qE,p)
where KFt,pt = OFt

/
pt,

however, the residue class degree [KFt,pt : 	p] = [Ft : �] as the prime p is inert.

This leaves us with the demonstration of (i). Writing out Mp
(
Ln, 1

)
in full yields

∏
θ

τ�

(
θ−1) ×

n∏
t=1

∏
&

(
εFt

(
ρ(&)

t

))(q−1)qt−1

= ε�

( ⊕ θ−1) ×
∏

ρ∈�Ln/�, dim(ρ)>1

ε�

(
ρ
)dim(ρ)

where we have utilised the Artin formalism: εF
(
ρ
) = ε�

(
Ind�

F (ρ)
)

for F/� normal.
The above is precisely the ε-factor associated to the regular representation �Ln/� at
s = 0, which is widely known [20] to equal the square root of disc(Ln). �

A. Appendix relating Hol
(
gl

∣∣Vp × Ẽk−l
)ord to known quantities. Recall in Section

3, we omitted the proof of a p-stabilisation identity involving Hol(GlẼ). We guard the
same conditions as Theorem 3.4, and now supply the missing proof.
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LEMMA A.1. If gl ∈ Sl
(
cpm−1, η

)
and θ = ψη−1ω2−k

F ε �= 1, then

Hol
(
gl

∣∣Vp × Ẽk−l
)ord

= Hol
(
gl

∣∣Vp × Ek−l
)ord − θ∗(p)N (p)k−l−1−r × Hol

(
gl × Ek−l

)ord
∣∣∣Vp.

Proof. The argument reduces to the following four observations (A.1.1–A.1.4),
concerning ξ -expansions of the various HMF’s occurring in the statement of A.1.

Let us treat the case r > 0 first.
(A.1.1) During the demonstration of Proposition 3.1, we established that

Hol
(

gl

∣∣Vp × Ẽk−l
(
r − (k − l − 1), θ ; cpn))

λ

∣∣∣∣UN!
p

≡
∑

0�ξ ∈̃tλ

δλ
(
pN!ξ

)
eF (ξz) mod N (p)N!

where the ξ -coefficients

δλ
(
pN!ξ

)
:= N (̃tλ)k/2−r−1

∑
pN!ξ=ξ1+ξ2

C
(
ξ1̃t−1

λ , gl

∣∣Vp

) × (−1)(k−l−1−r)[F :�]

× N (ξ2)k−l−1−r ×
∑

ξ̃2=̃b×̃c, b∈̃tλ
c∈OF −p

signN (̃b)k−l−1 × N (̃b)2r−(k−l−1) × θ∗(̃c)

≡ (−1)r[F :�] × N (̃tλ)k/2−1 ×
∑

pN!ξ=ξ1+ξ2

C
(
p−1ξ1̃t−1

λ , gl
)

×
∑

ξ̃2=̃b×̃c, b∈̃tλ
c∈OF −p

(
(−1)[F :�]signN (̃b)

)(k−l−1)N (̃c−1̃b̃t−1
λ )r

×θ∗(̃c)N (̃c)k−l−1 mod N (p)N!.

(A.1.2) An absolutely identical argument shows

Hol
(

gl

∣∣Vp × Ek−l
(
r − (k − l − 1), θ ; cpn))

λ

∣∣∣∣UN!
p

≡
∑

0�ξ ∈̃tλ

δ′λ
(
pN!ξ

)
eF (ξz) mod N (p)N!

with the modified ξ -coefficient satisfying

δ′λ
(
pN!ξ

) ≡ (−1)r[F :�] × N (̃tλ)k/2−1 ×
∑

pN!ξ=ξ1+ξ2

C
(
p−1ξ1̃t−1

λ , gl
)

×
∑

ξ̃2=̃b×̃c, b∈̃tλ
c∈OF

(
(−1)[F :�]signN (̃b)

)(k−l−1)N (̃c−1̃b̃t−1
λ )r × θ∗ (̃c)N (̃c)k−l−1 mod N (p)N!.

(Note δ′λ
(
pN!ξ

)
differs from δλ

(
pN!ξ

)
only in the range of its second

summation.)
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(A.1.3) Thirdly, replacing ‘gl

∣∣Vp’ with ‘gl’ one deduces

Hol
(

gl × Ek−l
(
r − (k − l − 1), θ ; cpn))

λ

∣∣∣∣UN!
p

≡
∑

0�ξ ∈̃tλ

δ′′λ
(
pN!ξ

)
eF (ξz) mod N (p)N!

where this time the coefficients satisfy the congruence

δ′′λ
(
pN!ξ

) ≡ (−1)r[F :�] × N (̃tλ)k/2−1 ×
∑

pN!ξ=ξ1+ξ2

C
(
ξ1̃t−1

λ , gl
)

×
∑

ξ̃2=̃b×̃c, b∈̃tλ
c∈OF

(
(−1)[F :�]signN (̃b)

)(k−l−1)N (̃c−1̃b̃t−1
λ )r × θ∗(̃c)N (̃c)k−l−1 mod N (p)N!.

(A.1.4) Lastly, it is an easy exercise for the reader to check

δ′λ
(
pN!ξ

) ≡ δλ
(
pN!ξ

) + θ∗(p)N (p)k−l−1−r× δ′′λ
(
pN! × p−1ξ

)
mod N (p)N!

in which case, on the level of ξ -expansions:

Hol
(
gl

∣∣Vp × Ek−l
)
λ

∣∣∣UN!
p ≡ Hol

(
gl

∣∣Vp × Ẽk−l
)
λ

∣∣∣UN!
p

+ θ∗(p)N (p)k−l−1−r× Hol
(
gl × Ek−l

)
λ

∣∣∣UN!
p

∣∣∣Vp mod N (p)N! · O�p

[[
ξ
]]
.

The result follows for r > 0, upon allowing the exponent N → ∞.
�

REMARK. To treat the r = 0 situation, let us start by introducing ‘correction terms’

c(ξ, k, θ )λ := N (̃tλ)k/2−1 × 2−[F :�] · ζ (c)
F

(
1 − (k − l), θp

) × C
(
ξ̃ t−1
λ , gl|Vp

)
,

c′(ξ, k, θ )λ := N (̃tλ)k/2−1 × 2−[F :�] · ζ (c)
F

(
1 − (k − l), θ

) × C
(
ξ̃ t−1
λ , gl|Vp

)
and c′′(ξ, k, θ )λ := N (̃tλ)k/2−1 × 2−[F :�] · ζ (c)

F

(
1 − (k − l), θ

) × C
(
ξ̃ t−1
λ , gl

)
.

Note if r = 0 then the first factor δλ
(
pN!ξ

)
requires the addition of c

(
pN!ξ, k, θ

)
λ
,

the second factor δ′λ
(
pN!ξ

)
requires the addition of the correction c′(pN!ξ, k, θ

)
λ
, and

likewise the final factor δ′′λ
(
pN!ξ

)
requires the addition of the c′′(pN!ξ, k, θ

)
λ
. However,

at every N > 0, these three terms satisfy the equality

c′(pN!ξ, k, θ
)
λ

= c
(
pN!ξ, k, θ

)
λ
+ θ∗(p)N (p)k−l−1× c′′(pN! × p−1ξ, k, θ

)
λ

so it again happens that

Hol
(
gl

∣∣Vp × Ek−l
)
λ

∣∣∣UN!
p ≡ Hol

(
gl

∣∣Vp × Ẽk−l
)
λ

∣∣∣UN!
p

+ θ∗(p)N (p)k−l−1× Hol
(
gl × Ek−l

)
λ

∣∣∣UN!
p

∣∣∣Vp mod N (p)N! · O�p

[[
ξ
]]
.

Sending the exponent N → ∞ as before, the case r = 0 is also established.
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B. Appendix Writing the pseudo-eigenvalue � (gρ) in terms of ε-factors. Before
supplying the proof of Lemma B.1, let us first discuss some related concepts. For
any Artin representation ρ : Gal

(
�/F

) → GL(V,�), its global ε-factor over F can be
decomposed as an infinite product

εF
(
ρ, s

) =
∏

all places ν

εFν

(
ρν, τν, dxν ; s

)
.

Each local factor depends on a normalisation of additive characters τν , and of Haar
measures dxν . We shall choose the Haar measure which assigns �p measure one, and
the additive character τ : (�p,+) −→ �× given by τ (ap−m) = exp(2π ia/pm) at every
element a ∈ �p.

The Artin L-function attached to ρ over the field F is given by an Euler product

L(ρ, s) =
∏

finite places ν

det
(

1 − NF/�(ν)−s · Frob−1
ν

∣∣∣V (ρ)Iν
)

for Re(s) � 0,

where Frobν is an arithmetic Frobenius element for ν, and Iν is the inertia group.
If one completes the L-function at infinity by multiplying it with the gamma factor
�∞(s) := (

(2π )−s × �(s)
)[F :�]

, the completed L-function (conjecturally) extends to a
meromorphic function on the whole of �, and satisfies an equation relating the value
at s with the value at 1 − s.

(Thus, εF
(
ρ, 1/2

)
corresponds to the root number in this functional equation.)

LEMMA B.1. If gρ is the weight one HMF associated to ρ : GF → GL2(�), then

εF (ρ) := εF (ρ, s)
∣∣∣
s=0

= i[F :�] · DF ·
√
N

(
n(gρ)

) × � (gρ).

Proof. Following Shimura, one defines R
(
gρ, s

)
:= N

(
n(gρ)d2

)s/2
�∞(s) ×

L
(
gρ, s

)
. Applying [18, equation (2.48)], on the level of primitive forms there is a

symmetry

R
(
gρ, s

) = i[F :�] · R
(
gρ

∣∣Jn(gρ ), 1 − s
)

and by the definition of � (gρ), one has R
(
gρ

∣∣Jn(gρ ), 1 − s
) = � (gρ) × R

(
g#
ρ , 1 − s

)
.

However, L(ρ, s) = L(gρ, s) and L(ρ∨, s) = L(g#
ρ , s), thus the functional equation

�∞(s) × L
(
ρ, s

) = εF (ρ, s) · �∞(1 − s) × L
(
ρ∨, 1 − s

)
can be rewritten as

R
(
gρ, s

) = εF (ρ, s) · N (
n(gρ)d2)s− 1

2 × R
(
g#
ρ , 1 − s

)
.

Comparing this with the version R(gρ, s) = i[F :�] ·� (gρ) × R(g#
ρ , 1 − s) above, one

immediately deduces i[F :�] ·� (gρ) = εF (ρ, s) · N (n(gρ)d2)s− 1
2 for all s ∈ �; clearly

putting s = 0 will then produce the desired equality. �
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